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2.1 Introduction

Osteoporosis is a clinical condition of the skeleton, defined when value of bone
mineral density (BMD) is lower than 2.5 standard deviations from the mean value
of the young adult population (T-score values), usually measured at the lumbar
spine (L1-L4) and femoral neck. Low bone mass is associated with deterioration in
micro-architecture and geometry of the skeleton, and with a deregulated bone turn-
over, resulting in an excessive bone resorption and a reduced novel bone formation.
The final clinical endpoints of osteoporosis are fragility fractures, mainly at the
wrist, spine, and femoral neck that occur in about 30% of postmenopausal women
and 12% of elderly men [1] and are responsible for the morbidity and mortality of
the disease.

Bone strength is the parameter to measure the risk of fracture, and it is princi-
pally determined by the combination of BMD, bone size, and bone quality. For
years BMD has been the only one measurable marker for assessing osteoporosis and
fracture risk, and also today it is widely used to define the osteoporosis status.
However, it is now well assessed that BMD value alone is not sufficient to deter-
mine the real risk of develop osteoporotic fracture, and other important parameters
of bone quality (such as bone architecture and bone metabolism) have to be taken
into account.

Osteoporosis risk depends by the failure to acquire the optimal bone mass peak
during growth and by the capacity of maintain bone mass during the elderly and
aspects that are both regulated by numerous dietary, lifestyle, hormonal, and genetic
factors. Deficiency of calcium and/or vitamin D during childhood and adolescence
may be responsible for the reduction of bone mass peak, while during the adulthood
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and elderly may have a fundamental negative role in increasing bone mass loss. The
rapid decrease of estrogens at menopause strongly contributes to a rapid bone loss
in postmenopausal women, and it is one of the main causes of the higher incidence
of osteoporosis in women.

Today, it is well assessed that osteoporosis is a multifactorial complex disorder
whose pathogenesis is due to the interaction and synergic effects of various predispos-
ing genetic determinants regulating bone and mineral metabolism, of “non-skeletal”
risk factors that could influence the risk of falling (i.e., muscle strength, balance, and
visual acuity), of environmental influences, and of dietary and lifestyle habits.

2.2  Genetic Contribution to Osteoporosis

Principal skeletal determinants of osteoporosis predisposition and fragility fracture
risk, such as BMD, bone geometry, and bone metabolism, are all under strong
genetic influences. Major advances in the knowledge of genetic aspects of osteopo-
rosis and fracture risk have been made in the last two decades, and they have been
principally derived by study on monogenic bone diseases, linkage analyses in osteo-
porotic pedigrees, association case-control and population-based studies for candi-
date genes, and experimental crosses in animal models.

Twin and family studies allowed to assess that about 60-85% of human BMD
variability is under control of genetic factors [2, 3], and the heritability of other bone
characteristics, such as bone geometry and bone turnover markers, ranges between
50 and 80% [4, 5]. Moreover, genetic factors demonstrated to regulate up to 80% of
individual variability of bone mass peak acquisition [6], acting principally before
puberty. Conversely, the effect of genetic influences on fracture risk is less than 30%
[7], maybe because fracture is a more complex phenotype that is determined not
only by bone density and quality but also by other non-skeletal conditions.

Several genes have been associated with bone mass and other determinants of
bone quality and fracture risk, but each of them has demonstrated to exert only a
relatively modest single effect on bone tissue, suggesting that osteoporosis is the
result of the synergic effect of various predisposing genetic variants, within differ-
ent genes, in association with environmental and lifestyle risk factors. To date, more
than 100 candidate gene polymorphic variants have been tested for their association
with BMD, fractures, and other bone-related quantitative trait loci (QTLs).

Briefly, we reported data about studies on major genes involved in osteoporosis
and related phenotypes, discussing the effect of their polymorphic variants on bone
mass, bone quality, and metabolism.

2.2.1 Lipoprotein Receptor-Related Protein 5 (LRP5)
and Lipoprotein Receptor-Related Protein 6 (LRP6) Genes

These two genes are discussed together since they form a receptor complex with
frizzled (Fz) to activate the transcriptional activity of the beta-catenin within the
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Wht signaling pathway that is involved in the regulation of osteoblast commitment,
differentiation, and apoptosis, in the synthesis of bone matrix protein and mineral-
ization process, as well as in the coupling to osteoclasts and induction of bone
resorption [8]. Inactivating mutations of the LRP5 gene are responsible for the
osteoporosis pseudoglioma (OPPG), an autosomal recessive monogenic Mendelian
disorder, characterized by severe early juvenile osteoporosis, very low bone mass,
and fragility fractures. Conversely, activating mutations of the LRP5 gene result in
sclerosing bone dysplasias, clinical conditions characterized by an excessive bone
mass. Due to its role in the development of these two rare inherited bone disorders,
LRPS5 has been suspected as a key regulator of bone mass, and common polymor-
phic variations of this gene have been investigated, by association studies, for their
relationship with BMD and fragility fracture in the general population. The two
most investigated variants were the missense single nucleotide polymorphism
(SNP) ¢.2047G>A, the Val667Met in exon 9 (rs4988321), and the missense SNP
¢.4037C>T, Alal330Val in exon 18 (rs3736228). Both ¢.2047A and ¢.4037T alleles
were associated with reduced lumbar bone mineral content, vertebral bone area, and
stature in Caucasian men, but not in women [9], accounting for up to 15% of vari-
ance for these traits. In the same year, a study on young Korean men failed to find
any association between LRP5 polymorphism and peak bone mass and BMD at any
site [10]. In a case-control study on middle-aged men (mean age 50 years) with
idiopathic osteoporosis, both the rare alleles of these two polymorphisms and their
haplotype have been associated with a threefold high risk of low BMD [11]. In 2006
the Rotterdam Study confirmed the association between the 1330Val allele and a
reduced lumbar spine area and a higher risk of fracture at the femur, humerus, and
pelvis in elderly men, but not in women [12]. The same study evidenced an interac-
tion between the 1330Val allele and a missense SNP Ile1062Val in the LRP6 gene
(rs2302685), showing that 1330Val and 1062Val alleles have a synergic effect on
fracture risk [12]. In 2008 a Bayesian meta-analysis on 10 association studies,
including a total of 16,705 individual (of whom the great majority were women
(8444) aged 18-81 years) indicated that 1330Val variant has a modest association
with BMD and authors concluded that this aspect may limit its clinical use [13].
More recently, a prospective, multicenter, and large-scale study on 37,534 individu-
als from 18 participating teams in Europe and North America by the GENOMOS
study group confirmed that genetic variations of the LRPS5 gene are associated with
both BMD and fracture risk, very consistently across analyzed populations but with
a modest clinical effect [14]. Conversely, the Ile1062Val SNP of LRP6 did not show
a significant association with BMD [14].

2.2.2 Vitamin D Receptor (VDR) Gene

Bioactive form of vitamin D is fundamental for the acquisition of bone mass pick
and for the maintenance of bone homeostasis. It acts through its binding to the vita-
min D receptor (VDR). Mutations of the VDR gene cause the syndrome of vitamin-
resistant rickets a recessive Mendelian condition, characterized by severe rickets,
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hypocalcemia, and hypophosphatemia, which is resistant to vitamin D supplemen-
tation. Due to the importance of vitamin D in bone metabolism, VDR has been the
first candidate gene whose polymorphic variants have been analyzed in association
studies for osteoporosis in 1994, showing that common allelic variants of VDR can
be used to predict differences in BMD, accounting for up to 75% of the total genetic
effect on BMD in healthy individuals [15]. Association studies between VDR and
osteoporosis have been principally focused on two polymorphisms in intron 8 (Bsml
and Apal), one silent polymorphism in exon 9 (Tagl), a polymorphism affecting
exon 2 and creating an alternative start codon and responsible for two different iso-
forms of VDR protein which differ in length by three amino acids (Fokl), and a
functional polymorphism in the promoter region at the binding site for the transcrip-
tion factor Cdx-2. Bsml, Apal, and Tagl are in linkage disequilibrium, and maybe
they are also in linkage disequilibrium with other sequence variations in the 3’
untranslated region (UTR) of the VDR gene that could affect mRNA stability and,
thus, VDR protein expression. Numerous association studies have been published,
presenting conflicting and/or inconclusive data, maybe due to inadequate popula-
tion sampling, ethnicity, gender, age, confounding factors, gene-gene interactions,
and gene-environment interactions; a linkage disequilibrium between VDR poly-
morphisms and other bone metabolism genes cannot be excluded. Today, results of
association studies on large populations seem to strongly reduce the role of VDR
polymorphisms in the risk of osteoporosis and fragility fractures. The GENOMOS
study (26,242 participants; 18,405 women) evaluated association between Cdx-2,
Fokl, Bsml, Apal, and Tagl polymorphisms, and DXA-measured femoral neck and
lumbar spine BMD, and fractures concluding that Fokl, Bsml, Apal, and Tagl are
not associated with BMD or with fractures, and only Cdx-2 showed a very modest
effect on the risk of vertebral fractures [16].

A haplotype meta-analysis by Thakkinstian et al. [17] evidenced that VDR single
polymorphisms were not significantly associated to osteoporosis, while specific
Bsml/Apal/Taql haplotypes were significantly associated to the clinical condition.
Data from this study seem to indicate a gain in power when considering VDR hap-
lotypes rather than polymorphisms separately, demonstrating the importance of
haplotype studies rather than single polymorphism studies for the VDR gene.

In addition, some studies suggested a possible interaction between calcium and
vitamin D intake and VDR polymorphisms in the regulation of BMD [6, 18], with
the possibility that effect of VDR genotypes on BMD would be visible only in the
presence of a low calcium intake [19] or a vitamin D deficiency. Conversely, the
association between VDR genotypes and bone mass would be hidden by high cal-
cium and/or vitamin D intake.

2.2.3 Estrogen Receptor Alpha (ERa) Gene
Estrogens are very important for the correct bone metabolism, for the skeletal

growth, and for the maintenance of bone mass. Indeed, severe depletion of estro-
gens at menopause results in a rapid loss of bone mass, and it is one major cause of
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higher incidence of osteoporosis and fragility fractures in women than in men.
Estrogens exert their action on bone cells through their specific steroid receptors
(ERs). An inactivating mutation of the estrogen receptor alpha (ERa or ESR1) gene
was identified in men affected by severe juvenile osteoporosis. This fact prompted
ERa as an important candidate gene for osteoporosis. ERa and, very less frequently,
estrogen receptor beta (ERf or ESR2) genes have been widely studied about the
association of their polymorphisms with osteoporosis and fragility fractures at the
wrist, hip, and spine. In the last two decades, a large number of studies investigated
about an association between ERa polymorphisms and bone mass, mostly focusing
on two SNPs in the intron 1 of the gene, recognized, respectively, by the Xbal and
Pvull restriction enzymes, and on a variable TA repeat in the promoter region. Pvull
maps within consensus recognition sites for AP4 and Myb transcription factors and
influences Myb-associated transcription in vitro [20]. Both Xbal and Pvull have
shown to influence report gene transcription in vitro [21]. These data suggest a
direct functional effect of Xbal and Pvull on ERa expression, but it is also possible
a linkage disequilibrium with other functional polymorphic variations within ERa
gene and/or contiguous genes.

Association studies between ERa polymorphisms and BMD showed inconsistent
and controversial results. A meta-analysis by Ioannidis et al. [22], including more
than 5000 women from 22 different studies (of which 11 including Caucasian
women and 11 including Asian women), evidenced an association between Xbal
genotypes and both BMD and fractures, with the XX genotype (Xbal) resulting
associated with higher femur and spine BMD values (+1 to 2%) and with a reduced
risk of fractures.

In 2004, the GENOMOS study group performed a large-scale association study
between Xbal, Pvull, and TA repeat polymorphisms of ERa (both as single poly-
morphism and as haplotypes) and both BMD and occurrence of fragility fractures in
18,917 unrelated individuals from eight European centers [23]. None of the three
polymorphisms or haplotypes showed any statistically significant effect on
BMD. Conversely women with the homozygote XX genotype of Xbal had a reduced
incidence of 19% for all fractures and of 35% for vertebral fractures. No significant
effects on fracture risk were seen for Pvull and TA repeats. The study seems to
indicate Xbal as a risk marker for fracture, independently by BMD values [23].

Very few studies investigated the role of polymorphic variants of ERf in deter-
mining BMD and fracture risk, principally focused on a CA repeat in the intron 5 of
the gene. The Framingham study analyzed the association of this genetic variation
and four other intronic polymorphisms with BMD in 723 men and 795 women [24].
The CA repeat genotypes resulted associated with femoral BMD but not with the
spine BMD, both in women and in men. Two other SNPs, rs/256031 and rs1256059
(respectively, in the intron 11 and the intron 15 of ERf), showed an association with
femoral BMD in men, and rs/256031, in particular, accounted for up to 4.0% dif-
ference in mean femoral BMD. The haplotype C-23CA-T (rs/256031, CA repeat,
rs1256059) was significantly associated with reduced femoral BMD in women,
with BMD value differences ranging from 3.0 to 4.3%. In the same year, the CA
repeat was investigated for its association with BMD in 226 healthy
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postmenopausal women (60-98 years), evidencing that women with less than 25
CA repeats had significantly higher BMD at the total skeleton, lumbar spine, and
femoral neck with respect to women bearing more than 25 CA repeats [25].

Two years later a large population-based cohort study analyzed the association of
ERp polymorphisms with risk of vertebral and incident fragility fracture in post-
menopausal women, alone or in association with polymorphisms of ERa and insu-
lin-like growth factor I (/GFI) genes, showing a synergic effect of genotypes
interaction on fracture risk, and, thus, reinforcing the idea of the polygenic and
complex nature of osteoporosis [26].

2.2.4 Aromatase Gene (CYP19)

The CYP19 gene encodes for aromatase, the enzyme responsible for estrogen synthe-
sis by catalyzing the aromatization of C19 androgens to C18 estrogens. Inactivating
mutations of CYPI9 cause aromatase deficiency, and they have been associated to
clinical conditions affecting also bone growth and mineralization. Common poly-
morphisms of CYP19 have been, in vitro, associated with enzymatic activity. A study
by Masi et al. first reported an association between a tetranucleotide (TTTA) repeat
polymorphism in intron 4 of the CYP/9 gene and BMD in postmenopausal Italian
women [27]. The association of these polymorphisms with BMD was also studied in
Italian elderly men but without evidencing a statistical significance [28]. The asso-
ciation between TTTA repeat and BMD was not confirmed in Finnish early post-
menopausal women [29]. Another study reported an association between a common
SNP in the 5" untranslated region (UTR) of CYP19 (rs1062033) and BMD in Spanish
late postmenopausal women [30]. More recently, six polymorphisms (rs4646,
rs10046, rs3784307, rs1062033, rs936306, and rs190258), located throughout the
entire CYP19 gene (including also the 5" and 3’ UTRs), were associated with bone
mass in 286 Spanish postmenopausal women [31]. The rs10046 SNP in the 3'UTR
resulted associated with BMD; the postmenopausal decrease in bone mass appeared
to be slower in women with the AA genotype, than in those with AG or GG geno-
types. This polymorphism is in strongly linkage disequilibrium with the TTTA repeat
and the rs4646 SNP in the 3'UTR, and they are all three associated with BMD. Two
SNPs, located in exon 1.6 and promoter 1.6 of CYP19, were analyzed in a cohort of
256 Spanish postmenopausal women [32], and rs4775936 was associated with lum-
bar spine BMD, with the homozygote AA genotype exhibiting a significantly higher
lumbar spine BMD if compared with GG or GA women.

Association of CYP19 functional polymorphisms with BMD and/or fracture was
also confirmed by other studies on different populations [33-37].

2.2.5 CollagenTypelAlphal (COLIAT) Gene

Collagen type 1 is the most represented protein of bone extracellular matrix (about
80% of total proteins in bone tissue). Alterations of collagen synthesis, properties,
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and relative quantity of its two chains affect mechanical features of bone tissue
and increase susceptibility to fragility fractures. Inactivating mutations of the
gene encoding the alpha I chain of type I collagen (COLIAI) are responsible for
osteogenesis imperfecta, a hereditary Mendelian disorder characterized by severe
osteoporosis and skeletal fracture in early life. Therefore, COLIA] is one of the
principal candidate genes for fragility fractures in osteoporosis. A common poly-
morphism in the intron 1 of the COLIAI gene, (Spl polymorphism, rs1800012)
alters the binding site for the Spl transcription factor, affecting COLIAI tran-
scription and resulting in an alteration of the normal equilibrium between a; and
a, chains (2:1). In particular, the s allele has an increased affinity for Spl, result-
ing in a higher amount of ; with respect to «, chain; the Ss genotype is respon-
sible for a collagen chain ratio of 2.3 (respect to the normal 2, typical of the SS
genotype) [38]. Association studies evaluated the effect of Sp1 polymorphism on
BMD and fragility fractures, showing a mild association with BMD values but a
stronger relationship to osteoporotic fractures, particularly at the spine [38—41].
In particular, a higher prevalence of fragility fracture was found among ss and Ss
genotypes with respect to the SS genotype [38—41], with an increase in fracture
risk of about 68% for each copy of the s allele and independently by a significant
reduction of BMD value [38].

The GENOMOS study evaluated COLIAI Sp1 alleles as a predictor of BMD and
fracture in 20,786 unrelated individuals from several European countries and found
only a modest association between the ss genotype and reduced BMD; no reduction
of BMD was observed in Ss individuals [42]. Moreover, the s allele could predis-
pose to incident vertebral fractures in women, but not in men, and the association
with vertebral fracture has a 40% increase of risk for each copy of the s allele carried
[42], independently by BMD.

A study by Uitterlinden et al. [43] investigated the interaction of polymorphisms
of VDR and COLIIA genes in susceptibility to fractures in 1004 postmenopausal
women. The “baT” (Bsml-Apal-Taql) VDR risk haplotype was evaluated in associa-
tion with ss and Ss COLIIA risk genotypes, showing a significant interaction
(p = 0.03) between VDR and COLIAI genotype effects. In subjects bearing the SS
genotype, the fracture risk was not VDR genotype-dependent. Conversely, in sub-
jects carrying ss or Ss genotypes, the contemporaneous presence of the baT haplo-
type was associated with a higher risk of fracture of 4.4 and 2.1, respectively [43].

Moreover, an additive effect of the COLIAI Spl polymorphism with
10565insGGA polymorphism of the sclerostin (SOST gene) was evidenced in an
elderly male and female Caucasian healthy population [44].

Data from these two studies further confirmed the polygenic nature of osteopo-
rosis and fracture risk.

2.2.6 Transforming Growth Factor Beta (TGF-£1)

Transforming growth factor beta (TGF-p1) is largely expressed by osteoclasts,
and it has shown to control bone resorption and formation by directly acting on
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both osteoblasts and osteoclasts [45]. Therefore, polymorphic variants of TGF-f1
gene have been extensively studied in relation to osteoporosis. A C/T transition in
exon 1 which causes a proline-leucine substitution at position 10 has been associ-
ated with higher level of circulating TGF-p1 protein, and the C allele was associ-
ated with higher BMD values and lower occurrence of fragility fractures in two
Japanese populations [46]. A rare polymorphism in intron 4 (713-8delC variant)
was associated with very low BMD, severe osteoporosis, and fracture risk in
women with osteoporosis and with low bone mass and increased bone turnover in
both osteoporotic and normal women [47]. The same research group evaluated, in
2003, the association between 8 polymorphisms of the TGF-f1 gene and osteopo-
rosis in a case-control study of 96 osteoporotic patients with vertebral fractures vs
330 normal individuals, evidencing that the TT genotype of the 816-20 T>C vari-
ant in the intron 5 was less common in fractured osteoporotic patients than in
healthy controls and that it was associated with higher lumbar spine and hip bone
mass [48].

The GENOMOS study investigated associations between five TGF-/31 polymor-
phisms [G-1639A (G-800A, rs1800468), C-1348T (C-509T, rs1800469), T29C
(LeulOPro, rs1982073), G74C (Arg25Pro, rs1800471), and C788T (Thr263lle,
rs1800472)] and BMD and fractures in 28,924 male and female individuals from 10
different European research studies [49]. Only weak associations between the
C—1348T SNP and lumbar spine BMD in men and between the C788T SNP and risk
of incident vertebral fractures were reported [49], presumably indicating that poly-
morphic variations of the TGF-f1 gene do not play a major role in regulating BMD
or susceptibility to fragility fractures.

Recently, a meta-analysis integrated all the eligible studies, including a total of 8
studies involving 1851 cases and 2247 controls, and it investigate whether T869C
and T29C polymorphisms of the TGF-f1 gene were correlated with postmeno-
pausal osteoporosis [50]. A significant association between T29C or T869C poly-
morphisms and osteoporosis risk was observed only in Asian, but not in Caucasian,
population [50].

2.2.7 Other Genes

Polymorphisms of other genes, involved in the regulation of bone metabolism and
turnover, have been, although more rarely, investigated about their association with
BMD and fractures. They include sclerostin (SOST), bone morphogenetic protein 2
(BMP2), bone morphogenetic protein 4 (BMP4), osteoprotegerin (OPG,
TNFRSF11B), receptor activator of nuclear factor kappa-B (RANK; TNFRSF11A),
RANK ligand (RANKL; TNFSF11), and runt-related transcription factor 2 (RUNX2;
CBFAI).

Principal results from their association and/or linkage studies are depicted in
Table 2.1.
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2.3  Novel Approaches to the Genetics of Osteoporosis:
Genome-Wide Association Studies (GWAS)

Because of the polygenic nature of osteoporosis, in which few genes exert major
effects on bone metabolism and homeostasis, while a large number of genes have
only minor effects, classical single gene association and/or linkage studies present
numerous limitations, such as inconclusive or controversial results, false-positive
and/or false-negative associations, reduced sensibility in identifying genotype-phe-
notype associations, and inability to identify novel candidate genes and their genetic
variants. The recent development of next generation sequencing (NGS) technique
has allowed to design gene chips for the simultaneous analysis of hundreds genes
and their polymorphic variants. Genome-wide association studies (GWAS) have
opened new horizons for the discovery of genetic loci and variants associated with
osteoporosis and fracture risk, and the application of this novel approach, in the last
years, has obtained success in identifying replicated genetic loci associated with
0Steoporosis.

The first GWAS in osteoporosis was performed in 2007 and analyzed 100,000
SNPs in 1141 individuals from the Framingham Osteoporosis Study to examine
genetic associations with bone quantitative traits: BMD (including the femoral
neck, trochanter, and lumbar spine), calcaneal ultrasound, and geometric indices of
the hip [79]. Of the 40 top SNPs with the highest number of significantly associa-
tions with BMD traits, a variable percentage of 30-50% of them maps within
genetic loci or near genes that have not previously been studied for osteoporosis.
The others were polymorphisms located within known osteoporosis candidate
genes, such as rs1884052 and rs3778099 in ERa, rs4988300 in LRPS, rs2189480 in
VDR, rs2075555 in COLIAI and rs10519297, and rs2008691 in CYP19.

One year later, two major GWAS analyzed the association of over 300,000 SNPs
with BMD and fractures [80, 81]. The first study [80] evidenced an association
between BMD and two SNPs, rs4355801 on chromosome 8 near to the TNFRSF11B
gene, and rs3736228, on chromosome 11 in the LRP5 gene. The second study [81]
identified five genomic regions significantly associated with BMD, both in the dis-
covery set population and in the replication set populations. Three of these regions
map close to or within genes known to be important in bone homeostasis: TNFSF11,
TNFRSFI11B, and ERa.

In 2009, a large-scale meta-analysis of five GWAS of femoral neck and lumbar
spine BMD, including 19,195 individuals of Northern European descent, allowed to
identify 20 genetic loci reaching the genome-wide significance (GWS; p <5 x 107%).
Seven of them confirmed to be known bone-related loci/genes, 1p36 (ZBTB40),
6925 (ERa), 8q24 (TNFRSF11B),11q13.4 (LRP5), 12q13 (SP7), 13q14 (TNFSF11),
and 18q21 (TNFRSF11A), while 13 mapped to new regions, not yet investigated as
candidate genes for osteoporosis: 1p31.3 (GPRI77), 2p21 (SPTBNI), 3p22
(CTNNBI), 4q921.1 (MEPE), 5ql4 (MEF2C), 7pl4 (STARD3NL), 7q21.3
(FLJ42280), 11p11.2 (LRP4, ARHGAPI, F2), 11pl14.1 (DCDCS), 11p15 (SOX6),
16q24 (FOXL1), 17q21 (HDACYS), and 17q12 (CRHRI) [82].
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Two years later, a larger meta-analysis of 17 GWAS of the femoral neck and
lumbar spine BMD was performed on 32,961 subjects of European and East Asian
ancestry and validated for marker replication of BMD association on 50,933 inde-
pendent subjects and for association with risk of low-trauma fracture in 31,016
fractured individuals (cases) and 102,444 non-fractured controls [83]. The study
identified 56 loci (32 novels) associated with BMD with a positive GWS; 14 of
them resulted also associated with fracture risk. Numerous of these loci mapped
near or within TNFRSF11B, TNFRSF11A, and TNFSF11 genes or near or within
genes involved in the Wnt signaling pathways, in the mesenchymal stem cell dif-
ferentiation and in the endochondral ossification.

GWAS highlighted the highly polygenic and complex nature of osteoporosis and
fracture susceptibility and the difficulty to predict the risk of osteoporosis on genetic
bases. Anyway, since the first GWAS on osteoporosis was performed in 1997, numerous
and great advances have been made in the discovery and validation of genes and loci
involved in the predisposition to osteoporosis. GWAS allowed, to date, the identification
of more than 60 loci associated with BMD, osteoporosis, and fragility fractures, includ-
ing novel loci, whose functional analysis has demonstrated that they have a clear effect
on bone metabolism and, presumably, also on osteoporosis pathophysiology.

The association of GWAS results with functional studies revealed very useful to
identify novel molecular targets for anti-fracture drugs and, thus, allowed the design
of novel target therapies for osteoporosis.
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