
Chapter 5
Geostatistics in Groundwater Modelling

Bhabesh C. Sarkar

1 Introduction

Geostatistics is a collection of statistical techniques for the analysis of spatial data.
Geostatistics has been described by several authors (Matheron 1971; David 1977,
1986; Isaak and Srivastava 1989; Kitanidis 1997). In recent years, these tools have
developed from research topics into basic techniques in the design and, such as
mining, geology and hydrology, among others. The aim of this chapter is to present
application of geostatistical tools in groundwater modelling and mapping. A typical
spatial data set, such as groundwater levels, monthly precipitations, or transmissiv-
ities, is composed of scattered readings in space, denoted by z(x), where x represents
the measurement location. Having such information, geostatistics provides many
techniques to solve a variety of hydrogeological resources problems, such as:
(i) Estimation of z at an unmeasured location: interpolation and mapping of z;
(ii) Estimation of one variable based on measurements of other variables:
co-estimation of piezometric head and transmissivity; (iii) Estimation of the gradient
of z at an arbitrary site: estimation of groundwater flow velocity based on observed
heads; (iv) Estimation of the integral of Z over a defined block: estimation of
contamination volume based on point measurements; and (v) Design of sampling
and monitoring networks, such as groundwater quality monitoring. Many of the
groundwater related variables are spatial functions presenting complex variations
that cannot be effectively described by simple deterministic functions, such as
polynomials. Such phenomena are subject of geostatistics that are named as region-
alized variables. Annual point precipitation is an example of a regionalized variable.
Transmissivity also displays spatial variations due to complex processes governing
the transport, deposition and compression of materials in sedimentary deposits.
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Another example of a regionalized variable is the concentration of a chemical
compound in groundwater that varies in both space and time.

Geostatistics goes beyond the interpolation problem by considering the studied
phenomenon at unsampled locations as a set of correlated random variables. Let Z(x)
be the value of the variable of interest at a certain location x. This value is unknown
(e.g. temperature, rainfall, piezometric level, geological facies, etc.). Although there
exists a value at location x that could be measured, geostatistics considers this value
as random since it was not measured, or has not been measured yet. However, the
randomness of Z(x) is not complete, but defined by a cumulative distribution
function (CDF). Typically, if the value of Z is known at locations close to x (or in
the neighbourhood of x) one can constrain the CDF of Z(x) by this neighbourhood. If
a high spatial continuity is assumed, Z(x) can only have values similar to the ones
found in the neighbourhood. Conversely, in the absence of spatial continuity Z(x)
can take any value. The spatial continuity of the random variables is described by a
model of spatial continuity that can be either a parametric function in the case of
variogram-based geostatistics, or have a non-parametric form when using other
methods such as multiple-point simulation or pseudo-genetic techniques. By apply-
ing a single spatial model on an entire domain, one makes the assumption that Z is a
stationary process. It means that the same statistical properties are applicable on the
entire domain.

The variations of these processes can be so complicated that estimating their
values are difficult, even if measurements from nearby locations are available.
Geostatistics recognizes these difficulties and provides statistical tools for:
(i) calculating the most accurate (according to well defined criteria) predictions,
based on measurements and other relevant information, (ii) quantifying the accuracy
of these predictions, and (iii) selecting the parameters to be measured, and where and
when to measure them, if there is an opportunity to collect more data. Considering
that spatial data represents only an incomplete picture of the natural phenomenon of
interest, it is logical to use statistical techniques to process such information.
Geostatistics has adopted the procedure and some of the most practical and yet
powerful applicable tools of probability theory (Rouhani 1986).

2 Statistical Modelling

The possible outcome of a random selection of a sample is expressed by its
probability distribution that may or may not be known. In the case of a discrete
distribution, which can only assume integer values, the distribution would associate
to each possible value X, a probability P(X). The individual value of P(X) will be
positive and the sum of all possible P(X) will be equal to 1. The function f(x) is a
mathematical model that provides the probability that the random variable X would
take on any specified value x, i.e. f(x) ¼ P(X ¼ x). This function, f(x) is called the
probability distribution of the random variable X and describes how the probability
values are distributed over the possible values, x of a random variable X. In the case
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of a continuous distribution, to each possible value x, a density of probability f(x) is
associated so that probability of a value lying between x and x + dx is f(x) dx, where
dx is infinitesimal. This serves as a mathematical model for describing the uncer-
tainty of an outcome for a continuous variable. The probability of x lying between
lower limit, (a) and upper limit, (b) is expressed as:

Prob a � X � bð Þ ¼
Zb

a

f xð Þdx

The individual probability density value will be positive and the sum of all such
values extending from –/ to +/will be 1. The probability of X being smaller than or
equal to a given value x is called the cumulative probability distribution function F
(x):

Prob X � xð Þ
Zb

�a

f xð Þdx ¼ F xð Þ;F � /ð Þ ¼ 0; andF þ /ð Þ ¼ 1

The following holds true for the cumulative distribution function, F(x):

(i) 0 � F(x) � 1 for all x;
(ii) F(x) is non-decreasing.

The usual practice to determine the characteristics of an aquifer is to collect drill
hole samples, analyse the properties of those samples and infer the characteristics of
the aquifer from the properties. If one uses classical statistics to represent the
properties of sample values, an assumption is made that the values are realisations
of ‘a random variable’. The relative positions of the samples are ignored and it is
assumed that all sample values in aquifer have an equal probability of being selected.
The fact that two samples taken close to each other is more likely to have similar
values than if taken far apart is also not taken into consideration.

Sample spacing remains wide in the initial stages of groundwater exploration that
provide broad knowledge of an aquifer. It is in this early stage of exploration, quality
of the aquifer is examined by estimating mean (average) value, ‘m’ of the aquifer.
For this purpose, ‘n’ samples of same support (size, shape and orientation) are taken
at points Xi. The sample values are used to estimate ‘m’ of the population mean, μ
and the confidence limits of the mean. The estimator for this purpose would vary
according to the probability distribution of sample values. In classical statistical
analysis, since it is assumed that all sample values are independent (i.e. random), the
location Xi of the sample is ignored. The parameters estimated from a classical
statistical model refer to variables such as thickness, permeability, porosity, etc.
Theoretical models of probability distributions which are commonly encountered in
aquifers to represent sample value frequency distribution are either Normal (Gauss-
ian) or Lognormal. Various other distributions are known but the assumption of
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either normality or lognormality can be made for most aquifers and the use of more
complex distributions is not justified.

2.1 The Normal Distribution Theory

This distribution is characterised by a symmetrical bell-shape and its probability
density function (p.d.f.), f (X) is expressed (Davis 1986) as:

p:d:f:, f Xð Þ ¼ 1=S√2π
� �� �

exp � 1=2ð Þ�Xi � �X
�2� �

=S2
h i

for �1 � X � 1

where �X is the sample mean which is an estimate of the population mean μ, and S is
the sample standard deviation, an estimate of the population standard deviation σ.
The distribution can be standardised by expressing

�
Xi � �X

�
=S

� �
equal to Z:

f Zð Þ ¼ 1=√2π
� �

exp �1=2 Z2��
This standard normal distribution has a zero mean and unit standard deviation,

i.e. N(0,1). The cumulative probability density function (c.d.f.), F(X) of a normal
distribution has the expression:

c:d:f:,F Xð Þ ¼ 1=√2π
� � Zx

�α

exp � 1=2ð Þ�Xi � �X
�2� �

=S2
h i

dx

2.2 Fitting a Normal Distribution

To check the assumption of normality, or in other words, to fit a normal distribution
to an experimental histogram, a convenient graphical method known as the
probability-paper method can be used. Cumulative frequency distribution of the
values are calculated and plotted in an arithmetic-probability paper against the upper
limits of the class values. From the definition of arithmetic-probability scale, the
cumulative distribution of a normally distributed variable will plot as straight line on
arithmetic-probability paper. If the points obtained by this approach can be consid-
ered or closely approximated as distributed along a straight line, the assumption of
normality can be accepted, and the theory of normal distribution to estimate the
mean, variance and confidence limits of mean can then be applied.

Other methods to test the fit of a normal distribution include: (i) measures of
degree of skewness and kurtosis, and (ii) χ2 (Chi-squared) goodness of fit test. For a
normal variate, the degree of skewness is zero and that of kurtosis is 3, and the
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calculated value of χ2 must be less than or equal to the table value of χ2 at ‘/’ level
of significance and ‘f’ degrees of freedom.

2.3 Estimation of Mean, Variance and Confidence Limits

The sample mean and sample variance for a normal distribution are estimated as follows:

Samplemean, �X ¼ 1=n½ �
Xn
i¼1

Xi

Sample variance, S2 ¼ 1= n� 1ð Þ½ �
Xn
i¼1

�
Xi � �X

�2
where S ¼ √S2 which is an estimate of the population standard deviation. The mean
value, ‘m’ of the aquifer is estimated by:

m ¼ �X;with variance,V ¼ S2=n

If mp be confidence limits of the true mean ‘m’ such that the probability of ‘m’
being less than mp is p, then m1-p is the confidence limit such that the probability that
‘m’ is larger than m1-p is 1 – p. The probability that ‘m’ falls between mp and m1-p is
1 – 2p confidence limits of the mean. The following equations can be used to
calculate mp and m1-p for the mean value, ‘m’ of an aquifer:

Lower limit,mp ¼ m� t1�p S=√n
� �

; and

Upper limit,m1-p ¼ mþ t1�p S=√n
� �

where t1-p is the value of student’s t-variate for f ¼ n – 1 degrees of freedom, such
that the probability that ‘t’ is smaller than ‘t1-p’ is 1 – p.

2.4 Measures of Skewness, Kurtosis and Chi-squared
goodness of Fit

Degrees of skewness and kurtosis of a sample distribution are given by the equations:

Skewness, Sk ¼ 1= n� 1ð Þ½ �
Xn
i¼1

�
Xi � �X

�3
=S3

Kurtosis,Ku ¼ 1= n� 1ð Þ½ �
Xn
i¼1

�
Xi � �X

�4
=S4
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Once the optimum solution for ‘m’ has been determined, it is desirable to check
for the goodness of fit of a normal distribution to the sample distribution.
Chi-squared (χ)2 test provides a robust technique for the fit. The test statistics is
given by:

χ2Calculated ¼
Xn
i¼1

Oi � Eið Þ2=Ei

where Oi ¼ observed frequency in group i and Ei ¼ expected frequency in group i.

2.5 The Lognormal Distribution Theory

In many aquifers, where the distribution of the sample values is asymmetrical, either
positively or negatively skewed, it has been observed that this skewed distribution
can be represented either by a 2-parameter or a 3-parameter lognormal distribution.
If loge(Xi) has a normal distribution, we call it a 2-parameter lognormal distribution,
and if loge(Xi + C) has a normal distribution, we call it a 3-parameter lognormal
distribution (where C is the additive constant). The value of the additive constant,
C is:

(i) Positive for a positively skewed distribution, i.e. a distribution showing an
excess of low values with tail towards high values; and

(ii) Negative for a negatively skewed distribution, i.e. a distribution showing an
excess of high values with tail towards low values.

The p.d.f. of a lognormal distribution is given by the expression:

f Xð Þ ¼ 1= xβ√2π
� �� �

exp �1=2
ln x� αð Þ

β

� 	2
" #

where α ¼ logarithmic mean, i.e. log mean and β2 ¼ logarithmic variance, i.e. log
variance.

The probability distribution of a 3-parameter lognormal variate, Xi is defined by:

• the additive constant, C;
• the logarithmic mean of (Xi + C)
• the logarithmic variance of (Xi + C).

2.5.1 Fitting a Lognormal Distribution

For ‘n’ samples with values Xi (i¼ 1, 2, ..., n), the cumulative frequency distribution
of a 2-parameter lognormal variate plots as a straight line on logarithmic probability
paper. If the variate is 3-parameter lognormal, the cumulative curve shows either an
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excess of low values for positively skewed distribution and or an excess of high
values for negatively skewed distribution. In such cases, plot of (Xi + C) will be a
straight line on logarithmic probability paper conforming to a lognormal
distribution.

2.5.2 Estimation of Additive Constant (C)

If a large number of samples are available, the cumulative distribution may be
plotted on a log-probability paper. Different values of ‘C’ can then be tried until
the plot of (Xi + C) is reasonably assumed to be a straight line. Alternatively, the
value of ‘C’ can be estimated using the following approximation:

C ¼ M2
e � F1F2

F1 þ F2 � 2Me

where Me is the sample value corresponding to 50% cumulative frequency (i.e. the
median of the observed distribution) and F1 and F2 are sample values corresponding
to ‘p’ and ‘1 – p’ percent cumulative frequencies respectively. In theory, any value of
‘p’ can be used but a value between 5% and 20% gives best results.

2.5.3 Estimation of Logarithmic Mean and Logarithmic Variance

Let, yi ¼ loge Xi þ Cð Þ
loge mean, α or �Y ¼ 1=n½ �

Xn
i¼1

yi

loge variance, β
2 or v yð Þ ¼ 1= n� 1ð Þ½ �

Xn
i¼1

�
yi � �y

�2

2.5.4 Estimation of Average for a Deposit

m∗ ¼ e�yþv yð Þ

¼ e αþ β2ð Þð Þ=2
¼ eα:e β2=2ð Þ

Average value, m ¼ m∗ � cð Þ
Variance, S2 ¼m2 exp vð Þ � 1½ �
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2.5.5 Estimation of Central 90% Confidence Limits

The lower and upper limits for the estimation of Central 90% confidence interval of
the mean of a lognormal population can be obtained by using factors ψ0.05(v,n) and
ψ0.95(v,n):

Lower limit ¼ ψ0:05 v;nð Þm∗
� �

� C; and

Upper limit ¼ ψ0:95 v;nð Þm∗
� �

� C:

3 Geostatistical Modelling

Classical statistics produce an error of estimation stated by confidence limits but
ignores the spatial relations within a set of sample values. These limitations point to
the need for an estimation technique that is capable of producing estimates with
minimum variance. Such estimates are achieved with the use of geostatistics based
on the ‘Theory of Regionalised Variables’, i.e. a variable that is related to its position
in space and has a constant support.

The underlying assumption of geostatistics is that the values of samples located
near or inside a block of ground are most closely related to the value of the block.
This assumption holds true if a relation exists among the sample values as a function
of distance and orientation. The function that measures the spatial variability among
the sample values, is known as the semi-variogram function, γ(h). Comparisons are
made between each sample of a data set with the remaining ones at a constantly
increasing distance, known as the lag interval.

Z(x) Z(x + h) Z(x + 2h) 

Thus, a semi-variogram function numerically quantifies the spatial correlation of
aquifer parameters (e.g. thickness, bedrock elevation, porosity, permeability etc.). If
Z(xi) be the value of a sample taken at position xi and Z(xi + h) be the value at ‘h’
distance away from xi position, the mathematical formulation of a semi-variogram
function, γ(h) is given by the expression:

γ hð Þ ¼ 1=2Nð Þ
XN
i¼1

Z xið Þ � Z xi þ hð Þð Þ2

where N is number of sample value pairs, Z(Xi) is the value of Regionalized Variable
at location Xi and Z (Xi + h) is the value of Regionalized Variable at a distance ‘h’
away from Xi.
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Spatial variance changes from arrangement to arrangement. The function 2γ(h) is
called the variogram function. It is the semi-variogram function γ(h) that is used
rather than variogram function 2γ(h) because the relation between semi-variogram
and covariogram (i.e. plot of covariance between Z(xi) and Z(xi + h) with constantly
increasing values of ‘h’) is straight forward:

2γ hð Þ ¼ E 2γ hð Þ∗� �
where E is the Expected Value which is the probability weighted sum of all possible
occurrences of regionalized variable; and 2γ(h)* is the experimental variogram
function based on sample values;

or, 2γ hð Þ
¼ E 2γ hð Þ∗� � ¼ E Z xið Þ � Z xi þ hð Þð Þ2

h i
¼ E Z xið Þ � mþ m� Z xi þ hð Þð Þ2

h i
where m is the sample mean

¼ E Z xið Þ � mð Þ � Z xi þ hð Þ � mð Þð Þ2
h i

¼ E Z xið Þ � mð Þ2 þ Z xi þ hð Þ � mð Þ2 � 2 Z xið Þ � mð Þ Z xi þ hð Þ � mð Þ
h i

¼ E Z xið Þ � mð Þ2
h i
þE Z xi þ hð Þ � mð Þ2 � 2E Z xið Þ � mð Þ Z xi þ hð Þ � mð Þ½ �

h
¼ 2 variance

�2 covariance hð Þ
Hence the fundamental relation: γ(h) ¼ σ2 – CV(h).
Graphical representation of a semi-varigram is given in Fig. 5.1.
An experimental semi-variogram permits the interpretation of several character-

istics of the aquifer as follows:

(i) The Continuity (C): The continuity is reflected by the rate of growth of γ(h) for
constantly increasing values of ‘h’.

(ii) The Nugget Effect (Co): This is the name given to the semi-variogram value,
γ(h) at h ! 0. It expresses the local homogeneity (or lack thereof) of aquifer.
The nugget effect represents an inherent variability of a data set which could be
due to both the spatial distribution of the values together with any error
encountered in sampling.

g(h) Semi-variogram

Co-variogram

h

s2
Fig. 5.1 Relation between
semi-variogram and
co-variogram

5 Geostatistics in Groundwater Modelling 155



(iii) The Sill Variance (Co + C): The value where a semi-variogram function γ(h)
plateaus is called the sill variance. For all practical purposes, the sill variance is
equal to the statistical variance of all sample values used to compute an
experimental semi-variogram.

(iv) The Range (a): The distance at which a semi-variogram levels off at its plateau
value is called the range (or zone) of influence of semi-variogram. This replaces
the conventional geological concept of an area of influence. Beyond this
distance of separation, values of sample pairs do not correlate with one another
and become independent of each other.

(v) The Directional Anisotropy: This denotes whether or not the aquifer has greater
continuity in a particular direction compared to other directions. This charac-
teristic is analysed by comparing the respective ranges of influences semi-
variograms computed along different directions. Where the semi-variograms
in different directions are very similar, it is said to be isotropic.

In practice, since sampling grids are rarely uniform, semi-variograms are com-
puted with a tolerance on distance (i.e., h � dh) and a tolerance on direction
(i.e. α � dα) to accommodate sample pairs not falling on the grid. The tolerances
on distance and direction should be kept as low as possible in order to avoid any
directional overlapping.

4 Semi-Variogram Models

There are several mathematical models of semi-variogram. However, three most
commonly encountered models in aquifer modelling (Fig. 5.2) are:

4.1 Spherical Model

This model is encountered most commonly in aquifer where sample values become
independent once a given distance of influence (i.e. the Range) ‘a’ is reached. The
equations are given by:

γ hð Þ ¼ Coþ C 3=2 h=að Þ � 1=2 h3=a3
� �� � 8h < a;

γ hð Þ ¼ Coþ C 8h � a;
γ hð Þ ¼ Co 8h tends to 0;
γ hð Þ ¼ 0 8h ¼ 0:

This model is common in most aquifers and said to describe transition phenom-
ena as it is the one which occurs when one has geostatistical spatial structures
independent of each other beyond the range but, within it, sample values are highly
correlated.
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4.2 Exponential Model

This model is not encountered too often in aquifers since its infinite range is
associated with a too continuous process. The equation is: γ(h) ¼ C [1 – e-h/a

]. The slope of the tangent at the origin is C/a. For practical purposes, the range
can be taken as 3a. The tangent at the origin intersects the sill at a point where ‘h’
equals ‘a’.

4.3 Gaussian Model

This model is characterised by two parameters C and a. The curve is parabolic near
the origin and the tangent at the origin is horizontal, which indicates low variability
for short distances. Excellent continuity is observed which is rarely found in
geological environments. Practical range is

ffiffiffiffiffi
3a

p
. The equation is:

γ hð Þ ¼ C 1� e �h2=a2ð Þh i
.

5 Practice of Semi-VARIOGRAM Modelling

The behaviour at the origin for both nugget effect and slope plays a crucial role in
fitting of a model to an experimental semi-variogram. While the slope can be
assessed from the first three or four semi-variogram values, the nugget effect can
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Fig. 5.2 Common semi-variogram models
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be estimated by extrapolating back to the γ(h) axis. The choice of nugget effect is
extremely important since it has a very marked effect on kriging weights and in turn
on kriging variance. Three methods for semi-variogram model fitting include:

5.1 Hand Fit Method

The sill (Co + C) is set at the value where experimental semi-variogram stabilizes. In
theory, this should coincide with the statistical variance. Estimate of nugget effect is
achieved by joining the first three or four semi-variogram values and projecting this
line to the γ(h) axis. By projecting the same line until it intercepts the sill provides
2/3rd the range. Using the estimates of Co, C and ‘a’, calculate a few points and
examine if the model curve fits the experimental semi-variogram. Although this
method is straight forward, and simple to practice, there is an element of subjectivity
involved in the estimation of model parameters.

5.2 Non-linear Least Squares Fit Method

Like any curve fitting technique, this method uses the principle of polynomial fit by
least squares to fit a model with sum of the deviations squared of the estimated values
from the real values being minimum. Unfortunately, polynomials obtained by least
squares do not guarantee the positive definite function (otherwise semi-variance
could turn out to be negative).

5.3 Point Kriging Cross-Validation Method

Point kriging cross-validation (PKCV) is a technique referred to as a procedure for
checking the validity of a mathematical model fitted to an experimental semi-
variogram that controls the kriging estimation (Davis and Borgman 1979).

The principle underlying the technique is as follows:

‘. . .. . .. . . a sample point is chosen in turn on the sample grid that has a real value. The real
value is temporarily deleted from the data set and the sample value is kriged using the
neighbouring sample values confined within its radius of search. The error between the
estimated value and the real value is calculated. The kriging process is then repeated for rest
of the known data points’. A crude semi-variogram model is initially fitted by visual
inspection to the experimental semi-variogram. Estimates of the initial sets of semi-
variogram parameters (viz., Co, C and ‘a’) are made from the initial model and cross-
validated through point kriging empirically. The error statistics such as mean error, mean
variance of errors and mean kriging variance are then computed. The model parametes are
varied and adjusted until: (i) a ratio of mean variance of the errors (estimation variance) to
mean kriging variance approximating to unity (in practice, a value of 1 � 0.05 has been
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observed to be the acceptable limits); (ii) a mean difference between sample values and
estimated values close to zero; and (iii) an adequate graphical fit to the experimental semi-
variogram are achieved. For a good estimate, most of the individual errors should also be
close to zero. A model approximated or fitted by this approach eliminates subjectivity.

6 Geostatistical Estimation – Kriging

Kriging is an optimal spatial interpolation technique. In general terms, a kriging
system calculates an estimated value, G* of a real value, G by using a linear
combination of weights, ai of the selected surrounding ‘n’ values such that:

G∗ ¼
Xn
i¼1

aigi, where
Xn
i¼1

ai ¼ 1 and gi are the sample values:

If G* is the estimate of a block average grade G by applying straight average
method, i.e.

G∗ ¼ 1=n
Xn
i¼1

gi

then equal weight is given to all the sample values, and the error of estimation of
G is:

σ2E S to Vð Þ ¼ E G∗ � Gð Þ2
h i

¼ �γ S; Sð Þ � γ v; vð Þ þ 2γ S;Vð Þ

In many cases, however, we know that to assign equal weight to all selected
surrounding samples may not provide the best possible estimate. Consider the case
of a block valued by a centre sample and a corner sample as configured below:

S1

S2

Clearly, the centre sample should be given a greater weight than the corner
sample. Say, we give weight a1 to S1 and a2 to S2. The new grade estimate would be:

G∗ ¼ a1g1 þ a2g2

The weights of selected surrounding sample values are so chosen that:

• G* is an unbiased estimate of G, i.e. E [(G* – G)] ¼ 0; and
• Variance of estimation of G by G*, i.e. E [(G* – G)2] is minimum.
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By definition, Kriging is known as Best (because of minimum estimation vari-
ance) Linear (because of weighted arithmetic average) Unbiased (since the weights
sum to unity) Estimator – BLUE.

7 Practice of Kriging

Once the model semi-variogram parameters characterizing all information about the
expected sample variability are defined, the subsequent step involves estimation of
grid cell values together with their associated variances through kriging. At this
stage, a geological domain is considered within an aquifer which is further divided
into smaller grids equalling the size of a geocellular block. Decision on the choice of
a geocellular block size is generally influenced by several factors such as measure-
ment points, hydrogeological framework, precision of measurement data, desired
use of grid cell, and capability of manipulating a huge number of grid cells. The
arrays of geocellular blocks are kriged producing kriged estimate and kriging
variance for each of them and an overall average. The following input parameters
are found to be adequate for geocellular block kriging:

• a minimum of four measurement points (because of the necessity to define a
surface) and a maximum of 16 measurement points (because of reasonable
computational time and cost) with at least one measurement point in each
quadrant to krig a geocellular block; and

• the radius of search for measurement points around a geocellular block centre to
be within the semi-variogram range of influence.

The individual values are averaged to produce a mean kriged estimate and a mean
kriging variance in order to provide global estimates. The 95% geostatistical confi-
dence limits are calculated as:

m� 1:96
ffiffiffiffiffi
σ2k

q
,

where m ¼ mean kriged estimate and σ2k ¼ mean kriging variance.

8 Applications

Geostatistics can be used in a variety of groundwater modelling studies, such as:
(i) mapping of spatial variables; (ii) simulation of hydrogeological fields; (iii)
co-estimation of hydrological fields using physical relationships, such as
co-mapping of piezometric head and transmissivity using groundwater flow equa-
tions; (iv) sampling and monitoring designs; and (v) groundwater resource manage-
ment under uncertainty. One of the earliest applications of geostatistics in
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groundwater was in the area of mapping spatial variables, such as transmissivity
maps, piezometric surfaces, and precipitation fields. Kitanidis (1997) in his book has
dealt with geostatistics and applications to hydrogeology. In fact, the power of the
methods described becomes most useful when utilizing measurements of different
types, combining these with deterministic flow and transport models, and incorpo-
rating geological information to achieve the best characterization possible.

Geostatistical mapping also yields the accuracy map that indicates the areas of
high and low precision. Simulation of hydrogeological fields is another application
of geostatistics. Simulation usually means the generation of spatial data, such that
their mean and their covariance are the same as the original data. There are various
useful applications for simulated data. For example, by generating different spatial
rainfall patterns, one can determine the statistical distribution of runoff.
Co-estimation allows the user to utilize the information in one variable in the
estimation of another. In some instances, a variable that is sampled at a lower cost
can be used to improve the accuracy of another variable which is costly to measure.
If there are known physical relationships between variables, they can be used to
further improve our estimation. The estimation variance is a measure for the
accuracy of estimated fields. This measure can help us to design sampling activities
based on the maximization of gained information. In some instances, such as
groundwater quality monitoring, the estimated magnitude of the variable of interest
is as important as its accuracy. So the sampling may be designed not only for
improving the precision of the estimated field, but also for targeting those areas
which exhibit critical estimated values. Water resources management problems
usually include many variables that exhibit uncertainty. Ignoring the stochastic
nature of these problems may yield non-optimal solution. Geostatistics provides
the framework to quantify these uncertainties and incorporate them in our decisions.

9 A Case Study

A study has been aimed at modelling of spatial phenomena of groundwater distri-
bution during pre-monsoon and post-monsoon periods in respect of the year 2014
using geostatistical techniques with reference to rainwater harvested groundwater
level inside the IIT(ISM) campus. The groundwater level data of 44 recharge bore
wells located within the ISM campus area were collected on a monthly basis during
the year 2014. Pre-monsoon (May to June), monsoon (July to September) and post-
monsoon (October to December) measurements of groundwater level data of the
recharge bore wells have been utilized for spatial modelling of the groundwater
fluctuation employing the theory and applications of ‘Regionalised Variable’. The
modelling study reveals the spatial variability of the fluctuation and estimates the rise
in the groundwater level employing Ordinary Kriging.

Statistical analyses of groundwater level data for these periods were carried out to
compute the distribution parameters. Geostatistical methods utilize an understanding
of the inter-relations of measurement (sample) values and provide a basis for
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quantifying the geological concepts of (i) an inherent variability; (ii) a change in the
continuity of inter-dependence of measurement (sample) values according to the
spatial variability; and (iii) a range of influence of the inter-dependence of measure-
ment (sample) values. Based on these quantifications, geostatistics produces an
estimated map with minimum variance, and provides an error of estimation both
on a local and a global scale. The underlying assumption of geostatistics is that the
values of samples located nearby are most closely related to one other than the
distant ones. This assumption holds true if a relation exists among the sample values
as a function of distance and orientation. The function that measures the spatial
variability among the sample values, is known as the semi-variogram function, γ(h).
Comparisons are made between each sample of a data set with the remaining ones at
a constantly increasing distance, known as the lag interval.

Geostatistical analysis was initiated with computation of experimental semi-
variogram and fitting appropriate mathematical model to it that characterizes the
spatial variability of the groundwater level. A semi-variogram model exhibit various
spatial characteristics, viz. nugget effect (C0), continuity (C), sill (C0 + C), range of
influence (a) and directional anisotropy. Semi-variogram constitute the major tool in
geostatistics to express the spatial dependence among neighbouring values measured
in pairs. Most commonly used mathematical models of semi-variogram include
spherical, exponential, gaussian, and pure nugget effect. The behaviour at the origin
for both nugget effect and slope plays a crucial role in fitting of a model to an
experimental semi-variogram. While the slope can be assessed from the first three or
four semi-variogram values, the nugget effect can be estimated by extrapolating back
to the γ (h) axis. The choice of nugget effect is extremely important since it has a
very marked effect on kriging weights and in turn on kriging variance. The appro-
priateness and rationality of a semi-variogram model fit was carried out employing
point kriging cross-validation technique.

3D omni-directional experimental semi-variograms for pre- and post-monsoon
groundwater levels and that of the fluctuations have been carried out using GEXSYS
software (Sarkar 1988). The spatial variability analyses revealed experimental semi-
variograms with moderately low nugget effect and increasing tendency of semi-
variogram values with constantly increasing distances levelling off at respective
range of influences. Cross-validated models as obtained employing point kriging
cross-validation technique for Pre-monsoon, Post-monsoon, and Fluctuation are
given in Figs 5.3, 5.4 and 5.5 and semi-variogram model parameters obtained
through point kriging cross-validation are given in Table 5.1.

Prior to the grid cell kriging, the grid size of the study area was decided by taking
into account the various parameters i.e. area, fluctuation of groundwater and the best
fitted grid cell which can cover the maximum extent near to the boundary of the ISM.
A grid cell size of 25 m � 25 m dimensions was selected on the basis of appropriate
fitting of the cells in the periphery of the boundaries. Having delineated the cells of
the dimension of 25 m� 25 m ordinary kriging was performed cell by cell to provide
kriged estimate and kriged standard deviation. The plots show the spatial distribution
of groundwater levels generated in the study area. The plots of pre-monsoon
(Fig. 5.6) and post-monsoon (Fig. 5.7) groundwater levels display the spatial
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distribution maps of kriged estimate and kriged standard deviation of groundwater
levels along with that of the fluctuation (Fig. 5.8) in the study area. Groundwater
flow maps of pre- and post-monsoon periods have been developed that provide the
direction of flow of groundwater (Fig. 5.9).

Statistical analyses of pre-monsoon and post-monsoon groundwater levels pro-
vided a negatively skewed characteristic while that in respect of the fluctuations
between pre- and post-monsoon provided a positively skewed characteristic. Esti-
mated mean and standard deviation values corresponding to each of these periods
and that of the fluctuation are (240.55 m; 4.08 m), (242.44 m; 3.40 m) and (1.09 m;
1.44 m) respectively.

Spatial variability analyses of pre-monsoon and post-monsoon groundwater
levels and that of the fluctuation between pre- and post-monsoon periods revealed
a spherical function fit. Pre-monsoon period exhibited a nugget effect of 3.0 m2, a
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Table 5.1 Semi-variogram model parameters obtained through Point Kriging Cross-validation

Semi-variogram parameters Pre-monsoon period Post-monsoon period Fluctuation

Nugget effect, C0 3.0 4.0 0.7

Continuity, C 23.5 13.5 1.40

Sill, C0 + C 26.5 17.5 2.1

Range (a) 700 600 800

Ratio of KV:EV 0.98 1.04 1.03

Fig. 5.6 Spatial distribution of kriged estimate and kriged standard deviation of groundwater levels
in respect of pre-monsoon period

164 B. C. Sarkar



continuity of 23.5 m2 and a range of 700 m; post-monsoon period exhibited a nugget
effect of 4.2 m2, a continuity of 13.5 m2 and a range of 600 m; fluctuation between
pre- and post-monsoon periods displayed a nugget effect of 0.7 m2, a continuity of
1.40 m2 and a range of 800 m. Model fitting exercise has been carried out employing
point kriging cross-validation technique yielding a ratio of estimation variance to

Fig. 5.7 Spatial distribution of kriged estimate and kriged standard deviation of groundwater levels
in respect of post-monsoon period

Fig. 5.8 Spatial distribution of kriged estimate and kriged standard deviation of groundwater levels
in respect of fluctuation
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kriging variance as 0.98, 1.04 and 1.03 respectively with adequate graphical fit to
experimental semi-variograms. Following are the geostatistical model equations of
groundwater levels:

Pre-monsoon : γ hð Þ ¼ 3:0þ 23:5 1:5 h=700ð Þ � 0:5 h=700ð Þ3
h i

Post-monsoon : γ hð Þ ¼ 4:0þ 13:5 1:5 h=600ð Þ � 0:5 h=600ð Þ3
h i

Fluctuation : γ hð Þ ¼ 0:7þ 1:40 1:5 h=800ð Þ � 0:5 h=800ð Þ3
h i

Geostatistical estimation was initiated with gridding the IIT (ISM) campus area
into cells 25 m � 25 m with each cell defined in space in terms of northing and
easting. Block kriging has been carried out for each of these cells which provided
kriged estimate and associated kriged standard deviation in respect of pre-monsoon
and post-monsoon groundwater levels and that of the fluctuation between pre- and
post-monsoon periods. Assessment of the goodness of fit (R2) of kriged estimates
was carried out through a correlation plot of the measured (true) values versus the
kriged estimated values of groundwater level and assuming the best fit straight line
as the regression model. The R values of pre- and post-monsoon and that of
fluctuation are 0.94, 0.88 and 0.88 respectively and have been found to be significant
through t-test of significance on R. The calculated values of ‘t’ on R are 18.40, 12.80
and 11.90 as compared to the critical value of 1.67, thereby indicating a significant
correlation.

Spatial distribution maps of kriged estimate values in respect of pre-monsoon and
post-monsoon groundwater levels exhibit a distinct high in the north-western zone
and in the south-eastern periphery of the campus associated with geomorphic high.
The groundwater levels gradually decrease towards east-central periphery and

Fig. 5.9 Groundwater flow maps of pre- and post-monsoon periods
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towards south-western zone with a distinct low observed in the east-central periph-
ery. The kriged standard deviation maps exhibit a relatively high error in the north-
western, south-western, southern and eastern peripheries of the campus reflecting a
reduced reliability of kriged estimate due to presence of few recharge bore wells
(sample location) while in rest of the part, the error reduces towards the areas with
high density of recharge bore wells as prominently observed in the north-western
zone trending towards east-central part and also in the south-eastern part and north-
western part. As regards the spatial distribution map of fluctuation is concerned, it is
observed that the kriged estimated fluctuation is maximum in the east-central
periphery owing to the presence of geomorphic depression. There is a gradual
decrease in the fluctuation towards the north-western side and also towards the
western side of the campus. The associated kriged standard deviation has the same
distribution pattern as with that of the pre- and post-monsoon kriged standard
deviation maps for the same reason of presence of few recharge bore wells. The
fluctuation map at the north-western side has the least rise of 0.70 m in groundwater
level which gradually increases in the eastern side to 5.3 m. It may be stated that
areas showing higher density of recharge bore wells are associated with lower kriged
standard deviation which gradually increases towards areas with lesser density of
recharge bore wells as evident from the spatial distribution maps of kriged standard
deviation. Groundwater flow maps exhibit a similar pattern, i.e. the direction of flow
of groundwater is from northwest, west, southwest and southeast sides to the east
owing to the geomorphic low.

Attempt made to estimate the replenishable groundwater resource within the
campus area using the norms of Groundwater Resource Estimation Committee
(GEC) 1997 led to calculation of total replenishable volume of water or dynamic
groundwater resource using mean kriged rise of groundwater level of 2.77 m as:

Volume of water recharge ¼ Area� fluctuation� specific yieldð Þ þ Draft

where specific yield considered for hard rock as per GEC, 1997 is 0.03. Hence,
volume of water recharge ¼ (60 � 56 � 25 � 25 � 2.77 � 0.03 m3) + Draft. The
first term of the equation 174,510 m3 � 1000 ¼ 174,510,000 litres and the Draft,
which is related to the consumption of groundwater for the year 2014 is
19,54,000 � 12 � 30 ¼ 703,440,000.00 litres. Dynamic groundwater resource
thus calculated is 877,950,000 litres.

Spatial variability phenomena of groundwater level within the campus of IIT
(ISM) Dhanbad for pre-monsoon and post-monsoon periods and that of the fluctu-
ation between pre- and post-monsoon have been analysed and modelled. The spatial
variability analyses revealed experimental semi-variograms with moderately low
nugget effect and increasing tendency of semi-variogram values with constantly
increasing distances and levelling off at respective range of influences. Point Kriging
Cross-validation technique has been used for fitting a mathematical model to
experimental semi-variograms. This is followed by construction of block grid cells
of 25 m � 25 m for which kriged estimate and kriging standard deviation values
have been arrived at employing ordinary kriging to estimate the rise in the rainwater
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harvested groundwater level during the year 2014. The modelling study led to
generation of kriged estimate and kriged standard deviation spatial distribution
maps in respect of pre-monsoon, post-monsoon and the fluctuation for the year
2014. The study revealed a mean rise of 2.77 m in the groundwater level owing to the
rainwater harvesting. The rise in the groundwater level during the study period has
led to an estimate of groundwater resource to 174,510,000 litres as compared to the
consumption of 703,440,000 litres. The study estimated that about 80% of total
volume of groundwater available is consumed and thereby maintaining a balance of
about 20%. This figure of groundwater resource balance is expected to improve over
the years with continued monitoring study of the fluctuating trend of the groundwa-
ter level with implementation of rainwater harvesting and artificial recharge in the
campus. Similar rainwater harvesting study can be of use in other areas for assessing
spatial and temporal phenomena leading to the usefulness of geostatistical modelling
for sustainable development and management of groundwater resource.

10 Conclusion

Geostatistics is a branch of statistics focusing on spatial or spatio-temporal datasets.
Developed originally to predict probability distributions of ore grades for mining
operations, it is currently applied in diverse disciplines including petroleum geology,
hydrogeology, hydrology, meteorology, oceanography, geochemistry, geography,
forestry, environmental control, landscape ecology, soil science and agriculture
(especially, in precision farming). Geostatistics is intimately related to interpolation
methods, but extends far beyond simple interpolation problems in aquifer modelling.
Geostatistical techniques rely on statistical model that is based on random function
(or random variable) theory to model the uncertainty associated with spatial estima-
tion. Empirical semi-variogram is used in geostatistics as a first estimate needed for
spatial interpolation by kriging. Kriging is a group of geostatistical techniques to
interpolate the value of a random field (e.g., the elevation of the bedrock as a
function of the spatial location) at an unobserved location from observations of its
value at nearby locations.
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