
Chapter 7
Infrasound Signal Detection:
Re-examining the Component Parts
that Makeup Detection Algorithms

Omar Marcillo, Stephen Arrowsmith, Maurice Charbit
and Joshua Carmichael

Abstract Detecting a Signal Of Interest (SOI) is the first step in many applications
of infrasound monitoring. This intuitively simple task is defined as separating out
signals from background noise on the basis of the characteristics of observed data; it
is, however, deceptively complex. The problem of detecting signals requires mul-
tiple processes that are divisible at their highest level into several fundamental tasks.
These tasks include (1) defining models for SOIs and noise that properly fit the
observations, (2) finding SOIs amongst noise, and (3) estimating parameters of the
SOI (e.g., Direction Of Arrival (DOA), Signal-to-Noise Ratio (SNR) and confi-
dence intervals) that can be used for signal characterization. Each of these com-
ponents involves multiple subcomponents. Here, we explore these three
components by examining current infrasound detection algorithms and the
assumptions that are made for their operation and exploring and discussing alter-
native approaches to advance the performance and efficiency of detection opera-
tions. This chapter does not address new statistical methods but does offer some
insights into the detection problem that may motivate further research.

7.1 Introduction

The intuitively simple task of separating out signals from background noise on the
basis of the characteristics of observed data or mathematical models is deceptively
complex. Most infrasound applications exploits signal detection using array data
and will be the focus of this chapter. The foundational theory on which array-based
signal detectors have been built was constructed for radar and other applications
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(see Krim and Viberg 1996 for a review). However, as most experts in the field are
aware, the practice of applying the theory to infrasound data is often very chal-
lenging, particularly because the narrowband assumption fails. The wavelengths of
infrasonic signals in the bandwidth required to monitor for large atmospheric
explosion are large—between 3.5 and 0.35 km. At these distances, the conditions
of the local atmosphere (temperature, wind speed, and direction) are variable, as are
the characteristics of noise at each array element (Mack and Flinn 1971).

Most infrasound research in the area of signal detection has been driven by the
inclusion of an infrasound network as part of the International Monitoring System
(IMS) that is used to verify compliance with the Comprehensive Nuclear Test Ban
Treaty (CTBT) Marty (2019). Arrays are an integral part of the design of the IMS
infrasound network and early work provided constraints for array designs (Christie
and Campus 2009; Marty 2019). Digital detector method developed for radar,
seismology (Cansi 1995) and from image processing domains (Brown et al. 2008)
were deployed to exploit the data from these arrays (Mialle et al. 2019). Most of
these detectors operated under the assumption that the received signals associated a
single SOI appear, the sensor level, as filtered versions of a same signal. This
assumption is called perfect coherence. A particular case of interest for infrasound
source is the case where the received signals are delayed/attenuated versions of a
same signal. The other most commonly used assumption is that the noise is
Gaussian, temporally and spatially white. All these assumptions lead to simple
algorithms whose trade-off between false alarms and missed detections can be
clearly quantified.

However, there are many other coherent sources of infrasound routinely detected
by the IMS, such as microbaroms (Stopa et al. 2011; Landès et al. 2012; Walker
2012; Ceranna et al. 2019) and some volcanic activity (Dabrowa et al. 2011;
Matoza et al. 2019). Such infrasound sources are often of no interest to verifying
compliance with the CTBT. Rather, they are often considered nuisance sources.
Compounding this problem, the perfect coherence of infrasound signals is often lost
by propagation (Mack and Flinn 1971; Nouvellet et al. 2013; Green 2015). As
detectors are included in pipeline processing, more sophisticated algorithms are
needed to identify the signals of interest amongst permanent sources of coherent
noise (e.g., microbaroms). Practical approaches that have been proposed included
detection categorization algorithms (Brachet et al. 2010; Mialle et al. 2019) and
adaptive thresholds (Arrowsmith et al. 2009). However, while these approaches
have enabled the construction of event catalogs (Arrowsmith et al. 2015), they leave
significant limitations. In particular, there remains a disconnect between the sim-
plistic assumptions exploited by detection theory and practice for infrasound data
processing. This chapter does not address new statistical methods but does offer
some insights into the detection problem that may motivate further research.

This chapter is organized to show the different components involved in infra-
sound signal processing for detection purposes. We will examine these components
in the following subsections of this chapter: (1) defining signal and noise models,
(2) detecting signals in noise, and (3) parameter estimation/extraction.
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7.2 Examining the Component Parts of Detectors

The term “detection” implies the process of finding something that is hidden. For
our specific purposes, we extend the action of finding within detection to extracting
features (parameters) that are used to characterize signals. Infrasound monitoring
processes a stream of infrasound array data and performs detection by (1) defining
noise and signal characteristics, (2) identifying signals of interest (SOI) that are
distinct from noise, and (3) extracting parameters that characterize the SOI
(Fig. 7.1). In most cases, the noise and SOI are quantitatively similar, therefore,
signal separation, and parameter extraction prove challenging.

7.3 Defining Signal and Noise

Noise can be defined as attending to one or a combination of various criteria, such as
coherence, power, origin, frequency content, or duration. We define two types of
noise, namely, (1) physical and (2) operational noise. For array data, physical noise is
any signal that is incoherent across the elements of the arrays. This definition includes
very local pressure fluctuations generated by wind (Morgan and Raspet 1992) and
intrinsic sensor self-noise. Infrasonic arrays typically have sensors separated at dis-
tances much larger than the mean size of turbulence, and thus turbulence is inco-
herent. These disturbances can propagate across elements (for the ones separated
short distances) at lower speeds (Fehr 1967) than the speed of sound that we can
distinguish and filter them out. Infrasonic signals that are coherent across the array
might be considered noise depending on monitoring objectives, and we refer to these
coherent signals as operational-type noise. Microbaroms (Donn and Naini 1973), for
example, are a type of signal that are coherent but are considered noise for most

Fig. 7.1 The high-level components of infrasound signal detection algorithms. Differentiating
signals from noise requires us to define parameters (dimensions) that can distinguish between the
two
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studies (Bowman et al. 2005). Figure 7.2 shows 24 h of data from one array element
of a station of the IMS network (IS57, US) along with wind measurements from a
collocated weather station to illustrate the variability of the infrasonic background
noise and its relation to changing atmospheric conditions. The first 15 h of the day are
characterized by a low-amplitude signal with amplitude below a tenth of a Pascal and
wind speeds averaging between 2–3 m/s and a wide range of directions between
−20° and 70°. The Power Spectral Density (PSD) of the overpressure waveform of a
representative section of this period (cyan region) shows the very distinctive
microbarom peak center at 0.2 Hz (Bowman et al. 2005) and multiple sharp peaks

Fig. 7.2 Waveform and weather conditions for station IS57, element I57L1
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above 0.9 Hz. Most of these peaks repeat at integer multiples of the first four peaks
and may be related to sound from wind turbines (Marcillo et al. 2015; Pilger and
Ceranna 2017). After hour 15 the amplitude of the overpressure increases with
increasing wind speeds. Note also that wind direction after hour 15 is more stable
between 40° and 50°. The PSD for a representative section of this period (magenta
region) shows the typical characteristics of wind-induced noise that completely
masks the other elements of the background noise.

Figure 7.3 shows array processing results (back-azimuth estimation) of the 24-h
period described above. Two regions, before and after hour 15, are clearly separated
in the coherence and the back-azimuth estimation maps. The microbarom and
wind-turbine regions (around 0.2 Hz and above 0.9 Hz, respectively) show the
highest values for coherence and stable back-azimuth estimations. The region after
hour 15, where the signal is dominated by wind-induced noise, displays (as expected)
very low coherence and a wide distribution for the estimation of back azimuths. This
example shows two intervals with background noise with very different character-
istics that resemble our definitions of operational- and physical-type noises.

Fig. 7.3 Physical and Operational noise. 24 h of data from IMS station IS57 (Pinon Flats,
California, US) that were processed using the Bartlett beamformer. The frequency bands were
between 0.1 and 4 Hz with 0.1 Hz steps, a 200-s window, and 50% overlap. Panel a shows a map
of the average maximum cross-correlation. Back azimuths are determined for each subwindow in
each frequency using the maximum F-value criteria (Panel b)
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In order to detect nuclear explosions (e.g., IMS network) exceeding a certain yield,
definitions of signal have to be clarified. Given the sparsity of the 60-array network
within the IMS network, SOIs triggered by nuclear explosions have generally
propagated great distances (typically 100’s–1000’s to 10,000’s of kilometers)
through atmospheric waveguides (typically the stratospheric waveguide) (Drob et al.
2003). Infrasound SOIs, per our current definition, originate from atmospheric
nuclear tests (Don and Ewing 1962; Donn and Ewing 1962; Dahlman et al. 1971),
large chemical explosions (Ceranna et al. 2009; Green et al. 2011; Fee et al. 2013),
large vulcanian eruptions (Fee andMatoza 2013;Matoza et al. 2019), and bolides that
explode as terminal bursts (Le Pichon et al. 2013; Silber and Brown 2019).
Acoustically, these signals are indistinguishable from nuclear detonations. Our def-
inition of SOI excludes real infrasound waves from a wide-variety of natural and
man-made sources including local events that are not detected at 100’s to 1000’s of
kilometers (e.g., small charge explosions (Arrowsmith and Taylor 2013; Taylor et al.
2013), thunder (Anderson et al. 2014), moving vehicles) and continuous wave
sources (e.g., wind farm (Marcillo et al. 2015; Pilger and Ceranna 2017) and
anthropogenic noise). All of these excluded signals are now part of a refined concept
of operational-type noise, which includes interference for unwanted coherent signals
and random pressure fluctuations. To detect nuclear events, we must screen out the
cacophony of infrasound from local and continuous wave sources, which are not
applicable to the International Data Center (IDC) monitoring mission, and can be
falsely associated at the network level to form spurious events (Arrowsmith et al.
2015). While they may be of general scientific interest, to consider such infrasound as
signals results in too many false alarms when processing data on the sparse IMS
network.

To formalize the discussed ideas about signals and noise we formulate the
concept as a mathematical model. This modeling starts with array observations
(multichannel data) that consist of M waveforms associated to the M elements of an
array that are described by xðtÞ= x1ðtÞ, x2ðtÞ, . . . , xMðtÞ½ �T , where xmðtÞ (1 ≤ m ≤
M) denotes an infrasound record measured on sensor m. In the presence of a SOI
located far from the sensor array, a planar wave propagates across the array with a
slowness vector θ= θx, θy, θz

� �
and an associated signal sðtÞ. Signal s t− τmðθÞð Þ

defines the waveform observation at the mth element of this array with a propa-
gation delay τm:

τmðθÞ= rTmθ, ð7:1Þ

where rm is the 3D location of the mth element.
In the presence of additive noise wmðtÞ, we have:

xmðtÞ= s t− τmðθÞð Þ+wmðtÞ ð7:2Þ

The noise vector wðtÞ= w1ðtÞ,w2ðtÞ, . . . ,wMðtÞ½ � is assumed to be a stationary
spatially and temporally white random process, i.e., for any m, m′, t, and t′:
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E wmðtÞ,wm′ t′
� �� �

= σ2δ t− t′
� �

δmm′ , ð7:3Þ

where E is the expected-value operator, σ the standard deviation, δm the Kro-
necker’s symbol, and δðtÞ the Dirac’s function. wðtÞ is the realization of our defi-
nition of physical-type noise. This signal model with a coherent signal of interest
and an incoherent noise can be expanded for a more realistic case if an interfering
coherent (it can also be continuous) signal vðtÞ (which is not of interest) is
superimposed with the noisy SOI. The signal at the m-th element can be written as
follows:

xmðtÞ= s t− τmðθÞð Þ+ v t− ξmð Þ+wmðtÞ, ð7:4Þ

where the term v t− ξmð Þ+wmðtÞ is now a realization of an operational-type noise.
As our observations are based on discrete measurements of the wavefield, the
sampling theorem can be applied to these continuous-time models to construct
discrete-time versions. To apply this theorem, we assume that the continuous sig-
nals are band limited with the maximum frequency components fm and that the
recording system sampling rate (fs) of the signals is fs ≥ 2fm. With these assump-
tions, discrete version of Eq. 7.2 can be written as follows:

xn,m = sn,mðθÞ+wn,m ð7:5Þ

where sn,mðθÞ= s nTs − τmðθÞð Þ, the integer n=0, . . . ,N − 1, and Ts =1 ̸fs. In the
rest of this manuscript, we will use the notation xn = xn, 1, xn, 2, . . . , xn,M½ �T , s the
sequence s(0), s(Ts),…, s((N − 1)Ts), and snðθÞ= sn, 1ðθÞ, sn, 2ðθÞ, . . . , sn,MðθÞ½ �T . It
is worth to notice that snðθÞ depends only on s and θ and can be denoted sn s, θð Þ.

7.4 Detecting Signals Embedded in Noise

The main task in this step of processing infrasound records involves a binary test
between the presence or absence of a noisy SOI in the data. Statistical inference
analysis can be used to test the hypothesis of the absence of a SOI. The M-length
vectors xn are assumed to be independent and identically distributed (i.i.d.) with
probability density function f ðxnjμÞ, where the parameter vector μ includes θ, σ2,
and s and belongs to the full parameter set χ = R×R×Rð Þ,R+ ,RN . The “noise
only” hypothesis H0 is the subset χ0 of χ such that s=0. The counter-hypothesis is
H1 = χ −H0 and refers to the noise plus SOI hypothesis in the subset χ1. To test H0,
a common approach consists of comparing a real-valued function (test statistic)
based on the full observation X = ðx1, x2, . . . , xNÞ to a given threshold. The two
competing hypotheses are expressible in general form as follows:
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H0:X ∼ f xjμð Þ, μ∈ χ0
H1:X ∼ f xjμð Þ, μ∈ χ1

�
ð7:6Þ

Binary hypothesis testing will make the correct decision or incur an error by
rejecting H0 when it is true (type I error) or accepting H0 when it is false (type II
error). The next sections present a few test statistics that are commonly used in
infrasound detection research. Section 7.6, in particular, quantifies performance
comparisons between test statistics using Receiver Operating Characteristics
(ROC) curves.

7.4.1 Tests Based on Construction of a Likelihood Function

A common test statistic for hypothesis testing based on the construction of likelihood
functions is the Generalized Likelihood Ratio Test (GRLT). We construct these
signal detectors from log-likelihood functions, whereby we replace the unknown
source and noise parameters μ ∈ χi in each PDF with their maximum likelihood
estimates μî = argmaxμ∈ χi f ðxjμÞ. The ratio of logarithmic ratio of the resultant PDFs
defines a scalar screening statistic SGLRTðxÞ (Kay 2013; Charbit 2017):

SGLRTðxÞ=
max
μ∈ χ

∑N
n=1 logðf ðxnjμÞÞ

max
μ∈ χ0

∑N
n=1 logðf ðxnjμÞÞ

, ð7:7Þ

where the log function is the natural (base e) logarithm. We explicitly decide if an
SOI is present by comparing the size of SGLRTðxÞ to a threshold for event decla-
ration γ. This comparison forms the log generalized likelihood ratio test, or log
GLRT

SGLRT Xð Þ
H1

>
<
H0

γ ð7:8Þ

To objectively select γ, we apply the Neyman–Pearson criteria, which estimates
a value for γ that is consistent with a prescribed false alarm probability, PrFA = α.
This probability PrFA measures the rate at which Eq. 7.8 would choose H1 when H0

is true

max
μ∈ χ0

PrFA SGLRT Xð Þ> γjμ½ �= α ð7:9Þ
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The scalar α measures the probability of identifying a non-existing signal event
and is conventionally called the false alarm on noise, or just the false alarm
probability. The explicit form of SGLRTðXÞ that includes maximum likelihood
estimates of the competing PDFs was derived by Blandford (1974) and is expressed
as follows:

F X, θð Þ=
1
M∑N

n=1 ∑M
m=1 xn,mðθÞ

� �2

1
M − 1∑

N
n=1 ∑

M
m=1 xn,mðθÞ− 1

M∑M
m=1 xn,mðθÞ

� �2 ð7:10Þ

To form this ratio, we first beamform waveform data using time delays that are
defined in θ space, then maximize the coherence of the resultant sum. We then
compute the energy of this resultant waveform stack, as well as the residual beam
energy. When waveform sample data are Gaussian distributed, this ratio has a
noncentral F-distribution at every sample and is, therefore F X, θð Þ is called the F-
detector statistic. This detection statistic and the decision rule (Eq. 7.8) often give
higher than predicted false alarm rates (when applied to real data) because the
assumption of the Gaussian distribution of the noise is not realistic. Microbaroms
can spectrally overlap with SOIs leading to inflation of the F-detector statistic and
an increased type I errors (false alarms).

7.4.2 Tests Based on the Time Difference of Arrival (TDOA)

We can derive test statistics from the times of arrival of a SOI to the array elements.
Tests using TDOA are based on estimating the time difference of arrival Δtk, l of a
signal to a sensor pair (k, l). Δtk, l can be estimated using cross-correlation as
follows:

bΔtk,m = argmax
ϱ

∑
i
xi, kxi+ ϱ,m

� �
Ts ð7:11Þ

Examples of tests using TDOA are the Progressive Multichannel Correlation
(PMCC) detector (Cansi 1995) and the Maximum Cross-Correlation Method
(MCCM) (Lee et al. 2013).

The PMCC algorithm (Cansi and Pichon 2008) is a detector widely used in
infrasound research (Brachet et al. 2010) which tests the consistency of arrival
times of signals across the array. The relationship rkmp =Δtk,m +Δtm, p +Δtp, k
defined for a sensor triad k,m, pð Þ is the main component of the PMCC algorithm.
rkmp =0 if a signal is present (closure relationship) and rkmp ≠ 0 in the presence of
physical-type noise. rkmp is estimated for all possible triads in the array. The con-
sistency (Cκ) for a subnetwork with κ elements (κ≤M) is defined as follows:
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Cκ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

κ− 1ð Þ κ− 2ð Þ ∑
1≤ k<m< p< κ

r ̂2kmp

s
ð7:12Þ

PMCC defines a threshold to trigger detection for this subnetwork. If a detection
is triggered, additional elements of the array are progressively added to the initial
subnetwork and a test is run to assert that the new element can be added to the
detection. This detection schema generates independent elementary detections (or
PMCC pixels) at different frequency bands and time windows (Brachet et al. 2010;
Mialle et al. 2019). These pixels are linked based on similarity into a frequency–
time detection or PMCC family. Note that the distribution of Cκ is not known and
also that its magnitude does not depend on the noise levels. The MCCM (Lee et al.
2013) tests the average of the maximum value of the normalized cross-correlation
(Neidell et al. 1969) between all sensor pairs against a threshold.

7.4.3 Enhancements to the Classical Approach

Several enhancements to the classical approach described above can be identified.
First, the signal and noise models along with the detectors, are formulated only in
terms of some measure of the coherence of waves across an array. Second, while
the detectors account for physical-type noise, they do not properly account for
operational-type noise because they assume gaussianity and stationarity. To miti-
gate these limitations, different strategies have been adopted to operationalize
coherence-based signal detectors in order to account for operational-type noise. One
strategy is to implement a post-detection categorization algorithm to screen signals
of interest from operational-type noise on the basis of additional properties of the
waveforms (e.g., frequency) or the detection itself (e.g., detection duration) (e.g.,
Brachet et al. 2010). Another approach is the use of adaptive strategies to adjust
detector thresholds on the basis of the characterization of elements of the
operational-type noise (e.g., Arrowsmith et al. 2009). For example, in the presence
of correlated noise, such as microbaroms, the F-statistic is distributed as
cF2BT , 2BT M − 1ð Þ, where B is the bandwidth, T is the time window, M the number of
sensors, c=1−MPc ̸Pu, and Pc ̸Pu is the ratio of correlated to uncorrelated noise
power (Shumway et al. 1999). Arrowsmith et al. (2009) implemented an algorithm
to scale the distribution cF2BT , 2BT M − 1ð Þ with a 1 ̸c value so the new distributions
follow traditional F2BT , 2BT M − 1ð Þ. This procedure allows the estimation of a detector
threshold to find detections with a specified statistical significance in the presence
of coherent noise. Updating the c value regularly allows the detector to adapt to
temporal changes in noise. Figure 7.4 shows an example of detections based on the
dynamic F-Statistics (magenta area) for the case of infrasound signals from a
bolide. The F-values average a number between 3.5 and 4. These high F-values are
most likely related to microbaroms and would trigger events continuously with high
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confidence under the assumption of Gaussian noise only (the dashed blue line is the
threshold for detections with false alarm probability lower than 0.01). The adaptive
F-detector is used here to scale the distribution and allows for adapting to the
background noise (operational-type noise) so only the transient event is detected
(the solid blue line is the new threshold for detections with the same false alarm
probability, 0.01). This schema has been applied to regional networks and shown to
be successful at detecting transient events in the presence of interfering signals
(Park et al. 2014, 2016).

An even more general approach, which is currently being explored (Arrowsmith
et al. 2017), is to use a Kernel Density Estimator (KDE) (Scott 2008) to estimate the
distribution of a given test statistic from a set of empirical observations of that
statistic over a long-time window. Because the distribution of the test statistic is
based on empirical data, it includes noise and possibly also signal, and is really a
distribution of the ambient background of that test statistic. We test for H0 =
ambient background signal, plus noise by taking some transform of the observed

Fig. 7.4 Event detection based on Dynamic F-Statistics. The infrasound is from a bolide detected
on December 26th, 2010 by IMS station I56US. On the left, the distribution of the theoretical
F-statistics (red) and a histogram of the F-values for the array in blue (original, top, and modified,
bottom). On the right, array processing results, F-values, mean cross-correlation, back azimuth,
and detections (red horizontal lines)
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data in a moving time window of duration TS, which we shall denote as SðxÞ. The
function, Sð ⋅ Þ, can be any transform that can be applied to data, resulting in a single
numerical value (e.g., the semblance, correlation, etc.). If we denote a set of real-
izations of a specific transform in a time interval of duration Tkde as S1, S2, . . . , Snð Þ,
then the KDE is

f ĥðSÞ=
1
Nh

∑
N

i=1
K

S− Si
h

� �
, ð7:13Þ

where Kð ⋅ Þ is the kernel (typically a Gaussian kernel) and h > 0 is a smoothing
operator.

Figure 7.5 illustrates the concept behind a multivariate adaptive detector. Mul-
tiple test statistics are evaluated in different transform windows, denoted as Ti

S for
the window corresponding to the i’th transform. A single KDE window, Tkde, is
used to estimate the distribution of each test statistic, f ĥðSÞ.

We convert each KDE estimate to a p-value, where the p-value is defined as
follows:

p= ∫
∞

Sobs

f ĥðSÞdS, ð7:14Þ

where Sobs is an observed, individual value of the transform.

Fig. 7.5 A multivariate detector is based on the computation of multiple test statistics estimated in
short time windows, with the distribution of each test statistic evaluated in a large time window of
duration Tkde
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Given multiple transforms, which exploit different signal properties, we can
combine the p-values associated with all k transforms using the Fisher’s method

χ2 = − 2 ∑
k

i=1
ln pi ð7:15Þ

Geometrically, if different transforms are orthogonal, the use of this multivariate
approach serves to increase the separation between signal and noise distributions
(Fig. 7.6).

Fig. 7.6 Hypothesis testing is about defining a threshold to distinguish between signal and noise
models. The threshold can be determined by considering models for both signal and noise, or by
considering only the noise model. In practice, the noise model can be more easily determined from
background data empirically, but having both signal and noise models is optimum. These
techniques are commonly applied in one dimension (e.g., using coherence or an equivalent
measure such as correlation, F-statistic, or semblance) but multivariate approach serves to increase
the separation between signal and noise distributions
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In our implementation, only the “ambient” distribution is defined in practice, and
therefore each detection statistic is weighted by its ambient distribution in calcu-
lating a multivariate p-value. Because the ambient distribution is defined in a
window of time Tkde, and we are not strictly required to consider the noise as
physical or operational, there will always be p-values below some detection
threshold and the use of at least one additional constraint is needed to prevent false
alarms. Figure 7.7 illustrates the result of applying this method using two trans-
forms, one based on the coherence of waves across a network, and a second based
on the consistency of back azimuth. More details on this specific bivariate detector
are provided in (Arrowsmith 2018).

Fig. 7.7 Illustration of a multivariate detector based on coherence of waves across an array and
the stability of the DOA applied to data from I56US on 02/24/2014. Each property is quantified in
the form of p-values, enabling their combination via Fisher’s method. While the individual
detectors detect different signals, the combined approach detects both local and long-range
(decorrelated) signals and provides additional information on these signal types
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7.5 Parameter Estimation

After a SOI is detected the next step is to extract parameter information that can be
used for characterizing the signal. In this section, we review some of most common
techniques utilized for the extraction of waveform parameters. We are most inter-
ested in the extraction of the direction and speed of propagation of the SOI (esti-
mated usually using the slowness vector) as the shape of the SOI can suffer
significant changes (especially for signals propagating at global distances) and the
estimation of the precise time of arrival can be difficult to estimate for very
emergent signals. As we noted in the previous section, some detection test statistics
can detect and extract parameter information simultaneously while others defer the
parameter extraction for a second stage. For example, the F-detector will simulta-
neously detect and extract the slowness vector as part of its detection schema.
PMCC (Cansi and Pichon 2008) calculates the TDOA to apply the consistency
criteria for detection, afterwards, the already calculated TDOA are used for
parameter estimation in a substage of the detection. MCCM, on the other hand, only
uses the maximum cross-correlation and does not to need to compute the TDOA for
its operation. Post-processing based on array geometry and estimation of the TDOA
estimate the slowness vector in a subsequent processing stage. Note that for
infrasound analysis, detection and parameter estimation can be performed simul-
taneously without much of computationally burden even for real-time applications
(compare to processing for radar applications with high number of array elements
and sampling rates) as the sampling rate of most system is not higher than a few
100 s of samples per second (sps), e.g., the sampling rate for the IMS stations is 20
sps, and infrasound arrays have only 4 and 15 elements. In this section, we will
review the concepts behind common array processing techniques used for param-
eter estimation. See Olson and Szuberla (2009) for a review of the most common
methods as they are applied to infrasound analysis.

The standard techniques to process array (multichannel) data can be divided into
spectral-based and parametric methods (Krim and Viberg 1996). Parametric
methods, such as Maximum Likelihood technique are considered to attain
high-resolution but require initial information of the statistical characteristics of the
data (noise and signal) and a search in a multidimensional parameter space that can
be computationally complex. Spectral-based techniques such as the conventional
beamforming (Bartlett), Capon (1969), or the Multiple Signal Classification,
MUSIC (Schmidt 1986), require less initial information and are less complex to
implement. These spectral techniques are based on constructing a spectrum-like
function of a characteristic of the waveforms (e.g., beam power, coherence, and
consistency), evaluating/mapping the function in the parameter space (θ), and
finding the values of the parameters that maximize the spectrum.

The conventional beamforming (Bartlett) steers the covariance matrix of the
observations (R) into the different elements of the 2D slowness space and looks for
the values that maximize the beam power. The spectrum for the classical beam-
former (Bartlett) is defined as follows:
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ΛBðθÞ= aHθ Raθ, ð7:16Þ

where aθ = aðθÞ is the steering vector and H is the complex conjugate operator. The
Capon and MUSIC algorithms, usually called super-resolution methods, are sub-
space methods that rely on the decomposition of the covariance matrix R into
eigenvalues (λ) and eigenvectors (v). Capon is also known as the Minimum Vari-
ance Distorsionless filter and calls for minimizing the power contributed for signals
that are not in the steered direction. Capon usually shows higher performance than
the classical beamformer. MUSIC can provide asymptotically unbiased estimates of
the number and direction of arrival of signals, polarization, and waveforms and
noise/interference strengths (Schmidt 1986). MUSIC uses a signal-noise model that
is an extension of the model described by Eq. 7.2

xmðtÞ= ∑
K

j=1
s jm t− τ jm
� �

+wmðtÞ, ð7:17Þ

where K is the total number of signals present in the waveform. This general
signal-noise model has the advantage of potentially removing the unwanted
coherent signals from operational-type noise. MUSIC relies on determining and
separating eigenvalue populations for noise and signal, and thus determining the
number of sources present in the observations. A spatial spectrum function is
defined as follows:

ΛCMðθÞ= ∑
r

j=K +1

aHθ vj


 

2

βj

" #− 1

, ð7:18Þ

where βj is a coefficient, for all values of j=1, 2, . . . , r. For K = 0 and βj = λi
(organized from the largest to the smallest) this expression is the Capon spectrum
function (Shumway et al. 2008). If K is the number of signals and βj =1 this
expression is the MUSIC spectrum function. MUSIC is sensitive to over-estimation
of the number of sources). Other algorithms such as the Akaike Information Criteria
(Akaike 1974), cumulative percentage of total variation (Jolliffe 2002) criteria, or
the Bayesian Information Criterion (Wit et al. 2012) could be used for estimating
the number of sources present in the data.

7.6 Evaluating Detectors

An ideal detector, i.e., the one that always identifies events without producing false
detections, cannot be implemented in practice. Such an ideal detector requires an
infinitely large threshold for declaration. Therefore, there is a trade-off between
reducing missed event detections and reducing false ones. Too many false
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detections can overwhelm the subsequent processing, i.e., association and location.
However, depending on the objectives of the detection system, missing events of
interest could have serious implications (e.g., the objective of the IMS is to monitor
compliance for the CTBT). Thus, measuring the performance of a detector is
important as that can help us tune the different parameters of the detector to reach
specific requirements (Brown et al. 2000). A common methodology for assessing
the performance of event detectors is the use of Receiver Operating Characteristics
(ROC) curves (Arrowsmith et al. 2009; Runco Jr et al. 2014; Park et al. 2017).

A ROC curve of a detector is defined in two related ways. The first, conventional
ROC curve is defined by the probability of accepting H1 when H1 is true (detection
rate) as a function of the probability of rejecting H0 when H0 is true (false alarm).
For the generation of a ROC for a specific detector, two large databases with
available ground truth information are required. The first database consists of N0

examples under H0 and the other of N1 examples under H1. Let us consider a
detection algorithm with a function test Λ. Working with the two databases we
obtain two sequences of values. Figure 7.8 shows typical histograms of the two
sequences. The more distant the two histograms, the easier it is to discriminate
between two hypotheses. To further explore this, we compute the ROC curve as it
follows: we compute the area of H0 to the right of a given threshold value η, that
gives the false alarm rate α0. The area to the right to η of H1 gives the detection rate
β0. We report the point of coordinates ðα0, β0Þ as a function of η to provide the ROC

Fig. 7.8 Histograms for H0 and H1 and corresponding ROC curve
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curve. A typical ROC curve shape is reported on panel b. The closer the curve is to
the point of coordinates (0, 1), the more efficient the detector is.

The datasets required to construct a ROC can have multiple forms and it is
important that the characteristics of the H0 and H1 resemble the type of noise and
signals that the detector will operate on. A common approach for the construction
of datasets for detector testing is the implantation of events (real or synthetic
SOI-type waveforms) in real or synthetic background noise (Brown et al. 2000;
Kohl et al. 2005; Charbit and Mialle 2015). The amplitudes of the embedded
signals can be scaled to mimic the arrival of signals under different signals-to-noise
ratios. To detect such scaled, embedded signals, it is practical to construct the
second type of ROC curve that compares detection rates against some measure of
the embedded signal SNR (Richards 2005). More explicitly, these ROC curves are
defined by the probability of accepting H1 when H1 is true (detection rate) as a
function of signal/waveform SNR, for a fixed probability of rejecting H0 when H0 is
true (false alarm). The predictive capability of a detector is then evaluated by
comparing these semi-empirical ROC curves against semi-theoretical ROC curves.
The semi-empirical ROC curves are constructed in four stages by (1) scaling the
amplitude of a reference infrasound waveform that records a known source,
(2) embedding these data into records of real noise, (3) processing these data with a
digital detector, and (4) counting true detections. In this case, the signal’s original
amplitude is scaled to a prescribed value selected from a scaled, “relative” SNR grid
ΔSNR defined as

ΔSNR=20 log10
AS

AN

� �
− 20 log10

AS, 0

AN, 0

� �
ð7:19Þ

Equation 7.19 compares the root-mean-square amplitude AS of the scaled
waveform to root-mean-square amplitude AN of the background noise, relative to
the signal amplitude AS, 0 and noise amplitude AN, 0 of the original data. Scalar
ΔSNR has units of decibels. The scaled waveform is then superimposed with
recorded noise sampled from a selected time period and processed with the detector.
Each processing window includes a detection threshold η that is consistent with a
constant false alarm rate α0, as computed from the F-distribution that is best
parameterized for the data (see Eq. 7.8). Data statistics that exceed η, at the pre-
scribed waveform embedding time, are counted as true detections. Similarly,
missed detections are counted where the detector fails to register an event at a
known waveform infusion time. This process is repeated over many noise records
for each SNR value. Therefore, the detector processes waveforms over a grid of
ΔSNR values, for each noise field record. Naturally, these records of the noise field
also include significant signal clutter. Therefore, the scaled, embedded waveforms
occasionally superimposed with other infrasound signals that not attributable to a
known source (in contrast to H0). This signal interference creates variability in the
observed detector performance. Such events elevate false detection counts when-
ever waveforms localize outside the detector window.
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Theoretical ROC curves are generated in parallel with the semi-empirical
detection process. In this case, the statistical parameters of the F-distributed
detection statistic (Eq. 7.10) that were estimated from the data are used to construct
PDFs under the signal-present hypothesis. This PDF is further parameterized by a
noncentrality parameter that depends on the effective degrees of freedom within the
data and the signal amplitude, which is prescribed by the ΔSNR grid value. This
parameter estimates that shape these F-distributions are updated in each processing
window, as the noise is likely to be nonstationary over sufficiently long-time
durations. The theoretical waveform detection probability β0 is then the right-tail
integral of these PDFs, taken from the concurrent threshold η to infinity. Last, this
probability is scaled by the number of waveform counts to compare against
semi-empirical counts.

Figure 7.9 compares empirical ROC curves against predicted ROC curves using
this method. The infrasound source, in this case, is a 1.7 kg solid charge detonated
at 1 m above the ground. The separated gray stair plots illustrate five days of
detection counts using infused and scaled waveforms. The solid black curves show
five days of predicted cumulative probability counts. In each case, predictions are
made from PDFs that employ shaping parameters like c ̂, that were estimated
directly from the data and updated hourly (see the discussion following Sect. 7.4.3

Fig. 7.9 Semi-empirical ROC curves computed over five distinct days of noise records (stair
plots) shown with associated, theoretical ROC curves (smooth curves). Data include 4–20 Hz
acoustic waveforms beamformed on a small aperture, four element array that records a 1.7 kg
Composition-B solid charge detonated 1 m over dry ground. Detection counts are computed from
an F-detector operating at a 10−3 constant false alarm rate and plotted against scaled ΔSNR
(Eq. 7.19) to improve readability. Thickest curves show empirical (red stair plot) and theoretical
(blue plot) averages over the five-day collection period. Each processing window includes 21
infused waveforms
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for parametric definitions). The blue solid curves show the average of these pre-
dicted ROC curves; the red stair plot shows the average empirical ROC curves. The
time-averaged predictions agree well with the observed detections. The slight
outperformance by the observed ROC likely results from the multiple detection
opportunities afforded the detector over each waveform segment that is not quan-
tified by the predicted, noncentral F-distribution. Despite such slight performance
discrepancies, such ROC curve comparisons do provide a quantitative comparison
between the predicted versus observed performance of infrasound detectors in real
noise environments. This second type of ROC curve is additionally useful for
estimating threshold SNR values at which a detector provides a desired probability
of detecting an infrasound waveform. In summary, there is a clear need for future
research in this area to explore the performance of detectors under both physical-
and operational-type noise and the construction of infrasound specific datasets that
can be used for assessing the performance of different detection methodologies.

7.7 Conclusions

The detection of infrasonic signals generated by atmospheric explosions is very
challenging given the wide range of characteristics of the signals and complexity of
the acoustic wavefield (acoustic backgrounds). We have defined physical- and
operational-type noise and show how this separation can improve signal and noise
models, as well as detector evaluation efforts. We show that the classical mathe-
matical description of signals and noise for detection is based only on physical-type
noise and its characteristics, mainly de-correlation, but in practice, we have to use
operational-type noise instead. We discussed strategies to compensate for the use of
operational-type noise when the physical-type noise is assumed and described a
methodology to combine different detectors based on different aspects of the
waveform to improve detection. Combining different estimates of the waveform can
significantly help in the detection process and more research in this direction may
be required especially as we hope to reduce thresholds in order to detect smaller
events. Last, direct comparison between semi-empirical and semi-theoretical
Receiver Operating Characteristic (ROC) curves provide a quantitative method to
assess the predictive capability of infrasound detectors.
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