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2.1	 �Introduction

Osteoporosis is a clinical condition of the skeleton, defined when value of bone 
mineral density (BMD) is lower than 2.5 standard deviations from the mean value 
of the young adult population (T-score values), usually measured at the lumbar 
spine (L1–L4) and femoral neck. Low bone mass is associated with deterioration in 
micro-architecture and geometry of the skeleton, and with a deregulated bone turn-
over, resulting in an excessive bone resorption and a reduced novel bone formation. 
The final clinical endpoints of osteoporosis are fragility fractures, mainly at the 
wrist, spine, and femoral neck that occur in about 30% of postmenopausal women 
and 12% of elderly men [1] and are responsible for the morbidity and mortality of 
the disease.

Bone strength is the parameter to measure the risk of fracture, and it is princi-
pally determined by the combination of BMD, bone size, and bone quality. For 
years BMD has been the only one measurable marker for assessing osteoporosis and 
fracture risk, and also today it is widely used to define the osteoporosis status. 
However, it is now well assessed that BMD value alone is not sufficient to deter-
mine the real risk of develop osteoporotic fracture, and other important parameters 
of bone quality (such as bone architecture and bone metabolism) have to be taken 
into account.

Osteoporosis risk depends by the failure to acquire the optimal bone mass peak 
during growth and by the capacity of maintain bone mass during the elderly and 
aspects that are both regulated by numerous dietary, lifestyle, hormonal, and genetic 
factors. Deficiency of calcium and/or vitamin D during childhood and adolescence 
may be responsible for the reduction of bone mass peak, while during the adulthood 
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and elderly may have a fundamental negative role in increasing bone mass loss. The 
rapid decrease of estrogens at menopause strongly contributes to a rapid bone loss 
in postmenopausal women, and it is one of the main causes of the higher incidence 
of osteoporosis in women.

Today, it is well assessed that osteoporosis is a multifactorial complex disorder 
whose pathogenesis is due to the interaction and synergic effects of various predispos-
ing genetic determinants regulating bone and mineral metabolism, of “non-skeletal” 
risk factors that could influence the risk of falling (i.e., muscle strength, balance, and 
visual acuity), of environmental influences, and of dietary and lifestyle habits.

2.2	 �Genetic Contribution to Osteoporosis

Principal skeletal determinants of osteoporosis predisposition and fragility fracture 
risk, such as BMD, bone geometry, and bone metabolism, are all under strong 
genetic influences. Major advances in the knowledge of genetic aspects of osteopo-
rosis and fracture risk have been made in the last two decades, and they have been 
principally derived by study on monogenic bone diseases, linkage analyses in osteo-
porotic pedigrees, association case-control and population-based studies for candi-
date genes, and experimental crosses in animal models.

Twin and family studies allowed to assess that about 60–85% of human BMD 
variability is under control of genetic factors [2, 3], and the heritability of other bone 
characteristics, such as bone geometry and bone turnover markers, ranges between 
50 and 80% [4, 5]. Moreover, genetic factors demonstrated to regulate up to 80% of 
individual variability of bone mass peak acquisition [6], acting principally before 
puberty. Conversely, the effect of genetic influences on fracture risk is less than 30% 
[7], maybe because fracture is a more complex phenotype that is determined not 
only by bone density and quality but also by other non-skeletal conditions.

Several genes have been associated with bone mass and other determinants of 
bone quality and fracture risk, but each of them has demonstrated to exert only a 
relatively modest single effect on bone tissue, suggesting that osteoporosis is the 
result of the synergic effect of various predisposing genetic variants, within differ-
ent genes, in association with environmental and lifestyle risk factors. To date, more 
than 100 candidate gene polymorphic variants have been tested for their association 
with BMD, fractures, and other bone-related quantitative trait loci (QTLs).

Briefly, we reported data about studies on major genes involved in osteoporosis 
and related phenotypes, discussing the effect of their polymorphic variants on bone 
mass, bone quality, and metabolism.

2.2.1	 �Lipoprotein Receptor-Related Protein 5 (LRP5) 
and Lipoprotein Receptor-Related Protein 6 (LRP6) Genes

These two genes are discussed together since they form a receptor complex with 
frizzled (Fz) to activate the transcriptional activity of the beta-catenin within the 
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Wnt signaling pathway that is involved in the regulation of osteoblast commitment, 
differentiation, and apoptosis, in the synthesis of bone matrix protein and mineral-
ization process, as well as in the coupling to osteoclasts and induction of bone 
resorption [8]. Inactivating mutations of the LRP5 gene are responsible for the 
osteoporosis pseudoglioma (OPPG), an autosomal recessive monogenic Mendelian 
disorder, characterized by severe early juvenile osteoporosis, very low bone mass, 
and fragility fractures. Conversely, activating mutations of the LRP5 gene result in 
sclerosing bone dysplasias, clinical conditions characterized by an excessive bone 
mass. Due to its role in the development of these two rare inherited bone disorders, 
LRP5 has been suspected as a key regulator of bone mass, and common polymor-
phic variations of this gene have been investigated, by association studies, for their 
relationship with BMD and fragility fracture in the general population. The two 
most investigated variants were the missense single nucleotide polymorphism 
(SNP) c.2047G>A, the Val667Met in exon 9 (rs4988321), and the missense SNP 
c.4037C>T, Ala1330Val in exon 18 (rs3736228). Both c.2047A and c.4037T alleles 
were associated with reduced lumbar bone mineral content, vertebral bone area, and 
stature in Caucasian men, but not in women [9], accounting for up to 15% of vari-
ance for these traits. In the same year, a study on young Korean men failed to find 
any association between LRP5 polymorphism and peak bone mass and BMD at any 
site [10]. In a case-control study on middle-aged men (mean age 50 years) with 
idiopathic osteoporosis, both the rare alleles of these two polymorphisms and their 
haplotype have been associated with a threefold high risk of low BMD [11]. In 2006 
the Rotterdam Study confirmed the association between the 1330Val allele and a 
reduced lumbar spine area and a higher risk of fracture at the femur, humerus, and 
pelvis in elderly men, but not in women [12]. The same study evidenced an interac-
tion between the 1330Val allele and a missense SNP Ile1062Val in the LRP6 gene 
(rs2302685), showing that 1330Val and 1062Val alleles have a synergic effect on 
fracture risk [12]. In 2008 a Bayesian meta-analysis on 10 association studies, 
including a total of 16,705 individual (of whom the great majority were women 
(8444) aged 18–81 years) indicated that 1330Val variant has a modest association 
with BMD and authors concluded that this aspect may limit its clinical use [13]. 
More recently, a prospective, multicenter, and large-scale study on 37,534 individu-
als from 18 participating teams in Europe and North America by the GENOMOS 
study group confirmed that genetic variations of the LRP5 gene are associated with 
both BMD and fracture risk, very consistently across analyzed populations but with 
a modest clinical effect [14]. Conversely, the Ile1062Val SNP of LRP6 did not show 
a significant association with BMD [14].

2.2.2	 �Vitamin D Receptor (VDR) Gene

Bioactive form of vitamin D is fundamental for the acquisition of bone mass pick 
and for the maintenance of bone homeostasis. It acts through its binding to the vita-
min D receptor (VDR). Mutations of the VDR gene cause the syndrome of vitamin-
resistant rickets a recessive Mendelian condition, characterized by severe rickets, 
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hypocalcemia, and hypophosphatemia, which is resistant to vitamin D supplemen-
tation. Due to the importance of vitamin D in bone metabolism, VDR has been the 
first candidate gene whose polymorphic variants have been analyzed in association 
studies for osteoporosis in 1994, showing that common allelic variants of VDR can 
be used to predict differences in BMD, accounting for up to 75% of the total genetic 
effect on BMD in healthy individuals [15]. Association studies between VDR and 
osteoporosis have been principally focused on two polymorphisms in intron 8 (BsmI 
and ApaI), one silent polymorphism in exon 9 (TaqI), a polymorphism affecting 
exon 2 and creating an alternative start codon and responsible for two different iso-
forms of VDR protein which differ in length by three amino acids (FokI), and a 
functional polymorphism in the promoter region at the binding site for the transcrip-
tion factor Cdx-2. BsmI, ApaI, and TaqI are in linkage disequilibrium, and maybe 
they are also in linkage disequilibrium with other sequence variations in the 3′ 
untranslated region (UTR) of the VDR gene that could affect mRNA stability and, 
thus, VDR protein expression. Numerous association studies have been published, 
presenting conflicting and/or inconclusive data, maybe due to inadequate popula-
tion sampling, ethnicity, gender, age, confounding factors, gene-gene interactions, 
and gene-environment interactions; a linkage disequilibrium between VDR poly-
morphisms and other bone metabolism genes cannot be excluded. Today, results of 
association studies on large populations seem to strongly reduce the role of VDR 
polymorphisms in the risk of osteoporosis and fragility fractures. The GENOMOS 
study (26,242 participants; 18,405 women) evaluated association between Cdx-2, 
FokI, BsmI, ApaI, and TaqI polymorphisms, and DXA-measured femoral neck and 
lumbar spine BMD, and fractures concluding that FokI, BsmI, ApaI, and TaqI are 
not associated with BMD or with fractures, and only Cdx-2 showed a very modest 
effect on the risk of vertebral fractures [16].

A haplotype meta-analysis by Thakkinstian et al. [17] evidenced that VDR single 
polymorphisms were not significantly associated to osteoporosis, while specific 
BsmI/ApaI/TaqI haplotypes were significantly associated to the clinical condition. 
Data from this study seem to indicate a gain in power when considering VDR hap-
lotypes rather than polymorphisms separately, demonstrating the importance of 
haplotype studies rather than single polymorphism studies for the VDR gene.

In addition, some studies suggested a possible interaction between calcium and 
vitamin D intake and VDR polymorphisms in the regulation of BMD [6, 18], with 
the possibility that effect of VDR genotypes on BMD would be visible only in the 
presence of a low calcium intake [19] or a vitamin D deficiency. Conversely, the 
association between VDR genotypes and bone mass would be hidden by high cal-
cium and/or vitamin D intake.

2.2.3	 �Estrogen Receptor Alpha (ERα) Gene

Estrogens are very important for the correct bone metabolism, for the skeletal 
growth, and for the maintenance of bone mass. Indeed, severe depletion of estro-
gens at menopause results in a rapid loss of bone mass, and it is one major cause of 
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higher incidence of osteoporosis and fragility fractures in women than in men. 
Estrogens exert their action on bone cells through their specific steroid receptors 
(ERs). An inactivating mutation of the estrogen receptor alpha (ERα or ESR1) gene 
was identified in men affected by severe juvenile osteoporosis. This fact prompted 
ERα as an important candidate gene for osteoporosis. ERα and, very less frequently, 
estrogen receptor beta (ERβ or ESR2) genes have been widely studied about the 
association of their polymorphisms with osteoporosis and fragility fractures at the 
wrist, hip, and spine. In the last two decades, a large number of studies investigated 
about an association between ERα polymorphisms and bone mass, mostly focusing 
on two SNPs in the intron 1 of the gene, recognized, respectively, by the XbaI and 
PvuII restriction enzymes, and on a variable TA repeat in the promoter region. PvuII 
maps within consensus recognition sites for AP4 and Myb transcription factors and 
influences Myb-associated transcription in vitro [20]. Both XbaI and PvuII have 
shown to influence report gene transcription in  vitro [21]. These data suggest a 
direct functional effect of XbaI and PvuII on ERα expression, but it is also possible 
a linkage disequilibrium with other functional polymorphic variations within ERα 
gene and/or contiguous genes.

Association studies between ERα polymorphisms and BMD showed inconsistent 
and controversial results. A meta-analysis by Ioannidis et al. [22], including more 
than 5000 women from 22 different studies (of which 11 including Caucasian 
women and 11 including Asian women), evidenced an association between XbaI 
genotypes and both BMD and fractures, with the XX genotype (XbaI) resulting 
associated with higher femur and spine BMD values (+1 to 2%) and with a reduced 
risk of fractures.

In 2004, the GENOMOS study group performed a large-scale association study 
between XbaI, PvuII, and TA repeat polymorphisms of ERα (both as single poly-
morphism and as haplotypes) and both BMD and occurrence of fragility fractures in 
18,917 unrelated individuals from eight European centers [23]. None of the three 
polymorphisms or haplotypes showed any statistically significant effect on 
BMD. Conversely women with the homozygote XX genotype of XbaI had a reduced 
incidence of 19% for all fractures and of 35% for vertebral fractures. No significant 
effects on fracture risk were seen for PvuII and TA repeats. The study seems to 
indicate XbaI as a risk marker for fracture, independently by BMD values [23].

Very few studies investigated the role of polymorphic variants of ERβ in deter-
mining BMD and fracture risk, principally focused on a CA repeat in the intron 5 of 
the gene. The Framingham study analyzed the association of this genetic variation 
and four other intronic polymorphisms with BMD in 723 men and 795 women [24]. 
The CA repeat genotypes resulted associated with femoral BMD but not with the 
spine BMD, both in women and in men. Two other SNPs, rs1256031 and rs1256059 
(respectively, in the intron 11 and the intron 15 of ERβ), showed an association with 
femoral BMD in men, and rs1256031, in particular, accounted for up to 4.0% dif-
ference in mean femoral BMD. The haplotype C-23CA-T (rs1256031, CA repeat, 
rs1256059) was significantly associated with reduced femoral BMD in women, 
with BMD value differences ranging from 3.0 to 4.3%. In the same year, the CA 
repeat was investigated for its association with BMD in 226 healthy 
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postmenopausal women (60–98 years), evidencing that women with less than 25 
CA repeats had significantly higher BMD at the total skeleton, lumbar spine, and 
femoral neck with respect to women bearing more than 25 CA repeats [25].

Two years later a large population-based cohort study analyzed the association of 
ERβ polymorphisms with risk of vertebral and incident fragility fracture in post-
menopausal women, alone or in association with polymorphisms of ERα and insu-
lin-like growth factor I (IGF1) genes, showing a synergic effect of genotypes 
interaction on fracture risk, and, thus, reinforcing the idea of the polygenic and 
complex nature of osteoporosis [26].

2.2.4	 �Aromatase Gene (CYP19)

The CYP19 gene encodes for aromatase, the enzyme responsible for estrogen synthe-
sis by catalyzing the aromatization of C19 androgens to C18 estrogens. Inactivating 
mutations of CYP19 cause aromatase deficiency, and they have been associated to 
clinical conditions affecting also bone growth and mineralization. Common poly-
morphisms of CYP19 have been, in vitro, associated with enzymatic activity. A study 
by Masi et al. first reported an association between a tetranucleotide (TTTA) repeat 
polymorphism in intron 4 of the CYP19 gene and BMD in postmenopausal Italian 
women [27]. The association of these polymorphisms with BMD was also studied in 
Italian elderly men but without evidencing a statistical significance [28]. The asso-
ciation between TTTA repeat and BMD was not confirmed in Finnish early post-
menopausal women [29]. Another study reported an association between a common 
SNP in the 5′ untranslated region (UTR) of CYP19 (rs1062033) and BMD in Spanish 
late postmenopausal women [30]. More recently, six polymorphisms (rs4646, 
rs10046, rs3784307, rs1062033, rs936306, and rs190258), located throughout the 
entire CYP19 gene (including also the 5′ and 3′ UTRs), were associated with bone 
mass in 286 Spanish postmenopausal women [31]. The rs10046 SNP in the 3′UTR 
resulted associated with BMD; the postmenopausal decrease in bone mass appeared 
to be slower in women with the AA genotype, than in those with AG or GG geno-
types. This polymorphism is in strongly linkage disequilibrium with the TTTA repeat 
and the rs4646 SNP in the 3′UTR, and they are all three associated with BMD. Two 
SNPs, located in exon I.6 and promoter I.6 of CYP19, were analyzed in a cohort of 
256 Spanish postmenopausal women [32], and rs4775936 was associated with lum-
bar spine BMD, with the homozygote AA genotype exhibiting a significantly higher 
lumbar spine BMD if compared with GG or GA women.

Association of CYP19 functional polymorphisms with BMD and/or fracture was 
also confirmed by other studies on different populations [33–37].

2.2.5	 �Collagen Type I Alpha I (COLIA1) Gene

Collagen type 1 is the most represented protein of bone extracellular matrix (about 
80% of total proteins in bone tissue). Alterations of collagen synthesis, properties, 
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and relative quantity of its two chains affect mechanical features of bone tissue 
and increase susceptibility to fragility fractures. Inactivating mutations of the 
gene encoding the alpha I chain of type I collagen (COLIA1) are responsible for 
osteogenesis imperfecta, a hereditary Mendelian disorder characterized by severe 
osteoporosis and skeletal fracture in early life. Therefore, COLIA1 is one of the 
principal candidate genes for fragility fractures in osteoporosis. A common poly-
morphism in the intron 1 of the COL1A1 gene, (Sp1 polymorphism, rs1800012) 
alters the binding site for the Sp1 transcription factor, affecting COL1A1 tran-
scription and resulting in an alteration of the normal equilibrium between α1 and 
α2 chains (2:1). In particular, the s allele has an increased affinity for Sp1, result-
ing in a higher amount of α1 with respect to α2 chain; the Ss genotype is respon-
sible for a collagen chain ratio of 2.3 (respect to the normal 2, typical of the SS 
genotype) [38]. Association studies evaluated the effect of Sp1 polymorphism on 
BMD and fragility fractures, showing a mild association with BMD values but a 
stronger relationship to osteoporotic fractures, particularly at the spine [38–41]. 
In particular, a higher prevalence of fragility fracture was found among ss and Ss 
genotypes with respect to the SS genotype [38–41], with an increase in fracture 
risk of about 68% for each copy of the s allele and independently by a significant 
reduction of BMD value [38].

The GENOMOS study evaluated COLIA1 Sp1 alleles as a predictor of BMD and 
fracture in 20,786 unrelated individuals from several European countries and found 
only a modest association between the ss genotype and reduced BMD; no reduction 
of BMD was observed in Ss individuals [42]. Moreover, the s allele could predis-
pose to incident vertebral fractures in women, but not in men, and the association 
with vertebral fracture has a 40% increase of risk for each copy of the s allele carried 
[42], independently by BMD.

A study by Uitterlinden et al. [43] investigated the interaction of polymorphisms 
of VDR and COLI1A genes in susceptibility to fractures in 1004 postmenopausal 
women. The “baT” (BsmI-ApaI-TaqI) VDR risk haplotype was evaluated in associa-
tion with ss and Ss COLI1A risk genotypes, showing a significant interaction 
(p = 0.03) between VDR and COLIA1 genotype effects. In subjects bearing the SS 
genotype, the fracture risk was not VDR genotype-dependent. Conversely, in sub-
jects carrying ss or Ss genotypes, the contemporaneous presence of the baT haplo-
type was associated with a higher risk of fracture of 4.4 and 2.1, respectively [43].

Moreover, an additive effect of the COLIA1 Sp1 polymorphism with 
10565insGGA polymorphism of the sclerostin (SOST gene) was evidenced in an 
elderly male and female Caucasian healthy population [44].

Data from these two studies further confirmed the polygenic nature of osteopo-
rosis and fracture risk.

2.2.6	 �Transforming Growth Factor Beta (TGF-β1)

Transforming growth factor beta (TGF-β1) is largely expressed by osteoclasts, 
and it has shown to control bone resorption and formation by directly acting on 
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both osteoblasts and osteoclasts [45]. Therefore, polymorphic variants of TGF-β1 
gene have been extensively studied in relation to osteoporosis. A C/T transition in 
exon 1 which causes a proline-leucine substitution at position 10 has been associ-
ated with higher level of circulating TGF-β1 protein, and the C allele was associ-
ated with higher BMD values and lower occurrence of fragility fractures in two 
Japanese populations [46]. A rare polymorphism in intron 4 (713-8delC variant) 
was associated with very low BMD, severe osteoporosis, and fracture risk in 
women with osteoporosis and with low bone mass and increased bone turnover in 
both osteoporotic and normal women [47]. The same research group evaluated, in 
2003, the association between 8 polymorphisms of the TGF-β1 gene and osteopo-
rosis in a case-control study of 96 osteoporotic patients with vertebral fractures vs 
330 normal individuals, evidencing that the TT genotype of the 816-20 T>C vari-
ant in the intron 5 was less common in fractured osteoporotic patients than in 
healthy controls and that it was associated with higher lumbar spine and hip bone 
mass [48].

The GENOMOS study investigated associations between five TGF-β1 polymor-
phisms [G–1639A (G–800A, rs1800468), C–1348T (C–509T, rs1800469), T29C 
(Leu10Pro, rs1982073), G74C (Arg25Pro, rs1800471), and C788T (Thr263Ile, 
rs1800472)] and BMD and fractures in 28,924 male and female individuals from 10 
different European research studies [49]. Only weak associations between the 
C–1348T SNP and lumbar spine BMD in men and between the C788T SNP and risk 
of incident vertebral fractures were reported [49], presumably indicating that poly-
morphic variations of the TGF-β1 gene do not play a major role in regulating BMD 
or susceptibility to fragility fractures.

Recently, a meta-analysis integrated all the eligible studies, including a total of 8 
studies involving 1851 cases and 2247 controls, and it investigate whether T869C 
and T29C polymorphisms of the TGF-β1 gene were correlated with postmeno-
pausal osteoporosis [50]. A significant association between T29C or T869C poly-
morphisms and osteoporosis risk was observed only in Asian, but not in Caucasian, 
population [50].

2.2.7	 �Other Genes

Polymorphisms of other genes, involved in the regulation of bone metabolism and 
turnover, have been, although more rarely, investigated about their association with 
BMD and fractures. They include sclerostin (SOST), bone morphogenetic protein 2 
(BMP2), bone morphogenetic protein 4 (BMP4), osteoprotegerin (OPG, 
TNFRSF11B), receptor activator of nuclear factor kappa-B (RANK; TNFRSF11A), 
RANK ligand (RANKL; TNFSF11), and runt-related transcription factor 2 (RUNX2; 
CBFA1).

Principal results from their association and/or linkage studies are depicted in 
Table 2.1.
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2.3	 �Novel Approaches to the Genetics of Osteoporosis: 
Genome-Wide Association Studies (GWAS)

Because of the polygenic nature of osteoporosis, in which few genes exert major 
effects on bone metabolism and homeostasis, while a large number of genes have 
only minor effects, classical single gene association and/or linkage studies present 
numerous limitations, such as inconclusive or controversial results, false-positive 
and/or false-negative associations, reduced sensibility in identifying genotype-phe-
notype associations, and inability to identify novel candidate genes and their genetic 
variants. The recent development of next generation sequencing (NGS) technique 
has allowed to design gene chips for the simultaneous analysis of hundreds genes 
and their polymorphic variants. Genome-wide association studies (GWAS) have 
opened new horizons for the discovery of genetic loci and variants associated with 
osteoporosis and fracture risk, and the application of this novel approach, in the last 
years, has obtained success in identifying replicated genetic loci associated with 
osteoporosis.

The first GWAS in osteoporosis was performed in 2007 and analyzed 100,000 
SNPs in 1141 individuals from the Framingham Osteoporosis Study to examine 
genetic associations with bone quantitative traits: BMD (including the femoral 
neck, trochanter, and lumbar spine), calcaneal ultrasound, and geometric indices of 
the hip [79]. Of the 40 top SNPs with the highest number of significantly associa-
tions with BMD traits, a variable percentage of 30–50% of them maps within 
genetic loci or near genes that have not previously been studied for osteoporosis. 
The others were polymorphisms located within known osteoporosis candidate 
genes, such as rs1884052 and rs3778099 in ERα, rs4988300 in LRP5, rs2189480 in 
VDR, rs2075555 in COLIA1 and rs10519297, and rs2008691 in CYP19.

One year later, two major GWAS analyzed the association of over 300,000 SNPs 
with BMD and fractures [80, 81]. The first study [80] evidenced an association 
between BMD and two SNPs, rs4355801 on chromosome 8 near to the TNFRSF11B 
gene, and rs3736228, on chromosome 11 in the LRP5 gene. The second study [81] 
identified five genomic regions significantly associated with BMD, both in the dis-
covery set population and in the replication set populations. Three of these regions 
map close to or within genes known to be important in bone homeostasis: TNFSF11, 
TNFRSF11B, and ERα.

In 2009, a large-scale meta-analysis of five GWAS of femoral neck and lumbar 
spine BMD, including 19,195 individuals of Northern European descent, allowed to 
identify 20 genetic loci reaching the genome-wide significance (GWS; p < 5 × 10−8). 
Seven of them confirmed to be known bone-related loci/genes, 1p36 (ZBTB40), 
6q25 (ERα), 8q24 (TNFRSF11B), 11q13.4 (LRP5), 12q13 (SP7), 13q14 (TNFSF11), 
and 18q21 (TNFRSF11A), while 13 mapped to new regions, not yet investigated as 
candidate genes for osteoporosis: 1p31.3 (GPR177), 2p21 (SPTBN1), 3p22 
(CTNNB1), 4q21.1 (MEPE), 5q14 (MEF2C), 7p14 (STARD3NL), 7q21.3 
(FLJ42280), 11p11.2 (LRP4, ARHGAP1, F2), 11p14.1 (DCDC5), 11p15 (SOX6), 
16q24 (FOXL1), 17q21 (HDAC5), and 17q12 (CRHR1) [82].
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Two years later, a larger meta-analysis of 17 GWAS of the femoral neck and 
lumbar spine BMD was performed on 32,961 subjects of European and East Asian 
ancestry and validated for marker replication of BMD association on 50,933 inde-
pendent subjects and for association with risk of low-trauma fracture in 31,016 
fractured individuals (cases) and 102,444 non-fractured controls [83]. The study 
identified 56 loci (32 novels) associated with BMD with a positive GWS; 14 of 
them resulted also associated with fracture risk. Numerous of these loci mapped 
near or within TNFRSF11B, TNFRSF11A, and TNFSF11 genes or near or within 
genes involved in the Wnt signaling pathways, in the mesenchymal stem cell dif-
ferentiation and in the endochondral ossification.

GWAS highlighted the highly polygenic and complex nature of osteoporosis and 
fracture susceptibility and the difficulty to predict the risk of osteoporosis on genetic 
bases. Anyway, since the first GWAS on osteoporosis was performed in 1997, numerous 
and great advances have been made in the discovery and validation of genes and loci 
involved in the predisposition to osteoporosis. GWAS allowed, to date, the identification 
of more than 60 loci associated with BMD, osteoporosis, and fragility fractures, includ-
ing novel loci, whose functional analysis has demonstrated that they have a clear effect 
on bone metabolism and, presumably, also on osteoporosis pathophysiology.

The association of GWAS results with functional studies revealed very useful to 
identify novel molecular targets for anti-fracture drugs and, thus, allowed the design 
of novel target therapies for osteoporosis.
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