
Chapter 13
Long-Term Smart Grid Planning
Under Uncertainty Considering
Reliability Indexes

Bruno Canizes, João Soares, Mohammad Ali Fotouhi Ghazvini, Cátia Silva,
Zita Vale, and Juan M. Corchado

13.1 Introduction

The electricity sector is extremely important to the society. The increasing energy
needs are mostly satisfied by nonrenewable energy sources like coal or natural gas.
However, this energy resources are scarce and can bring negative consequences
to environment. In this way, there is a necessity to find new alternatives to, at
least, reduce their use. In fact, environmental and techno-economic factors have
motivated the widespread adoption of Distributed Generation (DG) technologies in
distribution networks [1]. Therefore, the portion of DG based generated electricity is
increasing as a consequence and will play an important role in distribution network
systems. Nevertheless, DG is based on renewable sources such as solar and wind
and therefore carry an inherent variability [2].

Stochastic expansion model for the transmission problem has been proposed in
[3–5], suggesting superior results compared with deterministic approaches when
likely realizations are considered. Cao et al. [5] propose a multiple resource expan-
sion planning in smart grids. The two-stochastic model minimizes the expected
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cost in the entire planning horizon and in the second stage the realization of the
load and wind generation are found. The results reveal that the expansion plans
depend on the uncertainty level of prospective wind generation, existing capacity,
and transmission capacity. A stochastic planning approach of distribution lines is
presented in [6]. The work is based on Monte Carlo and optimization procedure to
minimize the conductor profile of a power line and the transformer capacity. The
net present value of the total average annual costs is evaluated for the planning
period of 30 years. The stochastic approach is compared with the deterministic
one, and the results reveal that the former can increase the net present value by
13–25%. The work presented in [1] concerns a multi-year distributed generation
investment planning. The stochastic model considers uncertainty on emission price,
demand growth, and renewable generation. The results in the real network suggest
that compared to the naive decisions, the stochastic model yields better and more
robust decisions, namely amounting to more than 7%.

Combined heat and power (CHP) planning has demonstrated value in previous
works [7, 8]. By definition, CHP plants can produce heat and power simultaneously,
saving the heat that would be wasted in electricity production while saving up to
30% compared to conventional condensing power plants. Rong and Lahdelma [7]
refer that when steam or hot water is produced for an industrial plant or a residential
area, power can be produced as a by-product. Excess heat from an electric power
plant can be used for industrial purposes, or for heating space and water. CHP
is applied in the district heating concept. A district heating scheme comprises a
network of insulated pipes used to deliver heat, in the form of hot water or steam,
from the generation point to the final user. A district heating plant is often a CHP
plant but renewables sources, for example biomass or solar energy, can be applied
in district heating utilities, either completely or as a complement to traditional fossil
fuels.

Rong and Lahdelma [7] propose efficient algorithms for combined heat and
power production planning in the electricity markets. Authors propose algorithms
up to 1860 times faster than CPLEX. Fast solutions of hourly CHP models
are important, because long-term planning model requires solving several hourly
models, and a large number of scenarios in stochastic approaches. In [8] multiple
energy infrastructures are addressed, namely for supplying electricity and gas loads.
The planning model determines a least-cost network of transmission lines for both
infrastructures. The authors demonstrate that the coupling multiple energy hubs
offer advantages and more flexible options between the interconnected systems.

Considering current literature, in this work we propose to include heat and
power demand in the grid expansion problem (new lines construction) to improve
reliability indexes ensuring the radial topology of the distribution power network
at minimum costs. Results indicate that it influences the grid planning and a joint
planning is more indicated.

This chapter is organized as follows: After the brief introductory part, Sect. 13.2
presents the modeling of system uncertainties; Sect. 13.3, the problem formulation;
Sect. 13.4, the adopted case study; Sect. 13.5, the results and its discussion; and
Sect. 13.6, the conclusions.
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13.2 System Uncertainties

Grid expansion and planning problems can be modeled as deterministic or stochastic
problems. Usually, power system planners have considered this problem as a
deterministic model, i.e., they considered parameters and inputs based on the
assumption that the data for the problem is known accurately. Nonetheless, the
inputs of the expansion model must be estimated, such as the load demand and
the renewables penetration in the project lifespan, which is usually a decade at least.
However, the projections are done with a large anticipation process depending on
many factors and as a consequence they are not 100% accurate. The high deviations
in the projections can have a relevant impact on the economic and technical aspects
of daily grid operation. Therefore, the recent advances in expansion planning models
are moving from deterministic to stochastic approaches in order to incorporate the
uncertainty in projections for future in the planning models [9, 10]. In practice,
it is possible to feed a deterministic model with several likely scenarios and run
each optimization independently. However, advanced stochastic models can provide
better alternatives [11–14]. To capture the underlying uncertainty in the problem
data, a sophisticated energy planning model is developed here. The goal is to
find a solution that is feasible for all the supplied scenarios while minimizing or
maximizing the objective function, e.g., the expected investment cost [10].

The steps involving stochastic programming are typically developing the possible
scenarios that represent the underlying uncertainty. This step is usually a cumber-
some task where lot of possible scenarios might be generated. Therefore, a second
step is generally applied using scenario reduction techniques. The objective is to
obtain a reduced set of likely scenarios that is feasible to be solved [15]. The third
step involves developing a multi-scenario stochastic model to accommodate for the
set of scenarios. In the proposed model, the distribution system operator (DSO)
faces several sources of uncertainty for the projections in 30 years, namely the
forecast errors of load demand, number of consumers, and the potential production
of renewable units. These parameters are considered as potential uncertainties in
this model [16]. In stochastic models, the optimal decisions are taken on the basis of
future adaptability against a set of predicted scenarios [9]. The uncertainties related
to these inputs are considered in the model and the planning problem is developed
as a stochastic scenario-based optimization model [10].

In stochastic problems, where a set of scenarios needs to be handled, the main
issue is to construct a set of realizations for the random variable. These scenarios
should adequately represent the probabilistic characteristics of the data [17]. In this
stochastic planning model, the initial set of scenarios is a large data set generated
by the Monte Carlo Simulation (MCS) technique for representing the uncertainties
which the DSO faces while solving the problem. The MCS parameters are the
probability distribution functions of the forecast errors [18]. To include the forecast
error, an additional term which can be positive or negative is added to the forecasted
profile (xforecasted) [10].
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x.s/ D xforecasted C xerror.s/; 8s (13.1)

The error term (xerror) is a zero-mean noise with standard deviation � [17, 19].
Scenarios, which are projections for a specific date in future, are represented with
x(s)xs. The uncertainties of the forecast errors are modeled with the probability
distribution functions, which are usually obtained from the historical data [17]. In
this model, the forecast errors for the uncertain inputs are all represented by normal
distribution functions.

Including all the generated scenarios in the planning problem results in a large-
scale optimization problem [17]. Generally, there should be a tradeoff between
model accuracy and computation speed [16, 20]. In order to handle the com-
putational tractability of the problem, the standard scenario reduction techniques
developed in [21] are used. These scenario reduction algorithms exclude the
scenarios with low probabilities and combines those that are close to each other
in terms of statistic metrics [21]. They determine a scenario subset of the prescribed
cardinality and probability which is closest to the initial distribution in terms of
a probability metric [18]. The key purpose of scenario reduction is to decrease the
dimensions of the problem. The number of variables and equations are reduced after
applying these algorithms. Accordingly, the solutions can be found more efficiently,
without losing the main statistical characteristics of the initial dataset [22]. However,
the potential cost of applying these approaches is introducing imprecision in the final
plans [20].

The reduction algorithms proposed in [21] consists of algorithms with different
computational performance and accuracy, namely fast backward method, fast
backward/forward method, and fast backward/backward method. The selection of
the algorithms depends on the problem size and the expected solution accuracy [18,
21]. For example, the best computational performance with the worst accuracy can
be provided by the fast backward method for large scenario tress. Furthermore, the
forward method provides best accuracy and highest computational time. Thus, it
is usually used where the size of reduced subset is small [18]. These algorithms
are also incorporated in a General Algebraic Modeling System (GAMS) tool called
SCENRED. SCENRED can be used to reduce the randomly generated scenarios
[23].

13.3 Problem Formulation

The growing trend of electricity demand prompts an expansion of the distribution
network. Thus, one of the proposals will be the construction of new lines, as it
may influence the values of energy losses and energy not supplied. Costs related to
the investment, network operation, and satisfaction of all operational, physical, and
financial constraints lead to a planning problem.
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A distribution network planning problem can be of two types [24, 25]: static
and multi-step. The first one considers that the construction/expansion of medium
voltage (MV) distribution network can be carried out in a single step, usually
associated with small interventions.

The multi-stage planning problem is related to a long term where the investments
are carried out at different stages of planning. One of the way to solve this problem
is considering only a single step with several static problems, where the next step
starts with the solution of the previous step as input.

The distribution network is spited into two subsystems: a primary one, supplied
by MV, and a secondary one, supplied by low voltage LV. Carrying out the planning
of these two subsystems simultaneous is very complex, so one of the solutions is to
make the planning for the different subsystems separated. Thus, there is a decrease
in complexity since the method no longer involves a high number of decision
variables and also different voltage levels.

The problem considered in this chapter is related to a MV primary network
with several objectives. The objective function considers the energy loss cost, the
expected energy not supplied cost and the cost related to the investments, which in
this case will be in the construction of new lines.

The main goal of this problem is to minimize the costs referred above subject to
all technical network constraints. Indirectly the methods also minimize the number
of switches to be operated, since there are constraints to deal with the network
radiality. With this, the problem must consider the following constraints:

• Power balance—Kirchhoff’s first law;
• Generation limits;
• Lines/cable thermal limits;
• Only one direction of power flow can exist;
• Radiality condition.

13.3.1 Economic Evaluation

The uncertainty associated with any project that involves a large amount of
investment requires careful and detailed economic analysis. One of the difficulties
faced during the economic evaluation of projects is that the cash flows (entry and
exit of money) are staggered over time. Gallo [26] says that it’s a common sense
that the money owned today is more valuable than the same amount after a few
years (inflation rate decreases purchasing power). Thus, using a discount rate and
converting the financial amounts between different time periods it is possible to
solve the above-mentioned difficulty.

Bruni et al. [27] mention that an economic evaluation of projects usually involves
a set of parameters to establish the viability of the project. Thus, the author refers to
three commonly used tools:
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• Net Present Value—NPV: is the difference between the money flows, duly
updated during the project analysis period. This value should be positive
indicating that the results achieved allow to cover the initial investment and still
make a profit. If it is null, there was only recovery of the initial investment;

• Internal Rate of Return—IRR: is the rate that nullify the NPV. Obtaining an IRR
above the discount rate indicates that the project is economically feasible. In
other words, the project manages to generate a rate of return greater than the cost
of capital;

• Payback: is the number of years required to recover the investment, assuming
that the investment was done all in year zero.

The planning method proposed in this chapter considers the acquisition and
connection of new power lines as the investment to be applied to the distribution
network. Thus, the economic evaluation considers, in addition to this Investment
(INV), the profits achieved with the application of this new solution—through the
reduction of power losses (PL) and expected energy not supplied (EENS).

For the investment economic evaluation, the lifetime project and the discount
rate must be defined by the investor. The typical duration for planning distribution
networks is approximately 25 years [28].

All necessary investments and all obtained benefits to improve the reliability
indexes are considered in the economic evaluation. The investment is considered
profitable when the present value (PV) of the incoming related to the improvement
of reliability indexes and losses reduction is greater than the investment made in new
power lines construction. This means that the net present value (NPV) is positive
(Eq. (13.2)).

The benefit (BNF) corresponds to the savings related to the reliability indexes
improvement and losses savings. Investment is the total investment for the planning
project.

NPV D BNF � Investment
NPV > 0

(13.2)

The present value of the savings that are related to the reliability indexes
improvement and losses savings can be calculated by the capital recovery factor
(CRF). CRF, presented in Eq. (13.3), is the ratio of a constant annuity to the present
value of receiving that annuity for a given project lifetime. Thus, for t periods
bnf1 D bnf2 D : : : D bnft D bnf Eq. (13.4).

CRF D dr

1 � e�dr�t Š dr � .1 C dr/t

.1 C dr/t � 1
(13.3)

BNF D bnf

CRF
D bnf � .1 C dr/t � 1

dr � .1 C dr/t (13.4)

where dr is the discount rate, and t the project lifetime.
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13.3.2 Target Reliability Values

Distribution system reliability is one of the most important issues in system planning
and operation [29]. Institute of Electrical and Electronics Engineers (IEEE) [30] as
well as other authors like Canizes et al. [31] use the basic reliability indexes:

• Failure rate (�)—is the number of faults of a given equipment in a given period
of time. The failure rate represents the probability of an equipment failure;

• Repair time (r)—is the failure average duration;
• Unavailability (U)—is the annual outage duration.

In energy distribution systems, these indices are mathematically related according
to the equation:

U Š � � r (13.5)

With this, it will be possible to determine the Forced Outage Rate (FOR), another
relevant index in the reliability analysis. FOR represents the probability of an
unavailability network equipment when it is requested. This index is defined as
the number of hours that the equipment is unavailable dividing by the difference
between the number of total hours of a year (T), 8760 hours, and the repair time of
equipment i.

FORi D Ui

T � ri
(13.6)

The FOR is used to determine the power not supplied in each distribution network
line by the following equation:

PNSij D FORij � Sij kW (13.7)

Thus, the expected energy not supplied is:

EENS D
NLX

ijD1

PNSij � 8760 kWh=year (13.8)

where ij is the line between bus i and bus j, and NL is the number of distribution
network lines.

The reliability indexes such as System Average Interruption Duration Index
(SAIDI), System Average Interruption Frequency Index (SAIFI), and Expected
Energy Not Supplied (EENS), adopted by the IEEE standard [32], are used to
evaluate reliability of the system.

The network operator defines target values for the reliability indexes. To achieve
the new reliability values, the system operator should improve the repair times and
the failure rates.
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The following reliability indexes (13.9)–(13.12) are considered in the proposed
method:

• System Average Interruption Duration Index

SAIDI D Total customer interruption durations

Total number of costumers in the system
(13.9)

SAIDI D
P

iD12L
Ui � Ni

P
iD12L

Ni
hour=customer year (13.10)

• System Average Interruption Frequency Index

SAIFI D Total number of customer interruptions

Total number of costumers in the system
(13.11)

SAIFI D
P

iD12L
�i � Ni

P
iD12L

Ni
interruptions=customer year (13.12)

13.3.3 Stochastic Planning Model

The planner in the decision making under uncertainty should make optimal deci-
sions throughout a decision horizon with incomplete information. A number
of stages can be defined for the considered decision horizon, representing a
point in time where decisions are made or where uncertainty partially or totally
vanishes [33].

In this chapter is considered a two-stage planning method with a stochastic
process represented by a set of scenarios. Thus, two types of decisions can be used
in the planning process:

First stage: The decision is made before stochastic process execution. Thus, the
variables that represent the first stage do not depend on each stochastic process
execution. These variables are known as “here and now” variables.

Second stage: The decision is made after knowing the stochastic process. Thus,
the decision depends on each vector of stochastic process execution. When the
stochastic process is represented by a set of scenarios, the second stage decision
variables are defined for each considered scenario.

The two-stage stochastic programming is an effective approach to include the
impacts of the decision in stochastic optimization problems. More theoretical
background on stochastic programming models can be found in [32, 33].
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Usually the distribution network planning is treated as a multiobjective optimiza-
tion problem with nonlinear programming. This is because in the formulation of the
problem there are nonlinear constraints related to the power flow, binary variables
among others. Thus, the planning model can be formulated as a mixed integer
nonlinear programming (MINLP); however, this problem is complex and difficult
to solve. Thus, it is important to find a simple method to avoid this complexity.
The DC power flow constraints are considered in the optimization model (13.23).
The usage of a DC model is justified because in many countries, like in Portugal,
the distribution networks have voltage regulators and capacitors banks carefully
positioned along the grid to keep the voltage and reactive power between the
desire limits. Usually, the voltage stability is placed at the HV/MV substation
level. However, in the Portuguese case the MV/LV transformers also have voltage
regulators. Therefore, the problem will be formulated as a mixed integer linear
programming (MILP).

13.3.3.1 Power Losses Linearization

To make the problem linear it is necessary to linearize the objective function. In
this case, the only nonlinear term in the objective function is the power losses. The
linearization of power losses is done according to the Venikov method [34]. This
approach considers that the lines and cables in the system work close to the nominal
current, i.e., the economic current density (Jeco).

I D Jeco � Scc (13.13)

where Jeco is the economic current density (A/mm2); Scc is the line section (mm2).
Thus, the power losses can follow the Eq. (13.14):

�P D k0 � R � I2 D k0 � R � I � I (13.14)

Replacing in (13.14) the Eq. (13.13):

�P D k0 � R � I � Jeco � Sec (13.15)

where:

I D k0 � S

Ul
(13.16)

R D � � L

Scc
(13.17)

in which k0 and k00 are constants that depend on the type of service (one or three
phases); S is the load (kVA); R is the line resistance (�/km); I is the current that
flow in the line (A); � is the line resistivity at operating temperature (� mm2/km);
L is the line length (km).
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Replacing (13.16) and (13.17) into Eq. (13.15) the linear equation of power losses
is:

�P D k � � � L � Jeco

Ul
� S (13.18)

The current density value is calculated by Eq. (13.19):

Jeco D
s

q � 10�3

n � � � h � p � CRF
(13.19)

where n is the number of active conductors; h is the number of service hours for the
electric conduits per year; q is the constant value dependent of the line/cable type; p
is the energy price AC/kWh.

13.3.3.2 Proposed Methodology

Figure 13.1 presents the scheme of the proposed methodology. The proposed
methodology has five main steps, which are presented in more detail as follows.

Input Data

The first step is to prepare all the input data to be considered in the model, such as
generation and load points, lines and new lines option characteristics, and reliability
data. The data regarding the predicted values for solar power and wind power, load
and heat demand, and the number of consumers as well as their standard deviation
values are also considered.

Scenarios Generation

In this step a set of scenarios is generated using Monte Carlo Simulation (MCS)
following a normal distribution. The predicted and standard deviation values
referred above are used as inputs for the MCS, which is implemented in MATLAB
software.

Scenarios Reduction

A set of thousand of scenarios is generated, and scenarios reduction becomes
imperative to handle with the computational tractability of the problem. Thus, the
standard scenario reduction techniques developed in [21] are used. These scenario
reduction algorithms exclude the scenarios with low probabilities and combine those
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Input data

Standard Deviation
Solar Power• •

•
•
•
•

•
•
•
•

Wind Power
Load Demand 
Thermal Load Demand
Consumers

Prodicted Values
Solar Power
Wind Power
Load Demand 
Heat Load Demand
Consumers

Scenarios Generation

Scenarios Reduction

Stochastic
ZS*

Wait-and-See
ZP*

Deterministic
ZD*

VSS = ZD*-ZS* EVPI = ZS*-ZP*

Monte Carlo Simulation
(Normal Distribution)MATLAB

GAMS Fast Backward/Forward

Generated Scenarios

Reduced Scenarios Scenarios Probability

ZS* ZD* ZP*

Evaluation Metrics

Long-Term Planning Method

Fig. 13.1 Methodology diagram
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that are close to each other in terms of statistic metrics [21]. They determine a
scenario subset of the prescribed cardinality and probability which is closest to
the initial distribution in terms of a probability metric [32]. The main purpose of
scenario reduction is to reduce the size of the problem.

General Algebraic Modeling System (GAMS) with SCENRED toolbox consid-
ering the fast backward/forward method is used to deal with the scenarios reduction.

Long-Term Planning Model Using a Two-Stage Stochastic Method

This optimization model has as outputs the decision variables regarding the
investment in new lines, power losses and expected energy not supplied costs, and
the SAIDI, SAIFI reliability indexes. The total expected planning cost is represented
by Eq. (13.20), corresponding to the first stage planning cost (PC1) and second stage
planning cost (PC2).

Minimize E .PCTotal/ D PC1 C E
�
PC2

�
(13.20)

The expected planning cost for the first stage, PC1, is represented by Eq. (13.21),
which includes the cost of new lines placement.

PC1 D
NBP
iD1

NBP

j D 1

j ¤ i

NOP
cD1

˚��
CostINV � y.i;j;c/ C CRF � CostM � y.i;j;c/

���

8y 2 f0; 1g ; 8 .i; j; c/ 2 �l

(13.21)

where CostINV is the initial investment in new lines (AC); y(i,j,c) is the decision
binary variable to connect bus i and j for the chosen line option c; CRF is the capital
recovery factor; CostM is the maintenance cost (AC).

The expected planning cost in the second stage, PC2 (Eq. (13.22)), includes the
power losses cost (first term), expected energy not supplied costs (second term), and
excess of power supply costs (third term).

FOR(i,j,c) and P(i,j,c) are respectively the forced outage rate and the power flow
between bus i and bus j according to the chosen line option c. FOR is calculated
considering the basis reliability indexes r and �. Since these indexes are used
to determine the remaining indicators, the minimization of the FOR implies the
reduction of those indicators. Te is the equivalent average time in hours and
according to Gustafson [35] is the average number of hours during which it would
be necessary for the peak load to be carried to give the same energy loss as that
given by the actual load throughout the year. To obtain more reliable results, it is
necessary to subtract to the Te the number of probable hours in which the lines may
be out of service in the 8760 hours of the year.
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E
�
PC2

� D
NBP
iD1

NBP

j D 1

j ¤ i

NOP
cD1

NSP
sD1

8
<̂

:̂

��
FOR.i;j;c;s/ � CostEENS � CRF � P.i;j;c;s/

�� C
��

CRF � .k0 � R � I � Jeco � Sec/ �
CostPL � �

Te�8760 � FOR.i;j;c;s/
� � P.i;j;c;s/

	


9
>=

>;
C

NBP
iD1

NSP
sD1

��
CostGCP � pGCP.i;s/

�� 8 .i; j; c/ 2 �l

(13.22)

The objective function Eq. (13.20) is subjected to several constraints. Below it is
possible to find all the model constraints (Eqs. (13.23)–(13.45)).

Network grid constraints:

• Power balance (first Kirchhoff law)

P

g2�nd
DG

.pDG.g;s/ � pGCP.g;s// C P

g2�d
DG

�
pDG.g/

� C P

sp2�b
SP

pSupplier.sp/C
P

e2�b
E

.pDischarge.e;s/ � pCharge.e;s// � P

l2�b
L

pLoad.l;s/ � P

v2�b
V

pCharge.v;s/C
NBP
iD1

NOP
cD1

P.i;j;c;s/ �
NBP
jD1

NOP
cD1

P.j;i;c;s/ D 0 8.i; s /

(13.23)

• Maximum admissible line flow

p.i;j;c;s/ � pmax
.i;j;c/ � y.i;j;c/ 8s; 8y 2 f0; 1g ; 8 .i; j; c/ 2 �l (13.24)

• Radiality condition

This constraint ensures the radial topology of the distribution network.
NLX

.i;j;c/D1

y.i;j;c/ D NB � NBS 8y 2 f0; 1g ; 8 .i; j; c/ 2 �l (13.25)

• Unidirectional power flow

This constraint ensures the power unidirectionality between bus i and bus j and
also the choice of only one line option c in that direction.

y.i;j;c/ C y.j;i;c/ � 1 8y 2 f0; 1g ; 8 .i; j; c/ 2 �l (13.26)

• Transfer buses

A bus with no generation or demand is referred as a transfer bus. This kind of
buses are used to connect a load bus to other load bus and is not a terminal bus
(main condition to use the transfer buses), i.e., there are at least two more circuits
“leaving” the transfer bus.
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To model the use of a transfer bus, first a binary variable must be defined such
that is equal to 1 if the transfer bus is used; otherwise, is equal to 0. To consider
transfer buses the Eq. (13.25) is replaced by Eq. (13.27):

NLP
.i;j;c/D1

y.i;j;c/ D NB � NBS �
NWP
wD1

�
1 � z.w/

�
z.w/ 2 f0; 1g 8w 2 �BT

8 .i; j; c/ 2 �l

(13.27)

y.i;j;c/ � z.w/ z.w/ 2 f0; 1g 8w 2 �BT (13.28)

y.j;i;c/ � z.w/ z.w/ 2 f0; 1g ; 8w 2 �BT ; 8 .i; j; c/ 2 �l (13.29)

NLP
.i;j;c/D1

y.i;j;c/ C
NLP

.j;i;c/D1

y.j;i;c/ � 2 � z.w/ z.w/ 2 f0; 1g ; 8w 2 �BT ;

8 .i; j; c/ 2 �l

(13.30)

where zj is the binary variable related to the transfer buses.
Constraints (13.27)–(13.30) avoid the loop generation due to the presence of

transfer buses and also prevent the appearance of a terminal transfer bus (with only
one connected circuit).

• Avoid distributed generator isolation from substation

NLX

.i;j;c/D1

d.i;j;c/ �
NLX

.i;j;c/D1

d.j;i;c/ � D.g/ D 0 8g 2 �B 8 .i; j; c/ 2 �l (13.31)

D.g/ D 1 8g 2 �DG (13.32)

D.g/ D 0 8g … �DG [ �BS (13.33)

ˇ̌
d.i;j;c/

ˇ̌ � nDG � y.i;j;c/ 8 .i; j; c/ 2 �l (13.34)

where D(g) is a fictitious load of each distributed generator that only can be fed by
the substation. d(i,j,c) is the fictitious flow associated with branch i,j for c line option.
If it is allowed the distributed generators supply some loads independently, then
(13.31)–(13.34) are not considered in the model.
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Controllable DG units and external suppliers:

• Maximum and minimum limits for active generated power

pDG.g/ � PDGMinLimit.g/ 8g 2 �d
DG (13.35)

pDG.g/ � PDGMaxLimit.g/ 8g 2 �d
DG (13.36)

• The upstream supplier limits

pSupplier.sp/ � PSMinLimit.sp/ 8sp (13.37)

pSupplier.sp/ � PSMaxLimit.sp/ 8sp (13.38)

Reliability indexes limits:

• System Average Interruption Frequency Index

SAIFI � SAIFImax (13.39)

• System Average Interruption Duration Index

SAIDI � SAIDImax (13.40)

Energy storage systems constraints:

• The charging and discharging status of the ESSs are respectively represented by
xESS and aESS. Charging and discharging cannot occur simultaneously.

xESS.e;s/ C aESS.e;s/ � 1 8e; 8s (13.41)

• The maximum discharge limit for each ESS

pDischarge.e;s/ � PDischargeLimit.e/ � xESS.e;s/ 8e; 8s (13.42)

• The maximum charge limit for each ESS

pCharge.e;s/ � PChargeLimit.e/ � aESS.e;s/ 8e; 8s (13.43)

Parking lot constraints:
The EVs are treated as virtual batteries in the proposed model. A virtual battery

can represent a parking lot or a set of EVs located in the network. In this model
the EV charge is equal to charge limit multiplied by simultaneity factor (sf). sf is
considered equal to 1.
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• The charge limit for each virtual battery v is represented by (13.44):

pCharge.v;s/ � PChargeLimit.v;s/ � sfv 8v; 8s (13.44)

Generation curtailment power:

• The generation curtailment power of non-dispatchable DG units cannot be higher
than the predicted amount of generation

pGCP.g;s/ � PDGScenario.g;s/ 8t; 8g 2 �nd
DG; 8s (13.45)

District heating:
The use and development of district heating (DH) are increasing in several

countries, namely in north of Europe. The generating heat plants in DH send out the
heat to the households as water or steam. Thus, the constraints (13.46) and (13.47)
could be considered to incorporate the heat demand in the proposed model. The
considered heat plants in this model are the CHP and boiler plants.

• Power balance considering CHP (first Kirchhoff law)

P

g2�nd
DG

�
pDG.g;s/ � pGCP.g;s/

� C P

g2�d
DG

�
pDG.g/ C pCHP.g/

� C P

sp2�b
SP

pSupplier.sp/C
P

e2�b
E

.pDischarge.e;s/ � pCharge.e;s// � P

l2�b
L

pLoad.l;s/ � P

v2�b
V

pCharge.v;s/C
NBP
iD1

NOP
cD1

P.i;j;c;s/ �
NBP
jD1

NOP
cD1

P.j;i;c;s/ D 0 8i; s

(13.46)

• Heat balance

X

h2�heatboiler

�
hb.h;s/

� C
X

hp2�chp

�
hchp.hp;s/

� �
X

hl2�heatload

�
hload.hl;s/

� D 0 (13.47)

• CHP constraints

CHP plants in this model have the following operation region (Fig. 13.2).
Each line equation (linear equation–algebraic equation) of this region are the

constraints for these units, i.e., lines equation 1, 2, 3, 4.
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P (MW)

A

D

B
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1
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3
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Fig. 13.2 CHP operation region

Evaluation Metrics

The well-known indices, such as the expected value of perfect information (EVPI)
and the value of stochastic solution (VSS), are used to evaluate the benefits of the
stochastic programming [33]. The EVPI represents the amount that the decision
maker is not able to gain due to the presence of imperfect information, e.g.,
forecasts. It is useful to evaluate how the uncertainty factors affect the evaluated
optimal problem. Regarding VSS, it represents the advantage of using stochastic
programming over a deterministic approach [33].

EVPI for minimization problems can be represented by (13.48). The stochastic
solution represented by ZS* is calculated by the stochastic programming approach
and represents the total expected cost (S). ZP* represents the wait-and-see solution
(WSS). The WSS can be obtained by using the deterministic approach for each
scenario. Then, WSS is computed by multiplying the individually obtained cost by
each scenario probability.

EVPI D zS�–zP� (13.48)

The VSS equation for minimization problems is represented through Eq. (13.49):

VSS D zD�–zS� (13.49)

where ZD* is the optimal value of the modified stochastic problem. It is a determin-
istic version of the original problem with an average scenario. The optimal decision
variables of the original stochastic problem are considered as input in the modified
problem.
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13.4 Case Study

This section presents a case study to demonstrate how the proposed method is
applied. A distribution network (Fig. 13.3) with 13 buses, 30 kV, and one substation
(located in bus 1) is used in this chapter. Connections between buses are made by AA
90 overhead lines type. The dashes lines presented in Fig. 13.3 are new connection

1

2

3

4 5

67 8 9

10 11

12

13

Substa�on Wind Farm Energy Storage System

EV Parking Lot Solar Panel Biomass 

Load Point New line op�on

Fig. 13.3 13-bus distribution network
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Fig. 13.4 Standard deviation for each resource

Fig. 13.5 Load and heat demand predictions

options and do not exist in the actual network. Figures 13.4, 13.5, and 13.6 present
respectively the standard deviation for each resource, the load and heat demand
predictions, and the intermittent energy resources (solar and wind) and consumers
predictions for the year 2050.

This network has nine load points, one parking lot for EVs, four DG units
(one wind generator, one solar generator, and two biomass units). This distribution
network has also two storage systems located at buses 2 and 4. The energy resources
data as well as the prediction for the number of consumers are shown in Tables 13.1
and 13.2, respectively.
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Fig. 13.6 Intermittent energy resources and consumers predictions

Table 13.1 Energy resource data

Capacity (MW) Prediction (MW)
Energy resource min–max min–max Units

Substation 0–10 – 1
Photovoltaic 0.75–0.75 0.2680–0.7470 1
Wind 0.75–0.75 0.1702–0.7707 1
Biomass 0–0.50 – 2
Storage Available capacity for charge 0.20–0.20 – 2

Available capacity for discharge 0.20–0.20 –
Parking lots Charge 1.20–1.20 – 1
Load demand 10–10 5.2859–8.0911 9

Table 13.2 Prediction for the number of consumers

Expected minimum Expected uncertain

Number of consumers 631 155

In this case study, the owners of energy storage systems (ESS) are external
players. These owners have an agreement to keep a 20% reserve capacity for the
network operator (this capacity should not be used by the ESS owner). This capacity
can be used for instance to deal with excess or a lack of generation by the network
operator. Two 1MW ESS units are available in the network. 0.4MW of capacity is
reserved for the system operator (0.2MW for charge and 0.2MW for discharge). The
other distributed energy resources belong to the network operator.

Average wind and solar power prediction, as well as the load demand prediction
(considering 120 scenarios) are presented in Figs. 13.7 and 13.8, respectively.
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Fig. 13.7 Average solar and wind power prediction

Fig. 13.8 Load demand and consumers prediction

The EVs parking lot is located at bus 3 and has 20 car places. The maximum
charge capacity for each place is 60 kW. In this case study, a simultaneity factor
equal to one is considered. Thus, the maximum charge capacity for the parking lot
is 1200 kW.

Wind and solar power are average predicted values for the lifetime project over
the year. Thus, these average values considering their standard deviations will be
considered in the scenarios generation. Through Fig. 13.7 it is possible to see that the
expected minimum for wind power and solar power are 0.1702MW and 0.2680MW,
respectively. Considering the expected uncertain, the expected maximum for wind
power and solar power are 0.7707MW and 0.7470MW, respectively.
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Analyzing Fig. 13.8 the demand for EV parking lot considered in this case study
is equal to the maximum charge capacity of the parking. As said above a simultane-
ity factor equal to one is also considered. The expected minimum for power demand
and for number of consumers are 5.2859MW and 631 consumers, respectively,
with expected uncertain of 2.8052MW and 155 consumers, respectively. Thus, the
expected maximum for load demand is 8.0911MW and for the number of consumers
is 786.

To complement the study presented in this chapter it will be considered the
possibility to have a district heating (Fig. 13.9). To supply the required heat demand,
four heat sources are considered: two heat-only boiler stations (or just boiler
stations) and two CHP units. In addition to providing heat, the CHP units also
provide electrical power, so this kind of unit can contribute to an improvement of the
EENS. As a result, can also contribute to the reduction of the network investment
costs, losses costs and EENS costs.

Thus, two CHP units and two heat-only boiler stations are carefully installed in
the distribution network (Fig. 13.9). The heat demand points are in the same load
demand buses.

The following four case studies are presented to show the impact of using storage
units and the district heating in the distribution network planning problem.

District heating is only affected by CHP units and heat-only boiler stations. How-
ever, CHP heat and electricity supply are dependent as can be seen in Fig. 13.2.

• Case A—ESS and CHP are not considered;
• Case B—ESS is considered and CHP is not;
• Case C—CHP is considered and ESS is not;
• Case D—ESS and CHP are considered.

Table 13.3 presents the initial average values of SAIDI and SAIFI indexes, i.e.,
the values for the actual network considering and not considering the district heating
(CHP units). For all analyses conducted in this case study it is intended to achieve
a reduction at least 30% in SAIDI and 15% in SAIFI. In this case study, the way to
achieve these reductions is investing in new lines construction. Two lines options
are considered. Tables 13.4 and 13.5 present the lines thermal limits, the basic
reliability indexes (failure rate—� and repair time—r) for the investment opinion
1 (line AA90) and option 2 (line AA160), respectively. The bold values represent
the possibilities of new connections between buses. It is possible to see in Table
13.4 costs and maintenance costs equal to zero. This means that the respectively
AA90 line type exist in the actual network, thus its costs are considered zero in the
proposed long-term planning method. This method considers also the possibility
to change a line type for the other (AA90 by AA160). These tables also show the
construction line cost (line cost plus installation cost). The maintenance cost for
each new line is also presented.

Tables 13.6 and 13.7 present the heat resource and demand data. In Fig. 13.10
is depicted the expected minimum (2.8802MWth) and the expected uncertain
(0.9027MWth).
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1
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13

Substa�on Wind Farm Energy Storage System

EV Parking Lot Solar Panel Biomass 

Combined Heat and Power

Heat-only Boiler Sta�on

Load Point

New line op�on

Fig. 13.9 13-bus distribution network with district heating

Table 13.3 Initial reliability indexes

District heating SAIDI (h/customer � year) SAIFI (interruption/customer � year)

Yes 7.1555 0.6887
No 8.3232 0.6561
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Table 13.6 Heat resource data

Power capacity (MW) Heat capacity (MWth)
Energy resource min–max min–max Units

CHP 0–1.5 0–1.0 2
Heat-only boiler – 10–10 2

Table 13.7 Heat demand data

Heat capacity (MWth) Heat prediction (MWth)
Energy resource min–max min–max

Heat demand 5–5 2.8802–3.7829

Fig. 13.10 Heat demand prediction

The most commonly used cogeneration units are the single-cycle gas or steam
turbine units. In this chapter, the cogeneration unit used is the single-cycle steam
turbine without condensation. Considering this kind of unit, the feasibility region is
convex, which means that any point belonging to a straight line drawn between two
distinct points belongs to the feasibility region presented. The considered CHP units
present the following convex feasibility region (Fig. 13.11).

The EENS cost is 3 m.u/kWh, and of 0.12 m.u./kWh for loss cost. For the
expected energy not supplied cost, investment cost, loss cost, a discount rate of
5% is considered for a 30 years lifetime project, which leads to a Capital Recovery
Factor equal to 15.37. In this case study, the considered value for Te is 4500 h and
all the terms of the objective function (13.22) have the identical importance for the
distribution system operator.

The proposed work was developed in MATLAB R2014b and TOMLAB 8.1 64
bits with CPLEX solver (version 12.5) using a computer with one Intel Xeon E5-
2620 v2 processor and 16 GB of RAM running Windows 10 Pro.
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Fig. 13.11 Feasibility region for cogeneration units

Table 13.8 Peak memory
and execution time for each
case

Case Peak memory (MB) Execution time (s)

A 244 2152
B 192 1832
C 225 1246
D 140 625

13.5 Results and Discussion

Two-stage stochastic method is applied to solve a long-term planning problem in
the considered case study. This optimization problem considered 120 scenarios and
deals with 167,009 variables and 86,492 constraints. Table 13.8 presents the peak
memory and the execution time for the two-stage stochastic long-term planning
problem.

The execution times are less than an hour, so they are compatible for the available
timeframe in the planning-making process. A memory test was made to evaluate
the impact on computer system resources through MATLAB memory profiler. This
command reports the peak memory for each function used in the methodology
developed code. As can be seen in Table 13.8 the higher peak memory was verified
in case A. Even the peak memory doesn’t exceed 300 MB in this case. Thus,
the proposed work in this chapter is compatible with a wide range of available
computers in the market.

Figures 13.12 and 13.13 present the optimal radial topology for the two-stage
stochastic method (ZS*) without district heating and considering district heating,
respectively. In other words, it is being considered the uncertainty in load and heat
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Fig. 13.12 Initial working radial topology without district heating

Fig. 13.13 Initial working radial topology considering district heating

demand, in the number of consumers, and in the wind and solar power in the actual
distributed power network (without any option of line construction).

Through Table 13.9 it is possible to see the costs for power losses and EENS
when the two-stage stochastic method is applied to the actual network with and
without district heating. CHP units as distributed generator can contribute to the
reduction of power losses and EENS costs (as can be seen in Table 13.9).
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Table 13.9 Initial costs with and without district heating

District heating Initial loss cost (m.u.) Initial EENS cost (m.u.)

YES 626,970 1,131,900
NO 695,480 3,069,500

Fig. 13.14 ZS* radial topology for case A

The next two figures (Figs. 13.14 and 13.15) present the studies referred to case
A and B using the two-stage stochastic optimization model. Optimal investment
(construction of new lines) to be applied in network to improve the reliability
indexes and at the same time minimizing the power losses cost, expected energy
not supplied cost, and the investment cost is obtained. These studies also present the
optimal radial topology to be chosen to operate in considered conditions (taking into
account all scenarios). For case A, three new lines are chosen, one AA90 connected
between bus 7 and bus 10, and two AA160 connected between bus 1 and bus 7 and
bus 6 and bus 9. The total cost associated with this case is 3,516,065 m.u. and the
total benefit of this investment is 1,604,200 m.u. for the lifetime project.

Regarding case B four new lines are selected, three AA90 between buses 7–10,
6–9, and 11–12 and one AA160 between busses 1–7. In this case the total cost is
3,565,618 m.u. and the total benefit is 1,740,050 m.u.

Figures 13.16 and 13.17 are related to the studies made for case C and D. Also,
the optimal topology to be operated for each case is also obtained. For case C and D
three new lines are chosen, one AA90 connected between bus 7 and bus 10, and two
AA160 connected between bus 1 and bus 7 and bus 6 and bus 9. Case C presents a
total cost of 2,863,415 m.u. and a total benefit of 69,060 m.u. Regarding case D the
total cost is 2,701,645 m.u. and the total benefit is 177,710 m.u.
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Fig. 13.15 ZS* radial topology for case B

Fig. 13.16 ZS* radial topology for case C
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Fig. 13.17 ZS* radial topology for case D

Table 13.10 New lines construction for cases A, B, C, and D

New line connections (Bus out–Bus in) Substitution
AA90 AA160 AA90 by AA160

Case A 7-10 1-7 9-6 –
Case B 7-10 9-6 11-12 1-7 –
Case C 7-10 1-7 9-6 –
Case D 7-10 1-7 9-6 –

A summary of the new lines construction for each case is presented in Table
13.10. Through this table it is possible to see that the substitution of the existence
lines wasn’t selected by proposal model.

Tables 13.11 and 13.12 present the result costs for each objective term as well
as the total costs and the monetary benefits achieved in each case. Once CHP units
are used in the district heating cases they also contribute as distributed generators
to the distribution power network, thus the EENS costs and power losses costs are
lower than the cases without district heating. Hence, the total costs for the cases that
include CHP units are lower. It can be said that with the necessary investment to
achieve the desired values of SAIDI and SAIFI the total monetary benefit is small
when compared with the cases without CHP.

It can be seen in Table 13.13 that the paybacks for cases C and D are greater than
the lifetime project and present an IRR negative. So, this means that the investment
will not be recovered in the lifetime project. Thus, the investment in new lines
construction to improve the SAIDI and SAIFI will not be economically feasible.
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Table 13.11 Cost results for cases A, B, C, and D

Case EENS cost (m.u.)
Loss cost
(m.u.)

Investment
cost (m.u.)

Excess of power
supply cost (m.u.) Total cost (m.u.)

ZS* A 1,582,700 812,880 1,120,485 0 3,516,065
B 1,525,800 891,830 1,147,988 0 3,565,618
C 1,089,400 653,530 1,120,485 0 2,863,415
D 974,610 606,550 1,120,485 0 2,701,645

Table 13.12 Benefit for cases A, B, C, and D

Case EENS cost benefit (m.u.) Loss cost benefit (m.u.) Total cost benefit (m.u.)

ZS* A 1,486,800 117,400 1,604,200
B 1,543,700 196,350 1,740,050
C 42,500 26,560 69,060
D 157,290 20,420 177,710

Table 13.13 Economic
evaluation

Case Payback (years) IRR (%) NPV (m.u.)

ZS* A 12.58 22.21 16,192
B 13.10 17.37 12,969
C >30 <0 71,852
D >30 <0 61,329

Fig. 13.18 Expected total costs for each case

In Fig. 13.18 is depicted a comparison between the total costs obtained by the
two-stage stochastic method (Zs*) and deterministic method (Zd*). The lower costs
presented by the two-stage stochastic method for each case is evident. The higher
costs are present in cases A and C of deterministic method. This is due to the
existence generation power excess and the nonexistence of ESS. Results suggest
that ESS contributes to avoid a higher cost when the deterministic model is used and
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Fig. 13.19 EVPI and VSS for the considered cases

shows the two-stage stochastic method advantage (even without ESS the generation
power excess is zero). The values of the quality indices are shown in Fig. 13.19. Case
A and case C are good proofs of the previous statement, where the VSS is higher
in cases A and C (180% and 222%) which means that without ESS the stochastic
model is more important to achieve lower expected costs mitigating the uncertainty.
In fact, these high VSS values for cases A and C are related to the existence of
generation power excess.

For cases A, B, C, and D a reduction of 64%, 11%, 69%, and 22% is obtained
when Zs* is used.

The new reliability indexes when the two-stage stochastic model is used are
shown in Figs. 13.20 and 13.21. As can be seen the obtained values are lower when
compared with the initial values of SAIDI and SAIFI (Table 13.3). The reliability
indexes values in the case B has more considerable changes when compared with the
other three cases; this is related to the new lines constructions that the two-stochastic
model has chosen (Table 13.10).

13.6 Conclusion

A two-stage stochastic model for a distribution power network long-term planning
model was proposed to solve the challenging problem of considering several
sources of uncertainty associated with the renewable generation and electric vehicles
integration considering the network technical constraints. The problem complexity
was reduced by the adequate aggregation of EVs instead of decentralized control.
Therefore, it is possible to increase the scalability of the model and consider several
uncertainty sources. The results also reveal that the increasing levels of uncertainty
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Fig. 13.20 Expected SAIDI index

Fig. 13.21 Expected SAIFI index

can be mitigated by ESS. In fact, the deterministic model when the ESS are not used
presents excess of generation power leading to high costs.

The district heating is also considered in the long-term planning problem. To
deal with that some heat generators were considered (CHP units and heat-only
boiler units). Results demonstrate that CHP, together with heat-only boiler units, can
supply the district heating demand also contributing to network reliability reducing
expected energy supplied and power losses costs avoiding the need to invest in new
power lines for the considered lifetime project.

The method proved to be adequate to support the distribution network operator
for future network expansion planning.
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Nomenclature

Indices

c Line options
e Energy storage systems (ESSs)
g Distributed generator (DG) unit
h Heat-only boiler unit
hl Heat load
hp CHP heat power
i Electrical buses
j Electrical buses
l Loads
s Scenarios
sp External suppliers
v Electric vehicles parking lot (EV)
w Transfer buses

Parameters

� Failure rate
� Line resistivity at operating temperature (� � mm2/km)
BNF Benefit from the solution applied (AC)
CostEENS Expected energy not supplied cost (AC)
CostGCP Generation curtailment power cost (AC)
CostINV Initial investment in new lines (AC)
CostM Maintenance cost (AC)
CostPL Power losses cost (AC)
dr Discount rate
EENS Expected energy not supplied
EVPI Expected value of perfect information
FOR Forced outage rate
FOR(i,j,c) Forced outage rate between bus i and bus j according to the chosen

line option c
h Number of service hours for the electric conduits per year
I Current that flow in the line (A)
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Investment Total investment for the planning project (AC)
Jeco Economic current density (A/mm2)
k0 and k00 Constants that depend on the type of service (one or three phases)
L Line length (km)
n Number of active conductors
NB Number of buses
nDG Number of DG units
NL Number of distribution network lines
NO Number of line options
NPV Net present value
NS Number of scenarios
NW Number of transfer buses
p Energy price (AC/kWh)
PChargeLimit(e) Maximum charge rate of energy storage systems (kW)
PDGMaxLimit(g) Maximum active power of DG (kW)
PDGMinLimit(g) Minimum active power of DG (kW)
PDGScenario(g,s) Forecasted generation of DG (kW)
PDischargeLimit(e) Maximum discharge rate of energy storage systems (kW)
Pmáx

(i,j,c) Maximum admissible line flow between bus i and bus j according
to the chosen line option c

PSMaxLimit Maximum active power of suppliers (kW)
PSMinLimit Minimum active power of suppliers (kW)
PSupplier(sp) Active power of external suppliers
q Constant value dependent of the line/cable type
r Repair time (h)
R Line resistance (�/km)
S Load (kVA)
SAIDImax Maximum Limit to System Average Interruption Duration Index

Limit (h/consumer � year)
SAIFImax Maximum Limit to System Average Interruption Frequency Index

(interruption/consumer � year)
Scc Line section (mm2)
sfv Simultaneity factor
t Project lifetime (years)
T Number of total hours of a year
Te Time equivalent (h)
U Unavailability

Variables

aESS(e,s) Discharging status of the energy storage systems
D(g) Fictitious load of each distributed generator g
d(i,j,c) Fictitious flow associated with branch i,j for c line option
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hb(h,s) Heat power for boiler unit h in scenario s
hchp(hp,s) Heat power for CHP unit hp in scenario s
hload(hl,s) Heat demand for hl heat load in scenario s
P(i,j,c) Power flow between bus i and bus j according to the chosen line

option c
PC1 Expected planning cost for the first stage
PC2 Expected planning cost for the second stage
PCharge(e,s) Active power charging of energy storage systems (kW)
PDischarge(e,s) Active power discharge of energy storage systems (kW)
PCharge(v,s) Active power charging of EV parking lot (kW)
PGCP(g,s) Generation curtailment power of non-dispatchable DG units (kW)
PLoad(l,s) Active power load for l load scenario s
SAIDI System Average Interruption Duration Index (h/consumer � year)
SAIFI System Average Interruption Frequency Index (interruption/con-

sumer � year)
VSS Value of stochastic solution
xESS(e,s) Charging status of the energy storage systems
z(w) Binary variable related to the transfer buses

Sets

˝B Set of buses
˝BS Set of substation buses
˝BT Set of transfer buses
˝DG Set of DG
˝d

DG Set of dispatchable DG
˝nd

DG Set of non-dispatchable DG
˝E Set of ESS
˝b

E Set of ESS bus
˝heatboiler Set of heat boiler
˝heatload Set of heat load
˝hp Set of CHP heat power
˝L Set of loads
˝b

L Set of load buses
˝ l Set of lines
˝SP Set of external suppliers
˝b

SP Set of external supplier buses
˝V Set of EV
˝b

V Set of EV buses
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