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Abstract Class III peroxidases (POXs; EC. 1.11.1.7), are secretory, multifunc-
tional plant enzymes that catalyze the oxidation of a variety of substrates by
hydrogen peroxide (H2O2). They show a remarkable diversity of isoenzymes, are
encoded by a large number of paralogous genes, and are involved in a broad range
of metabolic processes throughout plant growth and development. Peroxidases
isoenzymes are located in the cell wall, apoplast and vacuole, and may be either
soluble or ionically and covalently cell wall bound. They are involved in cell wall
cross-linking and loosening, lignification and suberization, auxin catabolism and
secondary metabolism. Due to their ability to control the levels of reactive oxygen
species (ROS), POXs are efficient components of the antioxidative system induced
in response to environmental stress, such as pathogen attack, metal excess, salinity,
drought and high light intensity. In addition to the peroxidative function, POXs can
catalyze H2O2 production in the oxidative cycle. Peroxidases are responsible either
for cell elongation or cell wall stiffening, affecting carbon allocation, auxin level
and redox homeostasis, which implicates their key role as being in the regulation of
growth and defence under stress condition. This chapter will discuss novel insights
into the functions of PODs with special emphasis on their localization, substrate
specificity and the regulation of redox homeostasis.
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1 Introduction

Under optimal physiological conditions, reactive oxygen species
(ROS) accumulation and distribution are kept in the controlled range by a complex
network of antioxidative enzymes and low molecular weight antioxidants.
Intracellular accumulation of ROS is generally lower, while that of antioxidants is
higher compared with the apoplast/cell wall compartment, which is, therefore, more
oxidized. When accumulated above the certain threshold in the apoplast, H2O2

triggers signaling pathways and initiates a complex cascade of downstream events
leading to the induction of the antioxidative defence response and transcriptional
reprogramming.

The only H2O2-scavenging enzymes in the extracellular space are class III
peroxidases (POXs; EC 1.11.1.7) classified by Welinder (1992). Peroxidases are
glycoproteins synthesized in the endoplasmic reticulum and they are transported via
the Golgi apparatus, both to the extracellular space and the vacuoles. Substrates of
the endogenous POXs are electron donors for H2O2 and most of them belong to
secondary metabolites such as phenolics, indoles and amines (Passardi et al. 2007),
which are colocalized with POXs in the vacuoles and apoplastic compartment
(Cheynier et al. 2013). Oxidation of phenolics by H2O2, catalyzed by POXs implies
generation of phenoxyl radicals, which are in turn either polymerized or reduced by
ascorbate (Asc) in the POXs/Phenolics/Asc (PPA) H2O2-scavenging system
(Takahama 2004).

Class III plant peroxidases are a ubiquitous multigene family of enzymes with a
number of genes identified in various species that are implicated in a broad range of
physiological processes (Passardi et al. 2007). In addition to antioxidative defence,
POXs are involved in all stages of plant development, from germination to aging,
including formation of the secondary cell wall (Lopez-Serrano et al. 2004; Passardi
et al. 2006), wound healing (Allison and Schultz 2004), seed germination
(Scialabba et al. 2002), pollination (McInnis et al. 2006), fruit ripening (Pandey
et al. 2012), senescence (Abarca et al. 2001), and auxin and anthocyanin catabolism
(Gazaryan et al. 1996; Movahed et al. 2016). Such diversity of metabolic reactions
catalyzed by POX isoforms, and a large number of genes with very divergent
promoter sequences, implies a functional specialization of isoenzymes. However,
low substrate specificity and a high redundancy of genes make it difficult to assign a
specific function to the individual isoenzymes, which is still a considerable chal-
lenge in spite of the many attempts made so far (Shigeto and Tsutsumi 2016 and
references therein). Molecular tools such as a transcriptome analysis and recom-
binant DNA in combination with biochemical and physiological approaches could
be successful in addressing the specific function to particular POX gene and its
protein, at least in Arabidopsis thaliana as a model plant. Recent work on the
transcriptional regulation of a set of POXs in A. thaliana root by a transcription
factor UPBEAT 1 (UPB1) suggested the important role of POXs in cell differen-
tiation during root development (Tsukagoshi et al. 2010). Similarly, it has been
shown that a transcription factor KUODA1 (KUA 1), which repressed the
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expression of several POXs genes in the leaf of A. thaliana had a role in the redox
homeostasis of leaf apoplast (Lu et al. 2014).

In this chapter, we give an overview of the antioxidative and pro-oxidative
reactions of the multifunctional POX subfamily, with emphasis on the characteri-
zation of isoenzymes and responsible genes, the isoforms’ specialization in stress
defence, and role of POXs in the cross-talk between the primary and secondary
antioxidants. Ascorbate and glutathione are the primary metabolites that, together
with the antioxidative enzymes of ascorbate–glutathione (Asc–GSH) cycle, main-
tain redox homeostasis in plant cells (Foyer and Noctor 2011). On the other hand,
flavonoids and other phenolic compounds, which are among numerous substrates of
POXs, can constitute a ‘secondary’ antioxidant system that is activated upon severe
stress conditions (Agati et al. 2012).

We incorporate recent findings on the subcellular distribution of POXs, phe-
nolics, and Asc, as well as the intracellular transport of H2O2, which all together
lead to the hypothesis that POX acts as a central H2O2 sink under severe stress and
as a key player in the regulation of defence/secondary metabolism pathways.

Despite, POXs’ numerous physiological functions and their abundance in all
plant tissues and organs, their contribution in the antioxidative system has been
surprisingly overlooked and disregarded in many excellent review papers on
antioxidative defence and tolerance. We believe that the evidence from the literature
reviewed here will incorporate POX into the complex cellular antioxidative
network.

2 Reaction Mechanisms and Structure of POX Isoenzymes

2.1 Three Cycles of POXs

Class III peroxidases are oxidoreductases that catalyze the oxidation of a large
number of different substrates (mainly phenolics) to corresponding radicals in the
presence of H2O2 as an electron acceptor. In the reaction catalyzed by POX,
phenoxyl radical (PhO�) is produced by the subtraction of one electron from the
phenolic compound (PhOH) (reaction 1).

(1) 2PhOH + H2O2 ! 2PhO� + 2H2O
(2) 2PhO� ! cross-linking
(3) PhO� + Asc ! PhOH + MDA�

(4) PhO� + MDA� ! PhOH + DHA
(5) 2MDA� ! Asc + DHA

In the absence of Asc, the generated PhO� react with each other, resulting in the
formation of cross-linked products (reaction 2); for example, lignin, suberin or
quinones (Fry 1986; Bernards et al. 1999). One of the products is a
quinhydrone-derived radical, which may be formed from caffeic and chlorogenic
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acids and their quinones and hydroquinones (Takahama and Oniki 2000). The
physiological function of quinhydrone as an electron-charged structure linked to the
cell wall has been discussed elsewhere (Kukavica et al. 2008; Morina et al. 2010).
Additionally, PhO� (derived from monophenols, p-coumaric and ferulic acids) may
react with Asc (reaction 3), yielding monodehydroascorbyl radical (MDA�),
recovering the corresponding substrate in a non-radical way. Phenoxyl radicals can
further react with MDA� (reaction 4) to form dehydroascorbate (DHA), while Asc
recovery is possible through dismutation of 2 MDA� (reaction 5) (Takahama and
Oniki 1992). As mentioned above, PhO� can dismutate to quinones, such as o-
dihydroxyphenolics, caffeic acid and 3,4-dihydroxyphenylalanine quinones
(Takahama 1992, 1993).

Besides oxidizing various phenolic compounds during H2O2 reduction (perox-
idatic cycle), POXs have the capacity to produce H2O2 via one-electron reduction
of molecular oxygen (oxidative cycle), a mechanism proposed by Chen and
Schopfer (1999). The oxidative cycle involves the transfer of one electron from a
reducing substrate (NADH or phenolics) to O2, with O2

�� and H2O2 as interme-
diates. In addition, the oxidizing reaction of POX is determined by the trace
amounts of dihydroxyphenols and Mn2+ (Halliwell 1978).

Horseradish peroxidase (HRP) is the most frequently used POX in in vitro
mechanistic and kinetic studies. H2O2 coordinatively bonds to the iron atom and
initiates the peroxidatic cycle and the oxidation of phenolic substrates to the cor-
responding radicals. The reduction of Compound I to Compound II, as well as
Compound II’s return to the resting state is carried out by reduction substrates
(phenolics or aromatic amines).

Superoxide radical converts the ferric form of the enzyme (Fe3+-peroxidase) into
the labile perferryl form (Fe2þ�O2

��Fe3þ�O2
�� POX), otherwise named

Compound III. Compound III contains Fe2+ in the heme that can be converted to
Fe3+ to act as a Fenton reagent and reduce H2O2 to �OH in the hydroxylic cycle.
Chen and Schopfer (1999) have demonstrated the ability of different types of POXs
(e.g., unfractionated HRP mixture, acidic and alkaline HRP fractions, soybean
POX) to catalyze the formation of �OH in vitro in the presence of NADH (200 mM)
as a reducing substrate. The largest capacity for generating �OH was observed for
the alkaline HRP fraction and Arthromyces POX, while myeloperoxidase showed
the lowest capacity. The authors also showed that, beside NADH, HRP oxidizes
NADPH and dihydroxyfumarate, while Asc was completely ineffective as a
reducing substrate.

The proposed HRP catalyzed reactions in peroxidatic, oxidative and hydroxylic
cycles in vitro with NAD(P)H acting as the exogenous reductant are presented
below:
Peroxidatic cycle

(1) POX (Fe3+) + H2O2 ! Comp I + 2H2O
(2) Comp I + PhOH ! Comp II + PhO�

(3) Comp II + PhOH ! POX (Fe3+) + PhO�
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Oxidative cycle

(4) NAD� + O2 ! NAD+ + O2
��

(5) NADH + H+ + O2
�� ! NAD+ + H2O2

Hydroxylic cycle

(6) POX (Fe3+) + O2
�� ! Comp III

(7) Comp III + H2O2 ! POX (Fe3+) + �OH + OH− + PhOH + O2

2.2 Structural Characterisation of POX Isoenzymes

Most of POXs are glycoproteins with one polypeptide chain of 300–350 amino acid
residues, and their molecular weight (Mw) varies from 33–55 kDa. Though a
majority of POXs are monomers, it has been shown that coconut POXs are
homotetramers with a Mw of 55 kDa for each subunit (Mujer et al. 1983), POXs
from Leucaena leucocephala are heterotrimers (consisting of two subunits of
66 kDa and one subunit of 58 kDa) (Pandey and Dwivedi 2011), while POXs from
Brussels sprouts are homodimers (two subunits of 45 kDa) (Regalado et al. 1999).

According to the crystallographic and modeling studies (Ros Barceló et al.
2007), the primary protein structure of POXs consists of 10–12 conserved a-helices
in which the prosthetic group is embedded, two short b-strands, and four conserved
disulphide bridges (Passardi et al. 2004). There are three highly conserved domains:
one is a distal heme-binding domain, the other is unknown, and the third one is a
proximal heme-binding domain (Cosio and Dunand 2008). Welinder (1992)
showed that all POX proteins, encoded by 73 genes in A. thaliana, were expressed
in all organs, and they had up to 98% amino acid sequence identity.

The variation in terms of Mw of POXs isolated from different species may be
attributed to the carbohydrate component bound to the polypeptide chain, as it has
been reported for POXs extracted from Brasica napus root (Duarte-Vázquez et al.
2000). Variations in the Mw of the same enzyme may be a result of the distinct
techniques used for their purification and separation (Deepa and Arumughan 2002).
The different Mw of secreted POXs of cell suspension cultures of Cassia didy-
mobotrya were estimated using SDS PAGE (43 kDa) and gel filtration (50 kDa)
(Vitali et al. 1998). The other extracellular POX isoenzymes were isolated from the
cell suspension of Vaccinium myrtillus (Melo et al. 1995) and Hevea brasiliensis
(Chanwun et al. 2013) with Mws of 34 and 38 kDa for V. myrtillus and 70 kDa for
H. brasiliensis.

Cellular distribution of POXs (apoplastic or vacuolar) can be predicted by the
absence or the presence of the extended C-terminal peptides, which are vacuolar
sorting signals. However, when the C-terminal sequence was fused to the
N-terminus of the protein, no vacuolar localization was obtained (Matsui et al.
2011). According to their N-terminal signal peptides, the majority of POXs are
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targeted to the endoplasmic reticulum and are considered to be secreted extracel-
lular proteins.

Profiling POX isoforms is an important tool for studying the species-specific
isoenzymes and also for the identification of the specific function of individual
isoforms of POXs induced by particular stress, despite their substrate redundancy
(Bernards et al. 1999; Minibayeva et al. 2015). One of the most common classi-
fications of POXs in the literature is based on their isoelectrophoretic
(IEF) mobility, and they are classified as anionic, neutral and cationic isoforms,
with quite a wide range of pI values (from 2 to 11.6) (Quiroga et al. 2000; Dicko
et al. 2006). A commercial HRP that is widely used for studying POX kinetics and
substrate affinity consists of 42 isoforms with a pI range of 2–10 (Hoyle 1977).

Basic isoenzymes were detected in the vacuoles of mesophyll cells, and in cell
suspension cultures of tobacco (Schloss et al. 1987), in grape cell suspension
cultures (García-Florenciano et al. 1992), and in Catharanthus roseus leaves
(Sottomayor et al. 1996). On the other hand, the acidic and basic POX isoforms
with different substrate specificities were determined in different plants: oat
coleoptile (González et al. 1999), pea root (Kukavica et al. 2012), ginkgo and birch
(Kukavica and Veljović-Jovanović 2004), Ramonda serbica (Veljović-Jovanović
et al. 2006) and maize root (Šukalović et al. 2015).

Peroxidase isozyme pattern obtained by the separation on either native or
semi-native IEF is also a useful indicator of the oxidizing capacity of specific POX
isoenzymes (Bolwell et al. 1998; Daudi et al. 2012; Achary 2012). However, it is
difficult to relate the isozyme to the corresponding gene, since there is no obvious
quantitative relationship between the transcript expression level and the POX
activity (Dunand et al. 2003).

Due to different post-translational modifications (PTMs), which are crucial
mechanisms of regulation of enzymatic activities in vivo, often more than one
protein form originates from a particular gene (Gabaldón et al. 2007; Laugesen
et al. 2007). Moreover, it has been reported that particular isoenzymes were
involved in two processes, such as, for example, lignification and the oxidative
burst induced by a pathogen attack (Young et al. 1995; Morimoto et al. 1999). To
our knowledge, there have been relatively few in-depth reports of post-translational
regulation other than glycosylation of POXs. Class III peroxidases are mostly
glycosylated, differing in the number of sugar moieties and the degree of branching,
as well as their arrangement along the polypeptide chain (Kim and Kim 1996;
Deepa and Arumughan 2002). It has been shown that an extensive glycosylation of
peroxidase isolated from latex of Ficus benghalensis was related to N-glycosylation
of seven asparagine residues (Palm et al. 2014). Despite the identification of more
potential sites for various PTMs on the primary structure of ZePrxs in Zinnia
elegans, only the formation of N-terminal pyroglutamate residues, disulphide
bridges and N-glycosylation were documented (Gabaldón et al. 2007).

The role of glycans in the structure and function of POXs has been intensively
examined, and it was reported that N-glycosylation affected protein folding, cat-
alytic activity, subcellular localisation, Km value, thermostability, proteolytic
sensitivity and trafficking within the cell (Hu and van Huystee ; Sánchez-Romero
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et al. 1994; Lige et al. 2001; Zhang et al. 2004). For example, N-linked glycans
attached to the vacuolar POX make up approximately 20% of its Mw (Welinder
1979), and the number of N-glycosylation signals is about four times higher in
vacuolar than in extracellular POX (Matsui et al. 2011). One of the most stable and
the most efficient POXs is the isoform of palm tree leaves that contains 21–29% of
carbohydrates (Baker et al. 2016). In some cases, glycans did not interfere with
substrate binding; for example, HRP retained full activity after deglycosylation
(Tams and Welinder 1995). Moreover, the only two isolated plasma
membrane-bound POX (PMPOX) isoforms are also glycosylated (Mika and Lüthje
2003). Furthermore, deglycosylation of ionically bound cell wall POXs isolated
from pea affected the electrophoretic mobility without any effects on its activity
(Kukavica et al. 2012).

The examination of the thermostability of different POX isoenzymes gives an
alternative insight into their structural properties as well as to their
structure-function ratio. Carbohydrate moiety of POXs generally increases ther-
mostability, which has also been shown for anionic cotton ovule POXs (Mellon
1991), pepper fruit acidic POXs (Pomar et al. 1997), and cationic peanut POXs
(Lige et al. 2001). In addition, the variation in thermostability between the indi-
vidual isoenzymes can be a consequence of the different structural organization of
enzymes—namely the folding pattern into the tertiary structure of the native protein
—and therefore it may be used for the identification of different isoforms. Higher
temperatures (<40 °C) inactivate an enzyme’s activity due to the weakening of the
bonds that hold the tertiary structure (e.g., hydrogen bonds), which may also result
in the dissociation of the heme prosthetic group from apoprotein (Duarte-Vázquez
et al. 2000). Thermostability studies are important for improving the biotechno-
logical application of POXs in food and the pharmaceutical industry, and envi-
ronmental protection (Bansal and Kanwar 2013; Gurung et al. 2013).

Determination of the thermostability of isoforms after IEF separation, instead of
treating in solution, allows for the direct determination of the temperature effect on
the individual isoforms. Kukavica and colleagues (2012) reported a quite difference
in the thermostability of the ionic versus the covalently bound cell wall POX
(CWPOX) in pea roots.

In addition to glycans, Ca2+ also plays an important role in the maintenance of
the structural stability and activity of POX (Marañón and van Huystee 1994; Manu
and Prasada Rao 2009; Fahmy et al. 2012).

3 Substrates

Peroxidases contain variable domains and substrate access channels, which may
explain their great substrate diversity (Cosio and Dunand 2008). The reductant
substrates of POXs include phenolics, amines, indoles, alkaloids and sulphonates
(Sottomayor et al. 2004; Veitch 2004; Ferreres et al. 2011). The most common are
phenolics and their glycosides: hydroxycinnamic acids (e.g., ferulic, chlorogenic, p-
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coumaric), hydroxybenzoic acids, hydroxyl alcohols (e.g. coniferyl, synapyl), dif-
ferent flavonoids (e.g. anthocyanins, flavonols), coumarins and so on (Vidović et al.
2017 and references therein). Phenolics are involved in numerous processes in
plants, from growth and development to plant interaction with the environment.

However, POX activity is often determined using an artificial electron donor,
such as guaiacol, yielding colored products after oxidation with H2O2. Of course,
considering that protein extract is a mixture of isoenzymes, this estimation can be
taken only as a relative change in the total POX activity under certain conditions.
Thus, the activity of isoforms with specific affinity for a different substrate might be
masked by the average total POX activity (Bernards et al. 1999; Kukavica et al.
2012).

Class III peroxidases may oxidize phenolic glycosides too, but at much slower
rates compared with aglycones (Hirota et al. 1998; Yamasaki et al. 1997). In
addition, some specific isoforms of POXs have indole 3-acetic acid (IAA) oxidase
activity but it has not yet been clearly established whether such activity could be
exclusively ascribed to POX (Hoyle 1977). In their early studies, Hoyle (1977)
showed that all HRP isozymes had the capacity to oxidize IAA. However, Van den
Berg and colleagues (1983) showed that the peanut’s cationic POX isoforms had a
greater specific IAA oxidase activity compared with the anionic isoforms, while
other authors demonstrated the activity of both anionic and cationic isoforms
(Chibbar and van Huystee 1984). Kukavica and colleagues (2012) showed that
three out of five purified ionic isoenzymes CWPOX showed IAA oxidase activity,
while IAA oxidase activity was not detected for covalent isoforms. Mika and Lüthje
(2003) showed that maize root PMPOXs also had the IAA activity.

Table 1 gives the Michaelis-Menten constant (Km) for each substrate, which is
specific to a given isoenzyme–substrate complex; for example, the lower Km
indicates a greater specificity. Km is a numerical value that enables the comparison
of different enzymes, whereby the various values of Km may also suggest an
isoenzyme’s location within the plant since it is accepted that Km determines
cellular substrate concentration. Based on the Km of POX isoenzymes, it can be
concluded that specificity of POXs isolated from different plant species for the same
substrates varies.

The final oxidation products of POX reactions with the same phenolic com-
pound depend on the localization of isoforms. Among extracellular POX isoforms,
those bound to the cell wall matrix were proposed to participate in lignification
(Sato et al. 1993), while soluble POX isoforms function as scavengers of H2O2.
Regardless of Asc in the apoplast, CWPOX exhibited highly specific activity in the
formation of cell wall structure, since the oxidation products were continuously
deposited even in the presence of Asc (Takahama 2004).
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4 Antioxidative Function

In addition to numerous physiological functions, the antioxidative role of POXs is
based on the scavenging of H2O2, which accumulates in the apoplast and vacuoles
(Tognolli et al. 2002; Welinder et al. 2002). Cellular trafficking of H2O2 is enabled
and facilitated by specific members of the aquaporin family, the Tonoplast Intrinsic
Proteins (TIPs) (Bienert et al. 2006; Maurel et al. 2009). Under stress condition that
promote enhanced H2O2 accumulation in the chloroplast, which in turn overcomes
the scavenging capacity of the Asc–GSH cycle, H2O2 may escape to the vacuole
where it is scavenged (Karuppanapandian et al. 2011; Ferreres et al. 2011; Bienert
and Chaumont 2014; Koffler et al. 2014). Ferreres et al. (2011) estimated that
specific activity of the leaf vacuolar POX isoform from C. roseus represents a very
efficient H2O2 sink of up to 9 mM s−1, utilizing endogenous phenolic substrates in
the vacuole. The concept of delocalized H2O2 scavenging (scavenging in a com-
partment different from its source) was proposed for the first time by Takahama
(2004) based on the experiments with paraquat (Pq)-induced oxidative stress in
Vicia faba leaves (Takahama and Oniki 1992, 1997). The same authors reported
that Pq-induced accumulation of H2O2 in the chloroplasts of V. faba diffused into
the vacuoles where it was utilized in the POX-dependent oxidation of
3,4-dihydroxyphenylalanine (DOPA) to melanin-like compounds (Takahama and
Oniki 2000). The importance of a vacuolar PPA system as a general H2O2 sink for
plant cells under oxidative stress has been reviewed and evaluated by Ferreres et al.
(2011) and Zipor et al. (2015).

4.1 Redox Regulation of Peroxidatic Cycle and Subcellular
Compartmentation

While the Asc–GSH cycle and 2-Cys peroxiredoxins (PRXs) are the major scav-
engers of H2O2 in chloroplasts, cytosol, and mitochondria, as well as catalase in
peroxisomes, none of these enzymes have been found in the apoplast or the vacuole
(Noctor and Foyer 2016). The only antioxidative enzymes found to be located in
apoplast/cell wall compartment and vacuoles are superoxide dismutase (SOD) and
POXs (Takahama 2004; Ferreres et al. 2011).

It has been reported that POXs make up 6.4% of 500 analyzed cell wall proteins
(Jamet et al. 2008). About 10% of all POXs are vacuolar, but in some plants, like in
C. roseus, this ratio may even reach 90% (Ferreres et al. 2011). The analysis of
subcellular localization of 10 POXs genes from poplar labelled with a C-terminal
green fluorescence protein (GFP) and transiently expressed in Nicotiana ben-
thamiana showed that eight of them were targeted to vacuoles, while two were
transported to the cell wall (Ren et al. 2014). In addition, proteomic studies showed
that 32 POXs isoforms in A. thaliana were in the extracellular fractions, with 17
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embedded in the plasma membrane, while seven were in the vacuole-enriched
fractions (Francoz et al. 2015).

Vacuolar POXs account for more than 90% of soluble guaiacol peroxidase
activity of bulk leaf extract, while the rest is attributed to ionically and covalently
bound fractions originating from the cell wall. According to the concept of sub-
cellular compartmentation of the antioxidative system, POXs’ endogenous sub-
strates predominately accumulate in the vacuoles and apoplast (reviewed in Vidović
et al. 2017). Indeed, upon biosynthesis, phenolic compounds are transported to the
vacuole or apoplast, either conjugated with GSH (by glutathione-S-transferase:
GST), esterified with malonate, or glycosylated (Kitamura 2006; Zhao 2015).
Depending on the conjugation type, flavonoids and anthocyanins are transferred
into the vacuole through specific transporters on the tonoplast, such as,
ATP-binding cassette (ABC) transporters, multidrug resistance-associated proteins
(MRPs; preferentially glutathione-flavonoid complexes), and multidrug and toxic
compound extrusion proteins (MATE, preferentially glycosides) (Petrussa et al.
2013; Vidović et al. 2017 and references therein). However, this compartmentation
of POXs’ endogenous substrate is specific. Thus, kaempferol, quercetin, and the
indole alkaloids were found in the vacuole (Sottomayor et al. 1998; Harborne and
Williams 2000; Marinova et al. 2007), while ferulic acid and coniferyl aldehyde
were targeted to the apoplastic cell wall compartment (Ros Barceló et al. 2004).

Although Asc transport across plasma membranes has been described previously
(Horemans et al. 2000), the specific transporters that carry Asc have not been
identified at the molecular level in plants so far (Maurino et al. 2006). It has been
proposed that DHA was exclusively transferred through the plasma membrane via
different transporters than the glucose transporters (Fernie and Tóth 2015). It has
also been suggested that Asc uptake in some plant cells is an active process that
requires the presence of a proton-electrochemical gradient across the plasma
membrane. During the last decade, the involvement of the nucleobase-Asc trans-
porter (NAT) family proteins in Asc transport through plasma membrane was
proposed and studied (Girke et al. 2014; Pick and Weber 2014). To date, 12
members of the NAT family have been identified and molecularly characterized in
A. thaliana, rice and tomato (Maurino et al. 2006; Cai et al. 2014; Niopek-Witz
et al. 2014). Trans-membrane Asc-driven electron transport is catalyzed by cyto-
chromes (Cyts) b561. The Asc reducible Cyt b561 is present in the plasma mem-
brane (Horemans et al. 1994; Asard et al. 2001) and in tonoplasts (Griesen et al.
2004).

The Asc localization in the apoplast and vacuoles, concomitantly with the
absence of GSH in apoplast and very low concentration of highly oxidized glu-
tathione pool in the vacuole (<0.03 mM; <10%) (Noctor and Foyer 2016 and
references therein), justifies Asc function as the main reductant involved in the PPA
system (Takahama 2004). Besides biochemical approaches, Asc in the vacuoles
was visualized using transmission electron microscopy after immunocytochemical
labeling (reviewed in Zechmann 2017), and concentration around 2 mM was
revealed. Compared with vacuolar Asc, where it is mostly in the reduced form
(Ferreres et al. 2011), Asc in the apoplast is mostly present in its oxidized form,
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DHA. In the apoplast, Asc plays a crucial role in plant growth, development and
defence against pathogens, drought and high ozone levels (Veljovic Jovanovic et al.
2018). Apoplastic Asc is also involved in the redox regulation of antioxidant
enzymes, modifications in plant growth through changes in the hormone synthesis
and MAPK activity, as well as changes in calcium signaling (Liso et al. 2004;
Karpinska et al. 2017).

Numerous reports show that all three constituents of PPA, phenolics, POXs and
Asc, were targeted to vacuoles under high light conditions (Neill and Gould 2003;
Pollastri and Tattini 2011; Ferreres et al. 2011; Heyneke et al. 2013; Zipor and
Oren-Shamir 2013) as well as during early response to drought (Koffler et al. 2014).
Although it is lower than in other compartments (chloroplasts, peroxisomes,
mitochondria) (Zechmann et al. 2011), a strong enhancement of vacuolar Asc
content has been observed in A. thaliana exposed to high light, drought and after
inoculation with Pseudomonas syringae (Großkinsky et al. 2012; Heyneke et al.
2013; Koffler et al. 2014). In addition, the redox state of apoplastic Asc has a
significant role in tolerance to high light stress (Karpinska et al. 2017). Recycling of
Asc from MDA� and DHA takes place on the plasma membrane and tonoplast
through the cytoplasmic Asc–GSH cycle (Fig. 1). As previously mentioned, MDA�

generated in the vicinity of plasma membrane may accept electrons from
membrane-bound Cyt b561 (Asard et al. 2001) and form Asc and DHA indepen-
dently, or accept electron by the action of membrane-bound MDAR (Drazkiewicz
et al. 2003). The DHA is further transported (see the previous section) to the
cytoplasm where it is reduced to Asc in Asc–GSH cycle (Horemans et al. 2000).

Taking into the account the light-induced accumulation of all three constituents
of the PPA system in vacuoles and apoplast, Km values for endogenous POX
substrates, and the relative volume of these compartments (50–55% of the total
mesophyll cell volume; Vidović et al. 2016), the PPA system may represent an
important sink for excess H2O2 under high light stress.

5 Pro-oxidative Functions

5.1 H2O2-Producing System (Oxidative Cycle)

In response to various unfavourable conditions, including high levels of ozone,
wounding, and infection by pathogens, apoplastic POXs can act as a source of
ROS, contributing to the oxidative burst (Doke 1983; Bolwell et al. 1998; Gill and
Tuteja 2010).

The involvement of CWPOXs (besides plasma membrane NADPH oxidase) was
confirmed using the heme inhibition studies with salicylhydroxamic acid (SHAM),
NaN3, and KCN, and inhibitors of NAD(P)H oxidase: diphenyleneiodonium
chloride (DPI) and imidazole (IMZ). In addition, treatments with elicitors and
pathogen inoculation, besides H2O2, trigger the �OH and O2

�� production in
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Fig. 1 Schematic overview of the vacuolar and apoplastic H2O2 scavenging mechanism by the
POX/PhOH/Asc system. Explanation in the text. POX class III peroxidases, DHAR dehy-
droascorbate reductase, GR glutathione reductase, SOD superoxide dismutase, AO ascorbate
oxidase
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cultured plant cells, protoplasts and tissues (Bestwick et al. 1998; Choi et al. 2007).
The oxidative cycle of POX is considered to be an O2

��-generating system and a
source of H2O2 required for cell wall stiffening, and for the formation of the
secondary cell wall by lignification (Halliwell 1978). According to the proposed
reaction mechanism, in the absence of H2O2 and the presence of a suitable
reductant, the intermediate catalytically inactive form of the POX (Compound III,
Fig. 2) may oxidize NADH. In this reaction, PhOH returns Compound III to the
ground state, making the enzyme functional again, while Mn2+, as a second
cofactor, catalyzes the non-enzymatic reaction between O2

�� and NADH to produce
H2O2, directing the reaction to peroxidatic cycle (Halliwell 1978).

Fig. 2 Proposed model of �OH generation in the pea root cell wall (Adopted from Kukavica et al.
2008). In the presence of metal ions PhOH andMnSOD, cell wall-bound POX catalyze the formation
of �OH through the following reactions: (1) POX ðFe3þ ÞþH2O2 ! Comp I ðFe4þ¼OÞþ þH2O2;
(2) POX ðFe3þ ÞþO2

�� ! Comp III ðFe2þ�O2Þ; (3) Comp II ðFe4þ¼OÞþH2O2 ! Comp III
ðFe2þ�O2ÞþH2O; (4) Comp III ðFe2þ�O2ÞþH2O2 ! POX ðFe3þ Þþ �OHþO2 þOH�. Mx+

andM(x−1)+ oxidized and reduced metal ions, PhOH phenolics compounds, PhO� phenoxyl radical, –
Ph=Oquinhydrone. The upper panel represents the electron paramagnetic resonance (EPR) spectra of
the quinhydrone structure detectedwithout the presence of spin trap in the pea root cell wall. Basic pH
increased the signal intensity of quinhydrone. The bottom panel represents the EPR spectra of the
DEMPO/OH adduct produced by POX covalently bound to the cell wall, the ionic POX and soluble
intracellular POX. Adopted from Kukavica et al. 2012.
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The exclusive involvement of the cell wall in the O2
��-production system has

been reported for the pea and cowpea during plant-microbe interactions (Kiba et al.
1997) and upon metal toxicity, such as Al excess in the onion root (Achary et al.
2012) or Mn excess in cowpea leaf (Fecht-Christoffers et al. 2006). Kiba and
colleagues (1997) also showed that the O2

��-production system of the same plant
species induced by the elicitor, was inhibited by POX inhibitor, SHAM, and not by
NADPH oxidase inhibitors (i.e., imidazole and quinacrine).

5.2 Hydroxyl Radical-Generating System (Hydroxylic Cycle)

The capacity of POXs to generate �OH has been documented by a number of
in vitro and in vivo studies. Several enzymatic and non-enzymatic mechanisms can
be found in the literature explaining the cell wall loosening required for extension
and cell growth (Fry 1998; Chen and Schopfer 1999; Liszkay et al. 2003; Kukavica
et al. 2007, 2008). Cell wall loosening is important under osmotic, drought or salt
stress in order to ensure the possibility of cells and organs to expand (Tenhaken
2014). Furthermore, it has been reported that POX can produce �OH in the presence
of NADH (Liszkay et al. 2003; Schopfer et al. 2001).

The proposed mechanism for the oxidative cycle of cell wall-bound POXs is
based on the oxidation of NADH only in the presence of p-coumaric acid and Mn2+,
while, in the absence of these two cofactors, oxidation of NADH is negligible.
However, there is no evidence for the presence of NAD(P)H in the apoplastic
compartment, suggesting that �OH generation using NADH is unlikely under nat-
ural conditions. Instead, plasma membrane-bound NAD(P)H oxidase is regarded as
a crucial enzyme responsible for the generation of O2

�� in the apoplast (Murphy
and Auh 1996; Van Gestelen et al. 1997). Moreover, various cellular components
are capable of generating O2

�� in the vicinity of plasma membranes (Mojović et al.
2004). An extreme reactivity of O2

�� (half-life in water is 0.2 and 20 ms at 10 and
1 µM, respectively, Bielski et al. 1985) is even more accelerated in the presence of
SOD. Therefore, it is doubtful that the membrane-bound NAD(P)H oxidase is a
source of �OH for cell wall reactions. Kukavica et al. (2008) demonstrated that
isolated cell wall free from plasma membrane had the capacity for
NADH-independent generation of �OH, and suggested a similar mechanism in situ.
In isolated cell walls of pea roots, �OH was detected using a spin-trapping reagent
DEPMPO in the absence of any exogenous compounds (Fig. 2). The alternative
mechanism for O2

�� formation in the pea cell wall isolates involved the oxidation of
hydroxycinnamic acids by redox active metals, Fe3+ and Cu2+, to phenoxyl radicals,
which can reduce O2 to O2

��. Both, caffeic and chlorogenic acid are found in
apoplastic fluid and cell wall isolates, and are easily auto-oxidizable yielding either
a charge-transfer complex, quinhydrone, or polymers that are also auto-oxidizable.
Once generated, O2

�� may induce the formation of CWPOX Compound III, which
can enter the hydroxylic cycle yielding �OH and H2O2. The cell wall-bound
MnSOD can regulate the concentration of O2

�� and �OH, while apoplastic H2O2 can
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catalyze the formation of �OH via the Fenton reaction (Yim et al. 1993). An
overview of the whole mechanism proposed for cell wall generation of �OH is given
in Fig. 2.

The authors demonstrated an exclusive role of covalently CWPOX in the
DEPMPO/OH adduct formation (Fig. 2). During the generation of �OH, the con-
centration of quinhydrone structures (as detected by EPR spectroscopy) increased,
suggesting that H2O2 required for the formation of �OH in isolated cell walls was
produced during the oxidation of hydroxycinnamic acids, which form a quinhy-
drone dimer.

6 Effects of Environmental Stresses on POXs

Induction of overall peroxidase activity is widely accepted as an indicator of abiotic
and biotic stress response in plants. In addition to the measurements of guaiacol
peroxidase activity of the whole tissue extract or cell wall isolates, numerous
studies have revealed differences in POXs isoform profiles. These variations may
correspond either to a stimulation or attenuation of some pre-existing isoforms, or
to the appearance of the new isoforms (Kukavica et al. 2012; Liu et al. 2013). Such
modulations of POXs profile patterns prove their role in the defence mechanism.
The differences in POXs profile patterns are also related to the plant species, the
type, intensity and the duration of stress. Sometimes a contrasting response of POX
isoforms to stress was demonstrated, such as in the case of ionic and covalently cell
wall-bound isoforms in pea roots induced by elicitor chitosan (Kukavica et al.
2012).

The expression of POX genes is regulated in response to biotic and abiotic
stresses and the underlying molecular mechanism is related to the nature of the 5′
flanking regions with stress-responsive cis-elements (Sasaki et al. 2007; Kim et al.
2012). However, POX gene expression patterns show great variations, and the
stress-induced upregulation depends on the developmental stage and organs.
According to Cosio and Dunand (2008), at least 19 AtPrxs genes were involved in
the specific abiotic stress mechanisms. However, the stimulating effect on POX
activity was not always obvious.

Since it has been shown that POXs are quite sensitive to atmospheric pollution
and heavy metals, the measurements of their activities have been widely used for
the phytomonitoring of industrial and urban areas (Cho and Park 2000; Klumpp
et al. 2000; Wu and von Tiedemann 2002; Geebelen et al. 2002). It has been shown
that induction of POX activity was higher in metal-sensitive species/populations
compared with tolerant ones (Tamás et al. 2002; Morina et al. 2016). Cadmium
treatment increased the accumulation of lignin and apoplastic guaiacol peroxidase
activities to a higher extent in the sensitive compared with the resistant cultivars of
V. faba. In addition, ten ZmPrxs genes were altered (seven of them were down and
three were upregulated) in the stress response to Cd (Yue et al. 2017). Tao and
colleagues (2013) suggested a synergistic action between salicylic acid and POXs
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in the snc1 (suppressor of non-expressor of pathogenesis-related gene 1 (npr1-1)
constitutive 1) plant leading to its sensitive phenotype under metal excess.
Native PAGE of cell wall proteins of Cassia tora exposed to Al stress showed a
strong induction of POXs (Xue et al. 2008). The expression of AtPrx64 enhanced
root growth and decreased the accumulation of Al and ROS in the roots of trans-
genic plants in comparison with WT plants (Wu et al. 2017).

The influence of temperature variation and water status on POX activity has
been also demonstrated. Exposure to cold stress gradually increased POX activities
in the leaves of several Medicago accessions at the beginning of stress; however,
POX activity decreased with prolonged stress duration (Nourredine et al. 2015).
Nourredine and coauthors (2015) also showed that the decrease in POD activity was
less in tolerant than in sensitive plants. Similar results were obtained for naked oat
plants (Liu et al. 2013). The decrease of POX activity under long-term exposure to
cold stress indicated that low temperatures might affect RNA transcription, and
consequently translation, reducing the POX synthesis (Liu et al. 2013). It was also
shown that two POX isoforms (TaPrx04 and TaPrxo3) from an apical root segment
were responsible for drought tolerance in two wheat cultivars (Csiszár et al. 2012).
In addition, seven isoforms of POXs from Tamarix hispida were either upregulated
or downregulated upon NaCl, polyethylene glycol (PEG), NaHCO3 and Cd stress
(Gao et al. 2010). Five ZmPrxs genes (Wang et al. 2015), and six POXs from sweet
potato (Ipomoea batatas) responded to different abiotic stresses (H2O2, SA, NaCl
and PEG treatment) (Kim et al. 2007). The POX isoform, MsPrx16, from alfalfa
(Medicago sativa) showed decreased expression under cold stress as a part of a
general strategy of root cell walls to maintain flexibility under temperature stress
(Behr et al. 2015). In addition, the dominant PMPOX from maize, ZmPrx66, was
downregulated and two others were upregulated by H2O2 stress (Mika et al. 2009).
After a short time of flooding (4 h), the neutral form of soluble POX (pI 7.0) of
maize was downregulated while long-time flooding (28 or 52 h) resulted in the
upregulation of alkaline POXs (pI 9.2, 8 and 7.8) (Meisrimler et al. 2014).

In contrast to abiotic stress, a complex role of POXs in biotic stress is based on
peroxidatic and pro-oxidative catalytic action (Sects. 4.1 and 5) and possible
generation and detoxification of ROS, though a reductant for the formation of the
‘oxidative burst’ has not yet been identified. They are induced in host plant tissues
by pathogen infection and belong to the pathogen-related protein 9 subfamily (van
Loon et al. 2006). POXs are crucial for the establishment of structural barriers to
limit pathogen invasion or the generation of extremely toxic ROS and RNS
(Passardi et al. 2005). It has been shown that POX activity or POX gene expression
in higher plants was induced by fungi, bacteria, viruses and viroids (references in
Almagro et al. 2009). The activity of NADH-peroxidases was involved in the
generation of O2

�� and H2O2, and
�OH in response to biotic stress as was shown in

many plants: in pea and cowpea in response to a pathogen (Kiba et al. 1997); in
cultured cells of rose and French bean in response to an elicitor derived from the
cell walls of Colletotrichum lindemuthianum (Bolwell et al. 1998); in cotton
cotyledons in response to a hypersensitive reaction to Xanthomonas campestris
(Martinez et al. 1998); and in lettuce leaves during the non-host hypersensitive
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reaction induced by P. syringae (Bestwick et al. 1998). Lycopersicum esculentum
POX (Prxs06) was induced at infection site by accumulating H2O2 (Coego et al.
2005). The extracellular wheat isoforms were upregulated by wounding stress
(Minibayeva et al. 2015).

As previously mentioned, assigning a function to a particular POX isoform is a
rather complex task and requires the integration of physiological, biochemical and
genetic studies, especially regarding the possible use for generation of useful
transgenic plants (Sasaki et al. 2007).

7 Genetic Manipulation of POX Isoenzymes Related
to Plant Defence Against Environmental Stress
Conditions

A number of studies on transgenic plants with altered expression of genes of POXs
were carried out with the aim to understand the specific role of individual isoen-
zymes under unfavourable environmental conditions. Overexpression of sweet
potato swpa4 POX gene in tobacco plants (Nicotiana tabacum) (Kim et al. 2008)
and overexpression of AtPrx3 in A. thaliana significantly increased salinity and
drought tolerance (Llorente et al. 2002). Moreover, it has been shown that the
overexpression of AtPrx22, AtPrx39, and AtPrx69 increased cold tolerance in the
brassinosteroid-insensitive mutants (Kim et al. 2012). The same results—increased
germination rate under salt and dehydration, and decreased sensitivity to cold stress
—were shown in the experiments with heterologous expression of two POX genes
from C. roseus in N. tabacum (Kumar et al. 2012). The knockdown of AtPrx33 and
AtPrx34 transcripts by transduction of antisense FBP1 from Phaseolus vulgaris into
A. thaliana resulted in a failed oxidative burst and an increased sensitivity to fungal
and bacterial pathogens (Daudi et al. 2012). In addition, transgenic expression of
POX2 from Capsicum annuum (CaPrx2) in A. thaliana (Choi et al. 2007) enhanced
a broad spectrum resistance (pathogenesis-related gene induction) and H2O2

accumulation, as well as tolerance to drought and salt. However, there are no data
about changing the phenotype by knockout of simple vacuolar POXs genes.

The overexpression of AtPrx in transgenic tobacco plants enhanced root growth
under Al excess and decreased the accumulation of Al in the roots (Wu et al. 2017).
The role of specific POX isoforms in growth inhibition was revealed in a genetic
study in which AtPRX71 expression was suppressed and the phenotype had a
bigger rosette and biomass. On the other hand, a retarded growth of the 35S:AnPGII
plants was accompanied by a high activity level of POXs (Raggi et al. 2015).
Transgenic plants with antisense suppression of Pry60 in tobacco had a significant
reduction in lignin content (Blee et al. 2003). Similarly, overexpression of AtPRX37
caused dwarfism, probably by affecting cell expansion and not cell division
(Pedreira et al. 2011). The underlying inhibitory mechanism of these isoforms on
cell expansion is proposed to be the promotion of H2O2 generation. However, the
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qua2-1 atprx71-1 double mutant showed decreased ROS accumulation that can be
explained by the involvement of the 71 and 53 genes in the cross-linking of cell
wall in the hydroxylic POX cycle (Raggi et al. 2015).

8 Conclusion

Class III peroxidases are a ubiquitous, multigene family of secretory enzymes,
localized in all plant organs, which is in accordance with their well-established role
in plant growth and development, as well as in plant–environment interactions.
Their role in stress-related processes (e.g., oxidative burst, signaling, cell wall
re-arrangement and antioxidative defence) is determined by (i) the cellular distri-
bution of the specific substrates and isoenzymes; (ii) PTMs (especially the glyco-
sylation pattern) of isoenzymes; (iii) the microenvironment such as pH, Ca2+, Mn2+

concentration, Asc redox state; and (iv) POXs’ bifunctionality—namely,
scavenging/generating H2O2 activities. The mechanisms underlying these processes
have not yet been fully established and remain a challenge for future research. In the
light of recent findings related to H2O2 intracellular trafficking and the subcellular
localization of the constituents of Takahama’s H2O2 scavenging system (POX/Phe/
Asc), we re-established the antioxidative role of POXs incorporating it in a per-
fectly orchestrated complex cellular antioxidative system (Fig. 2). We propose that,
in this way, vacuolar POXs are the important sink for H2O2 in the plant cell, taking
into account its size and the presence of millimolar concentrations of phenolics and
Asc, which emphasize the key role of the vacuole in the cellular antioxidant net-
work. Taking all of this into account, POXs can be regarded as a crossover point in
metabolism involved in growth and defence regulation by redirecting phenolics to
the cell wall and, finally, in adaptation to stress. Due to the more oxidized state and
the low redox buffering in the apoplast, POXs located in apoplast/cell wall com-
partment may have different properties compared with those in the vacuole, such as
contribution to cell wall loosening and elongation or, on the other hand, to an
oxidative burst.

Further studies including molecular approaches, such as a transcriptome analysis
and recombinant DNA, should be conducted in order to reveal the specific functions
of particular POX isoforms and to assign a specific function to a particular POX
gene and its protein. Comprehensive knowledge of the link between genes, primary
structure and PTMs will provide new solutions for developing and engineering
plants with improved vigor and stress tolerance. A range of biotechnological
approaches are being employed for the manipulation of lignin content for increased
stress tolerance, as well as for optimal utilization of plant biomass in different
branches of industry.
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