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Abstract Until now, we have focused on group recommendation techniques for
choice scenarios, related to explicitly-defined items. However, further choice scenar-
ios exist that differ in the way alternatives are represented and recommendations are
determined. We introduce a categorization of these scenarios and discuss knowledge
representation and group recommendation aspects on the basis of examples.

7.1 Introduction

Until now, we have considered choice scenarios in which a group recommender
selects items from a set of explicitly defined (enumerated) items. Examples thereof
are the selection of a restaurant for a dinner and the selection of a holiday destina-
tion. In this chapter, we analyze scenarios that go beyond the ranking and selection
of explicitly defined items (alternatives). We first characterize these scenarios with
regard to the aspects of (1) the inclusion of constraints (constraints allow the
definition of restrictions regarding the combination of choice alternatives) and (2)
the approach to define alternatives (alternatives can be either represented explicitly
or in terms of parameters). Thereafter, we discuss these scenarios in more detail on
the basis of examples. There are hierarchical relationships between some scenarios:
release planning, triage, resource balancing, and sequencing can be considered
as subtypes of configuration differing in the type of variables and constraints
used. We also differentiate between (1) basic choice problems (ranking, packaging,
parametrization, configuration, release planning, resource balancing, sequencing,
and triage) and (2) methods for getting people’s input concerning choice problems
(voting, questionnaires, and parametrization). The choice scenarios introduced in
this chapter are the following (see Fig. 7.1).

© The Author(s) 2018
A. Felfernig et al., Group Recommender Systems, SpringerBriefs in Electrical
and Computer Engineering, https://doi.org/10.1007/978-3-319-75067-5_7

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75067-5_7&domain=pdf
https://doi.org/10.1007/978-3-319-75067-5_7


130 7 Further Choice Scenarios

Fig. 7.1 Choice scenarios categorized with regard to (1) constraint inclusion and (2) the represen-
tation of alternatives (as parameters or items)

Ranking The choice scenarios discussed in the previous sections can be regarded as
ranking since the overall goal is to derive a ranked list of items as a recommendation
for a group. Ranking scenarios typically do not include constraints and choice
alternatives are represented in the form of a list of explicitly defined items, for
example, restaurants or holiday destinations.

Packaging Package recommendation goes beyond basic ranking [21, 22, 26]. The
overall goal is to recommend combinations of items while taking into account
constraints that restrict the way in which different items can be combined. For
example, in holiday trip planning, a package recommendation problem is to find
a set of destinations for the group that takes into account global constraints such
as upper price limit and maximum total distance between the destinations, but also
constraints related to individual items. For example, specific destinations should
be excluded, or either one or the other should be visited but not both. Items in
packaging problems are specified explicitly, for example, a list of museums and a
list of restaurants. Another example of packaging is a group decision regarding the
composition of a Christmas party menu. Decision alternatives are represented by
lists of menu items where each item is associated with one of the categories starter,
main dish, and dessert. Constraints can be specified, for example, according to the
maximum number of menu items and the upper price limit of a menu.
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Parametrization Parametrization decisions are related to detailed aspects of an
item—related alternatives are represented as parameter values. In parametrization,
no restrictions exist between the parameter values. In the context of group decision
making, an example is the parametrization of an already selected travel destination
or the parametrization of intended properties of an already selected hotel. Examples
of parameters of a travel destination are number of days to be spent at the destination
and time of the year. Parameters describing intended properties of hotels are the
availability of a beauty farm, whirlpool, fitness studio, and massage service [14].

Configuration Configuration [2, 10, 24] is one of the most successful applications
of Artificial Intelligence techniques. In terms of knowledge representation, con-
figuration scenarios are similar to parametrization, i.e., decision alternatives are
represented in terms of parameters. In contrast to parametrization, configuration
tasks include a set of constraints that restrict the combination of individual
parameter values. Examples thereof are the group-based configuration of smarthome
installations and the group-based configuration of a car (e.g., a new company
car) [11, 15]. Further examples of group-based configuration are release planning
[6], resource balancing, sequencing, and triage. Because of their wide-spread
application, these scenarios will be discussed in separate subsections.

Release Planning Both, in terms of knowledge representation and inclusion of
constraints, a release planning task is a specific type of configuration task [19].
In Software Engineering, release planning refers to the task of assigning a set of
requirements to one of a defined set of releases. This scenario is usually a group
decision scenario, since stakeholder groups engaged in a software project have to
make release-related decisions. An example of a related constraint is: since the
overall effort is too high, requirement x and requirement y must not be implemented
in the same release.

Triage Similar to release planning, triage can be considered a specific type of
configuration task. Triage decisions can occur in domains such as medical decision
making and Software Engineering. The overall goal of the underlying decision is
to determine a tripartition1 of a given set of alternatives. In early requirements
engineering [19], triage can be applied to figure out (1) requirements that are
essential for a company and must be implemented immediately, (2) requirements
that can be implemented if the resources are available, and (3) unimportant
requirements with no need for implementation in the near future. As opposed to
this, the focus of release planning is to decide a.o. about the time of implementation.
Constraints are similar to those occurring in the context of release planning. Further
examples of triage-based decisions are selection and assignment of students to
open research projects of a research group (students with high potential should be
preferred, students with a low probability of successfully completing their tasks
should be assigned to standard projects but not research projects, and all other

1We limit our discussions to scenarios with three partitions.
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students should receive a research project position if possible), funding decisions
(distribute the available budget between high-potential projects while taking into
account an upper funding limit, do not fund low-potential projects, and fund “in-
between” projects if additional money is available), idea management (focus on
high-potential ideas, filter out low-potential ideas, and take into account ideas “in-
between” if the needed resources are available), and product line scoping [23]
(include the most relevant product features, features with potentials for new markets
if possible, and filter out low-potential ones).

Resource Balancing The goal of resource balancing is to assign consumers to
resources in such a way that a given set of constraints is satisfied. In this context,
consumers and resources can represent humans as well as physical equipment or
software. The assignment of resources to consumers can be represented in terms
of parameters. Resource balancing often includes a set of constraints, for example,
each student should be assigned exactly one paper and paper assignments should be
equally distributed. Thus, resource balancing can also be interpreted as a specific
kind of configuration task. In configuration scenarios, resource balancing is often
included as a subtask, for example, to balance power supply and consumption [10].

Sequencing Sometimes, alternatives have to be arranged in a sequence. For exam-
ple, when planning a trip around the island of Iceland, the sequence of venues
(when to visit which destination) has to be clear from the outset since hotel
reservations have to be arranged correspondingly. Items in sequencing tasks are
often represented in terms of parameters. Constraints are related to user preferences
(e.g., three waterfalls should not be visited directly one after another) and further
restrictions (e.g., the distance between two destinations in a sequence should be
below 100 km and the overall length of the round trip should be minimized).

Polls and Questionnaires Polls and questionnaires are basic means to better
understand the opinions of a group or a community. Thus, both can be considered as
basic decision support mechanisms. In poll scenarios, the group giving the feedback
is in many cases not directly engaged in a decision making process. Polls are defined
in terms of a question (parameter) and possible answers. No constraints are defined
with regard to the choice alternatives. Questionnaires are a concept similar to polls
with the difference that more than one question is typically posed and new questions
are sometimes selected depending on answers that have already been provided.

Voting Compared to questionnaires and polls, voting has a strong decision aspect,
since a group or a community decides on which alternative(s) should be chosen
[16]. This takes place on the basis of a predefined process. The underlying options
are represented in an explicit fashion, like presidency candidates or candidate soccer
players for the “goal of the month”. In voting, there are no constraints regarding the
alternatives.2

2For a discussion of the potential impacts of voting strategies, we refer to [16].
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Due to the high diversity of existing choice scenarios, we do not claim com-
pleteness. The scenarios presented must be seen as examples, i.e., different variants
thereof exist. In the following, we will discuss knowledge representations of
the choice scenarios shown in Fig. 7.1, and sketch approaches to include group
recommendation techniques.

7.2 Ranking

In basic ranking scenarios [8], choice alternatives are enumerated and no con-
straints are applied to the alternatives. A group’s task is to identify a ranking
and then select one item (e.g., in the context of selecting a restaurant for dinner
or a logo for a new product) or a couple of items (e.g., when selecting the n
best conference papers or selecting the n best proposals submitted to a funding
organization). Alternatives do not necessarily need to be specified completely before
the decision process starts, for example, in idea competitions and open innovation
scenarios, alternatives can be added during the decision process. A simple example
of a ranking scenario is depicted in Table 7.1. Each item ti received one ranking per
group member. A score is associated with each rank, for example, rank 1 receives 3
points, rank 2 receives 2 points, etc. The item with the highest Borda Count (BRC)
(see Chap. 2) scoring is recommended (in our case item t4 which is indicated withp

in Table 7.1).3

Table 7.1 A basic
group-based ranking scenario

Ranking (score)

Item u1 u2 u3 BRC Ranking

t1 4 (0) 4 (0) 4 (0) 0 4

t2 2 (2) 3 (1) 2 (2) 5 2

t3 3 (1) 2 (2) 3 (1) 4 3

t4 1 (3) 1 (3) 1 (3) 9 1
p

Group members ui provide ranks for items
ti 2 I (alternatively, rankings can be derived
by a recommender—see Chap. 2). Thereafter, an
aggregation function such as Borda Count (BRC)
can be used to derive a corresponding ranking for
the group. The

p
symbol indicates the recom-

mended item

3The aggregation functions used in this and other scenarios are considered as convenient, however,
other alternatives might exist.
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Table 7.2 A group-based packaging scenario

Item ranking (score)

Item type 1 Item type 2 Item type 3

t11 t12 t13 t21 t22 t23 t31 t32 t33
u1 1 (3) 2 (2) 3 (1) 2 (2) 1 (3) 3 (1) 1 (3) 2 (2) 3 (1)

u2 2 (2) 3 (1) 1 (3) 1 (3) 2 (2) 3 (1) 1 (3) 2 (2) 3 (1)

u3 1 (3) 2 (2) 3 (1) 1 (3) 2 (2) 3 (1) 3 (1) 2 (2) 1 (3)

BRC 8 5 5 8 7 3 7 6 5

Type-wise ranking 1
p

2 2 1
p

2 3 1
p

2 3

Users provide ranks for items tij (jth item of type i). Thereafter, an aggregation function such as
Borda Count (BRC) can be used for deriving a proposed package (in our case, ft11; t21; t31g). Thep

symbol indicates the recommended items part of the package
c1 W 8i W #proposeditems.type i/ D 1

7.3 Packaging

In a packaging scenario (see Table 7.2) [21, 22], each item tij is associated with
a specific item type i. Choice alternatives are explicitly defined per item type and
constraints related to the alternatives have to be taken into account. A group has to
select items of different item types and compose these into a corresponding package.
An example of a constraint that is defined in such a scenario is: the number of
selected items per item type must be exactly 1 (see constraint c1 in Table 7.2).
Table 7.2 depicts an example of a group-based packaging scenario. Each item
receives a ranking per group member and the item with the highest Borda Count
(BRC) score within a specific item type i is the group recommendation for item
type i. The recommended package in our example is ft11; t21; t31g. In some scenarios,
more than one item per item type is requested or less items than defined types are
allowed to be included in a package recommendation. In more complex scenarios,
constraints are also specified at the individual item level. An example of such a
constraint is an incompatibility between the items t22 and t33, i.e., these items must
not be part of the same package. In the case of such constraints, solution search
in packaging scenarios can be implemented on the basis of conjunctive (database)
queries.

7.4 Parametrization

The alternatives are defined in terms of parameters and there are no constraints
related to the alternatives. In such a scenario, a group’s task is to select one value
per parameter. An example of a group-based parametrization scenario is presented
in Table 7.3. Each group member specifies his/her preferences with regard to the dif-
ferent parameters and then the values that were selected in the majority of the cases
are considered as candidates for the group recommendation. The recommendation
(parametrization) in our example is f par1 D a; par2 D 1; par3 D 2g.
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Table 7.3 Group-based
parametrization

Preferences

Parameter u1 u2 u3 MAJ

par1.a; b; c/ a a c a
p

par2.1; 2; 3/ 1 1 1 1
p

par3.1; 2/ 2 2 1 2
p

Users define preferences with regard
to the parameters pari. Thereafter, an
aggregation function such as Majority
Voting (MAJ) can be used for rec-
ommending a parametrization (in our
case, f par1 D a; par2 D 1; par3 D
2g). The

p
symbol indicates recom-

mended parameter values

7.5 Configuration

In group-based configuration scenarios [11], the alternatives are defined by param-
eters and corresponding domain definitions. In most configuration scenarios, con-
straints restrict possible combinations of parameter values. Similar to parametriza-
tion scenarios, a group’s task is to select one value per parameter such that the set
of parameter value assignments is consistent with the defined constraints [10]. An
abstract example of a group-based configuration scenario is shown in Table 7.4.
Each group member specifies his/her preferences with regard to the values of the
parameters f par1; : : : ; par4g. An example constraint is c1 W par3 D u ! par4 D 1.
Table 7.4 also depicts the solution candidates, i.e., complete sets of parameter
assignments that take into account the defined constraints. These configurations
include trade-offs in terms of neglecting some of the user preferences due to the
fact that the union of all user preferences would be inconsistent [7]. In our example
shown in Table 7.4, least misery (LMS) is applied to evaluate the configuration
candidates (to determine a recommendation). Misery in this context is defined as
the number of times the preferences of an individual user are not taken into account
by a configuration. In contrast to rating-based approaches, the higher the value, the
lower the quality of the corresponding configuration.

Solving Configuration Tasks Configuration tasks can be solved using constraint
solvers [10, 25]. Thus, constraint solvers take over the role of determining candidate
recommendations. These solvers generate solutions (candidate recommendations)
consistent with the defined set of constraints. Due to the combinatorial explosion,
it is often not possible to generate all possible solutions and then to filter out the
best ones by using an aggregation function [3]. In order to deal with such situations,
search heuristics that help to increase the probability of finding solutions that are
optimal with regard to a selected aggregation function must be integrated into the
constraint solver. A more lightweight integration of aggregation functions can be
achieved with majority voting (MAJ). The votes of group members can be applied
to derive preferences [1]. For example, for par1 we can derive a preference ordering
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Table 7.4 A group-based configuration scenario

Preferences Configuration (solution) Misery

Parameter u1 u2 u3 id par1 par2 par3 par4 u1 u2 u3 LMS

par1.a; b; c/ a a c 1 a 1 u 1 1 1 1 1
p

par2.1; 2/ 1 1 1 2 c 1 u 1 2 2 0 2

par3.u; v/ u u u 3 b 1 u 1 2 2 1 2

par4.1; 2/ 2 2 1

Users ui specify their preferences in terms of parameter values. Constraints ci specify the
restrictions, a configuration must take into account. Thereafter, an aggregation function such
as Least Misery (LMS) can be used for deriving a recommended configuration (in our case,
f par1 D a; par2 D 1; par3 D u; par4 D 1g). The

p
symbol indicates the configuration parameter

values recommended to the group
c1 W par3 D u ! par4 D 1; c2 W par2 ¤ 2; c3 W par3 ¤ v

a � c � b indicating that a is preferred by a majority of group members (over c
and b) and that c is preferred over b. Such preferences can be directly encoded as
variable (domain) orderings into a constraint solver [20].4

7.6 Release Planning

Release planning is a configuration task [19] where the alternatives (possible assign-
ments of requirements to releases) are defined as parameters and corresponding
domain definitions. In most release planning scenarios, constraints restrict the
possible assignments of requirements to releases. A group’s task is to find one value
per parameter (each requirement needs to be assigned to a release) in such a way
that all assignments are consistent with the defined constraints. An example of a
group-based release planning task is shown in Table 7.5.

Each group member specifies his/her preferences with regard to the assignment
of requirements to releases. Example constraints are c1 W req3 � req4, c2 W
8i W numreqreli � 2 which denote the fact that (1) requirement req3 must not
be implemented after requirement req4 and (2) no more than two requirements
should be assigned to the same release. Similar to the aforementioned configuration
scenario, the preferences of individual users are aggregated using Least Misery
(LMS). In this context, LMS denotes the maximum number of times the preferences
of an individual user are neglected by a release plan. For example, release plan 1
ignores the preferences of user u3 four times which is the maximum for release plan
1. Both release plans 2 and 3 have the lowest LMS. Consequently, release plans 2

and 3 can be recommended. Techniques that can be used to determine individual
release plans are the same as those discussed in the context of solving configuration
tasks.

4For example, choco-solver.org.

choco-solver.org
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Table 7.5 A group-based release planning scenario

Preferences Release plan Misery

Parameter u1 u2 u3 id req1 req2 req3 req4 u1 u2 u3 LMS

req1.1::2/ 1 1 2 1 1 1 2 2 1 0 4 4

req2.1::2/ 1 1 2 2 1 2 1 2 1 2 2 2
p

req3.1::2/ 1 2 1 3 2 1 1 2 1 2 2 2
p

req4.1::2/ 2 2 1 4 2 2 1 1 3 4 0 4

Users can specify their preferences in terms of assignments of requirements (reqi) to releases.
Additionally, constraints ci specify properties a release plan must take into account. Thereafter, an
aggregation function such as Least Misery (LMS) can be used for deriving a proposed release plan
(in our case, for example, release plan 2). The

p
symbol indicates recommended release plans

c1 W req3 � req4, c2 W 8i W numreqreli � 2

Table 7.6 Group-based triage

Preferences Triage Misery

Parameter u1 u2 u3 id req1 req2 req3 req4 u1 u2 u3 LMS

req1.a;m; r/ a r a 1 a m a m 2 2 2 2
p

req2.a;m; r/ r m r 2 a r a r 0 4 0 4

req3.a;m; r/ a r a 3 m a m a 4 4 4 4

req4.a;m; r/ r m r 4 r a r a 4 2 4 4

Users specify their preferences by categorizing requirements (reqi) into a (accept), m (maybe
accept), and r (reject). Constraints c1 and c2 specify dependencies between requirements, c3
specifies that two requirements have to be accepted (a). An aggregation function such as Least
Misery (LMS) can be used for deriving a triage solution (in our case, triage 1). The

p
symbol

indicates the triage recommended to the group
c1 W req1 D req3; c2 W req2 D req4
c3 W a.req1/ C a.req2/ C a.req3/ C a.req4/ D 2

7.7 Triage

Triage can be regarded as a configuration task. In the context of software require-
ments engineering, alternative requirements have to be assigned to one of the three
triage categories: accept (a) = requirement must be implemented, maybe accept
(m) = requirement can be implemented if resources are available, and reject (r)
requirement will not be implemented (now). As in release planning, constraints can
restrict the assignment of requirements to the three categories. Table 7.6 includes an
example of a simple triage task.

A group’s task is to assign one category to each requirement in such a way that
all assignments are consistent with the defined constraints. In this example, the
proposed triage follows the recommendation determined by Least Misery (LMS).
Techniques that can be used to determine individual triage solutions are the same as
those discussed in the context of solving configuration tasks.
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Table 7.7 Group-based resource balancing

Preference Resource assignment (rating)

Parameter rating (riuj) id r1u1 r1u2 r1u3 r2u1 r2u2 r2u3 LMS

r1u1.0; 1/ 5 1 1 (5) 1 (5) 0 0 0 1 (2) 2

r1u2.0; 1/ 5 2 1 (5) 0 1 (4) 0 1 (1) 0 1

r1u3.0; 1/ 4 3 1 (5) 0 0 0 1 (1) 1 (2) 1

r2u1.0; 1/ 4 4 0 1 (5) 1 (4) 1 (4) 0 0 4
p

r2u2.0; 1/ 1 5 0 1 (5) 0 1 (4) 0 1 (2) 2

r2u3.0; 1/ 2 6 0 0 1 (4) 1 (4) 1 (1) 0 1

Users specify their preferences with regard to resource assignments in terms of ratings. Constraints
ci specify properties a resource assignment must take into account. Least misery (LMS) denotes
the lowest user-specific evaluation of a resource assignment. The

p
symbol indicates the

recommended assignment (in our case, assignment 4)
c1 W nr1 D r1u1 C r1u2 C r1u3
c2 W nr2 D r2u1 C r2u2 C r2u3
c3 W jnr1 � nr2j <D 1

c4 W r1u1 C r2u1 D 1 ^ r1u2 C r2u2 D 1 ^ r1u3 C r2u3 D 1

7.8 Resource Balancing

A resource balancing task is defined on the basis of parameters riuj indicating the
assignment of a consumer (user) uj to a resource ri (riuj D 1 $ consumer (user) j
is assigned to resource i). In the example given in Table 7.7, each consumer (user)
uj provided a preference evaluation (on a scale 1..5) with regard to all potential
assignments riuj.5 The outcome is a resource assignment that indicates which
consumer is assigned to which resource(s). In our example, resource balancing is
interpreted in such a way that each resource should be assigned to nearly the same
number of consumers and each consumer should be assigned to exactly one resource
(see constraints c1–c4 in Table 7.7; nri are parameters/variables representing the
quantity of users assigned to resource i).

Choice scenarios similar to resource balancing in terms of the used knowledge
representation are task assignment (e.g., a set of tasks has to be assigned to the
members of a group) and production scheduling (e.g., a set of orders has to be
assigned to machines taking into account the preferences of different customers).

7.9 Sequencing

Sequencing can be regarded as a configuration task where sequential numbers have
to be assigned to items. As in configuration, constraints can restrict the assignment.

5In order to reduce evaluation efforts, a user could specify only preferred items and the system
would assume negative evaluations for items a user did not evaluate.
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Table 7.8 Group-based sequencing

Preferences Sequence Misery

Parameter u1 u2 u3 id t1 t2 t3 u1 u2 u3 LMS

t1(1..3) 1 1 1 1 1 2 3 2 0 2 2
p

t2(1..3) 3 2 3 2 1 3 2 0 2 0 2
p

t3(1..3) 2 3 2 3 2 1 3 3 2 3 3

4 2 3 1 2 3 2 3

5 3 1 2 2 3 2 3

6 3 2 1 3 2 3 3

Users specify their preferences in terms of assignments of sequential numbers to items ti.
Additionally, constraints ci specify properties a sequence must take into account. Here, uitj is a
parameter representing a user’s (ui) assignment of item tj to a specific sequence position. Least
misery (LMS) denotes the number of times, a user preference is neglected by a sequence. Sequences
id D 1 and id D 2 can be regarded as recommendation candidates
c1 W 8ui W uit1 D x ! uit2 ¤ x ^ uit3 ¤ x : : :

Table 7.9 A sequencing
scenario where different
sequences are explicitly
defined, i.e., the choice task is
“reduced” to a ranking
scenario

Sequence Evaluation

id t1 t2 t3 u1 u2 u3 AVG

1 1 2 3 5 4 3 4
p

2 1 3 2 3 3 5 3.67

3 2 1 3 2 3 5 3.33

4 2 3 1 3 1 1 1.67

In this example, sequence 1 has the high-
est Average (AVG) value, i.e., it will be
recommended first

Table 7.8 depicts an example of a sequencing task. A group’s task is to assign one
sequential number to each item in such a way that all assignments are consistent
with the defined constraints (in our case c1). If sequences have already been
pre-defined, sequencing can also be implemented as a ranking task where users
evaluate sequences and an aggregation function determines the recommendations.
An example thereof is shown in Table 7.9.

Different aspects of sequencing have been investigated by Masthoff [17] in the
context of selecting television items (e.g., news and commercials). In the scenarios
investigated until now, the primary inputs for determining recommendations are the
ratings provided by individual group members. However, as mentioned in [17], a
group member’s evaluation of an item does not only depend on his/her personal
preferences, but also on the context in which the item is shown. The evaluation
of an item also depends a.o. on a user’s mood (see also Chap. 9). For example,
in the context of TV commercials, it is often the case that viewers prefer to see
sad commercials in the middle of sad TV programs humorous commercials are
preferred in humorous programs. This indicates a need for consistency, i.e., users try
to maintain a specific mood throughout a TV program [17]. Masthoff presents an in-
depth analysis of different influence factors in group decision making in the context
of sequencing. Particularly, different social choice functions are compared with
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regard to their applicability in the domain of television item sequencing. Results
of the presented studies show that group members try to avoid individual misery
and care about fairness in group decision making. Interestingly, ratings are used
in a non-linear way, i.e., differences between extreme values are considered higher
compared to rating values near the average. For further related details, we refer to
[17]. Due to the possibility of compensating for items that are perceived suboptimal
with better ones, especially in the context of sequencing, it is usually possible to
make sure that no one is miserable.

7.10 Polls and Questionnaires

A poll is a kind of sampling of opinions on a specific subject which is collected
from a selected or a randomized group of persons. A micro-poll is a technical term
for a short poll that is added, for example, to a website. Polls are used in situations
where one is interested in the feedback of a group or a community with regard
to a specific topic or question. Thus, polls are used to collect feedback which can
be related to a decision, though the group asked is not necessarily affected by the
result. Typical examples of such polls are “how did you like the new version of
our software?’ or ‘which version of the software do you use, the Android or the
iOS-based implementation?”. Users participating in polls can be allowed to select
one or more alternatives. A poll on the selection of the employee of the year could
allow only one voting per user whereas a poll related to the selection of the best
performer of a casting show could allow more than one vote. Systems supporting
polls do not include any type of group recommendation functionality, in terms of
supporting users in their decision making process. The aggregation mechanism
applied in the context of polls is used to summarize the feedback of users (ADD-
based aggregation) in terms of relative percentages per alternative (e.g., number of
persons who voted for a candidate) (Table 7.10). In contrast to polls, questionnaires
often consist of a collection of questions where the answer type of the questions can
be defined in a flexible fashion (e.g., free text answers, multiple-choice answers,
and single-choice answers). In some cases, questionnaires are defined on the basis
of decision trees that specify in which context a question should be posed.

Table 7.10 Evaluation
scheme of polls and
questionnaires—persons
providing feedback often do
not participate in the related
decision making process

u1 u2 u3 Feedback (ADD)

q1(1,2) 1 1 1 1 (100%)

q2(1,2,3) 2 3 2 2 (67%) 3 (33%)

q3(1,2) 1 1 2 1 (67%) 2 (33%)

q4(1,2,3) 1 2 3 1 (33.3%) 2 (33.3%) 3 (33.3%)
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Table 7.11 A voting process u1 u2 u3 Result (ADD)

a1(0,1) 1 0 1 2
p

a2(0,1) 0 1 0 1

a3(0,1) 0 0 0 0

a4(0,1) 0 0 0 0

Each user is allowed to give only one
vote—a decision is made on the basis of
the ADD aggregation function

7.11 Voting

Voting has a structure that is similar to polls, however, there is a decision aspect in
voting since a group or a community decides on which alternative should be chosen,
i.e., there is a clear pragmatics of the decision outcome. Typical examples of the
application of voting are the player of the month (e.g., in soccer), the reporter of the
year, and the president of a country. In many cases, the goal of voting is to select
one alternative (e.g., the president), however, there are also scenarios where more
than one alternative is selected. For example, in the context of a best paper award:
if majority voting is used for determining a best paper and there is a tie (depending
on the process) multiple alternatives could be selected as best papers. In the context
of elections, the determined ranking of the alternatives has clear pragmatics. For
example, the identified person becomes the new president. Elections can be single
shot or iterative and different tie-breaking rules can be applied (an example thereof
can also be a new election). An example of a voting process is shown in Table 7.11.

7.12 Further Aspects of Choice Scenarios

Tie-Breaking Rules can help in situations where there is no clear winner but a
decision has to be made. A tie-breaking method could be selected before the
decision making process starts. This is used in situations where all group members
agree on the method (or the method has to be accepted “per-se”). Elections are an
example of a situation where a group (in this case, a community) has to decide, and
the method is already pre-defined. Further related examples are voting procedures in
(public) organizations and companies, for example, when selecting a new rector for
a university, selecting a new pope, or selecting the new president of the labor union.
Situations where groups try to determine the tie-breaking method ahead of time also
occur in less business-related decision processes. For example, what is the impact
(weight) of the expert jury compared to the opinion of the audience collected via
SMS votes in a TV show (in a situation where the jury ranking combined with the
ranking of the audience does not result in a clear winner). Similar situations occur
when it comes to the selection of the best paper at a conference—example resolution
strategies in this context can be a simple majority-rules vote or the average rating
the paper received from the reviewers.
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Further examples of tie-breaking rules are toss a coin (useful, for example, in
the context of low-involvement items such as restaurants), least misery (useful
in situations where two or more high-involvement alternatives have the same
evaluation), authority voting (if a group did not agree on a specific decision rule and
accepts the decision of a single authority), and fairness (in the context of repetitive
decisions, users who were treated less favorably in previous decisions have priority).
In many situations, a formalized and pre-defined rule for making a final decision
does not exist, but the final decision is made on the basis of an internal discussion.
In the “best paper” scenario this means that the members of the jury simply analyze
all the given alternatives and articulate their preferences, for example, in terms of
an initial ranking. Given that every jury member has defined his/her preferences,
a discussion can be started with the overall goal of achieving consensus between
the group members. Such group decision-making requires the inclusion of forums
which allow the discussion and exchange of views regarding (dis)advantages of
alternatives [18].

Multi-stage Processes Multi-stage choice is performed if the decision making task
can be separated into multiple phases (e.g., first decide about the date of the holidays
and then decide on the location and the hotel), or the process itself may consist of
the phase of identifying a consideration set (a set of candidate items that could
potentially be chosen) and then selecting items from the identified consideration
set. Examples thereof are personnel selections where the relevant candidates are
pre-selected and—on the basis of the consideration set—hiring interviews are
conducted. Further related examples are idea management (e.g., the selection of
a name for a new product or the selection of topics that should be chosen for the
next project proposal), strategic planning (e.g., the definition and selection of new
topics for professorships to be announced as open positions in the upcoming years).

Process Iterations Iterative decisions (in contrast to single-shot decisions) are
typically made in the context of high-involvement items, i.e., items with a higher
negative impact triggered by a suboptimal decision (compared to low-involvement
items). In the context of such decisions, different types of conversational recommen-
dation approaches, such as constraint-based recommendation and critiquing-based
recommendation, are useful [4]. Decisions related to high-involvement items are
typically made in an iterative fashion, i.e., before the decision is made, a couple of
iterations in terms of evaluations and discussions are performed. Examples thereof
are manifold. For instance, a family purchases a new car, a new CEO is hired for
a company, a group of students selects a new shared apartment, or a new ERP
system is purchased by a company. Gamification-based approaches are a special
case of iterative decision making, for example, Planning Poker [13] is a consensus-
and gamification-based approach to effort estimation (often used in requirements
engineering [12]) where group members play cards. Each member holds a full deck
of cards where each card represents a time effort ascending from, for example, 5 min
to 1 month. After each group member has played a card (face-down), these cards
are disclosed and the estimates of individual group members are discussed. After the
discussion, each member plays another card until consensus is achieved. Examples
of single-shot decisions are the selection of a restaurant and the selection of a movie
to be watched on the weekend.
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Degree of Participation Active participation is given if the persons providing
preference feedback on the choice options are also engaged in the corresponding
choice process (see also Chap. 2). This is the case with most of the aforementioned
scenarios, i.e., decision makers are also engaged in the feedback process and provide
their preferences with regard to the given set of alternatives. The exception to the
rule are polls and questionnaires, where communities provide feedback to decision
makers but often do not actively participate in the decision making process.

7.13 Conclusions and Research Issues

In this chapter, we discussed choice scenarios that go beyond those of previous
chapters. We introduced a categorization of these scenarios along the dimensions of
knowledge representation (items vs. parameters) and the inclusion of constraints.
For a more in-depth understanding of these scenarios, we provided a couple of
examples that show how to determine group recommendations. A couple of research
issues also exist in this context. For example, the overall idea of group-based
configuration is to engage user groups in configuration processes for complex
products and services [11]. Examples of such scenarios are the group-based
configuration of software release plans, the configuration of smart homes, and the
configuration of holiday packages. In all of these scenarios, approaches are required
that support solution search that takes into account the preferences of individual
group members. A specific issue is how to guide heuristic search when confronted
with the preferences of a group of users. Initial related work can be found, for
example, in Polat-Erdeniz et al. [20]. Similar aspects play a role when supporting
groups in achieving consensus in the case of contradicting preferences. The research
issue to be solved is how to include social choice mechanisms into preference
elicitation, and corresponding diagnosis and repair processes. Initial work on the
inclusion of personalization into diagnosis processes is presented, for example, in
[5, 9].
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