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Preface

Along with rapid population growth, the demand for and consumption of energy has
also grown exponentially. Therefore, energy efficiency, greenhouse gas emissions,
and environmental concerns are crucial concerns around the world. Meanwhile,
different renewable energy sources, including solar, wind, hydro, geothermal, and
tidal energy are broadly employed to provide a clean and sustainable source of
electricity generation. Such energy can then be applied to air and water heating
and cooling, transportation infrastructure and development, rural, off-grid energy
services, and so on. The aim of the book is to robustly design and investigate a
natural gas and electricity coupled energy hub as a super node that is meant to
receive various energy carries, including renewable energy sources, and organize
demand and supply side management with different energy storage technologies.

This book also focuses on operational issues when combining renewable energy,
natural gas, and electricity into energy hubs, with an emphasis on energetic, eco-
nomic, and environmental viewpoints. Moreover, the variable nature of renewable
energy sources, together with traditional load and generation forecasting, introduces
increased uncertainty in the operation and planning of combined renewable and
natural gas electrical grids. Therefore, risk-constrained stochastic programming
and robust optimization techniques are used to investigate the robustness and
opportunistic aspects of optimal scheduling problems to make the risk-averse or
risk-taker decisions, respectively.

The main purpose of Chap. 1 is to introduce the concept of smart energy hub. In
this regard, an introduction to the concept of the smart grid, its definitions, features,
and main challenges are presented. Some advantages, goals, and impacts of using
energy storages in energy hub are discussed in Chap. 2.

Chapter 3 examines different technologies, structures, and the technical and
operational constraints of compressed air energy storage. In addition, the impact
of advanced adiabatic compressed air energy storages on day-ahead economic
emission dispatch of coal and gas-fired generators is investigated using a mixed-
integer, nonlinear program that utilized the GAMS software package and SBB tool.
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vi Preface

In Chap. 4, optimal scheduling of a residential hub energy system based on the
consumption and presence of solar thermal energy is presented. One model of
a residential hub energy system includes equipment such as combined heat and
power systems, a boiler, battery storage system, solar thermal storage, and smart
appliances. In Chap. 5, short-term optimal scheduling of solar powered multi-chiller
plants is presented. In Chap. 6, day-ahead economic dispatches of three different
multi-chiller plants is addressed using a basic, open-source, nonlinear, mixed-
integer program, using the GAMS software package. Compared with competitive
heuristic algorithms, the use of the BONMIN solver in finding optimal loading
points of centrifugal chillers reduces their electricity requirement significantly.

In Chap. 7 research related to demand side management programs in residential,
commercial, agriculture, and industrial energy hubs is reviewed and discussed. In
Chap. 8, the applicability of compressed air energy storage systems in handling
the fluctuating energy generation of local renewable energy units in the hub energy
system is examined. Chapter 9 investigates the capability of stochastic frameworks
when dealing with energy resources scheduling problems in renewable energy hubs.
The authors of Chap. 10 consider a renewable-based energy hub, which includes
wind turbines, photovoltaic cells, energy storage, and boilers, to name a few. The
volatile nature of renewable energy resources create new and unique problems
when addressing the demand for energy. In this regard, stochastic short-term
scheduling is optimal, considering the uncertainty in the supply of renewable energy
generation. Chapter 11 presents grid assistance opportunities through charging
and discharging of electric vehicles, and explores the technical and operational
challenges in integrating this movable and changeable energy storage within the
power system. The chapter discusses the development of charging load curves of
electric vehicles based on mobility attributes and charging protocols. Chapter 12
optimizes the operation of a residential energy hub, which includes a combined
heat and power unit, a boiler, a plug-in hybrid electric vehicle, photovoltaic panels,
and a heat storage system. This is meant to provide adequate electricity and heat
to a home. A two-stage stochastic model for a long-term distribution network
model is proposed in Chap. 13. This is meant to solve the challenging issue
of the uncertainty associated with renewable generation and the integration of
electric vehicles based on the network’s technical constraints. In Chap. 14, a joint
energy storage and distribution system is proposed, taking into consideration voltage
stability constraints. An introduction to the concept of optimal design of distributed
energy systems is presented in Chap. 15. Chapter 16 endeavors to present a general
modeling and optimization scheme for coupled power flow investigation in various
energy networks.
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Preface vii

In Chap. 17, the importance of different applicable pathways of sustainable
power to gas is explained. Finally, Chap. 18 investigates the performance of hub
energy systems from both economic and environmental viewpoints in the presence
of hydrogen energy storage systems and demand response programs.

Tabriz, Iran Behnam Mohammadi-Ivatloo
Farkhondeh Jabari
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Chapter 1
An Introduction to Smart Energy
Systems and Definition of Smart
Energy Hubs

Mohammad Mohammadi, Younes Noorollahi,
and Behnam Mohammadi-Ivatloo

1.1 Introduction

Energy has always been one of the most basic human needs and the main driver
of the development of human societies. With the improvement of technology
and the mechanization of the lifestyle, this need is increasing day by day [1].
Therefore, providing clean, affordable, safe, and sustainable energy is one of the
main challenges of different countries. In the last century, the main source of
energy was fossil fuel resources [2]. The fossil fuels are usually converted to the
electricity at large thermal power plants, and this electricity is transmitted over long
distances to reach the consumers. In these systems, primary energy is converted
to electricity at a very low efficiency and sent to the consumer with high losses
in transmission and distribution systems. The complexity of the transmission and
distribution systems results in high system costs and making it difficult to protect
and control these systems [3].

In these systems, intelligent equipment can only be found in the control,
monitoring, and protection sectors that are locally installed in limited parts of
the system. But today, with the development of the concept of the smart grid,
power systems have become more intelligent than ever, and move towards systems
that have the ability to decide and interact with adjacent systems [4]. The use of
intelligent technologies, automated monitoring, and data collection and processing
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2 M. Mohammadi et al.

systems in the smart grid leads to optimization of the power grid function and
intelligent management of its various equipment. As a result, the development of
the concept of smart grid leads to improved energy efficiency, reducing the need to
develop energy production and transmission infrastructure and optimize the size
of equipment. On the other hand, with intelligent predictions and controls, the
integration of RES is facilitated and the process of development of DG is accelerated
in the demand side [5].

The development of the concept of distributed generation and, more generally,
the concept of distributed energy resources (DER) in recent years has led to main
changes in the structure of the power system and energy markets. The development
of the concept of DER (in particular demand-side resources) has led to the
emergence of new energy generators in the power system and increased consumers’
participation in grid management in the form of programs such as demand-side
management (DSM). DSM programs incorporate multiple concepts such as demand
response (DR), energy efficiency, load growth, and energy conservation. The main
purpose of these programs is to coordinate the pattern of customer consumption with
the needs and conditions of the network. The participating of the consumers in these
programs can reduce their consumption in peak hours (high energy price periods)
or shift a portion of consumption to off-peak hours (low energy price periods), and
in addition to reducing their costs, can lead to a reduction in peak demand in the
network and a smoother consumption curve. As a result, consumers’ participation
in DSM programs, in addition to better management of consumption and reduction
of energy bills, can improve network stability and reliability [6].

However, the use of DER, in particular, the integration of RES and the use of
energy storage systems (ESS) along with multi-generation systems and successful
participation in DSM programs, requires an integrated management framework. The
concept of energy hub developed in recent years for the modeling and management
of multi-energy systems (MES) is a promising method for modeling future energy
systems [7]. Energy hub is defined as a model in which the production, conversion,
storage, and consumption of various energy carriers are carried out [8]. The hub
energy is a conceptual model for controlling and managing multi-carrier and
integrated energy systems [9]. So far, various studies have been carried out on this
concept, and it has been shown that the integration of different energy carriers in
the form of energy hub models leads to improved system performance compared
to controlling and scheduling systems with an energy carrier [9]. Energy hub can
be used to model various systems in different sizes such as residential houses,
commercial buildings, industrial units, greenhouses, office and services buildings,
which indicates that this model is a complete and comprehensive model [10].
However, the development of smart grid concept into MES and management of these
systems in an intelligent framework is an issue that has not been addressed so far.

This chapter focuses on the integration of different energy systems in the form
of macro energy hubs, and the advantages and challenges of these systems. The
necessity of developing smart grid concept into energy hub models is discussed.
Finally, with the definition of the concept of SEH, the potential of this model is
discussed for the modeling of SES in the future.
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1.2 Integrated Management of Energy Hubs

The energy hub is an umbrella concept that can cover all energy technologies and
systems. So various energy systems with different sizes can be modeled with this
concept. However, in terms of size, energy hubs can be classified into two classes
of micro energy hubs and macro energy hubs. Micro hubs can be divided into
four general categories of residential, commercial, industrial, and agricultural micro
hubs. Clearly, in each section, the energy hub, for example, can be a residential
building, a commercial building, an industrial unit, a greenhouse, etc. Integrating
these micro energy hubs at a higher level will lead to the creation of a network of
interconnected energy hubs called macro energy hubs. The macro hub is a collection
of energy hubs that are managed and controlled in a coordinated way. Hence, large-
scale energy systems such as a residential complex, an industrial area, or even a
whole city can be modeled with the concept of macro energy hub.

Integrating and coordinate management of different consumption sectors in the
form of a macro energy hub can bring many benefits for each of these sectors
and for the entire system. For example, the pattern of energy consumption in
residential and commercial buildings is usually different. The peak demand in
commercial buildings occurs on a daily basis, and peak demand for residential
customers usually relates to the early hours of the night. The relationship between
these two sectors is usually established through electricity and gas networks. By
integration and coordinated control of these two sectors, resources in one sector
can be used to provide the power deficit in another sector. In the industrial sector,
a significant amount of low-grade heat is produced, which can be used to heat the
adjacent buildings by retrieving this waste heat. In the agricultural sector, there are
usually many waste products that can be used to supply CHP-based district heating
systems or to provide fuel for the transportation sector. Integrated management
of these sectors together increases productivity and can reduce waste, fossil fuel
consumption, environmental pollution, emissions and overall system costs.

The development of multi-generation systems has increased the opportunities to
integrate various energy infrastructures such as electricity, natural gas, and district
heating networks. The simplest example of this is the CHP system, where the gas
purchased from the gas network can be converted to electricity and heat. These
produced energies, after supplying the system demand, can be sold to electricity
and district heating networks. The integration of these various energy infrastructures
can be modeled in different ways, but one of the best models presented so far
is the energy hub model. Modeling these systems in the form of macro energy
hubs can provide optimization opportunities for the entire system. In fact, the
energy hub is modeled as a large node, which connects the various energy systems
and technologies. In this model, the priorities of each of the sub-systems as well
as the constraints of the entire system can be included in the model. In every
energy system, consumer preference is usually the reduction of bills and the energy
costs while utilities, in addition to minimization of costs and increasing profits,
should consider things like power quality, peak shaving, and consumption curve
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Fig. 1.1 Schematic representation of a centralized macro energy hub management system

shape. Therefore, the optimal management problem in a macro energy hub is a
two-layer hierarchy problem that takes into account the priorities of all system
agents simultaneously. Therefore, in macro energy hub, in addition to solving
an optimization problem at the level of micro energy hubs, the macro energy
hub optimization should also be considered. At the level of micro energy hubs
optimization, consumers’ preferences and related constraints are considered. At
the macro hub level, an optimal power flow (OPF) problem or, more generally, an
optimal energy flow (OEF) problem is solved. Managing and controlling a macro
hub is usually done in two ways: centralized or decentralized.

In a centralized mode, an optimization problem is solved in order to optimize the
performance of the macro energy hub and the optimal conditions for the operation
of each of the components are determined. In this case, a central management unit
is responsible for collecting and processing data and sending control signals. All
decisions related to the optimal performance of the macro energy hub are taken by
this unit. A demonstration of a centralized controlled macro energy hub is shown in
Fig. 1.1.

The first step towards using the energy hub model in the integrated modeling
of various energy infrastructures such as power grids, natural gas, and district
heating networks was taken in [11]. The authors formulated and solved the OEF
problem for a macro energy hub. The same authors presented the modeling of ESS
in the previous model in [12] and its linearized problem in [13]. A centralized
management model for a network of interconnected energy hubs using the model
predictive control (MPC) method has been introduced in [14] by taking into account
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Fig. 1.2 Schematic representation of the distributed macro energy hub management system

ESS dynamics. Similar authors in [15] added the power exchange capabilities with
the network to the previous model and provided a centralized controller for a
network of residential energy hubs. The authors in [16] have presented a model
for integrated management of interconnected energy hubs, in which the effects of
considering the threshold value for subscribers’ charges (defined by subscribers
themselves) on the results of the optimal management problem have been evaluated.
Their study results showed that entering the preferences defined by subscribers
in the optimization problem led to an increase in their willingness to participate
in the optimal management of the macro energy hub and to achieve a smoother
consumption curve throughout the system.

Along with all the benefits of a centralized control mode, this model cannot be
implemented on large-scale systems and their use is limited to small-scale systems.
With the increase of components and energy carriers, the number of variables in
the optimization problem as well as the data that needs to be processed increases,
which leads to an increase in the volume, cost, and time of the calculations. In some
cases, it even becomes difficult to reach the optimal solution at the reasonable time
and the possibility of online control is lost. On the other hand, in some cases, there
is no possibility to get the permission of all the agents in the system to access their
information and centralized control of their equipment, and some agents do not have
active participation in centralized control programs. In such cases, decentralized
or distributed control can be used, whose schematic representation is shown
in Fig. 1.2.

In this case, each control area is controlled by an independent controller, but the
control decisions of each area and its mode of operation are exchanged between the
other areas. Solving the optimization problem in distributed mode is such that the
problem of optimization in a centralized state is divided into several sub-issues and
solved. This mode brings a lot of benefits compared to the centralized mode. Solving
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the optimization problem in each sub-area and in parallel leads to less computing
time and does not require a large-scale central processor. This difference in the time
and load of computing on large-scale systems becomes much more apparent and the
benefits of the distributed mode in these systems are palpable. On the other hand,
reliability in distributed mode is more than the centralized mode, since disturbing a
controller in a control area only affects the performance of the same area and has a
much less impact on the performance of adjacent systems, while in the centralized
schema, the existence of a problem in the process of data collection and processing
can affect the performance of the entire system.

A model for distributed management of a macro energy hub has been presented in
[17] using an iterative method and the OEF problem is solved for this system. Same
authors in [18] have used MPC method for modeling of the optimal performance
of interconnected energy hubs taking into account the ESS dynamics. The method
presented in this work can be used to optimize the management of macro energy
hubs in a centralized and distributed mode.

Integrating different energy infrastructure and integrated management of them
in the form of energy hub models can have many technical, economic, and
environmental benefits. However, in such a system, various energy technologies
that have different energy carriers are interacting, and there are many connections
between them. This leads to the need to process and exchange large volumes of
information in order to solve the optimal management problem in such a system.
In such a framework, the use of concepts similar to the smart grid is essential
for collecting data and sending control signals and intelligent interactions between
system controllers and agents. In this case, due to the presence of various energy
carriers, a concept called smart energy systems is introduced, that is a generalized
concept of the smart grid. The development of the concept of SES can have many
benefits, including increasing efficiency, reducing energy consumption, reducing
emissions, increasing reliability, real-time control, facilitating the integration of
RES and reducing system costs. The concept of SES and the advantages of their
modeling in the content of SEH models are discussed in the next section.

1.3 Smart Grid

1.3.1 Smart Grid Concept

The existence of a hierarchical structure in power systems makes it possible to
distribute the power generated by centralized power plants over long distances in
transmission systems and extensive distribution systems among consumers. In such
a system, intelligent technologies are used only in limited parts of the system and for
control purposes and special equipment protection. But today, with the development
of ICT and the need for intelligent performance of the various components of the
system the development of concepts such as the smart grid for the automatic and
intelligent operation of the power grid is inevitable. The word “smart grid” has been
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used repeatedly in literature, but so far, no precise definition has been provided. The
smart grid is a modern electricity grid, which utilizes ICT and energy management
structures to increase reliability and improve efficiency [19]. Also, the smart grid can
be considered as a system that, in addition to the functions of the power system, such
as distribution, transmission, and generation of power, provides storage, decision-
making, and optimal interaction possibilities [5]. In another definition, it can be said
that the smart grid is seeking to use digital technology for supply and consumption
of electric power [20]. Other definitions presented for the concept of the smart grid
can be found in [20]. In general, the smart grid can be defined as a network in
which communications, smart applications, automated monitoring, and information
management are used to improve, optimize, and reconstruct various power grid
infrastructures. By utilizing these technologies intelligently, a self-healing and
reliable system can be found in the form of the smart grid. Improving system
efficiency, reducing the cost of constructing and developing energy infrastructure,
optimizing the use of different equipment, facilitating the integration of RES are
some of the advantages of using the concept of the smart grid.

1.3.2 Smart Grid Components

The difference between the smart grid and a traditional power grid is in the presence
of intelligent technologies and monitoring and control systems, some of which are
as follows.

• ICT & smart meter (SM)
• Energy management system (EMS)
• DER
• Smart users
• DSM

1.3.2.1 ICT and SM

All activities carried out in the context of smart grid require the collection,
exchange, and processing of information. This possibility is provided through
the ICT [4] and SM [21] infrastructures. The existence of these systems will
allow the bidirectional information exchange between subscribers and the system
operator, which facilitates the collection of information, sending control signals
and, consequently, real-time management over the network. These technologies can
be utilized at various levels of the network from small smart home to production
and transmission infrastructures. The existence of these systems allows each of
the distributed components to manage their energy systems and optimize the
management of DG resources and ESS to improve the overall performance of the
network.
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1.3.2.2 EMS

In each energy system, its successful operation requires the coordination of all
components of the system and their successful operation at appropriate times and
conditions. The optimal performance of an energy system is influenced by various
factors, which can be used as input variables to the optimization problem. On
the other hand, deciding on the work points and the optimal operational plan for
all components of the system requires the analysis of system conditions and the
solution of a comprehensive optimization problem. Achieving these conditions
requires an EMS that can manage production, storage, and energy consumption.
ESM specifies the optimal operating plan for the system by collecting required data
such as forecasting demand, price and climate, and taking into account the technical
constraints of the system. This system in a residential building can be introduced as
a home energy management system (HEMS) in a commercial building as a building
energy management system (BEMS) and in an industrial unit as an industrial energy
management system (IEMS). These systems provide the optimal planning of each of
these units, and even at a higher level, an EMS can manage the optimal performance
of the combination of these units. ESM’s successful performance leads to optimized
system performance with the lowest cost and highest efficiency, active participation
in network management and DSM applications, and realizing the benefits of the
concept of the smart grid. On the other hand, the optimal management of an energy
system in the smart grid content and using ICT and SM technologies will facilitate
this process and better coordinate the energy system with other parts of the network.

1.3.2.3 DER

DER’s development in recent years has created many hopes for restructuring the
network and the presence of small and distributed energy producers. Small-scale
renewable resources, mainly associated with the ESS, are among the most important
distributed resources, that their application is increasing year by year. However,
the use of these resources for local energy supply or integration of them into
the main network requires appropriate forecasts of demand, market conditions,
weather conditions, as well as accurate information on system conditions and
the performance of other network components. This requires the gathering and
processing of a large amount of information that reveals the importance of smart grid
infrastructures. On the other hand, the presence of DER on the consumer side will
allow them to participate in network management and achieve smart grid goals. In
fact, increasing DER, especially RES, penetration, with an optimal management, in
addition to providing local consumers’ demand, reducing the share of fossil fuels in
the energy basket, reducing emissions, can lead to the provision of ancillary services
to the network and increase the sustainability and reliability of the network. On the
other hand, the existence of a smart grid framework can improve the process of
integration and management of RES. Further discussions can be found in [3].
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In addition to all DER, plug-in electrical vehicle (PEV) is one of the most
promising future technologies that, if optimally controlled, can be seen as a
potential storage device and DER. Due to the high consumption of fossil fuels in
the transport sector and related environmental issues, as well as the existence of
international instruments to reduce greenhouse gas emissions, it is essential to move
towards a clean transportation system. PEV has been widely considered as a zero-
emission transportation technology (especially when using RES to charge them),
and there are many research and development programs around the world on the
development of this technology. At present, the technology for the manufacture and
development of these vehicles is well-known among most automotive companies,
and many commercial vehicles have been produced in recent years. But the
main issue is the integration of them which can add new challenges to network
management. Uncontrolled charging of these vehicles can lead to new peaks in
the network and reliability problems. To solve this problem, methods such as
the development of charging algorithms, aggregation, and vehicle-to-grid (V2G)
capability have been proposed. The presence of the V2G capability provides the
possibility of bidirectional power exchange with the network, and PEV can be
used as a DER in network management. Generally, the optimal and programmed
use of PEV along with the use of features like V2G can bring many benefits,
including reducing consumers’ cost, facilitating the integration of RES, reducing
emission, using the benefits of participating in DSM programs, earning money by
owners or aggregators, and offering ancillary services to the network and enhancing
network stability. However, the exchange of information and coordination between
PEVs and the network operator requires the existence of intelligent infrastructures
for communication and information exchange that can be achieved within the
framework of the smart grid. As a result, it can be said that the optimal use of
PEV and its capabilities within the smart grid framework is achievable and the
optimal PEV function as a DER can lead to improved performance of the smart
grid [22].

1.3.2.4 DSM

Energy demand management involves a series of interconnected activities between
the electricity industry and its customers in order to reduce network’s peak demand
and energy consumption, as well as level the consumption curve of the network, in
order to provide more efficient and low-cost consumers’ demands. In the beginning,
consumption management was introduced in order to reduce peak consumption,
and in fact called load management (LM) programs and gradually consumers’ cost,
optimal allocation of resources, and environmental pollution reduction was raised
as other incentives from the DSM. By adopting these policies, the level of consumer
comfort will not be reduced, but by maintaining their level of comfort and well-
being, they will consume less energy or the pattern of consumption will be changed
and, in addition to reducing costs, it will also be possible to earn money.
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Fig. 1.3 Classification of demand-side management programs

DSM is a comprehensive concept that includes concepts such as load growth,
energy saving, energy efficiency, and DR programs. Load growth refers to programs
designed to increase load levels and generate more electricity in a state of emergency
and strategic. The goal of energy saving is to reduce energy consumption by mod-
ifying behavior patterns and customer consumption. Reducing energy consumption
in energy efficiency programs is done through specific systems on the demand side
and normally without affecting the services provided. By replacing the equipment
with energy efficient technologies, the same share of the service is provided to
subscribers with less energy consumption. DR refers to programs to change the
pattern of end-user consumption through response to a change in electricity prices
over time or incentive payments to encourage a reduction in power consumption
at times when the market price is high or the reliability of the system is at stake.
General classification of DSM programs can be viewed in Fig. 1.3.

DR can be considered as the most important component of DSM, and many
studies have been carried out on various methods of its implementation. In general,
the purpose of DR is to reduce power consumption during critical hours. Critical
hours are the hours when the energy price of the wholesale market is high or the
system’s reserve level is low due to accidental events such as outgoing transmission
lines and generators, or extreme temperature conditions. Two factors that can lead
to consumer responsiveness are the change in the retail price of electricity or
the implementation of an incentive program to satisfy customers to reduce their
consumption during critical hours.
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Therefore DR programs can be divided into two types based on incentive-
based (IB) and price-based (PB). IB programs include load management programs
and market-based programs such as demand-side biding and capacity market. PB
programs are based on dynamic pricing such as time of use (TOU) pricing, real-
time pricing (RTP), and critical peak pricing (CPP). The load management (LM)
program includes direct load control (DLC) and interruptible load control (ILC).
The DLC usually involves residential users and refers to programs that can control
a customer’s load, such as home appliances, through direct operator control. ILC
usually involves commercial and industrial subscribers, and it refers to programs
that can reduce peak demand by interrupting the load of subscribers at peak hours
with direct control of the system operator or subscribers’ actions upon request by
the system operator.

As a result, there are usually three ways for consumers to participate in DR
programs:

• DER
• Load shifting
• Load curtailment

The existence of DER, in particular, RES and ESS, leads to consumers’ demand-
supply in peak hours and reduction in consumer dependency on the network. The
transfer of consumer demand from peak hours to off-peak hours in the form of load
shifting program will reduce consumer’s costs and network’s peak demand. The
third ones reduce costs by reducing unnecessary loads during critical hours.

The benefits of subscriber presence in DR programs include incentive pay-
ments, reduced billing, while the improvement of system reliability and market
performance. On the other hand, the need for production will be reduced, which
will reduce production capacity and prevent expansion costs, investment in new
infrastructure and the cost of the spinning reserve will be reduced. On the other
hand, it reduces fuel consumption, especially fossil fuels, and thus reduces envi-
ronmental impacts. On the other hand, by increasing the demand side’s flexibility,
the availability of RES also increases. Achieving these goals and benefiting from
all the benefits mentioned for DSM, and in particular, DR requires an intelligent
framework for managing and controlling all system components and information
exchange that brings the role of the concept of the smart grid clearer. The presence
of DER along with DSM in the content of an intelligent energy management system
can bring more benefits and flexibility [6].

1.3.3 Smart Grid Challenges

As discussed, the concept of smart grid can provide many benefits, such as
increasing productivity, reducing fossil fuel consumption, improving network sus-
tainability, improving the quality of power, facilitating RES integration, online
control, and developing concepts such as DER, DSM, and smart users.
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However, overview of the different methods used in the literature to determine
the economic and environmental effects of SG in [20] shows that despite the
reduction of energy consumption and greenhouse gas in smart grids, investment in
this area on a massive scale is not economical yet. Because of the high infrastructure
investment costs the effects of cost reductions in SG are fewer than the effects of
energy efficiency and emissions reduction. Other challenges of SG can be noted as
follows [5]:

• Implementation obstacles, such as high investment costs and lack of knowledge
about its benefits

• Physical and cyber security
• Optimal and distributed control of DER
• Consumers’ tend to retain the information and their privacy
• The development of appropriate and comprehensive standards for data collection

and operations within the network
• Low penetration of key technologies such as PEV

1.4 Smart Energy Hub Concept

1.4.1 The Necessity of Using Smart Energy Hub

From a macro perspective, one of the main problems of the concept of the smart grid
is the focus of this concept only on the power grid. In this concept, only electricity is
considered as the energy carrier in the system, and this view cannot provide a proper
model of real energy systems. For example, supplying demand in a home is done
through energy carriers such as electricity, natural gas, and water. Consequently,
the comprehensiveness of concepts such as the smart home, which focuses only
on the control of electrical equipment, can be questionable. In the other sectors
of consumption, such as the commercial, industrial, and agricultural sectors, the
same conditions prevail and demand for these energy systems is supplied through
various energy carriers. Therefore, the smart grid cannot provide a good model
of future energy systems, and this concept needs to be developed and reviewed.
Since the integration of different energy systems in the presence of different energy
carriers is unavoidable due to the development of multi-generation technologies, a
comprehensive and realistic model of future energy systems requires the adoption
of an intelligent model for multi-energy systems.

The integration of various energy technologies into the 100% renewable energy
system as a model of the future smart energy system of Denmark in the future
is examined in [23]. In this study, solutions such as multi-generation systems,
ESS, biofuels in transport and the development of electric transport have been
investigated. The results of this study showed that the integration of infrastructures
such as power grids, heat, and transportation systems in a smart context could be
the best way to achieve 100% renewable energy systems in the future. On a larger
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scale, this issue has been examined for the whole of Europe in [24]. The results of
this study showed that with the optimum utilization of different energy carriers in
an intelligent framework, it is possible to achieve a 100% renewable energy system
in the form of smart energy systems.

By understanding the necessity of modeling different energy carriers, developing
multi-generation systems and integrating various energy infrastructures, the gen-
eralization of the concept of the smart grid to SES is the only way to achieve a
comprehensive model of sustainable energy systems in the future. Providing a real
and comprehensive model of these systems requires an appropriate framework for
integrated management of the entire system. Given the superiority of the energy hub
model in the modeling of MES, it would be possible to achieve real models of SES
in the future in the form of smart energy hubs.

1.4.2 Recent Research on Smart Energy Hub

In recent years, few but good research have been done to make energy hub models
smarter and moving towards SES modeling. The effects of the presence of RES in
an MES in both planning and operational optimization modes are evaluated in [25].
The results showed that optimal management of RES such as wind turbine and PV in
the content of the smart energy system could reduce fuel consumption, energy costs,
and emissions. The operational optimization of an SEH with the ability to exchange
power with the network in various schemes has been considered in [26], to minimize
the operating costs. The results of this study indicated that the optimum performance
of smart systems in the energy hub content will lead to better performance and
greater flexibility of these systems. An energy system consisting of CHP, electrical
storage, boilers, responsive loads, and PEV in the form of a smart residential energy
hub has been evaluated in [27]. In this study, considering the TOU program and
the participation of the energy hub in the DR program, the goal is to minimize
the operating costs of the system. The results showed that the optimal response to
the TOU pricing plan, reduction in energy costs, and correcting the shape of the
load curve are results of the presence of responsive loads in the smart residential
energy hub. Same authors in [28], with the development of the previous model,
have investigated the effects of the presence of PV on the optimal performance of
the smart home by attending various DR programs. The results of this study showed
that the presence of PV makes it possible to use more solar power in peak hours, and
peak demand and system costs are reduced. By considering the V2G capability for
PEV, it’s possible to achieve a greater reduction in system costs. It is also concluded
that the type of DR programs has a significant impact on the optimum performance
of this smart residential energy hub.

The energy supply of a residential building using CCHP, along with thermal
storage and PEV, has been investigated in the form of an SEH model in [29]. In
this paper, the effects of the presence of responsive loads and the ability of V2G on
the optimal performance of SEH have been investigated. The results showed that the
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existence of programmable loads would lead to the flexibility of SEH’s performance
in DR programs and improve its performance. Considering the capability of V2G for
PEV, as well as the presence of thermal storage, will reduce peak demand, improve
the consumption curve, facilitate PV integration, reduce dependency on main grid,
and reduce operating costs.

The authors in [30] provided a model for the optimal operation of a residential
SEH to maximize the benefit of participating in the DR program for this energy
hub. In SEH, all possible connections between the various components of the
energy hub are considered, in order to provide the possibility of supplying demand
from different paths and increase the reliability of the system. The results of
this study showed that successful participation in DR programs would improve
the consumption curve and increase the sales of power to the network, thereby
increasing the profit of the SEH. Also, the presence of different energy carriers
and increased degrees of freedom of supply through different technologies will
increase the reliability of demand-supply and improve the performance of SEH in
DR programs.

A comprehensive model of a residential SEH with the ability to interact with the
smart grid is formulated in [31]. SEH’s operational optimization based on the model
presented in this paper reduces energy costs, peak demand, and emission, taking into
account consumer comfort. An empirical survey of the proposed model at a smart
home in Ontario, Canada, resulted in a reduction of at least 20% in system costs and
more than 50% in peak demand.

The same authors in [32] went through a similar process for a commercial SEH
and provided a model for the optimal control of commercial units in the smart
grid content. Implementing the proposed model on the energy system of a product
storage unit has led to a reduction in energy costs and keeping system conditions on
predefined values that indicate the efficiency of the SEH model for the intelligent
operation of commercial energy systems.

These authors have presented a similar model in [33] for optimal performance
of a greenhouse as a model of agriculture SEH. Weather and electricity prices
forecasts, as well as user preferences, are included in the proposed model. The
mathematical simulation of this model demonstrates the proper function of it
in optimizing greenhouse’s operation to reduce energy costs. Numerical results
indicated a 40% reduction in energy costs in the warm months of the year and a
decrease of 13% for the cold months of the year, which proves the efficiency of the
proposed model for modeling the energy systems of a greenhouse in the content of
the SEH model.

The use of hydrogen infrastructure in the content of a smart macro energy
hub aimed at minimizing the cost of the system is examined in [34]. In this
study, an urban energy system, including residential and commercial micro hubs,
and a hydrogen fueling station are modeled in an intelligent framework. The
simulation results of this study showed that integrated management of SEH leads
to lower energy costs, increased efficiency of hydrogen infrastructure, and reduced
emissions.
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Modeling the implementation of the DR program in SEHS can be found in [35,
36]. These studies have shown that the concept of SEH can lead to more consumers’
encouragement to participate in DR programs and improving their performance. The
concept of energy hub offers freedom of action and more options for consumers.
In addition to the demand shifts, these consumers can participate in DR programs
by optimal resource planning and the choice between different energy carriers.
These include the possibility of participating in the management of the consumption
pattern of different energy carriers (and not just electricity). This new framework in
this article is called integrated demand response (IDR). The mathematical modeling
presented in these studies is applied to the network of six interconnected energy
hubs. Numerical results showed that during peak hours, part electricity demand
can shift to low energy cost hours, and the consumption curve would be smoother,
and the purchase of gas would increase (to generate electricity at CHP). In peak
demand hours, the purchase from the power grid will be reduced, while purchases
from the gas network will increase simultaneously, but overall, subscriber charges
will decrease. From the utilities point of view, electricity demand peak shaving also
leads to lower costs for infrastructure development and reserve. Also, due to more
gas sales, the gas company gains more profit. As a result, implementation of IDR can
reduce the cost of subscribers’ bills, increase utilities’ profits, and increase network
stability.

The subscriber’s satisfaction with DR programs was studied in [37] by defining
a parameter called dissatisfaction coefficient. In this study, a stochastic model
has been presented for integrated management of residential SHE. The simulation
results showed that optimizing the performance of residential hubs in an intelligent
environment leads to lower cost of energy and peak demand, and on the other hand,
increases consumers’ participation in IDR programs.

A concept called dependent demand in which different energy carriers can
be used to supply a demand has been introduced in [38] and its effect on the
performance of an SEH for participating in DR programs has been studied. In the
proposed approach, for the modeling of dependent demand, a row is added to the
matrix model, which represents the contribution of each of the energy carriers to
the supply of dependent demand. In this study, a scenario-based approach is used
to model the uncertainty caused by consumer decisions to select different energy
carriers. The results of this study showed that taking into account the dependent
demand and increasing the degree of freedom on its delivery methods would reduce
system costs. Also, increasing the share of loads controlled by subscribers will
actually increase the impact of uncertainty of consumer behavior on the optimal
system performance and increase operating costs of the energy hub.

The application of the concept of cloud computing [39] in SEH models can
be found in [40]. This concept has been developed to process large volumes of
information and can be very useful for improving the performance of the SEH,
especially the macro energy hubs. In this study, a model for optimal management
of a network of interconnected micro-SEHs is presented in the presence of DSM
programs, which uses cloud computing for data processing. In this study, the game
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theory has been used to formulate the SEH optimization problem and the results
showed that using cloud computing leads to reduced computing and processing
time.

A summary of the important research on integrated management of energy hubs
and SEHs is presented in Table 1.1. As you can be seen, in the micro hubs section,
residential sector has the largest number of studies and less attention has been paid
to commercial, industrial, and agricultural sectors. On the other hand, a lot of work
has been done in the field of integrated control of macro energy hubs, which is
due to the high potential of the energy hub in the modeling of large-scale MES.
Finally, it’s worth mentioning in Table 1.1 that the research that has been done in
recent years has led to the use of intelligent frameworks for their models, which
reflects the movement of energy hub models towards smart models and accessing to
comprehensive models of SEH.

1.4.3 Smart Energy Hub Definition

From the discussion, it can be concluded that focusing only on an energy carrier
to provide intelligent models of future energy systems cannot provide a proper
perspective of future sustainable energy systems. Models of energy systems in the
future need to consider different energy carriers and integration and interaction of
new technologies in a smart environment. Participation in the DR program in the
form of an SEH leads to improved consumer performance. Because in SEH there
are various energy technologies that use different energy carriers to convert and store
energy. This makes it possible to increase the freedom of operation and flexibility
of the SEH in DR programs. The subscribers can participate in DR programs
only by optimizing the use of different technologies and carriers, and there is no
change in the level of service received and their level of comfort. The presence of
responsive loads and the addition of scheduling capabilities can increase the benefits
of participation in DR programs. This will increase the level of satisfaction and
willingness of subscribers to participate in DR programs and network management.

Therefore, the introduction to intelligent sustainable systems in the future is to
understand the need for integrated management of different energy systems in the
presence of different energy carriers in the form of models such as SEH. Therefore,
SEH can be defined as a multi-energy system that provides integrated management
of all components, as well as optimal consumption planning, even in the presence of
uncertainties, to provide a self-healing and thinker energy system. In such a system,
along with a centralized control, each of the system’s agents must be able to decide
and optimize their tasks.
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Table 1.1 Classification of research on integrated management and smart energy hub (EH)

References Description Publish year Sector

[31] Optimal operation of smart residential EHs 2012 Residential EH
[29] Optimal energy management of a smart

residential EH
2015 Residential EH

[38] Internal and external dependency model for
assessing the stochastic behavior of the
demand side

2015 Residential EH

[28] Optimal energy management of a smart
residential EH

2015 Residential EH

[37] Optimal energy management of a smart
residential EH considering customer’s
dissatisfaction level

2016 Residential EH

[32] Optimal operation of smart commercial EHs 2015 Commercial EH
[41] Optimal operation of smart industrial EHs 2015 Industrial EH
[33] Optimal operation of smart agricultural EHs 2015 Agricultural EH
[11] Optimal power flow (OPF) of a network of

EHs
2005 Macro EH

[17] Decomposed OPF of a network of EHs 2008 Macro EH
[14] Central controller for a network of EHs 2009 Macro EH
[15] OPF of a network of EHs in the presence of

RES and grid exchange
2010 Macro EH

[18] Distributed controller for a network of EHs 2010 Macro EH
[42] EH modeling for interconnected power

exchange
2011 Macro EH

[43] Decomposed OPF of a network of EHs 2014 Macro EH
[44] Optimal power dispatch of EH under

uncertainty
2014 Macro EH

[45] Optimal optimization of a network of EHs 2015 Macro EH
[34] Hydrogen economy evaluation in a network of

EHs
2015 Macro EH

[46] Planning a neighborhood EH 2015 Macro EH
[47] Optimal planning of a network of EHs under

uncertainty
2015 Macro EH

[48] OPF of a network of EHs by using a
generalized heuristic approach and addressing
variable efficiency models

2015 Macro EH

[36] Demand response in the context of smart EHs 2015 Macro EH
[40] Cloud computing in a network of smart EHs 2015 Macro EH
[49] Optimal operation of a network of EHs and its

power exchange with main grid as a procumer
2015 Macro EH

[50] Optimal planning of network of EHs 2015 Macro EH
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1.5 Conclusions

This chapter has provided an introduction to integrated management and integration
of different micro energy hubs in the form of macro energy hub. Also, a comprehen-
sive assessment of the smart energy systems and moving toward smart energy hubs
has been discussed.

At the level of residential, commercial, industrial, and agricultural micro energy
hubs, the integrated management of various energy carriers leads to the benefits of
the synergy of these carriers. From a macro perspective, the interaction of micro
energy hubs and their comprehensive management in the form of macro energy
hub will increase the technical, economic, and environmental benefits compared
to systems that are individually modeled and managed. Achieving these benefits
requires an integrated management framework for operational optimization at the
level of micro energy hubs and OEF at the macro energy hub level. Also organizing
concepts such as DSM, RES, and ESS also has a huge benefit to the system in the
content of an integrated management.

Consequently, considering the function of the concept of energy hub, energy
hub models can be considered as a promising tool for modeling, optimizing,
and optimal control of multi-energy systems at various operating levels. The
results of previous studies demonstrate the efficiency of the energy hub model to
provide comprehensive and realistic models of residential, commercial, industrial,
agricultural, and integrated energy systems. However, due to the existence of
multiple energy systems and technologies that utilize different energy carriers,
the multiplicity of connections between different components, energy hub models
require the collection, processing, and exchange of large amounts of information,
which reveals the importance of using SEH models.

As a result, future models of energy hub should be able to provide realistic
models of energy systems in different sectors of consumption that can be used to
solve the challenges of these sectors and improve their performance. Also, energy
hub models require the use of smart technologies to achieve comprehensive and
realistic models of future energy systems in the form of SEH models.
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Chapter 2
Impacts of Energy Storage
Technologies and Renewable Energy
Sources on Energy Hub Systems

Mohammad Mohammadi, Younes Noorollahi,
and Behnam Mohammadi-Ivatloo

2.1 Introduction

Large-scale thermal power plants were the main source of energy in recent decades.
Fossil fuels whose resources are ending are converted into other energies (mainly
electricity) with very low efficiency at these plants. Transmission and distribution
infrastructure over long distances are responsible for delivering this energy to
consumers. However, such a structure of energy supply faces many problems.
The problems caused by the fossil fuels consumption and greenhouse gases
emissions have led to issues such as global warming and increasing international
environmental concerns. Because of the scarcity of fossil fuels and the lack of access
to the resources of this fuel in many countries in the world, it is not reasonable to use
them at low-efficiency thermal power plants. On the other hand, problems such as
the huge costs and losses of transmission and distribution systems, the difficulty of
controlling and protecting these systems have made the current hierarchical systems
not a suitable option for future energy supply. From another perspective, different
energy systems were planned and managed independently [1]. But nowadays the
development of technologies such as efficient multi-generation system leads to
realizing the benefits of integrated energy infrastructure such as electricity, natural
gas, and district heating networks, and thus a rapid movement toward multi-energy
systems. In such systems, different energy carriers and systems interact together in
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a synergistic way. However, consideration of such a concept requires a suitable tool
for integrated management of the system components. Energy hub is an appropriate
framework for modeling and optimal scheduling of multi-energy systems [2].
Therefore, the scarcity of fossil fuels, environmental concerns, and problems of
centralized energy supply systems have led to an incentive to use energy efficient
systems and alternative energy systems [3].

Nowadays, with the advent of DER in particular RES, ESS, and multi-generation
systems, centralized large-scale power plants are now shifting to local and dis-
tributed energy sources. RES are one of the most commonly used distributed energy
sources that their popularity is increasing day by day. From another perspective,
renewable energies are much more stable than fossil fuels and have endless reserves.
Therefore, these energies have also a remarkable role in sustainable development.
This means that they have a much less destructive effect on the environment and
can, in addition to meeting the needs of the current generation, respond to the needs
of future generations and not be a threat to them. However, the main problem of
these resources is their fluctuating and unpredictable nature. The production of these
resources heavily depends on the location and time of their operation, which reduces
the reliability of the operation of renewable systems. One of the main solutions to
this problem is the use of energy storage systems. ESS, in addition to mitigating the
effects of the integration of RES, can be used to provide ancillary services to energy
networks and to participate effectively in demand response programs and to create
a balance between energy production and demand. An energy hub can interact with
different energy carriers so the energy hub can simultaneously utilize different RES
and ESS. Each of these elements has some effects on the performance of the hub.
The main objective of this chapter is to review and discuss the effects and the role
of RES and ESS on the optimal management of energy hubs. In this regard, the role
of renewable resources as inputs in energy hubs and energy storages to improve the
reliability and flexibility of the energy hub is studied by reviewing previous research
in this area. Finally, a model of energy hub is presented and the role of RES and
electrical and thermal storage systems is discussed using numerical results.

2.2 Impact of RES on the Performance of EHs

In the energy hub models different energy carriers can interact with each other, and
thus the energy hub can provide these different carriers through common sources
such as electricity and natural gas networks or from renewable sources. Therefore,
the range of inputs varies from fossil fuel sources to new and renewable technologies
[4]. In large-scale and centralized power plants, which are major energy suppliers
in many parts of the world, mostly fossil fuels are converted to low-efficiency
electricity (low energy conversion efficiency at thermal power plants), and this
electricity is transmitted to consumers with high losses, resulting in a large part
of the primary energy is wasted in this system. For example, in a conventional coal-
fired power plant, 72% of the primary energy is wasted and only 28% of it reaches
the final consumer [5].
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DER can be defined as systems for producing or storing energy at or near the
place of consumption. The development of these systems will reduce the waste of
primary energy, reduce transmission losses and thus reduce operating costs. DER
have the ability to use different technologies such as fuel cells, micro gas turbines,
waste heat recovery equipment, renewable technologies such as small wind turbines
and PV. These types of on-site energy generation resources can be one of the main
sources of energy for an energy hub. A model for optimal scheduling of a DER
including renewable resources and storage systems along with power distribution
networks with the goal of minimizing energy costs has been presented in [6].
Renewable resources can play an essential role in DER and their share is increasing
rapidly. The inefficiency of fossil-fuel-based energy systems has led to the inte-
gration of RES with these systems and the move towards 100% renewable energy
systems [7]. The use of RES, such as biomass, solar, fuel cells and the use of waste
heat in the different co-generation and poly-generation technologies have been stud-
ied in [8]. The role of different technologies to achieve a 100% renewable energy
system in Europe in 2050 has been discussed in [9]. The results showed that by using
existing technologies there is a possibility to achieve a 100% renewable scenario,
due to the possibility of optimal integration of different energy carriers. This
reveals the importance of multi-energy systems and energy hub models in optimal
utilization of energy resources, especially in the future renewable energy systems.

Therefore, different energy carriers used in energy hubs can be supplied only
through renewable sources, and the consumption of fossil fuels in the energy hub
can be zero. For example, electricity and heat of an energy hub can be generated
from solar and geothermal sources. In addition to generating electricity and heat, it is
also possible to produce water in a fuel cell, as one of the most promising renewable
technologies. Wind power can be used to supply electricity for various applications.
In this regard, the possibility of using PV along with CHP in energy hub models for
centralized cooling, heating, and electricity energy supply in a residential area has
been investigated in [5]. The results of this study have shown that the use of PV in
addition to supplying electricity demand in district level also provides the possibility
of selling excess electricity to the grid. The biomass is another renewable energy
that can be used in various forms in energy hubs and can provide different energy
carriers such as electricity, heat, and transport fuels. A complete model of the various
components of the biomass supply chain, including electricity, heating, and gas
infrastructures for modeling various biomass technologies has been offered in [10].
A comprehensive overview of the biomass energy conversion models for generating
electricity, heat, and fuel, along with a discussion of the challenges in this area, can
be found in [11]. An assessment has been conducted in [12] to reduce the share of
fossil fuels and increase the share of RES in the form of energy hub models for a
village in Switzerland. The study focuses on the development of renewable tech-
nologies such as PV, biomass-based district heating, and small hydroelectric power
plants to reduce costs and emissions. By developing this model, the authors in [13]
provided a model for planning a hybrid renewable energy supply system for the vil-
lage in the form of different structures of energy hubs. The results show that increas-
ing the share of RES in the current energy supply system in the framework of energy
hub models will lead to increased autonomy, peak shaving, and emission reductions.
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Renewable fuels such as hydrogen and ethanol can be obtained from biomass. In
this regard, a model for planning the conversion of biomass to hydrogen is presented
in [14] to minimize the annual cost of energy. A framework for modeling of the fuel
cell, electrolyzer, and hydrogen tanks as ESS in the content of smart grid and in
the presence of RES can be found in [15]. Different aspects of the use of hydrogen
as a clean fuel in future transportation systems are investigated in [16]. The results
show that hydrogen is a promising option for using in future energy systems and
emissions reduction. A review of various hydrogen production technologies from
renewable sources and related issues can be found in [17]. The use of hydrogen
infrastructures in the energy hub models has been investigated in [18]. In this study,
the optimal planning of hydrogen infrastructures along with infrastructure such as
electricity, gas, and district heating networks has been carried out in a network of
interconnected energy hubs. The results indicated a higher degree of freedom in
optimizing the system and improving the overall performance of the system with
the presence of hydrogen infrastructure. The effects of the presence of the hydrogen
distribution system in the form of a fueling station in the structure of an energy
hub have been investigated in [19]. The results showed that the optimal interaction
of hydrogen fuel supply system with commercial and residential energy hubs in a
smart urban energy system leads to a reduction in the cost and emission of the whole
system.

Despite the many benefits of using RES, so far little attention has been paid to
these energy sources as inputs in energy hub models [20]. So that most of the energy
hub models presented so far have used electricity and natural gas networks as their
main inputs. The most commonly used renewable sources are the wind and solar
power which can be found in 20% of the energy hub models [20]. However, the use
of other renewable energies, especially biomass and clean fuels such as hydrogen is
very limited. The energy hub models in the future should move towards modeling
sustainable energy systems. Using fossil-fuel-based energy distribution networks
with many problems in their structure cannot provide a comprehensive model of
future sustainable energy systems. There is a great potential for studying the effects
of renewable sources in the framework of energy hub models. Therefore, energy
hub models require the use of RES and the integration of these resources to meet
the demand for various renewable energy systems in the future.

2.3 Impact of ESS on the Performance of EHs

As discussed in the previous section, energy systems around the world need to move
towards renewable energy systems to achieve sustainable energy systems. However,
one of the main problems of RES is the intermittent nature and unpredictable power
generation. Consequently, in renewable systems, production control is not easy to
adapt to the pattern of consumption. One of the main solutions to this problem is the
use of ESS, which facilitates the integration of RES. ESS stores the energy when it
is not needed and provides energy when it is needed. Using ESS in energy systems
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will increase system efficiency, reduce operating system costs, reduce the size of
production and transmission systems, reduce fossil fuel consumption, and reduce
emissions [21]. However, in addition to facilitating the integration of RES, storage
systems can have various applications in the energy systems which are discussed in
the following sections.

2.3.1 The Ultimate Goal of Using ESS

ESS has various applications in energy systems due to its various types. Categories
of energy storage systems and various technologies are presented in Fig. 2.1.

Fig. 2.1 Classification of
EES technologies
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Determining the proper storage system for the energy system under planning
requires a complete understanding of different energy storage technologies. Various
indicators can influence the choice of ESS for an energy system. These include
capacity, initial cost, efficiency, lifetime, storage capacity, maturity, charging time,
response time, and storage loss. Comparison and investigation of various storage
technologies from the viewpoint of the above indicators can be found in [22, 23].
After recognizing the characteristics of different ESS, it is essential to determine its
ultimate goal and purpose of using ESS in the energy system. Different objectives
for using ESS in energy systems can be categorized into three categories [22]:

• Facilitating the integration of RES and improving system reliability [21].
• Improving system resilience and providing ancillary services.
• Increasing system flexibility and moving towards smart energy systems.

On the production side, ESS can be used to improve the pattern of RES
production and align it with demand behavior. ESS can be used to provide ancillary
services to the network and increase its stability. On the consumption side, ESS can
be used as DER to meet the needs of subscribers and facilitate their participation in
demand-side management (DSM) programs. ESS can be operated for increasing the
benefit of the storage owner (merchant storage) [24].

2.3.1.1 Facilitating the Integration of RES and Improving System
Reliability

The most known application of ESS can be considered as solving the problem of
integration of RES. The power generated by RES varies in different times and
places. On the other hand, the pattern of production of these resources may vary
with the pattern of consumption. For example, in a PV system used to provide power
to residential houses, peak power production occurs during midday hours, while
the peak demand of the residential consumers usually occurs in the early hours of
the night. Therefore, ESS can be used to store additional power and use it at peak
hours for the production and consumption balance. Using ESS in an isolated system
leads to increased reliability and facilitates the use of RES in these systems. In the
grid-connected mode, using ESS leads to tracking the pricing pattern in the energy
market and reducing system operating costs. Various ESS applications in power
systems with emphasis on RES integration have been discussed in [25] and it has
been proved that RES in the presence of ESS become controllable and dispensable
sources. Examining the appropriate ESSs for wind power integration, as well as
issues related to size determination and control systems, can be found in [23]. A
survey in Europe was conducted in [26] to achieve a 100% renewable energy system
focusing on the effects of storage systems. In this study, data from Germany were
used to study solar and wind resources. The results showed that only solar and wind
resources could supply 50% of Germany’s electricity demand, and with the addition
of ESS, this would increase by 80%.
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Another important argument is the increasing of the system reliability in the
presence of ESS. In power grid, the presence of spinning reserve can result in an
appropriate response if an imbalance between production and demand is generated.
Nevertheless, in off-grid systems, due to the limitations in the capacity of energy
production and conversion systems, there is always no way to benefit from such
a spinning reserve. In these types of systems, the ESS can be used to respond to
imbalances in the system and stabilizing the system [27]. An imbalance in energy
systems occurs for two reasons: the sudden drop in production or the sudden rise in
demand. In systems that are separate from the network as well as in systems where
the share of RES is high, this imbalance can have a huge impact on the reliability
of the system. In these systems, the use of ESS is very important for responding
to sudden changes in production or demand. Therefore, consideration of factors
such as response times and ESS ramp rates for such purposes should be carefully
checked.

In summary, the first goal of using ESS in energy systems is to improve the
performance of RES and facilitate integration in order to increase the reliability
of the system and create a balance between production and demand in renewable
energy systems and so renewable energy hubs.

2.3.1.2 Improving System Resilience and Providing Ancillary Services

In power grid and more generally in energy systems, ESS can be used to increase
system stability. In this case, ESS is used to reduce uncertainties, improve power
quality, provide ancillary services to the network, and improve its conditions. Some
of the applications of ESS for this purpose are frequency regulation, spinning
reserve, voltage regulation, network inertia, volatility reduction, black starter energy
supply, network synchronization, direct voltage supply in fault conditions, and
equipment capacity optimization. In addition, the use of ESS for demand shifting in
different periods of energy prices will lead to peak shaving and smoother demand
curve. This will reduce the cost of production and transmission of electricity for the
power grid, as well as improve its stability in peak hours. Further discussions in this
area can be found in [28].

2.3.1.3 Increasing System Flexibility and Moving Towards Smart Energy
Systems

The third objective for using ESS is to focus on their applications on demand side.
Installing ESS on the consumer side, in addition to providing consumer energy,
enables their active participation in DSM programs and benefits from the smart
grid advantages. The effects of the final consumer storage systems in the content
of the smart grid in the presence of RES and demand response (DR) programs
have been investigated in [29]. The results show that the presence of ESS leads to
better tracking of energy prices, increased productivity, and improved performance
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of other system equipment, especially distributed generation (DG) sources such as
CHP. Thus, it can be said that ESS in the smart grid content can lead to a balance
between production and energy consumption, smoothing the consumption curve,
benefiting from the advantages of DG especially RES, and to improve the overall
system performance and increasing its productivity.

One of the most promising smart technologies that have recently been considered
as potential storage system is plug-in electric vehicle (PEV). These vehicles
are mainly on the consumer side and have the ability for bi-directional power
transfer with the network. The advanced technology used in the batteries of these
vehicles has increased their charging and discharge rates. This has caused their
potential applications in providing network-side services such as the spinning
reserve, frequency regulation, and network stability. However, one vehicle alone
cannot provide such a service, because participation in services such as frequency
regulation requires high power capacity and fast dynamic response. So, as a rule, a
large number of these vehicles are controlled centrally by the aggregators, so that,
with the optimum control of the charge and discharge of these vehicles, in addition
to lowering the costs of subscribers, they can provide ancillary services to the
network [30]. In a study to optimize PEV charging program in the residential micro
grid, three different technologies used in the battery of PEVs were investigated in
presence of RES [31]. The results showed that optimal control of PEV leads to its
successful operation for peak shaving purposes.

In general, we can say that the presence of ESS on the demand side can provide
the possibility to benefit from the advantages of the smart grid. In some cases, such
as PEV, with the coordinated control of the storages of these vehicles, in addition
to meeting requests and reducing the cost of owners of these vehicles, they can be
used as an energy storage system for the entire system and for realizing the concept
of the smart grid.

2.3.2 Optimal Scheduling of ESS in EHs

When the main purpose of the ESS application was identified, then the optimal
planning is important in the next step. At this stage, the goal is to determine the
appropriate size for the storage system, which includes items such as power capacity
and should be selected based on various parameters. Various parameters such as
resource capacity, the pattern of consumption, climatic conditions, etc. affect the
proper selection of ESS. Various parameters such as resource capacity, the pattern
of consumption, climatic conditions, etc. affect the proper size selection of ESS. In
the hub energy models, the type of connection and ESS installation location must
also be carefully checked. In the energy hub, ESS can be installed at the place
of production or purchase from the network and/or consumption side, so that the
energy carrier can be stored on the input side, or after being transformed into a
qualified energy carrier be stored at the demand. The choice of this installation
location should be based on the desired indicators in the objective function and
make the maximum controllability for ESS.
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Storage systems can also be installed or controlled in a distributed or aggregated
manner [32]. In distributed mode, each storage system is individually connected to
the system and controlled, but in the aggregated scheme, a large group of storages
is managed by a central control system. Therefore, the choice of an appropriate
control strategy for ESS should also be considered. To design a charging and
discharging controller for ESS, there are a lot of things to consider, including
technical constraints, resource capacity or forecasting of production capacity in
RES resources, energy pricing and market conditions, patterns of consumption,
climatic conditions, and so on [33]. A model is presented in [34] to optimize the
performance of a hybrid renewable energy system with a combination of a wind
turbine, diesel and biomass generators in the presence of ESS. The presence of
diesel generator with low inertia and variations in wind power production leads to
voltage and frequency disturbances in this system. The results indicate that the use
of ESS along with a suitable controller in the short term is essential for maintaining
the system’s stability and power quality, and in the long term, it will improve system
performance and smooth the demand curve. Given the little work that has been done
on ESS control systems in the energy hub, and this fact the models presented so far
have used a simple charging strategies, there is a good potential for designing and
studying the effects of different control strategies on the optimal performance of the
energy hubs.

2.3.3 ESS Performance in EHs

This section reviews the recent research done on the application of ESS in multi-
energy systems and energy hubs. The authors in [35] examined the effects of the
thermal storage size on the performance of a multi-energy system for generating
electricity, heat, and cooling in the presence of RES. The results of this study
showed that the use of thermal storage leads to optimization of equipment capacity
(reducing the need for production of heat and reducing boiler capacity), reducing
primary energy consumption and increasing system efficiency. Feasibility study of
pit thermal storage, to capture the waste heat produced in a biomass poly-generation
system, with district heating and cooling networks in residential buildings is done in
[36]. The results indicate that pit storage is a suitable method for combination with
a biomass power plant which increases the annual efficiency of the system. The
effects of adding a pump storage system to the energy system of a touristic resort,
a system for supplying electricity, heat, and water, have been investigated in [37].
The results indicate that adding new storage system will reduce the discharge power
of the available battery, increase its lifetime, and reduce system’s costs. In another
study, the effects of ESS and RES in a combined cooling, heating and power (CCHP)
production system have been investigated in [38]. In this study, it has been shown
that increasing the contribution of RES to electricity production reduces the need
for heat generation by CCHP and directly affects the capacity of the thermal storage
and reduces its capacity. The results indicate that RES and ESS have interactions
on each other, even if they do not have a direct connection. Same authors have
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optimized the performance of a system for supplying electricity, heat, and cooling,
taking into account different storage combinations in [21]. The results of the study
of the effects of different storage systems have shown that the use of thermal storage
along with CHP leads to a decrease in the dependence of the system on the main
grid and an increase in power generated by CHP. Optimal design and operation of
advance compressed air energy storage and air source heat pumps in CCHP systems
is studied in [39]. Impact of battery energy storage system on operation of renewable
energy based CCHP system is studied in [40]. The effect of thermal storage on
a poly-generation system in the presence of a ground source heat pump has been
investigated in [41]. In the designed system, electricity demand is purchased directly
from the grid, the electricity produced by the CHP is consumed by the heat pump,
and the excess heat generated by the heat pump is stored in the thermal storage. This
combination allows the thermal storage to react to changes in the price of electricity
and acts as an electrical storage for the system, while the initial cost of a thermal
storage is much lower than an electrical storage. As a result, with this combination,
the use of thermal storage leads to a demand shift to off-peak hours, reduces the
capacity of the equipment, and reduces operating costs of the system.

Due to the various features and applications of ESS, an optimal combination of
storage systems can be used to achieve the desired result or to meet different goals
in a system. The idea of combining different storage systems with their application
can be found in [22]. In this work, a diagram of possible combinations of different
ESS is presented to minimize costs considering technical constraints. Considering
the complementary features of various storage systems and considering the design
and optimal management of hybrid storage systems have been done in [42].

In the energy hub models, as previously mentioned, ESS can be embedded in
different places and have different effects. The impact of thermal energy market
on operation of energy hub with heat and electrical storage is studied in [43].
The effects of various ESS such as electrical, gas, and heat storages from the
perspective of operating costs on the performance of the energy hub are investigated
in [44]. Also, the effect of different parameters such as the horizon of prediction
and ESS size on the optimal performance of the energy hub has been studied in
[45]. The results of this study showed that, in addition to the size of the ESS which
affects system costs, an increase in simulation horizons could also reduce system
costs, and even its impact can be more than increasing storage size. Therefore, in
modeling, there should be a balance between increasing the computational time due
to increased forecast horizons as well as the size of the storage system in order to
achieve optimal performance and cost of the system.

As discussed, the energy storage system is one of the main systems in the energy
hub, but unfortunately, so far, little research has been done on the effects of this
system and its optimal control in the framework of energy hub models. Optimal
planning and placement, as well as designing an appropriate control strategy, are
potential fields for studying ESS in energy hubs that require more research and
studies. Energy hub models provide the ability to use different ESSs and even
different combinations of them, which could be the subject of future research in
this area.
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2.4 Case Studies

In this section, the performance of RES and ESS in the optimal energy hub man-
agement problem is studied by modeling an energy hub and evaluating numerical
results. For this purpose, a complete model of the energy hub is used which has
different inputs, converters, storages, and outputs to meet different demands. A
schematic representation of the studied energy hub can be seen in Fig. 2.2. In this
model of the energy hub, the wind turbine is used as a source of renewable energy
production. This energy hub is powered by electricity and natural gas networks.
Transformer, converters, CHP, and boiler have been used to convert various energy
carriers. Electrical and thermal storages are also used as energy storage systems.
On demand side, given the usual demands for energy systems, electricity, heat, and
natural gas demands are considered for this energy hub model.

2.4.1 Energy Hub Modeling

In the energy hub, various objective functions can be considered. The proposed
objective function is formulated based on the cost of purchasing energy (electricity
and natural gas), electricity sales to the grid, the cost of charging and discharging
electrical and thermal storages, emission costs and reliability indicators. The objec-
tive function is formulated in a deterministic environment of wind speed, demand,
and hourly price of the electricity market. This objective function is optimized to
minimize operational costs in a one-day time horizon subject to different constraints.
The objective function of the optimal management problem of the proposed energy
hub can be considered as follows:

Fig. 2.2 Schematic representation of the proposed energy hub
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In this objective function, the first term is related to the value of power exchange
with the electricity network. The second term is the cost of providing electric power
from the wind turbine. The third term also refers to the cost of purchasing natural gas
from the network. Fourth and fifth terms are included in order to take into account
the operating costs of charging and discharging storages. Fifth and sixth terms are
related to the electrical and thermal energies not supplied cost. And finally, the last
term is related to environmental costs of different greenhouse gas emissions. In the
above relations, Eqs. (2.2)–(2.4) are related to power equilibrium, so that at each
step of the simulation demand is equal to the total energy generation.

Equations (2.5) and (2.6) are defined to take into account the technical and
contractual limitations of gas and electricity networks and assume a maximum
amount of the power exchanged with these networks. Hub components are installed
with limited production capacity and for considering this maximum capacity for the
transformer, CHP and boiler, Eqs. (2.7)–(2.9) are defined respectively. Equations
(2.10)–(2.15) are related to the operational constraints of electrical storage. Equation
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(2.10) refers to the state of charge of storage. The content of the storage at any time
is a function of the storage content in the previous step, as well as the amount of
charge, the amount of discharge, and the amount of storage loss in that time step.
According to (2.11), the amount of electrical storage losses is defined as a certain
percentage of its charge content. The allowed amount of storage content in each
step is specified by (2.12). Binary variables Ie

ch(t) and Ie
dis(t) are defined in such a

way that storage charging and discharging do not occur simultaneously. So at any
time step, only one of the binary variables can have a value of 1. This constraint is
applied through (2.15). Thermal storage constraints are defined in the same way in
(2.16)–(2.21).

2.4.2 Simulation Results

Five cases are considered to evaluate the effects and roles of RES and ESS in the
energy hub operation. The case study results are compared and analyzed based on
operational cost, emission, and reliability. These five cases are categorized in Table
2.1. In case 1, the energy hub also has CHP and boiler in addition to the possibility
of purchasing energy from electricity and gas networks. This case is considered
as the base case of the model. In case 2, the electrical storage (ES) is added to
the base case. Case 3 uses a heat storage (HS) instead of an electrical storage to
balance production and demand. However, the case 4 energy hub uses an on-site
wind turbine (WT) for clean electric power generation. Finally, a combination of
electrical and thermal storages alongside wind turbine and CHP is evaluated in case
5. The demand of energy hub for electricity, heat, and natural gas can be seen in Fig.
2.3. Also, hourly electricity prices and hourly wind speed are shown in Figs. 2.4 and
2.5, respectively.

The values of the input parameters and other assumptions for the optimal energy
hub management problem can be found in Table 2.2.

The proposed optimal management problem for energy hub is an MILP model
that has been solved in the GAMS software using the CPLEX solving algorithm.
Due to the linearity of the objective function and the convexity of the solution space,
the solutions obtained from the problem are the optimal global solutions. These
results are discussed for different cases in the following sections.

Table 2.1 Defined cases for
the energy hub optimal
operation

Cases Energy hub structure

Case 1 (base case) Base
Case 2 Base C ES
Case 3 Base C HS
Case 4 Base C WT
Case 5 Base C WT C HS C ES
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Fig. 2.3 The hourly electricity, heat, and natural gas demand

Fig. 2.4 The hourly electricity price
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Fig. 2.5 The hourly wind speed

2.4.2.1 Case 1

In this case, CHP is the main supplier of electrical and thermal demand, and
electricity and boiler networks are considered as a backup system for CHP. If
demand is not fully met by CHP, the remainder of the demand will be supplied from
the grid. In the case of heat demand, the boiler is also responsible for the thermal
power deficit. The numerical results of this case can be seen in Table 2.3.

As shown in the table above, CHP is responsible for supplying electrical and
thermal energy with maximum capacity during the day. This is due to lower gas
price than electricity and the possibility of supplying heat demand simultaneously.
In cases where the demand increases and the CHP is unable to meet this demand,
the fraction of this power is purchased from the main network, which leads to an
increase in operating costs of the system. The existence of CHP in the system allows
for the sale of excess electricity to the network. In the table above, the negative
values for power exchanged with the network are sales of this power to the network.
So, in the early hours of the day, the energy hub can earn money by selling excess
electricity to the network. However, it is observed that part of the electrical demand
does not come at peak times, which reduces the reliability of the energy hub. The
schematic representation of the above concepts can be seen in Fig. 2.6. This figure
shows how to supply the energy demand by the energy hub.

In the case of heat demand, 252 kW of heat demand is produced by CHP and the
rest of the demand is provided by burning gas in the boiler. In this case, the current
structure of energy hub in the heat demand peak hours (hours 10 and 19) is not able
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Table 2.2 Energy hub input data and parameters

Parameter Unit Value Parameter Unit Value

˛loss
e – 0.02 EFCHPCO2

em kg/kWh 0.412
˛loss

h – 0.02 EFCHPSO2
em kg/kWh 0.008

˛min
e – 0.1 EFCHPNO2

em kg/kWh 0.000112
˛max

e – 0.9 EFBCO2
em kg/kWh 0.617

˛min
h – 0.1 EFBSO2

em kg/kWh 0.011
˛max

h – 0.9 EFBNO2
em kg/kWh 0.000284

�ch
e – 0.9 eELFmax kg/kWh 0.05

�dis
e – 0.9 EFNCO2

em kg/kWh 0.424
�ch

h – 0.9 EFNSO2
em kg/kWh 0.00226

�dis
h – 0.9 EFNNO2

em kg/kWh 0.000925
�C – 0.9 �ENS

e ₡/kWh 20
�T – 0.9 �ENS

h ₡/kWh 20
�eCHP – 0.4 �S

e ₡/kWh 2
�hCHP – 0.35 �W

e ₡/kWh 0
�B – 0.85 �CO2

em ₡/kg 0.014
ACHP – 0.96 �SO2

em ₡/kg 0.99
AN

e – 0.99 �NO2
em ₡/kg 4.2

AW – 0.96 �N
g ₡/kWh 1.838

PN max
e kW 600 �S

h ₡/kWh 2
PN max

g kW 4000 PCHP kW 300

PT kW 600 PSC
e kW 300

PB kW 1800 PSC
h kW 300

to provide all the demand and part of this heat demand is not provided. In this case,
the energy hub faces an energy not supplied penalty and increases operating costs.
The total operational cost of the energy hub, in this case, is 190,734.8 Euro cents.

2.4.2.2 Case 2

In this case, an electrical storage is added to the system so that during the excess
electricity production period, some of this additional power is stored and used
at times required to meet the demand. The numerical results of this case are
summarized in Table 2.4. In this case, the electrical storage is charged at times when
the energy price is low and it provides part of the electrical demand at peak hours.
How to exchange electrical energy in the energy hub in the presence of an electrical
storage can be seen in Fig. 2.7.

The existence of the electrical storage leads to a reduction in the electrical energy
sold to the network from 519.3 kWh in the base case to 417.7 kWh in this case.
The reason for this can be attributed to spending some of that energy on charging
electrical storage at low-cost energy hours. So that even the charging of the storage
at 4:00 am leads to the purchase of energy from the network. However, the purchase
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Table 2.3 Optimal operational plan for energy hub in the first case

t PN
e PCHP

e PENS
e PN

g PNB
g PNCHP

g Pgd PB
h PCHP

h PENS
h

1 �100.9 288 0 1656.3 483.7 750 422.7 411.1 252 0
2 �47.9 288 0 1632 455.6 750 426.4 387.3 252 0
3 �87 288 0 1636.1 458.4 750 427.7 389.6 252 0
4 �135 288 0 1728.8 542.4 750 436.4 461 252 0
5 �120.9 288 0 2214.5 1007.1 750 457.4 856 252 0
6 �81.4 288 0 2922.6 1660.5 750 512 1411.5 252 0
7 �18.2 288 0 2586.3 1267.8 750 568.5 1077.6 252 0
8 81.6 288 0 2426.9 1009.7 750 667.2 858.2 252 0
9 124.7 288 0 2444.8 1024.2 750 670.6 870.6 252 0
10 227.1 288 0 3519 2117.6 750 651.3 1800 252 25.5
11 265.8 288 0 2046.1 658.7 750 637.4 559.9 252 0
12 309.3 288 0 2702.4 1320.2 750 632.1 1122.2 252 0
13 319.2 288 0 2126.9 759.9 750 617 645.9 252 0
14 284 288 0 1952.6 654.3 750 548.3 556.2 252 0
15 316.9 288 0 1914 610.5 750 553.6 518.9 252 0
16 335.4 288 0 2213.5 877.8 750 585.8 746.1 252 0
17 453 288 0 2000.4 710.3 750 540.1 603.8 252 0
18 552.4 288 0 2210.9 928.4 750 532.5 789.1 252 0
19 600 288 9.9 3397.4 2117.6 750 529.7 1800 252 120.4
20 600 288 33.1 2456.2 1189.3 750 516.9 1010.9 252 0
21 600 288 28.3 2291.2 1021.2 750 520 868 252 0
22 572.9 288 0 2016.1 755.5 750 510.7 642.2 252 0
23 471.1 288 0 2047.4 790 750 507.4 671.5 252 0
24 264.6 288 0 1794.6 555.7 750 489 472.3 252 0
P

t 5786.7 6912 71.3 53,937 22,976.4 18,000 12,960.7 19,529.9 6048 145.9

of energy occurs in the hours when energy price is low. The addition of the electrical
storage device results in a significant reduction in the amount of electrical energy not
supplied, and only a small amount of electrical energy is not provided at 7:00 pm.
The most discharge amount occurs at an hour when the price of electrical energy
is at its highest (6:00 pm). This causes the electrical storage to have the greatest
impact in reducing the operating costs of the energy hub. In the thermal behavior
of the energy hub, there is no change and its operational plan is similar to the base
case for thermal demand. The set of these factors will reduce the total operating
cost of the energy hub by 189,930.7 cents. Therefore, it can be said that addition
of an electrical storage in addition to reducing operating costs leads to increase of
reliability of the system in the field of supply of electrical demand.
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Fig. 2.6 Supply of electricity demand by the energy hub in case 1

2.4.2.3 Case 3

In this case, in order to compare the effectiveness of the heat storage in the optimal
performance of the energy hub, a thermal storage is added to the base state. Figure
2.8 shows how to supply the heat demand by the energy hub in this case.

By adding a thermal storage, some thermal energy is stored in the non-peak hours
of thermal demand in this storage and it is used in peak hours. Charging the heat
storage in the first hour leads to an increase in gas purchases from the grid and an
increase in boiler production compared to the base case. The same thing can be seen
at 6:00 pm. An increase in the state of charge of the heat storage at 6:00 pm will
result in the heat demand deficit being compensated at 7:00 pm (peak hour), and
this demand will be fully met at this hour. This will increase the reliability of the
system. In terms of cost, the total operating cost of the energy hub, in this case,
is 189,059.6 cents, which is lower than both previous cases. If we consider that
the value of each kilowatt-hour of electrical and thermal energy for the consumer be
same, it can be said that the thermal storage system creates a greater reduction in the
amount of unmet energy and creates better conditions for reliability than electrical
storage. The electrical operation plan of the energy hub, in this case, is similar to the
two previous cases and has not changed. The performance of various components
of the energy hub in each time step can be seen in Table 2.5 separately.
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Table 2.4 Optimal operational plan for energy hub in case 2

t PN
e PCHP

e Pch
e Pdis

e PS
e PENS

e PCHP
h PB

h PENS
h

1 �62.3 288 34.3 0 30.6 0 252 411.1 0
2 �47.9 288 0 0 30.3 0 252 387.3 0
3 �87 288 0 0 30 0 252 389.6 0
4 167.6 288 269.7 0 270 0 252 461 0
5 �120.9 288 0 0 267.3 0 252 856 0
6 �81.4 288 0 0 264.7 0 252 1411.5 0
7 �18.2 288 0 0 262.1 0 252 1077.6 0
8 81.6 288 0 0 259.5 0 252 858.2 0
9 124.7 288 0 0 256.9 0 252 870.6 0
10 227.1 288 0 0 254.4 0 252 1800 25.5
11 265.8 288 0 0 251.8 0 252 559.9 0
12 309.3 288 0 0 249.3 0 252 1122.2 0
13 319.2 288 0 0 246.9 0 252 645.9 0
14 284 288 0 0 244.4 0 252 556.2 0
15 316.9 288 0 0 242 0 252 518.9 0
16 335.4 288 0 0 239.6 0 252 746.1 0
17 453 288 0 0 237.2 0 252 603.8 0
18 415.9 288 0 121.6 101.1 0 252 789.1 0
19 600 288 0 0 100.1 9.9 252 1800 120.4
20 600 288 0 33.1 62.7 0 252 1010.9 0
21 600 288 0 28.3 30.9 0 252 868 0
22 572.9 288 0 0 30.6 0 252 642.2 0
23 471.1 288 0 0 30.3 0 252 671.5 0
24 264.6 288 0 0 30 0 252 472.3 0
P

t 5991.4 6912 304 183 4022.7 9.9 6048 19,529.9 145.9

2.4.2.4 Case 4

In this case, the energy hub uses wind turbine as a renewable energy source, in
addition to CHP, this technology will also be used to generate electrical power. The
effects of adding a wind turbine to the optimal operational program of energy hub
can be seen in Table 2.6.

By adding a wind turbine to the energy hub, local power supplies can be provided
from RES and energy hub will be able to sell more energy to the grid. How to supply
electricity demand and exchange energy with the network in the presence of a wind
turbine is shown in Fig. 2.9. As can be seen, unlike previous cases that energy sales
were only made in the early hours of the day, this scenario would allow the sale
of energy during the day and even in the afternoon, when the price of electricity in
the market is higher than the early hours of the day. As a result, energy sales are
higher and also at higher prices, which results in higher energy hub revenues. The
amount of energy sales in this scenario reaches 864.1 kWh, which is significantly
higher than previous ones. On the other hand, the amount of electricity purchased
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Fig. 2.7 Supply of electricity demand by the energy hub in case 2

Fig. 2.8 Supply of electricity demand by the energy hub in case 3
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Table 2.5 Optimal operational plan for energy hub in case 3

t PN
e PCHP

e PENS
e PN

g PCHP
h PB

h Pch
h Pdis

h PS
h PENS

h

1 �100.9 288 0 1702.8 252 450.6 39.5 0 35.2 0
2 �47.9 288 0 1632 252 387.3 0 0 34.8 0
3 �87 288 0 1636.1 252 389.6 0 0 34.5 0
4 �135 288 0 1728.8 252 461 0 0 34.1 0
5 �120.9 288 0 2214.5 252 856 0 0 33.8 0
6 �81.4 288 0 2922.6 252 1411.5 0 0 33.5 0
7 �18.2 288 0 2586.3 252 1077.6 0 0 33.1 0
8 81.6 288 0 2426.9 252 858.2 0 0 32.8 0
9 124.7 288 0 2444.8 252 870.6 0 0 32.5 0
10 227.1 288 0 3519 252 1800 0 0 32.2 25.5
11 265.8 288 0 2046.1 252 559.9 0 0 31.8 0
12 309.3 288 0 2702.4 252 1122.2 0 0 31.5 0
13 319.2 288 0 2126.9 252 645.9 0 0 31.2 0
14 284 288 0 1952.6 252 556.2 0 0 30.9 0
15 316.9 288 0 1914 252 518.9 0 0 30.6 0
16 335.4 288 0 2213.5 252 746.1 0 0 30.3 0
17 453 288 0 2000.4 252 603.8 0 0 30 0
18 552.4 288 0 2390.4 252 941.7 152.6 0 165.7 0
19 600 288 9.9 3397.4 252 1800 0 120.4 31.5 0
20 600 288 33.1 2456.2 252 1010.9 0 0 31.2 0
21 600 288 28.3 2291.2 252 868 0 0 30.9 0
22 572.9 288 0 2016.1 252 642.2 0 0 30.6 0
23 471.1 288 0 2047.4 252 671.5 0 0 30.3 0
24 264.6 288 0 1794.6 252 472.3 0 0 30 0
P

t 5786.7 6912 71.3 54,163 6048 19,722 192.1 120.4 903 25.5

in this scenario is 2979.1 kWh, which is less than half that for the base case. The
combination of these factors leads to a reduction in the operating costs of the energy
hub to a value of 165,831.83 cents. On the other hand, with the addition of a wind
turbine, it is possible to provide all the electricity demand, and the reliability of the
energy hub is remarkably improved. There is no change in the optimal energy hub
plan for the supply of thermal demand. In total, it can be said that the addition of the
wind turbine results in better performance of energy hub than the previous cases.
Therefore, in the next case, the effect of adding storage systems in the presence of
wind turbine is investigated.

2.4.2.5 Case 5

A combination of the wind turbine, thermal and electrical storages is added to
the base case to study the effect of this structure on the optimal performance of
the energy hub. The numerical results of this case can be found in Table 2.7.
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Table 2.6 Optimal operational plan for energy hub in case 4

t PN
e PCHP

e PW
e PENS

e PN
g PCHP

h PB
h PENS

h

1 �107.5 288 6.8 0 1656.3 252 411.1 0
2 �47.9 288 0 0 1632 252 387.3 0
3 �109.8 288 23.4 0 1636.1 252 389.6 0
4 �135 288 0 0 1728.8 252 461 0
5 �120.9 288 0 0 2214.5 252 856 0
6 �81.4 288 0 0 2922.6 252 1411.5 0
7 �18.2 288 0 0 2586.3 252 1077.6 0
8 81.6 288 0 0 2426.9 252 858.2 0
9 18.5 288 109.5 0 2444.8 252 870.6 0
10 53.2 288 179.3 0 3519 252 1800 25.5
11 139.4 288 130.3 0 2046.1 252 559.9 0
12 44.8 288 272.8 0 2702.4 252 1122.2 0
13 �68.6 288 400 0 2126.9 252 645.9 0
14 �103.8 288 400 0 1952.6 252 556.2 0
15 �71 288 400 0 1914 252 518.9 0
16 42.1 288 302.5 0 2213.5 252 746.1 0
17 263.6 288 195.3 0 2000.4 252 603.8 0
18 183 288 380.9 0 2210.9 252 789.1 0
19 457.1 288 158.9 0 3397.4 252 1800 120.4
20 461.1 288 181.5 0 2456.2 252 1010.9 0
21 243.9 288 400 0 2291.2 252 868 0
22 346.6 288 233.4 0 2016.1 252 642.2 0
23 379.6 288 94.3 0 2047.4 252 671.5 0
24 264.6 288 0 0 1794.6 252 472.3 0
P

t 2115 6912 3868.9 0 53,937 6048 19,529.9 145.9

Energy hub primarily uses CHP and wind turbine to provide electrical demand.
In times of capacity shortage, this amount is purchased from the power grid. The
electrical storage is responsible for the coordination of production with the pattern
of consumption, and especially the price pattern of the electricity market. At hour
that the lowest electricity prices and the lowest electricity demand occur (4:00 am),
this storage is charged and at hour, which has the highest rates for electricity price
(6:00 pm), it is discharged and in addition to compensating the electricity generation
deficit, provides the possibility of electricity sales to the network in this hour. This
leads to more revenue and lower operating costs. With this operational plan, all
electrical demand will be provided at the lowest operating cost. Such an operation
is also used to provide heat demand and much of this demand is provided with a
minimum operating cost. Therefore, operating costs of the energy hub are expected
to decrease in this scenario. The amount, in this case, is 163,870.2 cents, which is
the least amount among all examined cases. So, case 5 has the best performance in
terms of operational costs and reliability.
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Fig. 2.9 Supply of electricity demand by the energy hub in case 4

2.5 Conclusion

In this chapter, the effects and the role of RES and ESS have been evaluated on the
performance of the energy hub. Increasing demand for energy, along with limited
fossil fuel storage and growing concern about the environmental problems caused
by fossil fuel consumption, increases the need to use RES such as the wind and solar
and increases their penetration in the energy systems. The main inputs of the energy
hubs models are electrical and gas networks that are mainly based on the use of
fossil fuel energies. So, future energy hub models should move towards using RES
to generate energy and supply different demands of the energy hub. Increasing the
share of these resources, especially in the form of DES, and the unpredictable nature
of the production of these resources can lead to imbalances in supply and demand of
energy and reduce the stability of the system. Utilization of ESS for energy hubs can
reduce the effects of the integration of renewable sources and increase the reliability
of the system. ESS can be used to provide ancillary services to the network and
improve the quality of power and reduce system stability problems, as well as
intelligent demand-side performance and the goals of demand-side management
programs. In this chapter, in order to numerically investigate the effects of RES and
ESS, energy hub has been modeled in the presence of wind turbine and electrical and
thermal storages and numerical results have been discussed. The results indicate that
adding RES will reduce the dependence of the energy hub on the fossil fuel networks
and increase the sales of renewable energy to these networks, thereby reducing the
operating costs of the energy hub. The use of ESS will increase the reliability of
the system by reducing the amount of energy not supplied, as well as increasing the
flexibility of the energy hub in dealing with different pricing plans for energy.
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Table 2.7 Optimal operational plan for energy hub in case 5

t PN
e PCHP

e PW
e Pch

e Pdis
e PENS

e PN
g Pch

h Pdis
h PENS

h

1 �68.9 288 6.8 34.3 0 0 1702.8 39.5 0 0
2 �47.9 288 0 0 0 0 1632 0 0 0
3 �109.8 288 23.4 0 0 0 1636.1 0 0 0
4 167.6 288 0 269.7 0 0 1728.8 0 0 0
5 �120.9 288 0 0 0 0 2214.5 0 0 0
6 �81.4 288 0 0 0 0 2922.6 0 0 0
7 �18.2 288 0 0 0 0 2586.3 0 0 0
8 81.6 288 0 0 0 0 2426.9 0 0 0
9 18.5 288 109.5 0 0 0 2444.8 0 0 0
10 53.2 288 179.3 0 0 0 3519 0 0 25.5
11 139.4 288 130.3 0 0 0 2046.1 0 0 0
12 44.8 288 272.8 0 0 0 2702.4 0 0 0
13 �68.6 288 400 0 0 0 2126.9 0 0 0
14 �103.8 288 400 0 0 0 1952.6 0 0 0
15 �71 288 400 0 0 0 1914 0 0 0
16 42.1 288 302.5 0 0 0 2213.5 0 0 0
17 263.6 288 195.3 0 0 0 2000.4 0 0 0
18 �24.2 288 380.9 0 184.6 0 2390.4 152.6 0 0
19 457.1 288 158.9 0 0 0 3397.4 0 120.4 0
20 461.1 288 181.5 0 0 0 2456.2 0 0 0
21 243.9 288 400 0 0 0 2291.2 0 0 0
22 346.6 288 233.4 0 0 0 2016.1 0 0 0
23 379.6 288 94.3 0 0 0 2047.4 0 0 0
24 264.6 288 0 0 0 0 1794.6 0 0 0
P

t 2249 6912 3868.9 304 184.6 0 54,163 192.1 120.4 25.5

Nomenclature

Indices

B Boiler
C Converter
ch Charge
dis Discharge
e Electricity
ed Electricity demand
em Emission CO2,SO2,NO2

es Electrical storage
g Gas
gd Gas demand
h Heat
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hd Heat demand
hs Heat storage
N Network
t Time
T Transformer

Parameters

˛e
loss Loss efficiency of electrical storage

˛h
loss Loss efficiency of thermal storage

˛e
min Minimum factor of electrical storage

˛e
max Maximum factor of electrical storage

˛h
min Minimum factor of thermal storage

˛h
max Maximum factor of thermal storage

�e
ch Electrical storage charge efficiency

�e
dis Electrical storage discharge efficiency

�h
ch Thermal storage charge efficiency

�h
dis Thermal storage discharge efficiency

�C Electricity efficiency of converter
�T Electricity efficiency of transformer
�eCHP Gas to electricity efficiency of CHP
�hCHP Gas to heat efficiency of CHP
�B Gas to heat efficiency of boiler
�e

DR DR operation cost
�e

ENS Electricity energy not supplied cost
�h

ENS Heating energy not supplied cost
�e

N(t) Hourly electricity price
�e

S Electrical storage operation cost
�e

W Produced wind power cost
�em Cost of CO2 SO2 and NO2 emissions
�g

N Gas price
�h

S Thermal storage operation cost
ACHP CHP availability
Ae

N Electricity network availability
AW Wind turbine availability
A, B, C Parameters of wind turbine characteristic curve
EFem Emission factor for electricity network, CHP and boiler
eELFmax Electricity maximum equivalent loss factor
LPFshup Load participation factor for shifting up the electricity demand
LPFshdo Load participation factor for shifting down the electricity demand
PB Boiler capacity
PCHP CHP capacity
Ped(t) Hourly electricity demand
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Pgd(t) Hourly gas demand
Phd(t) Hourly heat demand
Pe

Nmax Maximum capacity of electricity network
Pg

Nmax Maximum capacity of gas network
Pr Rated power of wind turbine
Pe

SC Electrical storage capacity
Ph

SC Thermal storage capacity
PT Transformer capacity
Pe

W (t) Produced wind power
TC Objective function’s variable
Vw(t) Hourly wind speed
Vr Rated wind speed of wind turbine
Vci Cut-in wind speed of wind turbine
Vco Cut-out wind speed of wind turbine

Variables

EC Emission cost
eELF Equivalent loss factor
eLOEE Loss of energy expected
eLPSP Loss of power supply probability
hELF Equivalent loss factor
hLOEE Loss of energy expected
hLPSP Loss of power supply probability
Ie

ch(t) Binary variable for charge state of electrical storage
Ie

dis(t) Binary variable for discharge state of electrical storage
Ih

ch(t) Binary for charge state of thermal storage
Ih

dis(t) Binary variable for discharge state of thermal storage
Ie

shup(t) Binary variable for shift up of the electricity demand
Ie

shdo(t) Binary variable for shift down of the electricity demand
Pe

ch(t) Charged power of electrical storage
Pe

dis(t) Discharged power of electrical storage
Pe

ENS(t) Electrical energy not supplied
Pe

N(t) Power exchanged with the network
Pe

loss(t) Loss power of electrical storage
Pe

S(t) Electrical storage capacity
Pe

shup(t) Shifted up power via DR
Pe

shdo(t) Shifted down power via DR
Pg

N(t) Imported gas power from network
Pg

NCHP(t) Purchased gas for CHP from network
Pg

NB(t) Purchased gas for boiler from network
Ph

ch(t) Charged power of thermal storage
Ph

dis(t) Discharged power of thermal storage



50 M. Mohammadi et al.

Ph
loss(t) Loss power of thermal storage

Ph
S(t) Thermal storage capacity

Pe
CHP(t) Electricity generated by CHP

Ph
CHP(t) Heat generated by CHP

Ph
B(t) Heat generated by boiler

Ph
ENS(t) Heating energy not supplied
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Chapter 3
Robust Economic Emission Dispatch
of Thermal Units and Compressed Air
Energy Storages

Farkhondeh Jabari and Behnam Mohammadi-Ivatloo

3.1 Introduction

Nowadays, different renewable energy sources such as hydro, wind, solar,
geothermal, ocean waves, and tidal are attracting world’s attention due to the
major concerns about the excessive CO2 emissions and global energy crisis [1–4].
Therefore, a secure, efficient, and economic scheduling of modern power systems
is an arduous challenge because of the volatility nature of renewables. Meanwhile,
energy storage systems are used to reshape daily electricity demand profile and add
more flexibility on power system operation. Figure 3.1 summarizes the power rating
versus discharge time at rated power for different energy storages.

As obvious from this figure, large-scale storage facilities such as pumped hydro
storages and compressed air plants are able to participate in bulk power management
with higher power rating for long discharge time period [5].

3.2 Types of Compressed Air Energy Storages

In the conventional diabatic compressed air energy storage (CAES) shown in
Fig. 3.2, surplus electrical energy purchased from the local power grid over the
low-cost or off-peak demand periods drives an air compressor with an intercooling
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Fig. 3.1 A comparison between different energy storage technologies from power rating and
discharge time perspectives

Fig. 3.2 Schematic diagram of conventional diabatic compressed air energy storage

process. After the compression stage, the compressed air is stored in an underground
cavern. During the mid-peak and on-peak time intervals with higher electricity
rates, a recuperator is employed to preheat the stored air before heating it up
by a combustion chamber operating with natural gas. Then, the high-temperature
supplied air enters to an expansion valve and generates electricity. Use of a
recuperator for air preheating increases the overall system efficiency by 15% [6].

The advantages and the main drawbacks of the conventional CAES plants can be
summarized as follows [7, 8]:
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Advantages:

• Fast reaction time

– Ramp rate from 0% to 100% of rated capacity in approximately 10 min
– From 10% to 100% of rated capacity in less than 4 min
– From 50% to 100% of rated capacity in almost 15 s

• Large-scale energy supplier
• Frequent start-ups and shut-downs
• Used for ancillary services such as frequency regulation, load following, and

voltage control due to their capability for frequent start-up and shut-down.

Disadvantages:

• Heating energy losses: The heating flow of compression stage should be dissi-
pated to avoid from the deterioration of underground cavern and the pressure drop
of stored air. Hence, natural gas is used to heat up the stored air for discharging
or power generating process to prevent from the extremely low temperature of
gas turbine.

• Fossil fuels requirements such as natural gas
• Reliance on natural geological characteristics of the installation region as a major

disadvantage
• Overall efficiency less than 45%

The interest for the development of other CAES technologies such as advanced
adiabatic CAES [9, 10], adsorption enhanced CAES [11], near-isothermal CAES
[12], and underwater CAES [13] plants was reignited by increasing fuel prices and
greenhouse gas emissions. For example, Fig. 3.3 illustrates the operating principle
of advanced adiabatic compressed air energy storages (AA-CAES). Obviously, the
additional heat storage is installed for reserving the heat released in the low- and
high-pressure compressors. It causes that overall efficiency of adiabatic type reaches
up to 70% with near-zero carbon footprints.

Fig. 3.3 Schematic diagram of advanced adiabatic compressed air energy storage
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3.3 Literature Review on CAES

Recently, several remarkable efforts have been carried out on designing, modeling,
and scheduling of different integrated energy hubs using compressed air energy
storages from energetic-exergetic-economic-environmental viewpoints. In this con-
text, Wang et al. [14] designed and analyzed a multi-level underwater compressed
air energy storage to improve the overall efficiency between 62% and 81% in
comparison with conventional diabatic CAES systems. This system is composed of
a CAES, rock bed thermal storage unit, and battery energy storage. The advantages
of this system are listed as follows:

• Flexible operation for storing variable renewable energy sources and meet
fluctuating electricity demand of end-consumers

• No preexisting bathymetry requirements
• Battery pack acts as auxiliary electricity storage: When the produced electrical

power is more than the electricity requirement of the compressor train, it will be
stored in the battery pack.

Perazzelli and Anagnostou [15] investigated the technical feasibility of shallow
lined rock cavern tunnels or shafts under a wide range of geotechnical conditions.
A compressed CO2 energy storage system with higher density and round-trip
efficiency than that of CAES is introduced in [16]. To decrease the energy
consumption of compression train in the charging process, and enhance the round
trip efficiency, a CAES combined with an air conditioner is developed by Chen
et al. [17]. In this system, the air conditioner is utilized to precool the inlet air of
compressor, decrease the energy consumption of compression train in the charging
process, and improve the round trip efficiency by more than 3%. A marine current
turbine farm is used in [18] as the main energy supply for a stand-alone island. To
compensate the impacts of tidal phenomenon on marine current turbine farm power
variation, an ocean compressed air energy storage is established for facilitating real-
time power management under uncertain operation conditions such as different
load levels, different tidal speed levels, one-day cases, and one-week case. In
[19], a combined wind-solar-compressed air energy storage system is developed to
transform the fluctuating wind and solar power into a stable electricity and hot water,
and increase the storage efficiency, round trip efficiency, and exergy efficiency up
to 87.7%, 61.2%, and 65.4%, respectively. Zhao et al. [20] combined an advanced
adiabatic compressed air energy storage system with a flywheel energy storage to
operate under variable ambient conditions, inlet temperature of compressor, storage
cavern temperature, and pressure. Lv et al. [21] utilized a CAES for cooling,
heating, and electricity generation. The cooling demand is supplied by expanding
the compressed air, and the heating one is recovered in the process of compression
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and storage. It is found that annual monetary cost saving is about 53.9%. Energy-
exergy based performance analysis of an integrated micro gas turbine, CAES,
and solar dish concentrator is presented in [22]. It is revealed that the round trip
efficiency increases as the difference between minimum and maximum pressure of
air cavern increases.

In [23], a novel CAES based combined cooling, heating, and power sys-
tem based system is designed. This trigeneration microgrid composes of a gas
engine, supplemental heat exchangers, and an ammonia-water absorption chiller.
An evolutionary multi-objective algorithm is then applied to increase overall exergy
efficiency up to 53.04% and reduce total product cost to 20.54 ¢/kWh. Jabari et
al. [9] designed and scheduled a novel air to air heat pump based trigeneration
plant for residential summer cooling and winter heating applications. An advanced
adiabatic CAES unit is modeled with injected and produced power limits, storage
power and energy capacities, air balance, and operational constraints to reduce
total energy procurement cost by 21.79% and 22.36% in cooling and heating
cycles, respectively. Li et al. [24] developed a novel energy storage technology
that stores the excessive energy as compressed air and thermal flux for cooling
and heating of domestic households. The cooling demand is supplied by direct
expanding of compressed air instead of installing an absorption chiller. Besides,
sensible heat of solar thermal and geothermal energy are stored in a storage medium
and released for building heating in the winter. In [25], a CAES is integrated with
a pneumatic motor for cogeneration facilities. As the amount of generated power
is greater than demand, the surplus electricity is utilized to compress ambient air.
During on-peak hours, the stored air is extracted to drive the pneumatic motor
and generate electricity. Moreover, the exhausted air from pneumatic motor is
utilized as a cold storage medium to satisfy the cooling demand. Bagdanavicius
and Jenkins [26] combined a compressed air storage with a thermal storage unit
to store the waste heat recovered from the compression stage for district heating
applications. It is demonstrated that use of thermal energy storage and waste heat
recovery reduces total exergy cost from 13.89 ¢/kWh to 11.20 ¢/kWh. Shafiee et
al. [27] proposed an information gap decision theory (IGDT) based risk constrained
bidding/offering strategy for a merchant CAES plant for participation in the day-
ahead electricity market taking into account the price uncertainties. The IGDT
technique assesses the robustness and opportunistic aspects of the optimal self-
scheduling scenarios in the presence of price uncertainty to make the risk-averse
and risk-taker decisions, respectively. In the literature, many scholars have focused
on design and characteristics analysis [28–30], optimization, and analysis of system
components, such as turbine, electromotor, air storage cavern, and thermal energy
storage [31–35] of CAES systems.
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3.4 Mathematical Modeling of Advanced Adiabatic
Compressed Air Energy Storage

In this section, mathematical modeling of optimal charge and discharge decisions
of adiabatic CAES is presented. As mentioned, the adiabatic CAES utilizes the
electrical power for compressing ambient air over the off-peak demand hours and
generates electricity by expanding it via a gas turbine as shown in Fig. 3.3. In this
chapter, constraint (3.1)–(3.7) is used to model the operational limits of the adiabatic
CAES [9]:

V inj
t D ˛injPComp;t (3.1)

PGen;t D ˛pumpVpump
t (3.2)

V inj
minuinj

t � V inj
t � V inj

maxuinj
t (3.3)

Vpump
min upump

t � Vpump
t � Vpump

max upump
t (3.4)

upump
t C uinj

t � 1 (3.5)

SOCt�1 D SOCt C V inj
t � Vpump

t (3.6)

SOCmin � SOCt � SOCmax (3.7)

where V inj
t is the energy content of injected air to the underground cavern at

time horizon t; ˛inj is the efficiency of injecting process; PComp, t is the electric-
ity requirement of compressor train at time horizon t; PGen, t is the electricity
generated by CAES at time t; ˛pump is the efficiency of generating mode; Vpump

t

is the energy content of pumped air to gas turbine at time t; V inj
min; V inj

max is the
minimum and maximum amounts of injected air to the underground cavern; uinj

t D�
1 at injecting mode
0 Otherwise

; Vpump
min .t/; Vpump

max .t/ is the minimum and maximum values of

pumped air to the gas turbine; upump
t D

�
1 at pumping mode
0 Otherwise

; SOC is the state of

charge of adiabatic CAES at time t; SOCmin, SOCmax is the minimum and maximum
state of charge of adiabatic CAES.



3 Robust Economic Emission Dispatch of Thermal Units and Compressed Air. . . 59

3.5 Economic Environmental Dispatch of Thermal Units

Dynamic economic emission dispatch (DEED) problem determines the generation
levels for the committed units focusing on two main objectives. The first objective
is maximization of total benefits or total money received from selling energy
minus total fuel costs, and the second one is minimization of pollutant emissions.
Traditionally, total fuel cost curve of coal and gas fired plants composed of a
quadratic function and a sinusoidal (valve-point effect) term which can be given by
Eq. (3.8) [36–38]. Conventional thermal generating units consist of multiple valves,
which are installed for controlling their power output. As the steam admission valves
are opened for the first time, a rapid increase in losses occurred resulting in ripples
in equivalent cost function which can be modeled as a sinusoidal cost function [39,
40]. Note that �t and Pi, t are the forecasted electricity market price and the power
generation of thermal unit i at time horizon t, respectively. Moreover, ai, bi, and ci

represent the no-load, linear, and the quadratic cost coefficients of thermal generator
i, respectively, while ei and fi model the valve point effect of generating unit i.

Max
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#

(3.8)

As obvious from Eq. (3.9), the second objective of DEED problem is to mitigate
total greenhouse gas emissions which generally consist of three major pollutants
including sulfur oxides (SOx), nitrogen oxides (NOx), and carbon dioxide (CO2)
[41, 42], where constants � i, �i, ıi, � i, and ®i indicate the emission characteristics.
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#

(3.9)

Aggregating two objectives, DEED problem can be mathematically formulated
as a nonlinear optimization process, which can be maximized as a single-objective
optimization problem using the weighting factor, ! 2 [0, 1], as follows:

Objective function
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Bmax D
XNGen

iD1

h
�tP

max
i � ai � biP
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�
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��ˇ
ˇ
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(3.12)

Subject to

• Power balance criterion: Total active power output of thermal generating units
should meet the electricity demand, Pt

d, and transmission losses, Pt
Loss, which

can be fulfilled by Eq. (3.13). As formulated by Eq. (3.14), total transmission
losses can be calculated using B-coefficients.

NGenX

iD1

Pi;t C PGen;t D Pt
d C Pt

Loss C PComp;t 8t D 1; 2; : : : ; T (3.13)

Pt
Loss D

NGenX

iD1

NGenX

iD1

Pi;tBijPj;t 8t D 1; 2; : : : ; T (3.14)

• Electrical power generation limits: The active power output of gas and coal fired
thermal units should be limited by lower and upper boundaries as inequality
constraint (3.15), where Pmin

i and Pmax
i refer to the minimum and maximum

power generation of ith thermal unit, respectively.

Pmin
i � Pi;t � Pmax

i 8t D 1; 2; : : : ; TI 8i D 1; 2; : : : ; NGen (3.15)

• Ramp up and down rates of thermal units: The most important constraint of
thermal generators is ramp up and down limitations. A thermal generation unit
can increase or decrease its production by maximum and minimum constant ramp
rates, which can be stated as follows:

Max
�
Pmin

i ; Pi;t�1 � DRi
�

� Pi;t � Min
�
Pmax

i ; Pi;t�1 C URi
�

8t D 1; 2; : : : ; TI 8i D 1; 2; : : : ; NGen
(3.16)

3.6 Robust Optimization Method for Modeling Wind
Generation Uncertainty

Equations (3.17)–(3.19) formulate the standard nonlinear programming (NLP)
problem:

Minimize
xj

f .x1; x2; : : : ; xn/ (3.17)
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Subject to
gm .x1; x2; : : : ; xn/ � bm; m D 1; : : : ; M (3.18)

xj � 0; j D 1; : : : ; n (3.19)

For building a robust nonlinear programming (RNLP), it is assumed that dj refers
to the deviance from nominal value of coefficient of the decision variable xj. The
integer parameter �0 controls the robustness level of the objective function, which
belongs to [0, jJ0j], where J0 D fjj dj > 0g. The robustness index �0 should be set
to zero in order to ignore the effect of cost deviations on the objective function. If
�0 D jJ0j, all deviations of cost function have been considered. Therefore, an RNLP
can be formulated as (3.20)–(3.25).

Minimize
xj;qoj;yj;z0

f .x1; x2; : : : ; xn/ C z0�0 C

nX

jD1

qoj (3.20)

Subject to constraints (3.1)–(3.7) and (3.13)–(3.16)

z0 C qoj � djyj; j 2 J0 (3.21)

qoj � 0; j D 1; : : : ; n (3.22)

yj � 0; j D 1; : : : ; n (3.23)

z0 � 0 (3.24)

xj � yj; j D 1; : : : ; n (3.25)

In which, variables z0 and qoj are dual variables of the optimization (3.17)–(3.19)
used to take into account the known bounds of coefficient of the decision variable
xj. The auxiliary variable yj is used to achieve the corresponding linear declarations.
Eventually, RNLP can be implemented on economic emission dispatch of thermal-
wind-CAES units as (3.26)–(3.31) considering the upper and lower bounds of the
wind productions for uncertainty modeling.
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Max
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(3.26)

Subject to constraints (3.1)–(3.7) and (3.13)–(3.16)

z0 C qoi � diyi; i D 1; : : : ; T (3.27)

qoi � 0; i D 1; : : : ; T (3.28)

yi � 0; i D 1; : : : ; T (3.29)

z0 � 0 (3.30)

�i � yi; i D 1; : : : ; T (3.31)

The proposed interval robust optimization algorithm for modeling the wind
production uncertainties comprises the following steps:

1. Set wind production PWTi D Pmin
WTi

.i D 1; : : : ; T/, and �0 D T to consider all
possible deviations of wind speeds.

2. Set dk
i D Gk

�
Pmax

WTi
� Pmin

WTi

�
; .i D 1; : : : ; T/, where Gk is a coefficient that uses

increasing values within [0, 1] and k is the iteration counter. Using the parameter
Gk, a consecutive nested subinterval can be derived as

�
Pmin

WTi
; Pmin

WTi
C dk

i

�
.

3. RNLP optimization (3.1)–(3.7), (3.13)–(3.16), and (3.26)–(3.31) is solved to
obtain total fuel cost and emissions at the iteration k.

4. For covering all ranges of coefficient Gk, steps 2 and 3 should be repeated
iteratively (categorized by k).

The wind production, Pk
WTi

D Pmin
WTi

C dk
i ; .i D 1; : : : ; T/ are calculated in each

iteration k by using the energy procurement level per time period.
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3.7 Simulation Results and Discussions

3.7.1 Input Data

In this section, DEED problem is applied on a 10 generators standard power system.
Simulations are implemented as a mixed integer nonlinear programming (MINLP)
problem over a 24-h time interval in general algebraic modeling system (GAMS)
(https://www.gams.com/) software package and solved by SBB (https://www.gams.
com/latest/docs/solvers/sbb/index.html) tool running on a Lenovo with 2.10 GHz
CPU, 4 GB RAM. Detailed specifications and technical parameters of 10-unit
test system can be found in [43]. Figure 3.4 illustrates the 24-h load curve with
2150 MW on-peak and 1036 MW off-peak electricity demand which respectively
occurred at t D 12noon and t D 1a. m.. Moreover, the forecasted electricity market
prices are depicted in Fig. 3.5. Other technical characteristics of generators and
B-coefficients are reported in Tables 3.1 and 3.2, respectively. In this chapter, an
AA-CAES is considered with operational characteristics as Table 3.3.

3.7.2 Results of DEED Without and with Participation
of CAES

Figure 3.6 shows hourly generation schedules obtained from solving DEED under
GAMS environment with and without considering CAES. Total fuel cost and
emissions in Pareto optimal solutions obtained from solving DEED problem with
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Fig. 3.4 Total electricity demand over a 24-h study horizon
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Fig. 3.5 Hourly forecasted electricity prices

Table 3.1 Technical specification of thermal units

Unit Pmin Pmax UR DR a b c

1 150 470 80 80 786.8 38.54 0.1524
2 135 470 80 80 451.33 46.159 0.1058
3 73 340 80 80 1050 40.397 0.028
4 60 300 50 50 1243.5 38.306 0.0354
5 73 243 50 50 1658.6 36.328 0.0211
6 57 160 50 50 1356.7 38.27 0.0179
7 20 130 30 30 1450.7 36.51 0.0121
8 47 120 30 30 1450.7 36.51 0.0121
9 20 80 30 30 1455.6 39.58 0.109
10 10 55 30 30 1469.4 40.541 0.1295
Unit � � ı � ®

1 103.39 �2.4444 0.0312 0.5035 0.0207
2 103.39 �2.4444 0.0312 0.5035 0.0207
3 300.39 �4.0695 0.0509 0.4968 0.0202
4 300.39 �4.0695 0.0509 0.4968 0.0202
5 320 �3.8132 0.0344 0.4972 0.02
6 320 �3.8132 0.0344 0.4972 0.02
7 330.01 �3.9023 0.0465 0.5163 0.0214
8 330.01 �3.9023 0.0465 0.5163 0.0214
9 350.01 �3.9524 0.0465 0.5475 0.0234
10 360 �3.9864 0.047 0.5475 0.0234
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Table 3.3 Technical
characteristics of CAES

˛inj, ˛pump V inj
min; Vpump

min V inj
max; Vpump

max SOCmin SOCmax

0.7 0 75 0 210

different weighing factors are shown in Fig. 3.7. As expected, it is obvious that total
fuel cost will dramatically be decreased as the value of weighing factor ! increases
and vice versa. Besides, when the amount of weighing factor increases, emission
productions gradually increase. In other words, total fuel costs and emissions are
conflicting in nature when optimizing a multi-objective problem and one objective
is usually improved, while other is getting worse. Figure 3.8 depicts total fuel costs
minus total money received from selling energy. According to Figs. 3.7 and 3.8,
if a decision maker or power system operator desires lower fuel cost or higher
profit, more emissions will be produced and vice versa. Moreover, total fuel cost
and emission functions in case “with CAES” are less than case “without CAES.”
For example, optimal charge and discharge decisions of CAES for ! D 0.5 are
illustrated in Fig. 3.9.

3.7.3 Robust DEED with Participation of CAES

In this section, a case study is used to show the application of the robust optimization
approach for DEED of thermal-wind-CAES units. Considering these input param-
eters, RNLP problem is solved for five iterations (Gk is changed by the steps as:
G D [0, 0.27, 0.64, 0.79, 1]) to produce the required data for constructing DEED
strategies. The lower and upper bounds of the wind power data for the study horizon
have been shown in Fig. 3.10. Starting from lower to upper level, RNLP problem
is solved for each interval within the wind power bound to achieve the robust cost.
The power output of 1st and 2nd thermal generating units, charge and discharge
power of CAES, fuel costs, and emission productions for five iterations have been
depicted in Figs. 3.11, 3.12, and 3.13, respectively. As expected, if the value of wind
power decreases (smaller k), the amount of robust cost will be increased resulting in
a higher emission production and higher fuel cost and vice versa.

3.8 Conclusion

This chapter expressed different technologies, structures, technical and operational
constraints of compressed air energy storages, comprehensively. Mathematical
framework was presented to model CAES and formulate a dynamic economic
environmental dispatch problem for conventional thermal plants. In addition, impact
of advanced adiabatic compressed air energy storages on day-ahead economic
emission dispatch of coal and gas-fired generators is investigated by solving a mixed
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Fig. 3.6 Hourly generation schedules for ! D 0.5
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Fig. 3.6 (continued)
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Fig. 3.6 (continued)
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Fig. 3.6 (continued)

Fig. 3.7 Pareto optimal solutions obtained by varying weights !

integer nonlinear programming problem in GAMS software package under SBB
tool. Numerical results revealed that use of advanced adiabatic CAESs and robust
DEED of thermal-wind-CAES units reduces total fuel cost and pollutant emission
footprints, significantly.
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Fig. 3.8 Total fuel costs minus total money received from selling energy in different weights !

Fig. 3.9 Optimal charge and discharge decisions of CAES for ! D 0.5

Nomenclature

˛inj Efficiency of injected power
˛pump Efficiency of produced power
� i, �i, ıi, � i, ®i Emission characteristics of thermal generation station i
�t Electricity price at time horizon t [$/MWh]
! Weighting factor 2[0, 1]
ai No-load cost coefficient of thermal generator i [$]
bi Linear cost coefficient of thermal generator i [$/MWh]
Bij ijth element of loss coefficient square matrix of size NGen[1/MW]
ci Quadratic cost coefficient of thermal generator i [$/MW2h]
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Fig. 3.10 Nested wind generation intervals

ei, fi Cost coefficient of thermal generator i reflecting the valve point
effect respectively in [$] and [1/MW]

PComp, t Power consumed by CAES at time t for compressing and inject-
ing air [MWh]

PGen, t Power output of CAES at time horizon t [MWh]
Pi, t Active power output of thermal generation station i at time t

[MW]
Pmin

i ; Pmax
i Minimum and maximum power generation of ith thermal unit,

respectively
Pt

d Electrical demand at time t [MW]
Pt

Loss Active power losses of transmission lines at time t [MW]
SOCt Amount of stored energy at time t [MWh]
SOCmin Minimum level of storage [MWh]
SOCmax Maximum level of storage [MWh]
uinj

t Binary variable, which is equal to 1 if air injected by CAES at
time t, and 0 otherwise

upump
t Binary variable, which is equal to 1 if air pumped by CAES at

time t, and 0 otherwise
V inj

t Energy equivalent of injected air to storage at time t [MW/h]
V inj

min Minimum level of injected air into storage [MW/h]
V inj

max Minimum level of injected air into storage [MW/h]
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Fig. 3.11 Output power of each thermal generating unit for ! D 0.5

Vpump
t Energy equivalent of pumped air to combustion chamber at time

t [MWh]
Vpump

min Minimum level of pumped air from storage to combustion cham-
ber [MW/h]

Vpump
max Maximum level of pumped air from storage to combustion

chamber [MW/h]
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Fig. 3.12 Optimal charge and discharge decisions of CAES for ! D 0.5
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Chapter 4
Solar Thermal Energy Storage
for Residential Sector

Afshin Najafi-Ghalelou, Sayyad Nojavan, Majid Majidi, Farkhondeh Jabari,
and Kazem Zare

4.1 Introduction

An energy hub system is a multi-generation system where multiple energy carriers
are converted, stored [1], and distributed to meet heat and electrical demand [2].
Converter devices can be solar thermal storage, CHP, and boiler. Solar thermal
storage is used to convert solar irradiation to heat. Other technologies such as CHP
and boiler are also suggested to convert natural gas to electricity and heat.

4.1.1 Literature Review

In this chapter, energy management system inside a residential energy hub system
has been investigated. In order to minimize discomfort and operation costs, a new
efficient algorithm for energy management system inside a residential energy hub
system is presented in [3]. Stochastic programming is implemented in [4] for
modeling optimal scheduling of energy hub systems. To minimize energy cost
based on availability of each expected demand, resources, and prices, a new optimal
management algorithm for optimal management of distributed energy resources in
facilities with energy hub systems is provided in [5]. A day-ahead dynamic optimal
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operation and dispatch strategies of energy hub systems are presented in [6] to
minimize daily operation cost. A stochastic scheduling for wind integrated smart
energy hub system problem is presented in [7].

Energy management systems inside smart home have been investigated as
follows: In [8], prioritizing operation of controllable appliances from the customer’s
viewpoint has been investigated to minimize customer energy costs. An energy
management solution is presented in [9] to combine and describe advantages and
features of both energy hub system framework and demand side management
methods. In order to tackle the household load scheduling problem with uncertain
ambient temperature and hot water demand, an interval number optimization
method is provided in [10]. An optimization problem is proposed in [11] which
simultaneously selects, sizes, and determines optimal operation of residential
heating systems. In order to reduce electricity price of smart buildings and manage
battery storage and temperature of thermal appliances, a new control algorithm is
presented in [12]. In [13], various optimization techniques applied to demand side
management system have been reviewed.

Literature review about solar thermal storage can be expressed as follows:
Performance of a liquid thermocline and a packed bed are compared with each
other in [14] for an off-shore wind-TP system. To reduce heat pumps operational
temperature differences, application of hybrid pumped thermal electricity storage is
studied and provided in [15]. To determine operational state of power generation
unit based on thermal and electric demand, a new thermal storage strategy is
provided in [16]. Economic impact of designing thermal energy storage system
is analyzed and provided in [17]. Technologies about high temperature solar
receivers associated with power tower systems and power dish are compared and
provided in [18]. A new distributed energy resources customer adoption model of
thermal energy storage is provided in [19] to improve tracking of losses based on
temperature of ambient and storage. Summary of different thermal energy storage
systems and solar thermal storage materials is provided and compared in [20].

4.1.2 Novelty and Contributions of This Research

According to our knowledge, there is no research available about optimal energy
consumption scheduling of a residential energy hub system in the presence of
solar thermal storage system. So, in this chapter, a residential hub energy system
model containing CHP generator, boiler, electrical storage, solar thermal storage,
and smart appliance is proposed. Two cases studied are used to assess the impacts
of solar thermal energy storage on operation cost of residential energy hub system.
According to the above information, the novelty and contributions of this paper are
presented below:

• Energy management of a residential hub energy systems is proposed in the
presence of solar thermal energy storage.
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• Scheduling optimal performance of all equipment within the residential hub
energy systems.

• Scheduling and prioritizing performance of smart appliances in the presence of
distributed energy sources with the aim of minimizing total operation cost of
residential hub energy systems.

• Employing mixed-integer programming (MIP) to guarantee global optimal.

4.1.3 Chapter Organization

The rest of the proposed chapter is categorized as follows: The mathematical model
has been presented in Sect. 4.2. Input data, case study, and the results are provided
in Sect. 4.3. Discussion and conclusions are presented in Sect. 4.4.

4.2 Problem Formulation

As shown in Fig. 4.1, the proposed residential hub energy system model contains
CHP generator, boiler, battery storage system, solar thermal storage, and smart
appliances. Optimal energy consumption scheduling of a residential energy hub sys-
tem has been formulated in this section. The objective function includes operation
cost of equipment in a residential energy hub system which can be presented as:

OBJ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

JP

jD1

TP

tD1



�Gas�P CHP

j;t

�

�CHP C
JP

jD1

TP

tD1



�Gas�P Boiler

j;t

�

�Boiler

C
JP

jD1

TP

tD1

MCelec � DRelec C
JP

jD1

TP

tD1

�Grid
t � PImport

j;t

�
JP

jD1

TP

tD1

Pexport
j;t � �export
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>>>>>>>;

� 	t (4.1)

The objective function includes operation cost of CHP, boiler, battery storage
system, cost of purchased power from grid, and profit of selling power to grid.

4.2.1 Combined Heat and Power (CHP) Generator

The output power of CHP generator should not exceed its designed capacity which
is presented as [21]:

PCHP
j;t � CAPCHP (4.2)
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Fig. 4.1 Schematic diagram of proposed residential hub energy system model

4.2.2 Boiler

The output power of boiler as well as CHP generator should not exceed its designed
capacity. In this regard, Eq. (4.3) is presented [21].

PBoiler
j;t � CAPboiler (4.3)

4.2.3 Battery Storage System

The model of central battery storage system which is available for all residential
hub energy system sector is obtained from [21]. The technical constraints related to
battery storage system are described as follows:

The output power of battery storage system as well as other equipment should
not exceed its designed capacity and therefore Eq. (4.4) is presented.
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JX

jD1

SOCelec
j;t � CAPelec (4.4)

The state of charge of battery storage system at time t is equal to the state of
charge of battery storage system at time t � 1 plus the charged amount at time t
minus the discharge power at time t. Also, discharge rate of battery storage at time
t should not exceed state of charge of battery storage at time t � 1. Mathematical
formulation of mentioned statements is provided as follows:

SOCelec
j;t D SOCelec

j;tC1 C
�
CRelec

j;t � �elec � 	t
�

�

 
DRelec

j;t � 	t

�elec

!

(4.5)

DRelec
j;t � 	t

�elec
� SOCelec

j;t�1 (4.6)

The charge and discharge rate of battery storage system should not exceed charge
and discharge limits of battery storage:

CRelec
j;t � Melec � Belec

j;t (4.7)

DRelec
j;t � Melec �

�
1 � Belec

j;t

�
(4.8)

The total state of charge of the battery storage system at each time period is equal
to the sum of state of charge of sub-batteries storage system at each residential hub
energy system sector:

SOCTotalelec
t D

JX

jD1

SOCt
j;t (4.9)

In order to avoid net accumulation, state of charge of the battery storage system
at the end of the each sample day should be equal to the initial value of battery
storage. In the proposed model, the initial state of charge of battery is set as variable
to determine the best initial state of charge for one day utilization [21]. Otherwise,
it can be set as parameter which is obtained from the end of previous day.

SOCTotalelec
1 D SOCTotalelec

48 D Selec (4.10)

The charge and discharge rate of battery storage system should not exceed the
charge and discharge limits of battery storage which are defined by the battery
manufacturer. For this reason, Eqs. (4.11) and (4.12) are presented.
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JX

jD1

CRelec
j;t � CRLelec (4.11)

JX

jD1

DRelec
j;t � DRLelec (4.12)

4.2.4 Exchanged Power Between the Residential Energy Hub
System and Upstream Grid

The imported/exported power from/to grid at each period of time is calculated as
follows:

PImport
j;t � MGrid � BGrid

j;t (4.13)

Pexport
j;t � MGrid �

�
1 � BGrid

j;t

�
(4.14)

4.2.5 Appliances

Household appliances can be noted as fridge, washing machine, dishwasher, etc.
The appliances should be ON between the specific time periods which is determined
by the owner of residential energy hub system. Also, each appliance must be active
continuously (
 ) based on the predefined length of time (Pj, i) within the determined
time period which is determined by the owner of residential energy hub system and
for this reason, Eq. (4.15) which is obtained from [21] is provided as follows:

TFinish
j;i �Pj;iX

tDTStart
j;i

!j;i;t�
 (4.15)

4.2.6 Solar Thermal Storage

The model of solar thermal storage is obtained from [19]. Solar thermal storage
converts solar irradiation to thermal which is used directly or stored in the thermal
storage system to be used in other periods. The technical constraints related to
thermal storage are described as follows:
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The state of charge of solar thermal storage at time t is equal to the state of charge
of solar thermal storage at time t � 1 plus the charged heat minus the discharged
heat and loss of heat at time t. Also, state of charge of solar thermal storage should
not exceed its designed capacity. In this regard, Eqs. (4.16) and (4.17) are presented.

Hstored
t D Hstored

t�1 C �ch;Ther � Hch;Ther
t �

JX

j

Hdch;Ther
j;t

�dch;Ther
� Hloss;Ther

t (4.16)

Hstored
t � CAPTher (4.17)

The imported/exported power from/to solar thermal storage at each period of
time is limited by discharge/charge rate. For this reason Eqs. (4.18) and (4.19) are
presented.

Hch;Ther
t � Bch;ther

t � CAPTher � Hch;Ther;max (4.18)

Hdch;Ther
j;t � Bdch;ther

j;t � CAPTher � Hdch;Ther;max (4.19)

Heat losses of solar thermal storage depend on the capacity of solar thermal
storage, ambient temperature, and amount of stored energy in the solar thermal
storage. So, the heat losses can be formulated as follows:

Hloss;Ther
t D Hstored

t�1 � 
 storage C 
 static � Eunuse
t (4.20)

The unused energy of solar thermal storage system can be calculated based on
the minimum/maximum temperature of solar thermal storage, ambient temperature,
and the capacity of solar thermal storage as follows:

Eunuse
t D CAPTher �

Tmin � Tamb
t

Tmax � Tmin
(4.21)

The amount of converted solar irradiation to the heat at each period of time
depends on the solar irradiation, efficiency, and the surface area of thermal energy
storage panel. Also, the charge rate of solar thermal storage at each period is limited
by the converted amount of solar irradiation to heat. For this reason, Eqs. (4.22) and
(4.23) are presented.

Qt D 'solar
t � Aapp � �Ther (4.22)

Qt � Hch;Ther
t (4.23)
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4.2.7 Energy Balances

Energy balance constraint between the production and consumption power can be
written as:

JP

jD1

IP

iD1

Pj;i�1P


D1

PConsump
i � !j;i;t�


D PCHP
j;t C DRelec

j;t � CRelec
j;t C PImport

j;t � Pexport
j;t

(4.24)

4.2.8 Thermal Balances

The heat balance constraint between producers and consumers can be written as:

HDemand
j;t D ˛CHP � PCHP

j;t C PBoiler
j;t (4.25a)

With considering the solar thermal storage, Eq. (4.25a) will be updated as:

HDemand
j;t D ˛CHP � PCHP

j;t C PBoiler
j;t C Hdch;Ther

j;t (4.25b)

4.3 Numerical Simulation

The proposed residential hub energy system model contains CHP generator, boiler,
battery storage, solar thermal storage, and smart appliances. The entire time horizon
of case study is 24 h with time interval of 30 min. The starting time of case
study is from 8 AM and the ending time is 8 AM of the next morning. The
proposed optimization problem has been studied in two case studies with and
without considering the effect of solar thermal storage on total operation cost of
residential hub energy system.

Case study 1 is related to the optimal scheduling of residential hub energy system
consumption without considering the effect of solar thermal storage. In this case,
the objective is to minimize total energy cost of residential hub energy system (4.1)
subject to constraints (4.2)–(4.15) and (4.25a). In the second study, the effect of
solar thermal storage is considered in which the objective is to minimize the total
energy cost of residential hub energy system (4.1) subject to constraints (4.2)–(4.24)
and (4.25b).
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4.3.1 Input Data

Technical information of solar thermal storage is presented in Table 4.1 [19].
Consumption power and operation time length of each appliance are presented
in Table 4.2 [21]. All appliances except the washing machine, dish washer, and
tumble dryer have constant power consumption rate during the operation time while
the electrical profiles for washing machine, dish washer, and tumble dryer are
presented in Fig. 4.2 [22]. Technical information of CHP, boiler, and battery storage
system are provided in Table 4.3 [21]. The earliest starting time of appliances and
latest finishing time of appliances are presented in Tables 4.4 and 4.5, respectively.
Market price and ambient temperature are presented in Figs. 4.3 and 4.4 [23, 24],
respectively. Solar irradiation is presented in Fig. 4.5 [25]. Heat demands for each
residential hub energy system sector are presented in Figs. 4.6 and 4.7, respectively
[21]. Natural gas price is considered to be 2.7 p/kWh and the cost of selling power
to the upstream grid is set to be 1 p/kWhe [21]. It should be mentioned that the
developed MIP model is implemented using CPLEX [26] in GAMS software [27].

Table 4.1 Technical
information of solar thermal
storage [19]

Parameters Value Parameters Value

Aapp 50 m2 
 storage 5.7%
�Ther 95% 
 static 5.6%
CAPTher 100 kW Hdch, Ther, max 25%
�ch, Ther 95% Hch, Ther, max 25%
�dch, Ther 95% Tmax 65 ıC
Tmin 36 ıC

Table 4.2 Power consumption and length of operation time of each appliance

Appliances Power consumption (kW) [21] Length of operation time (h) [21]

Washing machine Fig. 4.2 2
Dish washer Fig. 4.2 2
Tumble dryer Fig. 4.2 1.5
Cooker hob 3 0.5
Cooker oven 5 0.5
Microwave 1.7 0.5
Interior lighting 0.84 6
Laptop 0.1 2
Desktop 0.3 3
Vacuum cleaner 1.2 0.5
Fridge 0.3 24
Electrical car 3.5 3
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Fig. 4.2 Electricity utilization profiles of washing machine, dish washer, and tumble dryer

Table 4.3 Technical
information of CHP, boiler,
battery storage system, and
thermal storage system

Parameter Value

CHP
�CHP 35%
CAPCHP 4 kWe

˛CHP 1.3
Boiler
�Boiler 85%
CAPboiler 24 kWth

Battery storage system
�elec 95%
CAPelec 4 kWeh
MCelec 0.005 p/kWhe

Melec 2 kWe

CRLelec 4 kWe

DRLelec 4 kWe

4.3.2 Simulation Results

In this section the effect of solar thermal energy storage system has been investigated
in two cases. In case 1, total operation cost of residential hub energy system without
considering effect of solar thermal storage has been solved. In order to show the
effect of solar thermal energy storage, the same problem is been solved in case 2
with considering the effect of solar thermal storage system. With comparing the
results of cases 1 and 2, it can be seen that operation cost in case 2 is decreased
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Table 4.4 Earliest starting time of appliances (h) [21]

Smart homes 1 2 3 4 5 6 7 8 9 10

Washing machine 12 11 – 13 – 18 14 16 11 –
Dish washer 16 14 – 11 – 22 22 20 16 –
Tumble dryer 19 17 – 14 – 1 1 23 19 –
Cooker hob 15 10 – 13 10 14 18 11 10 –
Cooker oven 11 15 – 20 13 13 – – 19 20
Microwave 21 13 – 20 12 17 – 18 20 10
Interior lighting 18 – 20 20 22 19 – 17 20 21
Laptop 19 – 17 17 19 21 – 18 19 19
Desktop 17 – 16 – 14 19 20 22 20 –
Vacuum cleaner 18 – 19 – 20 16 22 21 21 21
Fridge 0 – 0 – 0 0 0 – 0 0
Electrical car 21 – 20 – 19 18 17 – 21 19

Table 4.5 Latest finishing time of appliances (h) [21]

Smart homes 1 2 3 4 5 6 7 8 9 10

Washing machine 20 18 – 19 – 23 18 20 15 –
Dish washer 19 16 – 14 – 1 24 22 18 –
Tumble dryer 24 21 – 17 – 6 3 1 20 –
Cooker hob 16 11 – 15 13 17 23 15 15 –
Cooker oven 12 16 – 22 16 16 – – 24 1
Microwave 22 14 – 22 15 20 – 20 21 11
Interior lighting 24 – 2 2 4 1 – 23 2 3
Laptop 1 – 22 20 24 3 – 22 24 24
Desktop 23 – 20 – 19 1 1 1 24 –
Vacuum cleaner 2 – 23 – 1 22 4 4 4 5
Fridge 24 – 24 – 24 24 24 – 24 24
Electrical car 7 – 3 – 23 2 1 – 6 5

about 16.88%. In case 2, solar energy storage system is used to meet heat demand
instead of boiler. So, the cost of gas consumption is reduced and this causes the
reduction of operation cost of residential hub energy system. Comparison results of
two cases related to the operation cost of residential hub energy system are studied
and presented in Table 4.6.

Output power of CHP and boiler are presented in Figs. 4.8 and 4.9, respectively.
In the second case study, the output power of CHP is decreased 33.60 kW. The
produced heat by boiler after 12 PM has become zero and instead of boiler, heat
produced by solar thermal storage is used to meet heat demand.

Charge and discharge rates and state of charge of battery storage system are
provided in Figs. 4.10 and 4.11, respectively. Battery storage in the second case
study is charged 6.77 kW more in comparison with case one. Also, battery storage
system is discharged 6.33 kW more compared to case one. So, in the second case
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Fig. 4.3 Market price (£/MWh) [23]

Fig. 4.4 Ambient temperature (ıC) [24]

study, the state of charge of battery is 2.61 kW less in comparison with case one.
Also, it can be observed that with considering the effect of solar thermal storage,
battery storage system is charged and discharged more.
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Fig. 4.5 Solar irradiation (W/m2)

Fig. 4.6 Heat demand of sectors 1–5 in residential hub energy system [21]

The charge, discharge, state of charge, and thermal losses of solar thermal storage
are presented in Fig. 4.12. It can be observed that the solar thermal storage produced
337.52 kW heat with converting the solar irradiation and discharged 164.61 kW to
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Fig. 4.7 Heat demand of sectors 6–10 in residential hub energy system [21]

Table 4.6 Total operation cost of residential hub energy system

Case 1:Without considering effect of solar thermal storage 13.9483 £
Case 2: With considering effect of solar thermal storage 11.5943 £
Cost reduction in comparison with case 1 16.88%

meet heat demand of residential hub energy system. Total losses of solar thermal
storage are 147.38 kW during the 24 h study case.

Imported/exported power from/to the grid is presented in Fig. 4.13. In case 1,
imported power from grid is 472.84 kW and exported power to grid is 1.9 kW. In
case 2, imported power from grid is 506.89 kW. So, imported power from grid is
increased 7.2% in comparison with case 1 and exported power remained constant in
comparison with case 1.

The activation time of each appliance in each residential hub energy system
sector for cases 1 and 2 is presented in Tables 4.7 and 4.8, respectively. It should be
mentioned that each appliance is active continuously (
 ) within the determined time
period (Pj, i) by the owner of smart home. With comparing the obtained results from
two case studies, it can be understood that the activation time of some appliances is
only shifted in small time intervals.
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Fig. 4.8 Output power of CHP (kW)

Fig. 4.9 Output power of boiler (kW)
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Fig. 4.10 Charge/discharge rate of battery storage system (kW)

Fig. 4.11 State of charge of battery storage system (kW)
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Fig. 4.12 Solar thermal storage (kW)

Fig. 4.13 Solar thermal storage (kW)
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4.4 Conclusion

In this chapter, optimal energy consumption scheduling of a residential hub energy
system containing CHP unit, boiler, battery storage, solar thermal storage, and
smart appliances is proposed. In this chapter, effect of solar thermal storage has
been analyzed in two cases. By comparing the obtained results, it can be found
that operation cost of residential hub energy system with considering effect of
solar thermal storage is decreased 16.88%, imported power from grid is increased
7.2%, and battery storage system is charged and discharged 28.8 and 21.17% more,
respectively. Output power of boiler is decreased 43.28% and output power of CHP
is decreased 55.13%. It should be mentioned that the developed MIP model is
implemented using CPLEX in GAMS software. Finally, risk-based optimal energy
consumption scheduling of a residential energy hub system in the presence of solar
thermal storage system can be modeled using information gap decision theory
framework and robust optimization approach as a future work.

Nomenclature

Index

j Residential hub energy system sector
t Time period index
i Appliances index

 Operation period of appliances index

Parameter

CAPCHP Capacity of CHP generator (kWe)
˛CHP Heat to power ratio of CHP
CAPboiler Capacity of boiler (kWth)
CAPelec Capacity of battery storage system (kWhe)
�elec Battery storage charge/discharge efficiency (%)
Melec Maximum capacity of battery storage system (kWe)
DRLelec Discharge limit of battery storage system (kWe)
CRLelec Charge limit of battery storage system (kWe)
PConsump

i;
 Consumption power of ith appliance at the operation period 


(kWe)
Pj, i Processing time of ith smart appliance at jth residential hub energy

system sector (h)



4 Solar Thermal Energy Storage for Residential Sector 99

TStart
j;i Latest finishing time of ith smart appliance at jth residential hub

energy system sector (h)
TFinish

j;i Earliest starting time of ith smart appliance at jth residential hub
energy system sector (h)

MGrid Maximum capacity of bought power from grid (kWe)
�ch, Ther Charge efficiency of solar thermal storage system (%)
�dch, Ther Discharge efficiency of solar thermal storage system (%)
CAPTher Capacity of solar thermal storage system (kWhth)
Tmax Maximum operation temperature (ıC)
Tmin Minimum operation temperature (ıC)
Tamb

t Ambient temperature (ıC)
Hch, Ther, max Maximum charge rate of solar thermal storage (kWth)
Hdch, Ther, max Maximum discharge rate of solar thermal storage (kWth)

 storage Coefficient of solar thermal storage loss (scalar number)

 static Coefficient of static solar thermal storage loss (Scalar number)
Eunuse

t Unusable energy due to temperature limitation (kWh)
'solar

t Solar irradiation (W/m2)
Aapp Surface of solar thermal panel (m2)
�Ther Efficiency of solar thermal panel (%)
HDemand

j;t Heat demand (kWth)
	t Time interval duration (h)
�Grid

t Price of imported power from upstream grid (£/kWhe)
�export Cost of selling power to the upstream grid (£/kWhe)
�Gas Natural gas price (£/kWh)

Variables

PCHP
j;t Output power of CHP (kWe)

PBoiler
j;t Output power of boiler (kWth)

SOCelec
j;t State of charge of sub-batteries storage system (kWhe)

SOCTotalelec
t Total state of charge of battery storage system (kWhe)

CRelec
j;t Charge rate of battery storage system (kWe)

DRelec Discharge rate of battery storage system (kWe)
MCelec Maintenance cost of battery storage system (£/kWhe)
PImport

j;t Imported power from grid (kWe)

Pexport
j;t Exported power to grid (kWe)

Hstored
t State of charge of solar thermal storage (kWhth)

Hch;Ther
t Charge rate of solar thermal storage (kWth)

Hdch;Ther
j;t Discharge rate of solar thermal storage (kWth)

Hloss;Ther
t Heat loss rate of solar thermal storage (kWth)

Qt Amount of converted solar irradiation to heat (kWth)
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Binary Variable

Belec
j;t Binary variable: equal to 1 if battery storage is charged at time t;

otherwise 0
! j, i, t Binary variable: equal to 1 if ith appliances at jth residential hub energy

system sector is ON at time t; otherwise 0
BGrid

j;t Binary variable: equal to 1 if power is bought from grid at time t;
otherwise 0

Bch;ther
t Binary variable: equal to 1 if solar thermal storage is charged at time t;

otherwise 0
Bdch;ther

j;t Binary variable: equal to 1 if solar thermal storage is discharged at time
t; otherwise 0
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Chapter 5
Optimal Short-Term Scheduling
of Photovoltaic Powered Multi-chiller
Plants in the Presence of Demand
Response Programs

Farkhondeh Jabari and Behnam Mohammadi-Ivatloo

5.1 Motivation

During the extremely hot weather or sudden transient heat waves, air-conditioning
systems are the most common energy consumers in the different residential, com-
mercial, industrial, and administrative buildings especially in the tropical regions.
As obvious from Fig. 5.1, currently 30% of total electrical demand is assigned to
cooling air-conditioning applications.

In the meantime, use of solar radiations as primary energy resource in a multi-
chiller plant not only increases the economic savings in using non-renewable
petroleum products and mitigates pollutant emission productions of electric chillers,
but also supplies the heating demand of solar assisted absorption chillers and
reduces total electricity requirements of central air-conditioners significantly.

5.2 Literature Review

In the literature, some scholars have focused on optimal performance investigation
of multi-chiller plants using different evolutionary algorithms. In this context, an
improved ripple bee swarm optimization algorithm is proposed in [1, 2] to obtain the
economic chiller loading points. Using the features of biological communities, some
movement models are developed to minimize total energy requirements of cooling
towers and pumps within the feasible solution space. References [3–6] solved
the economic chiller dispatching problem using the particle swarm optimization

F. Jabari (�) · B. Mohammadi-Ivatloo
Department of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
e-mail: f.jabari@tabrizu.ac.ir; bmohammadi@tabrizu.ac.ir

© Springer International Publishing AG, part of Springer Nature 2018
B. Mohammadi-Ivatloo, F. Jabari (eds.), Operation, Planning,
and Analysis of Energy Storage Systems in Smart Energy Hubs,
https://doi.org/10.1007/978-3-319-75097-2_5

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75097-2_5&domain=pdf
mailto:f.jabari@tabrizu.ac.ir
mailto:bmohammadi@tabrizu.ac.ir
https://doi.org/10.1007/978-3-319-75097-2_5


104 F. Jabari and B. Mohammadi-Ivatloo

50
Demand (GW)

45

40

35

25

20

15

10

30

A/C is 30% of
on-peak
energy used

Residential A/C

Commercial A/C

Base load

Commercial
lighting

Air conditioning dominates summer energy use

6 a.m. 6 p.m.12 noon

Fig. 5.1 Typical electrical loads during extremely hot summer days

technique. A day-ahead optimal chiller dispatching problem is solved by Powell
et al. [7] and implemented on a benchmark district cooling system with and without
considering a thermal energy storage. In [8], differential cuckoo search algorithm
(DCSA) [9] based on obligate brood-parasitic behavior of some cuckoo species is
introduced to optimize the chiller loading design problem. Reference [10] simplifies
the complicated evolution process of the genetic algorithm (GA) for solving optimal
chiller loading using the evolution strategy (ES). Other search approaches such
as GA [11–14], simulated annealing (SA) [15, 16], differential evolution (DE)
[17], gradient method (GM) [18], Lagrangian method [19], empirical model [20],
artificial neural network (ANN) [21–25], firefly algorithm [26] have also been
proposed in the literature.

5.3 Problem Formulation

5.3.1 Multiple-Chiller Plant

As illustrated in Fig. 5.2, a multi-chiller plant consists of two or more chillers
connected in parallel or series piping to a distribution system [7, 17].
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Fig. 5.2 Schematic
presentation of a typical
CCHP system
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Chiller m
�

Cooling coils

Cooling coils
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Bypass pipe Flow sensor
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Secondary
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Multi-chiller unit

In the short-term economic dispatch of the multi-chiller plant, the total electrical
power consumed by the centrifugal chillers can be calculated as Eq. (5.1):

Pch
t D

NX

iD1

Ut
i �



˛i C ˇi � PLRt

i C �i � PLRt
i
2

C �i � PLRt
i
3
�

(5.1)

where N is the number of chillers; Ut
i is a binary decision variable that will be

equal to 1, if ith chiller is on; otherwise it will be 0; ˛i, ˇi, � i, � i are the coefficients
related to the operating characteristic of chiller i; PLRt

i is the partial load ratio (PLR)
of chiller i at time horizon t that is defined as relation (5.2).

PLRt
i D

Cooling load of chiller i at time t

Power consumption of chiller i at time t
(5.2)

Subject to:
Power balance criterion which can be stated by Eq. (5.3):

NX

iD1

�
Ut

i � PLRt
i � RTi

�
D CLtI 8t D 1; 2; : : : ; T (5.3)

where RTi is the Capacity of chiller i; CLt is the Total cooling demand at time t.

5.3.2 Solar Photovoltaic Cells

In the last decade, use of solar collectors such as flat plat collectors and evacuated
tube collectors for thermally driven solar cooling systems and photovoltaic cells
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to generate electricity for vapor compressing in air-conditioners is rapidly gaining
popularity due to nearly-zero carbon footprints. This chapter aims to present
optimal short-term dispatching of solar photovoltaic based multi-chiller plants in the
presence of time-of-use cooling-demand response programs. Use of solar irradiance
as primary energy source during extremely-hot summer days not only mitigate total
carbon footprints, but also reduces total energy consumptions of electrical chillers
from fossil fuels based non-renewable energy sources, specially by applying peak
clipping and valley filling demand response strategies on cooling demand. The
power output of a photovoltaic module can be calculated from Eq. (5.4) [27].

Ppv
t D �Sˆt

�
1 � 0:005 �

�
Ta

t � 25
��

(5.4)

where Ppv
t is the Power output of a photovoltaic panel; � is the Conversion coefficient

of a photovoltaic panel; S is the Array area of a photovoltaic module; ˆt is the Solar
irradiance; Ta

t is the Ambient temperature at time t.

5.3.3 Demand Response Programs

Demand response programs (DRPs) are defined as effective and practical solution to
change electrical energy utilization of consumers with respect to their usual power
consumption pattern [28]. The US Department of Energy (DOE) defined DRPs as
the capability of changing power consumption pattern of industrial, residential, and
commercial consumers considering changes in electrical energy price or incentive
payments [29]. Application of DRPs to electrical energy systems takes advantages
of modifying of market clearing price (MCP) [30], avoiding raising of power market
price over production cost as well as improving the performance of the markets
[31]. Moreover, employing DRPs is effective in helping the system reliability by
decreasing the rate of forced outages of the system [31]. In addition, the industrial
loads can rival in power market by incorporating demands in the market. DRPs
are mainly classified into time-based programs and incentive-based programs,
where the first category involves the programs based on power market pricing and
the second one aims to participate in the programs through financial incentives.
Applying time-of-use DRPs, end-users shift their electricity consumptions from
on-peak high-price hours to off-peak low-price periods. Time-of-use DRPs are
illustrated in Fig. 5.3. The dashed section of demand profile doesn’t participate in
DRPs, while the other one shifts a part of electricity load from mid-peak or on-peak
time intervals to off-peak hours.

CLt D CL0
t .1 � DRt/ C ldrt (5.5)

CL0
t � CLt D ldrt D DRt � CL0

t (5.6)
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Fig. 5.3 Participation of
cooling demand in
time-of-use DRP

0
t t tldr DR CL= ´

0 (1 )t tCL DR-

TX

tD1

ldrt D

TX

tD1

DRt � CL0
t (5.7)

CLinc
t � inct � CL0

t (5.8)

DRt � DRmax (5.9)

inct � incmax (5.10)

where CL0
t is the Initial demand which participates in time-of-use DRPs; CLt is

the Cooling demand after implementation of DRPs at time horizon t; DRt is the
Percentage of participation in DRPs at time t; ldrt is the Shifted demand at time t;
CLinc

t is the Increased demand at time t; inct is the Amount of load increase at time t;
DRmax is the Maximum value of load participation in DRP; incmax is the Maximum
value of load increase.

5.3.4 Objective Function and Constraints

In this chapter, total electricity procurement cost of a multi-chiller plant over the
study horizon should be minimized as follows:

Min
TX

tD1

�tP
grid
t (5.11)
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Subject to:

• Electrical power balance constraint

Pgrid
t C NpvPpv

t D Pch
t I 8t D 1; 2; : : : ; T

Constraints .5:1/–.5:10/
(5.12)

where Pgrid
t is the Purchased electrical power from upstream grid; Npv is the Number

of photovoltaic panels.

5.4 Illustrative Examples

5.4.1 Plant 1 with Six Chillers

In this section, four cases are studied for optimal dispatching of multi-chiller plants
1 and 2 in the presence of solar photovoltaic panels and demand response programs
as follows:

• Case 1: Without PVs and DRPs
• Case 2: With DRPs
• Case 3: With PVs
• Case 4: With PVs and DRPs

The problem is modeled as a mixed integer nonlinear program (MINLP) and
solved using SBB solver under general algebraic mathematical system (GAMS)
environment [32]. Figures 5.4 and 5.5 depict total cooling demand of a semiconduc-

Fig. 5.4 Cooling demand of a semiconductor factory located at Hsinchu Scientific Garden
(Taiwan) [11]
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Fig. 5.5 Hourly electricity rates over the study horizon from t D 7a.m. to t D 20

Fig. 5.6 Solar irradiance during a sample extremely-hot summer day

tor factory located at Hsinchu Scientific Garden (Taiwan) [11] and hourly electricity
rates [33, 34], respectively. In addition, Figs. 5.6, 5.7, and 5.8 illustrate the variations
of solar irradiance, ambient temperature, and power output of PV panels during a
sample extremely-hot summer day from t D 7a.m. to t D 20 [35]. Tables 5.1 and 5.2,
respectively, present all coefficients related to PV panels and operating characteristic
of six chillers plant 1 which participate in supplying the cooling demand.
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Fig. 5.7 Variations of ambient temperature from t D 7a.m. to t D 20

Fig. 5.8 Power output of photovoltaic panels from t D 7a.m. to t D 20

Table 5.1 Parameters of PV
panels [27]

Npv � S

400 0.187 2.5

Table 5.3 summarizes total electricity requirements of six chillers in their opti-
mum operating points. Considering DRmax D incmax D 0.15, the optimum operating
points of these chillers in cases 2 and 4 vary as reported in Table 5.4. Moreover, the
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Table 5.2 Chiller data for six units [11]

Chiller ˛i ˇi � i � i Chiller capacity (RT)

1 399.345 �122.12 770.46 0 1280
2 287.116 80.04 700.48 0 1280
3 �120.505 1525.99 �502.14 0 1280
4 �19.121 898.76 �98.15 0 1280
5 �95.029 1202.39 �352.16 0 1280
6 191.750 224.86 524.4 0 1280

Fig. 5.9 Variations of cooling demand before and after participation in time-of-use DRPs

variations of cooling load in four cases before and after implementation of time-of-
use DRPs are shown in Fig. 5.9.

As obvious from Fig. 5.9, time-of-use DRPs shift the cooling demand from
on-peak hours to other mid-peak and off-peak periods. Moreover, total energy pro-
curement cost of this multi-chiller plant in four cases with and without participation
of PVs and DRPs can be reported as Table 5.5. As expected, using the photovoltaic
panels and implementing the time-of-use DRPs on cooling demand reduces total
energy cost of multiple-chiller plants.

5.4.2 Plant 2 with Four Chillers

In this subsection, same cases are studied on another multi-chiller plant with four
units. The operating characteristics of four centrifugal chillers and total cooling
demand of a benchmark hotel building located in Ahvaz, Iran have, respectively,
been shown in Table 5.6 and Fig. 5.10. Solar radiations, ambient air temperature,
and electrical power generated by 400 photovoltaic cells during a severe-hot summer
day in Ahvaz, Iran are shown in Figs. 5.11, 5.12, and 5.13, respectively.
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Table 5.3 Economic loading points of six chillers in cases 1 and 3

CLt (kW) Chiller PLRt
i CLt (kW) Chiller PLRt

i

t D 7a.m. 1 0.937 t D 14 1 0.794
762 (kW) 2 0.463 6858 (kW) 2 0.729

3 0.081 3 1
4 0.021 4 1
5 0.081 5 1
6 0.412 6 0.836

t D 8a.m. 1 0.939 t D 15 1 0.703
933 (kW) 2 0.451 6445.8 (kW) 2 0.629

3 0.081 3 1
4 0.021 4 1
5 0.081 5 1
6 0.545 6 0.703

t D 9a.m. 1 0.941 t D 16 1 0.720
1080 (kW) 2 0.375 4618.6 (kW) 2 0.713

3 0.081 3 0.081
4 0.048 4 1
5 0.081 5 1
6 0.634 6 0.814

t D 10a.m. 1 0.720 t D 17 1 0.720
2752.5 (kW) 2 0.640 3304.5 (kW) 2 0.667

3 0.081 3 0.081
4 1 4 1
5 0.416 5 0.081
6 0.653 6 0.753

t D 11a.m. 1 0.720 t D 18 1 0.937
3024.6 (kW) 2 0.640 1275 (kW) 2 0.597

3 0.363 3 0.081
4 1 4 0.834
5 1 5 0.081
6 0.605 6 0.542

t D 12noon 1 0.665 t D 19 1 0.935
5092.9 (kW) 2 0.587 622 (kW) 2 0.406

3 0.081 3 0.081
4 1 4 0.021
5 1 5 0.081
6 0.646 6 0.303

t D 13 1 0.688 t D 20 1 0.931
6375.9 (kW) 2 0.613 264.5 (kW) 2 0.485

3 1 3 0.081
4 1 4 0.045
5 1 5 0.081
6 0.681 6 0.605
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Table 5.4 Economic loading points of six chillers in cases 2 and 4

CLt (kW) Chiller PLRt
i CLt (kW) Chiller PLRt

i

t D 7a.m. 1 0.951 t D 14 1 0.737
876.3 (kW) 2 0.504 6597.784 (kW) 2 0.666

3 0.081 3 1
4 0.021 4 1
5 0.081 5 1
6 0.501 6 0.752

t D 8a.m. 1 0.952 t D 15 1 0.749
1072.95 (kW) 2 0.508 5478.93 (kW) 2 0.68

3 0.081 3 0.081
4 0.041 4 1
5 0.081 5 1
6 0.635 6 0.77

t D 9a.m. 1 0.946 t D 16 1 0.712
1242 (kW) 2 0.559 5311.39 (kW) 2 0.639

3 0.081 3 0.081
4 0.808 4 1
5 0.081 5 1
6 0.561 6 0.716

t D 10a.m. 1 0.695 t D 17 1 0.639
3165.375 (kW) 2 0.424 3800.175 (kW) 2 0.559

3 0.081 3 0.081
4 0.921 4 1
5 1 5 0.081
6 0.47 6 0.609

t D 11a.m. 1 0.738 t D 18 1 0.693
3478.29 (kW) 2 0.38 1466.25 (kW) 2 0.52

3 0.081 3 0.081
4 1 4 0.983
5 1 5 0.081
6 0.636 6 0.535

t D 12noon 1 0.72 t D 19 1 0.952
4478.744 (kW) 2 0.666 715.3 (kW) 2 0.547

3 0.081 3 0.081
4 1 4 0.021
5 1 5 0.081
6 0.752 6 0.375

t D 13 1 0.737 t D 20 1 0.951
5421.637 (kW) 2 0.666 304.175 (kW) 2 0.215

3 0.081 3 0.081
4 1 4 0.076
5 1 5 0.081
6 0.752 6 0.605
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Table 5.5 Total energy cost
of six chillers in four cases

Case study Energy cost ($)

1 3212.22
2 3138.83
3 3043.40
4 2970.02

Table 5.6 Chiller data for four units of plant 2

Chiller ˛i ˇi � i � i Chiller capacity (RT)

1 104.09 166.57 �430.13 512.53 850
2 �67.15 1177.79 �2174.53 1456.53 1200
3 384.71 �779.13 1151.42 �63.2 1630
4 541.63 413.48 �3626.5 4021.41 1850

Fig. 5.10 [!t] Cooling demand of a hotel building located in Ahvaz, Iran before participation in
time-of-use DRPs

Table 5.7 summarizes total electricity requirements of four chillers in their
optimum operating points. Considering DRmax D incmax D 0.2, the optimum
operating points of these chillers in cases 2 and 4 vary as reported in Table
5.8. Moreover, the variations of hotel cooling load in four cases before and after
implementation of time-of-use DRPs are shown in Fig. 5.14.

As obvious from Fig. 5.14, time-of-use DRPs shift the cooling demand from
on-peak hours to other mid-peak and off-peak periods. Moreover, total energy pro-
curement cost of this multi-chiller plant in four cases with and without participation
of PVs and DRPs can be reported as Table 5.9. As expected, using the photovoltaic
cells and implementing the time-of-use DRPs on hotel cooling demand reduces total
energy cost of multiple-chiller plants.
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Fig. 5.11 Solar radiations during a severe-hot summer day in Ahvaz, Iran

Fig. 5.12 Climatic conditions over a sample summer day in Ahvaz, Iran

5.5 Concluding Remarks

In this chapter, short-term optimal scheduling of solar powered multi-chiller plants
was presented. As we know, total cooling demand directly depends on solar
irradiations in a way that when solar irradiance increases, the value of building
cooling demand in different residential, commercial, and industrial sectors will be
increased. Hence, use of solar energy for supplying total electricity requirement of
chillers will be a cost-effective way in comparison with other energy resources. This
is an interesting result indicating that if solar photovoltaic panels are employed to
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Fig. 5.13 Power output of photovoltaic panels from t D 7a.m. to t D 20

Table 5.7 Optimum loading points of four chillers in cases 1 and 3

CLt (kW) Chiller PLRt
i CLt (kW) Chiller PLRt

i

t D 7a.m. 2 0.064 t D 14 2 0.906
1150 (kW) 3 0.658 2540 (kW) 3 0.891
t D 8a.m. 2 0.064 t D 15 2 0.920
1300 (kW) 3 0.750 2610 (kW) 3 0.924
t D 9a.m. 2 0.064 t D 16 2 0.893
1400 (kW) 3 0.812 2470 (kW) 3 0.858
t D 10a.m. 2 0.715 t D 17 2 0.864
1740 (kW) 3 0.541 2330 (kW) 3 0.793
t D 11a.m. 2 0.762 t D 18 2 0.733
1900 (kW) 3 0.605 1800 (kW) 3 0.564
t D 12noon 2 0.788 t D 19 2 0.706
2000 (kW) 3 0.647 1710 (kW) 3 0.529
t D 13 2 0.873 t D 20 2 0.064
2370 (kW) 3 0.812 1380 (kW) 3 0.799

produce electricity for driving chiller equipment, higher coefficient of performance
for chillers will be attained and lower electricity cost will be paid while increasing
the amount of cooling demand. Moreover, it is demonstrated that use of photovoltaic
panels as renewable based power generation facilities and time-of-use demand
response programs for peak clipping reduces total electricity cost significantly.
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Table 5.8 Optimum loading points of four chillers in cases 2 and 4

CLt (kW) Chiller PLRt
i CLt (kW) Chiller PLRt

i

t D 7a.m. 2 0.064 t D 14 2 0.802
1437.5 (kW) 3 0.799 2036.4 (kW) 3 0.671
t D 8a.m. 2 0.064 t D 15 2 0.810
1569.2 (kW) 3 0.910 2036.4 (kW) 3 0.685
t D 9a.m. 2 0.064 t D 16 2 0.802
1569.2 (kW) 3 0.932 2036.4 (kW) 3 0.671
t D 10a.m. 2 0.802 t D 17 2 0.802
2036.4 (kW) 3 0.671 2036.4 (kW) 3 0.671
t D 11a.m. 2 0.802 t D 18 2 0.827
2036.4 (kW) 3 0.671 2250 (kW) 3 0.716
t D 12noon 2 0.802 t D 19 2 0.801
2036.4 (kW) 3 0.671 2137.5 (kW) 3 0.669
t D 13 2 0.802 t D 20 2 0.064
2036.4 (kW) 3 0.671 1445 (kW) 3 0.853

Fig. 5.14 Variations of cooling demand before and after participation in time-of-use DRPs

Table 5.9 Total energy cost
of four chillers in four cases

Case study Energy cost ($)

1 874.82
2 818.15
3 537.36
4 480.70

Nomenclature

˛i, ˇi, � i, � i Coefficients related to the operating characteristic of chiller i
� Conversion coefficient of a photovoltaic panel
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ˆt Solar irradiance
CLt Cooling demand after implementation of DRPs at time horizon t
CL0

t Initial demand which participates in time-of-use DRPs
N Number of chillers
Npv Number of photovoltaic panels
Pch

t Total electrical power consumed by all centrifugal chillers at time t
Ppv

t Power output of a photovoltaic panel
Pgrid

t Purchased electrical power from upstream grid
PLRt

i Partial load ratio (PLR) of chiller i at time horizon t
RTi Capacity of chiller i
S Array area of a photovoltaic module
Ut

i A binary decision variable that will be equal to 1, if ith chiller is on;
otherwise it will be 0

Ta
t Ambient temperature at time t
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24. Čongradac V, Kulić F (2012) Recognition of the importance of using artificial neural networks
and genetic algorithms to optimize chiller operation. Energy Build 47:651–658

25. Chang Y-C, Chen W-H (2009) Optimal chilled water temperature calculation of multiple chiller
systems using Hopfield neural network for saving energy. Energy 34(4):448–456

26. dos Santos Coelho L, Mariani VC (2013) Improved firefly algorithm approach applied to chiller
loading for energy conservation. Energy Build 59:273–278

27. Nguyen DT, Le LB (2014) Optimal bidding strategy for microgrids considering renewable
energy and building thermal dynamics. IEEE Trans Smart Grid 5(4):1608–1620

28. Kamyab F, Amini M, Sheykhha S, Hasanpour M, Jalali MM (2016) Demand response
program in smart grid using supply function bidding mechanism. IEEE Trans Smart Grid
7(3):1277–1284

29. Qdr Q (2006) Benefits of demand response in electricity markets and recommendations for
achieving them. US Department of Energy

30. Vlachos AG, Biskas PN (2013) Demand response in a real-time balancing market clearing with
pay-as-bid pricing. IEEE Trans Smart Grid 4(4):1966–1975

31. Strbac G (2008) Demand side management: benefits and challenges. Energy Policy
36(12):4419–4426

32. Brook A, Kendrick D, Meeraus A (1988) GAMS, a user’s guide. ACM Signum Newsl 23(3–
4):10–11

33. Jabari F, Nojavan S, Ivatloo BM (2016) Designing and optimizing a novel advanced adiabatic
compressed air energy storage and air source heat pump based �-combined cooling, heating
and power system. Energy 116:64–77

34. Jabari F, Nojavan S, Ivatloo BM, Sharifian MB (2016) Optimal short-term scheduling of a
novel tri-generation system in the presence of demand response programs and battery storage
system. Energy Convers Manag 122:95–108

35. Jabari F, Masoumi A, Mohammadi-ivatloo B (2017) Long-term solar irradiance forecasting
using feed-forward back-propagation neural network. In: 3rd international conference of IEA
technology and energy management. Shahid Beheshti University, Tehran



Chapter 6
Basic Open-Source Nonlinear Mixed
Integer Programming Based Dynamic
Economic Dispatch of Multi-chiller
Plants

Farkhondeh Jabari and Behnam Mohammadi-Ivatloo

6.1 Literature Review

In the literature, some scholars have focused on optimal performance investigation
of multi-chiller plants using different evolutionary algorithms. In this context, an
improved ripple bee swarm optimization algorithm is proposed in [1, 2] to obtain the
economic chiller loading points. Using the features of biological communities, some
movement models are developed to minimize total energy requirements of cooling
towers and pumps within the feasible solution space. References [3–6] solved
the economic chiller dispatching problem using the particle swarm optimization
technique. A day-ahead optimal chiller dispatching problem is solved by Powell et
al. [7] and implemented on a benchmark district cooling system with and without
considering a thermal energy storage. In [8], differential cuckoo search algorithm
(DCSA) [9] based on obligate brood-parasitic behavior of some cuckoo species is
introduced to optimize the chiller loading design problem. Reference [10] simplifies
the complicated evolution process of the genetic algorithm (GA) for solving optimal
chiller loading using the evolution strategy (ES). Other search approaches such
as GA [11–14], simulated annealing (SA) [15, 16], differential evolution (DE)
[17], gradient method (GM) [18], Lagrangian method [19], empirical model [20],
artificial neural network (ANN) [21–25], firefly algorithm [26] have also been
proposed.

This chapter develops a computationally efficient mixed integer nonlinear pro-
gramming framework for solving economic multi-chiller loading problem using
basic open-source nonlinear mixed integer programming (BONMIN) [27] solver
under general algebraic modeling system (GAMS) [28] environment.
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6.2 Problem Formulation

In the economic dispatching problem of a multi-chiller plant, total electrical power
consumed by all centrifugal chillers should be minimized as Eq. (6.1):

Objective D Min

(
TX

tD1

NX

iD1

Ut
i �

�
˛i C ˇi � PLRt

i C �i � PLRt2
i C �i � PLRt3

i

�
)

(6.1)

where N is the number of chillers; Ut
i is a binary decision variable that will be

equal to 1, if ith chiller is on; otherwise it will be 0; ˛i, ˇi, � i, � i are the coefficients
related to the operating characteristic of chiller i; PLRt

i is the partial load ratio (PLR)
of chiller i at time horizon t that is defined as relation (6.2).

PLRt
i D

Cooling load of chiller i at time t

Power consumption of chiller i at time t
(6.2)

Subject to power balance criterion which can be stated by Eq. (6.3):
NX

iD1

�
Ut

i � PLRt
i � RTi

�
D CLtI 8t D 1; 2; : : : ; T (6.3)

where RTi is the capacity of chiller i; CLt is the total cooling demand at time t.

6.3 Case Studies

In this section, three case studies are illustrated to demonstrate the speed and
the effectiveness of BONMIN solver in finding the optimum operating point of a
multiple-chiller system. Tables 6.1, 6.2, and 6.3 present all coefficients related to
the operating characteristic of chillers which are used in order to satisfy the cooling
demand of a semiconductor factory located at Hsinchu Scientific Garden (Taiwan)
[11, 13]. Multi-chiller plants of cases 1–3 composed of six 1280RT units, four units

Table 6.1 Chiller data for six units of case study 1

Chiller ˛i ˇi � i � i Chiller capacity (RT)

1 399.345 �122.12 770.46 0 1280
2 287.116 80.04 700.48 0 1280
3 �120.505 1525.99 �502.14 0 1280
4 �19.121 898.76 �98.15 0 1280
5 �95.029 1202.39 �352.16 0 1280
6 191.750 224.86 524.4 0 1280
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Table 6.2 Chiller data for four units of case study 2

Chiller ˛i ˇi � i � i Chiller capacity (RT)

1 104.09 166.57 �430.13 512.53 450
2 �67.15 1177.79 �2174.53 1456.53 450
3 384.71 �779.13 1151.42 �63.2 1000
4 541.63 413.48 �3626.5 4021.41 1000

Table 6.3 Chiller data for three units of case study 3

Chiller ˛i ˇi � i � i Chiller capacity (RT)

1 100.95 818.61 �973.43 788.55 800
2 66.598 606.34 �380.58 275.95 800
3 130.09 304.5 14.377 99.8 800

with two 450RT and two 1000RT chillers, and three 800RT units. A comprehensive
comparison between simulation results obtained from BONMIN solver and different
optimization techniques is presented in Tables 6.4, 6.5, 6.6, 6.7, 6.8, and 6.9. As
obvious from Tables 6.5, 6.7, and 6.9, total electricity requirements of multi-chiller
systems in three cases reduce significantly as these optimization problems are solved
using BONMIN tool under GAMS software.

6.4 Conclusion

In this chapter, day-ahead economic dispatch of three different multi-chiller plants is
solved using basic open-source nonlinear mixed integer programming solver under
GAMS software package. Compared with competitive heuristic algorithms, use of
BONMIN solver in finding optimal loading points of centrifugal chillers reduces
their electricity requirement significantly.

Nomenclature

˛i, ˇi, � i, � i Coefficients related to the operating characteristic of chiller i
CLt Cooling demand after implementation of DRPs at time horizon t
N Number of chillers
Pch

t Total electrical power consumed by all centrifugal chillers at time t
PLRt

i Partial load ratio (PLR) of chiller i at time horizon t
RTi Capacity of chiller i
Ut

i A binary decision variable that will be equal to 1, if ith chiller is on;
otherwise it will be 0
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Table 6.4 Simulation results of case study 1 obtained from BONMIN solver and different
optimization approaches

PLRt
i

CLt (kW) Chiller ALM [11] SA [15] PSO [6] ES [10] DCSA [8] BONMIN

6858 1 0.9 0.7789 0.8026 0.82 0.812726 0.794
2 0.9 0.7587 0.7799 0.75 0.749619 0.710
3 0.9 0.9791 0.9996 1 1 0.627
4 0.9 0.9781 0.9998 1 1 0.753
5 0.9 0.9820 0.9999 1 1 0.753
6 0.9 0.9265 0.8183 0.83 0.838559 0.729

6477 1 0.85 0.8051 0.7606 0.74 0.727731 0.637
2 0.85 0.6056 0.6555 0.64 0.656132 0.545
3 0.85 0.9689 1 1 1 0.687
4 0.85 0.9941 1 1 1 0.559
5 0.85 0.9866 1 1 1 1
6 0.85 0.7432 0.6835 0.72 0.716524 1

6096 1 0.8 0.5635 0.6591 0.64 0.642735 1
2 0.8 0.5743 0.5798 0.55 0.562645 1
3 0.8 0.9675 0.9991 1 1 1
4 0.8 0.9798 0.9979 0.9980 1 1
5 0.8 0.9845 0.9921 1 1 1
6 0.8 0.7338 0.5710 0.61 0.594490 1

5717 1 0.75 0.6140 0.7713 0.57 0.843697 1
2 0.75 0.4429 0.7177 0.46 0.783794 1
3 0.75 0.9891 0.3 1 0.000001 1
4 0.75 0.8867 0.9991 1 1 1
5 0.75 0.9841 1 1 1 1
6 0.75 0.5878 0.7187 0.47 0.883049 1

5334 1 0.7 0.6265 0.6418 0.63 0.749969 1
2 0.7 0.7403 0.6621 0.6 0.682477 0.836
3 0.7 0.3093 0.3301 0.3 0.000012 0.713
4 0.7 0.9546 0.9906 1 1 0.591
5 0.7 0.9511 0.9990 1 1 0.780
6 0.7 0.6250 0.5806 0.67 0.776363 0.609

Table 6.5 Comparison between objective function of case 1 obtained from BONMIN solver and
other search algorithms

Objective function (kW)
CLt (kW) ALM [11] SA [15] PSO [6] ES [10] DCSA [8] BONMIN

6858 (t D 12noon) 4916.93 4777.03 4739.53 4738.76 4738.575 4690.546
6477 (t D 1p.m.) 4635.22 4453.67 4423.04 4422.06 4421.649 4382.031
6096 (t D 2p.m.) 4358.71 4178.73 4147.69 4144.12 4143.706 4111.756
5717 (t D 3p.m.) 4087.42 3925.51 3921.07 3906.19 3840.055 3798.091
5334 (t D 4p.m.) 3821.34 3675.34 3642.55 3627.46 3507.270 3504.009
Total 21,820 21,010 20,874 20,839 20,651 20,486
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Table 6.6 Simulation results of case study 2 obtained from BONMIN solver and different
optimization approaches

PLRt
i

CLt (kW) Chiller GA [11] DE [17] PSO [3] DCSA [8] BONMIN

2610 (t D 12noon) 1 0.99 0.99 0.99 0.990988 0.946
2 0.95 0.91 0.91 0.905473 0.813
3 1 1 1 1 0.710
4 0.74 0.76 0.76 0.756593 0.730

2320 (t D 1p.m.) 1 0.86 0.83 0.83 0.828756 0.781
2 0.81 0.81 0.81 0.805457 0.781
3 0.88 0.90 0.90 0.896722 0.878
4 0.69 0.69 0.69 0.687883 0.796

2030 (t D 2p.m.) 1 0.66 0.73 0.73 0.773478 0.730
2 0.76 0.74 0.74 0.739801 0.782
3 0.76 0.72 0.72 0.721146 0.064
4 0.64 0.65 0.65 0.627878 0.064

1740 (t D 3p.m.) 1 0.6 0.6 0.6 0.767678 1
2 0.7 0.66 0.66 0.004531 0.868
3 0.57 0.56 0.56 0.746317 0.698
4 0.59 0.61 0.61 0.646189 0.727

1450 (t D 4p.m.) 1 0.6 0.61 0.61 0.515832 0.739
2 0.36 0 0 0.000001 0.515
3 0.44 0.57 0.57 0.610547 0.737
4 0.58 0.61 0.61 0.607328 0.682

1160 (t D 5p.m.) 1 0.33 0 0 0 0.643
2 0.32 0 0 0.000014 0.650
3 0.32 0.56 0.56 0.570369 0.653
4 0.54 0.6 0.6 0.589625 0.593

Table 6.7 Comparison between objective function of case 2 obtained from BONMIN solver and
other search algorithms

Objective function (kW)
CLt (kW) GA [11] DE [17] PSO [3] DCSA [8] BONMIN

2610 (t D 12noon) 1862.18 1857.3 1857.3 1857.299 1767.305
2320 (t D 1p.m.) 1457.23 1455.66 1455.66 1455.665 1404.411
2030 (t D 2p.m.) 1183.8 1178.14 1178.14 1178.137 1147.274
1740 (t D 3p.m.) 1001.62 998.53 998.53 942.183 980.747
1450 (t D 4p.m.) 907.72 820.07 820.07 753.004 807.006
1160 (t D 5p.m.) 856.3 651.07 651.07 583.923 630.303
Total 7268.9 6960.8 6960.8 6770.2 6737
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Table 6.8 Simulation results of case study 3 obtained from BONMIN solver and different
optimization approaches

PLRt
i

CLt (kW) Chiller GM [18] GA [13] DE [17] PSO [3] DCSA [8] BONMIN

2610 (t D 12noon) 1 0.73 0.81 0.73 0.73 0.725258 0.709
2 0.97 0.93 0.97 0.97 0.974742 0.649
3 1 0.96 1 1 1 0.587

1920 (t D 1p.m.) 1 0.66 0.7 0.66 0.66 0.659065 0.643
2 0.86 0.8 0.86 0.86 0.858458 0.643
3 0.88 0.9 0.88 0.88 0.882477 0.527

1680 (t D 2p.m.) 1 0.6 0.69 0.6 0.6 0.6 0.946
2 0.75 0.68 0.74 0.74 0.74 0.841
3 0.76 0.73 0.76 0.76 0.76 0.728

1440 (t D 3p.m.) 1 0.53 0.52 0 0 0 0.869
2 0.62 0.74 0.89 0.89 0.896314 0.728
3 0.65 0.54 0.91 0.91 0.903686 0.641

1200 (t D 4p.m.) 1 – 0.49 0 0 0 0.991
2 – 0.44 0.74 0.74 0.743026 0.862
3 – 0.57 0.76 0.76 0.756974 0.743

960 (t D 5p.m.) 1 – 0.31 0 0 0 0.895
2 – 0.32 0.57 0.57 0.536846 0.742
3 – 0.58 0.63 0.63 0.663154 0.649

Table 6.9 Comparison between objective function of case 3 obtained from BONMIN solver and
other search algorithms

Objective function (kW)
CLt (kW) GM [18] GA [13] DE [17] PSO [3] DCSA [8] BONMIN

2610 (t D 12noon) 1583.81 1590.96 1583.81 1583.81 1583.807 1549.365
1920 (t D 1p.m.) 1403.2 1406.02 1403.2 1403.2 1403.196 1376.431
1680 (t D 2p.m.) 1244.32 1250.06 1244.32 1244.32 1244.32 1223.531
1440 (t D 3p.m.) 1102.26 1107.75 993.6 993.6 993.602 972.879
1200 (t D 4p.m.) – 971.21 832.33 832.33 832.325 817.496
960 (t D 5p.m.) – 842.18 692.25 692.25 692.251 738.462
Total 3749.8 5577.2 5165.7 5165.7 5165.7 5128.8
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Chapter 7
Demand Response Participation
in Renewable Energy Hubs

Mohammad Mohammadi, Younes Noorollahi,
and Behnam Mohammadi-Ivatloo

7.1 Introduction

The optimal performance of a power system is based on the equivalence of power
production with power consumption and losses. In the power systems, operating
point is continuously changing. Therefore, the production level of power generator
units should be changed to balance production and consumption. These systems
have been the main power supply systems of the last century. In such structures,
responses to demand changes are made through a change in production plan and
supply side management. However, the use of large-scale and costly production
units in order to meet peak demands during the year is not a good choice. Because,
in addition to the high cost of these systems, this additional capacity is used only in
limited periods throughout the year and actually leads to capacity waste [1].

Nowadays, other options such as distributed energy resources (DER), especially
renewable energy sources (RES), energy storage systems (ESS), and DSM have
been introduced to replace current energy supply systems and have led to changes in
the structure of energy systems. The development of RES, especially as distributed
generation (DG) resources, has some serious problems, such as high investment
costs, geographical location dependency, fluctuating nature and precarious planning
of production, and the need for expensive equipment such as control systems [2].
ESS, despite their many advantages, such as facilitating the integration of RES, are
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still considered as expensive and under-study technology. On the other hand, all
of the above options are also based on changing the production plan based on the
demand and so supply side management. But among the above options, DSM is
a practical approach and an immediate solution that focuses on matching demand
with available resources.

In this regard, this chapter provides a brief introduction of DR programs.
Subsequently, an investigation is carried out on the implementation of DR programs
in the energy hub models in the literature. Finally, a mathematical modeling and
simulation of an energy hub are presented in the presence of DR programs and the
effects of these programs on the operational program of the energy hub have been
investigated.

7.2 DSM Concept

Demand-side energy management involves a series of interconnected activities
between the electricity utility and its customers in order to reduce network peaks and
energy consumption, as well as smoothing the consumption curve of the network in
order to provide more efficient and low cost energy for consumers. In the beginning,
consumption management was introduced as load management (LM) program to
reduce peak consumption. Gradually reducing consumer costs, resource allocation,
and reducing environmental pollution were introduced as other incentives for DSM.
By adapting these policies, the level of consumer comfort will not be reduced. In fact
by maintaining consumers’ level of comfort and well-being, they will consume less
energy, and/or the pattern of consumption will be changed. This leads to a reduction
in operation costs and it will also be possible to earn money. DSM is a widespread
concept that includes things like load growth, energy savings, energy efficiency, and
DR programs. Load growth refers to programs that are used to increase the level of
load through electricity supply in a strategic state. Energy savings refers to measures
that reduce energy consumption. Energy efficiency refers to programs aimed at
reducing energy consumption through specific systems on the consumption side
and typically without affecting the services provided. These programs reduce total
electricity consumption by replacing equipment with energy efficient technologies
in existing systems to produce the same share of services for subscribers.

According to the definition of the American Energy Academy, DR refers to
programs to change the pattern of electricity consumption by changing the pattern
of final consumers’ consumption by responding to a change in electricity prices
over time or incentive payments to encourage a reduction in electricity consumption
at a time when the wholesale market price is high or reliability of the system is
at risk [3]. DR programs lead to lower energy consumption at times when the
electricity price is high and it changes the pattern of consumer consumption and,
consequently, the load curve. Advantages of the presence of costumers in DR
programs include incentive payments, reduced billing, while enhancing system
reliability, better market performance, and lower infrastructure costs.
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7.2.1 DR Programs

In traditional systems, consumption management programs were used to overcome
some power system problems. DR programs were also part of these programs.
But after the restructuring of power systems, these programs were gradually set
aside due to inconsistencies with the nature of the market. But after some time
due to problems such as instability of price, re-implementation of consumption
management programs was again considered. This time these programs were
modified in such a way to fit the restructured power system. After restructuring of
the power system, DR programs have been one of the main parts of the consumption
management programs. Today, these programs are considered as an appropriate
solution to some of the problems of the power system.

DR includes approaches from DSM that are used to change customer con-
sumption due to price changes in the market. It should be noted that some such
programs were used in the traditional electricity system in the form of multi-
tariff meters. Different pricing for electricity causes two long-term and short-term
changes in consumption patterns. In the long term, the high price of electricity
will lead to savings in power consumption. If the tariffs difference between peak
and off-peak hours is high, consumers will be encouraged to install energy storage
and efficient devices in order to prevent the use of electrical energy during high-
price hours. Therefore, in the long term, the creation of various tariffs for power
consumption will increase the energy efficiency of the consumer. Also, in the short
term, some customers have the opportunity to reduce their consumption or shift
this consumption to low-cost hours. For example, an industrial consumer, if the
production at peak hours is not profitable due to the high price of electricity, decision
makers would be discouraged from producing goods during these hours.

In general, the main objective of DR is to reduce power consumption during
critical hours. Critical hours are the hours when the price of the wholesale market is
high or the system’s resiliency level is low due to accidental events such as outgoing
transmission lines and generators, or severe weather conditions. Two factors that
can lead to consumer responsiveness are the change in retail price of electricity
or the implementation of an incentive program to satisfy customers to reduce their
consumption during critical hours. This incentive is different from the normal price
paid for electricity. This incentive can be a payment to the consumer to reduce
the consumption, set a penalty for not reducing the load, or both. DR is in fact
a change in the behavior of loads in response to a stimulus. DR can appear in
the form of reprogramming of an industrial consumer production plan, reorient a
commercial customer’s heating system, or direct control of the electricity company
on the domestic water heater system. DR programs are widely used for lowering
cost of electric power utilities [4], increasing profit of retailers [5], increasing power
system voltage stability margin [6], increasing profit of energy hub owner [7], and
many other applications. Further discussions in the literature review section will be
presented separately.
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7.2.2 DR Programs Classification

DR programs can be divided into two main types including incentive-based (IB) and
price-based (PB). IB programs include LM programs and market-based programs
such as demand side bidding, capacity market, and ancillary services. PB programs
are based on dynamic pricing such as time of use (TOU) pricing, real time pricing
(RTP), and critical peak pricing (CPP). LM includes direct load control (DLC)
and interruptible load control (ILC). The DLC usually involves residential users
and refers to programs that can control a costumer load, such as home appliances,
through direct operator control. The ILC usually involves commercial and industrial
subscribers, and it refers to programs that can reduce peak load by interrupting cus-
tomers’ load at peak hours with direct control of the operator or subscribers’ actions
upon request from the operator. The above classification can be seen in Fig. 7.1.

Fig. 7.1 Classification of DR programs
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7.3 Literature Review

7.3.1 DR in Residential Energy Hubs

In many countries, the residential sector has a significant share of energy consump-
tion. However, due to significant losses in energy distribution systems, as well as
lack of responsive loads and energy efficiency equipment, energy management in
the residential sector is not appropriate and a significant share of energy in this
sector is wasted. For example, the share of the residential sector in United States
energy consumption is 22%, which 47% of this energy consumption are electricity
related losses in this sector [8]. On the other hand, energy prices are rising due to
issues such as energy resource constraints, increased demand, and the restructuring
of energy markets. Therefore, this section requires the use of alternative systems
and programs to increase efficiency.

In the residential sector, DSM can be one of the main options for the energy
management in buildings. However, the effective participation of residential loads in
DSM programs requires the management and optimal control of various equipment
in a residential building. Accordingly, we can classify residential loads into two
main groups of responsive loads and non-responsive loads, which can be seen in
Fig. 7.2.

In a residential building there are loads that have a large share in energy
consumption and, by an optimal controlling their consumption can be optimized
without affecting the consumer’s comfort. In the above category, equipment such
as a washing machine and a dishwasher that has a specific operating interval
and their operation can be shifted to another period of time, are considered as

Fig. 7.2 Classification of the smart home loads
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shiftable loads. Loads such as lights can be dimmed in critical situations, and can
be considered as curtailable loads. Another part of the loads can be disconnected
in critical conditions, and the consumption of them can be transferred to another
period, which is said to be interruptible loads. The plugin electric vehicle (PEV)
charging is considered as an interruptible load. The regulating loads are loads that
can be programmed to operate within a range of operations with a slight deviation
from the defined level. Heating and cooling loads are considered as examples of this
category. However, depending on the operating range and the simulation steps, the
classification can vary for each of these loads [9].

Optimizing a residential building with CHP and PEV in the form of an energy
hub to participate in DR programs with TOU pricing has been investigated in [10].
The effects of the presence of responsive and non-responsive loads are studied in this
energy hub. The results showed that when the energy hub is not responsive, optimal
energy production planning is the only way to participate in the DR program. In this
case, during high energy price hours, CHP production will be increased to reduce
electricity purchases. In the presence of responsive loads, the possibility of load
shifting can also be provided and the operating costs of subscribers will be reduced.
A similar optimal operational plan for an energy hub within the framework of a
combined cooling, heat and power (CCHP) system for participating in DR programs
can also be found in [11].

One of the technologies that can lead to more effective participation of the energy
hubs in DR programs is energy storage system, and in particular potential storage
devices such as PEVs. Options such as aggregation, two-way communication with
the network and vehicle to grid (V2G), in addition to solving the problems of
charging electric cars, will enable PEVs to be used to improve the network’s
sustainability. A model for optimizing the performance of a residential energy hub
with PV, PEV, and ESS has been presented in [12]. Optimization results in this
study showed that optimal control of PV and responsive loads in the presence of
ESS and taking into account the ability of V2G for PEV lead to peak shaving and
lower operating costs for the energy hub. Optimization of the performance of a
CCHP in the form of an energy hub model for participation in the DR program is
investigated in [13]. The results of this study showed that the use of thermal storage
and PEV for participation in the DR program lead to peak shaving, increasing the
CCHP’s contribution in demand supply and thus reducing the operating costs of the
energy hub.

A comprehensive modeling framework for optimal management of a smart
energy hub with the goal of minimizing energy costs, peak demand and emission
has been presented in [14]. In this study, consumer preferences and also weather
and electricity price forecasts are considered in modeling. The results of this study
showed that optimizing the performance of a residential house in Ontario, Canada
has led to a 15% drop in peak demand, and a reduction of 45% in total energy costs.

In summary, home energy management systems can be modeled in the frame-
work of energy hub models, which improve the performance of these systems and
benefiting from the benefits of concepts such as DSM, DER, and smart energy
systems. The integrated management of home energy system in the framework of
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the energy hub facilitates the participation of houses in DR programs and also,
integration with multi-energy systems (MES) and smart grid becomes easier, which
improves the performance and efficiency of home energy system [15].

7.3.2 DR in Commercial Energy Hubs

A large part of the world’s energy is consumed in buildings. Buildings worldwide
account for 40% of total primary energy consumption and are responsible for one
third of greenhouse gas emissions [16]. Therefore, energy efficiency in this sector
can have a major impact on reducing energy consumption and emissions. Commer-
cial buildings that can include service, office, and entertainment buildings are among
the largest buildings in the world that have significant energy consumption. The
energy supply of this building in the past was mainly done through purchasing from
energy networks. However, today factors such as rising energy prices, restructuring
in energy markets, and finding efficient DG resources have led to an increase in
the share of DER in supplying energy demand for commercial buildings. RES and
multi-generation systems have been most used in commercial buildings.

One of the main features of commercial buildings is that they have large energy
consumers and most of their energy consumption is related to lighting, heating and
ventilation and air conditioning (HVAC) systems. Therefore, controlling these loads
can greatly improve the energy efficiency of the building [17]. On the other hand,
the pattern of consumption of these major loads is usually predictable. The energy
consumption in commercial buildings follows a daily, monthly, and even seasonal
pattern. For example, energy consumption in an office building has two patterns of
weekday and weekend patterns, which energy consumes for the whole year follow
from these two patterns. This feature represents the high potential of energy systems
in commercial buildings to manage demand and participate in DR programs. Also,
as mentioned, the existence of DER such as CHP, PV, wind turbine, fuel cell will
improve the performance of commercial buildings in DR programs.

On the other hand, ESS performance in commercial buildings can be better than
residential buildings. Peak demand in commercial buildings occurs throughout the
day, and DER such as PV can produce their most energy during these hours. In this
case, the use of ESS is minimized, and the active participation in DSM programs and
the energy stored in them can be used to sell to the network and generate revenue.

An energy management system for the optimal operation of a commercial
building in the framework of energy hub with the aim of minimizing the cost,
increasing efficiency, and reducing emissions has been presented in [18]. The results
showed that by combining different technologies and integrated management of the
building energy systems, building’s peak demand and energy cost is reduced while
the lower emissions are obtained.

In the commercial buildings, an integrated system for energy management
is required to make optimal scheduling, successful participation in the DSM
programs and benefit from the smart grids advantages. This integrated management
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leads to lower cost, peak shaving, reducing environmental impact and successful
participation in DR programs which reveals a great potential for application of
energy hubs models in this sector.

7.3.3 DR in Industrial Energy Hubs

The industrial sector is the driving force behind the development of each country,
and it is usually responsible for the most energy consumption and greenhouse
gas emissions. According to the EIA report, in 2010, 52% of the world’s energy
consumption has been happened in the industrial sector and this energy consumption
rises by an annual rate of 1.4% from 2010 to 2040 [19]. Demand in the industrial
sector, with the growth of industrialization, the rise of new industrial countries and
consumption growth in the developing countries is quickly growing.

Therefore, energy management in this sector is essential and can have a huge
impact on reducing consumption and optimizing the use of existing resources.
Implementing DSM programs, especially DR, in the industrial sector can be a good
option for energy efficiency improvement in this sector, but the implementation of
these programs in this section is always faced with serious challenges. The existence
of various flows, such as the raw materials along with the energy flow, as well as
the need to maintain the balance of production with the demand and quality of
manufactured goods, and the problems of maintaining the competitiveness of the
production unit in the industrial sector are the main problems of implementing DR
programs.

In this regard, an integrated management framework is essential for the optimal
management of various systems and technologies in an industrial unit. The use
of RES in industrial units and their contribution to DSM programs have been
studied in [20]. In this study, wind turbines provide part of the energy demand of
two industrial units, and these units have the ability to manage their demand in
the content of various DSM programs. The results of this study showed that the
participation of industrial units in DR programs has led to an increase in the share
of wind power in supplying energy and the shift in demand to low energy price
hours. Short-term scheduling of industrial cogeneration system in the presence of
DR programs is studied in [21] without consideration of uncertainties. Optimization
of the performance of a cogeneration industrial unit is formulated in [22] for
participation in DR programs and the exchange of electricity and heat with adjacent
systems in a stochastic environment. The risk constrained scheduling of industrial
heat and power systems is proposed in [23]. Stochastic scheduling of industrial
CHP systems with DR and RES is provided in [24]. An operational optimization
model for an oxygen production unit for participation in DR programs and the day-
ahead electricity market was presented in [25]. The results showed that optimal
participation in DR programs result in a load shifting to low energy price hours that
leads to a reduction in unit’s costs and an improvement in network reliability. In
this study, only the implementation of Passive DR programs is considered, and the
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implementation of such models on a large number of business subscribers can lead
to create new peak demand in the network.

In a passive DR program usually power supply companies provide a general
model for energy pricing regardless of the type of consumers and their consumption
behavior information. This can lead to a transmission of a large part of consumer
demand to off-peak and low prices periods and creation of new peaks in the system
which reduces the benefits of DR. To avoid this issue, consumption patterns of each
consumption sectors must be considered and DR programs should be presented
based on a detailed categories of consumers which results in an active DR program.
On the other hand, the number of industry consumers is usually less than other
sectors and the assessment of their behavior and so the implementation of active DR
in the industrial sector can be easier. A model of the active DR program based on
dynamic pricing for industrial consumers has been provided in [26]. An agent-based
approach for modeling the behavior of consumers to participate in DR programs and
choose the best behavioral pattern considering various industrial processes for the
three cement plant has been presented. The results showed that the implementation
of active DR results in lower peak demand in the industrial units and in the whole
system load curve is more smoother than passive DR.

Therefore, it can be said that to optimize the performance of industrial units
several purposes can be considered such as lower costs, increase profits, reduce
primary energy consumption and raw materials, reduce waste, reduce environmental
impacts, and so on. These objectives can be achieved by different methods.
One solution is the use of distributed energy resources such as DG, especially
cogeneration and RES, as well as ESS. Moreover, demand scheduling can be used to
manage energy, raw material consumption and waste. In addition, DR can be used to
reduce system costs and participation in energy markets. Planning all this together
requires an integrated management system in the form of an energy hub model.

7.3.4 DR in Agricultural Energy Hubs

Energy in agriculture plays an important role, and energy efficiency in the agricul-
tural sector has a direct impact on sustainability and food security in each country.
Therefore, optimum use of energy in agriculture plays a major role in agricultural
sector productivity [27]. On the other hand, increased demand for food and the
growth of the use of mechanized equipment in agriculture have led to an increase
in demand for energy in agriculture. A significant portion of this energy demand
is supplied through fossil fuels. However, agricultural farms are usually located in
remote areas and there is a high potential for using DER and especially RES in these
areas. The use of DER in the agricultural sector can prevent the expansion of energy
distribution systems to these areas that leads to lower costs and energy losses. Also,
the use of RES, in addition to supplying energy demand of farms, can also help to
solve environmental problems.
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In addition to the need to expand the use of DER and, in particular, the RES
in the agricultural sector, intelligent technologies can be used to optimize farm
management. Using intelligent technologies in the content of a smart energy system
can be achieved by optimal measurement, control and management, which can
increase the efficiency, reliability, and optimal utilization of energy sources.

On the other hand, energy consumption in agriculture is increasing due to factors
such as lack of productivity, growth of technology, and automated mechanism and
the need for more food in the world.

Despite the high potential in the farms for energy supply from RES, unfortu-
nately, still the largest share of energy production in the agricultural sector is related
to the fossil fuels. The waste of agricultural products is a good source for the
production of renewable fuels such as biogas, bioethanol, and biodiesel which can
be used in CHP to supply energy of farm and even selling excess power. Compared
to other sectors, less attention has been paid to the use of RES in the agricultural
sector. While agricultural farms are usually in remote areas and there is a great
potential for the use of RES to avoid the high costs and losses of energy transfer to
these areas.

In addition to the RES integration, one important strategy that has attracted a
lot of attention recently is the use of smart technology especially smart meters in
the agricultural sector. Smart grid, with improved monitoring, control and metering,
improves the efficiency, sustainability, reliability, and optimal distribution of the
energy resources. Using smart technology is not limited to the smart grid and
the development of these concepts in the agricultural sector led to the creation
of concepts like smart farms, smart agriculture, and precision agriculture. So in
the agricultural sector, the information and communication technology can be
used for the monitoring and collecting information about the physical condition
of products and farm in order to classify the process, decision-making, statistical
reports, forecasting, etc. A variety of the wireless technologies and their applications
in various agricultural sectors can be found in [28]. A framework for the application
of smart systems in the form of wireless systems for smart farms in order to help
the farmers for real-time control of the production, reporting, statistical information
in the context of the smart grid is presented in [29]. A model for the integration
of the smart grids and smart farm with an emphasis on information management
systems has been studied in [30]. It is a model of a smart farm that includes a waste-
based CHP that can exchange power with the smart electricity grid. The use of the
precision agriculture features and communication between the farm and smart grid
results in improved farm planning, optimal exchanges with the power grid and even
participate in energy markets and the DSM programs. According to our knowledge,
there is no comprehensive model in literature for optimal performance of smart
farms to manage their energy systems and energy exchange with neighboring
systems particularly in the content of DSM programs. Due to the ability of the
energy hub in the communicating between energy systems in the presence of various
energy carriers, there is a good potential for smart farms modeling in the form of
smart agricultural energy hubs.
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7.4 Energy Hub Modeling

In order to investigate the effects of DR programs in energy hub models, this
study attempts to use a complete model of energy hub that has inputs, converters,
and storages to meet different demands. A schematic representation of the studied
energy hub can be seen in Fig. 7.3. This energy hub is powered by electricity and
natural gas networks and wind power. Transformer, converters, CHP, and boiler
are used to convert different energy carriers. Electrical and thermal storages are
selected as ESS in this energy hub. In demand side, demands for electricity, heat, and
natural gas is considered for this hub. Also DR capabilities for electricity demand
are included in this model.

7.4.1 Objective Function

In the model presented for energy hubs, cost, reliability, and environmental indi-
cators are included in the objective function. The proposed objective function is
formulated based on the cost of purchasing energy from various networks, revenue
from electricity sales to the network, cost for charging and discharging electrical
and thermal storages, DR costs, emission costs, and reliability indicators. In this
chapter, the objective function in a deterministic environment is optimized to
minimize operational costs in a one-day time horizon under the influence of different
constraints. The objective function of the optimal management problem of the
proposed energy hub can be considered as follows:

Fig. 7.3 A schematic representation of the studied energy hub
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In the above objective function, energy purchases from different networks
(electrical energy and natural gas) are included in the respective costs �e

N(t) and �N
g

respectively, for electricity and natural gas networks. Also, in this objective function,
Pe

N(t) can have positive and negative values and the energy hub has the potential to
sell power and earn money. The cost of purchasing wind power Pe

W (t) is at a price
of �e

W , which in this study the wind turbine is belonging to the energy hub and the
purchase price of zero for wind power is considered. In the case of energy storage
devices, the operating costs for charging Pe

ch(t), Ph
ch(t) and discharging Pe

dis(t),
Ph

dis(t) are considered with the corresponding unit costs �e
S and �h

S for electric
and thermal storages, respectively. In addition, operating costs Pe

shup(t) and Pe
shdo(t)

for the load shift are modeled at unit cost �e
DR in the form of another operating cost

for the energy hub. The penalty for not-supplied demand Pe
ENS(t) and Ph

ENS(t) is
priced with �e

ENS and �h
ENS for electrical and thermal demands, respectively, to

include reliability indicators in the management of energy hub. Finally, the cost of
CO2, SO2, and NO2 emissions for the grid, boiler, and CHP is taken into account in
the final statement of the objective function. The above objective function is affected
by various constraints, which are described below.

7.4.2 Operational Constraints

The optimal performance of an energy hub requires consideration of various
constraints that their satisfaction will provide the optimal operation for the system.
Each of these constraints is stated separately below.

7.4.2.1 Demand Constraints

The power equilibrium constraints for supplying electrical, thermal, and natural gas
demands can be formulated as follows:
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(7.4)

Electricity demand Ped(t) in Eq. (7.2) is achieved by using wind power Pe
W (t)

through a wind turbine with accessibility AW , [31] and its converter efficiency �C.
CHP provides electricity by burning gas with an efficiency of �echp. Part of the
electric demand can be reduced (Pe

shdo(t)) or increased (Pe
shdo(t)) with demand

shifts to other timescales, which allows the participation of energy hub in DR
programs. An electrical storage device is used to store additional power Pe

ch(t)
and discharge it Pe

dis(t) to supply the demand. The remaining electrical demand is
provided by purchasing electricity from the network Pe

N(t) with availability ACHP,
[31] and transformer efficiency �T .

Thermal demand in the Eq. (7.3) will be provided through CHP with availability
ACHP [32] and the gas-to-heat conversion efficiency �hchp. Boiler with efficiency �B

is used as a backup system to provide heat demand. Thermal storage is considered
for charging Ph

ch(t) in case of excess production and discharge Ph
dis(t) to meet

demand. The gas demand Pgd(t) for energy hub in Eq. (7.4) is achieved by direct
purchasing from the gas network Pg

N(t) and after deducting the amount of gas
consumed in CHP, Pg

NCHP(t), and boiler Pg
NB(t).

7.4.2.2 Network Constraints

In the purchase from electricity and gas networks, the restrictions are considered
which can be formulated with Eqs. (7.5) and (7.6).

�Pe
N max � Pe

N.t/ � Pe
N max (7.5)

�Pe
N max � Pe

N.t/ � Pe
N max (7.6)

7.4.2.3 Converters Constraints

The components of the energy hub in this study have certain installed capacities.
Converters such as CHP, boiler, and transformer have their own output limitations,
which are imposed through Eqs. (7.7)–(7.9) to the objective function.

�TPe
N.t/ � PT (7.7)

�TPe
N.t/ � PT (7.8)
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�BPg
NB.t/ � PB (7.9)

7.4.2.4 ESS Constraints

In the proposed energy hub model, the storage systems are modeled accurately,
taking into account cases such as power losses and operational constraints [33].
Such modeling can be seen in Eqs. (7.10)–(7.15).

Pe
S.t/ D Pe

S .t � 1/ C �e
chPe

ch.t/ �
Pe

dis.t/

�e
dis

� Pe
loss.t/ (7.10)

Pe
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maxPe
SC (7.12)
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maxPe

SCIe
ch.t/ (7.13)

˛e
minPe

SCIe
dis.t/ � Pe

dis.t/ � ˛e
maxPe

SCIe
dis.t/ (7.14)

0 � Ie
ch.t/ C Ie

dis.t/ � 1 (7.15)

Equation (7.10) indicates the state of charging of the energy storage in each time
step, which is a function of its charging level in the previous step, the charge rate,
discharge rate, and the amount of losses in that time step. The amount of losses of the
electrical storage in each step can be obtained from Eq. (7.11). The minimum and
maximum limits for the charge level of the storage are applied through Eq. (7.12).
The limits for charging and discharging power can be found in Eqs. (7.13) and
(7.14). The binary variables Ie

ch(t) and Ie
dis(t) are defined for the non-simultaneous

charging and discharging at each time step, so at any time maximum one of them
can accept a value of 1. This constraint is applied through Eq. (7.15).

By applying the same constraints to the thermal storage, Eqs. (7.16)–(7.21) are
formulated as follows:

Ph
S.t/ D Ph

S .t � 1/ C �h
chPh

ch.t/ �
Ph

dis.t/

�h
dis

� Ph
loss.t/ (7.16)

Ph
loss.t/ D ˛h

lossPh
S.t/ (7.17)
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0 � Ih
ch.t/ C Ih

dis.t/ � 1 (7.21)

7.4.2.5 DR Constraints

Responsive load can be shifted from peak demand and higher-priced periods to non-
peak and low cost periods. In this regard, DR program for shifting part of the energy
hub electrical load in the presence of a real-time pricing schedule can be formulated
as follows [34]:

24X

tD1

Pe
shup.t/ D

24X

tD1

Pe
shdo.t/ (7.22)

0 � Pe
shup.t/ � LPFshupPed.t/Ie

shup.t/ (7.23)

0 � Pe
shdo.t/ � LPFshdoPed.t/Ie

shdo.t/ (7.24)

0 � Ie
shup.t/ C Ie

shdo.t/ � 1 (7.25)

The demand shift program in Eq. (7.22) for shifting up Pe
shup(t) or shifting down

Pe
shdo(t) a part of (LPFshup, LPFshdo) the electrical demand Ped(t) should be applied

in such a way that the sum of the shift up and shift down loads is equal in the
simulation horizon. Binary variables Ie

shup(t) and Ie
shup(t) are defined in order to

avoid the simultaneous reduction or increase in load at any time step.

7.4.3 Wind Turbine Model

In wind turbines, the power generated from them is a function of wind speed. The
power output of a wind turbine can be determined by its power curve. This curve
shows the amount of power produced at different wind speeds. An example of this
power curve can be seen in Fig. 7.4. A wind turbine starts producing power at cut-in
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Fig. 7.4 Power curve of wind turbine

wind speed Vci and its power is stopped at cut-out wind speeds Vco because of safety
issues. The nominal power Pr is produced when the wind speed is within the rated
speed Vr range to the upper limit of the speed. A nonlinear relationship between
power generation and wind speed can be found in the range of cut-in wind speed up
to the rated speed.

Therefore, the following relation can be derived for the wind turbine output by
wind speed [35].

Wav.t/ D Pr
�

8
<

:

A C B�Vw.t/ C C�Vw.t/2 Vci � Vw.t/ � Vr

1 Vr � Vw.t/ � Vco

0 otherwise
(7.26)

In the above relation, the coefficients A, B, and C can be obtained from the
following relationships.

A D
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7.5 Simulation Results

The energy hub presented in Fig. 7.3 is optimized based on the minimization of
operating costs. In this study, the effects of DR programs are evaluated in five
different cases. In the first and second cases the impact of the presence of the energy
hub in the DR program is assessed subject to a relatively high price for natural gas.
In the third and fourth cases, low prices are assumed for natural gas, and optimal
operating schedule for the energy hub is provided with and without participating
in DR programs. In the fifth scenario, CHP is eliminated from the energy hub, and
the effect of the interaction of different carriers is examined in the presence of DR
program. Various cases are listed in Table 7.1.

Different demands for electricity, heat and natural gas for the energy hub are
shown in Fig. 7.5. Also, hourly electricity price and hourly wind speed are shown
in Figs. 7.6 and 7.7, respectively.

The values of the input parameters and other assumptions for the optimal energy
hub management problem can be found in Table 7.2.

Table 7.1 Different cases for
studding the participation of
the energy hub in DR
program

Cases Energy hub structure

Case 1 High gas price—without DR
Case 2 High gas price—with DR
Case 3 Low gas price—without DR
Case 4 Low gas price—with DR
Case 5 Energy hub without CHP

Fig. 7.5 The energy hub electricity, heat and natural gas demands
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Fig. 7.6 The hourly electricity price

Fig. 7.7 The hourly wind speed

The problem of optimizing the energy hub in the presence of DR program is
a MILP model that has been solved in the GAMS software using the CPLEX
solving algorithm. Numerical results for different cases separately are discussed in
the following sections.
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Table 7.2 The values of the input parameters and other assumptions for the optimal energy hub
management problem

Parameter Unit Value Parameter Unit Value

˛e
loss – 0.02 EFCHPCO2

em kg/kWh 0.412
˛h

loss – 0.02 EFCHPSO2
em kg/kWh 0.008

˛e
min – 0.1 EFCHPNO2

em kg/kWh 0.000112
˛e

max – 0.9 EFBCO2
em kg/kWh 0.617

˛h
min – 0.1 EFBSO2

em kg/kWh 0.011
˛h

max – 0.9 EFBNO2
em kg/kWh 0.000284

�e
ch – 0.9 eELFmax kg/kWh 0.05

�e
dis – 0.9 EFNCO2

em kg/kWh 0.424
�h

ch – 0.9 EFNSO2
em kg/kWh 0.00226

�h
dis – 0.9 EFNNO2

em kg/kWh 0.000925
�C – 0.9 �e

ENS /kWh₡ 4000
�T – 0.9 �h

ENS /kWh₡ 4000
�eCHP – 0.4 �e

S /kWh₡ 2
�hCHP – 0.35 �e

W /kWh₡ 0
�B – 0.85 �CO2

em /kg₡ 0.014
ACHP – 0.96 �SO2

em /kg₡ 0.99
Ae

N – 0.99 �NO2
em /kg₡ 4.2

AW – 0.96 �g
N /kWh₡ 2, 6

LPFshup – 0.3 �h
S /kWh₡ 2

LPFshdo – 0.3 �e
DR /kWh₡ 2

A – 0.0311 Pe
Nmax kW 400

B – �0.0776 Pg
Nmax kW 2000

C – 0.0174 PT kW 600
Pr kW 300 PB kW 1800
Vr m/s 10 PCHP kW 300
Vci m/s 4 Pe

SC kW 300
Vco m/s 22 Ph

SC kW 300

7.5.1 Numerical Results for Case 1

In this case, the price of natural gas is considered to be relatively expensive, and the
energy hub should pay 6 cents for each kilowatt of purchased gas from the network.
In this case the energy hub has CHP, which is the main supplier of electrical and
thermal demands and the electricity and boiler network are considered as a backup
system for CHP. The numerical results of this case can be seen in Table 7.3. This
table actually represents the optimal operating schedule for the performance of the
energy hub during a day.

In this case, the energy hub has two independent power generation technologies
(CHP and wind turbines). The existence of CHP in the system allows for the sale
of excess electricity to the network. In the table above, the negative values for the
power exchanged with the network is the sale of this power to the network. However,
at some hours, because of the high price of natural gas, the energy hub does not use
CHP and purchasing electricity from the grid provides power deficit.
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Table 7.3 Optimal operation schedule of the energy hub in case 1

t PN
e PCHP

e PW
e Pch

e Pdis
e PN

g Pch
h Pdis

h PB
h

1 400 139.1 6.8 34 0 561.8 35.7 0 79.8
2 383.2 0 0 0 0 294.6 0 0 159.8
3 265 0 23.4 45.9 0 295.6 0 0 160.4
4 400 0 0 188.7 0 318.8 0 0 178.3
5 239.7 0 0 33.3 0 440.2 0 0 277
6 �189.2 384 0 0 0 1222 0 0 79.9
7 �121.3 379.9 0 0 0 1131.4 0 0 0
8 �26.1 384 0 0 0 1166.8 58.4 0 0
9 �89.3 384 109.5 0 0 1167.6 55.4 0 0
10 �54.5 384 179.3 0 0 1274.3 0 88.6 94.8
11 202.3 232 130.3 0 0 763.4 0 0 0
12 �63 384 272.8 0 0 1166.9 0 0 7.6
13 �33.3 256.5 400 0 0 822.3 0 0 0
14 �39.8 230.9 400 0 0 738.4 0 0 0
15 42.4 220.3 400 33.3 0 712 0 0 0
16 �51.3 371.2 302.5 0 0 1113 75.2 0 0
17 155.9 384 195.3 0 0 1135 122.1 0 0
18 �159.6 384 380.9 0 209.3 1133.1 75.7 0 0
19 349.3 384 158.9 0 0 1132.4 0 207.1 0
20 379.4 360.8 181.5 0 0 1068.9 0 0 0
21 208 320 400 0 0 963.4 0 0 0
22 383.1 255.5 233.4 0 0 793 0 0 0
23 364 302 94.3 0 0 913.2 33.3 0 0
24 400 167.4 0 0 0 559.3 0 33.6 1
P

t 3344.9 6307.6 3868.9 335.2 209.3 20,887.4 455.8 329.3 1038.6

The existence of a wind turbine in the energy hub will allow the generation of
local power from RES and the possibility to sell more energy to the network will
provided in the energy hub. Given the limited capacity of CHP, in the absence of a
turbine, the sale of electrical energy to the grid is only possible in the early hours
of the day when demand is low. However, with the addition of a wind turbine, it
is possible to sell energy during the day and even in the afternoon, when the price
of electricity in the market is higher than it in the early hours of the day. As a
result, energy sales go higher and with higher price, resulting in higher energy hub
revenues.

An electrical storage has been used alongside the wind turbine to reduce the
intermittent effects of this source on the performance of the hub energy and to better
match the power production with the pattern of consumption. The electrical storage
charges at off-peak hours and discharge at a time when there is the highest electricity
price in the electricity market (18:00) and provides a significant part of the electricity
demand at this hour. So CHP and wind turbine produce maximum power at peak
hours, and the highest electrical storage discharges occur in these hours. The set of
these factors makes the energy hub cover all its demand at the network peak hour
and even sell excess energy to the network at the highest price.
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Table 7.4 Optimal operation schedule of the energy hub in case 2

t PN
e PCHP

e Pch
e Pdis

e Pshup
e Pshdo

e PN
g Pch

h Pdis
h PB

h

1 400 230.3 34 0 91.2 0 705.4 35.7 0 0
2 400 87.4 0 0 102.4 0 432.3 0 0 83.3
3 400 0 103.1 0 63.1 0 295.6 0 0 160.4
4 400 29.5 167.9 0 50.3 0 365.3 0 0 152.4
5 263 0 0 0 54.1 0 440.2 0 0 277
6 �116.7 384 0 0 64.6 0 1222 0 0 79.9
7 �69.9 379.9 0 0 45.8 0 1131.4 0 0 0
8 �26.1 384 0 0 0 0 1166.8 58.4 0 0
9 �89.3 384 0 0 0 0 1167.6 55.4 0 0
10 �54.5 384 0 0 0 0 1274.3 0 88.6 94.8
11 202.3 232 0 0 0 0 763.4 0 0 0
12 �63 384 0 0 0 0 1166.9 0 0 7.6
13 �33.3 256.5 0 0 0 0 822.3 0 0 0
14 �39.8 230.9 0 0 0 0 738.4 0 0 0
15 5 220.3 0 0 0 0 712 0 0 0
16 �39.5 360.6 0 0 0 0 1085.6 66 0 0
17 �77 384 0 0 0 207.5 1135 122.1 0 0
18 �394.6 384 0 184.6 0 234 1133.1 75.7 0 0
19 69 384 0 0 0 249.8 1132.4 0 207.1 0
20 379.4 360.8 0 0 0 0 1068.9 0 0 0
21 400 320 0 0 171.1 0 963.4 0 0 0
22 400 255.5 0 0 15.1 0 793 0 0 0
23 400 263.9 0 0 0 6 814 0 0 0
24 400 206.9 0 0 39.6 0 661.2 0 0 0
P

t 3115 6506.5 305 184.6 697.3 697.3 21,190.5 413.3 295.7 855.4

In order to meet the demand for heat, the boiler provides deficits in the hours
when the CHP is unable to meet all demand. Also, in times when the demand for
heat is not high, the excess energy is stored in the storage, and at peak periods
the storage supplies the part of the heat demand by discharging, resulting in lower
operating costs for the energy hub. The total operating cost of the energy hub in this
case is 15,5767.3 Euro cents. In the next case, the effects of adding DR capabilities
to the energy hub are assessed.

7.5.2 Numerical Results for Case 2

The difference between this case and the previous case is in the energy hub
capability to participate in DR program. The numerical results of this case are
presented in Table 7.4.
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Fig. 7.8 Power exchanged with the network in cases 1 and 2

In this case, the possibility of shifting the load makes the energy hub shift part
of its demand from peak hours to off-peak hours. As a result, the demand of energy
hub decreases during peak hours and increases in off-peak hours. This makes the
energy hub buy less electricity from the network at peak hours and even with the
available energy generation resources, energy hub can sell its extra energy to the
network at some peak hours. On the other hand, this shift of load will increase the
use of CHP in off-peak hours and part of the added demand in these hours can be
provided through CHP. This will increase gas purchases from the network. As shown
in Tables 7.3 and 7.4, the amount of gas purchased from the network has increased
from 30,521.1 kW in case 1 to 30,911.2 kW in case 2. The schematic representation
of the above concepts can be seen in Figs. 7.8 and 7.9. These figures represent the
power exchanged with the grid and the amount of power produced by the CHP.

As can be seen, due to the demand shift to off-peak hours, the amount of CHP
production increased during hours 1, 2, 4, and 24. The effects of this load shift on
the power exchanged with the network curve can be seen as increasing the purchase
from the network at hours 2, 3, 21, and 22, as well as reducing sales to the network
at hours 6 and 7. The demand shift and demand drop in peak hours led to the sale
of power to the network at hour 17, increased sales to the network at hour 18, and
reduced purchases from the network at hour 19. The set of these factors cause the
operating costs of the hub energy to be 15,270.2 Euro cents that is less than the
first case.
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Fig. 7.9 Power produced by the CHP in cases 1 and 2

7.5.3 Numerical Results for Case 3

In this case, the price of natural gas is lower than electricity in all hours of the day. In
addition, the energy hub does not have the ability to participate in DR programs and
all demand must be met according to the requested pattern. The optimal operating
schedule for the energy hub is shown in Table 7.5.

A remarkable point about this case compared to case 1 is the significant increase
in the use of CHP due to the low price of natural gas compared to electricity. In
this case, the energy hub with the ability of using different energy carriers uses
cheaper energy carriers to supply a specific demand. As can be seen in the table,
the amount of electricity produced by CHP in this case is 7823.7 kW, which has
increased 1516.1 kW compared to case 1. This increase in the use of CHP leads to
an increase in gas purchases from the network about 2799 kW compared to the first
case. This increase can be seen in Fig. 7.10. As seen in the figure, the amount of gas
purchased from the network has increased over most hours of the day.

Another point is the reduction of boiler production. With the increase of CHP
production, the need for auxiliary source is reduced and the use of boilers is
minimized. Also, with the increase in thermal energy produced by CHP, the use
of thermal storage also increases sharply. This is due to matching the production of
CHP with the thermal demand pattern. In this case, the heat storage is recharged at
different times of the day when the CHP production is more than heat demand and,
when required, by discharging provides a significant part of the thermal demand and
minimizes the use of boilers. As can be seen in Tables 7.5 and 7.3, the charge and
discharge power of the heat storage is more than twice as large as the cases 1. The
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Table 7.5 Optimal operation schedule of the energy hub in case 3

t Pe
N Pe

CHP Pe
W Pe

ch Pe
dis Pg

N Ph
ch Ph

dis Ph
B

1 125.5 384 6.8 34.3 0 1105.7 170.2 0 0
2 178.2 182.7 0 0 0 582.3 0 0 0
3 7.7 183.3 23.4 0 0 584.3 0 0 0
4 262.2 203.7 0 269.7 0 639.6 0 0 0
5 �228.6 384 0 0 0 1114.4 59 0 0
6 �189.2 384 0 0 0 1128 0 79.9 0
7 �121.3 379.9 0 0 0 1131.4 0 0 0
8 �26.1 384 0 0 0 1166.8 58.4 0 0
9 �89.3 384 109.5 0 0 1167.6 55.4 0 0
10 �54.5 384 179.3 0 0 1226 0 129.7 53.7
11 202.3 232 130.3 0 0 763.4 0 0 0
12 �63 384 272.8 0 0 1166.9 0 0 7.6
13 1.3 225.7 400 0 0 742 0 27 0
14 �211.6 384 400 0 0 1137.1 134 0 0
15 �171.2 377.2 400 0 0 1120.8 137.4 0 0
16 244.1 108 302.5 0 0 427.6 0 155.1 0
17 155.9 384 195.3 0 0 1135 122.1 0 0
18 �131.9 384 380.9 0 184.6 1133.1 75.7 0 0
19 349.3 384 158.9 0 0 1132.4 0 207.1 0
20 379.4 360.8 181.5 0 0 1068.9 0 0 0
21 136.2 384 400 0 0 1130 56 0 0
22 238.8 384 233.4 0 0 1127.7 112.5 0 0
23 285.9 371.5 94.3 0 0 1094.3 94.2 0 0
24 355.6 206.9 0 0 0 661.2 0 0 0
P

t 1635.7 7823.7 3868.9 304 184.6 23,686.5 1074.9 598.8 61.3

shift of energy carrier to natural gas and its further use will reduce the dependence on
the electricity grid and make less purchase from the electricity network. For a better
comparison, see Fig. 7.11. This figure shows how to exchange electrical power with
the network in cases 1 and 3.

It is clearly seen in this figure that purchases from the electricity grid have
decreased, especially in the early and last hours of the day. This is due to the fact that
at case 1 at these hours the cost of producing power from natural gas was higher than
electricity, and the energy hub purchased electricity from the electricity grid. But in
case 3, with the decline in natural gas prices, demand for these hours is provided
through CHP and a fraction of this demand is purchased from the network. More
power generation by CHP makes it possible to sell electricity to the grid even during
the mid-day hours. Reducing dependence on the power grid, increasing the use of
more affordable energy carrier, and better performance of ESS in this case has led
to a dramatic reduction in the operating costs of the energy hub and reaching it to
65,094.2 Euro cents. In the next case, the effect of DR participation is investigated
in the presence of a low-cost energy carrier (natural gas).
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Fig. 7.10 The amount of natural gas purchased from the network in cases 1 and 3

Fig. 7.11 Power exchanged with the network in cases 1 and 3
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Table 7.6 Optimal operation schedule of the energy hub in case 4

t Pe
N Pe

CHP Pe
ch Pe

dis Pe
shup Pe

shdo Pg
N Ph

ch Ph
dis Ph

B

1 282.9 384 34.3 0 140.2 0 1105.7 170.2 0 0
2 293.1 182.7 0 0 102.4 0 582.3 0 0 0
3 78.5 183.3 0 0 63.1 0 584.3 0 0 0
4 318.7 203.7 269.7 0 50.3 0 639.6 0 0 0
5 �167.9 384 0 0 54.1 0 1114.4 59 0 0
6 �116.7 384 0 0 64.6 0 1128 0 79.9 0
7 �121.3 379.9 0 0 0 0 1131.4 0 0 0
8 �26.1 384 0 0 0 0 1166.8 58.4 0 0
9 �89.3 384 0 0 0 0 1167.6 55.4 0 0
10 �54.5 384 0 0 0 0 1226 0 129.7 53.7
11 202.3 232 0 0 0 0 763.4 0 0 0
12 �63 384 0 0 0 0 1166.9 0 0 7.6
13 1.3 225.7 0 0 0 0 742 0 27 0
14 �211.6 384 0 0 0 0 1137.1 134 0 0
15 �171.2 377.2 0 0 0 0 1120.8 137.4 0 0
16 167.5 108 0 0 0 68.3 427.6 0 155.1 0
17 �77 384 0 0 0 207.5 1135 122.1 0 0
18 �394.6 384 0 184.6 0 234 1133.1 75.7 0 0
19 69 384 0 0 0 249.8 1132.4 0 207.1 0
20 379.4 360.8 0 0 0 0 1068.9 0 0 0
21 136.2 384 0 0 0 0 1130 56 0 0
22 400 384 0 0 143.6 0 1127.7 112.5 0 0
23 400 371.5 0 0 101.6 0 1094.3 94.2 0 0
24 400 206.9 0 0 39.6 0 661.2 0 0 0
P

t 1635.7 7823.7 304 184.6 759.5 759.6 23,686.5 1074.9 598.8 61.3

7.5.4 Numerical Results for Case 4

In this case an affordable price is considered for natural gas, but the DR capability
is only applied to electrical demand. The optimal operating schedule for the energy
hub in this case can be found in Table 7.6.

In this case, as in case 2, part of the electricity demand is reduced in network
peak hours and is transmitted to off-peak hours. The effects of demand shifts on the
demand curve for electrical energy in cases 2 and 4 can be seen in Fig. 7.12.

The demand shifts reduce the purchase from the network at peak hours and even
sell more electrical energy to the network at some of these hours. The electric power
exchange curve with the network can be seen in Fig. 7.13. As shown in this figure,
the demand reduction in peak hours as well as the existence of distributed generation
sources such as CHP and wind turbine will make it possible for the energy hub
not only to reduce purchase from the network during the peak hours, but also to
sell excess electric power to the network and earn revenue. This will reduce the
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Fig. 7.12 Effect of the DR program on the electricity demand of the energy hub

Fig. 7.13 Power exchanged with the network in cases 3 and 4

network’s peak load and increase its stability. This shifted demand is provided in
off-peak hours and leads to lower operational costs for the system. This amount
is 61,395.5 cents for case 4, which is the smallest amount among the tested cases
so far.
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Fig. 7.14 Power exchanged with the network in cases 2 and 4

Another point can be found in comparing the power exchanged with the network
in cases 2 and 4. Figure 7.14 shows this exchanged power. In both cases, energy hub
participate in DR programs and demand shifts lead to increased purchases from the
network at off-peak hours. But, due to lower prices for natural gas and the energy
hub tendency to use cheaper energy carriers the purchase of electricity from the
network in case 4 is less than case 2.

7.5.5 Numerical Results for Case 5

In this case, we assume that the studied energy hub does not have CHP and supplies
its electricity through wind turbine and electricity network. Thermal energy will be
supplied through the boiler. In fact, in this case, the integration between different
networks through various energy carriers is lost, and shortage of power generation
units for supplying different demand must be purchased directly from the relevant
network. In the following, we compare this case with previous cases in two high and
low prices for natural gas. Figure 7.15 shows how to exchange electrical power with
the network in case 5 and in comparison with cases 1 and 2. In case 5, without
the implementation of DR program, the highest electricity purchasing coincides
with the peak price of the electricity (peak demand in the network) and leads to
an increase in the network’s peak demand and increased costumer operating costs.
However, with the addition of DR capability and demand shifts to off-peak hours,
electricity purchases from the network at peak hours are reduced. However, at peak
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Fig. 7.15 Power exchanged with the network in cases 1, 2, and 5

hours, the system is still dependent on purchasing power from the network, and it
pays a lot of money for supplying demand in expensive hours. By adding CHP to
the system and the possibility of switching between different energy carriers, energy
purchases from the network are significantly reduced. Even at peak hours, energy
hub not only does not buy power from the network, but also sells electricity at the
highest price. The energy hub participation in DR program in this case will lead to
more electricity sales to the grid during high price hours and more purchases in low
price hours that reduce the operating costs.

Reducing the dependence on the electricity grid due to the use of CHP leads to
an increase in the purchase from the gas network, which can be seen in Fig. 7.16.

As can be seen in the figure, with the addition of CHP, gas purchases from the
network are significantly increased. In the early hours of the day witch the price
of natural gas is not significantly different from the electricity price, adding CHP
has little effect on purchasing gas from the network. But with increasing electricity
prices during the day, the desire of the energy hub increases to meet its demand from
a cheaper carrier, and power generated by CHP and as a result purchasing gas from
the network increases. If the electricity exchange curve for low gas price mode is
considered in the form of Fig. 7.17, it can be seen that the electricity purchase from
the grid in the case of using CHP is lower than the case of eliminating CHP at all
hours of the day.

In general, it can be said that due to the shift of the load to low-cost periods and
because of the use of natural gas for electricity production, the consumption curve in
this case becomes flattened. Also, despite the increase in gas consumption in peak
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Fig. 7.16 Natural gas purchased from the network in cases 1, 2, and 5

Fig. 7.17 Power exchanged with the network in cases 3, 4, and 5

hours of electricity consumption, along with the reduction of electricity purchase
from the grid during these hours, the cost of customers’ energy bill decreases. Also
on the side of the companies, the daily costs of the electricity grid are reduced due
to the flattened curve and lower production and transmission costs, while the profit
of the gas company increases due to more natural gas sales. As a result, it can be
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said that the implementation of DR programs in the content of smart energy hubs
leads to lower costs for consumers while maintaining their comfort and increasing
utilities’ profits, while also reducing peak demand and flattening the shape of the
demand curve.

7.6 Conclusion

In this chapter, the effects of participating the renewable energy hubs in DR
programs have been evaluated. For this purpose, a brief overview of the research
carried out in the field of using DR programs in residential, commercial, industrial,
and agricultural energy hubs has been done. In the residential sector, concepts such
as smart homes using energy management and control systems as well as the use
of DER have led to more responsiveness of these loads and more participation in
DSM programs. Most of the research on modeling DR programs in the content
of energy hubs has been done in this section. In the commercial sector, with the
existence of huge loads such as HVAC and lighting systems, the optimal control
of these loads and participation in DSM programs will have a huge impact on
energy efficiency, reducing subscriber’s energy costs. In the industrial sector, despite
the more predictability of the demand for this sector than other sectors, problems
such as the difficulty of change in the production plan, the existence of various
energy flows and raw materials, the high initial costs for using DER have led to
difficulty of implementation of DR programs in this section. In this section, more
incentive and supportive policies are needed to increase energy efficiency and DER
especially RES implementation and participate in DR programs. In the agricultural
sector, the use of smart equipment in managing farms has a significant impact on
reducing operational costs and product quality. On the other hand, the existence
of agricultural production units such as greenhouses leads to a great potential for
energy management and participation in DR programs. All of these require an
integrated energy management system that is one of the main functions of the
energy hub. Therefore, there is a high potential for using energy hub models in
different consumption sectors for energy consumption management and more active
participation in DSM and network management programs.

In order to clarify the discussed concepts, a complete simulation of a renewable
energy hub is presented in the presence of DR. The results show that in the
smart energy hubs that utilize different energy production and storage technologies,
the consumer that participates in DR programs has the ability to switch between
different energy carriers and technologies along with load shifting and interrupting.
Therefore, it has more flexibility to operate in DR programs and it can get more
benefits. Even if the customers want to receive the same level of previous service
and maintains its level of comfort and simultaneously participates in DR programs,
they can use from switching between different energy carriers technologies instead
of shifting their demand. As a result, it can be said that the implementation of DR
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programs in the content of smart energy hubs leads to lower costs for consumers
while maintaining their comfort and increasing utilities’ profits, while also reducing
peak demand and flattening the shape of the demand curve.
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Chapter 8
Supply Side Management
in Renewable Energy Hubs

Sayyad Nojavan, Majid Majidi, Afshin Najafi-Ghalelou, and Kazem Zare

8.1 Introduction

Energy as the most vital issue in the current century can be discussed from various
viewpoints like efficiency, economy, reliability, etc. As an appropriate option for
such mentioned goals, hub energy system can be used in power systems. Hub
energy systems including integrated renewable [1, 2] and non-renewable generation
units [3–5] can be employed to efficiently supply energy demands [6, 7] along with
satisfying economic and environmental goals [6, 8].

8.1.1 Literature Review

Previously, hub energy systems have been studied and their summaries are briefly
presented in the following:

In order to solve power flow problem of hub energy system in [9], heuristic based
optimization algorithm called time varying acceleration coefficient-gravitational
search algorithm is employed. With the aim of minimizing total operation cost
of hub energy system, robust based optimization approach is used in [10]. Using
energy hub concept, steady-states in microgrids have been studied in [11]. Multi-
carrier energy system has been optimally planned and scheduled in the presence of
renewable generation units in [12]. With the aim of improving energy efficiency,
energy hub concept including various local generation units has been implemented
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in [13]. Optimal economic operation of energy hub system has been evaluated in
[14]. Energy hub concept has been implemented in [15] to create a decentralized
and integrated energy system in neighborhoods. Using stochastic programming in
[16], optimum performance of energy hub system under uncertainties has been
evaluated. Economic dispatch problem of multi-carrier energy system has been
studied using coefficient-gravitational search algorithm in [17]. Energy hub system
has been investigated form viewpoint of reliability in [18, 19]. Techniques used for
analyzing hub energy systems have been reviewed in [20]. Optimum operation of
energy hub system has been evaluated with respect to energy balance limitation in
[21]. Similar problem has been studied considering dynamic and time-of-use pricing
in [22]. Optimum performance of multi-carrier energy system has been evaluated in
the presence of demand response and thermal storage in [23]. Optimum operation
of energy hub system embedded in a smart home has been investigated in [24, 25].
Optimum impact of heating networks on the operation of energy hub system has
been investigated in [26].

Supply side management tools have been also interesting topics for various
researchers. Different options can be employed as the supply side management
tool in generation systems and one of them is energy storage system. Energy
storage systems are various. From viewpoint of discharging time, storage systems
are categorized into two groups: storage systems with short discharging time up
to a few hours like batteries, flywheels, super magnetic energy storage, and super
capacitors and the second group is the systems with long discharging time up to a
day like compressed air energy storage system (CAES) and pumped hydro storage
system. So, it can be concluded that CAES and pumped hydro are the only available
mature energy storage systems with large-scale storage capacity. Using energy in
off-peak time periods, CAES compresses air and later in peak time periods, stored
compressed air is used to produce electric power. It should be mentioned that due to
large scale size of storage capacity in CAES, this storage system is a suitable option
for economic goals [27, 28].

In this chapter, a multi-objective model has been proposed for eco-emission
operation of renewable-based hub energy system in the presence of CAES and
DRP. Compressed air energy storage system (CAES) has been used as a supply side
management tool to handle severe uncertainties created by renewable generation
units in the hub energy system. In addition to CAES, demand response program has
been employed to improve economic and environmental operation of renewable-
based hub energy system.

8.1.2 Novelty and Contributions of This Research

Summarizing mentioned explanations above, novelty and contributions of this
chapter can be expressed as follows:
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• Optimum eco-emission operation of renewable-based hub energy system.
• Implementation of CAES as a supply side management for further improvement

of economic and environmental performance of renewable-based hub energy
system.

• Implementation of DRP for total cost and emission reduction of renewable-based
hub energy system.

8.2 Problem Formulation

In this section, eco-emission performance of hub renewable-based energy system
has been investigated in which compressed air storage system has been employed as
a supply side management tool to handle uncertainties of renewable units. Proposed
optimum eco-emission performance of renewable-based energy hub system in the
presence of compressed air energy storage system and demand response program
has been mathematically investigated in the following sections.

8.2.1 Objective Functions

In the proposed scheme, there are two confliction objective functions to be
minimized which are total operation cost and emission of renewable-based hub
energy system. Total operation cost of renewable-based energy hub system in the
presence of DRP and CAES is presented through Eqs. (8.1)–(8.10).

Min ˆ1 D Total cost D Cnet C CWind C CBS C CDR C CEx C CTS C CBo
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Cost of purchased power from upstream network (8.2) plus the cost of wind-
turbine generation (8.3) plus the operation cost of battery and thermal storage
systems including charge/discharge costs (8.4) and (8.5) plus the cost of DRP (8.6)
plus the operation cost of CHP and boiler (8.7) and (8.8) plus the cost of purchased
water (8.9) and cost/revenue of exchanged power (8.10) result the total operation
cost of renewable-based hub energy system to be minimized (8.1).

Due to utilization of CHP system and boiler in hub energy system as well as
due to gas consumption in residential section and also because of burning fossil
fuels in power plants which power is later transferred to the hub system, this
system emits three types of pollutants, namely CO2, SO2, and NOx. In order to
satisfy environmental concerns, these emissions should be minimized. The objective
function related to environmental operation of renewable-based energy hub system
is presented in detail through Eqs. (8.11)–(8.15).
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8.2.2 Electrical Model

One of the energy demands due to be supplied by renewable-based hub energy
system is electrical demand. Electrical demand which is capable of participating
in DRP should be satisfied through generation of wind-turbine, CHP system,
purchased power from upstream network and discharged power of battery and
compressed air energy storage systems (8.16).
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8.2.2.1 Model of Upstream Network

Each transmission system has its own components with their specific technical
characteristics for power transmission which should be taken into account. Imported
power from upstream network should be within the nominal capacity of transformer
connecting renewable-based hub system to the upstream network (8.17).
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8.2.2.2 Model of Renewable Energy Sources

In order to generate clean energy and reduce total cost and emission of energy
hub system, wind-turbine has been used as a renewable generation unit to satisfy
both economic and environmental objectives. Generation pattern according to which
wind-turbine produces electrical power is presented in Eq. (8.18)
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8.2.2.3 Model of Battery Storage

Two types of electrical storage systems with specific characteristics have been
employed in renewable-based energy hub system to handle uncertainties of gen-
eration. In this section, limitations of battery storage system have been presented
through (8.19)–(8.24).
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c � Ich;e
t

�e
ch

� pch;e
t �

˛e
max � Cst;e

c � Ich;e
t

�e
ch

(8.21)

˛e
min � Cst;e

c � Idis;e
t � �e

dis � pdis;e
t � ˛e

max � Cst;e
c � Idis;e

t � �e
dis (8.22)

ploss;e
t D ˛e

loss � Cst;e
t (8.23)

Ich;e
t C Idis;e

t � 1 (8.24)

Available stored energy level of battery storage is presented by (8.19). Lim-
itations of available energy, charge and discharge power of battery storage are
presented through Eqs. (8.20), (8.21), and (8.22), respectively. Battery storage
energy loss is presented by Eq. (8.23). Finally, simultaneous charge and discharge
of battery is restricted by Eq. (8.24).

8.2.3 Thermal Model

Heating is another type of energy demands due to be supplied by renewable-based
energy hub system. Using generated heat by boiler and CHP system as well as
released heat from thermal storage system, heating demand is satisfied (8.25).

ph
t D

h
�B

gh � gB
t

i
C
h
ACHP � �CHP

gh � gCHP
t

i
C
�
pdis;h

t � pch;h
t

�
(8.25)
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8.2.3.1 Model of Thermal Storage

Besides battery and compressed air energy storage systems which have been
embedded in electrical section, thermal energy storage system has been used
in thermal section to handle excess generated heat by CHP system and boiler.
Limitations of employed thermal storage are presented through Eqs. (8.26)–(8.31).

Cst;h
t D Cst;h

t�1 C pch;h
t � �h

ch � pdis;h
t =�h

dis � ploss;h
t (8.26)

˛h
min � Cst;h

c � Cst;h
t � ˛h

max � Cst;h
c (8.27)

˛h
min � Cst;h

c � Ich;h
t

�h
ch

� pch;h
t �

˛h
max � Cst;h

c � Ich;h
t

�h
ch

(8.28)

˛h
min � Cst;h

c � Idis;h
t � �h

dis � pdis;h
t � ˛h

max � Cst;h
c � Idis;h

t � �h
dis (8.29)

ploss;h
t D ˛h

loss � Cst;h
t (8.30)

Ich;h
t C Idis;h

t � 1 (8.31)

Stored energy level of thermal energy storage system is expressed by Eq. (8.26).
Limitation of available heat and input as well as released heat of thermal storage
system is expressed through Eqs. (8.27)–(8.29). Loss of heat inside the thermal
energy storage system is expressed by Eq. (8.30). Heat injection and discharge
to/from thermal energy storage system cannot occur at the same time which is
expressed by (8.31).

8.2.3.2 Model of Gas network

The need for gas in CHP and boiler plus the gas demand in consumption side
necessitates gas import from gas network. Imported gas is divided into three parts for
various applications mentioned above (8.32). It should be that imported gas should
be within the nominal capacity which has been set for gas network (8.33).

gnet
t D gB

t C gCHP
t C gl

t (8.31)

gnet
min � gnet

t � gnet
max (8.32)
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8.2.3.3 Model of CHP system

As a common rule in each generation unit, total produced energy by each generating
system should be under the systems nominal capacity. According to this definition,
total generated electric power by CHP system should be less than its nominal capac-
ity (8.33). It should be noted that since heat generation of CHP system is a function
of its electrical generation, therefore by satisfying Eq. (8.33), heat generation by
CHP system will be kept under nominal heat generation capacity of CHP.

�CHP
ge � gCHP

t � pCHP
c (8.33)

8.2.3.4 Model of Boiler

Boiler is the only energy resource in thermal section which responsibility is only
heat generation. Produced heat by this unit is constrained through Eq. (8.34).

�B
gh � gB

t � pB
c (8.34)

8.2.4 Compressed Air Energy Storage System Model

In this section, model of employed CAES is presented. The air injected to the
CAES is presented by Eq. (8.35). Generated electric power by CAES is presented
by (8.36). Stored air in the CAES which is later pumped to the combustion chamber
is mathematically modeled by (8.37) and (8.38), respectively. In order to limit
operation mode of CAES which is either pumping mode or storage mode, Eq. (8.39)
is employed. Available air in the CEAS is expressed and limited by Eqs. (8.40) and
(8.41), respectively.

V inj
t D � inj � Pc;p

t (8.35)

Pc;s
t D �p � Vp

t (8.36)

V inj
min � uinj � V inj

t � V inj
max � uinj (8.37)

Vp
min � up � Vp

t � Vp
max � up (8.38)

uinj C up � 1 (8.39)
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At D At�1 C V inj
t � Vp

t (8.40)

Amin
t � At � Amax

t (8.41)

8.2.5 Demand Response Program

As n new concept in energy markets, electrical consumers can participate in
demand response programs to reduce their costs. By participating in these programs,
consumers undertake to shift their energy demand from peak time periods to off-
peak time periods. One of the common programs included in DRP is time-of-use
rates (TOU) of DRP has been implemented [5, 29–31]. According to TOU, new
electrical load is equal to the primary load plus the variable load. These variables
can be either positive or negative meaning decrease or increase of load. The amount
of increase or decrease of load which is percentage of load participation in DRP
should be under a predefined limitation. Also, simultaneous increase and decrease
of load is not allowed.

Summary of explanations given above is mathematically presented through Eqs.
(8.42)–(8.45).

pel;DRP
t D pel

t C pshup;e
t � pshdo;e

t (8.42)

0 � pshup;e
t � LPFshup;e � pl

t � Ishup;e
t (8.43)

0 � pshdo;e
t � LPFshdo;e � pl

t � Ishdo;e
t (8.44)

Ishup;e
t C Ishdo;e

t � 1 (8.45)

8.2.6 Model of Water Network

As the last type of energy demand, water consumer in demand side is provided
through the imported water from water network which is expressed by Eq. (8.46)
and limited by Eq. (8.47).

wal
t D wanet

t (8.46)

wamin � wanet
t � wamax (8.47)
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8.3 Case Study

8.3.1 Input Data

Studied renewable energy hub system is composed of wind generation unit, com-
bined heat and power system, boiler and various types of energy storage systems.
Schematic diagram of mentioned system is shown in Fig. 8.1.

As illustrated in this figure, four types of energy demands should be supplied
by multi-carrier renewable-based energy hub system. Three types of energy storage
systems, namely, batter storage system, compressed air energy storage system, and
thermal storage systems have been employed to manage excess generated energy in
the hub energy system. It should be noted that since battery storage system is not

Fig. 8.1 Renewable-based hub energy system
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Fig. 8.2 Energy demands of renewable-based hub energy system

Fig. 8.3 Wind hourly speed

able to manage large quantities of uncertainty provided by wind generation and also
because of that compressed air energy storage system is approximately operated at
low operation cost, CAES has been used to control possible severe uncertainties
caused by wind generation.

In order to model and simulate eco-emission operation of renewable-based hub
energy system in the presence of CAES and DRP, the following data and info are
used.

All four types of energy demands to be supplied by renewable-based hub energy
system are illustrated in Fig. 8.2.

Wind speed is illustrated in Fig. 8.3.
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Fig. 8.4 Upper grid power price

Table 8.1 Generation unit’s info

# Unit Value # Unit Value

CHP parameter [32] Boiler parameter [32]
�CHP

ge % 40 �B
gh % 85

�CHP
gh % 35 pB

c kW 800

ACHP – 0.96 – – –
pCHP

c kW 800 – – –
Boiler emission [33] CHP emission [33]
# Unit Value # Unit Value
# Unit Value # Unit Value
EFB

CO kg/kWh 0.37 EFCHP
CO kg/kWh 0.37

EFB
SO kg/kWh 0.000003 EFCHP

SO kg/kWh 0.000003

Price of power provided by upper network is illustrated in Fig. 8.4.
Simulation data and info about storage systems are presented in Tables 8.1, 8.2,

8.3, 8.4, and 8.5.
Also, technical and environmental info of CHP system and boiler are presented

in Table 8.1.
Simulation data and info about storage systems are presented in Table 8.2.
Operation cost and prices of various generation units and other sections are

presented in Table 8.3.
Technical and environmental info of upper grid is presented in Table 8.4.
Finally, parameters necessary for modeling wind generation are presented in

Table 8.5.
It should be mentioned that maximum capacity of gas and water networks are

considered to be 1800 kW and 1000 kW, respectively. The whole simulations are
carried out by CPLEX solver of GAMS under a mixed-integer linear programming
[35].
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Table 8.2 Storage systems data

Battery storage parameter [32] CAES parameter [27] Thermal storage parameter [32]
# Unit Value # Unit Value # Unit Value

˛e
min – 0.05 � inj % 0.95 ˛h

min – 0.05
˛e

max – 0.9 �p % 0.95 ˛h
max – 0.9

˛e
loss – 0.2 V inj

min kWh 5 ˛h
loss – 0.2

�e
ch % 90 V inj

max kWh 50 �h
ch % 90

�e
dis % 90 Vp

min kWh 5 �h
dis % 90

Cst;e
c kW 300 Vp

max kWh 50 Cst;h
c kW 200

– – – Amin kWh 50 – – –
– – – Amax kWh 500 – – –

Table 8.3 Operation costs
and prices of various sections

Parameter [32] Value Unit

�g 6 Cent/kWh
�wa 4 Cent/kWh
�wi 0 Cent/kWh
�e

s 2 Cent/kWh
�h

s 2 Cent/kWh
�DR 2 Cent/kWh

Table 8.4 Upper grid info

Upstream network parameter [32] Upstream network emission [34]
# Unit Value # Unit Value

ANET – 0.99 EFNet
CO kg/kWh 0.368

pe
max kW 1000 EFNet

SO kg/kWh 0.0002
pe

min kW 0 EFNet
NO kg/kWh 0.0008

pT
c kW 800 – – –

Table 8.5 Wind generation
info

Parameters Unit Value

AWIND – 0.96
x,y,z – 0.07, 0.01, 0.03
wr m/s 10
wci m/s 4
wco m/s 22
pr kW 400

In order to evaluate effectiveness of CAES as the supply side management tool
and also to investigate positive impacts of DRP, 4 simulation cases have been created
as follows:

Case 1: Eco-environmental operation of renewable-based hub energy system with-
out DRP and without CAES
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Case 2: Eco-environmental operation of renewable-based hub energy system with
DRP and without CAES

Case 3: Eco-environmental operation of renewable-based hub energy system with-
out DRP and with CAES

Case 4: Eco-environmental operation of renewable-based hub energy system with
DRP and with CAES

8.3.2 Results

Simulation results are presented in this section to validate effectiveness of employed
techniques.

8.3.2.1 Pareto Fronts

Solving proposed eco-emission model for renewable-based hub energy system in
the presence of CAES and DRP, Pareto solutions in four cases are obtained which
are illustrated in Fig. 8.5.

Fig. 8.5 Pareto front in four cases
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It is clear from the above figure that by using CAES and DRP, Pareto front is
shifted from areas with higher emission and cost to the areas with less emission and
operation cost.

According to the selected solutions in each case study, total operation cost
and emission of renewable-based hub energy system in case 1 are 2680.34$ and
10,410.04 kg, respectively. These values in case 2 with DRP are 2663.08$ and
10,308.98 kg, respectively. Total operation cost and emission of hub system in
the presence of CAES in case 3 are 2667.09$ and 10,277.38 kg, respectively. By
employing both CAES and DRP in case 4, total operation cost and emission of
renewable-based hub energy system are 2647.81$ and 10,246.38 kg, respectively.
Comparing the obtained results, it can be found that due to implementation of
CAES and DRP in case 4, total operation cost of renewable-based hub energy
system in comparison with case 1, 2, and 3 is decreased 1.24%, 0.57%, and 0.72%,
respectively. Also, total generated emission of renewable-based hub energy system
in case 4 is reduced 1.57%, 0.60%, and 0.30% in comparison with cases 1, 2,
and 3, respectively. It can be understood from the obtained results above that both
economic and environmental concerns of renewable-based hub energy system can
be satisfied through utilization of CAES and DRP.

8.3.2.2 Other Results

Electrical energy demand in four cases has been illustrated in Fig. 8.6. It can be
understood that in the cases 2 and 4, because of DRP implementation, electrical
demand has been mostly transferred from peak periods to off-peak periods which
leads to less energy procurement in peak periods and therefore more economic
benefits for renewable-based hub energy system can be obtained.

As a result of DRP implementation in cases 2 and 4, total provided power by
upper grid in these cases has been shifted to off-peak periods which is expressed by
Fig. 8.7. Also, due to utilization of CAES, wind-turbine has been optimally used to
support electrical demand which his illustrated in Fig. 8.7.

As an economic result owing to utilization of CEAS and DRP, total purchased gas
has been considerably reduced in cases 2, 3, and 4. Gas import pattern is illustrated
in Fig. 8.8.

By using CAES and DRP, generation of renewable units has had optimal share
in supplying electrical demand. So, the role of CHP unit as one of electrical
generation units has been decreased and therefore less gas has been consumed and
then electrical and heat generation of this unit have been reduced. Figures 8.9, 8.10,
and 8.11 illustrate the results related to CHP unit.

Since used gas by CHP unit has been changed, gas procurement pattern for boiler
unit is appropriately changed and boiler has attempted to generate heat in a new
pattern. Gas consumption and heat generation pattern of boiler are illustrated in
Figs. 8.12 and 8.13, respectively.

Generated and consumed air by compressed air energy storage system is illus-
trated in Fig. 8.14. It can be seen from this figure that due to implementation of DRP,
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Fig. 8.6 Electrical energy demand in cases 1, 2, 3, and 4.

Fig. 8.7 Imported power from upper network
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Fig. 8.8 Gas import

Fig. 8.9 Used gas by CHP unit
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Fig. 8.10 Heat generated by CHP unit

Fig. 8.11 Electrical power generated by CHP unit
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Fig. 8.12 Gas consumption of boiler

Fig. 8.13 Generated heat by boiler
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Fig. 8.14 Generated and consumed air by CAES

generation of air in CAES is increased and, on the other hand, consumption of power
in CAES is reduced. Since power generation/consumption of CAES is proportional
with its air generation/consumption, therefore power generation/consumption of
CAES is changed with DRP which is illustrated in Fig. 8.15.

8.4 Conclusion

In this chapter, application of compressed air energy storage system as a supply side
management tool has been investigated. A renewable-based hub energy system has
been studied from economic and environmental viewpoints in the presence of CAES
and DRP. Studied renewable-based hub system is composed of CHP system, boiler,
and wind-turbine and storage systems. Since renewable generation units like wind-
turbine have severe uncertainties in their outputs, CAES has been used to manage
these uncertainties in the hub energy system. In simple words, CAES stores excess
generation of such units and uses the saved energy in peak time periods to satisfy
electrical energy demand. Optimal eco-emission operation of renewable-based hub
energy system has been modeled through a mixed-integer linear programming and
solved using GAMS software. Comparing the obtained results from simulations of
various case studies, it can be found that due to implementation of CAES and DRP
in case 4, total operation cost of renewable-based hub energy system in comparison
with case 1, 2, and 3 is decreased 1.24%, 0.57%, and 0.72%, respectively. Also,
total generated emission of renewable-based hub energy system in case 4 is reduced
1.57%, 0.60%, and 0.30% in comparison with cases 1, 2, and 3, respectively.
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Fig. 8.15 Generated and consumed power by CAES

It can be understood from the obtained results above that both economic and
environmental concerns of renewable-based hub energy system can be satisfied
through utilization of CAES and DRP.

Nomenclature

Indices

t Time period index

Parameters

�T
ee Efficiency of transformer

�CHP
ge Gas to electricity efficiency of CHP unit

�CON
ee Efficiency of converter unit

�e
ch Charging efficiency of electrical storage system

�e
dis Discharging efficiency of electrical storage system

�h
ch Charging efficiency of heat storage system
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�h
dis Discharging efficiency of heat storage system

˛e
min Minimum limit coefficient of electrical storage system

˛e
max Maximum limit coefficient of electrical storage system

˛e
loss Loss of power coefficient for electrical storage system

˛h
min Minimum limit coefficient of heat storage system

˛h
max Maximum limit coefficient of heat storage system

˛h
loss Loss of heat coefficient for electrical storage system

�e
t Price of upstream network price

�wi Wind turbine generation cost

�g Gas price
�wa Water price
�e

s Electrical storage system operation cost

�h
s Heat storage system operation cost

ANET Upstream network availability

ACHP CHP unit availability

AWIND Wind turbine availability

Cst;e
c Rated capacity of electrical storage system

Cst;h
c Rated capacity of heat storage system

EFCHP
CO CO2 emission factor for CHP unit

EFCHP
SO SO2 emission factor for CHP unit

EFCHP
NO NOx emission factor for CHP unit

EFB
CO CO2 emission factor for boiler

EFB
SO SO2 emission factor for boiler

EFB
NO NOx emission factor for boiler

EFL
CO CO2 emission factor for residential gas consumption

EFL
SO SO2 emission factor for residential gas consumption

EFL
NO NOx emission factor for residential gas consumption

EFNet
CO CO2 emission factor for upstream network

EFNet
SO SO2 emission factor for upstream network

EFNet
NO NOx emission factor for upstream network

gnet
min Minimum nominal capacity of gas network

gnet
max Maximum nominal capacity of gas network

gl
t Gas demand in residential section at time t

pe
min Minimum nominal capacity of upstream network

pe
max Maximum nominal capacity of upstream network
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pT
c Nominal capacity of transformer

pCHP
c Rated capacity of CHP unit

pB
c Rated capacity of boiler unit

pr Rated power of wind turbine

pel
t Electrical demand at time t

ph
t Heat demand at time t

wal
t Water demand at time t

wamin Minimum nominal capacity of water network

wamax Maximum nominal capacity of water network

wci, wco, wr Cut-in, cut-out, and rated speeds of wind turbine
w(t) Wind speed at time t
x,y,z Indexes for modeling generation of wind turbine

Variables

Cost Total operation cost of hub energy system
CBS Operation cost of battery storage
CDR Cost of DRP
CEx Cost/revenue of exchanged power
Cnet Cost of purchased power from upstream network

Cst;e
t Energy level of electrical storage system

Cst;h
t Heat level of electrical storage system

CTS Operation cost of thermal storage

CWind Operation cost of wind turbine

CBo Operation cost of boiler

gCHP
t Consumed gas by CHP unit

gB
t Consumed gas by boiler unit

gnet
t Total imported gas from gas network at time t

Ich;e
t Binary variable for modeling charging state of electrical storage

system

Idis;e
t Binary variable for modeling discharging state of electrical storage

system

Ich;h
t Binary variable for modeling charging state of heat storage system

Idis;h
t Binary variable for modeling discharging state of heat storage system

pe
t Imported power from upstream network at time t

pch;e
t ; pdis;e

t Charging and discharging power of electrical storage system

pch;h
t ; pdis;h

t Charging and discharging heat of electrical storage system

ploss;e
t Loss of power in electrical storage system
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ploss;h
t Loss of heat in heat storage system

pwi
t Electrical generation of wind turbine at time t

wanet
t Imported water at time t
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Chapter 9
Optimal Stochastic Short-Term
Scheduling of Renewable Energy Hubs
Taking into Account the Uncertainties
of the Renewable Sources

Moein Moeini-Aghtaie, Amir Safdarian, Zohreh Parvini,
and Fereshteh Aramoun

9.1 Introduction

Growing the number of distribution companies around the world led to the
integration of various distributed generation (DG) technologies in distribution level.
With the increased utilization of these new energy resources, especially co- and
tri-generation technologies, energy hubs have brought into existence. These basic
units of energy which serve as an interface between different infrastructures of
energy can store and convert different forms of energy via an integrated framework.
On the other hand, renewable-based DG units play a considerable role in future
vision of energy networks. As a result, renewable energy hubs are an unavoidable
part of future energy networks. Although the supply diversification in renewable
energy hubs grants some degree of flexibility in feeding energy loads, it calls for
new analysis tools to properly consider the effects of uncertainties associated with
renewable energies. In this regard, this chapter tries to investigate the abilities of
stochastic frameworks in dealing with the energy resources scheduling problem in
renewable energy hubs. To reach this important goal, at first, different elements
of renewable energy hubs are introduced. Then, the procedure which needs to be
followed to efficiently model the input and output relations of renewable energy
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hubs is well described. The efficient tools and algorithms which can be used to
model the uncertain behavior of wind and solar energies in short-term scheduling
problem are put under investigation. After modeling different uncertainties, the
general framework of energy scheduling problem for a renewable energy hub will
be addressed. Mathematical model of this optimization problem will be introduced
and the optimization tools which can well model the features of this problem will
be discussed. By briefly introducing the main features of stochastic optimization
algorithms which can be used for energy scheduling problem of renewable energy
hubs, the stochastic version of this optimization problem will be defined. Extracting
the mathematical model of stochastic energy scheduling problem, it will be shown
that how different stochastic tools can be used to deal with this problem. By
following the subjects covered in this chapter, the readers learn how to model, solve,
and apply the results of energy scheduling problems in renewable energy hubs.

9.2 Renewable Energy Hubs Modeling

Increasing demand of energy carriers, dwindling fossil resources, and climate
change have posed new challenges to decision makers in terms of energy security
and sustainability. In this regard, harnessing renewable energy sources, such as
wind power, solar energy, hydropower, and biomass have considered as a promising
sustainable solution to alleviate the aforementioned concerns. Integration of renew-
able energy facilities into power systems, especially in small distribution scales,
have altered the historically centralized and bulk structure of power systems to
small decentralized, and locally in-feed structures. However, intrinsic volatile and
stochastic nature of renewable energy sources might raise new challenges to power
system planners and operators.

On the other hand, the advent of new conversion and storage technologies,
typically including micro turbines, combined heat and power (CHP), as well as
thermal and electrical storage units, has brought up new paths to exploit renewable
energy sources. The emergence of conversion technologies has enabled production
of both electricity and heat, out of natural or biogas, biomass, and so forth.
Therefore, it provides the possibility of co- and tri-generation in the system.
Moreover, deployment of energy storage units, as well as prospective integration
of plug-in hybrid electrical vehicles (PHEVs), evolve the prevailing passive and
unidirectional structure of power system through converting the unwanted energy
from uncontrollable renewable sources into a restorable form, and delivering the
stored energy either to the demand side or to the supply side, in times of requirement.
Implication of these conversion and storage technologies leads to complex interac-
tions among various energy carriers, which mitigate various undesirable impacts of
renewable energy sources integration to system and pave the way to the effective
implication of these sources.

Introduction of promising conversion and storage technologies along with the
increased penetration of renewable energy sources have changed the traditional
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Fig. 9.1 Example of an energy hub that contains transformer, micro turbine, heat exchanger,
furnace, battery, hot water storage, and absorption cooler [1]

setup of energy systems into potential, bidirectional, and active ones. Such energy
systems, which provide flexibility for producing, storing, converting, and condi-
tioning multiple energy carriers, are called renewable energy hubs. Moving toward
environmentally and economically sustainable energy systems, renewable energy
hubs have been considered as an inevitable part of future energy networks.

Generally, a hub represents an interface between various energy sources and
demands, providing functions of input and output, conversion, and storage of
multiple-energy carriers. A sample energy hub is represented in Fig. 9.1, where
multiple energy carriers are received, then they are distributed to different processes
of conditioning, conversion, and storage, and finally several demands are supplied
from them.

As Fig. 9.1 depicts, an energy hub is typically composed of input energy carriers
(electricity, gas, wood, etc.), energy converters and storage units (transformer,
microturbine, gas boiler, batteries, and so on.), and output energy carriers (power,
cooling, and heating). Renewable sources such as wind, solar, hydropower, and
biomass are considered as inputs to the hub. The energy from these sources
provides the required energy service at the output layer, either directly or indirectly,
going through storage or conversion processes. Each input energy carrier, weather
electricity or heat, may supply a number of loads in the output layers. For instance,
in Fig. 9.1, the power originated from both grid and microturbine can meet the
required electricity load. Similarly, the heat from microturbine, heat exchanger,
or furnace can serve the heating demands. These redundant connections between
inputs and outputs, which are provided by the hub components, are greatly beneficial
from renewable energy sources point of view. The power from renewable energy
sources is either adjustable like the hydropower and biogas, or stochastic such as
that of wind and solar energy. By using the energy hub concept, raised concerns
regarding the stochastic nature of these sources can be allayed.

Renewable energy hubs, where different dispatchable and/or stochastic energy
sources are coupled and combined with storage and conversion technologies, bring
three major advantages. First, the reliability and security of supplying energy to the
load can be improved within a hub structure, by using multi energy complements as
inputs. In this way, the load no longer depends on one single carrier to be satisfied.
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For example, the electricity demand fed from renewable sources can be supplied
with grid, local distribution generators, or CHP facilities, instead. Moreover, the
local consumption of renewable sources will be promoted, by storing the surplus
energy or converting it to other forms of energy demands. Second, from an
operational perspective, cost of supplying energy can be reduced significantly, due
to the great optimization potential provided by the flexibility of the hub. Redundancy
of energy paths in the hub causes this flexibility by offering degrees of freedom in
supplying the load. In fact, it enables the operator to choose the optimal option, in
terms of, e.g., cost or emission, for supplying the demand. For example, an optimal
dispatch can be run to define which facility and to what extent should provide the
required heat. Third, coordinated operation of several energy carriers will enhance
efficiency of the energy system, which eventually will help the energy system to
improve in terms of sustainability.

In a comprehensive view, components of a renewable energy hub can be divided
into five main categories (1) Energy inputs, including wind power, solar energy,
natural gas, biomass, and electricity from the grid. (2) Conversion facilities, such
as heat exchanger, gas turbine, boiler, and chiller. (3) Collectors and distributors
which collect power, heat and cold, and distribute them through relevant networks.
In these components, the output energy is equivalent to the inputs in all the time. (4)
Storage units which store various energy carriers containing electricity, heat, and
cold. (5) Delivering utilities which can be distribution networks of electricity, gas,
and heating and cooling energy. A generic renewable energy hub is presented in
Fig. 9.2.

Fig. 9.2 Components within a renewable energy hub [2]
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Fig. 9.3 Modeling the flow of power through an energy hub [1]

While an energy hub can be utilized just as a modeling concept, it can be
attributed to a wide range of systems, from a single hybrid electric car up to
an entire city as a single hub. The concept is not limited to a particular size or
definite energy carriers. Examples of actual facilities, considered as a hub, include
urban/rural districts, residential, industrial, and commercial complexes, as well as
islanded energy systems, like a ship or aircraft.

Transportation of power through an energy hub can be modeled math-
ematically by input and output parameters. A set of energy carriers ˛, ˇ,
: : : 2 E D felectricity, natural gas, heat, : : : g considered as inputs or outputs
depicted in Fig. 9.3 characterize the energy hub. Input sets of the hub, defined
by a vector matrix P D fP˛ , Pˇ , : : : , P!g are transformed to the output sets
L D fL˛ , Lˇ , : : : , L!g through different conversion mechanisms, represented by
a coupling matrix C. The interconnections in an energy hub, with multiple inputs
and outputs, can be mathematically described as follows:
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(9.1)

Each parameter of the coupling matrix, called convertor coupling factor c˛, ˇ ,
links input P˛ to the corresponding output Lˇ through considering the efficiency of
conversion [3].

A renewable energy hub might consist of renewable energy conversion systems,
such as wind turbines, photovoltaic arrays, hydro turbines, and fuel cells, conven-
tional generators like diesel generators and micro turbines, as well as storage devices
like batteries [4]. The components of energy hub are coordinated in order to find the
optimal dispatch among input energy carriers, and satisfy demands at the output
layer for harnessing the most of renewable energy sources. The first step to operate
and optimize performance of a hub is to model its components. In the following,
a general methodology for modeling hub components is stated in two separate
sections of (1) renewable sources in energy hubs and (2) energy demands.
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9.2.1 Renewable Sources in Energy Hubs

Various energy carriers, such as heat, electricity, and natural gas, might feed an
energy hub. Due to recent technical advancements and reduced prices of renewable
energy technologies, primarily wind and solar, they have been increasingly com-
petitive with the other conventional energy technologies. Therefore, these sources
play an inevitable role in supplying demands of an energy hub. In spite of extensive
implication of wind and solar energies, the stochastic nature of these sources might
cause challenges to system operation; thus, the uncertainty of these sources should
be accurately considered and modeled in order to make the most of them. In
this regard, modeling procedures of wind and solar energies, as the major supply
sources in renewable energy hubs, are presented and the methods to address their
uncertainties are discussed in the following.

9.2.1.1 Wind Energy Modeling

Electricity power produced by a wind turbine is a function of turbine’s speed
characteristics and wind speed at the site. The relation between mechanical energy
and the electrical power produced by the turbine (Pw) can be mathematically
presented by:

Pw D

8
<

:

�
A C B � V C C � V2

�
� Pr

Pr

0

Vci � V � Vr

Vr � V � Vco

V � Vci; V � Vco

(9.2)

where Vci, Vr, and Vco are, respectively, cut-in, rated, and cut-out speed of wind
turbine, and Pr is its rated power. A, B, and C are constant parameters of wind
turbine [5]. According to (9.2), when the speed of blowing wind is equal or larger
than the cut-in speed, the turbine generates electricity in a nonlinear manner until it
reaches its rated speed. Within the range of rated to cut-out speed, the wind turbine
delivers its rated power, constantly. For wind speeds which are less (more) than the
cut-in (cut-out) speed of the turbine, no power is generated by the wind turbine.
Considering the wind turbine performance, according to its site characteristics, the
available power from a wind turbine (PWT) will be:

PWT D PwAw�WT (9.3)

where Aw is the Total swept area; �WT is the Efficiency of wind turbine system [4].
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9.2.1.2 Solar Energy Modeling

A PV cell receives its energy from normal and diffuse radiations of the sun, depend-
ing on the time of the year and position of the sun in the sky [4]. The electric power
generated by a PV module on an average day of jth month (Pj) can be defined as

Pj D ITj�PVAPV (9.4)

where ITj is the total solar radiation on the module; �PV is the efficiency of PV
module; APV is the area of module that is exposed to the sun [4].

A PV system in operation is usually composed of several modules connected
in series and parallel to obtain higher output voltage and current. The total power
generated by a PV array (Parray) will be equal to:

Parray D NS � NP � PPV (9.5)

where NS is the Number of PV modules in series; NP is the Number of PV modules
in parallel.

The power generated by solar and wind energies are intermittent and variable,
which makes them non-dispatchable, contrary to the conventional power generators.
Generated power of a wind turbine is completely dependent on the stochastic speed
of blowing wind. In a PV system, solar radiation incident to the arrays highly
depends on atmospheric conditions. Although forecasting techniques have improved
significantly, there are still unpredictable events which do not allow perfect estima-
tion of generated power from renewable sources. Therefore, dealing with uncertain
parameters becomes an inevitable part of operation and optimization of renewable
energy hubs. There are several different modeling techniques for addressing uncer-
tainty of parameters. These techniques are categorized into probabilistic approaches,
possibilistic approaches, hybrid possibilistic–probabilistic approaches, information
gap decision theory (IGDT), and robust optimization. By means of these methods,
the effects of uncertainties can be evaluated on system performance [6]. The first
category is on the basis of probability distribution functions (PDFs). In this method,
the PDF of the uncertain parameter is assumed to be realized using historical
data. Possibilistic approaches which use fuzzy algorithms, assign a membership
function (MF) to uncertain parameters. The hybrid approaches apply a combination
of probabilistic and possibilistic parameters to address uncertainties. Information
gap decision theory (IGDT) studies the forecast errors of uncertain parameters. Opti-
mization in robust techniques is run based on the worst-case scenario set. Finally,
interval analysis technique considers a probable range for uncertain parameters and
obtains bounds for the outputs. Among all the uncertainty modeling approaches,
probabilistic methods are the most widely utilized. Probabilistic techniques are
divided into two main categories: (1) numerical approaches, namely Monte Carlo
Simulation techniques, and (2) analytical approaches based on linearization and
PDF approximation. Further information about these techniques can be found in [6].
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9.2.2 Energy Demands

The main goal of an energy hub is to satisfy the loads in the output layer. Output
demands in an energy hub are typically electricity and thermal loads, which can
be supplied by various input energy carriers as shown in Fig. 9.2. Thermal loads
represent various heating and cooling demands, and electrical loads can range
from a single PHEV and small home appliances, to power supply of an industrial
complex or an entire urban district. Generally, in modeling an energy hub, demands
of the same type are combined together, and they are considered as integrated
output energy carriers. During operational time frames, energy demands of hubs
are modeled on an hourly basis. Electricity and heat demands of a typical energy
hub are presented in Fig. 9.4.

While output demands in energy hubs are often in form of electricity or thermal
loads, sometimes, primary energy carriers, such as natural gas, hydrogen, and water,
serve as output demand, too. Load of these demands can be modeled by hourly
forecasted profiles, similar to Fig. 9.5.

Although energy demands in the output layer are not deterministic, their uncer-
tainties are almost neglected in system scale, compared to that of renewable energy
sources. In the case of very short times of operation, the uncertainty associated
with loads might become more influential. The uncertainty in forecasting energy
demands can be represented by a normal distribution through mean and standard
deviation parameters [8].
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9.3 Energy Scheduling Problem in Renewable Energy Hubs

9.3.1 Problem Description

A renewable energy hub consists of several input energy carriers which can
go through a variety of conversion and storage technologies. For example, the
electricity generated by a wind turbine can directly feed the electricity demand in
the output, be converted to heat by an electric heater, or be stored in a battery for a
later use. On the other hand, these technologies make redundant paths for supplying
different forms of energy demands in the output layer. Each energy demand can be
satisfied by a variety of energy sources, redundantly. A heat exchanger, a CHP, or a
furnace, for instance, can meet the heat demand.

Energy scheduling in an energy hub is intended to define how much energy
should be generated within the hub or bought from the grid, based on the demands
in the output, generated power by renewable sources, and energy carriers’ prices.
Moreover, in presence of storage units within the hub, the time interval of operation
should be considered in the scheduling, since the quantity of energy in a storage unit
is a matter of successive charge and discharge schedules during a period. Regarding
various criteria, the operation of a renewable energy hub can be scheduled optimally.
These criteria range from operating cost, energy efficiency, and expected profit, up
to reliability, durability, and environmental factors.

In order to optimally schedule an energy hub, the first step is modeling of hub
components, including input energy sources, connections within the hub such as
transformation, conversion, and storage technologies, as well as demands in the
output layer. Modeling input sources defines that whether the source is dispatchable
or not, it comes from a bulk network or it is just an energy-limited source,
or its generated power is constant or highly variable. Connections within the
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hub, categorized into four types of direct connections, transformers, converters,
and storage systems, should be also comprehensively modeled. Through direct
connections, such as electric cables or pipelines, input carrier is directly delivered
to the output demand, without any conversion or significant change in its quality.
Transformers alter the quality of inputs, e.g. voltage or pressure, in order to meet
demand requirements. Conversion technologies, including combustion engines,
steam/gas turbines, electrical machines, and fuel cells, change the input energy
carriers into various demand forms. Storage devices are means of storing electrical
or thermal energy carriers. The models of these internal connections are represented
in the coupling matrix, explained in previous section. In the demand side, loads of
the same type should be aggregated, thus, the demand side is modeled as integrated
energy demands, i.e. electrical loads, cooling or heating demands, and natural gas.

Modeling of components leads to obtain a better understanding of the energy
flows and the paths within the hub, and consequently identify the problem and
manage decision-making procedure. However, it is not always possible or simple
to design a perfect model, thus, there should be a trade-off between complexity and
accuracy to obtain a sufficiently appropriate model [4].

The next step in optimizing performance of a renewable energy hub is modeling
hub’s scheduling problem mathematically according to the preferred optimization
criterion. Type of the problem, which the hub operator has to deal with, is defined
in this step; it can be a problem of minimizing overall costs, maximizing the
hub’s profit, maintaining system reliability and durability, or diminishing emissions.
Based on the optimization criteria, constraints of the problem should be determined.

After defining the optimization problem and obtaining its mathematical model,
an accurate solution method has to be implemented to find the best answer. There are
numerous optimization methods which can be used to address various scheduling
problems. Based on the problem type, the most suitable optimization technique,
along with the most accurate data as the required inputs of the problem, such as cost
of energy, emission, or lost load, should be utilized. In order to achieve the optimal
solution, the steps depicted in Fig. 9.6 should be followed.

9.3.2 Mathematical Model of the Problem

In order to define the optimal schedule of the hub, which means how much of each
energy carrier should supply the hub and how inputs should be dispatched through
conversion and storage technologies, a mathematical model of the problem should
be attained. In the following, first, a general description of the energy hub scheduling
problem is provided. Then, the mathematical model of this problem is explained in
detail.
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9.3.2.1 Outline of Energy Hub Scheduling Problem

The problem of scheduling a hub is to determine the optimal operating strategy
of the energy hub, subjected to the hub equations and components limits. This
optimization problem, which is called multi-carrier optimal dispatch, can be
generally described as follows [9]:

Subject to:
Hub equation
Input energy limitations
Physical constraints of units
Properties of dispatch factors
Storage sustainability

Various criteria, such as operating cost, energy efficiency, reliability, and environ-
mental factors, can be considered as the objective function of a renewable energy
hub. Equation of the hub, depending on its components, can vary; in presence of
storage units, the stored energy should be subtracted from the energy inputs and then
be represented in hub equations. Inputs of energy carriers are limited to the output
generation of renewable energy sources and the available energy received from
networks. Physical constraints of the hub include the power and energy limitations
of converters and storage devices. Since there may be several conversion units
within the hub, the share of each convertor from the input carrier is defined by a
dispatch factor, which should meet requirements of power conservation. Moreover,
in order to use these units sustainably, the initial and final level of energy in the
storage devices should have the same amount.

9.3.2.2 Detailed Model of Energy Hub Scheduling

In order to mathematically model the aforementioned hub scheduling problem,
an energy hub, including renewable energy resources and storage devices, is
considered. The general structure of an energy hub is characterized by input power
vector P, coupling matrix C, vector of output demands L, stored energy vector E, and
storage coupling matrix S. The optimization of energy flows through a renewable
energy hub can be formulated as following:

Opt: f D
X

t

f .t/
�
P.t/; .t/

c ; E.t/
�

(9.6)

Subject to

L.t/ D C.t/P.t/ � S.t/
h
E.t/ � E.t�1/ C Ect

i
(9.7)



9 Optimal Stochastic Short-Term Scheduling of Renewable Energy Hubs. . . 201

P � P.t/ � P (9.8)

Pc � c
.t/P.t/ � Pc (9.9)

E � E.t/ � E (9.10)

0 � .t/
c � 1 &

X
.t/

c D 1 (9.11)

E0 D ET (9.12)

Equation (9.6) is a multi-period objective function. The optimization problem
can be defined as a single- or multiple-objective problem, based on the optimization
criteria. In this equation, f, which represents the total objective function, is defined as
a multi-period objective due to the time dependency brought by the storage devices.
It aims to determine the optimal values of P(t), 

.t/
c , and E(t). The equality constraint

in (9.7) corresponds to the mapping of input carriers to output demand and storage
devices for each time slot in the scheduling interval. Input power flows are restricted
to lower and upper bounds of available energy from resources, represented by P,
and P in (9.8). Equations (9.9) and (9.10) show the physical constraints in the hub
structure, regarding power and energy of convertors and storage units. Constraints
of power inputs to the hub components are defined in vectors of Pc, and Pc.

The stored energies are constrained by E, and E, as minimum and maximum
capacity limits. The properties, which dispatch factors should display to fulfill
energy conversion, are presented in (9.11). Equation (9.12) guarantees sustainable
utilization of storage units during the optimization intervals, in which E0 and ET are
the stored energies at the initial and final hours of the scheduling period. It is worth
noting that the discussed model is a generic model for energy hubs; a typical hub
may not have some of the aforementioned characteristics or technologies, such as
storage devices or multi in- and output converters.

9.3.3 Solution Methodology

The solution algorithm for scheduling a hub is closely related to the hub’s mathe-
matical model. Thus, in order to solve the optimization problem of hub scheduling,
it is vital to identify the type and characteristics of the problem. In hub scheduling
problem, the optimization objective is the first thing to be defined, in terms of its
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optimization criteria, number of variables, and type of the objective function. As
discussed before, there can be various objectives for optimizing operation of an
energy hub. Depending on the considered optimization criteria, type of the objective
function may change; and it will be a convex or non-convex function. If the energy
cost is employed as the optimization criterion, similar to classical optimal power
flow (OPF), the cost may be a quadratic function of the power provided by the
sources [10]. Minimizing gaseous emissions can also be considered as an objective.
These emissions are commonly modeled as polynomial or exponential functions
of the source’s power output [10]. Moreover, multi-criteria optimizations can be
performed through a weighted linear combination of individual objectives, where
multi-objective optimization approaches are applied to solve them.

Energy hub optimization equations, as a whole problem, can be divided into
different classes, depending on the considered objective function, as well as hub
structure and components. Based on the problem structure, a suitable optimization
approach should be selected to find the optimal solution. In continuous nonlinear
problems, where optimization variables are continuous and the problem is subjected
to equality and inequality constraints, nonlinear programming (NLP) approaches are
implemented to obtain optimums. Objective functions, including integer variables
along with continuous optimization parameters, form mixed-integer problems. Inte-
ger variables emerge, when on and off status of components should be involved in
the optimization problem. Whether optimization constraints are linear or nonlinear,
the problems can be categorized into mixed-integer linear programing (MILP) or
mixed-integer nonlinear program (MINLP).

On the other hand, scheduling a hub for multiple time periods rather than a
single snapshot results in multi-period (MP) optimization problems. These MP
problems can be characterized by continuous or mixed integer variables, and linear
or nonlinear constraints. Scheduling of energy hubs including storage units or units
with ramping limitations should be optimized for coupling hours during a period,
therefore it is a MP optimization.

The general multi-carrier optimal dispatch, presented by (9.6)–(9.12), is a non-
linear, inequality constrained, multivariable, and time-coupled objective function
optimization problem. In this problem, despite the convex objective function, the
solution space is nonconvex, due to the nonlinearity in constraints. Therefore,
numerical methods cannot be utilized to find the global optimum solution for the
above problem; they can just provide feasible region in this situation [9]. In order
to obtain the global optimums of this nonconvex problem, either heuristic methods
should be implemented or nonlinear constraints should be linearized [10].

For an energy hub with a constant coupling matrix, which results in linear
transformation of power, optimization problem is subject to linear constraints.
Under this condition, dispatch factors are not involved in the objective function
as an optimization variable, since they are set to be predefined values. Therefore,
the nonlinear constraints of (9.7)–(9.11) in the considered hub scheduling problem
are dropped out. In this simple presentation, the convex objective function along
with linear constraints forms an optimization problem with convex solution space
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which can be solved by implementing numerical methods [10]. Constant coupling
factor is considered as the simplest structure of hubs, however, in reality each
energy carrier is dispatched to several components via different internal dispatch
factors. In hubs with multiple input and output components and internal dispatch
factors, coupling factors are no longer constant and they should be optimized. These
dispatch factors result in nonlinear constraints, which should be either linearized or
solved by heuristic methods [11].

9.4 Stochastic Optimization scheduling

9.4.1 Stochastic Renewable Energy Hubs

The problem of scheduling a renewable energy hub and obtaining the optimal values
for energy inputs, conversion flows, and stored energies, which was defined in the
previous part, has been based on the assumption that hub parameters are definite
or perfectly forecasted, and none of the hub inputs, outputs, or external variables
were considered as uncertain and stochastic parameters. However, in reality, the
quantities for most of these parameters are not completely known and despite the
advanced forecasting techniques, there are errors in predictions and they are never
fully reliable. Available input energy, output demands, and energy prices are typical
uncertain parameters in an energy hub. Generally, minor uncertainties do not cause
considerable problems in scheduling of energy hubs. In a renewable-based energy
hub, however, the intermittent and variable generation of renewable sources is a
serious challenge. As it was mentioned in previous parts, one of the main advantages
of implementing hub concept is effectively harnessing intermittent and stochastic
renewable energy sources, such as wind and solar energy. An energy hub not only
offers various options for using and storing generated power by renewables, but also
provides high flexibility for compensating its associated uncertainties.

In order to make the best use of an energy hub, the uncertainties, raised from
renewable integration, should be considered in operation scheduling, so that it can
be able to manage the deviations in predicted and realized values. In this regard,
applying stochastic optimization techniques to the energy hub scheduling problem
is necessary for taking into account uncertain nature of renewable energies, and
finding the most beneficial solution. There are several methods for addressing
uncertainty of parameters, including confidence intervals in forecasts of neural
networks, and time series, interval analysis, and fuzzy numbers [12], as well as
probability distribution functions (PDFs). Among various uncertainty modeling
techniques, PDFs are the most commonly adopted approach in uncertainty studies
of renewable energy hubs. Simulation or approximate sampling methods, such as
point estimate method (PEM) [11, 13], Monte Carlo Simulation (MCS) [14, 15], and
scenario trees [7], are utilized along with these PDFs to enable analyzing the hub
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optimization problem probabilistically. In order to obtain optimums in the stochastic
problem of hub scheduling, various optimization techniques exist, dealing with
stochastic parameters. These techniques include stochastic methods [8, 14, 15], as
well as robust techniques [13, 16]. Based on the modeling process of uncertainty
and the defined scheduling problem, analytical or heuristic optimization methods
can be implemented for solving the problem and obtaining the optimal results. In
the following, different approaches for addressing uncertainties, as well as solution
algorithms are discussed.

9.4.2 Uncertainty Modeling

Stochastic programming has been considered as one of the strongest methods for
addressing probabilistic problem [14]. In this method, uncertain parameters are rep-
resented by several realizations, in form of scenarios, and associated probabilities.
The MCS technique can be used to obtain scenarios based on the probability density
functions (PDFs) corresponding to uncertain parameters. Considering the obtained
scenarios, the stochastic optimization aims to find the optimal solution for each of
the scenarios. These uncertainties are characterized using the PDFs whose statistics
are obtained from historical data.

9.4.2.1 Uncertainty in Renewable Energy Resources

The unpredicted behavior regarding the intermittent and volatile characteristic of
renewable energy sources, i.e. wind and solar energy, can be realized from the
historical data records of these sources. Statistical methods are employed to predict
uncertain behavior of renewable sources. Based on the spatial and temporal char-
acteristics of energy source under study, various probability distribution functions
can be utilized to fit into the historical data. The performance of models and
the best distribution fitted for each data set is selected based on goodness of fit
criteria, such as errors between the actual and predicted data of different PDFs
[17]. The stochastic models of wind and solar energies are described hereunder,
respectively.

(a) Wind speed uncertainty modeling

The intermittent characteristics of wind speed data are usually modeled by
PDFs including Weibull, Rayleigh, and Gamma [17]. Among these distribution
functions, Rayleigh distribution is the most widely used PDF in modeling statistical
characteristics of wind speed data in time scales of energy hub scheduling [8, 15].
The Rayleigh PDF, representing fluctuation of wind speed v, can be expressed by:

PDF.v/ D

 v

c2

�
exp

�

�

�
v2

2c2

�

(9.13)
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where c is the scale parameter of the distribution

(a) Solar radiation uncertainty modeling

There are several PDFs which can be utilized in modeling solar irradiance,
including Lognormal, Beta, and Logistic distributions [17]. It is shown solar
radiation follows Beta distribution the best [17]. The PDF of Beta distribution for
solar irradiance r is characterized as follows [18]:

F.r/ D
� .˛ C ˇ/

� .˛/ � .ˇ/

�
r

rmax

˛�1�

1 �
r

rmax

ˇ�1

(9.14)

where rmax is the Maximum solar irradiance; ˛ is the Shape parameter; ˇ is the
Shape parameter; � is the Gamma function [18].

The generated electric power from solar panels can be obtained by (9.4) and
(9.5), as described in Sect. 9.3.2.2.

9.4.2.2 Other Sources of Uncertainty

Apart from uncertainties raised by stochastic nature of wind and solar energy
sources, an energy hub may encounter several other uncertainties depending on its
structure and the setting in which it is operated. Load, energy price, and demand
response are other sources of uncertainty that may exit in a typical energy hub
[7, 14]. The general procedure for modeling uncertainties corresponding to these
parameters is to implement widely implemented normal (Gaussian) PDF, which is
characterized by two factors of mean �, and standard deviation � as the following
[15]:
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(9.15)

9.4.2.3 Scenario Generation and Reduction

In order to enable stochastic evaluation of hub scheduling problem, a finite number
of realizations should be obtained from uncertain parameters’ PDFs, in form of sce-
narios. MCS technique [14] is broadly implemented to generate sufficient number
of scenarios for uncertain parameters, including wind speed, solar radiation, load,
and energy price, by using their assigned PDFs. By combining the obtained scenario
sets for each of the uncertain parameters, the final scenario vector can be obtained
for the general optimization problem of hub scheduling. Despite comprehensive
realization of the stochastic scheduling problem, considering all combinations of
the scenarios applies a great computational burden to the solving process of hub
scheduling problem. Therefore, it is essential to reduce large number of generated
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Fig. 9.7 Flowchart of uncertainty modeling for hub stochastic optimization

scenarios to obtain the most generic ones, featuring the prevailing characteristics of
uncertain parameters. Different scenario reduction techniques, such as fast forward
reduction and backward reduction, are provided by the SCENRED tool of GAMS
environment [15]. The best scenario reduction technique can be chosen according
to its reduction time and performance accuracy. The whole process of uncertainty
modeling for the stochastic optimization of hub scheduling is presented in Fig. 9.7.

9.4.3 Stochastic Scheduling Formulation of Energy Hub

The uncertainty of parameters in a renewable energy hub can be properly incor-
porated to its scheduling problem by the use of stochastic programming model.
In this model, contrary to the deterministic method presented in Sect. 9.3, several
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realizations of the stochastic parameter are considered in form of scenarios with
different probabilities. The scenario-based optimization problem results in the
optimal strategy in facing each of the scenarios [15].

9.4.3.1 Objective of Scheduling Energy Hub

Similar to the deterministic form of hub scheduling, the objective function of a
stochastic problem can be based on different criteria of operating cost, reliability,
and environmental impacts. The main difference in a stochastic problem is that the
objective function is a weighted sum of the realized value of optimization criteria for
all scenarios. The stochastic objective function of hub scheduling can be generally
formulated as:

Opt: f D
X

t

X

s

�s

n
f .t;s/



P.t;s/; .t;s/

c ; E.t;s/
�o

(9.16)

where �s is the probability of sth scenario; f (s, t) is the realized objective function
for scenario s at time t.

The uncertainty in hub parameters makes all variables to be scenario-based [14].

9.4.3.2 Constraints

The previously discussed operation constraints in Sect. 9.3 are still valid for the
stochastic scheduling. However, constraints should be satisfied for each realization
of scenarios. Different operation constraints can be modeled stochastically as the
following.

• Energy Balance

The optimal solution in hub scheduling should meet the balance constraints for
all types of energy carriers in each scenario s at time t as the following:

L.t;s/ D C.t;s/P.t;s/ � S.t;s/
h
E.t;s/ � E.t�1;s/ C Ect

i
(9.17)

Equation (9.17), in its matrix form, can represent balance of electrical energy
flow from input carriers to the demand loads and electrical storage devices, as well
as balance of natural gas received from the grid to its converted and stored forms.
The storage units cause the scheduling problem to be time-coupled.

• Technical limitations

The internal components of the energy hub and input energy carriers are
restricted to technical and practical constraints, which should be considered in all
scenarios.

Pmin � P.t;s/ � Pmax (9.18)
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Fig. 9.8 Overview of the stochastic optimization problem for hub scheduling

Equation (9.18) limits the energy flow in the hub to the maximum and minimum
allowed value, Pmin and Pmax. This constraint accounts for limitations of input
electrical energy, natural gas, and heat, and also power limitations of conversion
and storage units.

• Storage Constraints

Inclusion of storage units in the energy hub employs new constraints to the
problem:

Emin � E .t; s/ � Emax (9.19)

This constraint defines the minimum and maximum allowable limits of the stored
energy in storage units, either electrical or thermal.

The stochastic optimization problem of scheduling a renewable energy hub is
summarized in Fig. 9.8. As this figure presents, the inputs of the optimization
problem are composed of prices of energy carriers, generation of renewable
resources, and energy demands, which are scenario based parameters. The schedul-
ing optimization problem consists of a stochastic objective function subjected to
technical limitations of hub components, energy balance, and storage constraints.
The stochastic optimization will define the amount of each energy carrier input, the
dispatch factors, the optimal settings of hub components, and charge and discharge
schedule of storage units.

9.4.4 Probabilistic Optimization Methods

In order to address the uncertainty in operation parameters and solve the stochastic
optimization problem, various probabilistic methods can be used with different
principals. Probabilistic approaches can be categorized into two general groups
of (1) numerical and (2) analytical approaches [6]. Each of these groups includes
several types of optimization techniques which are depicted in Fig. 9.9.
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Fig. 9.9 Different categories of probabilistic methods [6]

9.4.4.1 Numerical Approaches

Numerical optimization approaches are applied when a problem is highly nonlinear,
complicated, and stochastic [6]. Monte Carlo simulation (MCS) is the basis of
numerical optimization methods, and it is utilized in three different types of
sequential MCS, pseudo-sequential MCS, and non-sequential MCS [6].

In order to preserve temporal characteristics of time dependent variables, sequen-
tial Monte Carlo (SMC) methods are utilized. SMC methods are easy to implement,
parallelizable, flexible, and applicable in general settings [6]. However, the large
number of random numbers and iterations required in SMC methods results in a
high computational burden to the problem. Therefore, Pseudo-sequential Monte
Carlo simulation technique is developed, which is much faster than SMC [6].
Non-sequential Monte Carlo simulation method, which is simply a state sampling
approach, is widely implemented optimizing probabilistic and stochastic problems.

9.4.4.2 Analytical Approaches

In analytical approaches, both inputs variables and output results are expressed
through mathematical equations. In other words, the analytical approaches relate the
stochastic inputs variables to the outputs by doing arithmetic with PDFs [6]. In these
approaches, the analytical relationship between inputs and outputs is established
either by linearization or by approximation. Linearization includes methods of
convolution, cumulant, Taylor series expansion, and first order speed moment [6].
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In methods based on approximation, PDF of stochastic variables are approximated,
since it is easier than approximating a nonlinear transformation function [6].
Therefore, the main goal in approximate methods is to define and obtain the most
appropriate samples of input variables that can maintain sufficient information about
the input variable’s PDF [6]. There are two techniques for this purpose: (1) point
estimation method, (2) Unscented transformation. Interested readers can find further
information in [6].

9.4.5 An Example of Stochastic Energy Hub Modeling

In order to evaluate the effects of renewable energy sources and their associated
uncertainties on the optimal operation of energy hubs, the stochastic optimization
problem is modeled for a typical energy hub, and the obtained results are compared
with the deterministic model. This example is based on the modeling and evalu-
ations which are conducted in [7]. In this reference, an energy hub, composed of
wind turbine, transformer, convertor, CHP unit, boiler, electrical and thermal storage
units, as well as demand response is considered as shown in Fig. 9.10. The energy
carriers of this hub include electricity, gas, water, and heat.

The objective of optimization problem is to minimize the cost functions of energy
from the grid, charge and discharge of electric and thermal storage units, wind

Fig. 9.10 The energy hub under study [7]
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zero cost, demand response, reliability, and emission costs [7]. The revenue from
selling energy to the grid is modeled as a negative cost. Wind, electricity price,
and demand are considered as the uncertain parameters in hub scheduling and the
optimization is based on two-stage stochastic programming. Energy carriers are
considered as decision variables of stage one, which do not correspond to different
wind scenarios of the second stage. On the other hand, variables of energy storage,
demand response, and energy not supplied (ENS) take different values in different
wind scenarios [7]. It is assumed that minimizing the operation costs of energy hub
is the main objective of the scheduling problem. The stochastic formulation of this
objective function can be described as follows [7]. The nomenclature for the utilized
parameters is presented in Appendix.
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The optimization is subject to various constraints as follows:

• Wind Power

Wind power is limited to the mechanical power generated by the wind speed.
Thus, for each wind speed scenario with probability of Prow(t,s), there is a different
limit for wind power as:
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• Energy Balance

There should be always a balance between the consumed energy in the demand
side, the received energy to the input layer, and the stored energy in the storage
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units. Stochastic electricity demand Pe(t,s) should be equal to the electricity
received from the network, CHP, wind turbine, electrical storage units, minus the
demand response, stored electricity, and energy not supplied. Heat, gas, and water
demands are considered certain parameter and should be supplied accordingly. The
formulations for balancing energy carriers is as following:
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• Network Constraints

Energy from electricity, gas, and water networks is limited, and this limitation
should be considered in scheduling problem:

PNet min
e � PNet

e .t/ � PNet max
e (9.26)

PNet min
g � PNet
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g (9.27)

PNet min
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w .t/ � PNet max
w (9.28)

• Converter Constraints

Physical constraints of converters, including transformer, CHP, and boiler, should
also be taken into account:
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eePNet

e .t/ � PT (9.29)



9 Optimal Stochastic Short-Term Scheduling of Renewable Energy Hubs. . . 213
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• Storage Constraints

Constraints regarding electrical and thermal storage units can be formulated as
the following.

Electrical Storage:
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Thermal Storage:
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• Demand Response Constraints

Implementing demand response programs is restricted to the limits on up and
down demand shifts:
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Various indices can be utilized in order to assess reliability of the scheduled
operation. Loss of load expectation (LOLE), loss of load probability (LOLP), and
energy not supplied (ENS) are the most important reliability indices that are used in
reliability assessments. These indices are calculated by the following equations:
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MCS technique is used to generate scenarios based on the forecasted wind power,
energy price, and energy demand. The backward/forward technique in GAMS
SCENRED tool is employed to obtain 10 most prevailing scenarios. The optimal
schedule for the energy hub in Fig. 9.11 is obtained for two cases of certain and
uncertain parameter. Different factors are investigated when the result of scheduling
of the energy hub is obtained, including importing or selling grid electricity,
charging and discharging power of electrical and thermal storage, shiftable power
to up and down, importing gas power for boiler and CHP, and the ENS [7].

In case of wind, price, and electricity demand uncertainty, as the results in
Fig. 9.11 show, more electricity is purchased from grid and less is sold to the grid.
Therefore, the operation cost has increased which is the actually cost of enhanced
hub reliability.
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Fig. 9.11 Imported (sold) electricity from (to) the grid in 24 hours
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Fig. 9.12 Charge and discharge schedule of electrical storage

In addition, as Fig. 9.12 depicts, electrical storage is charged when electricity
price and demand are low and it is discharged in times of high electricity price and
demand. The charge and discharge schedule of electrical storage is more sensible
in the case with uncertainty compared to the deterministic case, which shows the
significant role of electrical storage in uncertain environments.

As Fig. 9.13 illustrates, electricity power shifts up and down according to the
low and high prices of electricity when optimization is done deterministically. In
the stochastic scheduling, power shifts up with high wind, low price and demand;
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and it shifts down when demand and price are high and wind is low. Among different
uncertainties of wind, price, and demand, demand shifting is more sensitive to price
uncertainty.

Investigating
ENS for three cases of energy hub without renewable energy, renewable energy

hub with perfect forecast, and renewable energy hub with uncertainty (Fig. 9.14)
reveals that integration of renewable energy resources to the energy hub reduces
ENS and enhances system reliability. By taking into account the uncertainties
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Table 9.1 Total operation costs and reliability assessments specification of thermal units

Energy hub characteristics Costs ENS LOLE LOLP

Without renewables 953,633.8 1170 12 0.5
With renewables 190,300 65 1 0.042
Deterministic scheduling 749,196.6 1181.3 13.1 0.546

of parameters and scheduling the energy hub stochastically, the resulting ENS
increases in comparison to the renewable integrated case with perfect forecast.
Despite this, the results of stochastic scheduling of renewable based hub shows
that integrating uncertain renewable resources is sometimes beneficial to system
reliability compared to the case of energy hub without renewables.

Total operation cost and reliability assessments, presented in Table 9.1 indicate
that operation cost of energy hub without renewables is higher than the other
cases and hub reliability is lower. In the case of renewable energy hub with
perfect forecast, a significant positive change happens in operation costs and system
reliability. Nevertheless, considering parameters’ uncertainties in hub scheduling
brings about higher operation costs and lower reliability level. This investigation
shows that scheduling renewable energy hubs with the assumption of certain
parameters does not lead to realistic results and they might be misleading. Therefore,
it is necessary to take into account uncertainty of parameters when optimizing
operation of a hub in order to find optimal and realistic schedules.

9.5 Conclusion

In this chapter, the energy scheduling of renewable-based energy hub was put under
investigation. Introducing the main elements of a renewable-based energy hub, it
was discussed how the concept of energy hub can help the system operators to
properly model the intermittent nature of renewable resources. The mathematical
model of energy scheduling problem in renewable-based energy hubs is extracted
based on input and output relations of energy hubs. Also, procedures need to
be followed to model the stochastic behavior of renewable energy sources are
explained. To reach an efficient solution algorithm for such probabilistic optimiza-
tion problems, i.e. energy scheduling of renewable-based energy hubs, the stochastic
algorithm is classified and it is shown how these algorithms should be applied to deal
with uncertain parameters of this problem. Step by step implementation of energy
scheduling in an energy hub is explained by an example and it is discussed how
the presence of renewable-based DG units can affect the operation of an energy
hub.
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Nomenclature

Indices

em emission of
s scenario
t time

Variables

Ie
ch(t) binary for charge of electrical storage

Ie
dis(t) binary for discharge of electrical storage

Ie
shdo(t) binary for shift down of DR

Ie
shup(t) binary for shift up of DR

Ih
ch(t) binary for charge of thermal storage

Ih
dis(t) binary for discharge of thermal storage

pe
ch(t) charge power of electrical storage

Pe
dis(t) discharge power of electrical storage

Pe
ENS(t) energy not supplied

Pe
Net(t) purchased or sold power from network

Pe
loss(t) loss power of electrical storage

Pe
s(t) electrical storage contain

Pe
shdo(t) shifted down power via DR

Pe
shup(t) shifted up power via DR

Pg
Net(t) imported gas power from network

Pg
NetB(t) purchased gas for boiler from network

Pg
NetCHP(t) purchased gas for CHP from network

Ph
ch(t) charge power of thermal storage

Ph
dis(t) discharge power of thermal storage

Ph
loss(t) loss power of thermal storage

Ph
S(t) thermal storage contain

Pw
Net(t) purchased water from network

Constants

˛e
loss loss efficiency of electrical storage

˛h
loss loss efficiency of thermal storage

�e
ch electrical storage charge efficiency

�e
dis electrical storage discharge efficiency

�h
ch thermal storage charge efficiency
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�h
dis thermal storage discharge efficiency

�ee
con electricity efficiency of ac/ac converter

�ee
T electricity efficiency of transformer

�ge
CHP gas to electricity efficiency of CHP

�gh
CHP gas to heat efficiency of CHP

�gh
B gas to heat efficiency of boiler

�e
DR DR operation cost

�e
ENS energy not supplied cost

�e
Net(t) hourly electricity price

�e
S electrical storage operation cost

�e
w produced wind power cost

�em emission cost for
�g

Net gas price
�h

s thermal storage operation cost
�w

Net water price
ACHP CHP availability
ANet electricity network availability
Awind wind turbine availability
EFem emission factor for CHP, boiler and grid
EFL equivalent loss factor
EFLmax maximum equivalent loss factor
LPFshdo load participation factor for shift down of DR
LPFshup load participation factor for shift up of DR
PB boiler capacity
PCHP CHP capacity
PT transformer capacity
Pe(t) hourly electricity demand
Pe

M electrical storage capacity
Pe

Netmax maximum capacity of electricity network
Pe

w(t) hourly wind power
Pg(t) hourly gas demand
Pg

Netmax maximum capacity of gas network
ph(t) hourly heat demand
Pr rated power of wind turbine
Pw(t) hourly water demand
Pw

Netmax maximum capacity of water network
Prod(s) reduced demand scenarios
ProRTP(s) reduced RTP scenarios
Prow(s) reduced wind power scenarios
w(t) hourly wind speed
wci cut-in state of wind turbine
wco cut-out state of wind turbine



220 M. Moeini-Aghtaie et al.

References

1. Geidl M et al (2007) The energy hub–a powerful concept for future energy systems. In: Third
annual Carnegie mellon conference on the electricity industry, vol 13

2. Ma T, Wu J, Hao L (2017) Energy flow modeling and optimal operation analysis of the micro
energy grid based on energy hub. Energy Convers Manag 133:292–306

3. Krause T et al (2011) Modeling interconnected national energy systems using an energy hub
approach. In: PowerTech, 2011 IEEE Trondheim. IEEE

4. Bhandari B et al (2015) Optimization of hybrid renewable energy power systems: A review.
Int J Precis Eng Manuf Green Technol 2(1):99–112

5. Parvini Z et al (2016) An analytical framework for operational reliability studies of highly wind
integrated power systems. In: 2016 International Conference on probabilistic methods applied
to power systems (PMAPS), IEEE

6. Aien M, Hajebrahimi A, Fotuhi-Firuzabad M (2016) A comprehensive review on uncertainty
modeling techniques in power system studies. Renew Sustain Energ Rev 57:1077–1089

7. Pazouki S, Haghifam M-R, Moser A (2014) Uncertainty modeling in optimal operation of
energy hub in presence of wind, storage and demand response. Int J Electr Power Energy Syst
61:335–345

8. Dolatabadi A et al (2017) Optimal stochastic design of wind integrated energy hub. IEEE Trans
Ind Inf 99:1

9. Geidl M, Andersson G (2007) Optimal coupling of energy infrastructures. In: Power Tech,
2007 IEEE Lausanne. IEEE

10. Geidl M (2007) Integrated modeling and optimization of multi-carrier energy systems.
Dissertation

11. Geidl M, Andersson G (2007) Optimal power flow of multiple energy carriers. IEEE Trans
Power Syst 22(1):145–155

12. Vaccaro A, Pisani C, Zobaa AF (2015) Affine arithmetic-based methodology for energy
hub operation-scheduling in the presence of data uncertainty. IET Gener Transm Distrib
9(13):1544–1552

13. Moeini-Aghtaie M et al (2014) Multiagent genetic algorithm: an online probabilistic view on
economic dispatch of energy hubs constrained by wind availability. IEEE Trans Sustain Energy
5(2):699–708

14. Vahid-Pakdel MJ et al (2017) Stochastic optimization of energy hub operation with considera-
tion of thermal energy market and demand response. Energy Convers Manag 145:117–128

15. Dolatabadi A, Mohammadi-Ivatloo B (2017) Stochastic risk-constrained scheduling of smart
energy hub in the presence of wind power and demand response. Appl Therm Eng 123:40–49

16. Parisio A, Del Vecchio C, Vaccaro A (2012) A robust optimization approach to energy hub
management. Int J Electr Power Energy Syst 42(1):98–104

17. Abdulkarim A, Abdelkader SM, John Morrow D (2015) Statistical analyses of wind and solar
energy resources for the development of hybrid microgrid. In: 2nd International congress on
energy efficiency and energy related materials (ENEFM2014), Springer, Cham

18. Karaki SH, Chedid RB, Ramadan R (1999) Probabilistic performance assessment of
autonomous solar-wind energy conversion systems. IEEE Trans Energy Convers 14(3):766–
772



Chapter 10
Risk-Constraint Scheduling of Storage
and Renewable Energy Integrated
Energy Hubs

Parinaz Aliasghari, Manijeh Alipour, Mehdi Jalali,
Behnam Mohammadi-Ivatloo, and Kazem Zare

10.1 Introduction

Energy security and environment concerns related to the energy efficiency,
exhaustible fossil resources and greenhouse gas emissions have been increased
in recent years. In order to deal with these concerns, two ways are taken into
account: firstly, improving energy efficiency and secondly, utilizing renewable
energy resources as a promising way to deal with these concerns. Residential,
commercial, and industrial customers have various kinds of demands such as gas,
heat, and electricity. On the other hand, energy service companies have separate
and independent infrastructures to meet different demands. In order to improve
energy management, researches and practical attempts were focused on the optimal
planning and scheduling of energy distribution. In the last two decades, energy
hub has been raised as a promising and powerful concept to increase the overall
reliability and efficiency, reduce the consumption of energy and the emission of
greenhouse gases [1, 2]. This concept has been used to describe an integrated
system with input and output ports. It consists of various kinds of units such as
distributed energy resources, connecting equipment to upstream, converters, energy
storages, and transformers. Additionally, the energy hub could fulfill the output
demands both connecting with upstream networks and with own generators and
storage units. A considerable amount of literature has been published on energy hub
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concept [3–5]. These studies have been focused on planning, operating, scheduling,
and reliability issues of energy hubs. The authors in [3] have utilized a robust
method to optimize an energy hub operation consisting distributed generator,
storage and converter units. The aim of this paper is to minimize the cost function
of energy hub. The importance of connecting several energy hubs together has
been analyzed in [4]. The case studies reported in [5] indicate that the more
connection among the energy hubs causes the improvement of both economical
and environment performances. Environmental effects of energy hubs have been
investigated in [6]. In this paper, the multi-objective function consists of both
economic and environmental performances of energy hub. An iterative optimization
algorithm has been presented in [7] to solve the optimization problem of energy
hub. Different scenarios have been used to evaluate the various conditions in terms
of the existence or absence of energy storage systems, renewable energy sources,
and various electricity tariffs. In [5], a goal attainment based technique has designed
to solve the multi-objective problem of optimal energy management in energy hubs
with nonlinear constraints. A model of residential energy hubs has been utilized
in [8] for the energy management of a smart home. The main goal of this study
was to determine that simultaneous planning and operation of gas and electrical
infrastructures are more efficient than separate planning and operation. In [9] the
classical model of energy hubs has been upgraded to the smart energy hub model
in the smart environment. Throughout the study game theory methods have been
used to simulate the demand side management to decrease the ratio of peak to
average. The rendered model in [9] has been considered in [10]. The authors have
extended demand response (DR) programs for both natural gas and electricity to
reduce the energy consumption of the customer side. The authors in [11] have
implemented demand response programs for both electrical and thermal demands
to improve the efficacy of the proposed energy hub in the presence of wind farm.
The model based on energy flow has been introduced in [12] to schedule an energy
hub system with energy storage units in both input and output sides to meet daily
electricity, cooling, and heating demands. A mixed-integer nonlinear programming
(MINP) model was utilized to solve the scheduling problem while maximizing
the profit. In [13], the reliability metrics of the proposed energy hub have been
evaluated by considering the dynamic behavior of loads, which has been modeled
by Markov-chains and Monte-Carlo simulations. To answer the social concerns
about air polluting and global warming, new forbidden lows have been passed to
limit fossil fuel usage. Moreover, various kinds of incentives are considered for
investing on renewable energy resources. So, recent trends in reducing fossil fuel
consumption have led to a proliferation of studies about renewable energy resources
such as wind and solar. A technique to integrate decentralized energy units at
neighborhood scale has been stated in [14]. In order to determine the size and
value of energy units based on energy-autonomy and ecological factors, the energy
demands and local energy storage units of building are taken into account in the
urban area. Reference [15] has rendered an incentive framework for installing the
units of distributed generation for optimal designing of an energy hub. The output
demands of the proposed energy hub, concluding electricity and gas, have been
met by taking into account the constraint of carbon dioxide emission. One major
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challenge of utilizing renewable energy resources is their uncertainty behavior. It is
essential that an appropriate method be used as the uncertainty model of generated
power of RES units. The stochastic method has been rendered in [16] to design an
energy hub equipped with integrated wind power plants. The presented stochastic
method has been formalized as MILP problem for optimal designing of energy
hub in time horizon. For investigating the effectiveness of the proposed method,
the indexes of reliability such as EENS (expected energy not supply) and LOLE
(loss of load expectation) have been considered. The authors in [17] have used
multi-agent genetic algorithm (MAGA) as heuristic technique to optimize an online
probabilistic economic dispatch (ED) model of systems equipped with energy hubs
and WTs. PV units based residential energy hub have been introduced in [18]. The
aim of this study was minimizing the consumption of electricity and gas energy to
reduce the peak demand and consumer’s bill. Implementing of the model under the
smart grids concluding auto decision technology has increased the efficiency and
punctuality of the proposed method. A linear formulation of the optimal designed
energy hub taking into account the adequate reliability indexes as constraint was
rendered in [19, 20]. Power to gas technology has been installed in the proposed
renewable energy hub in [21] to produce hydrogen from surplus power generating
of PV and WT. The hydrogen can provide the fuel of transportation fleet or enter
into the natural gas piles. The main aim of this paper is to extend the energy hub
model by implementing various technology of energy generation while decreasing
the cost of energy producing and air pollution.

In the current chapter, a renewable-based energy hub (REH) which contains WT,
PV, energy storages, boiler, and combined heat and power (CHP) units is considered.
One important challenge of implementing RES is the existing uncertainties in
their power generations. In this regard, an optimal stochastic short-term scheduling
considering the uncertainties of the renewable source generations is presented. To
model the uncertainties a scenario-based technique is utilized while applying a
proper scenario generation and reduction method. Additionally, risk management
problem has been employed considering conditional value-at-risk (CVaR) as a risk
measurement in the short-term scheduling of the REH.

10.2 Risk Controlling Model

Scheduling of the energy hub in the stochastic environment has increased the value
of the risk. It is necessary that the risk be controlled in the satisfying range.
Various approaches based on measuring risk have been applied in the literature
[22] in order to schedule the operation of conventional players including generators,
retailers, and large consumers. Value-at-risk (VAR) has been introduced as a useful
meter to estimate the monetary losses of large consumers or generators caused by
uncertain behavior of effective players such as fluctuating of generation in RES with
a specified confidence degree. The extension version of VAR meter which named
CVaR is utilized in this study. It is known as one of the most practical and impressive
risk meters in stochastic programing. This index provides all four specifications
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that describe a coherent risk measure, i.e., subadditivity, monotonicity, translation
invariance, and positive homogeneity.

To obtain the CVaR at ˛ degree of confidence, ˛ � CVaR is equal with the
expected cost of the (1 � ˛) of 100% of scenarios taking into account the highest
cost [22]. The CVaR can be formulated as equation while the uncertainties are
presented in discrete form:

< Min VaR C
1

1 � ˛
�

(

max
X

!2N!

�! � �!

)

(10.1)

Subject to:
TC! � VaR � �! (10.2)

�! � 0 (10.3)

In the above equations, if the value of total cost, TC! , at !th scenario is lower
than VaR, �! is set to zero. Otherwise, the value of �! is equal to the difference of
TC! and VaR. In other words, the optimal value of cost is equal to VaR under the
confidence degree ˛ [23].

10.3 Configuration of REH

Currently, different kinds of consumers can provide their various kinds of energy
demands, independently. A system based on energy hub concept can provide the
energy demands from combined energy infrastructures which behave more reliable
and economical than separate energy carriers. The suggested REH is connected to
the gas and electricity grids in the input side. It could also receive wind and solar
radiation as input element to utilize the WT and PV cells. Additionally, it delivers
electricity and thermal energy to meet the output side demands. The structure of
the energy hub and its components including CHP, WT, PV, boiler, electrical and
thermal storage units as well as input/output multi carriers are depicted in Fig. 10.1.

10.3.1 REH Scheduling Objective Function

The aim of this chapter is to schedule the proposed REH taking into account
the optimal operation in time horizon. As it can be seen in Table 10.1, different
paths demonstrate the potential capability of the REH’s components to meet the
output demands. Even though some of these paths are not cost-effective under
normal conditions, they can be utilized in emergency conditions such as deficit of
natural gas, electricity, and congestion of electrical and natural gas connection lines.
According to this description, minimization of purchased energy from the upstream
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Fig. 10.1 Configuration of the REH model

Table 10.1 Potential
capabilities of REH
components in supplying
demands

Demand WT PV CHP Boiler TSU ESU

Electrical X X X – – X
Thermal – – X X X –

grid and the start-up/shut-down cost of boiler and CHP units are formulated as
objective function in (10.4).

Min
NtX

tD1

8
<

:

N!P

!D1

�! �



Pe;grid
!;t � �e

t C Pg;grid
!;t � �

g
t

�

C SUC � uCHP
SU;t C SDC � uCHP

SD;t

9
=

;
(10.4)

where Pe;grid
!;t and Pg;grid

!;t are the amount of purchased electricity and gas from
upstream grids, respectively. In addition, SUC and SDC are the cost of the
startup/shutdown of CHP unit, respectively.

10.3.2 Components of REH

10.3.2.1 Wind Turbine

Despite intermittent and uncertain generating of wind power, plants based on wind
power have been penetrated in high level recently. To deal with this uncertainty,
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variety of approaches have been utilized to estimate wind speed with respect to
historical data. ARMA model is adopted to forecast the wind speed in the current
study. According to the difference between estimated and real values, the scenarios
are updated. Afterwards, the function of Weibull distribution is utilized to produce
the random numbers of wind speed. Eventually, to reduce the number of scenarios
SCENRED tool under GAMS is used. More details have been presented in [24].
The total power generated by a WT, which is a function of WT’s specifications and
the wind speed, can be modeled by the following equations [25]:

PA;WT
!;t D

8
<̂

:̂

0 S!;t < SCI; S!;t > SCO

PWT
max �



S!;t�SCI

SR�SCI

�
SCI � S!;t � SR

PWT
max SR � S!;t � SCO

(10.5)

Generated power of WT can be calculated with respect to S!, t, hourly speed,
and PWT

max, maximum wind power, by implementing technical constraints including
cut-in, cut-out, and rated speeds. Furthermore, the power generated by the WT at
time interval t is limited by the available and maximum wind power which are
represented by PA;WT

!;t and PWT
max, respectively. Wind power spillage is also allowed.

The algorithm is responsible for deciding about the amount of utilizing and spillage
wind power taking the operational constraints and the total cost into consideration.
To force this restriction (10.6) is used.

PWT
!;t < PA;WT

!;t (10.6)

10.3.2.2 Photovoltaic (PV) System

The other renewable energy resource, which has exploded in the recent years is
power plant based on solar radiation. PV system has produced power by absorbing
solar radiation. The amount of producing power is related to various factors
including the array of utilizing panel, solar radiation, and temperature. Producing
power can be calculated by the following formula:

PPV
!;t D A � IPV

!;t

�
1 � 0:005

�
TOut

t � 25
��

� �PV (10.7)

In the above equation the efficiency of the solar cell is denoted by �PV; A is
represented the array area in m2. Such intermittency creates the necessity of an
appropriate and accurate forecasting method. In this study, ARMA model is utilized
as time series forecasting model to estimate solar radiation based on historical data.
More details about applying the ARMA model in order to forecast the solar radiation
are available in [26].
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10.3.2.3 Combined Heat and Power (CHP) Unit

Utilization of CHP units has been expanded to meet both heat and electricity
demands much more efficient. Gas and steam turbine cycles are usually utilized
in the CHP units. Despite their different operation strategies, characterizing feasible
generation of the thermal and electricity powers is available. Several attempts have
been made to design an appropriate strategy for optimal operation of CHPs with
respect to some factors such as maximum and minimum values of fuel, electrical,
and heat power. In the current study, the introduced method in [16, 27] is utilized
to determine the feasible region of studying CHP unit with respect to the limit of
ramp-up/ramp-down rates and the generation capacity.

PCHP
!;t D #!;t

��CHP
e

�



Pg;grid
!;t

�
(10.8)

PCHP
min � CHP

t � PCHP
!;t � PCHP

max � CHP
t (10.9)

PCHP
!;t � PCHP

!;t�1 � RU (10.10)

PCHP
!;t�1 � PCHP

!;t � RD (10.11)

where ª!, t 2 [0, 1] is a variable which determines the amount of dispatched Pgrid
Gas

between CHP and boiler units. To simulate the startup/shutdown cost of CHP, the
startup and shutdown binary variable uCHP

SU;t and uCHP
SD;t are calculated according to:

uCHP
SU;t D CHP

t �
�
1 � CHP

t�1

�
(10.12)

uCHP
SD;t D CHP

t�1 �
�
1 � CHP

t

�
(10.13)

The amount of heat generation is also restricted between the minimum and
maximum heat capacity. Note that the limit of ramp-up/down rates for power
generation of CHP unit also imposes for generating of heat.

HCHP
!;t D #!;t

��CHP
h

�



Pg;grid
!;t

�
(10.14)

HCHP
min � CHP

t � HCHP
!;t � HCHP

max � CHP
t (10.15)
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10.3.2.4 Boiler Unit

Boiler, as an important backup unit, is utilized into the proposed REH structure
to provide thermal demand. The producing heat power of boiler unit is restricted
with the maximum and minimum generation capacity. Moreover, the model of the
startup/shutdown state of boiler is depicted by (10.17) and (10.18).

HB
!;t D .1 � #!;t/ � �B�



Pg;grid

!;t

�
(10.16)

HB
min;t � B

t � HB
!;t � HB

max;t � B
t (10.17)

uB
SU;t D B

t �
�
1 � B

t�1

�
(10.18)

uB
SD;t D B

t �
�
1 � B

t�1

�
(10.19)

10.3.2.5 Thermal and Electrical Storages

Thermal and electrical energy storages are key components to store exceed and
low price thermal and electrical powers to consume later. Specially, the role of
the electrical storage unit has been highlighted by increasing the penetration of
renewable energy resources such as solar radiation and wind speed. With respect to
uncertain behavior of these energy resources, it is essential that the electrical storage
be used to store power in high producing power and consume it in low producing
power. The storage units should also store energy under their operational restriction,
which are presented in the following:

Es
min � Es

!;t � Es
max e; h 2 s (10.20)

in which h and e stand for the thermal and electrical storage units, respectively.
The charging/discharging efficiency of the storage systems can be expressed by
(10.21):

� D

�
�s; charging state
1=�s; discharging state

(10.21)

To clarify the state of energy in the storage systems, (10.22) is implemented.
Moreover, the amount of charged/discharged energy is bounded by maximum char
rates as shown in (10.23) and (10.24).

Es
!;t D Es

!;t�1 C �s � Es;ch
!;t �

�
1=�s � Es;dis

!;t

�
(10.22)
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0 � Es;ch
!;t � Es;ch

max (10.23)

0 � Es;dis
!;t � Es;dis

max (10.24)

10.3.3 Electrical and Thermal Powers Balance

During the scheduling of the REH, matching between the various demands and
generated and purchased gas and power from the upstream grid are important issues.
There are two kinds of demands in the presented REH. So, the balance should be
established for both of the electrical and thermal demands in every scenario at each
time for the consideration time horizon scheduling. To satisfy these constraints, the
following equation are expressed:

PPV
!;t C Pwind

!;t C PCHP
!;t C Pe;grid

!;t C Ee;dis
!;t � Ee;ch

!;t D Pelectrical
t (10.25)

HCHP
!;t C HB

!;t C Eh;dis
!;t � Eh;ch

!;t D Pthermal
t (10.26)

10.3.4 REH Risk-Averse Scheduling Model

Finally, the objective function corresponding to REH scheduling program is
adjusted to the CVaR formula as following equation:
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) (10.27)

in which the CVaR of the cost is multiplied with the weighting parameter
ˇ 2 [0, 1]. The weighting parameter is applied to the cost function in order to
evaluate the tradeoff between the expected cost and risk aversion. According to
(10.27), when the value of the parameter ˇ is set to zero, a risk neutral scheduling
problem will be resolved, whereas the energy hub behaves more risk averse by
increasing the value of ˇ.



230 P. Aliasghari et al.

10.4 Simulations

In this section, in order to evaluate the efficiency and accuracy of the proposed
energy hub model, the method is applied on optimal scheduling problem of the REH
for the 24-hour time horizon. In the test system, the inputs of the REH consist of
the electricity and natural gas delivered from upstream grids. Moreover, it receives
wind speed and solar radiation as input sources of WT and PV, respectively. It
is also worth noting that these energy resources should provide the electrical and
thermal demands. The optimal REH scheduling problem is formed as a mixed-
integer nonlinear problem (MINLP) formulation and solved using SBB/CONOPT
solver [28] under GAMS [29].

The operational restrictions and economic information of boiler and CHP units
are presented in Table 10.2. The value of �B, �CHP

e , and �CHP
h are set to 75%, 35%,

and 45%, respectively [30]. The characteristics of the thermal and electrical storages
are depicted in Table 10.3. Additionally, the characteristics of PV and WT are
adapted from [24, 31] and presented in Tables 10.4 and 10.5, respectively. The total
capacity of usage PV and WT are considered to be 3 MW and 2 MW, respectively.
The uncertain behavior of the REH scheduling program caused by fluctuating nature
of the renewable resources is simulated with multistage stochastic method. The
uncertainties are the speed of wind and the solar radiation. The stochastic program
is based on scenario generation. The ARMA model is utilized to produce 1000
scenarios for each uncertain element through implementing the hourly historical
data. Afterwards, in order to decrease the number of the scenarios and participate
the scenarios with high probability, fast backward scenario reduction method has
been applied. Eventually, ten scenarios of both wind speed and solar radiation have
been remained. In other words, total 100 scenarios are implemented in the stochastic
scheduling of the REH problem. The hourly electricity and thermal demands are
adopted from [24], which shown in Fig. 10.2. Moreover, the price of the electricity
shown in Fig. 10.3 is extracted from [32] and natural gas price is chosen 30 ($/MWh)
[32].

Table 10.2 Characteristics
of boiler and CHP units [27]

Unit Ru Rd CSU CSD Pmax Pmin

Boiler – – 9 9 8 0
CHP 6 6 20 20 9 9

Table 10.3 Characteristics of energy storage units [30]

Unit Pdisch (MW) Pchar (MW) Emin (MWh) Emax (MWh) �

Thermal storage 5 5 0 8 0.9
Electrical storage 3 3 0 6 0.9

Table 10.4 Characteristics of each PV panel [31]

Unit A (m2) TOut (
ı

C) �PV Maximum output power (MW)

PV 1500 25 15.7 0.2
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Table 10.5 Characteristics of each WT [24]

Unit SCI (m/s) SCO (m/s) SR (m/s) Maximum output power (MW)

WT 3.5 25 11.9 0.9

Fig. 10.2 Thermal and electrical demands profile and the price of electricity

Fig. 10.3 Generated and purchased electrical power

Two case studies including the optimal scheduling of REH with and without
consideration of the CVaR term are analyzed in this chapter. At the first part of the
simulations, the objective function is solved without implementing the CVaR term
(case study 1). The produced power of the REH components as well as purchased
power from the market during the short-term scheduling problem is portrayed in
Fig. 10.3. According to the figure, the zero cost power producing by the PV and
WT is consumed whole of the scheduling time horizon. The PV is able to produce
power during the day between hours 7 and 17. At the early hours, a great part of the
electrical demand is met by purchasing power from the market, whereas CHP unit is
not operated. It means that the cost of purchased electricity is lower than the CHP’s
operation cost during these hours. After hour 5, the CHP unit starts up to produce
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Fig. 10.4 Gas distribution between CHP and boiler units

power by taking into account the ramp constraints. It is continuously operated up to
hour 24. In these hours, the purchased power is more expensive than the produced
power through the CHP unit. During the hours 12–14, the CHP unit reduces its
production because of the reduced thermal demand and low market price.

The amount of the gas distribution between CHP and boiler units is depicted in
Fig. 10.4. As it seen in the figure, from hour 1 to 5 only the boiler unit is fed by the
natural gas. It means that at this time interval the thermal demand is provided by the
boiler unit, which acts more economical than the CHP unit. In the rest of hours the
boiler unit is turned out except hours 23 and 24. CHP unit decreases its production at
hours 12–14, as thermal demand has been reduced. Moreover, the value of expected
cost without considering the risk term in the objective function formula is equal to
31,582.795$.

In the second part of the simulations, the objective function is solved by taking
into account the CVaR term (case study 2). The confidence parameter ˛ is taken to
be 0.9. The impacts of risk factor on the REH scheduling problem are analyzed by
increasing the value of the weighted parameter, ˇ, step by step from 0 to 1. In terms
of the risk level, if the CvaR is increased, the value of the expected cost must be
decreased. It means that the expected cost become more risk averse. And conversely,
the expected cost of the REH must be increased while the CVaR is decreased. This
is obviously confirmed in the results of the proposed method shown in Fig. 10.5.
The comparison of the various values of the expected cost regarding the level of
ˇ is illustrated. As it can be seen in the figure, the highest value of expected cost
is achieved when ˇ is equal to 0 (completely risk-averse) and the lowest value is
carried out for ˇ D 1 (risk neutral). As expected, the value of the expected cost both
without and with employing the CVaR term is equal for ˇ D 1.
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Fig. 10.5 Risk term impact on the optimal solution of the REH

10.5 Conclusion

This chapter addresses the optimal scheduling of renewable-based energy hub
considering a risk-constrained two-stage stochastic programing model. This object
would be achieved through the least operating cost of the energy hub components
while satisfying electrical and thermal demands. The proposed REH model contains
the renewable generators including PV and WT as components. Therefore, the
solar radiation and wind speed uncertainties affect the REH scheduling in time
horizon. The uncertain behavior of the solar radiation and wind speed is simulated
by employing two-stage stochastic programming. The ARMA model is utilized as
an appropriate scenario generation method. Afterwards, in order to minimize the
scale of the problem and computation burden, the proper scenario reduction method
is used, without reducing the problem-solving accuracy. Additionally, the proposed
model incorporates the tradeoff between minimizing the expected total cost of the
REH without and with considering a risk measure. This study focuses on a widely
applied and practical risk measure CVaR. The comparison between the risk neutral
and risk averse problems confirm the increment of the value of expected cost related
to risk averse problem.
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Nomenclature

Indices

! Scenario index [1 : N!]
e Index of electrical storage unit
h Index of thermal storage unit
s Index of energy storage units
t Time index [1 : Nt]

Parameters

˛ Confidence level
�B

h The efficiency of boiler unit
�CHP

e =�CHP
h The efficiency of electrical/thermal generation of CHP unit

�PV The efficiency of PV panel
�e

t =�
g
t Electricity/gas price of the grid at tth hour

Es
min=Es

max Minimum/maximum stored energy of storage unit
HCHP

min =HCHP
max Minimum/maximum heat production of CHP unit

HB
min=HB

max Minimum/maximum heat production of boiler unit
PWT

max Maximum output power of WT
PCHP

min =PCHP
max Minimum/maximum electrical power production of CHP unit

Pelectrical
t =Pthermal

t Electrical/thermal demand of REH
RU/RD Ramp-up/down power CHP unit
SR The value of rated wind speed
SCI/SCO The value of cut-in/cut-out wind speed

Variables

�! Auxiliary variable used for CVaR computing
CHP

t Binary variable depicted on/off state of CHP unit
�! Probability of !th scenario
Es

t Amount of stored energy in energy storage at tth hour and !th
scenario

Es;ch
t;! =Es;dis

t;! Charging/discharging of energy storage
HB

!;t Thermal generation of boiler unit at tth hour and !th scenario
HCHP

!;t Thermal generation of CHP unit at tth hour and !th scenario
IPV
!;t Solar radiation

PPV
!;t Utilizing solar power

PWT
!;t Utilizing wind power
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PCHP
!;t Power generation of CHP unit at tth hour and !th scenario

PA;WT
!;t Available wind power at tth hour and !th scenario

Pg;grid
!;t =Pe;grid

!;t Purchased gas/power from the grid at tth hour and !th scenario
S!, t Wind speed at tth hour and !th scenario
TOut

t Environment temperature
uCHP

SU;t =uCHP
SD;t Binary variable depicting start-up/shutdown status of CHP unit at

tth hour
VaR Value-at-risk (VaR)
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Chapter 11
Grid Integration of Large-Scale
Electric Vehicles: Enabling Support
Through Power Storage

Prateek Jain and Trapti Jain

11.1 Comparing the Greenhouse Gas (GHG) Emissions of
Electric Vehicles (EV) and Conventional Internal
Combustion Engine (ICE) Vehicles: A Large-Scale
Perspective

Various energy losses occur at every single stage of fuel life cycle, i.e., in delivering
fuel from primary (ultimate) source to final conversion into vehicular motion. For
example, energy is expended, and emissions take place in the extraction of crude oil,
combustion of fossil fuels, etc. in the whole operation of internal combustion engine
(ICE) vehicles, whereas losses occur in generating electricity from various sources,
its transmission and distribution, utilization in charging the battery, etc. during the
whole operation of an electric vehicle (EV). The life cycle energy and greenhouse
gas (GHG) assessment, popularly known as well-to-wheel analysis, is carried out to
assess the environmental impact of the above two vehicular technologies. It consists
of two stages: (1) well-to-tank—an upstream stage, and (2) tank-to-wheel—the
downstream stage. The well-to-tank stage involves evaluating the energy dissipated
and the associated GHG emissions in delivering the refined fuel from the primary
source into onboard (tank) the vehicle. The tank-to-wheel refers to evaluating the
exhausted energy and associated GHG emissions from the fuel onboard the vehicle
in achieving a particular driving range. The addition of the estimates of the two
stages will give the total well-to-wheel energy expenditure and associated GHG
emissions.
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Table 11.1 Vehicle data

Electric vehicle (EV) Tesla (2017)

Electric car model Tesla Model S

Battery capacity (kWh) 75

Average speed (miles per hour) 45

Distance possible with the battery capacity at average speed (miles) 393

ICE vehicle parameters equivalent of EV

Average fuel economy (miles per gallon (MPG)) 25

Gallons of gasoline required for 393 miles 15:72

In this section, a comparison of fuel life cycle GHG emissions from the battery
electric vehicles (BEV) and that of equivalent ICE vehicles during the whole
operation has been made. A Tesla Model S with a typical battery capacity of 75 kWh
has been selected as a representative BEV. Based on the selected BEV, the equivalent
ICE vehicle parameters were devised. A total of 0.2 million representatives BEVs
and hence the equivalent ICE vehicles are assumed considering a mid-size city for
the comparison. The assumed scenario on vehicle data has been listed in Table 11.1.

The well-to-wheel energy usage and GHG emissions for the above two categories
of vehicles are discussed below.

11.1.1 Battery Electric Vehicle (BEV)

Table 11.2 summarizes well-to-wheel energy expenditure and GHG emission
analysis for the considered scenario of EVs. The two comprising stages in the
assessment are as follows:

11.1.1.1 Well-to-Tank Assessment

While charging a battery, some of the power is utilized in pushing the electrons
through the battery, decreasing the actual energy being stored and available for
driving. The typical number for this loss in the battery is 10% Markowitz (2013).
The average electricity transmission and distribution (T&D) losses as estimated by
the US Energy Information Administration (EIA) EIA (2017a) is about 5% of the
electricity that is transmitted and distributed annually in the USA. Based on this
information, the T&D losses while supplying the charging energy to the battery of
an EV are taken as 5%. Adding the above two gives a total 15% losses. Thus, for
a given EV capacity of 75 kWh, the energy corresponding to 86.25 kWh has to be
supplied from the sources mix to meet these losses. The major sources of electricity
generation in the USA at utility-scale facilities in 2016 EIA (2017b) as well as the
life cycle GHG emissions by each source (in g CO2/kWh) Edenhofer et al (2012) are
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Table 11.2 Well-to-wheel analysis of electric vehicles (EV)

Stage 1: Well-to-tank

Sources/ Percentage Gram kWh from Gram CO2
technology generation CO2/kWh each sources emission

Coal 30.4 1001 26.22 26,246.22

Natural gas 33.8 469 29.1525 13,672.5225

Nuclear 19.7 16 16.99125 271.86

Hydroelectric 6.5 4 5.60625 22.425

Wind 5.6 12 4.83 57.96

Solar 0.9 46 0.77625 35.7075

Biomass 1.5 18 1.29375 23.2875

Geothermal 0.4 45 0.345 15.525

Stage 2: Tank-to-wheel

Electric vehicles emit no gasses at all at the point of operation, i.e., CO2 emissions = 0

Total GHG emissions under the assumed scenario

GHG emissions per vehicle (g) 4.0345 � 104

GHG emissions of 0.2 million EVs (kg) 8.0691 � 106

summarized in Table 11.2. It can be correlated that the above energy of 86.25 kWh
per EV is supplied via these sources as per their percentage shares in the generation
mix. From this, the gram CO2 emission per vehicle from these sources for the total
energy supplied can be evaluated as recorded in Table 11.2. The total well-to-tank
GHG emissions per vehicle are found to be 40.345 kg.

11.1.1.2 Tank-to-Wheel Assessment

The BEVs are zero emission vehicles as no gases are generated at the point of
operation. The batteries are sealed, having a gel with no harmful fumes produced
Sachen (2015). Therefore, the tank-to-wheel GHG emissions from the BEVs can
be treated as zero. Hence, the overall GHG emissions of 0.2 million BEVs as
considered in the scenario is estimated as 8.0691�106 kg.

11.1.2 Internal Combustion Engine (ICE) Vehicle

Table 11.3 summarizes well-to-wheel energy dissipation analysis for the ICE
vehicles scenario equivalent of considered EVs. Again, the two comprising stages
in the assessment are as follows:
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Table 11.3 Well-to-wheel analysis of ICE equivalent of EV

Stage 1: Well-to-tank

GHG emissions from crude oil production GHG emissions from petroleum refining

Emission (g/ Emission per vehicle Emission (g/ Emission per vehicle
Source gallon crude) (g/gallon crude) Source gallon crude) (g/gallon crude)

ROG 0.7 11.004 ROG 0.2 3:144

CO 0.3 4:716 CO 0.5 7:86

NOx 0.3 4:716 NOx 0.4 6:288

SOx 0.7 11.004

Stage 2: Tank-to-wheel

CO2 emissions per gallon of gasoline (g) 8887

CO2 emission per vehicle (g) 139,703.64

Total GHG emissions under the assumed scenario

Well-to-tank GHG emissions per vehicle (g) 48.732

Tank-to-wheel GHG emissions per vehicle (g) 1.3970 � 105

GHG emissions of 0.2 million ICE vehicles (kg) 2.79504 � 107

11.1.2.1 Well-to-Tank Assessment

An equivalent ICE vehicle having the same driving range (393 miles) as of the
considered EV above would require 15.72 gallons of gasoline with an average fuel
economy of 25 miles per gallon (MPG) Naughton (2015). Now, there are GHG
emissions accompanied with crude oil production and then from petroleum refining
to feed these gallons of gasoline onboard tank of the vehicle. The various emissions
per ICE vehicle along with their sources considering crude oil production TIAX
LLC (2007) and petroleum refining TIAX LLC (2007) in this stage are quantified
in Table 11.3.

11.1.2.2 Tank-to-Wheel Assessment

The grams of CO2 dissipated per gallon of gasoline combustion is evaluated by
multiplying the heat content of the gasoline per gallon with the kg CO2 per heat
content of the fuel. The conversion factor of 8887 g of CO2 Federal Register
(2010) emissions per gallon of gasoline consumed have been taken as the standard
assuming all the carbon in the gasoline is converted to CO2 Eggleston et al (2006).
Using this factor, the CO2 emissions per ICE vehicle which is consuming 15.72
gallons of gasoline can be evaluated as shown in Table 11.3. The sum of well-to-
tank and tank-to-wheel GHG emissions would yield total life cycle GHG emissions,
which is found to be 2:79504 � 107 kg with 0.2 million ICE vehicles equivalent of
the considered scenario of EVs.

From the above assessment of life-cycle GHG emissions for the two categories
of vehicular technology, it can be concluded that an internal combustion engine
vehicle emits about 3.5 times the emissions with the equivalent driving range
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battery electric vehicle. As per International Energy Agency (IEA) IEA (2011),
transportation sector alone accounts for 30% of global energy consumption, being
the second largest source of CO2 emissions contributing to 20% of global GHG
emissions. Also, it is anticipated that there will be a tremendous increase in energy
consumption in the transportation with growing demand for personal vehicles EIA
(2013). Hence, transportation electrification with growing use of EVs presents
excellent prospects for reducing the discharge of CO2 and other toxic GHG, apart
from saving the depleted stock of fossil fuels. Further, these benefits will increase
manifold if renewable energy sources are being exploited to the fullest to charge the
batteries of this energy efficient breed of vehicles.

11.2 Development of Charging Load Profiles of Electric
Vehicles1

In order to ascertain whether the existing grid capacity will be able to support
additional EV load with random charging, the assessment of charging load profiles
based on the driving pattern of the owners is integral. The selection of charging
power magnitude among the existent charging standards as well as the charging
physics plays a crucial role in shaping the load profiles generated by the EVs. In
this regard, this part analyzes the charging load profiles of the large-scale EVs
employing the possible combinations of charging physics of constant time (CT)
charging and constant power (CP) charging Darabi and Ferdowsi (2011) along with
two distinct charging rates of 3.3 and 6.6 kW.

11.2.1 Process of Developing the Charging Load Profiles

11.2.1.1 Electric Vehicle Characteristics

Three types of EVs are considered. Their relevant characteristics and composition
percentages RWTH (2010) in the system are detailed in Table 11.4. The Battery
Electric Vehicle (BEV) and City-BEV are fully electric vehicles powered solely by
the onboard battery. The PHEV 90, carrying an electric range of 90 km is a hybrid
electric vehicle having ICE as a range extender unit. A total of 0.17 million vehicles
is assumed in the system for the case study. Based on the vehicles’ characteristics
and composition percentages in the system, the weighted average values for the
assumed scenario are also summarized in Table 11.4.

1Section adapted from work published by the authors in reference Jain and Jain (2014a).
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Table 11.4 Characteristics of electric vehicles

Battery All-electric
Type of vehicle capacity (kWh) Consumption (kWh/km) range (km) Composition (%)

BEV 35 0.20 175 37

City-BEV 16 0.12 133 10

PHEV 90 18 0.20 90 53

Weighted average values

Battery capacity (kWh) 24

Consumption (kWh/km) 0:192

All-electric range (km) 125

Fig. 11.1 Final arrival times of vehicles at home

11.2.1.2 Arrival Pattern

Figure 11.1 shows the percentage of vehicles arriving against their final arrival times
at home. The arrival pattern has been developed taking the data inputs from Darabi
and Ferdowsi (2011); NHTS (2001). The final arrival time of the vehicles has been
treated as the charging start time because it is inferential that the commuters would
plug their vehicles for charging soon after arriving at home. It can be observed that
higher percentages of vehicles are arriving at home in the evening and late evening
hours characterizing the routine driving behavior of commuters, returning to home
from work or other related trips.
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Table 11.5 Electric vehicle charging standards

SAE J1772 standard

Charging type Voltage level Power level Phase

Level 1 120 V AC 1.2–2.0 kW Single-phase

Level 2 (low) 208–240 V AC 2.8–3.8 kW Single-phase

Level 2 (high) 208–240 V AC 6.0–19.2 kW Single-phase

Level 3 208–240 V AC 15–96 kW 3-phase

DC charging (level 1, 2 and 3) 200–600 V DC >15–240 kW DC

EPRI charging standard

Charging type Electrical ratings

AC level 1 120 V AC, 12–16 A, 1.44–1.92 kW, single-phase

AC level 2 208–240 V AC, 12–80 A, 2.5–19.2 kW, single-phase

DC level 1, 2 and 3 200–600 V DC, �80–400 A, �19.2–�240 kW

11.2.1.3 Charging Standards

The two EV charging standards namely SAE J1772 Kalhammer et al (2009) and
EPRI-NEC Duvall and et al (2011) are summarized in Table 11.5. However, both
the standards are proportionate seeing the electrical ratings of voltage, current, and
power. Most of the contemporary charging infrastructure are suited for domestic AC
low charging, as well as the worldwide top selling model of electric cars, supports
charging with SAE J1772 AC Level 1 or 2 connectors up to 6.6 kW. Installation
of DC fast charging (DCFC) station for typical residential applications is debatable
because, first, its setup is very expensive, and second, there will be a huge burden of
utility-scale distribution capacity upgradation in order to allow such a huge amount
of power to flow through the distribution end power equipment. Considering this,
the charging power levels of 3.3 and 6.6 kW, considering AC level 2 (low) and level
2 (high) of both the standards, are taken to develop the load profile of the EVs. With
every hour of charging, these power levels add an electric range of approximately
17 and 34 km, respectively.

11.2.1.4 Charging Physics

Constant Time (CT) Charging Approach In constant time charging approach
Darabi and Ferdowsi (2011), the total charging time is a fixed duration and is
decided by the charging power standard for a given battery. This results in variation
of charging power as per the SOC of the battery. For example, a battery with capacity
24 kWh has fixed charging time of 7.3 and 3.6 h, respectively with a given charging
power standards of 6.6 and 3.3 kW.

Constant Power (CP) Charging Approach In this approach Darabi and Ferdowsi
(2011), the charging power is fixed at the level specified. So, the charging time varies
depending upon the SOC of the battery. Thus, the charging power levels of 3.3 and
6.6 kW results in a maximum charging time of 7.3 and 3.6 h, respectively, for an
average battery capacity of 24 kWh.
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11.2.1.5 Energy Required from the Grid

The arrival times of the vehicles are discretized into four arrival times per hour,
and hence a total 96 arrival times throughout the day. Within the average all-
electric range of 125 km (Table 11.4), the vehicles were classified into various
driven distance groups (n). Finally, the driven distance groups are dispersed into
the considered arrival times of the vehicles throughout the day. Electrical energy is
consumed by the vehicles in driving, causing depleted energy state of the battery.
This energy state is specified by the term state of charge (SOC). The SOC of a
battery is expressed as the percentage of the energy state of a fully charged battery.
For example, a vehicle driven completely to its capacity (up to AER) would carry
0% SOC. Likewise, a vehicle driven half of its AER would carry a SOC of 50%.
The charging energy required to bring the battery back to the full is the complement
of this SOC.

The charging energy required by the EVs from the grid at various arrival times
of the day will be:

Et D

nX

mD1

�
dt

m � nt
m � Eavg

�
8 t 2 .1; 2; : : :; 96/ (11.1)

where Et is the charging demand of EV aggregation arriving at time t, dt
m is the

driven distance by the mth distance group of vehicles arriving at time t, nt
m is the

number of mth distance group of vehicles arriving at time t, and Eavg is the average
energy consumed by the vehicle.

11.2.2 The Charging Load Profiles

The charging load profiles of EVs as realized with the possible combination of
charging power levels and charging physics are shown in Fig. 11.2. It has been
considered that the vehicles start charging as soon as they arrive at home after
finishing the trip(s). Figure 11.2 contains all the charging curves, i.e., the profiles
obtained by employing the two charging powers of 6.6 and 3.3 kW individually with
the constant time (CT) and constant power (CP) approaches. It can be observed
that the load curves with CT approach are less peaking as compared to the load
curves with CP approach for both the power levels. Similarly, for both the charging
approaches, the load curves of 3.3 kW power level has lesser peak value when
compared with the load curves of 6.6 kW charging power level. In addition to this,
the peaks with CT scheme are shifted toward the right in comparison to the peaks
with CP scheme for both the charging powers. Likewise, for both the charging
schemes, the peaks with a lesser charging power of 3.3 kW is shifted toward the
right in contrast to the charging load peaks caused by the 6.6 kW power level.
The above two features are summarized quantitatively in Table 11.6. This is so,
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Fig. 11.2 Charging load profiles of EVs under various approaches

Table 11.6 Features of charging load curves of EVs

Charging approach

Constant power (CP) Constant time (CT)

Charging level (kW) Peak load (MW) Peak time Peak load (MW) Peak time

3.3 204 18:00 174 21:00

6.6 224 17:00 202 19:00

as, for a given amount of charging energy required from the grid as per the SOCs
of the vehicles arriving, use of high charge power level would supply the energy
fast (in a lesser time), resulting in an increased peak that too near the arrival time
of the vehicles. Also, in constant power charging approach, the charging power is
constant whereas the charging time is being scaled as per the SOC of the vehicle,
causing fast charging of vehicles in opposition to constant time charging approach,
where the charging power is being scaled down to lower values in order to keep
the total charging time a fixed duration. Thus, it can be concluded that the load
is more peaking as well as drifted toward early hours with a combination of high
charge power level with constant power charging approach, increasing the degree of
fluctuation. In opposition to this, the load profiles originating from a combination of
low charge power level with constant time charging approach are the flatter ones, as
the peak is less as well as shifted toward late hours.
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11.3 V2G and G2V Profiles Under Varying Equilibrium of
EV Aggregation2

In transportation, the average car is parked almost 90% of the time leaving enormous
time margin during the day to exploit the storage potential of the battery for grid
support services. This led the researchers to propose the vehicle-to-grid (V2G)
mode of operation of EVs in which a proportion of energy stored in the battery
(after accounting for driving consumption) can be injected back into the grid as
an aggregated storage device. In view of this, in this section V2G profiles are
developed with various discharge power levels characterizing the mobility behavior.
The heterogeneity in the vehicles as well as in the mobility behavior is also
incorporated to determine the grid-to-vehicle (G2V) and V2G power capabilities of
the aggregation at different moments of parking under varying penetrations of the
electric vehicles. The quantification of the effects of the simultaneous combination
of resulting G2V and V2G profiles with the conventional load on hourly loading and
electricity market price is presented taking IEEE Test Bus system as an example.

11.3.1 Mobility Attributes

Four specimens EVs, namely BEV, City-BEV, PHEV 90, and PHEV 30, for
representing the small, medium, and large version of electric cars in the market are
considered as shown in Table 11.7. Speed dependent energy consumption of EVs
considering four different phases of driving Pasaoglu et al (2012); RWTH (2010)
viz. road, downtown, highway, and traffic for each of the four vehicles have been
modeled. Three penetration percentages 25, 50, and 100% for the presence of EVs in
the customer segment are created, and the proportion of various electric cars at these
penetration levels was varied. Again, the total number of EVs are assumed to be 0.17
million (at 100% penetration). The percentage proportions in EV adoption at various
penetration levels are influenced by several factors like socioeconomic capability,
charging infrastructure availability, the cost of EVs, etc. Based on the above factors,
RWTH (2010) presented a trend of adoption figures of EVs in various proportions
which formed the basis for the selection of above composition percentages of
various EVs at these penetration levels. In this case, 120 distance groups of vehicles,
from 1 to 196 km, are considered. Also, it is supposed that, distance groups of EVs
up to 67 km complete 40% of their trip on the road, 30% from downtown, 20%
on the expressway, and remaining 10% in moving through traffic. The remaining
distance groups, from 67 to 196 km, are assumed to perform 40% of their travel
on the expressway, 30% from downtown, 20% on the road, and the remaining 10%

2Section adapted from work published by the authors in references Jain and Jain (2016) and Jain
and Jain (2014b).
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in traffic driving. This is to signify that the trips with short distances are mainly
taking place in the urban zone while the trips with large distances include a high
proportion of transit through expressways. The depth-of-discharge of the battery in
driving as well as V2G supply is limited up to 80% in the analysis with a purpose of
EV owners’ obligation of maintaining a reasonable battery lifetime, as deep charge-
discharge cycles shorten the battery life. Based on the premise, the weighted average
parameters of the aggregation at the three penetration scenarios of 25, 50, and 100%
are summarized in Table 11.8.

11.3.2 Development of V2G and G2V Profiles

11.3.2.1 Energy Consumption in Driving

The energy consumed in driving by the EV aggregation of 120 distance groups
arriving at various (96) arrival times through the day is given by:

E� D

120X

mD1

. ˛ C ˇ C � C ı / 8 � 2 .1; 2; : : :; 96/ (11.2)

where,

˛ D 0:4 j 0:2

8
ˆ̂
<̂

ˆ̂
:̂

pc�
m .k�R

m � ER
avg/ 8 k�R

m � AERR
avg

8
<

:

pc�
m .AERR

avg � ER
avg/ 8 k�R

m > AERR
avg

n
0 8 BEVs and City � BEVs

(11.2.1)

ˇ D 0:3

8
ˆ̂
<̂

ˆ̂
:̂

pc�
m .k�D

m � ED
avg/ 8 k�D

m � AERD
avg

8
<

:

pc�
m .AERD

avg � ED
avg/ 8 k�D

m > AERD
avg

n
0 8 BEVs and City � BEVs

(11.2.2)

� D 0:2 j 0:4

8
ˆ̂
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ˆ̂
:̂

pc�
m .k�E
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avg/ 8 k�E

m � AERE
avg

8
<

:

pc�
m .AERE

avg � EE
avg/ 8 k�E

m > AERE
avg

n
0 8 BEVs and City � BEVs

(11.2.3)
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(11.2.4)
Here, E� is the energy consumed in driving by the EVs arriving at time � and pc�

m
is the percentage of mth mileage group of vehicles arriving at time � . Further, k�R

m ,
k�D

m , k�E
m , and k�Tr

m are the km traveled by mth mileage group of vehicles arriving at
time � , respectively, while moving through road, downtown, expressway, and traffic
driving periods; AERR

avg, AERD
avg, AERE

avg, and AERTr
avg are the average values of all-

electric range (AER) given by vehicles; and ER
avg, ED

avg, EE
avg, and ETr

avg are the average
values of energy consumed in driving per km by the vehicles, respectively, when
they move through road, downtown, expressway, and traffic driving periods. The
figures 0.4, 0.3, 0.2, and 0.1 signify the travel percentage of vehicles, respectively
for the driving periods road, downtown, expressway, and traffic for mileage groups
with short trips (up to 67 km). Though, these figures are 0.2, 0.3, 0.4, and 0.1,
correspondingly for these driving courses for mileage groups with long trips (above
67 km). The computation yields energy required by the EVs in driving along the
number of vehicles arriving at various arrival times. Given the total storage capacity
of the aggregation, the complement of the energy required for the driving is the net
available energy for V2G supply.

11.3.2.2 V2G and G2V Moments

The mobility pattern of vehicles is defined by considering only work purpose trips
in which vehicles commute between home and workplace. Thus, the G2V and V2G
moments can be ascertained, once the arrival and departure times, travel and parking
duration, as well as the commute circuit are fixed. This analysis accounts the average
workplace parking duration to be 7 h Pasaoglu et al (2012) and average commuting
duration 1.3 h, resulting in 15.7 h of average home parking time. It is hypothesized
that the vehicles are plugged into the grid at workplace only soon after their arrivals
to supply V2G power, while they are connected to the grid for charging (G2V) as
soon as they finally arrive at home to bring the battery back to the full. Figure 11.1
shows the pattern of the final arrival time of vehicles at home. By employing the
workplace parking and commuting duration Pasaoglu et al (2012) as considered
above, the pattern of arrival of vehicles at the workplace can be obtained, which
is shown in Fig. 11.3. A greater concentration of final arrivals of vehicles at home
exists in the evening hours, though the concentration shifts into morning hours for
the arrivals at the workplace, characterizing the regular office/work timings. Each
distance group of vehicles was split into the considered 96 arrival times in the same
proportions as derived from the arrival patterns.
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Fig. 11.3 Arrival times of vehicles at work

Table 11.9 Charging time duration and electric range added

Charging Charging time duration (h) Electric range added
power Constant power (CP) Constant time (CT) per hour of charging (km)
(kW) 25% 50% 100% 25% 50% 100% 25% 50% 100%

2.5 4:8 5:5 5:0 8:8 9:9 9:3 13:9 14:0 13:7

3.3 3:6 4:2 3:8 6:7 7:5 7:0 17:4 18:4 18:1

6.6 1:8 2:1 1:9 3:3 3:7 3:5 36:8 36:9 36:3

11.3.2.3 Charging and Discharging Power Levels

The V2G profiles have been realized with the discharge power levels of 1.44, 1.64,
1.92, 2.5, 3.3, and 6.6 kW, which covers both AC Level 1 and AC Level 2 range
of SAE J1772 Kalhammer et al (2009) and EPRI Duvall and et al (2011) charging
standards. However, the G2V profiles have been developed with charging power
levels of 2.5, 3.3, and 6.6 kW only, which also comprise AC Level 1 and 2 of the
two charging standards. The charging power cannot be selected below 2.5 kW in this
study because of the constraint of 15.7 h available maximum charging time at home
to bring the battery back to the full. The electric range added per hour of charging
with these charging powers is shown in Table 11.9.

11.3.2.4 Charging and Discharging Approach

The nonlinear charging characteristics of a typical Li-ion battery consist of two
stages of charging. The first stage is the constant current (CC) stage Simpson
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(2011); Young et al (2013) which is analogous to constant power (CP) charging
Darabi and Ferdowsi (2011) and persists till the battery is about 70% charged. In
this stage, charging current remains constant, while the battery voltage rises to the
reference voltage limit. This results in variable charging time depending upon the
SOC of the battery as discussed in Sect. 11.2.1.4. The second stage takes over after
it and lasts till the battery is fully charged. This stage is called constant voltage
(CV) stage Simpson (2011); Young et al (2013) and is analogous to constant time
(CT) charging Darabi and Ferdowsi (2011) approach. During this stage, the charging
current decays exponentially (power scaling) resulting in a high charging time
in comparison to the CC stage. Considering this, the G2V (charging) profiles of
the aggregation have been developed considering charging from 0 to 70% battery
capacity through constant power (CP) approach, while the next 70 to 100% capacity
through constant time (CT) approach. The charging times with the two approaches
at various charge power levels are listed in Table 11.9.

11.3.3 V2G and G2V Profiles of the Aggregation

11.3.3.1 V2G Profiles

Figure 11.4 shows the V2G profiles of the aggregation at the two terminal discharge
power levels of 1.44 and 6.6 kW of the considered range under the three penetration
scenarios. A range buffer corresponding to 20 km Pasaoglu et al (2012) as well
as vehicle-grid interfacing converter efficiency of 93% has been assumed while
evaluating the actual V2G power being supplied through these profiles. Thus, after
accounting for above two deductions, the V2G profiles shown contains energy
corresponding to 24.3, 30, and 26.2% of the average battery capacities, respectively,
at the three penetration ratios of 25, 50, and 100%. The relative G2V and V2G MW
values of the aggregation under the various scenarios are summarized in Table 11.10.
It can be observed that the V2G profiles at the three penetration ratios are not
proportionately modified. For example, neither the V2G peak is proportionately
altered with the penetration ratios nor the shifting of V2G peak times with the
increase in V2G power from 1.44 to 6.6 kW is proportionate with the variation
in penetration ratios. This is due to the presence of heterogeneity in the mobility
attributes, resulting in the changed G2V/V2G energy equilibrium of the aggregation
at these penetration levels. The important characteristics of these profiles due to
changed equilibrium at these penetrations are shown in Table 11.11.

11.3.3.2 G2V Profiles

Figure 11.5 shows the G2V profiles of the aggregation at the two terminal charge
power levels of 2.5 and 6.6 kW of the considered range under the three penetration
ratios. This G2V power is the sum of energy required by the EVs for driving as well
as power consumed from the batteries in V2G supply. It can be observed from the
profiles that, as a result of increased charging rate, the G2V peak increases as well
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Fig. 11.4 V2G profiles of aggregation

Table 11.10 V2G and G2V energy balance of the aggregation

MWs % of total battery capacity

Particular 25% 50% 100% 25% 50% 100%

V2G power by aggregation 182:53 503:08 824:70 24:27 29:93 26:17

Aggregated inverter loss 13:74 37:87 62:07 1:83 2:25 1:97

Driving consumption of aggregation 403:57 835:45 1645:89 53:66 49:71 52:24

Total G2V demand of aggregation 599:85 1376:40 2532:67 79:75 81:90 80:38

Table 11.11 Characteristics of V2G profiles

V2G power

V2G peak
power
(MW) Peak time

V2G dura-
tion (h)

Total V2G
power
(MW)

level (kW) 25% 50% 100% 25% 50% 100% 25% 50% 100% 25% 50% 100%
1:44 20:48 53:32 89:88 11:00 12:00 11:00 2:98 4:11 3:37

182.535 503.084 824.699

1:64 20:96 54:23 94:55 11:00 12:00 11:00 2:62 3:61 2:96

1:92 21:82 56:23 94:80 10:00 11:00 11:00 2:24 3:08 2:53

2:5 21:93 57:60 95:59 10:00 11:00 10:00 1:72 2:37 1:94

3:3 22:60 59:63 98:99 10:00 10:00 10:00 1:30 1:79 1:47

6:6 23:24 61:39 99:55 10:00 10:00 10:00 0:65 0:90 0:73

as shifts toward left with the increase in charging power level from 2.5 to 6.6 kW at
all the penetration ratios. Conversely, the minimum G2V load decreases and shifts
toward early hours with the increase of charging power. The characteristic thing to
be noted that the average increase in G2V peak or decrease in minimum G2V load
is not proportionate at the three penetration ratios at various charge power levels.
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Fig. 11.5 G2V profiles of aggregation

Table 11.12 Characteristics of G2V profiles

G2V power
Peak G2V power
(MW) Peak time

Least G2V power
(MW) Time of occurrence

level (kW) 25% 50% 100% 25% 50% 100% 25% 50% 100% 25% 50% 100%

2:5 55:15 121:61 233:74 20:00 20:00 20:00 6:64 17:67 28:23 09:00 09:00 09:00

3:3 57:97 129:76 245:03 19:00 19:00 19:00 4:62 14:15 20:36 06:00 09:00 06:00

6:6 64:90 145:08 273:91 17:00 18:00 18:00 1:58 4:30 06:82 05:00 06:00 06:00

Again, this is on account of heterogeneity in the vehicles’ attributes at the three
penetration ratios, varying the energy equilibrium. The variation in the concentration
of different capacity (types) EVs alters the G2V/V2G capacities of the aggregation
under the various penetration scenarios. Table 11.12 summarizes the characteristics
of resulting G2V profiles of the EV aggregation.

11.3.3.3 Effect of V2G and G2V Profiles Integration on Grid Load and
Electricity Pricing

Integration of the resulting V2G and G2V profiles with the system will modify
the daily load pattern. The variations in market clearing volume (MW) due to this
can alter the electricity market clearing price (MCP) due to the tweaks in unit
commitment. A single-sided auction mechanism has been employed to determine
the hourly market clearing price (MCP) Gutierrez et al (2005). Modified IEEE 30-
Bus system Shahidehpour et al (2002) composed of nine generating units is taken as
the test system to demonstrate the effect on electricity market price. The combined
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Table 11.13 Generator data

Generating unit Pmin (MW) Pmax (MW) Marginal cost ($/MWh)

G1 7 28 6:010

G2 14 56 8:005

G3 20 84 10:004

G4 25 100 13:345

G5 20 130 16:504

G6 15:2 76 18:012

G7 10 55 25:928

G8 4 20 37:575

G9 2:4 12 39:922

Table 11.14 Characteristics of net load on the system

Charge/ Highest slump in load Time of highest Maximum hike in load Time of maximum
discharge (MW) slump (MW) hike
power (kW) 25% 50% 100% 25% 50% 100% 25% 50% 100% 25% 50% 100%

2:5 13:56 34:88 60:78 10:00 10:00 10:00 54:36 119:16 230:00 20:00 20:00 20:00

3:3 14:13 40:74 65:42 10:00 10:00 10:00 56:95 126:72 240:31 19:00 19:00 19:00

6:6 16:03 43:82 73:24 09:00 09:00 09:00 63:41 141:50 268:32 18:00 18:00 18:00

generating capacity of the system is 561 MW. Generator limits, as well as their
marginal cost of generating electricity, are presented in Table 11.13. The generator
data are obtained from Djurovic et al (2012); Qiaozhu Zhai et al (2009). Hourly
conventional load, expected to be fixed, on the system is computed for a regular
winter weekday according to IEEE reliability test system Wong et al (1999) taking
daily peak loads value from Shahidehpour et al (2002). Generators are assumed to
bid their true marginal cost of generating power. The conventional daily load curve
thus obtained for the selected modified IEEE 30-Bus test has been shown in Fig. 11.5
via solid black line.

The effect of integration of resulting V2G and G2V profiles with the selected test
system on hourly loading and electricity market price is quantified in Tables 11.14
and 11.15, respectively. The two distinct attributes of the resulting system load and
hourly MCP are: (1) reduction in net load and hence the MCP in the morning hours
due to V2G supply of the aggregation with arrival of vehicles at workplace, and
(2) rise in net load and hence the MCP due to G2V demand of the aggregation
with arrival of vehicles at home. Table 11.14 summarizes the relative MW values of
maximum hike and reduction in the original test load as well as their timings due to
the integration of V2G and G2V profiles, under the three penetration scenarios.
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The lower charge and discharge power level results in a flatter G2V and V2G
profiles, respectively, resulting in a lesser increase of electricity market price
with G2V as scheduling of costly generators are avoided. The two critical
mobility attributes namely the driven distance and the base case arrival time
at homes are independent of each other. Thus, the equilibrium of various EVs
regulates the amount of V2G support and hence the net load on the system
and hourly market prices with the integration of G2V and V2G profiles at
various charge/discharge power levels. The above analysis concludes that the
V2G support is not only dependent on the number of vehicles available to
support the grid but is also dependent on the heterogeneity of the aggregation
where battery electric vehicles (BEVs) may contribute more to V2G than
plug-in hybrid electric vehicles (PHEVs), an important factor necessary
to be incorporated to create any future robust model of EV dominated
transportation system in order to accurately predict the fleet level effects on
the grid.

11.4 Electric Vehicles Charging and Discharging
Coordination for Reserve Capacity Commitment

This section presents the coordination of the EV aggregation during the charging
and discharging phases to obtain the MW capacity that can be contracted as the
capacity commitment (energy and reserve) in the volatile ancillary services market.
After accounting for the driving consumption in transportation, the available battery
capacity is the storage that can be supplied to the grid through V2G as a coordinated
aggregation to produce MW level effect on the grid. Based on the mobility pattern
defined in the previous section, the two parking places of home and work can be
considered as the two operational places to simulate the G2V and V2G activities.
The changeable locations of vehicles also suggest that the grid services function
can be segregated based on the zone of operation (control area) of vehicles. In view
of this, the aggregation of vehicles can either charge (G2V) at home and discharge
(V2G) at work, or it can charge (G2V) at work while discharge (V2G) at home.

As discussed in the previous section, the vehicles arrive at the two places—home
and work as per the pattern shown in Figs. 11.1 and 11.3 respectively, all over the
day. Let there is n work as well as home arrival times and the number of vehicles
arriving at either of the two places during these times are:

N1; N2; N3; : : :: : :: : :; Nn

The Charging (G2V) Phase Let the selected charging and discharging power
levels (kW) for the aggregation of vehicles are Pc and Pd. Then, the CP phase
charging power of the aggregation in MW arriving at a particular time n is given by,
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MWc
CP D

�
Pc

1000



� Nn (11.3)

and the CT phase charging power of the aggregation in MW arriving at a particular
time n

MWc
CT D

�
Pc

1000



�

�
MWhc

CT

B



(11.4)

where B is the average battery capacity of the vehicles considered in the aggregation.
Total charging duration of the aggregation is given by,

Tc D

�
MWhc

CP

MWc
CP



C

�
MWhc

CT

MWc
CT



D Tc
CP C Tc

CT (11.5)

where MWhc
CP and MWhc

CT are the total energy required by the aggregation arriving
at particular time in CP and CT phase of charging, respectively.

The Discharging (V2G) Phase The discharging power of the aggregation in MW
arriving at a particular time n is,

MWdis D
Pd

1000
� Nn (11.6)

and, the total discharging duration of the aggregation,

Td D
MWhdis

n

MWdis
(11.7)

where MWhdis
n is the total V2G energy made available by the aggregation arriving

at time n.

Determination of Capacity Reserve Let, there are n variables (˛) along the n
arrival times for each of the two CP and CT phases of charging, i.e., ˛CP.n/ and
˛CT.n/, respectively. There are total 1440 min (denoted by t) in a day’s timeline
starting from 00:00 till 23.59. For a given total charging duration of the aggregation
arriving at various times of the day, the ˛ variables take the value unity or zero as
per the following conditions:

˛CP D

(
1 8 n � t � .n C Tc

CP/

0 otherwise
(11.8)

8 t D 1; 2; 3; : : :: : :: : :; 1440
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˛CT D

(
1 8 .n C Tc

CP/ � t � .n C Tc/

0 otherwise
(11.9)

8 t D 1; 2; 3; : : :: : :: : :; 1440

Here, n is the nth arrival time of the vehicles. The total charging (G2V) power
drawn by the EVs at any minute of the day is obtained as,

MWc D

nX

iD1

��
˛CP.i/ � MWc

CP

�
C
�
˛CT.i/ � MWc

CT

��
(11.10)

and the total discharged power (V2G) of the EVs at any minute of the day,

MWd D

nX

iD1

Œ˛CP.i/ � MWdis� (11.11)

Hence, the net power supplied or drawn from the grid at any minute of the day is
given by,

MWNet D MWc � MWd (11.12)

Nonetheless, if only unidirectional flow of power during charging (G2V) is
possible due to infrastructure limitations, the MWd D 0 and,

MWNet D MWc (11.13)

The capacity reserve (generation/demand) for any m minutes time-interval
in a day’s timeline can be obtained by taking the average value of net power
supplied/drawn from the grid over that m minutes, i.e.,

Capacity reserve .generation=demand/ D MW
Net

8 t 2 .1; 2; 3; : : :; m/

(11.14)

The reserve capacity of the aggregation at any moment is dependent upon
vehicles’ arrival patterns at home and work as shown in Figs. 11.1 and 11.3,
respectively. Consequently, when the aggregation chooses to charge at work
and discharge at home, the demand capacity (G2V) of the reserve will be
dominating the generation capacity (V2G) of reserve at the morning hours
while vice versa in the evening. Conversely, when the aggregation is selected

(continued)
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to charge at home and discharge at work, the demand capacity (G2V) of
the reserve will be dominating the generation capacity (V2G) of reserve at
the evening hours while vice versa in the morning. The ancillary services
market for the capacity reserve is a volatile high-value market. Thus, for
a defined mobility pattern a capacity commitment (energy and reserve) in
these competitive services market on a long-term basis could yield a notable
revenue stream, in addition to increasing the grid reliability.

11.5 Load Leveling Through Charging and Discharging
Coordination

The load levelization simplifies the load forecasting and dispatch exercises in the
system operation by reducing the complexities associated with the oscillating load,
and thereby the regulation services requirements. With a defined mobility pattern
of home–work commute with work and home as the two parking slots available for
G2V and V2G activities, the charging and discharging modes of EV aggregation can
be coordinated to fill the valley(s) and shave the peak(s) of a fluctuating load with
a purpose of its levelization. This can be realized by enacting the G2V (charging)
mode and V2G (discharging) mode of the aggregation respectively, during the valley
periods and peaking times of the original load.

Let us construe a case of coordinating the charging of the vehicles during
their availability at home (G2V) and discharging during their availability at the
workplace (V2G), with a purpose of valley filling and peak shaving, respectively.
The assumptions on vehicles and its parameters are shown in Table 11.16.

The pattern of arrival of vehicles at home and the workplace is previously
shown in Figs. 11.1 and 11.3, respectively. In this case, a total 24 arrival times are
considered for both home and workplace arrival of vehicles. With the total number

Table 11.16 Assumptions on vehicle parameters

Parameter Value

Type of vehicle Nissan LEAF electric car (BEV)

Total number of vehicles 0.25 million

Battery capacity 24 kWh

Battery capacity with 80% DoD 19.2 kWh

Capacity required for 20 km range buffer 3.632 kW

Net available capacity for driving 15.568 kWh

Average home–work commute distance 27.5 km

Energy consumed in home–work commute 5 kWh

Net available battery capacity for V2G 10.567 kWh
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Fig. 11.6 Hourly load pattern of CAISO load (Monday, June 12, 2017)

of vehicles assumed to be 0.25 million in the system, the actual number of vehicles
arriving at these 24 arrival times can be obtained from the above patterns. Here,
the home parking, workplace parking, and travel duration constraints are assumed
to be 15, 7, and 2 h, respectively. Figure 11.6 shows the demand curve of a typical
day (Monday, June 12, 2017) of California Independent System Operator (CAISO)
system CAISO (2017), with the dashed line showing the average load of 26,520 MW
of the day. The maximum demand is 30,500 MW occurring at hour 20:00 while the
minimum demand being 22,000 MW occurring at hours 03:00 and 04:00. Between
the two demands, the load pulsates requiring ramping up and down of the generation
sources in order to follow the load pattern.

In order to levelize the load around the average value, the load points (MWs)
above the average load has to be curtailed through V2G (peak shaving), while the
load points (MWs) below the average values are to be lifted through G2V (valley
filling) by the aggregation. Thus, from Fig. 11.6, the V2G supply is required between
hours 08:00 and 23:00, while the G2V is required between the hours 00:00–08:00
and 23:00–24:00, in order to levelize the load around the average. For simplification
of G2V and V2G coordination, the charging and discharging power per vehicle are
set to 10.60 and 15.57 kW, respectively, so that the aggregation is able to discharge
and charge completely to the limits considered within an hour. These charging
powers fall in the gamut of AC Level 2 gamut of EV charging standards (Table 11.5).
The vehicles are charged and discharged with constant power charging approach.

Let the various hours of the day is denoted by hn, where n 2 .1; 2; 3; : : :; 24/,
then MW drawn, i.e., G2V by the aggregation in an hour hn to hnC1,
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Fig. 11.7 V2G and G2V MWs required as well as supplied by the aggregation at various times

MWG2V D

�
10:60

1000



Nhn (11.15)

and the MW supplied, i.e., V2G by the aggregation in an hour hn to hnC1,

MWV2G D

�
15:57

1000



Nhn (11.16)

Here, Nhn is the number of vehicles arriving (hence available) at hour n of the day.
The vehicles are scheduled V2G and G2V modes with the set charging and

discharging power levels, as per the constraints work and home parking duration
specified. It should be noted that as the vehicles are primarily accompanied
by transportation (driving) energy consumption, the V2G support MWs by the
aggregation would inherently be lesser than the charging demand (G2V support).
In other words, the total G2V demand from the grid is the sum of driving energy
consumption and the energy supplied through V2G. The accessibility of net V2G
and G2V MWs for peak shaving and valley filling respectively is limited by the total
number of vehicles in the system as well as the pattern of arrival of vehicles which
governs the availability of number vehicles at the two locations for charging and
discharging. Therefore, here, the net V2G/G2V supplied/drawn by the scheduling
the vehicles for peak shaving and valley filling respectively during the various hours
is lesser than the V2G/G2V required to completely levelize the load around the
average, as shown in Fig. 11.7. In this figure, for depiction, the average load is shown
by zero and pattern of G2V and V2G required are plotted below and above the zero
average, respectively. Nonetheless, a significant amount of peak shaving and valley
filling is achieved thereby leveling the load. Table 11.17 summarizes the relative
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Table 11.17 MW
proportions in V2G/G2V
coordination

Particular Value

V2G MWs supplied by the EV aggregation 2572:37

Travel demand of the EV aggregation (MW) 1248:87

G2V MWs drawn by the EV aggregation 3821:16

Fig. 11.8 New equalized load pattern

MW proportions of G2V and V2G energy transfer in this scheme for load leveling.
Figure 11.8 shows the new hourly load curve of the day after the levelization through
V2G and G2V coordination.

Conventionally, the ramp up and ramp down energy and reserve requirements
to match the fluctuating load throughout the day are provided by expensive
and slow response coal, gas, or fossil fuel based power sources. The oscillat-
ing and unpredictable nature of load necessitates procurement of these costly
ancillary services (energy and reserve capacity) by the system operator to
maintain the stable and reliable operation of the interconnected system. The
increased cost of electricity is ultimately ended up being passed on to the final
consumers. The load leveling mechanism through V2G and G2V coordination
by a large pool of EVs as demonstrated can be an effective measure to reduce
the dependability of ramping commitments on traditional sources, thereby
reducing the ultimate cost of electricity to the consumers. In addition, the
G2V and V2G energy storage and transactions take place on the distribution
side (receiving end) avoiding the transmission line congestion, mostly at the
peaking times.



264 P. Jain and T. Jain

11.6 Electric Vehicle Grid Interfacing to Enable Support
Through Power Storage

Figure 11.9 shows the representative schematic of the electric vehicle and electric
utility interfacing to facilitate the grid support services through aggregated EV stor-
age. The EVs offer the advantage of high ramp up and ramp down speed capabilities
but at the same time possess the limitations of changeable availability affecting
the contract sizes and absence of stabilizing inertia as of the large generators.
This makes them appropriate for short-term high-value ancillary services markets
Kempton and Tomić (2005a) like regulation and spinning reserves instead for the
base load sources, as shown in Fig. 11.9.

The charging points having the ability to enable two-way communication
between the charging station and the EV to limit the charging current to the safe
limits are also termed as the electric vehicle supply equipment (EVSE). In order
to have control over the charge as well as discharge rates of the vehicle battery,
the EVSE must be designed to have the bidirectional power and communication
flow capabilities. Also, to support V2G, the EVSE should be designed to have the
capability to handle different charge/discharge power levels and support AC as well
as DC power transfer to/from the vehicle as per the infrastructure requirements.

The standard battery capacity of an electric vehicle is only in the range of few
kilowatt hours, creating negligible impact at the grid level operations. The V2G
support services would require a controllable capacity of MWs to have a substantial
impact on the system. This is possible only with the aggregated battery storage
necessitating the grouping of a large number of available EVs at the moment. Also,
it is almost impractical for the system operator to interact with each individual
vehicle. Thus, an interfacing entity called vehicle aggregator Guille and Gross
(2009); Lopes et al (2011) is proposed, for managing the groups of battery storage
to provide overall load (G2V) and generation (V2G) services to the electric utility
(system operator). To the system operator, the aggregator provides a single point
of contact—managing a resource of rapidly controllable electric reserve and its

Fig. 11.9 Schematic of EV and electric utility interactions for grid support through V2G
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participation in grid support services. Principally, the vehicle aggregator would be in
control of (1) location monitoring of vehicles, (2) tracking their grid connectivity, (3)
integrating participants to ensure sufficient capacity, (4) ensuring their participation,
(5) communication/control (command) signals from/to the system operator, (6)
establishing contracts with the operator, and (7) coordinating the payment streams
down to the connected vehicles for the grid services. The system requirement for
this include added communication and controls with the electric utility to ensure
the energy transfer between the vehicle owner and system operator in an optimal
way. An unregulated utility transacting electricity or an independent third party
entity like an automobile manufacturer, a battery manufacturer, or a mobile network
provider having expertise in communication functions and automated customer
transactions may serve as a vehicle aggregator in the future scenario Briones et al
(2012); Kempton and Tomić (2005b).

Justification of the economic feasibility of V2G is contingent upon numerous
factors. High battery cost, long charging time, range anxiety, costly charging
infrastructure, etc. are the first few hurdles in the greater EV adoption. However,
in V2G, the electric utilities or in turn the vehicle aggregators will have control and
access to charging/discharging of vehicle batteries for the purpose of improving
the system reliability through grid support. Thus, the bidirectional power flow
in V2G allows the commitment of energy and capacity services via the grid-
connected vehicles for which the aggregator and hence the vehicle owners will
be compensated. The value created on the part of these services would be a vital
motivation toward consumers’ willingness to participate in V2G. Not to mention, the
V2G support services should be in addition to the primary function of the vehicles,
i.e., transportation, in order to not to jeopardize the customers’ comfort of vehicle
utilization in travel.

Nomenclature

Abbreviations, Acronyms, & Symbols

˛CP Variable along CP phase of charging
˛CT Variable along CT phase of charging

MW
Net

Capacity reserve (generation/demand)
AERD

avg Average value of AER achievable by vehicle aggregation in downtown
driving

AERE
avg Average value of AER achievable by vehicle aggregation in express-

way driving
AERR

avg Average value of AER achievable by vehicle aggregation in road
driving

AERTr
avg Average value of AER achievable by vehicle aggregation in traffic

driving
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B Average battery capacity of the vehicles considered in the aggregation
dt

m Driven distance by the mth distance group of vehicles arriving at time t
E� Energy consumed in driving by the EV aggregation arriving at time �

Et Charging demand of EV aggregation arriving at time t
Eavg Average energy consumed by the vehicle
ED

avg Average value of energy consumed per km by the vehicle aggregation
in downtown driving

EE
avg Average value of energy consumed per km by the vehicle aggregation

in expressway driving
ER

avg Average value of energy consumed per km by the vehicle aggregation
in road driving

ETr
avg Average value of energy consumed per km by the vehicle aggregation

in traffic driving
hn nth hour of the day
k�D

m km traveled by mth mileage group of vehicle aggregation arriving at
time � in downtown driving

k�E
m km traveled by mth mileage group of vehicle aggregation arriving at

time � in expressway driving
k�R

m km traveled by mth mileage group of vehicle aggregation arriving at
time � in road driving

k�Tr
m km traveled by mth mileage group of vehicle aggregation arriving at

time � in traffic driving
MWc Total charging (G2V) power drawn by the EVs at any minute of the

day
MWd Total discharged power (V2G) of the EVs at any minute of the day
MWNet Net power supplied or drawn from the grid at any minute of the day
MWc

CP CP phase charging power of the aggregation in MW
MWc

CT CT phase charging power of the aggregation in MW
MWdis Discharging power of the aggregation in MW
MWG2V MW drawn by the aggregation
MWV2G MW supplied by the aggregation
MWhc

CP Energy required by the aggregation in CP phase of charging
MWhc

CT Energy required by the aggregation in CT phase of charging
MWhdis

n V2G energy made available by the aggregation arriving at time n
n nth arrival time of the vehicles
Nhn number of vehicles arriving at hour n of the day
nt

m Number of mth distance group of vehicles arriving at time t
Nn Number of vehicles arriving at a particular time n
Pc Selected charging power level (kW) for the aggregation of vehicles
Pd Selected discharging power level (kW) for the aggregation of vehicles
pc�

m Percentage of mth mileage group of vehicle aggregation arriving at time
�

Tc Total charging duration of the aggregation
Td Total discharging duration of the aggregation
Tc

CP CP phase charging duration of the aggregation
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Tc
CT CT phase charging duration of the aggregation

AER All-electric range
BEV Battery electric vehicle
CAISO California Independent System Operator
CC Constant current
CP Constant power
CT Constant time
CV Constant voltage
DCFC Direct current fast charging
DoD Depth of discharge
EIA Energy Information Administration
EPRI Electric Power Research Institute
EV Electric vehicle
EVSE Electric vehicle supply equipment
G2V Grid-to-vehicle
GHG Greenhouse gas
ICE Internal combustion engine
IEA International Energy Agency
MCP Market clearing price
MPG Miles per gallon
PHEV Plug-in hybrid electric vehicle
SAE Society of Automotive Engineers
SOC State-of-charge
T&D Transmission and distribution
V2G Vehicle-to-grid
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Chapter 12
Optimal Operation
of Renewable-Based Residential
Energy Hubs for Minimizing PV
Curtailment

Soroush Senemar, Alireza Seifi, and Mohammad Rastegar

12.1 Introduction

Increasing rate of energy consumption, lack of fossil fuels, reliability, and envi-
ronmental concerns are the main challenges of the energy systems. These reasons
motivate us to use energy sources more efficiently. As a promising solution, cogen-
eration technologies have been proposed recently to make the energy generation
and consumption more efficient. This technology uses a kind of energy carrier such
as natural gas, biofuels, or solar energy to produce electricity, heating and cooling
energies. Combined heat and power (CHP) units, as the most popular cogeneration
technologies, is penetrating drastically in the worldwide energy system. For exam-
ple, it is forecasted to have more than two million micro-CHP units in Japan by
2030, especially beside the residential consumers [1]. The CHP units are fed with
natural gas and generate electricity and heat in the output.

An energy system including cogeneration technologies is named multi-carrier
energy system. Energy hub is a usual structure to model the energy transfer, storage,
and conversion in a multi-carrier energy system [2]. Because of interactions between
different energy carriers, the operation of energy hub is more complex than a single
energy carrier system. The main operational questions in a residential energy hub
are “how much the energy carrier is consumed at the input port of the energy hub”
and “how energy carriers are flowing in the different ways from inputs to outputs of
the energy hub.” These questions are usually answered by solving an optimization-
based problem.

Since almost 40% of total energy is consumed in residential sectors [3], it seems
essential to study residential energy hubs, using CHP units [4]. A boiler is usually

S. Senemar · A. Seifi · M. Rastegar (�)
Electrical and Computer Engineering Department, Shiraz University, Shiraz, Iran
e-mail: soroush_senemar@shirazu.ac.ir; seifi@shirazu.ac.ir; mohammadrastegar@shirazu.ac.ir

© Springer International Publishing AG, part of Springer Nature 2018
B. Mohammadi-Ivatloo, F. Jabari (eds.), Operation, Planning,
and Analysis of Energy Storage Systems in Smart Energy Hubs,
https://doi.org/10.1007/978-3-319-75097-2_12

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75097-2_12&domain=pdf
mailto:soroush_senemar@shirazu.ac.ir
mailto:seifi@shirazu.ac.ir
mailto:mohammadrastegar@shirazu.ac.ir
https://doi.org/10.1007/978-3-319-75097-2_12


272 S. Senemar et al.

used next to the CHP unit to guarantee providing the heat demand. In other words,
the demanded heat can be provided by the CHP or the boiler. In addition, a share of
electrical demand is fed by the CHP unit and remained can be supplied by electrical
grid and other electrical resources. Ren et al. [4] developed a mixed integer nonlinear
programing (MINLP) optimization and determined the optimal overall energy cost
for a test year and the hourly operation schedules of CHP unit.

Recently, many studies focused on the optimal operation of multi-carrier energy
systems especially residential energy hubs [5–10]. The main objective functions
of proposed optimization problems in the residential energy hub are minimizing
customers’ costs, such as the energy cost or the emission cost. For example in [2],
a general modeling of multi-carrier energy systems is developed and the concept
of energy hubs is explained. Then, power flow equations for each energy carrier are
used to model the energy hub. Finally, total energy cost is considered as the objective
function and is minimized. In [10], a residential energy hub is modeled and a multi-
objective optimization is proposed. The authors used weighted sum technique to
converting a multi-objective function to a single objective one. The single objective
function elements are containing energy costs, energy consumption, CO2 emission
costs, and the peak load of electricity demand. Then, based on the weights set by
customers, the optimization is solved and the amount of each energy carrier at
inputs of the energy hub and the interaction between different energy carriers are
determined.

In addition, renewable resources particularly photovoltaic (PV) panels although
have a high installation cost are becoming more widespread in the residential
buildings because of low operational and emission costs. In [11], a residential energy
hub is proposed and solar panels are providing power for the energy hub. Other
components like CHP unit, plug-in hybrid electric vehicle (PHEV), and heat storage
as parts of future smart homes are incorporated. The objective function is customer’s
energy cost. These resources such as PV panels, which have low operational costs,
should be utilized maximally to become profitable for their owners [10, 12]. In
renewable residential energy hubs that contain a CHP generator and PV panels,
high heat demand may have impact on the PV utilization. Because, at hours with
high heat demand, CHP units are utilized to meet heat demands, which causes
supplying a large portion of the power demand. Thus, the PV generation power
is less than what it could potentially produce, that can affect the revenue of PV
installation. In other words, when a large portion of power demand is supplied by
CHP, a part of the PV generation is left unused, which is called PV curtailment.
High heat demand can increase the PV curtailment, especially in sunny hours of the
day [13]. In addition, heat and electrical storage systems can be considered in the
energy hub [11, 14]. Reference [14] has investigated the effect of energy storage on
optimal operation of residential energy hub. The investment payback and benefits
of thermal and electrical storage on other component of energy hub is analyzed in
[14]. The objective function contains customer’s energy costs and penalty for carbon
emission. Plug-in Hybrid Electrical Vehicle (PHEV) as one of the new emerging
technologies is recently considered in the optimal operation study of residential
energy hubs [11, 12]. These vehicles consume electrical energy at charging periods



12 Optimal Operation of Renewable-Based Residential Energy Hubs for. . . 273

and can bring the charged energy back to the grid by discharging at the time of
availability. In summary, although a number of works have studied the operation of
residential energy hubs, a few of them have considered all the emerging components,
i.e., PV panels, CHP units, boiler, and storage systems, in the smart home. Among
these few works, to the best of authors’ knowledge, PV curtailment concern has not
been considered in the optimal operation of the renewable-based residential energy
hub.

This chapter optimizes the day-ahead operation of a renewable residential energy
hub. The energy hub model includes a CHP unit, a PHEV, PV panels, and a
gas boiler (GB) to provide the electrical and heat demand. Electricity and natural
gas are assumed as the energy hub inputs. In addition, opposing to the most of
previous works, the gas to heat and gas to power efficiencies of CHP are considered
dependent on the output power. According to the proposed model, an optimization
problem is designed for optimal operation of the proposed framework. The objective
functions are minimizing customer energy cost and PV curtailment simultaneously.
The problem is subjected to different operational constraints of the components
and energy and heat balance in the energy hub. Solving the proposed problem
determines the amount of each energy carrier and interaction between different types
of energy. In addition, it determines the time scheduling of PHEV. The proposed
method is applied to a home as a renewable residential energy hub to demonstrate
the effectiveness of the proposed method. In addition, the impact of incorporating a
heat storage system on the PV curtailment is studied in this chapter. Based on recent
contents, the main contributions of this chapter are:

• Integrating new technologies such as PHEV, PV panels, and storage systems in
the energy hub model,

• Accurate modeling of CHP units especially in part load operation, and
• Considering PV curtailment in the optimal operation of energy hub.

12.2 Methodology and Problem Formulation

12.2.1 Proposed Renewable-Based Residential Energy Hub
Structure

Energy hub concept can be used for every multi-carrier framework that includes
different kinds of demands and resources. This chapter models a home as an energy
hub with electrical and heat demand, PHEV, PV panels, storage systems, a CHP
unit, and a boiler. The structure of the proposed residential energy hub is shown
in Fig. 12.1. As shown in Fig. 12.1 the electrical demand can be provided directly
from the grid, generation power of PV, and output power of CHP unit. In addition,
the PHEV can be discharged to provide a part of electrical demand at the time of
availability.
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Fig. 12.1 Structure of the renewable residential energy hub

Output heat from CHP unit and gas boiler provides the heat demand. The heat
storage can provide a part of the heat demand. In the proposed energy hub structure,
the input gas can flow in two paths, i.e., to CHP unit or to gas boiler. Distribution of
input gas between components is determined by dispatch factor (˛(t)). The dispatch
factor is variable between 0 and 1. This factor determines the amount of natural gas
flowing into the CHP unit and gas boiler.

12.2.2 Problem Formulation

Here, the optimization-based formulations for the operation of the residential energy
hub are presented. The goal is determining the optimal value of dispatch factors, i.e.,
˛(t), and the optimal flow of heat and electricity in different paths in Fig. 12.1. The
optimization is studied for one-day period with 1-hour time-step. The optimization
problem, i.e., objectives and constraints, is presented as follows:

12.2.2.1 Objective Function

The main objective for households is minimizing the energy cost. Hence, the energy
cost is assumed as the first criterion in the optimization problem. It is mathematically
formulated as follows:
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EC D

24X

tD1

�
�e.t/ � E.t/ C �g.t/ � G.t/

�
(12.1)

�e(t) and �g(t) are the electrical and gas tariffs in hour t. E(t) and G(t) are,
respectively, the electrical energy and the natural gas received from the grid in hour t.

In addition, the curtailment of PV panels can be considered as another important
criterion in the operation of the energy system. This criterion clearly provides the
customer’s welfare. PV curtailment is presented as follows:

PC D

24X

tD1

�
EG

PV.t/ � EPV.t/
�

(12.2)

where EG
PV.t/ is the capability of PV panels for generation and EPV(t) is the energy

drawn from the PV panels in hour t.
As a conclusion, we meet a multi-objective optimization problem. The problem

can be solved by weighted sum method. This method adds multiple objectives
with different weights to make a single objective problem. Here, per unit values of
objective functions are added together to develop the objective function, as follows:

min CU D w1 � ECpu C w2 � PCpu (12.3)

where CU is the customer utilization, ECpu is equal to EC
ECbase

and, PCpu is PC
PCbase

.
The base values of EC and PC, i.e., ECbase and PCbase, are the energy cost and
PV curtailment in a non-optimal case, in which CHP units are used to provide the
electrical demand at its rated value.

w1 and w2 are importance factors of objectives i.e., weights for ECpu and PCpu.
The procedure of determining w1 and w2 to consider the preferences of the customer
is performed by a fuzzy decision making (FDM) method. The detailed descriptions
of this method are presented in [15]. In this chapter, based on the importance of
the objectives from the customer’s viewpoint the w1 and w2 are determined in the
Numerical Studies Section, using the FDM method.

12.2.2.2 Optimization Constraints

The proposed objective function is subjected to different constraints, including
power and heat flow equations and different technical constraint of the different
components in the proposed structure of Fig. 12.1.

• Power and heat flow equations

According to Fig. 12.1, power and heat flow equations can be presented as
follows:

E.t/ C EPV.t/ C ECHP.t/ C �dch
PHEV � Edch

PHEV.t/ –
Ech

PHEV.t/

�ch
PHEV

D ED.t/ (12.4)
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HGB.t/ C HCHP.t/ C �dch
HS � Hdch

HS .t/ �
Hch

HS.t/

�ch
HS

D HD.t/ (12.5)

ECHP.t/ D ˛.t/ � G.t/ � �
g�e
CHP.t/ (12.6)

HGB.t/ D .1 � ˛.t// � G.t/ � �GB (12.7)

HCHP.t/ D
ECHP.t/

ˇe�h
CHP.t/

(12.8)

where ECHP(t) is the output power of CHP in hour t and �
g�e
CHP.t/ is gas to power

efficiency in hour t, Ech
PHEV.t/ and Edch

PHEV.t/ are the PHEV charging and discharging
power of PHEV, respectively, in hour t, �ch

PHEV and �dch
PHEV are the charging and

discharging efficiency of PHEV, respectively, and ED(t) is the demanded power of
electrical appliances in hour t.

In addition, HCHP(t) is the heat generation of CHP unit in hour t and ˇe�h
CHP.t/

is the power to heat ratio of CHP unit in hour t, HGB(t) is the output heat of gas
boiler in hour t and �GB is the efficiency of gas boiler. HD(t) is the heat demand of
energy hub in hour t. Hch

HS.t/ and Hdch
HS .t/ are the charging and discharging heat of

heat storage, respectively, in hour t. �ch
HS and �dch

HS are the charging and discharging
efficiency of heat storage.

Equations (12.4) and (12.5) show that the demanded power and heat is provided
by grid, CHP unit, and storage. Note that selling the energy to the grid is not
possible. Equation (12.6) presents the electrical generation from CHP unit consid-
ering the gas to power efficiency, i.e., �

g�e
CHP.t/. The gas to power efficiency of CHP

depends on the electricity generation of the CHP, i.e., ECHP(t). It is mathematically
modeled later. Equation (12.7) calculates the share of heat demand that is provided
by the gas boiler. In (12.8), the heat generation of CHP is calculated based on the
output power of CHP and power to heat ratio of CHP unit. This efficiency is also a
function of output power of CHP.

• CHP

Cogeneration system is one of the essential parts of future homes. CHP units are
the most popular kinds of cogeneration technologies because of its high efficiency.
As the main constraint of CHP unit, output power of CHP cannot go beyond from
CHP capacity that presented as follows:

ECHP.t/ � Emax
CHP (12.9)
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where Emax
CHP is the nominal output power of CHP. The output power and heat of

CHP units can be either calculated by gas to heat and gas to power efficiencies or
gas to power efficiency and power to heat ratio. These factors are changing versus
the electrical load of CHP, which is called CHP part load ratio [16]. Thus, Eqs.
(12.10) and (12.11) can mathematically present �

g�e
CHP.t/ and ˇe�h

CHP.t/, respectively.
This is in line with the presented models in the literature [16].

�
g�e
CHP.t/ D 0:9033PL.t/5 � 2:9996PL.t/4 C 3:6503PL.t/3

� 2:0704PL.t/2 C 0:4623PL.t/ C 0:3747
(12.10)

ˇe�h
CHP.t/ D 1:0785PL.t/4 � 1:9739PL.t/3 C 1:5005PL.t/2 � 0:2817PL.t/ C 0:6838

(12.11)

where PL is the part load ratio of CHP calculated as follows:

PL.t/ D
ECHP.t/

Emax
CHP

(12.12)

Equations (12.10) and (12.11) are valid for PL(t) � 0.05. For PL(t) � 0.05,
mentioned factors are �

g�e
CHP.t/ D 0:2716 and ˇe�h

CHP.t/ D 0:6816.

• PHEV

PHEVs, as a part of future smart homes, have a storage capability. Charging and
discharging rates are limited to a definite value as follows:

Ech
PHEV.t/ � Ech

max (12.13)

Edch
PHEV.t/ � Edch

max (12.14)

where Ech
max and Edch

max are the maximum charging and discharging rate, respectively.
It is assumed that PHEV is going out in hour g and coming back home at

hour c. During [g,c], PHEV is not available at home and charging and discharging
is impossible. Therefore, charge level of PHEV battery in hour t (EPHEV(t)) is
determined as follows:

EPHEV.t/ D

8
ˆ̂
<̂

ˆ̂
:̂

E0
PHEV C

tP

hD1

Ech
PHEV.h/ � Edch

PHEV.h/ 8t � g � 1

E0
PHEV C

�
tP

hD1

Ech
PHEV.h/ � Edch

PHEV.h/

�

� Eout
PHEV 8t � c C 1

(12.15)
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Equation (12.15) defines the charge level of PHEV in hour t, where E0
PHEV is the

charge level of the PHEV at the beginning of the day called initial charge value and
Eout

PHEV is the consumed energy of PHEV in out of home hours, i.e., [g,c].
PHEV battery package has a capacity and cannot be charged more than nominal

battery capacity. This constraint is modeled as follows:

�
EPHEV.t/ � 0

EPHEV.t/ � capPHEV
(12.16)

where capPHEV is the PHEV battery capacity.
In addition, customer tends to go out with fully charged battery, as follows:

EPHEV .g � 1/ D capPHEV (12.17)

PHEV charge level at the end of the day should be more than or equal to its initial
charge value. This constraint is presented as follows:

EPHEV.24/ � E0
PHEV (12.18)

• PV panels

PV generation is dependent on daily sunlight, thus the output power depends on
the radiation. Equation (12.19) shows the relation between the output power of PV
and the daily radiation as follows:

EG
PV D

8
<

:

.�s=Ks/ � R2 R � Ks

�s
�R Ks � R � Rn

Pn R � Rn

(12.19)

where R is the solar radiation, �s is the constant efficiency, Ks is the defined knee
point, and Pn is nominal output power of PV.

• Gas boiler

Beside cogeneration systems, a gas boiler usually exists to guarantee providing
the heat demand. The input natural gas of boiler should be capped to nominal
capacity as follows:

HGB.t/ � Hmax
GB (12.20)

Hmax
GB is the nominal capacity of gas boiler.
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• Heat storage

Previous studies [11, 14] show that the heat storage devices can have an effective
role in improving system operation. Thus, a heat storage unit is considered in the
proposed structure for better operation of the energy hub. In addition, the heat
storage may have impacts on decreasing the PV curtailment. The constraints of heat
storage unit are mathematically modeled as follows:

SOHHS.t/ D H0
HS C

tX

hD1

Hch
HS.h/ � Hdch

HS .h/ (12.21)

The state of the stored heat in the heat storage in hour t is calculated in Eq.
(12.21). H0

HS is the stored heat in the storage at the beginning of the day.
Charging and discharging rates of heat storage are limited to their predetermined

values, as follows:

Hch
HS.t/ � Hmax;ch

HS (12.22)

Hdch
HS .t/ � Hmax;dch

HS (12.23)

Heat storage charge level at the end of the day is assumed to be more than or
equal to its initial value at the beginning of the day. This is shown in Eq. (12.24):

SOHHS.24/ � H0
HS (12.24)

The state of heat in heat storage cannot be negative. On the other hand, the state
of heat is always less than heat storage capacity. Equation (12.25) shows this as
follows:

�
SOH.t/ � 0

SOH.t/ � CAPHS
(12.25)

where CAPHS is the capacity of heat storage.

12.3 Numerical Studies

In this section, a sample home is assumed as the proposed renewable-based
residential energy hub and the proposed optimization problem is applied to the
home. The purpose of this study is to investigate the effect of emerging components
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in future smart homes on the proposed objective function and interactions between
these components. Four cases are defined here.

• Case 1: PHEV and heat storage are omitted from the presented energy hub in
Fig. 12.1. In addition, the gas to power efficiency and the power to heat ratio of
CHP unit are considered constant. Results reported in this case are the amount of
objective function and the dispatch factor of CHP unit at each hour.

• Case 2: the gas to power efficiency and power to heat ratio of CHP unit are
considered dependent on the output power of CHP. The gas to power efficiency
and power to heat ratio of CHP unit at each hour are also reported in case two.

• Case 3: a PHEV is added to the proposed energy hub and the effect of PHEV on
the operation of energy hub is taken into account, in Case 3. In this case, charging
and discharging schedule of PHEV is also presented at each hour. Although
PHEV is shown at the output of energy hub, the PHEV battery can be discharge
at some hours and provide a part of the household electrical load. This result is
deeply presented in the following.

• Case 4: the heat storage is added to the proposed energy hub. The impact of
heat storage presence on the objective function, especially, the PV curtailment is
presented in the next subsections.

Application of the proposed optimization procedure in each case and the results
are reported in the following. The proposed optimization problems are solved using
a Nonlinear Programing (NLP) solver in the GAMS environment. Computations are
performed on a PC with a 2.53 GHz processor and 4 GB RAM, in less than 1 min.

12.3.1 Assumptions

Since a part of objective function is energy cost, energy tariff has an effective role
in determining the value of objective function. The gas tariff is a fixed rate in a
day and it is assumed to be 0.05 $/kWh in this study. It is also assumed that the
consumer accepted to participate in a price-based demand response program. One
of the most commonly used time-varying pricing for residential consumers is time
of use (TOU). Based on this pricing method, different price levels, usually two or
three levels, are considered for a day and electricity prices are fixed for a specific
period of the day. Here, a two-level TOU tariff is assumed for a day as shown in
Fig. 12.2. Figure 12.3 shows the variation of gas to power efficiency of CHP unit
based on the CHP part load. The nominal output power of CHP is assumed to be
1.8 kW. In addition, capacity of gas boiler is 0.6 kW with the efficiency of 0.9.
Table 12.1 shows PHEV parameters, i.e. PHEV battery capacity, maximum charging
and discharging rate, initial charge value, the departure and arrival time, out of
home energy consumption of PHEV and charging and discharging efficiencies. In
Fig. 12.4, the capability of PV panels for power generation is shown. These values
are obtained by inserting radiation values for a sample city in the proposed model
for PV panels in Eq. (12.19). Table 12.2 summarizes heat storage parameters, i.e.
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Fig. 12.2 Two-level TOU for a day
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Table 12.1 PHEV parameters

capPHEV Ech
max Edch

max E0
PHEV g c Eout

PHEV �ch
PHEV �dch

PHEV

7.8 kW 1.4 kW 1.4 kW 2 kW 8 17 3.9 kW 0.88 0.88
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Fig. 12.4 Capability of power generation of PV

Table 12.2 Heat storage
parameters

CAPHS Hmax;ch
HS Hmax;dch

HS H0
HS �ch

HS �dch
HS

0.6 kW 0.2 kW 0.2 kW 0.1 kW 0.9 0.9

heat storage capacity, maximum charging and discharging rate of heat storage, initial
charge value and charging and discharging efficiencies. Electrical and heat demands
for a sample home is shown in Fig. 12.5 for a day. w1 and w2, which are the weights
of the objectives in (12.3), are determined according to the customer’s preferences
through the proposed FDM method in [15]. Here, it is assumed that the importance
of both objective functions for the customer is similar. In this case, FDM method is
applied and the weights, i.e. w1 and w2 are also achieved equal to 0.5.

12.3.2 Case 1

This case is simple enough to investigate the impact of the proposed optimization
procedure on the operation of the residential energy hub. In this case, according to
Fig. 12.1, CHP unit, gas boiler, and PV panels are components of energy hub and
electricity grid and natural gas as the inputs of energy hub supply the electrical and
heat demands in the output. The gas to power efficiency and power to heat ratio of
CHP are assumed to be 0.37 and 0.77, respectively.

Energy hub operation is optimized by Eq. (12.3) subjected to (12.4)–(12.25).
The results show that the value of objective function is 3.024. Natural gas and
electricity purchased from the grid are determined as the outcome of the problem
and are shown in Figs. 12.6 and 12.7, respectively. Total input gas for whole day
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Fig. 12.5 Electrical and heat demand in a sample day
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Fig. 12.6 Natural gas purchased from the grid in case 1

is 84.19 kWh and total purchased electricity from the grid is 1.89 KWh. Dispatch
factor ˛(t) is another outcome of the problem and its value at each hour is shown
in Table 12.3. At hours (17–23), dispatch factors are equal to one and all the input
gas enters the CHP unit. The reason for this is that these hours are high-peak tariff
hours and electrical demand is high. Therefore, it is profitable to use CHP unit with
maximum output power and supply the remained electrical demand through the grid.
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Fig. 12.7 Electricity purchased from the grid in case 1

Table 12.3 Dispatch factor of CHP in case 1

Hour 1 2 3 4 5 6 7 8

Value 0.895 0.889 0.891 0.911 0.925 0.965 1 1
Hour 9 10 11 12 13 14 15 16

Value 0.993 1 0.827 0.768 0.771 0.774 0.774 0.797
Hour 17 18 19 20 21 22 23 24

Value 1 1 1 1 1 1 0.996 0.964

Between hours (11–16), PV panels supply a part of electrical demand. Therefore,
the electrical demand at the output of CHP is reduced and CHP can be fed with
less natural gas. In the early hours of the day, i.e., hours (1–6), the heat demand
is high and the gas boiler cannot provide whole the heat demand. Thus, the CHP
supplies the rest of the heat demand. Generated power of CHP at these hours is
enough for low electrical demand during these hours and purchased electricity from
the grid is zero. As previously discussed, the ratio of output power to rated power
is called part load ratio. Figure 12.8 shows the part load ratio of CHP for each hour.
This ratio depends on the amount of input natural gas and the dispatch factor ˛(t).
According to Figs. 12.6 and 12.8, the pattern of the input natural gas and part load
ratio is similar. Table 12.4 shows the hours in which PV is curtailed. The amount
of PV curtailment is also presented in the table. The results show that during hours
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Fig. 12.8 CHP part load ratio in case 1

Table 12.4 PV curtailment
in case 1

Hours 12 13 14 15

Value (kW) 0.289 0.458 0.428 0.380

(12–15) a part of capability of PV panels for generating power is unused. Since, the
PV generation and the power generation of CHP at these hours are high. Thus, most
of the electrical demand is provided by the CHP and the PV is curtailed. In this case,
total PV curtailment is 1.555 kWh for whole the day.

12.3.3 Case 2

The gas to power efficiency and power to heat ratio of CHP are varying based on the
CHP load according to Eqs. (12.10) and (12.11). As presented in Fig. 12.3, gas to
power efficiency of CHP can vary between 0.271 and 0.409. In addition, the power
to heat ratio can be between 0.668 and 1.007. In this case, the proposed optimization
procedure also determines the optimum values for the CHP efficiency.

The objective function, i.e., the weighted summation of energy cost and the
PV curtailment, is minimized subjected to equations (12.4)–(12.25). The resulted
value of objective function is 2.925 in this case, which 3.44% is lower than Case 1.
Inputted natural gas and electricity are shown in Figs. 12.9 and 12.10, respectively.
The daily natural gas and electrical energy purchased from the grid are 81.62 kWh
and 4.38 kWh, respectively. However, daily energy of input natural gas is decreased.
Although the total received energy is increased a little, decreased PV curtailment
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Fig. 12.9 Natural gas purchased from the grid in case 2
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Fig. 12.10 Electricity purchased from the grid in case 2

reduces the objective function. In addition, the peak of natural gas received from the
grid is increased in Case 2 in comparison with that of Case 1. In Table 12.5, resulted
dispatch factor are shown. According to Fig. 12.9, in Case 2, inputted natural gas
is decreased in comparison with case 1 at hours 1–6 and dispatch factor is reduced
at these hours. This result causes that the electrical demand at hours 1–6 is not
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Table 12.5 Dispatch factor of CHP in case 2

Hour 1 2 3 4 5 6 7 8

Value 0.804 0.797 0.790 0.782 0.778 0.774 0.770 0.967
Hour 9 10 11 12 13 14 15 16

Value 0.954 1 0.740 0.744 0.749 0.753 0.753 0.753
Hour 17 18 19 20 21 22 23 24

Value 0.999 0.982 0.977 0.972 0.957 0.942 0.932 0.800
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Fig. 12.11 CHP part load ratio in case 2

completely provided by CHP unit. Therefore, the remained electrical demand is
supplied from the grid. Figures 12.11 and 12.12 show the CHP part load ratio and
gas to power efficiency of CHP, respectively. The pattern of input natural gas and
CHP part load is similar. Comparing Figs. 12.9 and 12.12 verifies that operation of
CHP at low efficiency leads to high consumption of natural gas at the input to meet
the household heat demand. Table 12.6 shows PV curtailment in case 2. Total PV
curtailment is 1.337 kWh for whole the day, which is 14% lower than that of Case 1.
The reason for this is considering the part load efficiency in Case 2, which is more
realistic.

12.3.4 Case 3

In this case, a PHEV is added to the proposed residential energy hub in Case 2.
The PHEV is out of home between hours 8 and 17, and its outdoor consumption
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Fig. 12.12 Gas to power efficiency of CHP in case 2

Table 12.6 PV curtailment
in case 2

Hours 12 13 14 15

Value (kW) 0.232 0.403 0.375 0.327

is 3.9 kWh. It is assumed that the PHEV goes out with fully charged battery. At
available hours at home, PHEV battery package can be charged or discharged with
the aim of reducing the objective function according to its constraints. Although the
PHEV outdoor consumption is added as an electrical demand, it is worthwhile to
note that PHEV battery package acts as electrical energy storage and can improve
the objective function at available hours.

The PHEV needs a definite amount of energy to consume out of home. This
increases the household electrical demand. Thus, the resulted objective function is
3.009 in this case, which is more than Case 2. In Figs. 12.13 and 12.14, purchased
natural gas and electricity is shown, respectively. CHP dispatch factor as another
resulted output is shown in Table 12.7 for each hour. CHP part load ratio is
represented in Fig. 12.15. Charging and discharging schedule of PHEV is shown in
Fig. 12.16. In Fig. 12.16, positive and negative values show, respectively, charging
and discharging of PHEV battery.

Total input gas and electricity are, respectively, 78.14 kWh and 11.08 kWh
for whole the day. According to Fig. 12.16, during hours (17–23), the PHEV is
discharged to supply a part of electrical demand. In addition, PHEV is charged at
hours 23, 24, and (1–7). Discharging hours are high-peak tariff hours while PHEV
is charged during low-tariff hours. The variation pattern of inputted natural gas in
Cases 2 and 3 is similar. Since, the heat demand is the same in both cases. However,
between hours 17 and 23, in which the PHEV is discharged, electrical demand of
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Fig. 12.13 Purchased Natural Gas in Case 3
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Fig. 12.14 Purchased Electricity in Case 3

Table 12.7 Dispatch factor of CHP in case 3

Hour 1 2 3 4 5 6 7 8

Value 0.804 0.797 0.790 0.782 0.778 0.774 0.770 0.967
Hour 9 10 11 12 13 14 15 16

Value 0.954 1 0.740 0.744 0.749 0.753 0.753 0.753
Hour 17 18 19 20 21 22 23 24

Value 0.999 0.926 0.921 0.915 0.898 0.882 0.872 0.800

CHP unit and, in turn, CHP part load ratio is reduced. Part load reduction causes a
higher CHP efficiency, presented in Fig. 12.3, which lowers input gas for providing
the heat demand. According to Fig. 12.14, purchased electricity during hours (17–
23) becomes zero because PHEV is discharged and beside the output power of the
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Fig. 12.15 CHP Part Load Ratio in Case 3
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Fig. 12.16 PHEV charging and discharging schedule in Case 3

CHP, it provides the electrical demand. On the other hand, at hours 23, 24, and (1–
7), in which PHEV is charged, purchased electricity is increased in comparison with
Case 2, and its peak reached 1.975 kW, which is more than that of Case 2. In Case
3, during hours (12–15), PHEV is out of home and there is no change in electrical
and heat demand in comparison with Case 2. Therefore, the PV curtailment in this
case is the same as Case 2.
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12.3.5 Case 4

It was previously discussed that in the proposed energy hub, high heat demand of
CHP unit leads to more CHP output power and less using output power of PV panels,
which leads to PV curtailment. In this case, the heat storage unit is added to the
proposed energy hub. The heat storage can be discharged when needed and provide
a part of heat demand. Therefore, the heat drawn from CHP unit is reduced. As a
result, output power of CHP is reduced and PV panels can provide more part of
electrical demand. The heat storage specifications were presented in Table 12.2.

The objective function is minimized subjected to Equations (12.4)–(12.25). The
amount of objective function is 2.772 and it is 7.87% lower than Case 3. In
Figs. 12.17 and 12.18, purchased natural gas and electricity from the grid are shown,
respectively. Total consumed natural gas is 7.35 kWh and total purchased electricity
is 11.21 kWh for the day. CHP dispatch factors are shown in Table 12.8 for each
hour. CHP part load ratio for each hour is shown in Fig. 12.19. Charging and
discharging schedule of PHEV and heat storage are concluded in Figs. 12.20 and
12.21, respectively.

According to Fig. 12.21, during hours (11–15), the heat storage is discharged to
provide a part of the heat demand. Therefore, inputted natural gas, CHP dispatch
factors, and CHP part load ratio are decreased at these hours. Thus, more PV
generation is used to provide the electrical load and the PV curtailment is decreased
in comparison with previous cases.

The presented results in Fig. 12.21 show that discharging/charging the heat
storage is occurred at low-tariff/high-tariff hours of electricity. Since, at high-tariff
hours of electricity, it is profitable to provide more electricity demand by CHP.
Hence, the heat demand of CHP is forced to be increased by charging the storage.
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Fig. 12.17 Purchased natural gas in Case 4
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Fig. 12.18 Purchased electricity in Case 4

Table 12.8 Dispatch factor of CHP in case 4

Hour 1 2 3 4 5 6 7 8

Value 0.792 0.792 0.790 0.782 0.778 0.774 0.770 0.912
Hour 9 10 11 12 13 14 15 16

Value 0.900 0.945 0.725 0.717 0.717 0.717 0.717 0.753
Hour 17 18 19 20 21 22 23 24

Value 0.999 0.926 0.921 0.895 0.869 0.862 0.872 0.778
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Fig. 12.19 CHP Part load in Case 4
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Fig. 12.20 PHEV charging and discharging schedule in Case 4
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Fig. 12.21 Heat storage charging and discharging schedule in Case 4

This raises the CHP output power, subsequently. This leads to lower need for
purchasing the electricity from the grid at high-tariff hours.

According to Fig. 12.20, PHEV provides a part of electrical demand during hours
(17–23). This makes the purchased electrical from the grid zero. PHEV battery
is charged in low-tariff hours, i.e., (23–24) and (1–7), which causes an increment
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Table 12.9 PV curtailment
in Case 4

Hours 12 13 14 15

Value (kW) 0.141 0.295 0.249 0.201

in the required electricity from the grid. This leads to 2.08 kW peak load at hour
24. In addition, between hours 12 and 15, output power of CHP along with PV
panels can provide electrical demand completely and the purchased electricity from
the grid becomes zero. Because of PHEV discharging between hours 17 and 23,
output power and part load ratio of CHP are reduced. In Case 4, the amount of PV
curtailment is shown in Table 12.9. Total PV curtailment is 0.886 kWh for whole
the day. The heat storage unit descends the PV curtailment. As previously discussed,
heat storage is discharged between hours (12–15) and reduces the heat demand of
CHP unit. Therefore, the inputted natural gas and output power of CHP are reduced.
Thus, PV panels can provide more part of electrical demand and PV curtailment is
reduced. In Case 4, PV curtailment is reduced about 33% in comparison with Case 2.

12.4 Conclusion

This chapter optimizes the operation of a residential energy hub, including a CHP,
a boiler, a PHEV, PV panels, and a heat storage to provide the electrical and heat
demand of a home. The objective function is the weighted summation of minimizing
the energy cost and PV curtailment. The outputs of the objective function were
the dispatch factor of the energy hub at different hours, the amount of purchased
electricity and natural gas from the grid, the charge/discharge scheduling of PHEV
battery and the heat storage, and the manner of energy flow in the energy hub.
Different cases were designed to investigate the impact of PHEV and the heat
storage on the results. In addition, the impact of CHP part load efficiency was
studied on the results. This makes the results more realistic.

The results show that PV curtailment is occurred at midday, which are the high-
generation hours of the PV panels. Thus, a PHEV, which is not usually available
at these hours, cannot reduce the PV curtailment significantly. Because of the
charge/discharge efficiency of PHEV battery, the average electricity demand of
PHEV is positive. Thus, PHEV presence may increase the energy cost in comparison
with the case, in which there is no PHEV. However, the heat storage presence not
only reduces the energy cost but also decreases the PV curtailment. The results show
a 33% decrement in the PV curtailment by using the heat storage system.
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Chapter 13
Long-Term Smart Grid Planning
Under Uncertainty Considering
Reliability Indexes

Bruno Canizes, João Soares, Mohammad Ali Fotouhi Ghazvini, Cátia Silva,
Zita Vale, and Juan M. Corchado

13.1 Introduction

The electricity sector is extremely important to the society. The increasing energy
needs are mostly satisfied by nonrenewable energy sources like coal or natural gas.
However, this energy resources are scarce and can bring negative consequences
to environment. In this way, there is a necessity to find new alternatives to, at
least, reduce their use. In fact, environmental and techno-economic factors have
motivated the widespread adoption of Distributed Generation (DG) technologies in
distribution networks [1]. Therefore, the portion of DG based generated electricity is
increasing as a consequence and will play an important role in distribution network
systems. Nevertheless, DG is based on renewable sources such as solar and wind
and therefore carry an inherent variability [2].

Stochastic expansion model for the transmission problem has been proposed in
[3–5], suggesting superior results compared with deterministic approaches when
likely realizations are considered. Cao et al. [5] propose a multiple resource expan-
sion planning in smart grids. The two-stochastic model minimizes the expected

B. Canizes (�) · J. Soares · M. A. F. Ghazvini · C. Silva · Z. Vale
GECAD–Research Group on Intelligent Engineering and Computing for Advanced Innovation
and Development, Institute of Engineering, Polytechnic of Porto (ISEP/IPP), Porto, Portugal
e-mail: brmrc@isep.ipp.pt; joaps@isep.ipp.pt; mafgh@isep.ipp.pt; cvcds@isep.ipp.pt;
zav@isep.ipp.pt

J. M. Corchado
University of Salamanca, Salamanca, Spain

Osaka Institute of Technology, Osaka, Japan

University of Technology Malaysia, Pusat Pentadbiran Universiti Teknologi Malaysia,
Skudai, Malaysia
e-mail: corchado@usal.es

© Springer International Publishing AG, part of Springer Nature 2018
B. Mohammadi-Ivatloo, F. Jabari (eds.), Operation, Planning,
and Analysis of Energy Storage Systems in Smart Energy Hubs,
https://doi.org/10.1007/978-3-319-75097-2_13

297

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75097-2_13&domain=pdf
mailto:brmrc@isep.ipp.pt
mailto:joaps@isep.ipp.pt
mailto:mafgh@isep.ipp.pt
mailto:cvcds@isep.ipp.pt
mailto:zav@isep.ipp.pt
mailto:corchado@usal.es
https://doi.org/10.1007/978-3-319-75097-2_13


298 B. Canizes et al.

cost in the entire planning horizon and in the second stage the realization of the
load and wind generation are found. The results reveal that the expansion plans
depend on the uncertainty level of prospective wind generation, existing capacity,
and transmission capacity. A stochastic planning approach of distribution lines is
presented in [6]. The work is based on Monte Carlo and optimization procedure to
minimize the conductor profile of a power line and the transformer capacity. The
net present value of the total average annual costs is evaluated for the planning
period of 30 years. The stochastic approach is compared with the deterministic
one, and the results reveal that the former can increase the net present value by
13–25%. The work presented in [1] concerns a multi-year distributed generation
investment planning. The stochastic model considers uncertainty on emission price,
demand growth, and renewable generation. The results in the real network suggest
that compared to the naive decisions, the stochastic model yields better and more
robust decisions, namely amounting to more than 7%.

Combined heat and power (CHP) planning has demonstrated value in previous
works [7, 8]. By definition, CHP plants can produce heat and power simultaneously,
saving the heat that would be wasted in electricity production while saving up to
30% compared to conventional condensing power plants. Rong and Lahdelma [7]
refer that when steam or hot water is produced for an industrial plant or a residential
area, power can be produced as a by-product. Excess heat from an electric power
plant can be used for industrial purposes, or for heating space and water. CHP
is applied in the district heating concept. A district heating scheme comprises a
network of insulated pipes used to deliver heat, in the form of hot water or steam,
from the generation point to the final user. A district heating plant is often a CHP
plant but renewables sources, for example biomass or solar energy, can be applied
in district heating utilities, either completely or as a complement to traditional fossil
fuels.

Rong and Lahdelma [7] propose efficient algorithms for combined heat and
power production planning in the electricity markets. Authors propose algorithms
up to 1860 times faster than CPLEX. Fast solutions of hourly CHP models
are important, because long-term planning model requires solving several hourly
models, and a large number of scenarios in stochastic approaches. In [8] multiple
energy infrastructures are addressed, namely for supplying electricity and gas loads.
The planning model determines a least-cost network of transmission lines for both
infrastructures. The authors demonstrate that the coupling multiple energy hubs
offer advantages and more flexible options between the interconnected systems.

Considering current literature, in this work we propose to include heat and
power demand in the grid expansion problem (new lines construction) to improve
reliability indexes ensuring the radial topology of the distribution power network
at minimum costs. Results indicate that it influences the grid planning and a joint
planning is more indicated.

This chapter is organized as follows: After the brief introductory part, Sect. 13.2
presents the modeling of system uncertainties; Sect. 13.3, the problem formulation;
Sect. 13.4, the adopted case study; Sect. 13.5, the results and its discussion; and
Sect. 13.6, the conclusions.
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13.2 System Uncertainties

Grid expansion and planning problems can be modeled as deterministic or stochastic
problems. Usually, power system planners have considered this problem as a
deterministic model, i.e., they considered parameters and inputs based on the
assumption that the data for the problem is known accurately. Nonetheless, the
inputs of the expansion model must be estimated, such as the load demand and
the renewables penetration in the project lifespan, which is usually a decade at least.
However, the projections are done with a large anticipation process depending on
many factors and as a consequence they are not 100% accurate. The high deviations
in the projections can have a relevant impact on the economic and technical aspects
of daily grid operation. Therefore, the recent advances in expansion planning models
are moving from deterministic to stochastic approaches in order to incorporate the
uncertainty in projections for future in the planning models [9, 10]. In practice,
it is possible to feed a deterministic model with several likely scenarios and run
each optimization independently. However, advanced stochastic models can provide
better alternatives [11–14]. To capture the underlying uncertainty in the problem
data, a sophisticated energy planning model is developed here. The goal is to
find a solution that is feasible for all the supplied scenarios while minimizing or
maximizing the objective function, e.g., the expected investment cost [10].

The steps involving stochastic programming are typically developing the possible
scenarios that represent the underlying uncertainty. This step is usually a cumber-
some task where lot of possible scenarios might be generated. Therefore, a second
step is generally applied using scenario reduction techniques. The objective is to
obtain a reduced set of likely scenarios that is feasible to be solved [15]. The third
step involves developing a multi-scenario stochastic model to accommodate for the
set of scenarios. In the proposed model, the distribution system operator (DSO)
faces several sources of uncertainty for the projections in 30 years, namely the
forecast errors of load demand, number of consumers, and the potential production
of renewable units. These parameters are considered as potential uncertainties in
this model [16]. In stochastic models, the optimal decisions are taken on the basis of
future adaptability against a set of predicted scenarios [9]. The uncertainties related
to these inputs are considered in the model and the planning problem is developed
as a stochastic scenario-based optimization model [10].

In stochastic problems, where a set of scenarios needs to be handled, the main
issue is to construct a set of realizations for the random variable. These scenarios
should adequately represent the probabilistic characteristics of the data [17]. In this
stochastic planning model, the initial set of scenarios is a large data set generated
by the Monte Carlo Simulation (MCS) technique for representing the uncertainties
which the DSO faces while solving the problem. The MCS parameters are the
probability distribution functions of the forecast errors [18]. To include the forecast
error, an additional term which can be positive or negative is added to the forecasted
profile (xforecasted) [10].
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x.s/ D xforecasted C xerror.s/; 8s (13.1)

The error term (xerror) is a zero-mean noise with standard deviation � [17, 19].
Scenarios, which are projections for a specific date in future, are represented with
x(s)xs. The uncertainties of the forecast errors are modeled with the probability
distribution functions, which are usually obtained from the historical data [17]. In
this model, the forecast errors for the uncertain inputs are all represented by normal
distribution functions.

Including all the generated scenarios in the planning problem results in a large-
scale optimization problem [17]. Generally, there should be a tradeoff between
model accuracy and computation speed [16, 20]. In order to handle the com-
putational tractability of the problem, the standard scenario reduction techniques
developed in [21] are used. These scenario reduction algorithms exclude the
scenarios with low probabilities and combines those that are close to each other
in terms of statistic metrics [21]. They determine a scenario subset of the prescribed
cardinality and probability which is closest to the initial distribution in terms of
a probability metric [18]. The key purpose of scenario reduction is to decrease the
dimensions of the problem. The number of variables and equations are reduced after
applying these algorithms. Accordingly, the solutions can be found more efficiently,
without losing the main statistical characteristics of the initial dataset [22]. However,
the potential cost of applying these approaches is introducing imprecision in the final
plans [20].

The reduction algorithms proposed in [21] consists of algorithms with different
computational performance and accuracy, namely fast backward method, fast
backward/forward method, and fast backward/backward method. The selection of
the algorithms depends on the problem size and the expected solution accuracy [18,
21]. For example, the best computational performance with the worst accuracy can
be provided by the fast backward method for large scenario tress. Furthermore, the
forward method provides best accuracy and highest computational time. Thus, it
is usually used where the size of reduced subset is small [18]. These algorithms
are also incorporated in a General Algebraic Modeling System (GAMS) tool called
SCENRED. SCENRED can be used to reduce the randomly generated scenarios
[23].

13.3 Problem Formulation

The growing trend of electricity demand prompts an expansion of the distribution
network. Thus, one of the proposals will be the construction of new lines, as it
may influence the values of energy losses and energy not supplied. Costs related to
the investment, network operation, and satisfaction of all operational, physical, and
financial constraints lead to a planning problem.
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A distribution network planning problem can be of two types [24, 25]: static
and multi-step. The first one considers that the construction/expansion of medium
voltage (MV) distribution network can be carried out in a single step, usually
associated with small interventions.

The multi-stage planning problem is related to a long term where the investments
are carried out at different stages of planning. One of the way to solve this problem
is considering only a single step with several static problems, where the next step
starts with the solution of the previous step as input.

The distribution network is spited into two subsystems: a primary one, supplied
by MV, and a secondary one, supplied by low voltage LV. Carrying out the planning
of these two subsystems simultaneous is very complex, so one of the solutions is to
make the planning for the different subsystems separated. Thus, there is a decrease
in complexity since the method no longer involves a high number of decision
variables and also different voltage levels.

The problem considered in this chapter is related to a MV primary network
with several objectives. The objective function considers the energy loss cost, the
expected energy not supplied cost and the cost related to the investments, which in
this case will be in the construction of new lines.

The main goal of this problem is to minimize the costs referred above subject to
all technical network constraints. Indirectly the methods also minimize the number
of switches to be operated, since there are constraints to deal with the network
radiality. With this, the problem must consider the following constraints:

• Power balance—Kirchhoff’s first law;
• Generation limits;
• Lines/cable thermal limits;
• Only one direction of power flow can exist;
• Radiality condition.

13.3.1 Economic Evaluation

The uncertainty associated with any project that involves a large amount of
investment requires careful and detailed economic analysis. One of the difficulties
faced during the economic evaluation of projects is that the cash flows (entry and
exit of money) are staggered over time. Gallo [26] says that it’s a common sense
that the money owned today is more valuable than the same amount after a few
years (inflation rate decreases purchasing power). Thus, using a discount rate and
converting the financial amounts between different time periods it is possible to
solve the above-mentioned difficulty.

Bruni et al. [27] mention that an economic evaluation of projects usually involves
a set of parameters to establish the viability of the project. Thus, the author refers to
three commonly used tools:
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• Net Present Value—NPV: is the difference between the money flows, duly
updated during the project analysis period. This value should be positive
indicating that the results achieved allow to cover the initial investment and still
make a profit. If it is null, there was only recovery of the initial investment;

• Internal Rate of Return—IRR: is the rate that nullify the NPV. Obtaining an IRR
above the discount rate indicates that the project is economically feasible. In
other words, the project manages to generate a rate of return greater than the cost
of capital;

• Payback: is the number of years required to recover the investment, assuming
that the investment was done all in year zero.

The planning method proposed in this chapter considers the acquisition and
connection of new power lines as the investment to be applied to the distribution
network. Thus, the economic evaluation considers, in addition to this Investment
(INV), the profits achieved with the application of this new solution—through the
reduction of power losses (PL) and expected energy not supplied (EENS).

For the investment economic evaluation, the lifetime project and the discount
rate must be defined by the investor. The typical duration for planning distribution
networks is approximately 25 years [28].

All necessary investments and all obtained benefits to improve the reliability
indexes are considered in the economic evaluation. The investment is considered
profitable when the present value (PV) of the incoming related to the improvement
of reliability indexes and losses reduction is greater than the investment made in new
power lines construction. This means that the net present value (NPV) is positive
(Eq. (13.2)).

The benefit (BNF) corresponds to the savings related to the reliability indexes
improvement and losses savings. Investment is the total investment for the planning
project.

NPV D BNF � Investment
NPV > 0

(13.2)

The present value of the savings that are related to the reliability indexes
improvement and losses savings can be calculated by the capital recovery factor
(CRF). CRF, presented in Eq. (13.3), is the ratio of a constant annuity to the present
value of receiving that annuity for a given project lifetime. Thus, for t periods
bnf1 D bnf2 D : : : D bnft D bnf Eq. (13.4).

CRF D
dr

1 � e�dr�t
Š

dr � .1 C dr/t

.1 C dr/t � 1
(13.3)

BNF D
bnf

CRF
D bnf �

.1 C dr/t � 1

dr � .1 C dr/t (13.4)

where dr is the discount rate, and t the project lifetime.
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13.3.2 Target Reliability Values

Distribution system reliability is one of the most important issues in system planning
and operation [29]. Institute of Electrical and Electronics Engineers (IEEE) [30] as
well as other authors like Canizes et al. [31] use the basic reliability indexes:

• Failure rate (�)—is the number of faults of a given equipment in a given period
of time. The failure rate represents the probability of an equipment failure;

• Repair time (r)—is the failure average duration;
• Unavailability (U)—is the annual outage duration.

In energy distribution systems, these indices are mathematically related according
to the equation:

U Š � � r (13.5)

With this, it will be possible to determine the Forced Outage Rate (FOR), another
relevant index in the reliability analysis. FOR represents the probability of an
unavailability network equipment when it is requested. This index is defined as
the number of hours that the equipment is unavailable dividing by the difference
between the number of total hours of a year (T), 8760 hours, and the repair time of
equipment i.

FORi D
Ui

T � ri
(13.6)

The FOR is used to determine the power not supplied in each distribution network
line by the following equation:

PNSij D FORij � Sij kW (13.7)

Thus, the expected energy not supplied is:

EENS D

NLX

ijD1

PNSij � 8760 kWh=year (13.8)

where ij is the line between bus i and bus j, and NL is the number of distribution
network lines.

The reliability indexes such as System Average Interruption Duration Index
(SAIDI), System Average Interruption Frequency Index (SAIFI), and Expected
Energy Not Supplied (EENS), adopted by the IEEE standard [32], are used to
evaluate reliability of the system.

The network operator defines target values for the reliability indexes. To achieve
the new reliability values, the system operator should improve the repair times and
the failure rates.
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The following reliability indexes (13.9)–(13.12) are considered in the proposed
method:

• System Average Interruption Duration Index

SAIDI D
Total customer interruption durations

Total number of costumers in the system
(13.9)

SAIDI D

P

iD12L
Ui � Ni

P

iD12L
Ni

hour=customer year (13.10)

• System Average Interruption Frequency Index

SAIFI D
Total number of customer interruptions

Total number of costumers in the system
(13.11)

SAIFI D

P

iD12L
�i � Ni

P

iD12L
Ni

interruptions=customer year (13.12)

13.3.3 Stochastic Planning Model

The planner in the decision making under uncertainty should make optimal deci-
sions throughout a decision horizon with incomplete information. A number
of stages can be defined for the considered decision horizon, representing a
point in time where decisions are made or where uncertainty partially or totally
vanishes [33].

In this chapter is considered a two-stage planning method with a stochastic
process represented by a set of scenarios. Thus, two types of decisions can be used
in the planning process:

First stage: The decision is made before stochastic process execution. Thus, the
variables that represent the first stage do not depend on each stochastic process
execution. These variables are known as “here and now” variables.

Second stage: The decision is made after knowing the stochastic process. Thus,
the decision depends on each vector of stochastic process execution. When the
stochastic process is represented by a set of scenarios, the second stage decision
variables are defined for each considered scenario.

The two-stage stochastic programming is an effective approach to include the
impacts of the decision in stochastic optimization problems. More theoretical
background on stochastic programming models can be found in [32, 33].
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Usually the distribution network planning is treated as a multiobjective optimiza-
tion problem with nonlinear programming. This is because in the formulation of the
problem there are nonlinear constraints related to the power flow, binary variables
among others. Thus, the planning model can be formulated as a mixed integer
nonlinear programming (MINLP); however, this problem is complex and difficult
to solve. Thus, it is important to find a simple method to avoid this complexity.
The DC power flow constraints are considered in the optimization model (13.23).
The usage of a DC model is justified because in many countries, like in Portugal,
the distribution networks have voltage regulators and capacitors banks carefully
positioned along the grid to keep the voltage and reactive power between the
desire limits. Usually, the voltage stability is placed at the HV/MV substation
level. However, in the Portuguese case the MV/LV transformers also have voltage
regulators. Therefore, the problem will be formulated as a mixed integer linear
programming (MILP).

13.3.3.1 Power Losses Linearization

To make the problem linear it is necessary to linearize the objective function. In
this case, the only nonlinear term in the objective function is the power losses. The
linearization of power losses is done according to the Venikov method [34]. This
approach considers that the lines and cables in the system work close to the nominal
current, i.e., the economic current density (Jeco).

I D Jeco � Scc (13.13)

where Jeco is the economic current density (A/mm2); Scc is the line section (mm2).
Thus, the power losses can follow the Eq. (13.14):

	P D k0 � R � I2 D k0 � R � I � I (13.14)

Replacing in (13.14) the Eq. (13.13):

	P D k0 � R � I � Jeco � Sec (13.15)

where:

I D k0 �
S

Ul
(13.16)

R D
� � L

Scc
(13.17)

in which k0 and k00 are constants that depend on the type of service (one or three
phases); S is the load (kVA); R is the line resistance (�/km); I is the current that
flow in the line (A); � is the line resistivity at operating temperature (� mm2/km);
L is the line length (km).
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Replacing (13.16) and (13.17) into Eq. (13.15) the linear equation of power losses
is:

	P D
k � � � L � Jeco

Ul
� S (13.18)

The current density value is calculated by Eq. (13.19):

Jeco D

s
q � 10�3

n � � � h � p � CRF
(13.19)

where n is the number of active conductors; h is the number of service hours for the
electric conduits per year; q is the constant value dependent of the line/cable type; p
is the energy price AC/kWh.

13.3.3.2 Proposed Methodology

Figure 13.1 presents the scheme of the proposed methodology. The proposed
methodology has five main steps, which are presented in more detail as follows.

Input Data

The first step is to prepare all the input data to be considered in the model, such as
generation and load points, lines and new lines option characteristics, and reliability
data. The data regarding the predicted values for solar power and wind power, load
and heat demand, and the number of consumers as well as their standard deviation
values are also considered.

Scenarios Generation

In this step a set of scenarios is generated using Monte Carlo Simulation (MCS)
following a normal distribution. The predicted and standard deviation values
referred above are used as inputs for the MCS, which is implemented in MATLAB
software.

Scenarios Reduction

A set of thousand of scenarios is generated, and scenarios reduction becomes
imperative to handle with the computational tractability of the problem. Thus, the
standard scenario reduction techniques developed in [21] are used. These scenario
reduction algorithms exclude the scenarios with low probabilities and combine those
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that are close to each other in terms of statistic metrics [21]. They determine a
scenario subset of the prescribed cardinality and probability which is closest to
the initial distribution in terms of a probability metric [32]. The main purpose of
scenario reduction is to reduce the size of the problem.

General Algebraic Modeling System (GAMS) with SCENRED toolbox consid-
ering the fast backward/forward method is used to deal with the scenarios reduction.

Long-Term Planning Model Using a Two-Stage Stochastic Method

This optimization model has as outputs the decision variables regarding the
investment in new lines, power losses and expected energy not supplied costs, and
the SAIDI, SAIFI reliability indexes. The total expected planning cost is represented
by Eq. (13.20), corresponding to the first stage planning cost (PC1) and second stage
planning cost (PC2).

Minimize E .PCTotal/ D PC1 C E
�
PC2

�
(13.20)

The expected planning cost for the first stage, PC1, is represented by Eq. (13.21),
which includes the cost of new lines placement.

PC1 D
NBP

iD1

NBP

j D 1

j ¤ i

NOP

cD1

˚��
CostINV � y.i;j;c/ C CRF � CostM � y.i;j;c/

���

8y 2 f0; 1g ; 8 .i; j; c/ 2 �l

(13.21)

where CostINV is the initial investment in new lines (AC); y(i,j,c) is the decision
binary variable to connect bus i and j for the chosen line option c; CRF is the capital
recovery factor; CostM is the maintenance cost (AC).

The expected planning cost in the second stage, PC2 (Eq. (13.22)), includes the
power losses cost (first term), expected energy not supplied costs (second term), and
excess of power supply costs (third term).

FOR(i,j,c) and P(i,j,c) are respectively the forced outage rate and the power flow
between bus i and bus j according to the chosen line option c. FOR is calculated
considering the basis reliability indexes r and �. Since these indexes are used
to determine the remaining indicators, the minimization of the FOR implies the
reduction of those indicators. Te is the equivalent average time in hours and
according to Gustafson [35] is the average number of hours during which it would
be necessary for the peak load to be carried to give the same energy loss as that
given by the actual load throughout the year. To obtain more reliable results, it is
necessary to subtract to the Te the number of probable hours in which the lines may
be out of service in the 8760 hours of the year.
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E
�
PC2

�
D

NBP

iD1

NBP

j D 1

j ¤ i

NOP

cD1

NSP

sD1

8
<̂

:̂

��
FOR.i;j;c;s/ � CostEENS � CRF � P.i;j;c;s/

��
C

��
CRF � .k0 � R � I � Jeco � Sec/ �

CostPL �
�
Te�8760 � FOR.i;j;c;s/

�
� P.i;j;c;s/

�

9
>=

>;
C

NBP

iD1

NSP

sD1

��
CostGCP � pGCP.i;s/

��
8 .i; j; c/ 2 �l

(13.22)

The objective function Eq. (13.20) is subjected to several constraints. Below it is
possible to find all the model constraints (Eqs. (13.23)–(13.45)).

Network grid constraints:

• Power balance (first Kirchhoff law)

P

g2�nd
DG

.pDG.g;s/ � pGCP.g;s// C
P

g2�d
DG

�
pDG.g/

�
C

P

sp2�b
SP

pSupplier.sp/C

P

e2�b
E

.pDischarge.e;s/ � pCharge.e;s// �
P

l2�b
L

pLoad.l;s/ �
P

v2�b
V

pCharge.v;s/C

NBP

iD1

NOP

cD1

P.i;j;c;s/ �
NBP

jD1

NOP

cD1

P.j;i;c;s/ D 0 8.i; s /

(13.23)

• Maximum admissible line flow

p.i;j;c;s/ � pmax
.i;j;c/ � y.i;j;c/ 8s; 8y 2 f0; 1g ; 8 .i; j; c/ 2 �l (13.24)

• Radiality condition

This constraint ensures the radial topology of the distribution network.
NLX

.i;j;c/D1

y.i;j;c/ D NB � NBS 8y 2 f0; 1g ; 8 .i; j; c/ 2 �l (13.25)

• Unidirectional power flow

This constraint ensures the power unidirectionality between bus i and bus j and
also the choice of only one line option c in that direction.

y.i;j;c/ C y.j;i;c/ � 1 8y 2 f0; 1g ; 8 .i; j; c/ 2 �l (13.26)

• Transfer buses

A bus with no generation or demand is referred as a transfer bus. This kind of
buses are used to connect a load bus to other load bus and is not a terminal bus
(main condition to use the transfer buses), i.e., there are at least two more circuits
“leaving” the transfer bus.
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To model the use of a transfer bus, first a binary variable must be defined such
that is equal to 1 if the transfer bus is used; otherwise, is equal to 0. To consider
transfer buses the Eq. (13.25) is replaced by Eq. (13.27):

NLP

.i;j;c/D1

y.i;j;c/ D NB � NBS �
NWP

wD1

�
1 � z.w/

�
z.w/ 2 f0; 1g 8w 2 �BT

8 .i; j; c/ 2 �l

(13.27)

y.i;j;c/ � z.w/ z.w/ 2 f0; 1g 8w 2 �BT (13.28)

y.j;i;c/ � z.w/ z.w/ 2 f0; 1g ; 8w 2 �BT ; 8 .i; j; c/ 2 �l (13.29)

NLP

.i;j;c/D1

y.i;j;c/ C
NLP

.j;i;c/D1

y.j;i;c/ � 2 � z.w/ z.w/ 2 f0; 1g ; 8w 2 �BT ;

8 .i; j; c/ 2 �l

(13.30)

where zj is the binary variable related to the transfer buses.
Constraints (13.27)–(13.30) avoid the loop generation due to the presence of

transfer buses and also prevent the appearance of a terminal transfer bus (with only
one connected circuit).

• Avoid distributed generator isolation from substation

NLX

.i;j;c/D1

d.i;j;c/ �

NLX

.i;j;c/D1

d.j;i;c/ � D.g/ D 0 8g 2 �B 8 .i; j; c/ 2 �l (13.31)

D.g/ D 1 8g 2 �DG (13.32)

D.g/ D 0 8g … �DG [ �BS (13.33)

ˇ
ˇd.i;j;c/

ˇ
ˇ � nDG � y.i;j;c/ 8 .i; j; c/ 2 �l (13.34)

where D(g) is a fictitious load of each distributed generator that only can be fed by
the substation. d(i,j,c) is the fictitious flow associated with branch i,j for c line option.
If it is allowed the distributed generators supply some loads independently, then
(13.31)–(13.34) are not considered in the model.



13 Long-Term Smart Grid Planning Under Uncertainty Considering. . . 311

Controllable DG units and external suppliers:

• Maximum and minimum limits for active generated power

pDG.g/ � PDGMinLimit.g/ 8g 2 �d
DG (13.35)

pDG.g/ � PDGMaxLimit.g/ 8g 2 �d
DG (13.36)

• The upstream supplier limits

pSupplier.sp/ � PSMinLimit.sp/ 8sp (13.37)

pSupplier.sp/ � PSMaxLimit.sp/ 8sp (13.38)

Reliability indexes limits:

• System Average Interruption Frequency Index

SAIFI � SAIFImax (13.39)

• System Average Interruption Duration Index

SAIDI � SAIDImax (13.40)

Energy storage systems constraints:

• The charging and discharging status of the ESSs are respectively represented by
xESS and aESS. Charging and discharging cannot occur simultaneously.

xESS.e;s/ C aESS.e;s/ � 1 8e; 8s (13.41)

• The maximum discharge limit for each ESS

pDischarge.e;s/ � PDischargeLimit.e/ � xESS.e;s/ 8e; 8s (13.42)

• The maximum charge limit for each ESS

pCharge.e;s/ � PChargeLimit.e/ � aESS.e;s/ 8e; 8s (13.43)

Parking lot constraints:
The EVs are treated as virtual batteries in the proposed model. A virtual battery

can represent a parking lot or a set of EVs located in the network. In this model
the EV charge is equal to charge limit multiplied by simultaneity factor (sf). sf is
considered equal to 1.
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• The charge limit for each virtual battery v is represented by (13.44):

pCharge.v;s/ � PChargeLimit.v;s/ � sfv 8v; 8s (13.44)

Generation curtailment power:

• The generation curtailment power of non-dispatchable DG units cannot be higher
than the predicted amount of generation

pGCP.g;s/ � PDGScenario.g;s/ 8t; 8g 2 �nd
DG; 8s (13.45)

District heating:
The use and development of district heating (DH) are increasing in several

countries, namely in north of Europe. The generating heat plants in DH send out the
heat to the households as water or steam. Thus, the constraints (13.46) and (13.47)
could be considered to incorporate the heat demand in the proposed model. The
considered heat plants in this model are the CHP and boiler plants.

• Power balance considering CHP (first Kirchhoff law)

P

g2�nd
DG

�
pDG.g;s/ � pGCP.g;s/

�
C

P

g2�d
DG

�
pDG.g/ C pCHP.g/

�
C

P

sp2�b
SP

pSupplier.sp/C

P

e2�b
E

.pDischarge.e;s/ � pCharge.e;s// �
P

l2�b
L

pLoad.l;s/ �
P

v2�b
V

pCharge.v;s/C

NBP

iD1

NOP

cD1

P.i;j;c;s/ �
NBP

jD1

NOP

cD1

P.j;i;c;s/ D 0 8i; s

(13.46)

• Heat balance

X

h2�heatboiler

�
hb.h;s/

�
C

X

hp2�chp

�
hchp.hp;s/

�
�

X

hl2�heatload

�
hload.hl;s/

�
D 0 (13.47)

• CHP constraints

CHP plants in this model have the following operation region (Fig. 13.2).
Each line equation (linear equation–algebraic equation) of this region are the

constraints for these units, i.e., lines equation 1, 2, 3, 4.
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B
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1
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3
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Fig. 13.2 CHP operation region

Evaluation Metrics

The well-known indices, such as the expected value of perfect information (EVPI)
and the value of stochastic solution (VSS), are used to evaluate the benefits of the
stochastic programming [33]. The EVPI represents the amount that the decision
maker is not able to gain due to the presence of imperfect information, e.g.,
forecasts. It is useful to evaluate how the uncertainty factors affect the evaluated
optimal problem. Regarding VSS, it represents the advantage of using stochastic
programming over a deterministic approach [33].

EVPI for minimization problems can be represented by (13.48). The stochastic
solution represented by ZS* is calculated by the stochastic programming approach
and represents the total expected cost (S). ZP* represents the wait-and-see solution
(WSS). The WSS can be obtained by using the deterministic approach for each
scenario. Then, WSS is computed by multiplying the individually obtained cost by
each scenario probability.

EVPI D zS�–zP� (13.48)

The VSS equation for minimization problems is represented through Eq. (13.49):

VSS D zD�–zS� (13.49)

where ZD* is the optimal value of the modified stochastic problem. It is a determin-
istic version of the original problem with an average scenario. The optimal decision
variables of the original stochastic problem are considered as input in the modified
problem.
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13.4 Case Study

This section presents a case study to demonstrate how the proposed method is
applied. A distribution network (Fig. 13.3) with 13 buses, 30 kV, and one substation
(located in bus 1) is used in this chapter. Connections between buses are made by AA
90 overhead lines type. The dashes lines presented in Fig. 13.3 are new connection

1

2

3

4 5

67 8 9

10 11

12

13

Substa�on Wind Farm Energy Storage System

EV Parking Lot Solar Panel Biomass 

Load Point New line op�on

Fig. 13.3 13-bus distribution network
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Fig. 13.4 Standard deviation for each resource

Fig. 13.5 Load and heat demand predictions

options and do not exist in the actual network. Figures 13.4, 13.5, and 13.6 present
respectively the standard deviation for each resource, the load and heat demand
predictions, and the intermittent energy resources (solar and wind) and consumers
predictions for the year 2050.

This network has nine load points, one parking lot for EVs, four DG units
(one wind generator, one solar generator, and two biomass units). This distribution
network has also two storage systems located at buses 2 and 4. The energy resources
data as well as the prediction for the number of consumers are shown in Tables 13.1
and 13.2, respectively.
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Fig. 13.6 Intermittent energy resources and consumers predictions

Table 13.1 Energy resource data

Capacity (MW) Prediction (MW)
Energy resource min–max min–max Units

Substation 0–10 – 1
Photovoltaic 0.75–0.75 0.2680–0.7470 1
Wind 0.75–0.75 0.1702–0.7707 1
Biomass 0–0.50 – 2
Storage Available capacity for charge 0.20–0.20 – 2

Available capacity for discharge 0.20–0.20 –
Parking lots Charge 1.20–1.20 – 1
Load demand 10–10 5.2859–8.0911 9

Table 13.2 Prediction for the number of consumers

Expected minimum Expected uncertain

Number of consumers 631 155

In this case study, the owners of energy storage systems (ESS) are external
players. These owners have an agreement to keep a 20% reserve capacity for the
network operator (this capacity should not be used by the ESS owner). This capacity
can be used for instance to deal with excess or a lack of generation by the network
operator. Two 1MW ESS units are available in the network. 0.4MW of capacity is
reserved for the system operator (0.2MW for charge and 0.2MW for discharge). The
other distributed energy resources belong to the network operator.

Average wind and solar power prediction, as well as the load demand prediction
(considering 120 scenarios) are presented in Figs. 13.7 and 13.8, respectively.
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Fig. 13.7 Average solar and wind power prediction

Fig. 13.8 Load demand and consumers prediction

The EVs parking lot is located at bus 3 and has 20 car places. The maximum
charge capacity for each place is 60 kW. In this case study, a simultaneity factor
equal to one is considered. Thus, the maximum charge capacity for the parking lot
is 1200 kW.

Wind and solar power are average predicted values for the lifetime project over
the year. Thus, these average values considering their standard deviations will be
considered in the scenarios generation. Through Fig. 13.7 it is possible to see that the
expected minimum for wind power and solar power are 0.1702MW and 0.2680MW,
respectively. Considering the expected uncertain, the expected maximum for wind
power and solar power are 0.7707MW and 0.7470MW, respectively.
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Analyzing Fig. 13.8 the demand for EV parking lot considered in this case study
is equal to the maximum charge capacity of the parking. As said above a simultane-
ity factor equal to one is also considered. The expected minimum for power demand
and for number of consumers are 5.2859MW and 631 consumers, respectively,
with expected uncertain of 2.8052MW and 155 consumers, respectively. Thus, the
expected maximum for load demand is 8.0911MW and for the number of consumers
is 786.

To complement the study presented in this chapter it will be considered the
possibility to have a district heating (Fig. 13.9). To supply the required heat demand,
four heat sources are considered: two heat-only boiler stations (or just boiler
stations) and two CHP units. In addition to providing heat, the CHP units also
provide electrical power, so this kind of unit can contribute to an improvement of the
EENS. As a result, can also contribute to the reduction of the network investment
costs, losses costs and EENS costs.

Thus, two CHP units and two heat-only boiler stations are carefully installed in
the distribution network (Fig. 13.9). The heat demand points are in the same load
demand buses.

The following four case studies are presented to show the impact of using storage
units and the district heating in the distribution network planning problem.

District heating is only affected by CHP units and heat-only boiler stations. How-
ever, CHP heat and electricity supply are dependent as can be seen in Fig. 13.2.

• Case A—ESS and CHP are not considered;
• Case B—ESS is considered and CHP is not;
• Case C—CHP is considered and ESS is not;
• Case D—ESS and CHP are considered.

Table 13.3 presents the initial average values of SAIDI and SAIFI indexes, i.e.,
the values for the actual network considering and not considering the district heating
(CHP units). For all analyses conducted in this case study it is intended to achieve
a reduction at least 30% in SAIDI and 15% in SAIFI. In this case study, the way to
achieve these reductions is investing in new lines construction. Two lines options
are considered. Tables 13.4 and 13.5 present the lines thermal limits, the basic
reliability indexes (failure rate—� and repair time—r) for the investment opinion
1 (line AA90) and option 2 (line AA160), respectively. The bold values represent
the possibilities of new connections between buses. It is possible to see in Table
13.4 costs and maintenance costs equal to zero. This means that the respectively
AA90 line type exist in the actual network, thus its costs are considered zero in the
proposed long-term planning method. This method considers also the possibility
to change a line type for the other (AA90 by AA160). These tables also show the
construction line cost (line cost plus installation cost). The maintenance cost for
each new line is also presented.

Tables 13.6 and 13.7 present the heat resource and demand data. In Fig. 13.10
is depicted the expected minimum (2.8802MWth) and the expected uncertain
(0.9027MWth).
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1
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13

Substa�on Wind Farm Energy Storage System

EV Parking Lot Solar Panel Biomass 

Combined Heat and Power

Heat-only Boiler Sta�on

Load Point

New line op�on

Fig. 13.9 13-bus distribution network with district heating

Table 13.3 Initial reliability indexes

District heating SAIDI (h/customer � year) SAIFI (interruption/customer � year)

Yes 7.1555 0.6887
No 8.3232 0.6561
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Table 13.6 Heat resource data

Power capacity (MW) Heat capacity (MWth)
Energy resource min–max min–max Units

CHP 0–1.5 0–1.0 2
Heat-only boiler – 10–10 2

Table 13.7 Heat demand data

Heat capacity (MWth) Heat prediction (MWth)
Energy resource min–max min–max

Heat demand 5–5 2.8802–3.7829

Fig. 13.10 Heat demand prediction

The most commonly used cogeneration units are the single-cycle gas or steam
turbine units. In this chapter, the cogeneration unit used is the single-cycle steam
turbine without condensation. Considering this kind of unit, the feasibility region is
convex, which means that any point belonging to a straight line drawn between two
distinct points belongs to the feasibility region presented. The considered CHP units
present the following convex feasibility region (Fig. 13.11).

The EENS cost is 3 m.u/kWh, and of 0.12 m.u./kWh for loss cost. For the
expected energy not supplied cost, investment cost, loss cost, a discount rate of
5% is considered for a 30 years lifetime project, which leads to a Capital Recovery
Factor equal to 15.37. In this case study, the considered value for Te is 4500 h and
all the terms of the objective function (13.22) have the identical importance for the
distribution system operator.

The proposed work was developed in MATLAB R2014b and TOMLAB 8.1 64
bits with CPLEX solver (version 12.5) using a computer with one Intel Xeon E5-
2620 v2 processor and 16 GB of RAM running Windows 10 Pro.
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Fig. 13.11 Feasibility region for cogeneration units

Table 13.8 Peak memory
and execution time for each
case

Case Peak memory (MB) Execution time (s)

A 244 2152
B 192 1832
C 225 1246
D 140 625

13.5 Results and Discussion

Two-stage stochastic method is applied to solve a long-term planning problem in
the considered case study. This optimization problem considered 120 scenarios and
deals with 167,009 variables and 86,492 constraints. Table 13.8 presents the peak
memory and the execution time for the two-stage stochastic long-term planning
problem.

The execution times are less than an hour, so they are compatible for the available
timeframe in the planning-making process. A memory test was made to evaluate
the impact on computer system resources through MATLAB memory profiler. This
command reports the peak memory for each function used in the methodology
developed code. As can be seen in Table 13.8 the higher peak memory was verified
in case A. Even the peak memory doesn’t exceed 300 MB in this case. Thus,
the proposed work in this chapter is compatible with a wide range of available
computers in the market.

Figures 13.12 and 13.13 present the optimal radial topology for the two-stage
stochastic method (ZS*) without district heating and considering district heating,
respectively. In other words, it is being considered the uncertainty in load and heat
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Fig. 13.12 Initial working radial topology without district heating

Fig. 13.13 Initial working radial topology considering district heating

demand, in the number of consumers, and in the wind and solar power in the actual
distributed power network (without any option of line construction).

Through Table 13.9 it is possible to see the costs for power losses and EENS
when the two-stage stochastic method is applied to the actual network with and
without district heating. CHP units as distributed generator can contribute to the
reduction of power losses and EENS costs (as can be seen in Table 13.9).
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Table 13.9 Initial costs with and without district heating

District heating Initial loss cost (m.u.) Initial EENS cost (m.u.)

YES 626,970 1,131,900
NO 695,480 3,069,500

Fig. 13.14 ZS* radial topology for case A

The next two figures (Figs. 13.14 and 13.15) present the studies referred to case
A and B using the two-stage stochastic optimization model. Optimal investment
(construction of new lines) to be applied in network to improve the reliability
indexes and at the same time minimizing the power losses cost, expected energy
not supplied cost, and the investment cost is obtained. These studies also present the
optimal radial topology to be chosen to operate in considered conditions (taking into
account all scenarios). For case A, three new lines are chosen, one AA90 connected
between bus 7 and bus 10, and two AA160 connected between bus 1 and bus 7 and
bus 6 and bus 9. The total cost associated with this case is 3,516,065 m.u. and the
total benefit of this investment is 1,604,200 m.u. for the lifetime project.

Regarding case B four new lines are selected, three AA90 between buses 7–10,
6–9, and 11–12 and one AA160 between busses 1–7. In this case the total cost is
3,565,618 m.u. and the total benefit is 1,740,050 m.u.

Figures 13.16 and 13.17 are related to the studies made for case C and D. Also,
the optimal topology to be operated for each case is also obtained. For case C and D
three new lines are chosen, one AA90 connected between bus 7 and bus 10, and two
AA160 connected between bus 1 and bus 7 and bus 6 and bus 9. Case C presents a
total cost of 2,863,415 m.u. and a total benefit of 69,060 m.u. Regarding case D the
total cost is 2,701,645 m.u. and the total benefit is 177,710 m.u.
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Fig. 13.15 ZS* radial topology for case B

Fig. 13.16 ZS* radial topology for case C
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Fig. 13.17 ZS* radial topology for case D

Table 13.10 New lines construction for cases A, B, C, and D

New line connections (Bus out–Bus in) Substitution
AA90 AA160 AA90 by AA160

Case A 7-10 1-7 9-6 –
Case B 7-10 9-6 11-12 1-7 –
Case C 7-10 1-7 9-6 –
Case D 7-10 1-7 9-6 –

A summary of the new lines construction for each case is presented in Table
13.10. Through this table it is possible to see that the substitution of the existence
lines wasn’t selected by proposal model.

Tables 13.11 and 13.12 present the result costs for each objective term as well
as the total costs and the monetary benefits achieved in each case. Once CHP units
are used in the district heating cases they also contribute as distributed generators
to the distribution power network, thus the EENS costs and power losses costs are
lower than the cases without district heating. Hence, the total costs for the cases that
include CHP units are lower. It can be said that with the necessary investment to
achieve the desired values of SAIDI and SAIFI the total monetary benefit is small
when compared with the cases without CHP.

It can be seen in Table 13.13 that the paybacks for cases C and D are greater than
the lifetime project and present an IRR negative. So, this means that the investment
will not be recovered in the lifetime project. Thus, the investment in new lines
construction to improve the SAIDI and SAIFI will not be economically feasible.
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Table 13.11 Cost results for cases A, B, C, and D

Case EENS cost (m.u.)
Loss cost
(m.u.)

Investment
cost (m.u.)

Excess of power
supply cost (m.u.) Total cost (m.u.)

ZS* A 1,582,700 812,880 1,120,485 0 3,516,065
B 1,525,800 891,830 1,147,988 0 3,565,618
C 1,089,400 653,530 1,120,485 0 2,863,415
D 974,610 606,550 1,120,485 0 2,701,645

Table 13.12 Benefit for cases A, B, C, and D

Case EENS cost benefit (m.u.) Loss cost benefit (m.u.) Total cost benefit (m.u.)

ZS* A 1,486,800 117,400 1,604,200
B 1,543,700 196,350 1,740,050
C 42,500 26,560 69,060
D 157,290 20,420 177,710

Table 13.13 Economic
evaluation

Case Payback (years) IRR (%) NPV (m.u.)

ZS* A 12.58 22.21 16,192
B 13.10 17.37 12,969
C >30 <0 71,852
D >30 <0 61,329

Fig. 13.18 Expected total costs for each case

In Fig. 13.18 is depicted a comparison between the total costs obtained by the
two-stage stochastic method (Zs*) and deterministic method (Zd*). The lower costs
presented by the two-stage stochastic method for each case is evident. The higher
costs are present in cases A and C of deterministic method. This is due to the
existence generation power excess and the nonexistence of ESS. Results suggest
that ESS contributes to avoid a higher cost when the deterministic model is used and
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Fig. 13.19 EVPI and VSS for the considered cases

shows the two-stage stochastic method advantage (even without ESS the generation
power excess is zero). The values of the quality indices are shown in Fig. 13.19. Case
A and case C are good proofs of the previous statement, where the VSS is higher
in cases A and C (180% and 222%) which means that without ESS the stochastic
model is more important to achieve lower expected costs mitigating the uncertainty.
In fact, these high VSS values for cases A and C are related to the existence of
generation power excess.

For cases A, B, C, and D a reduction of 64%, 11%, 69%, and 22% is obtained
when Zs* is used.

The new reliability indexes when the two-stage stochastic model is used are
shown in Figs. 13.20 and 13.21. As can be seen the obtained values are lower when
compared with the initial values of SAIDI and SAIFI (Table 13.3). The reliability
indexes values in the case B has more considerable changes when compared with the
other three cases; this is related to the new lines constructions that the two-stochastic
model has chosen (Table 13.10).

13.6 Conclusion

A two-stage stochastic model for a distribution power network long-term planning
model was proposed to solve the challenging problem of considering several
sources of uncertainty associated with the renewable generation and electric vehicles
integration considering the network technical constraints. The problem complexity
was reduced by the adequate aggregation of EVs instead of decentralized control.
Therefore, it is possible to increase the scalability of the model and consider several
uncertainty sources. The results also reveal that the increasing levels of uncertainty
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Fig. 13.20 Expected SAIDI index

Fig. 13.21 Expected SAIFI index

can be mitigated by ESS. In fact, the deterministic model when the ESS are not used
presents excess of generation power leading to high costs.

The district heating is also considered in the long-term planning problem. To
deal with that some heat generators were considered (CHP units and heat-only
boiler units). Results demonstrate that CHP, together with heat-only boiler units, can
supply the district heating demand also contributing to network reliability reducing
expected energy supplied and power losses costs avoiding the need to invest in new
power lines for the considered lifetime project.

The method proved to be adequate to support the distribution network operator
for future network expansion planning.
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Nomenclature

Indices

c Line options
e Energy storage systems (ESSs)
g Distributed generator (DG) unit
h Heat-only boiler unit
hl Heat load
hp CHP heat power
i Electrical buses
j Electrical buses
l Loads
s Scenarios
sp External suppliers
v Electric vehicles parking lot (EV)
w Transfer buses

Parameters

� Failure rate
� Line resistivity at operating temperature (� � mm2/km)
BNF Benefit from the solution applied (AC)
CostEENS Expected energy not supplied cost (AC)
CostGCP Generation curtailment power cost (AC)
CostINV Initial investment in new lines (AC)
CostM Maintenance cost (AC)
CostPL Power losses cost (AC)
dr Discount rate
EENS Expected energy not supplied
EVPI Expected value of perfect information
FOR Forced outage rate
FOR(i,j,c) Forced outage rate between bus i and bus j according to the chosen

line option c
h Number of service hours for the electric conduits per year
I Current that flow in the line (A)
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Investment Total investment for the planning project (AC)
Jeco Economic current density (A/mm2)
k0 and k00 Constants that depend on the type of service (one or three phases)
L Line length (km)
n Number of active conductors
NB Number of buses
nDG Number of DG units
NL Number of distribution network lines
NO Number of line options
NPV Net present value
NS Number of scenarios
NW Number of transfer buses
p Energy price (AC/kWh)
PChargeLimit(e) Maximum charge rate of energy storage systems (kW)
PDGMaxLimit(g) Maximum active power of DG (kW)
PDGMinLimit(g) Minimum active power of DG (kW)
PDGScenario(g,s) Forecasted generation of DG (kW)
PDischargeLimit(e) Maximum discharge rate of energy storage systems (kW)
Pmáx

(i,j,c) Maximum admissible line flow between bus i and bus j according
to the chosen line option c

PSMaxLimit Maximum active power of suppliers (kW)
PSMinLimit Minimum active power of suppliers (kW)
PSupplier(sp) Active power of external suppliers
q Constant value dependent of the line/cable type
r Repair time (h)
R Line resistance (�/km)
S Load (kVA)
SAIDImax Maximum Limit to System Average Interruption Duration Index

Limit (h/consumer � year)
SAIFImax Maximum Limit to System Average Interruption Frequency Index

(interruption/consumer � year)
Scc Line section (mm2)
sfv Simultaneity factor
t Project lifetime (years)
T Number of total hours of a year
Te Time equivalent (h)
U Unavailability

Variables

aESS(e,s) Discharging status of the energy storage systems
D(g) Fictitious load of each distributed generator g
d(i,j,c) Fictitious flow associated with branch i,j for c line option
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hb(h,s) Heat power for boiler unit h in scenario s
hchp(hp,s) Heat power for CHP unit hp in scenario s
hload(hl,s) Heat demand for hl heat load in scenario s
P(i,j,c) Power flow between bus i and bus j according to the chosen line

option c
PC1 Expected planning cost for the first stage
PC2 Expected planning cost for the second stage
PCharge(e,s) Active power charging of energy storage systems (kW)
PDischarge(e,s) Active power discharge of energy storage systems (kW)
PCharge(v,s) Active power charging of EV parking lot (kW)
PGCP(g,s) Generation curtailment power of non-dispatchable DG units (kW)
PLoad(l,s) Active power load for l load scenario s
SAIDI System Average Interruption Duration Index (h/consumer � year)
SAIFI System Average Interruption Frequency Index (interruption/con-

sumer � year)
VSS Value of stochastic solution
xESS(e,s) Charging status of the energy storage systems
z(w) Binary variable related to the transfer buses

Sets

˝B Set of buses
˝BS Set of substation buses
˝BT Set of transfer buses
˝DG Set of DG
˝d

DG Set of dispatchable DG
˝nd

DG Set of non-dispatchable DG
˝E Set of ESS
˝b

E Set of ESS bus
˝heatboiler Set of heat boiler
˝heatload Set of heat load
˝hp Set of CHP heat power
˝L Set of loads
˝b

L Set of load buses
˝ l Set of lines
˝SP Set of external suppliers
˝b

SP Set of external supplier buses
˝V Set of EV
˝b

V Set of EV buses
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Chapter 14
A Joint Energy Storage Systems
and Wind Farms Long-Term Planning
Model Considering Voltage Stability

Saman Nikkhah and Abbas Rabiee

14.1 Introduction

Radially nature and high ratio of R/X in distribution systems (DSs) cause several
operational and security problems such as high power losses and low voltage
profile in the grid. Recently, several solutions have been suggested to improve
the reliability and stability of DSs. In spite of their costs, distributed generations
(DGs) are considered to be one of the best viable solutions for these problems.
Undeniable advantages of wind energy in today’s power systems have resulted
in rapid increase in penetration level of this kind of renewable energy sources
into local and regional utility grids. However, despite various advantages of wind
power technology, intermittent and stochastic nature of such DG resource can cause
noticeable challenges for distribution system operators (DSOs), especially from the
voltage stability point of view.

Recently, the integration of wind energy in DSs with energy storage systems
(ESSs) has become a new solution to ensure the stability and reliability of a power
system with facilitating increased penetration of wind energy. The dispatchable
storage technologies can also provide additional benefits for distribution utilities,
including better load management [1], mitigating power quality concerns [2], and
overall reduction of energy costs [3]. In the following subsection, a review is made
on previous researches in this regard and a background is made on planning of ESS
to solve the uncertainty problem of renewable energy sources.
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14.1.1 Review of the Existing Literature

The ESS planning in DSs has been addressed in several research works. In [4], the
authors propose a stochastic planning framework for storage systems to optimally
site the battery ESS, aiming to maximize wind power penetration and minimize
operation and investment costs. The uncertainty of wind energy is modeled by
Monte Carlo simulations. In [5], a methodology is proposed for optimal allocation
of ESS for a system with high penetration of wind energy. Both perspectives of
the utility and the DG owner are taken into consideration by sizing the ESS to
accommodate all amount of spilled wind energy. The authors of [6] consider a
tradeoff between budget for investment and the daily operation cost in the ESS
planning. The information gap decision theory is used in [7] for handling wind
power uncertainty. The authors investigate the effect of storage devices on the
uncertainty handling of wind energy. In [8], a multi-objective optimization model
is proposed for scheduling of ESSs. In [9], the system robust operation ensured
by using robust optimization technique, while the investment costs of storage units
are minimized. The authors in [10] focus on the loss payment minimization using
ESS and demand response in an uncertain environment, while electricity price is
considered as an uncertain parameter. The work in [11] suggests a comprehensive
framework for ESS allocation, aiming to increase wind power penetration and
voltage stability enhancement. The authors consider economic requirements such
as cost and profit obtained by sizing and siting of the ESSs.

Different objectives are addressed in the existing literature for the ESS schedul-
ing problem. The economic objective in [12] is minimization of electricity usage
cost and battery operation costs. In [13], a stochastic planning framework is
proposed from the perspective of independent system operator aiming to maximize
several objectives including: total expected net present value (NPV), cost and benefit
of electricity utilization, power generation, etc. In [14], an economic dispatch
model is proposed to increase wind utilization by utilization of ESSs with the
objective of minimizing the composite operating costs of the system. The authors
in [15] consider a coordinated wind power and ESS model for decreasing wind
energy forecast errors. In [16], a probabilistic optimal power flow is introduced
for optimal placement of ESSs in a system with the objective of minimizing the
hourly social cost. In [17], the impact of ESS specific costs on the NPV of ESS
installation investment is investigated considering the relationship between wind
power penetration and daily load profile. In [18], the size of ESS installed in a wind-
diesel power system is determined via a two-stage stochastic optimization model,
with the objectives of fuel cost and operating cost minimization.

Although voltage stability is considered in some wind power planning research
works [19–21], and improvement of voltage stability with application of ESS has
been investigated in the literatures [22–26], the point which is not considered in
previous works is consideration of voltage stability as a constraint of joint ESS and
wind energy planning models. In [19], system loading margin (LM) is considered as
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constraints in the proposed corrective voltage control scheme for a system under the
influence of wind energy. The work in [20] proposes voltage stability constrained
optimal power flow which the relationship between the LM and uncertainty of
wind energy is investigated. In [21], the improvement of voltage stability of power
system under the influence of wind power generation is investigated while L-index
considered as the voltage stability index. The work in [22], proposes a combinational
photovoltaic and ESS model to improve voltage stability and decrease active and
reactive power losses by optimal dispatching of load power factor. The customer-
side ESSs are used in [23] to solve the voltage fluctuations of DSs with high
penetration of photovoltaic systems, by giving the permission to DSO to control the
output of ESSs. In [24], a coordinated control approach is proposed for decreasing
the voltage and frequency deviations. Also, in [24] the voltage profile of a real
DS is improved by coordinated operation of ESS and photovoltaic system. Due
to the potential of battery ESS and STATCOM, the work in [25] is focused on the
improvement of power quality and stability of DSs under the influence of high wind
power penetration. In [26], grid voltage stability is improved while acceptable wind
power penetration obtained by using ESS to control the intermittent nature of wind
energy.

While the aim of the proposed models in the existing literature is improving
voltage stability, this chapter considers the voltage stability as a constraint in the
proposed model and optimal capacity of ESSs and wind turbines (as a kind of DGs)
obtained subject to secure operation of power system from voltage stability point of
view.

14.1.2 Chapter Contributions

It is concluded from the above literature survey that various planning frameworks
have been proposed in the area of sizing and scheduling of ESS to mitigate the prob-
lems associated with the uncertainty of renewable DG units, and optimizing several
objectives. However, the voltage stability considerations have not been included
in the formulation of proposed models. Furthermore, the concept of integrating
ESS in the system under the influence of wind energy from the perspectives of
both DG owners and DSO has not been considered simultaneously. Therefore, the
main focus of this chapter is to propose a voltage stability constrained wind-storage
planning model (VSC-WSPM) which considers the perspectives of both DG owner
and DSO. Due to the fact that one of the system operator’s goals is minimizing
power generation costs while preserving the system stability [27], the objective of
the proposed model is to minimize power generation costs and charge/discharge
costs of ESSs and to maximize the profit obtained by DG owner from wind energy
procurement.
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The main contributions of this chapter are outlined as follows:

• A comprehensive model is proposed for simultaneous planning of wind energy
and ESS.

• The welfare of both DSO and DG owners is considered simultaneously in the
long-term planning horizon.

• Voltage stability considered in the planning model.
• The impact of voltage stability on the capacity of DGs and ESSs is investigated.
• Optimal capacity of ESSs and DGs is determined in the entire planning horizon.

14.2 The Concept of Loading Margin Index for Voltage
Stability Evaluation

LM is defined as the amount of power generation that can be increased to meet
the additional demand increase in PQ buses prior to violation of operational limits
or happening voltage collapse [28]. In order to guarantee the secure operation of a
power system, it is necessary to preserve a desired level of LM. This level of LM
specifies the distance between normal operation point and voltage collapse point of
the system [29]. In this regard, power flow equations at the current operation point
(COP) considered along with power flow equations in loadability limit point (LLP)
(e.g., the nose point of PV curve), simultaneously [20].

For better description of the LM concept, consider the PV curve of an arbitrary
load bus of a system that is depicted in Fig. 14.1. The points A and B are the system
COP and the corresponding LLP, respectively. The distance (in MW or MVA)
between points A and B is called LM, which could be characterized by loading
parameter, �. In order to have a proper safety margin, the system operator considers
a desired level for the LM in which the system LM should be greater than it. The
amount of system LM is an important factor for secure operation of the system,
since the voltage instability can be prevented in the post-contingency conditions, if
a sufficient LM is considered.

Fig. 14.1 System loading
margin of P-V curve [20]
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The generator’s reactive power support is one of the most important factors which
directly influences the system LM. The system LM will be large, when enough
reactive power support exists in the system. Consequently, insufficient reactive
power support or reaching the reactive power limit of generators could cause voltage
collapse.

In this chapter, the LM is included in VSC-WSPM and power flow equality and
inequality constraints considered in both LLP and COP points, simultaneously, in
order to characterize the LM.

14.3 VSC-WSPM Problem Formulation

14.3.1 Objective Functions

The objective function of the problem is optimized by considering the minimization
of power generation and ESS operation costs and maximization of wind energy
profit obtained by DG owners.

14.3.1.1 Minimization of Power Generation Costs

Minimizing the total power generation cost in DSs is critical objective and should
be considered in long-term planning models for improving total energy efficiency
and economic reasons.
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where F1 is the total power generation cost in planning horizon, PG
i;n;t and pDG

b;n;t are
active power generation and injected wind power to the grid at bus b in year n and
time t, respectively. Also, ECn, t is the energy cost in year n and time t, ª and " are
inflation and interest rates, respectively.

14.3.1.2 Minimization of ESS Charge/Discharge Costs

The ESS charge/discharge cost is a critical operation objective that should be
minimized during the planning horizon.
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where F2 is the total ESS charge/discharge cost in planning horizon, pCH
b;n;t/p

DISCH
b;n;t

are charge/discharge power of ESS at node b in year n and time t, �ch
b;t/�

disch
b;t are

charging/discharging efficiencies, CHCn, t is the operation cost of ESS.

14.3.1.3 Maximization of the Profit Obtained from the Wind Energy
Procurement

The objective of DG owners is to maximize the net present value (NPV) of profit
based on the annual cash flow over the time horizon of the investment.
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where INinc
t;d;b is the total annualized incoming of wind energy selling to the

costumers and CO&M
t;d;b corresponds to the operation and maintenance cost of DGs,

whereas Cinv
t;b denotes the DGs investment cost. These costs are formulated as

follows:

INinc
b;n;t D pDG

b;n;t � ECn;t (14.4)

CO&M
b;n;t D pDG

b;n;t � DGCO&M (14.5)

Cinv
b;n D PDG

b;n � DGCinv (14.6)

where PDG
b;n is the added wind energy capacity to the grid at bus b in year n,

DGCO & M and DGCinv are operation and maintenance cost ($/MWh) and investment
cost ($/MW) of DGs, respectively.

14.3.2 The Overall Objective Function

In order to consider all mentioned objective functions in one objective, two
coefficients defined as the weighting coefficients which basically amounted in the
interval [0, 1]. These coefficients are called w1 and w2. Due to this explanation, the
total objective function which is the minimization of social welfare is defined as
follows:

OF D min .w1 � .F1 C F2/ � w2 � F3/ (14.7)
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14.3.3 Constraints

The VSC-WSPM is subject to following operation constraints.

14.3.3.1 Power Balance Constraints at COP

In order to optimize the objective function of proposed VSC-WSPM, it is necessary
to consider the power flow constrains, operational and physical limits. Due to
consideration of LM as the voltage stability index, the equality and inequality
constraints at LLP should be considered additionally. In the following, a detailed
description of equality and inequality constrains at COP are given.

�
NGP

iD1

PG
i;n;t



C pDG
b;n;t C pDISCH

b;n;t � PD
b;n;t � pCH

b;n;t

D Vb;n;t

NBP

jD1

Vj;n;tYbj cos
�

b;n;t � 
j;n;t � �bj

� (14.8)

 
NGX

iD1

QG
i;n;t

!

C qDG
b;n;t � QD

b;n;t D Vb;n;t

NBX

jD1

Vj;n;tYbj sin
�

b;n;t � 
j;n;t � �bj

�
(14.9)

Pmin
Gi

� PG
i;n;t � Pmax

Gi
(14.10)

Qmin
Gi

� QG
i;n;t � Qmax

Gi
(14.11)

Vmin
b � Vb;n;t � Vmax

b (14.12)

jSl;n;t .V; 
/j � Smax
l (14.13)

where constraints (14.8) and (14.9) are the power flow equations at COP, PG
i;n;t, QG

i;n;t
are active and reactive power production of generator at bus i, in year n and time t,
PD

b;n;t, QD
b;n;t are active and reactive power demand of b-th bus in year n and time t,

Ybj, �bj magnitude/angle of bj-th element of system admittance matrix, Vb, t, d/
b, t, d

voltage magnitude/angle of bus b in year n and time t. Also, constraints (14.10)–
(14.12) show the active and reactive power of the generators and voltage of system
buses, respectively. Also, (14.13) shows the limit on power flowing through the
branches.
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14.3.3.2 Power Balance Constraints at LLP

As it is aforementioned, in the proposed VSC-WSPM, it is necessary to consider
operational constraints at LLP in addition to considering those of COP. The
following constraints represent the proposed constraints that considered in LLP.

�
NGP

iD1

bP
G

i;n;t



C pDG
b;n;t C pDISCH

b;n;t �bP
D

b;n;t � pCH
b;n;t

D bVb;n;t

NBP

jD1

bVj;n;tYbj cos


b
b;n;t �b
 j;n;t � �bj

� (14.14)
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!

C qDG
b;n;t �bQ

D

b;n;t D bVb;n;t

NBX

jD1

bVj;n;tYbj sin


b
b;n;t �b
 j;n;t � �bj

�
(14.15)

bP
D

b;n;t D .1 C KD;b�/ PD
b;n;t (14.16)

bQ
D

b;n;t D .1 C KD;b�/
�
QD

b;n;t

�
(14.17)

bP
G

i;n;t D min
�
Pmax

Gi
; .1 C KG;i�/ PG

i;n;t

�
(14.18)

Pmin
Gi

�bP
G

i;n;t � Pmax
Gi

(14.19)

Qmin
Gi

� bQ
G

i;n;t � Qmin
Gi

(14.20)

Vmin
b � bVb;n;t � Vmax

b (14.21)

ˇ
ˇb̌Sl;n;t .V; 
/

ˇ
ˇ
ˇ � Smax

l (14.22)

� � �des > 0 (14.23)

where (14.14) and (14.15) show the power flow equations at LLP, (14.16) and
(14.17) correspond to the active and reactive power increment pattern of loads

to meet the load increased from COP to LLP. bP
G

i;n;t, bQ
G

i;n;t are active and reactive

power production of generator at bus i, in year n and time t, at LLP,bP
D

b;n;t, bQ
D

b;n;t are
active and reactive power consumption of load connected to b-th bus in year n and
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time t, at LLP, bVj;n;t=b
b;n;t is voltage magnitude/angle of bus b in year n and time
t, at LLP. Also, (14.18) shows the increment of generators active power to cover
the demand increment from the COP to the LLP. Also, constraints (14.19)–(14.22)
correspond to active/reactive power limits, voltage magnitude limits, and the limits
of apparent power flowing through branches at LLP, respectively. Finally, as it is
aforementioned, desired value of LM that is defined by DSO should be lower than
loading parameter, which is considered in (14.23).

14.3.3.3 System Load Growth

This chapter deals with the planning of ESSs and DGs in long-term planning
horizon. Therefore, it is necessary to consider daily load model which considers
the annual demand growth. This concept is mathematically expressed as follows:

PD
b;n;t D .1 C ˇb;n/ PD

b;n�1;t (14.24)

QD
b;n;t D .1 C ˇb;n/ QD

b;n�1;t (14.25)

where ˇb, n is the annually load growth for system load buses.

14.3.3.4 DG Capacity Constraints

Intermittency of wind energy is one of the main barriers against the high penetration
of wind power in a grid. Therefore, it is necessary to limit the active and reactive
capacity of each DG as follows:

0 �
X

b

�DG
b;n � � �

X

b

PD
b;n;t (14.26)

�DG
b;n D �DG

b;n�1 C PDG
b;n (14.27)

PDG
b;n � IDG

b;n � PDG
min;

�
IDG
b;n 2 f0; 1g

�
(14.28)

PDG
b;n � IDG

b;n � PDG
max (14.29)

0 � pDG
b;n;t � CFDG

t � �DG
b;n (14.30)

qDG
b;min � qDG

b;n;t � qDG
b;max (14.31)
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where (14.26) gives the cumulative wind energy limit in n-th year of the planning
horizon, which is increased in each year over the previous year due to the added
wind capacity to the grid as shown in (14.27). Due to the economic and operational
limits, added wind energy to the grid should be limited by (14.28) and (14.29) which
binary variable IDG

b;n denotes the years that wind energy needed to be added to the
grid for a DG connected to bus b. Whereas, the DGs actual power output that is
used in (14.8) and (14.9) is limited by (14.30) due to the capacity factor (CF) of
DGs. Besides, (14.31) denotes the reactive power generation limits of the DGs.

14.3.3.5 ESS Constraints

The ESSs have technical operation constraints and should be considered in planning
model. The ESS constraints proposed in this chapter are expressed as follows:

(a) Charging/discharging power constraints

0 � pCH
b;n;t � ıch

b;t � pch;max
b;t (14.32)

0 � pDISCH
b;n;t � ıdisch

b;t � pdisch;max
b;t (14.33)

NESSX

b

24X

tD1

pCH
b;n;t �

NESSX

b

24X

tD1

pDISCH
b;n;t (14.34)

ıch
b;t C ıdisch

b;t � 1;
�
ıdisch

b;t ; ıch
b;t 2 f0; 1g

�
(14.35)

where (14.32) and (14.33) show the charging/discharging power limit. Also, due to
the operation schedule of ESS, charging capacity of storage should be greater than
discharging capacity of storage, which is modeled in (14.34). Also, (14.35) denotes
that in each time interval t, only charge or discharge of ESSs is allowed.

(b) State of charge constraints

SOCmin
b � SOCESS

b;n;t � SOCmax
b (14.36)

SOCESS
b;n;t � EESS

b;n�1 (14.37)

EESS
b;nC1 D EESS

b;n C eESS
b;n (14.38)
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0 � eESS
b;n � eESS

max (14.39)

SOCESS
b;nC1;t D SOCESS

b;n;t C 	t �
�
pCH

b;n;t�
ch
b;t � pDISCH

b;n;t =�disch
b;t

�
(14.40)

where constraint (14.36) shows the allowable state of charge of storage. Also
according to (14.37) SOCESS

b;n;t is the state of charge (SOC) for ESS installed at bus b,
in year n and time t which is lower than total capacity of ESS installed till the n-th
year (EESS

b;n�1). The total capacity of ESSs increased each year over the previous year
due to the added capacity of ESSs (eESS

b;n ) in each year which is shown by (14.38).
Also, the annual capacity expansion of ESSs is limited by (14.39). Furthermore, the
relationship between charging/discharging power and SOC of ESSs is modeled in
(14.40), where �t is the time slot of daily schedule which is assumed to be 1 h.

14.4 Simulations on a Standard Test System

In this section, the proposed VSC-WSPM is examined on a standard test system.
In order to show the different aspects of the proposed model, different cases
are considered. The following subsection gives the system data and the model
parameters.

14.4.1 System Description

In order to evaluate the performance of the proposed VSC-WSPM, simulations are
performed on the IEEE 33-bus standard distribution feeder. This system consists
of 33 buses and 32 branches. The single line diagram of this system is depicted in
Fig. 14.2. The proposed VSC-WSPM model, which is a mixed integer nonlinear
programming problem (MINLP), is implemented in General Algebraic Modeling
System (GAMS) [30] using DICOPT [31] and IPOPT [32] solvers. It is assumed
that the demand of load buses varies in 24 h of a day with a pattern given in
Fig. 14.3, while it is increased by 2% per year in the next years. It is assumed
that three DGs are installed at buses 6, 14, and 32 whereas the penetration level (�)
of DGs is supposed to be 50%. A planning horizon of 5 years is considered. It is
assumed that DG units’ yearly added capacity limited within 1–2 MW. Also, it is
assumed that there is no injected wind energy to the grid during the first year to
cope with budgeting delays and possible changes in policies. The proposed VSC-
WSPM has been solved using parameters of Table 14.1. Table 14.2 summarizes
the characteristics of dispatchable DG units. Also, Table 14.3 provides the daily
variation of DGs’ CF.
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Table 14.1 The simulation
parameters

Parameter Values (%)

ˇb, t 2
� 50
�des 5
ITR 6
IFR 1
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Table 14.2 Characteristics
of dispatchable DG units [33]

Parameter Unit Value

DGs investment cost $/MW 318,000
DGs operation and maintenance cost $/MWh 10

Table 14.3 Daily variation of CFW
t

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

0.84 0.73 0.51 0.14 0.48 0.47 0.87 0.86 0.32 0.82 0.55 0.75
t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

0.26 0.96 0.31 0.34 0.44 0.43 0.16 0.42 0.8 0.29 0.82 0.36

Table 14.4 Characteristics
of ESS

pch;max
b;t .MW/ pdisch;max

b;t .MW/ �ch
b;t �disch

b;t eESS
max .MWh/

1 1 0.88 0.88 7

Table 14.5 Energy price (ECn, t($/MWh))

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

40 36 48 54 48 36 38 36 52 44 42 52 47 60 60 52 60 57 60 60 44 36 48 50

Table 14.6 Charge/discharge cost of ESS (CHCn, t($/MWh))

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

7 6 8 9 8 6 7 6 9 7 7 9 7.8 10 10 9 10 10 10 10 7 6 8 8

The buses 4, 10, 20, 24, and 28 selected for installation of ESSs. It is assumed
that the ESSs will not charge or discharge in the first year of planning. Also, it
is assumed that the SOC of each year equals to the amount of SOC at the end of
previous year and the final energy stored in the ESSs at the end of a day, considered
to be the initial state of ESSs in the next day. It is worth mentioning that each day
simply models the peak load condition of a year, and since it is assumed the 5 years
planning horizon, the 5 consecutive days considered accordingly. Characteristics of
ESS, energy price, and charging cost of ESS are tabulated in Tables 14.4, 14.5, and
14.6, respectively.

In the following, the results obtained by implementing the proposed VSC-WSPM
on IEEE-33 bus distribution test system are presented. The problem is examined
in three case studies namely: Case-I: from the perspective of DSO (i.e., w1 D 1,
w2 D 0, in Eq. (14.7)), Case-II: from the perspective of DG owner (i.e., w1 D 0,
w2 D 1, in Eq. (14.7)), Case-III: from the perspective of both DG owner and DSO,
simultaneously (i.e., w1 D w2 D 0.5, in Eq. (14.7)). In these cases, in order to show
the effect of voltage stability constraints on the scheduled capacity of DGs and ESSs,
Cases I and II solved with and without voltage stability constraints (i.e., without Eqs.
(14.14)–(14.23)). For the sake of comparison, the results obtained for different cases
are compared in Case-III.
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14.4.2 Case-I: From the Perspective of DSO

In this case the proposed VSC-WSPM is implemented with and without the voltage
stability constraints, from the perspective of DSO. Power generation cost with and
without voltage stability constraints in this case is $4103451.9 and $4112595.9,
respectively. Therefore, including voltage stability constraints imposes more cost
to the DSO, which is reasonable. The annual added capacity of ESSs and DGs
in this case for the entire planning horizon is depicted in Figs. 14.4 and 14.5,
respectively. As it is observed from these figures, when voltage stability constraints
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Fig. 14.6 Total capacity of ESSs in each bus for the planning horizon in Case-I
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Fig. 14.7 Total capacity of DGs in each bus number for planning horizon, in Case-I

are considered in the VSC-WSPM, more wind power and ESS power are added to
the grid in order to prevent voltage instability.

Besides, the total installed capacity of ESSs and DGs are depicted in Figs. 14.6
and 14.7, respectively. As it is observed from these figures, total capacities of wind
energy and ESSs are affected by voltage stability constraints. It is evident from
Fig. 14.6 that total capacity of ESSs increases yearly because additional capacity is
added to the grid in each year. Also, for the DGs, no new capacity is scheduled since
first year and total capacity is fixed in planning horizon for each installed DG bus
number.
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14.4.3 Case-II: From the Perspective of DG Owner

In this section the problem is solved from the DG owner’s perspective and the effect
of voltage stability constraints on the capacity of DGs and ESSs investigated. The
net profit obtained from sharing wind energy with and without voltage stability
constraints in this case is $875527.7 and $897296.7, respectively. It is worth to
note that considering voltage stability decreases the DG owner’s profit. The annual
added capacity of ESSs and DGs in this case for the entire planning horizon is given
in Figs. 14.8 and 14.9, respectively. It is inferred from these figures that adding wind

0

1

2

3

4

5

6

7

8

T
he

 a
dd

ed
 c

ap
ac

ity
 o

f E
SS

s (
M

W
h)

  

Bus Number, Year

With LM constraints
Without LM constraints
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Fig. 14.11 Total capacity of DGs in each bus number for planning horizon, in Case-II

and ESSs energy to the system is affected by the voltage stability constraint. Also,
more capacity is needed in order to guarantee the system security, when the voltage
stability is considered in planning horizon.

Also, Figs. 14.10 and 14.11 show the total installed capacity of ESSs and DGs for
this case, respectively. As it is evident from these figures total capacity of DGs and
ESSs are affected by LM constraints in such a way that capacity of DGs and ESSs
with the voltage stability constraints is bigger than those of without LM constraints.
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Table 14.7 DG owner profit
and power generation cost for
all cases

Case # DG owner profit ($) Power generation cost ($)

Case-I 0 4103451.9
Case-II 875527.7 0
Case-III 906035.2 4260600.0
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Fig. 14.12 Cash flow of DG owner’s profit in different cases for the entire planning horizon

14.4.4 Case-III: From the Perspective of Both DG Owner
and DSO, Simultaneously

In this case, the proposed VSC-WSPM is solved from both perspectives of DG
owner and DSO. For the sake of comparison, the results obtained in this case are
compared with two other cases when voltage stability constraints considered for all
cases. It is assumed that desired LM is 5%. The net profit obtained from selling
wind energy and power generation cost in all cases are tabulated in Table 14.7. It is
evident from this table that considering both perspectives simultaneously provides
more profit for the DG owner contrary to DSO. Also, Fig. 14.12 depicts the cash
flow of profit obtained by DG owner in planning horizon for Case-II and Case-III.
As it is observed from this figure that in the first year of planning the annual profit
is negative, which means that the investment is not yet profitable in this year. Also,
in the last 4 years, the profit becomes positive and is different for two cases.

The obtained annual capacity of ESSs and DGs which will be installed in the
entire horizon is depicted in Figs. 14.13 and 14.14 for all cases, respectively. As
it is observed in these figures, the added capacity of ESSs and DGs depends on
the objective of decision maker and changes in different years due to the demand
growth.



14 A Joint Energy Storage Systems and Wind Farms Long-Term Planning. . . 355

0

1

2

3

4

5

6

7

8
T

he
 a

dd
ed

 c
ap

ac
ity

 o
f E

SS
s (

M
W

h)
  

Bus Number, Year

Case-I
Case-II
Case-III

Fig. 14.13 The added capacity of ESSs in each bus number for planning horizon for different
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Fig. 14.14 The added capacity of DGs in each bus number for planning horizon for different cases

The cumulative capacity of ESSs and DGs in the planning horizon is given in
Figs. 14.15 and 14.16 for all cases, respectively. As it is observed from these figures,
the total capacities of ESSs and DGs are not the same in different cases. In other
words, the capacity of DGs and ESSs depends on the goals of DG owner and DSO.
Correspondingly, DSO and DG owner should specify their strategies when they
make a planning decision.
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Fig. 14.15 Total capacity of ESSs in each bus number for planning horizon for different cases
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Fig. 14.16 Total capacity of DGs in each bus number for planning horizon for different cases

As it is aforementioned, one of the advantages of ESS is increasing wind power
penetration. In this part, the impact of ESSs on capacity of DGs is investigated. In
this regard, the proposed model is solved with and without ESS and total capacity
of DGs is compared. It is evident from Fig. 14.17 that including ESSs to the grid
increases the wind energy penetration in planning horizon.

Due to the relationship of SOC and ESS charge/discharge capacity, SOC can be
used to investigate the charge/discharge states of ESS. The SOC of ESSs at buses
10 and 20 for third and fifth year of planning is depicted in Figs. 14.18 and 14.19,
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Fig. 14.18 SOC of ESS for bus 10 in third year of planning for a day in different cases

respectively. As it is observed from these figures, SOC increases and decreases
in different time intervals of a day. Also, it is observed that in Case-II SOC is
greater than other two cases, which is because of objective function of this case
that ESS charge and discharge cost have not been considered in objective function.
Furthermore, due to the topology of grid, SOC is different in ESS installed buses.

In this part, sensitivity of OF (i.e., in Eq. (14.7)) with respect to variation of
interest rate in Case-III is investigated. Figure 14.20 depicts the variation of OF
when the interest rate increases from 4% to 8% and inflation rate is kept 1%.
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Fig. 14.20 Variation of net present value of OF versus the interest rate changes

It is inferred from this figure that if the interest rate increases, the OF reduces
accordingly. Therefore the DG investor and DSO should consider proper value for
the interest rate of their investments.

Finally, the P-V curve of an arbitrary load bus, i.e., bus 17 in the last year of the
planning (i.e., fifth year) is depicted in Fig. 14.21. The P-V curves are plotted at the
peak loading condition (i.e., t15) for all three cases.
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Fig. 14.21 Voltage profile of bus 17 in fifth year of planning horizon, at peak loading condition
(t15)

14.5 Conclusion

In this chapter an approach is proposed for joint ESS and DG long-term planning,
considering voltage stability constraints. Among the voltage stability indices,
loading margin (LM) is considered in the formulation of the VSC-WSPM model.
The proposed VSC- WSPM approach offers a decision-making tool for both DSO
and DG owner to optimally determine their own strategies for utilization of wind
energy and ESS.

The proposed VSC-WSPM is implemented on the IEEE 33-bus distribution
test system in different cases. In the first case, the problem is solved from the
perspective of DSO with the aim of power generation and ESS charge/discharge
costs minimization, and the effect of voltage stability constraints on capacity of
DGs and ESSs is investigated. In the second case, the problem is solved from the
perspective of DG owner with the objective of maximizing his/her profit from wind
energy procurement. In this case the capacity of ESSs and DGs is determined, with
and without voltage stability constraints. In the third case, the problem solved from
the perspective of both DSO and DG owner and the results compared with the
former two cases when voltage stability constraints are taken into consideration.
The following conclusions can be drawn:

• At the presence of voltage stability constraints the scheduled capacity of DGs and
ESSs increases in order to preserve the voltage stability by ensuring the desired
value of LM.

• It is necessary to charge the ESSs when DG owner wants to inject more wind
energy to the grid. In such case, the SOC of ESSs is higher than the other cases.

• The added capacity of wind energy and ESS depends on the aims and priorities
of the decision makers.
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• The scheduled capacity of ESSs and DGs is affected by voltage stability
constraints.

• DG owner and DSO should consider proper interest rate for their long-term
investments.

Nomenclature

Sets

NB System buses
NG Generating units
NL Transmission lines
NT Planning horizon
NDG DG installed buses
NESS ESS installed buses

Indices

b System buses index
DG DGs index
ESS ESSs index
i Thermal generating units’ index
l Transmission lines index
n Index of planning years
t Time index

Variables and Parameters

ª Inflation rate
" Interest rate
� Wind energy penetration factor
� Loading parameter
ˇb, n Demand growth rate at bus b in year n.
�des Desired LM
�

ch=disch
b;t Efficiency of charging and discharging of ESS (%)
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ı
ch=disch
b;t Charge/discharge binary indicators of ESSs

�t Timeslot duration
�DG

b;n Cumulative wind power capacity of DG connected to bus b up to
year n

CHCn, t. Charge/discharge cost in year n and time t ($/MWh)
CFDG

t Capacity factor of DG in time t
DGCinv Investment cost of DGs ($/MW)
DGCO & M Operation and maintenance cost of DGs ($/MWh)
EESS

b;n Actual capacity of the ESS connected to bus b, in year n
eESS

b;n Added ESS capacity to bus b, in year n
eESS

max Maximum annual added ESS capacity to the grid
ECn, t. Energy price in year n and time t ($/MWh)
IDG
b;n Binary indicators of DGs

KG, i Rate of change in active power generation of unit i
KD, b Rate of load change at bus b
PDG

b;n The added wind power capacity for DG connected to bus b in year
n

PDG
max = min Maximum/minimum wind energy added to the grid

pCH=DISCH
b;n;t Charge/discharge power of ESS at node b in year n, at time t

pch=disch;max
b;t Maximum power charge/discharge of ESS at node b and time t

.P=Q/
max = min
Gi

Maximum/minimum active/reactive power of ith thermal genera-
tion unit

PG
i;n;t=QG

i;n;t Active/reactive power generation by ith thermal generation unit in
year n, at time t

_

P
G

i;n;t=
_

Q
G

i;n;t Active/reactive power production of generator i in year n and time
t at LLP

PD
b;n;t=QD

b;n;t Active/reactive power load of bus b in year n, at time t
_

P
D

b;t;d=
_

Q
D

b;t;d Active/reactive power consumption of load connected to bus b in
year n and time t at LLP

pDG
b;n;t=qDG

b;n;t Active/reactive power of DG injected to bus b in year n, at time t
qDG

b;max = min Maximum/minimum reactive power of DG injected to bus b
Sl, n, t(V, 
 ) Power flow through l-th transmission line in year n, at time t
Smax

l Maximum transferable power through line l
SOCESS

b;n;t State of charge (SOC) for the ESS connected at bus b in year n, at
time t

SOCmax = min
b Maximum/minimum value of SOC

Vb, n, t/
b, n, t Voltage magnitude/angle of bus b in year n, at time t
_

Vb;t;d=
_


 b;t;d Voltage magnitude/angle of bus b in year n and time t at LLP
Vmax = min

b Maximum/minimum voltage in bus b
Ybj/�bj Magnitude/angle of bj-th element of system admittance matrix
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Chapter 15
Optimal Design, Operation,
and Planning of Distributed Energy
Systems Through the Multi-Energy
Hub Network Approach

Syed Taha Taqvi, Azadeh Maroufmashat, Michael Fowler, Ali Elkamel,
and Sourena Sattari Khavas

15.1 Introduction

Fossil fuels have been the primary source of energy globally for several decades.
Infrastructures have been developed, almost everywhere, with a strong dependency
on these nonrenewable resources. From internal combustion engines (ICE) for
transport to centralized conventional power plants for electricity, these depleting
means have played a vital role in meeting the increasing universal energy demand,
yet, at a weighty economic, social and environmental cost [1]. Thus, concerns
pertaining to the depletion of these valuable resources and adverse effects onto
the environment need to be addressed. Renewable energy, on the other hand, has
received a lot of attention in the recent years as promising “clean” alternatives.
Utilization of these “green” resources has been studied using Distributed Energy
Systems (DES) with focus on their economic and environmental impact [2–9].

Distributed Energy Systems embrace several advantages over conventional
centralized power plants. In contrast to the large capacity central units, these smaller
units are closer to their consumers. This prevents the 20% energy loss due to
transmission of electricity from remote locations to end users as well as the need for
continuous reliability improvement measures [10]. In general, DES are relatively
easier to scale, flexible, and adaptable to various renewable and nonrenewable
energy sources [11]. Its application continues to grow with rising interest in
renewable energy generation as global focus orients towards the development of
“smart energy systems” [12]. DES can be utilized to address future energy networks
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in a more holistic manner, accounting energy demand in almost all forms (i.e.,
electrical, thermal, material) [6, 7]. Due to their flexibility and their ease to network,
a wide range of energy vectors can be integrated within the system with multiple
nodes in order to make energy cheaper and cleaner. Its spectrum of compatible
storage technologies (i.e., thermal, batteries, and compressed air) makes it a suitable
candidate [12]. In addition, with progressive control technologies, operational costs
have been observed to be lower when compared to centralized power plants [13,
14]. Despite these benefits, integrating DES to conventional energy infrastructure
is a difficult task. The energy hub approach, conceptualized by Geidl et al. [15],
has been identified as a significant methodology in designing such systems. Multi-
objective problems can be formulated, using this approach, for the operation and
planning of DES to reduce costs and GHG emissions.

15.2 Literature Review on Distributed Energy Systems
Based on Energy Hub

Several studies have been carried out on Distributed Energy Systems, covering its
various aspects in applications. Certain studies examine fossil-based DES whilst
others study the integration of renewables to preexisting systems. Rieder et al.
[16] developed a model for a small-scale DES that utilized hydrogen and natural
gas as “clean” energy vectors. Another group of researchers built a model for
combined heat and power (CHP) systems to meet the requirements for an urban
settlement [17]. This group further investigated the operation of a DES with
storage technology leading to reduced operational costs and emissions [18]. Yang
[19] illustrated the significance of forming a hydrogen economy by considering
compressed hydrogen as an energy vector in addition to electricity. A couple of
comprehensive reviews, conducted by Chicco and Mancarella [8, 20], outlined the
need for distributed energy systems whilst emphasizing on the importance of a
multi-generation framework. The energy hub approach was classified as one of the
notable strategies to model such a framework [8, 20].

Energy hubs, as the name suggests, are the central cores of an energy network. It
is the place where the energy from different carriers comes together with the ability
of being converted and stored [21]. They can also be perceived as interfaces between
different energy generation and loads [10]. For many years, electricity and natural
gas networks have been operating independently for separate applications. However,
recent studies have outlined benefits of integrating renewable energy resources
to these systems to achieve economic and environmental gains [22–24]. Thus,
researchers have been actively seeking solutions to the energy crisis and global
warming problems through these means in the residential, industrial, and transport
sectors. Some have modeled the entire energy system as a single energy hub, whilst
others have observed each entity as individual energy hubs, linked together in a
network.
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Bozchalui et al. [25] studied the operation of energy hubs in a residential
building, whereas Syed et al. [26] designed a simulation model for a fleet of fuel cell
vehicles and a commercial building. Based on the energy hub approach, Fabrizio et
al. [27] developed a model to minimize renewable energy dependency and costs
at the design concept stage of a building. Sheikhi et al. [28] presented a cost-
benefit analysis on a hotel building by modeling combined cooling, heating, and
power (CCHP) system. Moghaddam et al. [29] developed a Mixed Integer Nonlinear
Programming (MINLP) model to self-schedule an energy hub over a short term (i.e.,
24 h) to provide heating, cooling, and electricity demand of a hypothetical building,
using electricity and natural gas vectors. Prices of these resources were used in
order to make decisions in the scheduling process. On the other hand, Parisio et al.
[30] employed the robust optimization technique to solve a Mixed Integer Linear
Programming (MILP) problem, pertaining to energy hub scheduling. Hydrogen
and electricity were the two energy vectors considered in this study. Sharif et al.
[31] developed an energy hub model to replace a coal-fired power plant with a
natural gas one, considering natural gas and renewable energy vectors (i.e., solar and
wind). In another study, Maniyali et al. [32] presented an energy hub comprising of
nuclear, wind, solar, biomass renewable energy vectors, as well as electrolyzers and
fuel cells. The study aimed at fulfilling the electricity and hydrogen demands by
industrial and transportation sectors, mainly through renewable energy.

Among the various papers on the network of energy hubs, the paper by Schulze
et al. [33] is the one that considers different renewables to optimize power flow
through a network. Yet, the case study presented in the paper lacks application
on the network level. Maroufmashat et al. [10] developed a generic framework
to help exhibit design and implementation of DES in urban areas. In another
study, Maroufmashat et al. presented a network of energy hubs, based on a MILP
formulation, to support hydrogen economy in such a setting [7]. This urban setting
comprised of a network of 4 energy hubs: a school, food distribution center,
residential complex, and a hydrogen refueling station. Hajimiragha et al. [34]
used a 3 energy-hub system to demonstrate development towards a hydrogen
economy. The comprehensive energy hub, presented in this study, comprised of
natural gas, electricity, heat, and hydrogen energy vectors. In addition to conversion
technologies, the modeled energy hub facilitated heat and hydrogen storage.

15.3 Description of Framework Development

This section aims at describing a generic framework, helpful in designing, operation,
and planning of DES, using the multi-energy hub network approach. Three different
case studies will be presented, in the following sections, with further details relevant
to each. Figure 15.1 illustrates the route map to framework development with key
elements.
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Fig. 15.1 Route map to framework development (adopted from Maroufmashat et al. [10])

As seen in Fig. 15.1, the framework comprises of two sub-models: (1) an energy
hub model, and (2) a network model. A number of energy hubs can be considered
within a network that encompass conversion and storage technologies. These can
run for multiple periods with a single or multiple objective functions, based on
technical, economic, and/or environmental criteria. A set of decision variables will
be the basis used to define all energy hub and network relations. Finding an optimal
solution to the overall problem will yield in the best design and operation of each
energy hub and the entire network.

Figure 15.2 shows the superstructure of the generic energy hub model and
the development at the optimal design and operational stages. The superstructure
comprises of all possible units of DES which may exist within an energy hub. A
certain set of technologies may be selected that may be seen as viable options. At
the operation stage, some of those chosen technologies may or may not be utilized,
at a particular period, depending on the objective function. The model will aim to
yield the overall optimal value for the entire process.

The model, as stated earlier, is presented in the generic state. A number of
renewable and nonrenewable energy vectors may be considered for each hub along
with a number of storage technologies. A set of data may be required by the
model concerning the topology of each energy hub (i.e., energy demand, available
supply, and location), technical limitations (i.e., performance), economic (i.e.,
tariffs, capital, operation, and maintenance), and environmental factors (i.e., GHG
emission factors). Based on this information, the model would be able to define the
optimal design and operation of the energy hubs. It would state the type and number
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Fig. 15.2 Schematic depicting the superstructure of the generic energy hub model (adopted from
Maroufmashat et al. [10])

of conversion and storage technologies needed for optimal design and operation.
The model would be able to inform about the energies utilized during the process.
Moreover, it would be able to calculate the economic and environmental costs in
monetary and emission terms, respectively.

15.4 Modeling

Energy hubs, in addition to optimal multi-energy carrier systems, have also been
identified as interfaces between different energy generation and loads, as depicted
in Fig. 15.3 [15, 35]. The unit commonly comprises of three types of elements:
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Fig. 15.3 Illustration of a simple energy hub (adopted from [6])

direct connections, converters, and storage. The connections include the different
energy carriers (i.e., electricity grid, natural gas, etc.) that enter the system as
well as the outputs to the consumer. Within the energy hub, there exist a set of
conversion technologies to condition into the desired form. Additionally, energy
storage systems can be considered in the hub for scheduled dispatch.

Among the various pros of this methodology, added reliability, load flexibility,
and enhanced performance of the system are some of the notable ones [36]. Using
the energy hub approach, a wide spectrum of energy-related problems can be
addressed within the residential, commercial, and industrial areas [6]. As illustrated
in Fig. 15.3, energy from carrier 1 is split between conversion technologies A and
B. In contrast, energy from carrier 2 is split into two further energy vectors after
passing through conversion technology C. D and E may represent other required
for further conversion. For example, in the case where C may be a co-generation
system, E may represent a chiller cascaded with to meet the demand of Load 2.

15.4.1 Generic Framework

One of the main aims of the VoFEN research project was to develop a generic
modeling and analysis framework where the economical, ecological, and technical
effects concerning energy systems could be studied [37]. This generic structure
would allow high flexibility in modeling without posing any constraint on the size of
the system. Hence, to model the energy conversion by each technology, as described
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in the previous section, Geidl et al. [35] proposed to use a coupling matrix C that
would transform the input energy to the required energy vectors. Maroufmashat
et al. [6] modified this formulation as shown in the following equation. Equation
(15.1) shows a mathematical expression used to define the overall energy mapping
process.
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L and P, in the above equation, denote the load demand i and the input energy by
the carrier j, respectively. b is a vector that converts the units of energy from the input
to power, being consistent with that of the load. IJ � J is added to the equation which
allows uniformity for matrix multiplication. The entities of the coupling matrix C
represent the efficiency with which energy is converted. If a particular entity within
the coupling matrix is zero, it depicts that no conversion of energy is taking place. If
a single conversion technology is utilized, the efficiency of that conversion process
is considered as the coupling factor. Additionally, if the load demand is met using
one or more energy conversion technologies, the product of the efficiencies of each
process is considered as the coupling factor. On the other hand, the input energy
carriers may possess certain operational limits based on their capacity. Thus, their
power needs to be constrained by lower and upper boundaries (i.e., min/max), as
expressed by Eq. (15.2).

Pmin � P.t/ � Pmax 8t (15.2)

In all, this simple model can be either utilized under steady state conditions or
further developed to tackle dynamic systems with control strategies while including
energy storage and losses. Moreover, unidirectional as well as bidirectional flow
of power can be considered based on energy hub configuration [38]. For example,
an electrical transformer would be able to realize reverse power flow whilst a
turbine may not [36]. Based on this generic structure, the model opens a wide range
of possibilities for optimization [33, 38, 39]. Stochastic models can be collated
alongside for planning and operation of energy sources [8, 40, 41]. In addition,
interactions between the energy carriers can be studied to assess reliability and
performance [42, 43].
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15.4.2 Energy Storage Modeling

Energy storage is one of the key elements of the energy hub considered by Geidl
et al. [15, 36, 37]. More than half of the publications, adhering to multi-energy
systems, have incorporated energy storage within their models, as evident from
the classification. It is essential to account time dependency when energy storage
is considered as energy accumulates over a certain period of time. Hence, the
conversion technologies are perceived as discrete temporal systems [6].

PMq D ˛ch
q Qch

q �
1

˛dis
q

Qdis
q (15.3)

Equation (15.3) shows energy balance on the storage technology, accounting for
energy entering the storage (i.e., charging) and leaving the battery (i.e., discharging).
Qch

q represents the power in-flow through the storage technology q at an efficiency
˛ch

q whilst Qdis
q represents the power flowing out of it at an efficiency of ˛dis

q :

PMq D Mq.t/ � Mq .t � 1/ C Mstdby
q (15.4)

Mq(t) and Mq(t � 1) represent the energy stored time periods (t) and (t � 1),
respectively. In order to account for losses, the Mstdby

q term is added to the expression
to express energy loss when the storage system is in its standby state. By compiling
Eqs. (15.3 and 15.4), the overall equation for the qth storage device at time period
(t) can be written as illustrated in Eq. (15.5).

As mentioned earlier, dynamic modeling is required when considering storage
systems. Thus, the storage function needs to be discretized into separate time peri-
ods. This has been done using the forward difference formula, as seen in Eq. (15.4).

Mq.t/ D Mq .t � 1/ C ˛ch
q Qch

q .t/ �
1

˛dis
q

Qdis
q .t/ � Mstdby

q 8q; 8t (15.5)

In matrix representation, Eq. (15.5) may be expressed as Eq. (15.6).

M.t/ D M .t � 1/ C AchQch.t/ � AdisQdis.t/ � Mstdby 8t (15.6)

As written, Ach and Adis, in Eq. (15.6), are diagonal matrices representing
charging and discharging efficiencies to allow matrix multiplication. In addition to
the above model equations, technical constraints need to be structured to define
the inability of the storage technology. For instance, simultaneous charging and
discharging of a storage system is not possible. Hence, Eq. (15.7) comprises of two
binary variables ıdis

q .t/ and ıch
q .t/ that are introduced for each storing technology at

each time period t to define the situation.

ıdis
q .t/ C ıch

q .t/ � 1 8q; 8t (15.7)
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Equation (15.8) shows the additional limitations on the capacity and exchange
energy of each storage system.

Mmin
q � Mq.t/ � Mmax

q 8q; 8t
ıch

q .t/ � Qch;min
q � Qch

q .t/ � ıch
q .t/ � Qch;max

q

ıdis
q .t/ � Qdis;min

q � Qdis
q .t/ � ıdis

q .t/ � Qdis;max
q

(15.8)

Mmin
q and Mmax

q represent the minimum and the maximum level of energy stored
in the qth storage system. Moreover, Qch;min

q , Qdis;min
q , Qch;max

q , and Qdis;max
q represent

the minimum and maximum energy that can flow through the qth storage technology
during the energy charging and discharging process.

15.4.3 Network Modeling

In many cases, a single energy hub model suffices to represent the entire energy
system. Yet, for large-scale planning and operational problems, a network of energy
hubs is considered [6, 35, 44, 45]. These energy hubs are interconnected, facilitating
energy transfer between each other.

Figure 15.4 shows a network of energy hubs with the focus on energy hub s. Each
energy hub within the network either receives energy from outside the network (i.e.,

Fig. 15.4 Diagram depicting the interconnected energy hubs with energy hub s (adopted from
Maroufmashat et al. [6])
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grid, renewable energy sources, etc.) or from other energy hubs in the network.
Likewise, each energy hub produces energy to meet energy demand within the
energy hub or supply to other interconnected energy hubs. As evident in Fig. 15.4,
three energy carriers have a flow of power into energy hub s. The total energy from
hub s supplied to other connected energy hubs is represented by Ts. This total is the
summation of individual energy output, Trsk, to each connect energy hub, k, from
energy hub s. This relationship can be expressed mathematically in the following
way:

Ts D
X

k2S�fsg

Trsk (15.9)

Similar to the coupling factors in the coupling matrix as well as energy storage
efficiencies, a coefficient may be multiplied with Trsk to account for the losses due
to transmission of energy from energy hubs s to k. All the energy vectors that exist
between the interconnected energy hubs can be written in the matrix form, as shown
below.
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The first column vector contains the sum of all energy vectors leaving a particular
energy hub (i.e., Ts). The Tr matrix contains each vector that leaves a particular
energy hub s and enter energy hub k. The column vector on the right-hand side of the
expression is a vector with each element equal to 1 to allow matrix multiplication.

15.5 Case Studies

This section discusses four case studies, starting with a simple predefined 2-energy
hub system, considering electricity and natural gas only, and concluding with a 4-
energy hub system with the addition of solar and hydrogen energy vectors. The aim
of presenting these case studies is to outline a roadmap of evolution in modeling and
optimization of smart energy systems, through the energy hub approach.
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Fig. 15.5 Illustration of the two energy hubs with technologies considered and energy vectors
involved (adopted from Maroufmashat et al. [6])

15.5.1 Case Study 1

In this study, an urban energy system was designed using two energy hubs: (1) a
residential complex and (2) a light commercial building. The residential complex
considered was a 10-floor building with a total area of 7765 m2 whereas the
commercial building is a 75,000 m2 food distribution center. Figure 15.5 shows
an illustration of the two buildings as energy hubs with the technologies and energy
vectors considered in this study.

An hourly energy demand was considered for both energy hubs and three dif-
ferent time-of-use prices for electricity (i.e., on-peak, off-peak, and mid-peak) were
applied. Additionally, the carbon dioxide emissions, arising from the consumption
of energy from grid electricity and natural gas, were included in the model. A 1%
energy loss was assumed for transmission of energy over every 200 m. In order to
observe the effect of energy exchange between the two energy hubs, the following
four scenarios were considered:

• No interaction between the energy hubs is assumed and no CHP technology is
employed

• No interaction between the energy hubs is assumed but CHP technology is
employed

• Energy hubs are allowed to interact but without the CHP technology
• Energy hubs are allowed to interact whilst employing distributed CHP technol-

ogy in one of the hubs (as seen in Fig. 15.5).
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Fig. 15.6 Economic cost and carbon dioxide emissions resulting from the four scenarios for case
study 1 (adopted from Maroufmashat et al. [6]). Results from the four scenarios for case study 1
depicting (a) economic cost and (b) carbon dioxide emissions, associated with each scenario

The economic cost due to purchasing of primary energy from sources incurred
and the amount CO2 emissions produced are shown in Fig. 15.6 for each scenario.

As evident from Fig. 15.6a, the least total economic cost was observed for
scenario 4. Allowing interaction between the energy hubs and employing the
CHP technology yielded 0.5% lower costs than scenario 2. Another interesting
observation, perceived from the results of scenario 1 and 3, is that networking
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of energy hubs did not yield any economic benefit without considering the CHP
technology. On the other hand, carbon dioxide emissions were the least for these two
scenarios (i.e., 1 and 3), as shown in Fig. 15.6b. Scenario 2 resulted in the production
of the most CO2 emissions while scenario 4 showed 3% lower emissions, implying
the effect of interaction of energy hubs on greenhouse gas emissions.

15.5.2 Case Study 2

A network of 3 energy hubs, comprising of a school, corner shop, and residential
complex, were considered in this case study. The area of each of these structures was
20,000 m2, 25,000 m2, and 7765 m2, respectively. The following figure represents
these facilities as energy hubs, showing the distance between each of them.

Figure 15.7 also shows the energy vectors involved as well as the technologies
considered within each energy hub. The assumptions made and operational scenar-
ios observed were similar to those of case study 1.

Electricity

Electricity

Electricity Electricity

Electricity

Electricity

Heat

Heat

Heat

Natural Gas

Natural Gas

Natural Gas

District Heat

District Heat

District Heat

CHP

Boiler

CHP

Hub 1(School)

Hub 2(Corner shop)

Hub 3 (Residential Complex)

Furnace

600 m

300 m

500 m

Boiler

Fig. 15.7 Diagram of the three energy hubs with the distance between them (adopted from
Maroufmashat et al. [6])
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Fig. 15.8 Economic cost and carbon dioxide emissions resulting from the four scenarios for case
study 1 (adopted from Maroufmashat et al. [6]). Results from the four scenarios for case study 1
depicting (a) economic cost and (b) carbon dioxide emissions, associated with each scenario

The results obtained from this analysis, as illustrated in Fig. 15.8, appear to have
a similar trend in comparison to the results obtained from the previous case study.
A much lower economic cost was realized in scenario 4 as compared to the other
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Fig. 15.9 Pareto optimality curve depicting the relationship between the economic cost and
carbon dioxide emissions considering scenario 4 (adopted from Maroufmashat et al. [6])

3 scenarios, as seen in Fig. 15.8a. The economic cost in scenario 4 was 29% and
11% lower than scenarios 1 and 2, respectively. Moreover, similar to the results of
case study 1, the economic costs incurred in scenarios 1 and 3 are observed to be
the same. This emphasizes the need for employing coupled technologies, like CHP,
in addition to networking of energy hubs, to increase economic gains. In Fig. 15.8b,
the CO2 emissions in scenario 4 appear to be 11% lower than scenario 2. Whereas,
scenarios 1 and 3 appear to have the least carbon dioxide emissions among the 4
scenarios. In order to understand the relation between the economic cost and CO2

emissions, bi-objective optimization was carried out. A Pareto front was constructed
by assigning weights to these two objectives while considering scenario 4, as shown
in Fig. 15.9.

It is evident from the figure above that the total economic cost and carbon dioxide
emissions are inversely related. As more weight is assigned to economic cost (i.e.,
model solved for minimizing total cost), the amount of CO2 emissions increases.
Such an analysis can help design energy systems, using the energy hub approach,
considering the availability of economic and environmental resources.

15.5.3 Case Study 3

In this case study, a network of 4 energy hubs is studied with the addition of
solar energy as an energy vector to the system. The four different structures,
each perceived as an energy hub, considered in this study are: (1) residential
complex, (2) office building, (3) commercial building, and (4) a restaurant. The
areas of each of these structures are 7765 m2, 1000 m2, 75,000 m2, and 1000 m2,
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Fig. 15.10 Representation of the 4-energy hub network (adopted from Maroufmashat et al. [10])

respectively. In contrast to the previous studies, the configuration of each energy hub
is not predefined, as shown in Fig. 15.10. The operational schedule of the energy
conversion and storage technologies as well as networking disputes are addressed
by the optimal model.

With regard to the solar energy vector, the solar irradiation data collected was
from a region, located in the south of Ontario. Moreover, a nominal discount rate of
8% and a project lifetime of 20 years were assumed to conduct a thorough economic
analysis of this potential distributed energy system (DES). Moreover, four scenarios,
listed below, were considered to study the effect of networking of energy hubs and
DES allocation within the energy hubs.

• No interaction between the energy hubs is allowed. Electricity and heat are only
supplied from the utility grid (no DES). Moreover, no storage technology is
considered.

• No interaction between the energy hubs is allowed. However, DESs comprising
of difference energy conversion and storage technologies are allowed within the
energy hubs.

• Energy exchange between energy hubs is allowed along with energy conversion
technology within energy hubs. However, no storage is allowed in the energy
hubs.

• Energy exchange between energy hubs as well as energy conversion and storage
technologies in energy hubs are allowed.

Figure 15.11 shows how DES comprising of energy conversion and storage
technologies are allocated within each energy hub, as determined by the optimal
model. The values along the y-axis represent power in kW whereas the segment
between each bar shows the number of technologies employed.

It is observed, from Fig. 15.11, that the highest number of technologies (i.e.,
conversion and storage) utilized were in scenario 4 while the least were considered
in scenario 1. In scenario 1, four 300 kW and two 100 kW boilers were installed



15 Optimal Design, Operation, and Planning of Distributed Energy Systems. . . 381

Fig. 15.11 DES allocation within each energy hub for the four scenarios (adopted from Marouf-
mashat et al. [10])

in order to meet the energy demand of the energy system. In scenario 4, four
300 kW gas engine CHPs were employed along with a total of 1200 kW heat storage
technologies. A number of heat and electrical storage technologies are chosen in
scenario 2, while in scenario 3, no technologies are chosen for hubs 3 and 4. Again,
this outlines the gains achieved allowing energy exchange between energy hubs and
storage. However, in all, solar energy is not selected in the optimal model due to
the high capital cost and lack of incentive for power generation through renewable
energy sources.

The total annual cost as well as CO2 emission were studied in all four scenarios
and the results are shown in Fig. 15.12.

Despite the least number of employed technologies, the highest annual cost
and lowest carbon dioxide emissions were observed in Scenario 1, as seen from
Fig. 15.12a, b, respectively. On the contrary, the least economic cost and highest
carbon dioxide emissions were seen in scenario 4. The total annual cost incurred
in scenario 4 was 12%, 6%, and 7% lower, as compared to scenarios 1, 2, and
3, respectively. These results imply that considering DES (i.e., energy conversion
and storage) and networking of energy hubs, lower economic costs can be attained.
Another significant finding is that the economic cost of scenario 3 is 3% higher
than that of scenario 2. This indicates that utilizing energy storage yields in higher
economic gains than networking of energy hubs.

A multi-objective analysis, similar to that carried in the previous case study,
was conducted, considering scenarios 2, 3, and 4. The Pareto curve, illustrating the
relationship between the annual economic cost and carbon dioxide emissions, for
these scenarios are shown in Figs. 15.13, 15.14, and 15.15.

As evident from these figures above, the highest total economic cost yields in the
least amount of carbon dioxide emissions. Looking at results obtained for scenario
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2 (Fig. 15.13), an increase of 2% in the total costs would result in 11% decrease
in CO2 emissions, in the lower part of the optimality curve (i.e., between points A
and B). On the other hand, an 8% increase in cost yields a 14% decrease in carbon
dioxide emissions in the upper part of the curve (i.e., between points A and B). Thus,
making it more advantageous to operate within the lower region of the curve. It is
also observed that the DES share in meeting energy demand is higher in the lower
part of the curve than in the upper segment.

In scenario 3, it can be observed, from the Pareto optimality curve, that a
2% increase in total annual cost may lead to 2% and 5% decrease in CO2

emissions, represented by points B and C, respectively. Additionally, the pie charts,
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in Fig. 15.14, depict 1% of electricity demand and 3% of heat demand is met
using the solar energy technology (i.e., solar PV and collector). Whereas, the least
cost is incurred when almost 99% of energy demand is met through purchasing
electricity from the grid. From the comparison between scenarios 2 and 3, it can be
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explicitly seen that employing a storage technology leads to more economic gains
than networking of energy hubs.

The bi-objective optimization results of allowing DES (energy conversion and
storage) as well as networking of energy hubs are illustrated in Fig. 15.15. A 4%
increase in economic costs between points A and B leads to a 23% reduction
in CO2 emissions, making it the most favorable out of the three multi-objective
optimization analyses. Furthermore, in the upper segment (i.e., between B and C),
a 11% increase in total economic cost leads to a 20% decrease in CO2 emissions. A
higher renewable energy share in meeting energy demand through solar PV and
collectors is observed in this scenario as compared to scenario 2 and 3. In all,
all these studies showed utilization of DES and energy hub network resulted in a
decrease in economic costs but a higher environmental impact as compared to grid-
based electricity.

15.5.4 Case Study 4

In this last case study, a network of 4 energy hubs was studied, with the additional
consideration of solar and hydrogen energy vectors. The aim of this study is
to investigate how to optimally design a hydrogen refueling station in an urban
area where energy hubs can exchange their surplus energy with one another.
The energy hubs considered are: (1) a school, (2) food distribution center, (3) a
residential complex, and (4) hydrogen refueling station for fuel cell vehicles. The
configurations of the first three energy hubs were defined as follows:

• School (Energy Hub 1): 530 kW boiler and a 50 m2 of solar PV area
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Fig. 15.16 Representation of the 4-energy hub network comprising of school, food distribution
center, residential complex, and hydrogen refueling station (adopted from Maroufmashat et al. [7])

• Food distribution center (Energy Hub 2): 300 kW CHP, 147 kW boiler, heat
storage tank, and a 100 m2 solar PV area

• Residential complex (Energy Hub 3): 100 kW CHP, 300 kW boiler, an 80 m2

solar thermal collector area, and an 80 m2 solar PV area.

Energy hub 4 in Fig. 15.16 represents a hydrogen refueling station. The
configuration of this hub was left to be determined optimally by the model. This
includes the size of the electrolyzer and the hydrogen storage tank.

For this particular case study, the operating characteristics of a HySTAT-60
alkaline electrolyzer were considered. Moreover, in a course of a day, about 100
forklifts and 50 light duty fuel cell vehicles were considered to be fueled. Other
data and assumptions pertaining to time-of-use of electricity and solar irradiation
were similar to previous studies.

Similar to the previous case, four different scenarios were considered in this case
study.

1. Distributed hydrogen production was allowed as well as energy exchange
between energy hubs.

2. Distributed hydrogen production was allowed but no energy exchange between
energy hubs was allowed.

3. Hydrogen was purchased (i.e., no distributed H2 production) but energy exchange
between energy hubs was allowed.

4. Hydrogen was purchased (i.e., no distributed H2 production) but no energy
exchange between energy hubs was allowed.
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Fig. 15.17 Economic cost and carbon dioxide emissions resulting from the four scenarios for case
study 2 (adopted from Maroufmashat et al [7]). Results from the four scenarios for case study 1
depicting (a) economic cost and (b) carbon dioxide emissions, associated with each scenario

Figure 15.17 shows the total economic costs and carbon dioxide emissions
produced in each of the four scenarios.

It can be seen, from the figure above, that the least economic cost is incurred
and the least carbon dioxide emissions are produced in scenario 1. Scenario 1 has
1.8% lower economic costs than scenario 2, implying that networking of energy
hubs leads to economic gains. Additionally, it is evident that it is cheaper to produce
hydrogen through this distributed setting (i.e., Scenario 1 and 2), within this smart
energy network, in contrast to purchasing it (Scenario 3 and 4). When comparing
scenario 1 to scenario 3, a 2% CO2 emission reduction is also observed in the former
scenario, indicating that distributed hydrogen can be relatively environmentally
advantageous.
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15.6 Conclusion

In this chapter, a brief introduction to the concept of optimal design of Distributed
Energy Systems (DES) was presented. Relevant studies, focused on the modeling of
DES through the energy hub approach, were outlined. A generic framework, based
on the energy hub approach, was defined that can aid in the design, operation, and
planning stages of Distributed Energy Systems. Four case studies were illustrated,
starting from a simple 2-energy hub system to a more complex 4-energy hub DES
with solar and hydrogen energy vectors. Findings from each study outlined that
higher economic gains can be achieved when allowing energy hubs to interact with
each as well as using distributed energy systems. Compared to scenarios with no
networking between energy hubs, lower carbon dioxide emissions were observed in
interacting energy hubs. However, in all case studies, purchasing of electricity from
the grid was seen to result in the lowest CO2 emissions. Since the emission factor
of electricity grid is quite low in Ontario, employment of DES results in higher
CO2 emissions. However, in fossil-based economies, a lower carbon footprint can
be expected when using DES and energy hub networks. This opens up an entire
new area for application of DES, through multi-energy hub approach, in oil and gas
based economies.

Nomenclature

˛ch
q Charging efficiency of storage technology q

˛dis
q Discharging efficiency of storage technology q

L(t) Load demand/output energy i at time t
PMq Energy level in storage technology q at time t

Mstdby
q Energy loss when the storage system q is in its standby state.

P(t) Input energy by carrier j at time t
Pmin Minimum input energy by carrier j
Pmax Maximum input energy by carrier j
Qch

q Power in-flow (charging) through the storage technology q
Qdis

q Power out-flow (discharging) through the storage technology q
Ts Total energy from hub s supplied to other connected energy hubs
Trsk Individual energy output to each connect energy hub, k, from energy hub s
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Chapter 16
Joint Electricity and Heat Optimal
Power Flow of Energy Hubs

Manijeh Alipour, Kazem Zare, and Heresh Seyedi

16.1 Introduction

Electricity is the utmost popular type of energy in recent days. All developed sectors
of countries almost utilize electrical energy. In addition to the electricity, there are
heating and cooling demands that should be supplied. Therefore, another transmis-
sion network, district heating network (DHN), is the other important system, which
is very promising for carbon emission reduction and energy saving. District heating
network is a well-extended system in several Northern European countries [1].
Conventionally, most energy service networks, i.e., electricity and local district heat-
ing systems have been scheduled separately without considering interdependency
between various energy service infrastructures. Nevertheless, many welfares can be
attained by envisaging the energy service system as cohesive. Energy flows provided
from alternative resources could be administrated and consequently, safety of energy
preparation can be improved. The energy could be supplied more efficiently and
energy emissions, losses and costs would be reduced. However, in the case of
separate planning and operation of energy systems an unlikely optimal solution will
be reached, since optimization of each transmission network separately can obscure
the optimal operation of the entire energy system. Henceforth, a unified study of
energy networks is highly desirable [2, 3] and recent studies suggest integration
of these networks so-called multi-carrier energy networks (MCENs) [2, 4, 5]. The
important motivation behind aforesaid viewpoint is the growing exploitation of co-
generation systems which creates a potent connection among various networks [2].
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The interdependency of these industries necessitates the integrated optimization
of joint energy networks. For instance, a combined heat and power (CHP) unit
generates electricity and heat by employing natural gas [6]. It connects the electrical
network to the district heating and natural gas networks. Hence, these networks
should be taken into account together as an integrated system for an optimization
procedure that forms the so-called MCEN. The concept energy hub opens a new
window on demonstration of a unified energy network which comprises several
energy carriers such as heat, electricity, gas, etc. The concept of energy hub was first
introduced in [7]. It can be specified as a mixture of energy conversion units which
meets various kinds of energy demands [8]. Currently, multi-generation systems
called as energy hub for combined and distributed generation of various energy
sources can be established owing to advances in energy substructures. Energy hub
can be envisioned as an integrated system where numerous energy carriers are
stored, converted, and distributed [9, 10]. Compliance of multi-generation systems
conveys noteworthy benefits in terms of improved energy efficiency, enhanced
economy, and reduced CO2 emissions [11, 12]. The integration of several energy
networks is investigated in some works [2, 4, 13]. These methodologies utilize
energy hub model for the energy system. A heuristic optimization scheme is
developed in [14] for multi-carrier systems.

Nowadays, the hubs are subject to more instable electricity prices as a result
of liberalized electricity markets and are enthusiastic to alter their consumption
pattern in order to diminish the costs. Demand response program (DRP) is one of
the prevailing techniques of demand side management in which electricity end-users
adapt their demand profile in response to operators request and/or electricity prices
[15, 16]. The DRP is modeled and employed in various papers to evaluate the impact
of DRP on electric demand profile characteristics [17, 18]. In Wu et al. [17], DRP
is integrated in the scheduling model in order to manage the volatility of renewable
energy. A new DRP has been proposed in [18] for distribution feeders with smart
loads. An energy hub model in which distributed generations and electric load DRP
are modeled and incorporated to gas and electricity substructures has been studied
in [19]. Moreover, the DRP is formulated for the natural gas and electricity networks
in [20]. The total daily heating and electricity demands of hub are supplied in [20].

On the other hand, the heating load profile of the MCEN can be modified in
order to handle the interdependency of heat and power in CHP units and take more
advantages of the units in producing power and heat with high efficiency. The
thermal loads of a typical MCEN are responsive and flexible due to two motives.
First, the human easement region is not a point but a span [21]. Second, warming
can benefit present as well as adjoining future hours, since thermic insulation
causes the thermal energy to be stocked. Therefore, regarding the proposed demand
response program, in contrast to existing papers, the MCEN takes advantages of the
curtailable and responsive heating demand of DHN. In addition, the hubs’ thermal
load will be modified regarding electric load profile in order to derive advantage of
CHP units and alleviate total cost of provision of energy.
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16.2 Basic Concepts of Multi-Carrier Energy Systems

This section introduces the energy hub concept and MCEN substructures model
since the MCENs’ prosperous role in future perspective of energy systems will
precisely be distinguished through their basic components.

16.2.1 Energy Hub

Energy hub encompasses various technologies and devices. Firstly a typical energy
hub model is described to clarify the optimization problem process. A generic
energy hub model is presented in Fig. 16.1. As it is clear, the input energy carriers
of hub are natural gas and electricity and the output side consists of thermal and
electrical energies which will supply the heat and electric demands. The system
converters are composed of a transformer, a micro-turbine, and a gas furnace. The
input gas is dispersed between the micro-turbine and gas furnace. The micro-turbine
uses natural gas and generates heat and electricity. In addition, the gas furnace
generates heat from input natural gas.

The energy hub gets the information from day-ahead market and the hub’s input
and output states are liable for establishing optimal operation based on collected
data. It is worth bearing in mind that the considered market in this chapter is a perfect

Transformer

CHP

Furnace

gP

buyP

eL

hL

C

Fig. 16.1 Representation of a typical energy hub
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market where all players are price takers. Therefore, the multi-carrier energy system
only employs the market prices for optimal scheduling of hub and its strategies
cannot affect the market price.

16.2.2 Multi-Carrier Energy System Structure

The carriers of the multi-carrier energy system are transferred to hubs via various
transmission networks. The heat and electricity networks are typically connected
through the coupling facilities of hubs (e.g., circulation pumps and CHP units).
These coupling facilities permit the streams of energy among the networks. CHP
units produce heat and power simultaneously; circulation pumps use electrical
energy to circulate the water in the DHN. These hubs’ converters enhance the
flexibility of the heat and electricity systems for assisting the incorporation of
uncertain renewable energy [22].

16.3 Problem Formulation

Integrated optimal thermal and electrical power flow constrained scheduling model
of MCEN considering heat demand response is presented in this chapter. The aim
of the optimal operational scheduling is minimizing the overall cost of hubs’ power
and heat procurement over a day-ahead period of time, satisfying several constraints.

16.3.1 Objective Function

The purpose of the MCEN scheduling is minimizing the cost of meeting hubs
demands. The objective function in the thermal and electrical power flow con-
strained scheduling problem of MCEN to be minimized encompasses the expense
of purchased power and gas from the main grid. Moreover, the MCEN is supposed
to be capable of selling power to the main grid. Then, maximizing the income from
selling the additional power to the grid is integrated in the objective function. The
objective function to be optimized is as follows:

minimize
Pgh;t ;P

grid
t

X

t

(

Pgrid
t �e;t C

X

h

Pgh;t�g;t

)

C HCur�Cur (16.1)

It should be mentioned that, the interchanged power with the main grid, Pgrid
t ,

would be positive in the case of buying power from the grid, else it would be
negative. HCur�Cur is the cost of curtailed load. In order to model the technical
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constraints related to various energy networks, the mathematical representations of
district heat and electricity networks power flow will be addressed in the following.

16.3.2 Analysis of District Heating Networks

Heat can be produced at hubs by heat sources like CHPs or furnaces, and conveyed
by water in supply pipe network. The water temperature drops at consumers’ sites,
owing to the heat consumption and supplies back to the hub through a return
pipeline. Key DHS elements comprising heat sources, heat-exchangers, and the
network of pipelines are modeled in Sects. 16.3.2.1–16.3.2.6.

16.3.2.1 Heat Sources

In general, heat sources include CHP units and gas furnaces that supply heat. CHP
units and gas furnaces are modeled in the following:

Pgh;t D PgCHP
h;t C PgF

h;t (16.2)

HF
h;t D �FPgF

h;t (16.3)

HCHP
h;t D �CHP

q PgCHP
h;t (16.4)

PCHP
h;t D �CHP

e PgCHP
h;t (16.5)

HHS
h;t D HCHP

h;t C HF
h;t (16.6)

HF � HF
h;t � H

F
(16.7)

HCHP � HCHP
h;t � H

CHP
(16.8)

Referring to (16.2), the purchased gas, Pgh, t, is distributed between two streams.
The PgCHP

h;t is fed into the CHP unit and the PgF
h;t is fed into the gas furnace. Total

heat output of hub h (HHS
h;t ) is produced using furnace and CHP units as expressed in

(16.6), where �CHP
h and �F are heat efficiency of CHP unit and efficiency of furnace

unit, respectively. The capacity restrictions of gas furnace and CHP unit can be
described as given in (16.7) and (16.8), respectively.
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16.3.2.2 Water Pumps

The pumping power, which affords the required energy to sustain the water flow in
the pipelines at the hub, is proportionate to the pressure difference and mass flow
rate:

Ppump
h;t D

PmHS
h;t

�
prS

n;t � prR
n;t

�

�
pump
h � �

(16.9)

where � and �
pump
h are water density and the efficiency of pump. The pumping power

is restricted by its technical limits

Ppump
h � Ppump

h;t � P
pump
h (16.10)

16.3.2.3 Heat Production

The constraint defining the heat output of a hub which is employed to heat the flow
is:

Hh;t D c Pmh;t �
�
TS

n;t � TR
n;t

�
(16.11)

where c is specific heat. As for the supply temperature of the heat sources, there are
lower and upper limits, stated as:

TS
n � TS

n;t � T
S
n (16.12)

16.3.2.4 Heat-Exchange Station

Thermal energy of heat-exchangers can be modeled as follows:

HHES
t D c � PmHES

t

�
TS

n;t � TR
n;t

�
(16.13)

The heat exchanger pressure should be above a firm level to make sure the
sustainability of mass flow:

prS
n;t � prR

n;t � prHES (16.14)

The return temperature of the heat exchanger should be within its lower and upper
bounds as well:

TR
n � TR

n;t � T
R
n (16.15)
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16.3.2.5 DHN Constraints

The DHN constraints including continuity of mass flow, node temperature, heat
losses from a pipe, etc., are offered in this section:

Continuity of Mass Flow

The overall mass flow rate into any DHN node would be zero:

X
Pm D 0 (16.16)

Node Temperature

The combination temperature at a node is equivalent to the temperature at the start
of each pipeline leaving that node [23]:

N1X

ln�D1



TS;out

ln�;t � PmS;pipe
ln�;t

�
D TS;in

lnC;t
�

NlX

ln�D1

PmS;pipe
ln�;t (16.17)

N1X

lnCD1



TR;out

lnC;t
� PmR;pipe

lnC;t

�
D TR;in

ln�;t �

NlX

lnCD1

PmR;pipe

lnC;t
(16.18)

Moreover, the temperatures of mixed mass at a DHN node are equivalent to mass
flowing from that node:

TS;in

lCn ;t
D TS

n;t (16.19)

TR;in
ln�;t D TR

n;t (16.20)

Heat Losses from a Pipe

The temperature reduces exponentially during water flow in the pipe [24].

TS;out
l;t D Ta

t C



TS;in
l;t � Ta

t

�
� e

�
�l �L

c� Pm
S;pipe
l;t (16.21)

TR;out
l;t D Ta

t C



TR;in
l;t � Ta

t

�
� e

�
�l �sL

c� Pm
R;pipe
l;t (16.22)
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where TS;out
l;t , TR;out

l;t , and Ta
t are the outlet supply, outlet return, and inlet temperatures

of a pipe, respectively, �l is heat transfer coefficient unit length, and L and Pmpipe
l;t are

the length and the water flow rate of a pipe, respectively.
This relation can be approximately written as:

TS;out
t;l D

8
ˆ̂
<

ˆ̂
:

Ta
t C



TS;in

l;t � Ta
t

�
�

�

1 � �l�Ll

c Pm
S;pipe
l;t



if �l�Ll

c Pm
S;pipe
l;t

� 1

Ta
t if �l�Ll

c Pm
S;pipe
l;t

� 1

(16.23)

TR;out
t;l D

8
ˆ̂
<

ˆ̂
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�
�

�

1 � �l�Ll

c Pm
R;pipe
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if �l�Ll

c Pm
R;pipe
l;t

� 1

Ta
t if �l�Ll

c Pm
R;pipe
l;t

� 1

(16.24)

Mass Flow Rate Limit

Typically, increasing the flow rate of fluid causes reduction in the ultimate natural
frequency of a pipeline. With large velocity of fluid flow, the pipeline can be unstable
as the pipeline comes to be exposed to fatigue failure or resonance if its natural
frequency is lower than certain limits [25]. Therefore, to avoid pipeline vibrations,
the mass flow rates should not surpass their upper boundaries.

PmS
l � PmS;pipe

l;t � PmS
l (16.25)

PmR
l � PmR;pipe

l;t � PmR
l (16.26)

Pressure Loss

The static pressure drop between two nodes of a pipe is proportionate to the square
of mass flow rate. The pressure drop can be stated by (16.27), [24]:

prS
nC;t

� prS
n�;t D rl �



mS;pipe

l;t

�2

(16.27)

prR
n�;t � prR

nC;t D rl �



mR;pipe
l;t

�2

(16.28)

where rl is hydraulic resistance of the pipe.
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16.3.2.6 Thermal Storage

In this chapter, it is assumed that the hubs with distributed generation are equipped
with thermal storages and the heat that the storage unit will be supplied could be
presented as following:

Esh;t D .1 � �s/ Esh;t�1 C HHS
h;t � HD

h;t (16.29)

The capacity of heat storage is limited as:

Es � Esh;t � Es (16.30)

16.3.3 Load Flow Equations

The electrical power flow constraints in the MCEN scheduling problem are modeled
in order to simulate more realistic and precise framework. The flow of power
through the power system can be expressed by the following equations which
present the active and reactive power flow calculations and characterized by
Kirchhoff’s laws:

Pgrid
t C Pg

i;t � Pl
i;t D

NbusX

jD1

�
jVi;tj

ˇ
ˇVj;t

ˇ
ˇ
ˇ
ˇYij

ˇ
ˇ cos

�

ij;t � ıi;t C ıj;t

��
(16.31)

Qgrid
t C Qg

i;t � Ql
i;t D �

NbusX

jD1

�
jVi;tj

ˇ
ˇVj;t

ˇ
ˇ
ˇ
ˇYij

ˇ
ˇ sin

�

ij;t � ıi;t C ıj;t

��
(16.32)

16.3.3.1 Voltage Limits

The voltage magnitude of substation buses, Vs, should be kept at nominal value Vn
S .

Moreover, the bus voltages magnitude, Vi, t, should be maintained at permissible
range.:

Vmin � jVi;tj � jVmaxj (16.33)

jVSj D Vn
S : (16.34)
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16.3.3.2 Exchangeable Power Limit

In order to have the stable operation, interchangeable apparent power with the main
grid should be in its admissible range [26].

q

Pgrid2

t C Qgrid2

t � Sgrid (16.35)

16.3.3.3 Apparent Power Flow Limits for Branches

It is indispensable to preserve the apparent power flowing from each branch, Sbr, t,
of the network in a limited bound:

q
P2

br;t C Q2
br;t � Sbr (16.36)

16.3.4 Demand Response Program

The power and heat generations of hubs are almost correlated as CHP units’ heat and
power generations are interdependent. The sources of heat provision in the presented
model for MCEN are gas furnaces and CHP units and these sources will be feed
through bought gas. Hence, despite the constant price of gas, an efficient DRP is
essential in MCENs to reduce the total cost. In addition, since the thermal load of a
hub can be presumed more responsive and flexible than electrical load, the proposed
DRP would be applied to the heat load. It is worth mentioning that, during the
scheduling period, the thermal load is assumed to be shiftable and curtailable owing
to the thermal load nature. The presented DRP for thermal load can be expressed as
following:

HHES
t D

�
1 � curHES

t

�
� HHES0

t C slHES
t (16.37)

HHES
inc;t D slHES

t �
�
curHES

t � HHES0
t

�
(16.38)

0 � HHES
inc;t � incHES

t � HHES0
t (16.39)

curHES
t � cur (16.40)
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incHES
t � inc (16.41)

HCur D
X

t

X

HES

˚�
curHES

t � HHES0
t

�
� slHES

t

�
(16.42)

Equations (16.37) and (16.38) characterize the heat load and incremented heat
load after employing the DRP. Equations (16.39), (16.40), and (16.41) restrict
the increased load, conveyed load, and percentage of increased load. Equation
(16.42) computes the total quantity of curtailed thermal load of MCEN. It should
be mentioned that HHES

e;t in the above equations indicates the distribution network
exchangers that are assumed as thermal loads.

16.4 Numerical Analysis

To scrutinize the validity and outperformance of the proposed model, a multi-carrier
energy system consisting of a district heating and an electrical sub-networks has
been employed in this section.

16.4.1 Multi-Carrier Energy System Structure

Figure 16.2 illustrates the structure of this test system. Configuration and character-
istics of the multi-carrier energy system units [27] are presented in Tables 16.1 and
16.2, respectively. In the studied MCEN, bus 1 is connected to the main grid and the
system is able to procure the electricity from the grid according to the day-ahead
market prices. There are three energy hubs in the MCEN and their configurations
are accordant with Fig. 16.3. Detailed characteristics of hubs’ facilities are provided
in Table 16.2. The predicted hourly active and reactive loads for of all buses are
depicted in Fig. 16.4. Other network data comprising the impedance of branches
are taken from [28]. The minimum and maximum values for voltage magnitude
are assumed to be 0.95 p.u. and 1.05 p.u., respectively. Moreover, the gas price is
considered 30 $/MWh [27]. Minimum and maximum limits of hot water supply
temperature are 70 ıC and 100 ıC, respectively. The specific heat of water, C, and
the ambient temperature, Ta are 4.182 � 10�3 MJ kg�1 ıC�1 and 10 ıC, respectively.
Two case studies have been studied to evaluate the proposed model. The first case
schedules the MCEN without applying DRP, whereas the second case scrutinizes
the impact of heat DRP in the scheduling procedure.
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Fig. 16.2 The 3-hub test system under study

Table 16.1 MCEN
configuration

Unit\Location Electrical bus no. Heat node no. Hub no.

Generator 1 3 – 2
Gas furnace 1 2 – 1
Gas furnace 2 5 1 3
CHP unit 1 2 – 1
CHP unit 2 5 1 3
Heat storage 2 – 1

Table 16.2 Operational constraints of energy hubs generation units

Device Efficiency P (kW) P (kW)

Generator of hub 2 �G D 0.6 150 0
Gas furnace of hubs 1 & 3 �F D 0.75 10 0
CHP units of hubs 1 & 3 �CHP

e D 0:35, �CHP
q D 0:45 100 0

Heat storage of hub 1 �s D 0.01 50 0



16 Joint Electricity and Heat Optimal Power Flow of Energy Hubs 403

gP

b u yP

eL

qL

Generator

Transformer

Heat Storage

Furnace

CHP

Fig. 16.3 A typical structure of an energy hub

Fig. 16.4 Bus data (a) active loads (b) reactive loads
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16.4.2 Simulation Results

This subsection is developed to study the MCEN scheduling problem employing the
proposed framework. The mixed integer non-linear programming (MINLP) model
has been applied in GAMS [29] environment unraveled by SBB/CONOPT solver.
In the first case, all the economic and technical constraints are taken into account
except DRP. Table 16.3 provides the summary of simulation results. Regarding
Table 16.3, the cost of MCEN energy providing would be $239.81 for case 1
which has been reduced to $230.225 for the case with DRP. Furthermore, the
system revenue from the electricity market participation over 24-hour time interval
is about $30.08 for case 1 and $38.264 for case study 2. It can be inferred from
the results that implementing DRP in the scheduling process has increased the
revenue approximately 27.2% and reduced the total cost about 4%. The voltage
magnitude of all buses is presented in Fig. 16.5 for case study 2. Regarding Fig.
16.5, the voltage magnitude of all buses is restricted between 0.95 and 1.05 p.u.
Thermal load of DHN and the thermal load with distributed generation are depicted
in Fig. 16.6. Fig. 16.7 shows the supply temperature of node 1 in DHN. According
to Fig. 16.7, the temperature is decreased when the thermal demand is low in
order to diminish losses. Moreover, the temperature is enhanced once the thermal
demand is incremented to decrease the power expended by the pump. However, the
temperature is reduced in some intervals that the thermal demand is high. This fact is
due to the interdependency of heat and power generations of CHP facilities and the

Table 16.3 Summarized simulation results of MCEN

Generation cost
Revenue from
the sale of power

Cost of buying
power

Value of objective
function

Case study 1 $221.471 $30.081 $48.420 $239.810
Case study 2 $217.198 $38.264 $51.291 $230.225

Fig. 16.5 Voltage profile of some electrical buses during 24 h
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Fig. 16.6 Hourly heat demand of the hubs

Fig. 16.7 Supply temperature of node 1

active power demand of power network. It is worth mentioning that the temperature
in hours 21 and 22 has been improved by applying DRP. According to the simulation
results, the temperature has been increased in these hours to decrease the consumed
power by the pump.

Figure 16.8 depicts the gas distribution among DHN and hub 2’s converters for
case 1. Referring to this figure, it could be perceived that the gas furnace of DHN
will contribute in providing thermal energy only when the CHP unit’s capacity is
reached, i.e. in hours 21:00 and 22:00. In addition, the CHP unit 1 is the only
supplier of hub 1. According to the simulation results, the heat storage would be
discharged till hour 24:00 to reduce the total cost. In addition, gas furnaces will
not participate in providing thermal energy after applying DRP. The simulations
indicate the similar results for case 2, except that by applying the DRP, the heat
demand profile will be modified in a way that there will be no need to gas furnaces.
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Fig. 16.8 Gas distribution among the hubs converters for case 1

16.5 Conclusion

In recent days, energy systems’ optimal operation is a fundamental issue in system
management scrutiny. This chapter has proposed a model for optimal scheduling
of MCENs consisting of district heating and electrical networks. In the presented
energy hub framework, the energy and continuity laws as well as the characteristic
of district heating system’s major elements for DHN, voltage magnitude of buses
and line flow limits of electric network are modeled successfully. In addition,
since the heating load profile of the MCEN can be modified, heat DRP has been
implemented in order to handle the interdependency of heat and power in CHP
units. The simulation outcomes have verified the usefulness and efficiency of the
entire MCEN model and the capability of DRP, which can be employed to optimize
the model. According to the simulation results, applying the heat DRP to the DHN
reduces the total cost about 4% in the studied case. The results also indicate that
the optimal operating strategy can improve the optimal temperature of nodes and
decrease the consumed power by the pump.

Nomenclature

Indices

h Index of hubs.
n Index of nodes in the heating network.
l Indices of pipelines in the heating network.
s Superscript of supply in the heating network.
R Superscript of return in the heating network.
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nC Index of starting node of pipeline l.
n� Index of ending node of pipeline l.
i Index of buses in the electricity network.

Variables

HHS
t Total heat output of hub h.

T Temperature in the heating network.
pr Pressure in the heating network.
Pg

i;t Active power flow of hubs positioned on bus i.
Qg

i;t Reactive power flow of hubs positioned on bus i.
Vi, t Voltage of bus i.
Pgh, t Pumping power.
Pgrid

t Active power bought from the Utility.
Qgrid

t Reactive power bought from the Utility.
Ppump

h;t Pumping power.
Pm Mass flow rate.
curHES

t The participation factor of load in DRP.
slHES

t The amount of transferred load from other hours to hour t.
incHES

t Incremental load factor.
HCur Total quantity of curtailed heat load.
HHES

inc;t The increased load.
HHS

t Total heat output of hub h.
T Temperature in the heating network.

Parameters

Nbus Number of buses of the power system.
HHES0

t The primitive hub’s load.
Pl

i;t Active load of bus i.
Ql

i;t Reactive load of bus i.
Yij Magnitude of feeder’s admittance.

 ij, t Phase angle of feeder’s admittance.
�g, t Gas price.
� e, t Predicted day-ahead electricity market price.
� Efficiency.
Nbus Number of buses of the power system.
HHES0

t The primitive hub’s load.
Pl

i;t Active load of bus i.
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Chapter 17
Power-to-Gas: A New Energy Storage
Concept for Integration of Future
Energy Systems

Azadeh Maroufmashat, Ushnik Mukherjee, Michael Fowler, and Ali Elkamel

17.1 Introduction

Energy storage is essential and well-accepted principle to SMART GRID. Currently
Ontario has excess power; in 2016, $1 billion dollars of power was “curtailed” in
addition to many billions sold outside of Ontario to the USA as a significant loss.
In this work, power-to-gas has been shown to be one of the best alternatives for
energy storage based on Ontario’s grid profile. Hydrogen is generated with excess
CO2 free nuclear and wind power and used in a number of pathways. There are no
real other alternatives for Ontario at this time: Best sites for pumped hydro are used
now; Compressed Air Energy Storage (CAES) has little power density, on seasonal
storage, efficiencies are low; and batteries have little power density and still higher
cost, and repurposed batteries are not yet available in the market.

“Power-to-Gas” as a technology using commercialized electrolyzer has a lot of
advantages and will be introduced below. First off, among all the currently available
energy storage technologies it has the highest energy storage density, it has many
different forms of storage such as compressed gas and liquefied hydrogen in storage
tanks as well as storing in natural gas infrastructure, which is a great option for its
storage and distribution since it efficiently uses the existing infrastructure and that
brings better economic efficiency. Once they get stored, they can be stored for a
long period and that allows for delay and offsetting for additional power generation.
What’s more power-to-gas is also a well-known clean technology because it reduces
emissions, while being mixed with natural gas and it increases end-use petroleum
fuels’ renewable content without changing vehicle type or refueling infrastructure;
more significantly when it gets combined with biogas generation more renewable
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natural gas will be developed through methanation to give lower CO2 emission.
Power-to-gas also has the ability to supply auxiliary electrical services what’s more
its incremental implementation property gives it the ability to adjust changing
infrastructure needs. Last but not least, it has great ability in transporting energy
over long distances and acting as a transportation fuel for lift trucks in the form of
hydrogen, both prove its great commercialized potential [1–7].

Hydrogen as an ideal long-term energy vector can be created from many different
resources such as fossil fuel, renewables, and carbon-free nuclear. The concept of
“hydrogen economy” has developed in a fast face and it focuses based on the how
hydrogen will be produced, distributed, and utilized in energy system. Hydrogen
can be used to create electricity and has very various production pathways, when
it gets used in transportation related area lower pollution and lower greenhouse
gases emissions are in favor. It is well-known that the great price gap between
peak and lower price hours has always been a concern for electricity markets, while
the appearance of using hydrogen as an energy carrier in electrical grid solves this
problem by storing energy generated by some seasonal power such as wind, solar
and GHG free nuclear power and distributing them based on needs. It is obvious to
see that the concept of “hydrogen economy” actually stands for an ideal fossil fuel
free economy [8].

17.2 Different Alternative of Power-to-Gas Applications

Power-to-gas application can offer the most efficient usage of surplus power at
all-time due to its gradual and incremental implement, and the pathways of this
application are listed below:

Power to Hydrogen to Natural Gas End-users via hydrogen-enriched natural gas
(HENG);

1. Power to Renewable Content in Petroleum Fuels;
2. Power to Power;
3. Power-to-gas—Seasonal Energy Storage to Electricity;
4. Power to Zero Emission Transportation;
5. Power to Seasonal Storage for Transportation;
6. Power to Microgrid;
7. Power to Renewable Natural Gas (RNG) to Pipeline (“Methanation”); and
8. Power to Renewable Natural Gas (RNG) to Seasonal Storage.

As shown in Fig. 17.1, electrolyzers are used in different pathways to convert the
surplus power to hydrogen that will then be directly converted to methane with low
carbon content. This low-carbon methane will go through another process to achieve
higher cost and lower. Every process possesses losses, which can be accepted if the
surplus electricity is required to reduce or cannot be used anywhere else. For those
that have lower CO2 emissions compared to current conventional natural gas such
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Fig. 17.1 Schematic view of Power-to-gas (adopted from Maroufmashat and Fowler [9])

as residential heat purposes, micro-CHP and large-scale gas turbine, low-carbon
methane will be injected to natural gas pipeline. Either what’s more it can also be
used for the utilization of low-carbon transportation applications on seasonally or
daily basis.

17.2.1 Power to Hydrogen to Natural Gas End-Users Pipeline
Blending (HENG)

Hydrogen-enriched natural gas (HENG) can be made from decarbonizing natural
gas by injecting generated hydrogen from surplus power including renewable
energies to natural gas pipeline. This concept has its own limit, only when the
composition of hydrogen blending to natural gas no larger than 10% the existing
natural gas infrastructure or end-use equipment can function normally. HENG
can be used to generate heat, electricity or as a fuel for transportation with no
modification to the equipment of HENG systems due to the fact that it has lower
CO2 emissions compared to natural gas.

When this electrolytic hydrogen is injected into natural gas transportation or
distribution pipelines, certain limits are required, which are between 5 and 20%
based on different types of applications. Many electrolyzers and hydrogen storage
tanks are required to build and install even with these concentrations. This kind
of storage system has a challenging problem on its optimum capacity and many
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literatures suggest that this hydrogen storage system improves the performance of
the whole systems even though it adds complexity and costs more to power-to-gas
system.

In modern society converting diesel Class 8 vehicles to natural gas can certainly
accomplish more benefits because no change needed for natural gas infrastructure
and vehicles fueled with hydrogen-enriched natural gas becomes more renewable
with low-carbon contents.

This pathway can show immediate effect for energy storage with minimal
investment cost. What’s more it does not need to shed or sell energy for loss as
much to avoid high amount of Global Adjustment expenditures in Ontario.

17.2.1.1 Technology Issues Regarding the Implementation of this Pathway

One of the most significant limitations is the allowable fraction of hydrogen into
natural gas pipeline. The composition has great effect on end-user systems, safety
and risk issue, and durability of pipeline material and leakage of hydrogen. The end-
user systems that get affected are furnaces, boilers, and power generators. They are
affected by natural gas composition, type of appliances, engine and their ages with
an acceptable range of hydrogen between 5 and 20%, higher composition may cost
more to the system.

Compression stations and compressed natural gas tanks only have a limitation
of 2% for hydrogen concentration which is small comparing to dried compressed
blended hydrogen that has 20% and preferred due to higher performance. Current
installed gas turbine only has a limitation up to 1%, it can be somehow increased
to 5–15% if turbine gets adjusted and upgraded. Gas engine has a limitation of 2%
preferably if higher concentration wants to be achieved the simple upgraded control
systems shall be used [10].

Safety and risk analysis focuses on hydrogen concentration, pipeline types,
material, and failure mode conditions. Comparing to large-scale coal and nuclear
plants natural gas systems have a lower risk of severe accident while comparing
to some renewable systems such as solar PV and wind, natural gas systems have
a higher risk. Some of the risks are the possibility of ignition and the severity of
explosion while close to urban areas. One of the exceptions is that during initial
implementation due to low concentration of hydrogen in the natural gas system
no significant risk appears. Under higher pressure and higher concentrations of
hydrogen, the addition of hydrogen may cause material of pipelines degrading faster.
This is mainly an issue for transmission pipelines not for steel pipelines. Hydrogen
leaks 4 to 5 times faster from fittings than methane due to its lighter density.
Once the concentration exceeds 20%, it will have the same order of the leakage
[11, 12].
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17.2.2 Power to Increased Renewable Content in Petroleum
Fuels

Biofuels, typically ethanol gets blended into the distributed gasoline with the range
of 5–10% in order to reduce the dependency of imported oil, promote renewable fuel
industry, and reduce the carbon emissions released from cars. Under the condition
of not changing the quality of the fuel itself and encounter the limitation of ethanol
caused by its low energy output renewable electrolytic hydrogen can also be seen
as a potential method to increase the renewable energy. Traditional petroleum
fuels normally have the following stages for life-cycle emissions: crude extraction,
crude transport, crude refining, petroleum fuels transportation, distribution and
vehicle consumption, which all contribute to the carbon intensity of gasoline
and diesel. In Ontario province unlike Steam Methane Reforming (SMR), the
production of hydrogen via electrolysis has a significant low-carbon footprint but
meanwhile it costs more than SMR. Well refiners will also implement electrolysis
hydrogen to meet the carbon intensity reduction target regulated by government.
This pathway uses power-to-gas for oil refining to reduce the carbon intensity as
well as decarbonize transportation sector on the life-cycle basis without converting
current infrastructure. It is also complimentary with the addition of ethanol to
gasoline so that both methods of renewable content can be implemented at the same
time.

17.2.3 Power to Power

Hydrogen can be converted from surplus power via electrolyzer, then pressurized,
stored, and utilized through fuel cell or hydrogen gas turbine. The drawback is that it
might cause potential loss of energy because of the need of fuel cells in the facility.
What’s more the round trip efficiency is lower than battery than battery energy
storage but it is favorable in some remote applications or emergency situations,
which provides extended power applications.

17.2.4 Power-to-Gas to Seasonal Energy Storage to Electricity

Produced hydrogen can be stored in the underground facility; moreover, along with
natural gas storage electricity can be generated in large-scale natural gas-based
power plant. This pathway can properly use wind energy in its off-season as well
as for daily and weekly variation in energy demand. It is also very useful for load
leveling of baseload nuclear power in Ontario.
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17.2.5 Power to Hydrogen for Zero-Emission Transportation

Hydrogen can also be used as a transportation fuel, which gets compressed and
stored at high pressure ranging from 300 to 700 bar for hydrogen vehicles and lift
trucks. While the concentration is highly required for this application, that is the
appearance of 99.995% pure hydrogen.

Using hydrogen separated via electrolysis from nuclear, hydro, wind, or solar
sources as fuel to vehicles can truly achieve zero emissions. Comparing to gasoline
internal combustion engine (ICE) vehicles, fuel cells vehicles using hydrogen made
from natural gas still have a significantly less GHG reductions. How well hydrogen
as a future transportation fuel will develop really depends on fuel cell vehicle
availability and the development of hydrogen refueling stations. This pathway
can integrate electrical and transport energy sectors without the need to upgrade
electricity distribution systems to possibly achieve zero emission transportation in
an urban area with consumers’ preference. In order to improve urban air quality and
associated benefits in society’s health outcomes using hydrogen FCV in urban areas
is a good approach. For different specific transportation applications battery electric
vehicles and fuel cell vehicles can be a desirable complementary technology in both
the short and long terms.

17.2.6 Power to Seasonal Storage for Transportation

Salt caverns or depleted oil and gas reservoirs can be used to store pressurized
hydrogen produced from surplus power via electrolyzer. It can then be separated
from other gases via Pressure Swing Adsorption (PSA) and sent to the end-users
once it is needed by transportation. It has similar benefits as “Power to Hydrogen
for Zero Emission Transportation” with additional benefit, that is, the hydrogen can
be produced while renewable energy is plentiful and used all year round. It requires
very high penetration of wind energy and baseload nuclear and large capacities of
sessional energy storage.

17.2.7 Power to Microgrid

Due to the nature of the intermittency of renewable energies the mismatch between
electricity grid congestion at peak demand and under-utilized excess power distri-
bution infrastructure during off-peak hours are all great technical concerns for urban
communities. Power-to-gas which stores energy in the form of hydrogen within
micro grid is an alternative to utilize for variety of microgrid energy requirements
such as transportation demand or to be used for community. It can also be helpful for
remote off-grid communities and mining sites with larger needed storage capacities.
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17.2.8 Power to Renewable Natural Gas (RNG) to Pipeline
(“Methanation”)

A stream of renewable natural gas made from combination of hydrogen and carbon
dioxide can be mixed into natural gas distribution system, this methane production
has a higher energy loss and cost but with no limitation of blending into the natural
gas distribution systems comparing to simple hydrogen production. It can even be
complimentary with the first pathway to inject hydrogen into natural gas pipeline
up to allowable limit and convert remaining hydrogen to methane via methanation.
It is not a fully developed technology occurred inside a chemical reactor, biological
reactor, or natural methanation in underground storage so that the purity of carbon
dioxide and the quality of synthesis methane both shall be taken into account.
Sometimes if the synthetic methane has low quality an additional gas cleaning
process will be needed.

Qualitative benefit of this pathway is carbon sequestration from biogas produc-
tion or industrial processes such as cement production.

17.2.9 Power to Renewable Natural Gas (RNG) to Seasonal
Storage

Underground storage can be used to store renewable methane (RNG) once it is
produced from surplus electricity. This pathway considering methanation can be
matched to an ongoing industrial or agricultural operation for carbon sequestration
and independent on natural gas demand profiles.

17.3 Key Technologies in Power-to-Gas

The core technology of power-to-gas system is electrolyzer that converts elec-
tricity into fuel. Alkaline, polymer electrolyte membrane (PEM), and solid oxide
membrane (SO) are all different types of electrolyzers. Comparing to the most
commercial one alkaline electrolyzer PEM electrolyzer has higher potential for cost
reduction, durability, and efficiency improvement in future. One of the other elec-
trolyzers that have potential for greater efficiency gain is solid oxide electrolyzer but
they require high operating temperature and still in research phase of development.
Speaking of higher current density and operational flexibility in terms of dynamic
response and frequency regulation that are preconditions for future capital cost
reduction PEM electrolyzers have great benefits. When load should be immediately
ramp up or down from the point of the normal operation the operation flexibility
for the utility electricity grid becomes a key advantage of PEM electrolyzers.
Meanwhile it also has the potential to provide auxiliary services that increase the
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technology’s availability factor. If the electrolyzers can be maintained at elevated
pressure it will be a benefit for future power-to-gas systems because they can reduce
the compression requirement for storage systems, PEM electrolyzer is one of those
while alkaline ones are not. Nowadays PEM electrolyzers are limited by the rate of
hydrogen production per stack and cell lifetime, even with those limitations they are
still expected to surpass alkaline technology in the near future.

The following table lists out the technical, operational, and economic information
of the two most applicable electrolyzers that are alkaline and PEM electrolyzers.
The information has been collected from different manufacturers’ data and existing
literature. Commercial or pre-commercial applications with a time frame of up to
10 years are represented by “current perspective,” while the long-term planning
depends on future technologies with the improvement of their cost and performance
as well as a period of more than 10 years ahead [13–15].

The investment costs of alkaline electrolyzers and PEM electrolyzers are $1000
and $2000 per kW, respectively. This cost might be changed based on the specific
size and thermodynamic condition and based on E&E consultant the cost of PEM
electrolyzers is expected to be $1300 per kW [9].

The other important technologies considering in power-to-gas applications are
hydrogen storage and compression systems. Different types of storing hydrogen
exist, including underground compressed gas, metal hydride, and liquid hydrogen.
Based on the applications, the type of storage may vary. The compressed gas storage
is the simplest one, while the issue about the storing liquid hydrogen is boil off
losses that results in limited time of storage. For long-term, large-scale energy
storage, the underground hydrogen storage is desirable. The information regarding
the energy storage systems are summarized in the following table (Table 17.1).

17.4 Technical and Economic Assessment of Power-to-Gas
Pathways

Different pathways of power-to-gas applications are presented in the following
figure (Fig. 17.2). The overall efficiencies of each pathway along with the economic
benefits of them are presented in Tables 17.2 and 17.3.

Since there is a wide range of efficiencies for some technologies, the allowable
range of pathway efficiency is mentioned in Table 17.2. In order to calculate the
levelized cost of product, as shown in Table 17.3, the hourly Ontario electricity
prices (HOEP) are used. The calculation is classified for two groups of HOEP when
it is less than 2.5 cent per kW and when it is more than 2.5 per kW.

Results in Tables 17.2 and 17.3 show that in terms of economic and technical
points of view, the power-to-gas pathways with hydrogen to the end-users are
better options compared to other alternatives that have additional energy conversion
technologies leading to more energy losses and lower efficiency and more cost.
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Table 17.1 Technical and economic data for hydrogen storage, compression and purification
technologies (adopted from [9])

Efficiency
Cost (CAN per
kg or kg h�1)

Technology Explanation Current
Long
term Current

Long
term Lifetime

Low pressure
hydrogen
storage

3–300 kg Almost 100%
(without
compression)

260–
430

15 20

Compressor—
for low
pressure
storage

Until 180 bar 88–95% 88–95% 3000 3000 20

Compressor—
for refueling
station

Until 700 bar 80–91% 80–91% 8700–
17,000

13,000 20

Injection to
pipeline
compression

Including
compression

95% 95% – –

Underground
storage

GWh to TWh
(including
compression)

90–95% 95% 300–
350

40 30

Hydrogen
purification
system

PSA 80–95% 85% 4000 4000 20

Fig. 17.2 Different pathways of power-to-gas (adopted from [9])
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Table 17.2 Technical comparison of the power-to-gas pathways

P2G pathways Technologies
Current
(%)

Long
term (%)

Power to natural gas end-users Electrolyzer, low pressure
hydrogen storage/compression,
injection to pipeline

59–83 64–86

To heat for residential 52–76 56–79
To micro-CHP 40–72 55–74
To large-scale gas turbines 18–26 23–31

Power to renewable content in
petroleum fuel

Electrolyzer, low pressure
hydrogen storage/compression

55–83 59–86

Power to power Electrolyzer, low pressure
hydrogen storage/compression,
fuel cell

17–40 27–43

Power to seasonal energy
storage to electricity

Electrolyzer, low-pressure
compression, underground
storage, transmission pipelines,
natural gas-based power plants

16–24 22–29

Power to hydrogen for
zero–emission transportation

Electrolyzer, low-pressure
compression and storage,
high-pressure compression for
refueling station

50–79 54–82

Power to seasonal storage for
transportation

Electrolyzer, low-pressure
compression, underground
storage, hydrogen separation
technologies, high-pressure
compression

36–68 43–66

Power to renewable natural gas
(RNG) to pipeline
(“Methanation”)

Electrolyzer, low-pressure
energy storage and
compression, methanation
reactor, gas clean-up, injection
of renewable natural gas to the
natural gas pipeline

40–63 45–65

Power to renewable natural gas
(RNG) to seasonal storage

Electrolyzer, low-pressure
compression, methanation
reactor, gas clean-up,
underground storage, injection
of RNG to the natural gas
pipeline

34–60 43–58

From technical point of view, the power to hydrogen for heat purposes and for
transportation has the highest energy efficiency, which is around 50–80%. Power to
power has a lowest efficiency specially when utilizing from underground energy
storage. Seasonal storage can lower the overall efficiency of power-to-gas, but
not more than 10% lower. Power to renewable content in petroleum fuels has an
average efficiency of 68% (current) and 72% (future), while a large Steam Methane
Reforming (SMR) has an efficiency in a range of over 70%. Results indicate that
in future years power-to-gas can be competitive to the conventional SMR from
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Table 17.3 Economic comparison of the power-to-gas pathways

$ per kWh 0 < HOEP<2.5 2.5 < HOEP<7.5
P2G pathways Current Long term Current Long term

Power to natural gas end-users 0.15–0.27 0.02–0.04 0.19–0.37 0.07–0.1
Power to power 0.53–0.57 0.07–0.09 0.76–78 0.19–0.23
Power to hydrogen for zero–emission
transportation

0.18–0.27 0.03–0.04 0.23–0.34 0.08–0.09

Power to seasonal storage for
transportation

0.27–0.33 0.09–0.1 0.53–1.06 0.22

Power to renewable natural gas (RNG) to
pipeline (“Methanation”)

0.22–0.35 0.04–0.05 0.3–0.47 0.11–0.13

Power to renewable natural gas (RNG) to
seasonal storage

0.42–0.45 0.08–0.09 0.53 0.15–0.16

technical point of view. From economic point of view, power to power has the
highest cost, regarding different types of electrolyzer and fuel cell technologies;
the cost is between 0.38 and 0.53 $ per kWh when the HOEP is less than 2.5 cent
per kWh, while that of is 0.6 and 0.8 $ per kWh when the HOEP is more than 2.5.

The levelized cost of power to hydrogen pathways is less than the others.
Seasonal storage technologies can increase cost by double. The levelized cost of
product for hydrogen is around 17–29 cent per kWh, while in the long term the cost
must be as low as 4–5. The reason is that the price of storage technologies will be
decreased significantly in the long-term. The levelized cost of methane for natural
gas vehicles is in the range of 28–41 cent per kWh. Improvements in technologies
can increase the overall efficiency of power-to-gas pathways in future years that
make them more economically and technically feasible for implementation.

17.5 Case Studies

Different applications of power-to-gas in different projects are summarized as
below: a deterministic energy system model for the production of electrolytic
hydrogen from off-peak grid and intermittent wind power is developed. The
interaction of the energy system with the existing: Power grid infrastructure (in
Ontario);—Natural Gas grid infrastructure (for hydrogen distribution in Ontario)
is studied [1]. A Pricing Mechanism for Valuing Ancillary, Transportation and
Environmental Services Offered by a Power-to-Gas Energy System is developed
[16]. The benefit of accounting for uncertainty in electricity pricing and future
zero-emission transportation sector by considering hydrogen demand that influence
the operation of the power-to-gas energy hub is demonstrated in Ref. [17]. Bench-
marking and selection of power-to-gas utilizing electrolytic hydrogen as an energy
storage alternative is carried out in Ref. [17]. Decarbonizing transportation through
the use of power-to-gas for oil refining operations is investigated in Ref. [18].
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Assessing the feasibility of Methanation (Renewable Natural Gas) as a viable energy
recovery pathway for power-to-gas energy systems and the integration of Renewable
Natural Gas into the Natural Gas Distribution System as Renewable Natural Gas
potential are the subjects of future projects.

17.6 Summary and Concluding Points

Power-to-Gas is a part of transition plan to sustainable low-carbon energy systems in
order to respond the climate change. In this work, different potential alternatives of
power-to-gas are presented and some limitations regarding the technology readiness
are discussed. Hydrogen generated from clean sources of energy can be mixed
with natural gas to make hydrogen-enriched natural gas to be injected in natural
gas pipelines and utilized for different application. The hydrogen-enriched natural
gas can be separated in to hydrogen and natural gas at the end-user to supply the
hydrogen demand of transportation sector in the urban areas. Hydrogen can also
be stored in underground in the existing infrastructure for seasonal energy storage.
Different pathways of power-to-gas are discussed from economic and technical
points of view. With this information, policy maker is able to develop energy policy
transition plans and strategies towards a fossil-free economy. The use of electrolytic
hydrogen from intermittent renewable energy sources and baseload nuclear power
will provide needed energy storage and clean emissions free transportation fuels
for the energy requirement of the future. More importantly, through the gradual
implementation of electrolysis capacity, current energy needs and issues can be
immediately addressed, while developing infrastructure capacity for the future.
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Chapter 18
Multi-Objective Optimization
Framework for Electricity
and Natural Gas Energy Hubs Under
Hydrogen Storage System
and Demand Response Program

Majid Majidi, Sayyad Nojavan, and Kazem Zare

18.1 Introduction

Multi-carrier energy systems or so-called energy hub systems have been focused to
be further extended in future power systems [1]. Imported natural gas and electric
power from natural gas and electric power are usually the main input resources
injected to these systems [2]. Imported gas is consumed by boiler and cogeneration
systems for heat and electric power generation [2]. In addition to the mentioned non-
renewable generation units, renewable ones like wind turbine can also be integrated
with other resources to supply local electric power for various applications [3].

18.1.1 Literature Review

Due to new concept that energy hub systems have provided in the planning and
scheduling of power system, these systems have been studied in some papers and
their brief summaries are presented in this section.

With the aim of reducing energy consumption in a hub energy system, an energy
management system algorithm has been presented in [4]. A new design based on
hub model has been presented in [5] to integrated renewable energy resources
into CHP plants for reduction of emission. Optimal scheduling of electricity and
gas networks of hub energy system in a smart environment has been presented
in [6]. Using power to gas concept, optimal operation of hub energy system has
been studied to satisfy economic goals in [7]. Using the concept of energy hub,
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optimal sizing and operation of a combined cold, heat, and power system has
been evaluated in [8]. Optimal operation of a residential hub energy system has
been investigated considering flexible loads in [9]. As a seasonal storage system,
power to gas technology has been employed to provide supporting services for
natural gas and electrical infrastructures in [10]. Operation of hub energy system
has been analyzed from reliability viewpoint in [11, 12]. An optimization model
has been developed for a smart hub energy system in [13] to minimize total cost
of system through optimal operation of appliances and generation units. Optimal
operation of a hub energy system including combined heat and power system
and electric vehicle has been investigated considering flexible loads in [14]. With
the aim of minimizing total operation cost of hub energy system, evolutionary
algorithms have been used to optimize heating network in [15]. Single and multi-
objective power flow problem of an electrical and gas hub energy system has
been investigated using time varying acceleration coefficient gravitational search
algorithm in [16]. Optimal economic operation of hub energy system has been
evaluated using robust optimization approach in [17]. Using energy hub concept,
steady-states in microgrids have been studied in [18]. Uncertainty-based planning
and operation of hub energy system has been studied in [19]. With the aim of
improving environmental performance, multi-carrier energy system concept has
been used for optimum dispatch of energy resources in [20]. In order to minimize
operation cost of microgrid-based hub energy system, real time pricing mechanism
has been employed in [21]. A decentralized energy system has been developed
in a neighborhood using hub energy concept in [22]. By employing stochastic
programming, risk-based economic operation problem of hub energy system has
been solved in [23]. Economic dispatch problem of energy hub system is studied
in [24]. Hub energy systems have been comprehensively reviewed from various
viewpoints in [25]. Finally, in order to maximize total profit of hub energy system,
an MINLP based model has been investigated in [26].

18.1.2 Novelty and Contributions of this Research

Utilization of energy storage systems in energy systems is vital for energy manage-
ment purposes.

Various technologies of storage systems with different applications and efficien-
cies are available. One of the important and integrating types of these storage
systems is hydrogen storage system (HSS). This storage is composed of two
sections, namely electrolyzer and fuel cell unit. At the times that generation is more
than consumption, excess energy is consumed by electrolyzer and therefore hydro-
gen molar is generated. Produced hydrogen molar is stored in special hydrogen
tanks and it is later consumed by fuel cell unit at peak times that energy consumption
is at its maximum level to generate electric power [27, 28].

As the main focus of this chapter, hydrogen storage system has been studied
to be utilized in future hub energy systems for further efficiency improvement of



18 Multi-Objective Optimization Framework for Electricity and Natural Gas. . . 427

these systems. Using a bi-objective optimization model in this chapter, optimum
performance of hub energy system has been investigated from both economic and
emission viewpoints in the presence of HSS and DRP. Demand response program
has been available for participation of loads to reduce their payments as much
as possible and improve their environmental performance. Therefore, presented
contributions of this chapter can be expressed as follows:

• Bi-objective optimization model for eco-environmental operation of hub energy
system.

• Employing "-constraint and fuzzy satisfying approaches for solving proposed bi-
objective model.

• Implementation of hydrogen storage system for optimum operation of hub energy
system.

• Utilization of demand response program for reduction of emission and operation
cost of hub energy system.

18.2 Problem Formulation

In order to solve optimal performance problem of hub energy system from economic
and emission viewpoints, a bi-objective optimization model has been proposed in
the presence of HSS and DRP which mathematical formulation is presented in the
following.

18.2.1 Economic Objective Function

Total operation cost of hub energy system to be minimized (18.1) is composed of
several individual costs which are presented through Eqs. (18.2)–(18.8).

Min ˆ1 D Total cost D Cnet C CWind C CTS C CDR C CCHP C CBo C CWa
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18.2.2 Environmental Objective Function

Generation of electrical energy is sometimes results of burning fossil fuels which
leads to environment pollution and hub system containing fossil fuel-burning
equipment is not an exceptional case. Therefore, with the aim of having envi-
ronmental performance, total generated emission of hub energy system should be
minimized (18.9). Like cost total cost function, total emission of hub energy system
is composed of several individual emission functions which are presented through
Eqs. (18.10)–(18.13).
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18.2.3 Thermal Model

Studied multi-carrier energy system should supply heating demand through its
available thermal units (18.14).
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18.2.3.1 Model of Boiler

As one of thermal resources supplying heating demand, boiler should be operated
within its nominal capacity for heat generation (18.15).

�B
gh � gB
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c (18.15)

18.2.3.2 Model of CHP System

Some percentage of imported gas from gas network is injected to CHP system to
generate electric power and heating. Since thermal generation of CHP system is
usually proportional with its electrical generation, thermal operation limitation will
be satisfied if electrical operation limitation is satisfied. Equation (18.16) has been
used for safe electrical operation of CHP system.

�CHP
ge � gCHP

t � pCHP
c (18.16)

18.2.3.3 Model of TSS

In order to have no energy waste, various energy storage systems including HSS
and TSS have been used in the hub energy system. Here, mathematical modeling of
TSS has been presented through Eqs. (18.17)–(18.20).

Stored heat level of TSS is expressed by Eq. (18.17).
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Limitations of stored heat level, input and output heat of TSS are expressed
through Eqs. (18.18)–(18.20).
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Heat loss of TSS is expressed in Eq. (18.21).
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loss � Cst;h
t (18.21)

In order to prevent TSS from simultaneous operation in charging and discharging
modes, Eq. (18.22) is employed.

Ich;h
t C Idis;h

t � 1 (18.22)

18.2.4 Electrical Model

Electrical demand capable of participating in DRP is due to be supplied through
renewable and non-renewable units as well as upstream network and available
hydrogen energy storage system (18.23).
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18.2.4.1 Model of Renewable Resources

Wind turbine speed should be within a predefined range to be able for power
generation. So, wind turbine output can be formulated using Eq. (18.24) as follows:
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18.2.4.2 Model of HSS

Hydrogen storage system can be extensively employed in future hub energy systems
for energy management purposes. At the times of excess energy, HSS is operated
and therefore excess energy is converted to hydrogen molar and stored in hydrogen
tanks. Later, in other periods, stored hydrogen molar is used to generate electric
power by fuel cell to be consumed in demand side.
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Produced hydrogen molar by electrolyzer in HSS is expressed and limited
through Eqs. (18.25) and (18.26), respectively.
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H2;max � UEL
t (18.26)

Consumed hydrogen molar by fuel cell in HSS is expressed and limited through
Eqs. (18.27) and (18.28), respectively.

NFC
H2;t D

PFC
t

�FCLHVH2

(18.27)

NFC
H2;t � NFC

H2;max � UFC
t (18.28)

Dynamic model of pressure inside HSS is expressed and limited in Eqs. (18.29)
and (18.30), respectively.

PH2
t D PH2

t�1 C
<TH2

VH2

�
NEL

H2;t � NFC
H2;t

�
(18.29)

PH2
min � PH2

t � PH2
max (18.30)

Total power consumption of electrolyzer is limited by Eq. (18.31).

PEL
min � UEL

t � PEL
t � PEL

max � UEL
t (18.31)

Generated power by fuel cell is limited through Eq. (18.32).

PFC
min � UFC

t � PFC
t � PFC

max � UFC
t (18.32)

Finally, Eq. (18.33) is used to prevent HSS from simultaneous operation in
charging and discharging modes.

UEL
t C UFC

t � 1 (18.33)

18.2.4.3 Model of DRP

In this chapter, electrical loads have been considered to be capable of participating
in demand response programs. One of the common types of programs available
in DRP is time-of-use (TOU) rates of DRP in which loads are shifted from peak
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time periods to other time periods that leads to their cost reduction [29–32]. It
should be mentioned that total amount of load is fixed. In other words, increased
and decreased loads at the end of planning period are equal. Also, it is noteworthy
that loads maximum participation limit in DRP has been considered to be 20% in
this chapter. Based on the given explanation above, mathematical formulation of
DRP is presented through Eqs. (18.34)–(18.37) in the following:

pel;DRP
t D pel

t C pshup;e
t � pshdo;e

t (18.34)

0 � pshup;e
t � LPFshup;e � pl

t � Ishup;e
t (18.35)

0 � pshdo;e
t � LPFshdo;e � pl

t � Ishdo;e
t (18.36)

Ishup;e
t C Ishdo;e

t � 1 (18.37)

18.2.4.4 Model of Electrical, Gas and Water Networks

Total imported power from upper grid should satisfy transformers nominal capacity
limitation (18.38).

�T
ee � pe

t � pT
c (18.38)

Total purchased gas from gas network is divided into several parts for various
applications (18.39). It should be noted that total purchased gas should be in the
defined nominal rage (18.40).

gnet
t D gB

t C gCHP
t C gl

t (18.39)

gnet
min � gnet

t � gnet
max (18.40)

Total purchased water from gas network is used to satisfy water demand (18.41).
It should be noted that total purchased water should be in the defined nominal rage
(18.42).

wal
t D wanet

t (18.41)

wamin � wanet
t � wamax (18.42)
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18.3 Multi-Objective Problem

In this section, methods used for solving multi-objective problem are briefly
explained.

18.3.1 "-Constraint Technique

This technique is used to solve multi-objective problems involving conflict objective
functions. This method sets one of the objective functions as the main objective
function of problem and sets the other objective functions as the limitation for the
main objective function (18.43).

OF D min .ˆ1/

s:t:
�

ˆ2 � "

Equal & unequal constraints

(18.43)

Determining the minimum and maximum values of second objective functions,
"-constraint technique varies " vector within this range. So, the first objective
function changes in accordance with the changing of second objective function
through varying " vector and as a results of that Pareto front is obtained [1, 31].

18.3.2 Fuzzy Satisfying Approaches

This technique is another part of used methodology for solving multi-objective
problem. This technique calculates the normalized forms of each objective function.
Later, it makes a comparison between per unit values of each objective function
in each iteration and then choosing the minimums in each iteration, it selects the
maximum value between the chosen minimums which is the selected solution of
multi-objective problem [33].

18.4 Case Study

In this section, optimal eco-emission operation of hub energy system has been
studied in the presence of HSS and DRP. Studied hub energy system is illustrated in
Fig. 18.1.
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Fig. 18.1 Hub energy system with HSS and DRP
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18.4.1 Input Data

Energy demands to be supplied by hub energy system are presented in Fig. 18.2.
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Fig. 18.4 Upper grid power price

Wind speed and upper grid price are illustrated in Figs. 18.3 and 18.4, respec-
tively.

Parameters of thermal generation units are presented in Table 18.1.
Parameters of HSS and TSS are presented in Table 18.2.
Parameters of upper network are presented in Table 18.3.
Prices and operation cost of various networks and units are presented in Table

18.4.
Finally, parameters of wind turbine are presented in Table 18.5.
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Table 18.1 Thermal
generation unit’s parameters

CHP parameter [34] Boiler parameter [34]
# Unit Value # Unit Value

�CHP
ge % 40 �B

gh % 85

�CHP
gh % 35 pB

c kW 800

ACHP – 0.96 – – –
pCHP

c kW 800 – – –
Boiler emission [35] CHP emission [35]
# Unit Value # Unit Value
EFB

CO kg/kWh 0.37 EFCHP
CO kg/kWh 0.37

EFB
SO kg/kWh 0.000003 EFCHP

SO kg/kWh 0.000003
EFB

NO kg/kWh 0.00009 EFCHP
NO kg/kWh 0.00009

Table 18.2 Parameters of HSS and TSS

HSS parameter [28] TSS parameter [34]
# Unit Value # Unit Value # Unit Value

LHVH2 MJ/k mol 240 PEL
min KW 1.5 ˛h

min – 0.05
�EL % 90 PEL

max KW 6.2 ˛h
max – 0.9

�FC % 9 PFC
min KW 0.5 ˛h

loss – 0.2
< J/0K mol 8.314 PFC

max KW 6 �h
ch % 90

TH2
0K 313 NEL

H2;max Nm3/h 1.05 �h
dis % 90

VH2 m3 4 NFC
H2;max Nm3/h 3.90 Cst;h

c kW 200
PH2

min Bar 2 PH2
max Bar 13.8 – – –

Table 18.3 Upper grid info

Upstream network parameter [34] Upstream network emission [36]
# Unit Value # Unit Value

ANET – 0.99 EFNet
CO kg/kWh 0.368

pe
max kW 1000 EFNet

SO kg/kWh 0.0002
pe

min kW 0 EFNet
NO kg/kWh 0.0008

pT
c kW 800 – – –

Table 18.4 Prices and
operation costs of different
networks and units [34]

Parameter Value Unit

�g 6 Cent/kWh
�wa 4 Cent/kWh
�wi 0 Cent/kWh
�e

s 2 Cent/kWh
�h

s 2 Cent/kWh
�DR 2 Cent/kWh

Proposed bi-objective model for optimum operation of hub energy system from
financial and environmental viewpoints has been molded using a mixed-integer
linear programming and the whole simulations are carried out under CPLEX solver
of GAMS [37].
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Table 18.5 Parameters of
wind turbine [34]

Parameters Unit Value

AWIND – 0.96
x, y, z – 0.07, 0.01, 0.03
wr m/s 10
wci m/s 4
wco m/s 22
pr kW 400

Fig. 18.5 Pareto front of 4 case studies

18.4.2 Simulation Results

Optimal eco-emission performance of hub energy system in the presence of HSS
and DRP is investigated in 4 case studies as follows:

Case 1: Eco-emission performance of hub energy system without HSS & without
DRP.

Case 2: Eco-emission performance of hub energy system without HSS & with DRP.
Case 3: Eco-emission performance of hub energy system with HSS & without DRP.
Case 4: Eco-emission performance of hub energy system with HSS & with DRP.

Solving the proposed multi-objective model in 4 cases, Pareto front id obtained
for the whole cases, which is illustrated in Fig. 18.5.

It can be understood from Fig. 18.5 that by employing HSS and DRP in cases
2–4, total emission and operation cost of hub energy system have been reduced.
Using min-max fuzzy satisfying technique, trade-off solutions are selected in each
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Fig. 18.6 Electrical load

case study. According to the selected solutions, total operation cost of hub energy
system in cases 1–4 is 2720.80 $, 2698.86 $, 2714.82 $, and 2695.14 $, respectively.
Evaluating the obtained results above, it can be seen that total operation cost of hub
energy system in the presence of HSS and DRP in case 4 has been reduced 0.94%,
0.13%, and 0.72% in comparison with cases 1, 2, and 3, respectively. Also, total
generated emission of hub energy system in cases 1–4 is 10,410.40 kg, 10,319.58 kg,
10,419.32 kg, and 10,335.33 kg, respectively. By analyzing achieved results above it
can be observed that by employing HSS and DRP, generation of emission in the hub
energy system is reduced in comparison with case 1 that no HSS and DRP has been
used which convinces environmental concerns. As the outcome of analyzed results
above, it can be concluded that utilization of HSS and DRP can provide financial
and environmental benefits for hub energy system.

In order to understand additional benefits of HSS and DRP, further results have
been presented in the following:

Electrical load which has been participated in DRP is shown in Fig. 18.6.
According to this pattern which has been changed after implementation of DRP,
total imported power from upper network has been changed in a way that financial
benefits have been provided for hub energy system. Figure 18.7 illustrates pattern
of imported power from upper grid.

Total imported gas from gas network to be used by CHP system and boiler is
captured in Fig. 18.8. According to this figure, total imported gas in the presence of
HSS and DRP in cases 2–4 has been reduced.
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Fig. 18.7 Purchased power from upper grid

Fig. 18.8 Purchase gas from gas network

As results of reduction of total purchased gas, share of CHP system in gas
consumption has been reduced in the presence of HSS and DRP which is shown
in Fig. 18.9.
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Fig. 18.9 CHP gas consumption

Fig. 18.10 Thermal generation of CHP system

As shown in below in Figs. 18.10 and 18.11, less gas consumption by CHP
system consequently has led to less heat and electric power generation of CHP
system in the presence of HSS and DRP.
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Fig. 18.11 Electrical generation of CHP system

Fig. 18.12 Boiler gas consumption

Due to less gas consumption of CHP system, share of boiler in supplying thermal
demand has been increased and the new pattern according to which boiler consumes
gas is illustrated in Fig. 18.12.
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18.5 Conclusion

In this chapter, a bi-objective optimization model has been proposed for optimum
operation of hub energy system from financial and environmental viewpoints.
Hydrogen storage system has been used for saving energy in off-peak periods and
supplying energy demand in peak periods. Also, electrical load has been considered
to be capable of participating in demand response program to reduce its financial
payments and improve environmental performance of hub energy system. In order
to evaluate efficiency of employed techniques, proposed bi-objective model is
analyzed in 4 case studies. Extracted results from simulations revealed that total
operation cost of energy hub system in case 4 in the presence of HSS and DRP
has been reduced 0.94 %, 0.13 %, and 0.72 % in comparison with cases 1, 2,
and 3,respectively. This means that implementation of both HSS and DRP satisfies
financial goals. In addition to operation cost, total emission of hub energy system
with HSS and DRP is reduced which provides a good situation for hub energy
system from environmental-friendly operation viewpoint.

Nomenclature

Indices

t Time period index

Parameters

�T
ee Efficiency of transformer

�CHP
ge Gas to electricity efficiency of CHP system

�CON
ee Converter efficiency

�h
ch, �h

dis Charge and discharge efficiency of TSS
˛h

min, ˛h
max Minimum and maximum limitation coefficient of TSS

�EL Efficiency of electrolyzer unit
�FC Efficiency of fuel cell unit
˛h

loss Loss of heat coefficient in TSS
ANET Availability of upper grid power
ACHP Availability of CHP generation
AWIND Availability of wind generation
Cst;h

c Limitation of available stored heat in TSS
EFCHP

CO CO2 emission factor for CHP unit
EFCHP

SO SO2 emission factor for CHP unit
EFCHP

NO NOx emission factor for CHP unit



18 Multi-Objective Optimization Framework for Electricity and Natural Gas. . . 443

EFB
CO CO2 emission factor for boiler

EFB
SO SO2 emission factor for boiler

EFB
NO NO2 emission factor for boiler

EFL
CO CO2 emission factor for residential gas consumption

EFL
SO SO2 emission factor for residential gas consumption

EFL
NO NOx emission factor for residential gas consumption

EFNet
CO CO2 emission factor for provided power by upper network

EFNet
SO SO2 emission factor for provided power by upper network

EFNet
NO NOx emission factor for provided power by upper network

gnet
min, gnet

max Gas network minimum and maximum limitations
gl

t Gas demand in residential section
LHVH2 Hydrogen lower heating value
NEL

H2;max Maximum hydrogen molar generation limit of electrolyzer
NFC

H2;max Maximum hydrogen molar consumption limit of fuel cell unit
pe

min, pe
max Upper network minimum and maximum limitations

pT
c Nominal limitation of transformer

pCHP
c Nominal limitation of CHP system

pB
c Nominal limitation of boiler

pr Wind-turbine rated power
pel

t Electrical energy demand
ph

t Heating demand
PEL

min Minimum power consumption limit in electrolyzer
PEL

max Maximum power consumption limit in electrolyzer
PFC

min Minimum power generation limit in fuel cell unit
PFC

max Maximum power generation limit in fuel cell unit
PH2

min Hydrogen tank minimum pressure limitation
PH2

max Hydrogen tank maximum pressure limitation
< Constant of gas
TH2 Mean temperature of the vessel
VH2 Total volume of tank
wal

t Water demand
wamin, wamax Minimum and maximum limitations of water network
wci, wco, wr Cut-in, cut-out and rated wind speeds
x, y, z Coefficients modeling wind generation
�e

t Price of power provided by upper grid
�wi Price of power provided by wind turbine
�g Price of imported gas from gas network
�wa Price of imported water from gas network
�h

s Operation cost of TSS
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Variables

Cost Total cost of hub energy system
Cst;h

t Available stored heat in TSS
gCHP

t Injected gas to the CHP system
gB

t Injected gas to the boiler
gnet

t Total injected gas to the hub energy system
Ich;h
t , Idis;h

t Charge and discharge modeling binary variables of TSS
NEL

H2;t Fuel cell hydrogen molar generation
NFC

H2;t Fuel cell hydrogen molar consumption
pe

t Imported power from upper network
pch;h

t ; pdis;h
t Charge and discharge heat of TSS

ploss;h
t Loss of heating energy in TSS

pwi
t Produced power by wind-turbine

PH2
t Pressure of hydrogen tank

PFC
t Power generation of electrolyzer

PEL
t Power consumption of electrolyzer

UFC
t Binary variable which is 1 if fuel cell unit is ON; Otherwise 0

UEL
t Binary variable which is 1 if electrolyzer is ON; Otherwise 0

wanet
t Total injected water to the hub energy system
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thermal model, 429–430
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Combined cooling, heat and power (CCHP)

system, 31–32, 134
Combined heat and power (CHP)

planning
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in electricity markets, 298

system
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mathematical modeling, 58
schematic diagram, 55
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schematic diagram, 53, 54

DEED problem
electrical power generation limits, 60
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fuel costs and emission productions, 74
greenhouse gas emission mitigation, 59
hourly generation schedules, 63, 67–70
24-h load curve, 63
nested wind generation intervals, 72
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optimal charge and discharge decisions,
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output power of thermal generating
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Pareto optimal solutions, 63, 70
power balance criterion, 60
ramp rates, 60
technical specification of thermal units,
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transmission loss B-coefficients, 63, 65
weighing factors, 63, 70
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renewable-based hub energy system,
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Conditional value-at-risk (CVaR), 223, 224,
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"-Constraint technique, 433
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Day-ahead optimal chiller dispatching

problem, 104, 121
DEED problem, see Dynamic economic

emission dispatch problem
Demand response program (DRP)
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in commercial energy hubs, 135–136
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electricity demand, 154–156
ESS constraints, 142–143
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optimal energy hub management
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MCENs, 392, 400–401
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objective, 131
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DHN, see District heating network
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Distributed energy resources (DER)

definition, 25
multi-generation systems, 2
optimal scheduling, 25
PEV (see Plug-in electric vehicle)
RES (see Renewable energy sources)

Distributed energy systems (DES)
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heat losses from pipe, 397–398
heat production, 396
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literature review, 425–426
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simulation results
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vehicle data, 238
V2G and G2V (see Vehicle-to-grid and

grid-to-vehicle)
well-to-wheel analysis, 237

Energy hubs
DES, 366–367
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dispatch factor, CHP, 291, 292
parameters, 282
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heat losses from pipe, 397–398
heat production, 396
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simulation results, 404–406
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electrical and thermal power balance, 229
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mathematical model, 198, 200–201
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energy storage system, 164
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flow of power, 193
generation unit’s info, 174
input–output relations, 189
iterative optimization algorithm, 222
MINP model, 222
multi-carrier energy system, 163, 164
objective function, 224–225
operation costs and prices, 175
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risk-averse scheduling model, 229
risk controlling model, 223–224
robust based optimization approach, 163
schematic diagram, 172, 191
simulations, 230–233
solar energy modeling, 195
stochastic energy scheduling problem, 190
stochastic optimization scheduling
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converter constraints, 212–213
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208–210
storage constraints, 208, 213
technical limitations, 207–208
total operation cost and reliability
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household load scheduling problem, 80
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optimal energy consumption scheduling, 81
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and components, 279–280
electrical and heat demand, 282, 283
gas to power efficiency, 280, 281
heat storage parameters, 282
PV, power generation capability, 280,
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power and heat flow equations, 275–276
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charge/discharge rate of battery storage

system, 94, 95
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electricity utilization profiles, 88
heat demand, 91, 92
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market price, 90
MIP model, 87
output power of boiler, 93
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power consumption and operation time
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system, 94
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total operation cost, 92

stochastic programming, 79
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efficiency, 14
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operational optimization, 13
residential SEH, 14
TOU program, 13

Smart grid
challenges, 11–12
components, 7–11
definition, 6–7
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added capacity of ESSs, 352
total capacity of DGs, 353
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loading margin index, 340–341
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341
profit maximization, wind energy

procurement, 342
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wind energy procurement, profit

maximization, 342
power balance constraints at COP, 343
power balance constraints at LLP, 344–345
power generation costs, 339
standard test system, 347–349
system load growth, 345

VSS, see Value of stochastic solution

W
Wait-and-see solution (WSS), 313
Water network model, 171
Weighting coefficients, 342
Wind generation uncertainties, 60–62
Wind turbine model, 143–144
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