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Abstract In the previous chapters, we have learned how to design group recom-
mender systems but did not explicitly discuss how to evaluate them. The evaluation
techniques for group recommender systems are often the same or similar to those
that are used for single user recommenders. We show how to apply these techniques
on the basis of examples and introduce evaluation approaches that are specifically
useful in group recommendation scenarios.

3.1 Introduction

Evaluating group recommenders is intrinsically related to evaluation techniques
used for single user recommenders [10, 15]. There are two types of evaluation
protocols: (1) offline and (2) online evaluation.

Offline evaluation is based on the idea of estimating the prediction quality of
an algorithm using datasets that include user � item evaluations (ratings). These
datasets are typically divided into training and test sets with a split of, for example,
80% training data and 20% test data. Such settings are used for the evaluation of a
recommendation algorithm in the light of given evaluation metrics on the basis of
repeated sampling and cross validation [4, 8]. Since datasets are typically derived
from recommender systems for individual users [14], datasets for groups have to be
synthesized to be applicable to the evaluation of group recommenders [2].

Online evaluation is based on the idea of using user study techniques to evaluate
an algorithm, a user interface, or a whole system online [16]. Over the past few
years, this approach has lagged behind offline evaluation, due to higher efforts
and the lack of standardized evaluation frameworks [16, 19]. Lab studies (as one
type of online evaluation) involve the recruitment of study participants who are
then engaged in tasks based on two kinds of designs: (1) within-subjects study
design (each subject is assigned to a set of conditions) or (2) between-subjects
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study design (each subject is assigned to exactly one condition). Online evaluations
in the form of lab studies in the context of group recommender systems have
been conducted, for example, by Zapata et al. [30], De Pessemier et al. [7],
Masthoff et al. [17], and Stettinger et al. [25]. As an alternative to lab studies,
which are often quite costly, recent research in recommender systems started
to use crowd-sourcing platforms as a source of user feedback [6, 28]. A major
challenge in this context is to assure the understanding of the defined tasks and to
include quality assurance mechanisms to avoid low-quality feedback [1]. Finally,
naturalistic studies often employ some kind of A/B testing where the system is
used as is without any interventions or predefined tasks. A/B in this context refers
to different user populations unknowingly assigned to different system versions in
which some condition has been changed. Naturalistic studies in the context of group
recommender systems have been conducted, for example, in Sanchez et al. [20].

Independent of the type of online evaluation protocol used, quantitative post-
hoc analysis is typically employed to identify differences between interfaces,
algorithms, and systems. Apart from the standard evaluation metrics (as discussed
in the following), metrics such as number of clicks, time needed to complete a task,
and dwell time are also employed to measure system efficiency. Based on the exact
evaluation protocol defined, a set of recommendation metrics can then be used to
estimate the performance of the recommender system.

In the following, we first focus on accuracy metrics which compare recommen-
dations determined by a recommender system with a predefined set of real-world
user opinions (also known as ground truth).1 Depending on the underlying goal,
accuracy can be measured on the basis of: (1) classification metrics that evaluate
to which extent a recommender is able to determine items of relevance (interest)
for the user, (2) error metrics that evaluate how well a recommender predicts
ratings, and (3) ranking metrics that help to evaluate how well a recommender
predicts the importance ranking of items. Second, we discuss a couple of group
recommendation-related metrics that go beyond accuracy measurement.

3.2 Classification Metrics

Arguably, the most common classification metrics used in recommender systems are
precision and recall. These metrics are often applied in offline evaluation scenarios
where recommendation algorithms are trained using a portion of the available data
for learning purposes and are then evaluated by comparing predictions to a withheld
part of the data (“holdouts” constituting the test set). In the following, we will
briefly explain the usage of precision and recall metrics in group recommendation
scenarios. Table 3.1 contains (1) user rating data (evaluations of items already
consumed by the members of groups g1, g2, and g3) where each group consists of

1For an in-depth discussion of evaluation metrics for single user recommenders, we refer to
Gunawardana and Shani [24].
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Table 3.1 Ratings r.ui; tj/ and predictions Or.ui; tj/ for items t1 and t2

Ratings r.ui; tj/ Predictions Or.ui; tj/

Groups Group members t1 t2 . . . t1 t2 . . .

g1 u1 4.5 2.5 . . . 3.4 3.8 . . .

u2 3.5 4.5 . . . 3.7 4.4 . . .

u3 4.5 4.0 . . . 4.4 3.9 . . .

g2 u4 3.5 2.5 . . . 3.8 2.6 . . .

u5 4.0 4.5 . . . 3.7 4.4 . . .

u6 4.5 3.5 . . . 4.5 3.7 . . .

g3 u7 4.5 3.5 . . . 3.4 3.8 . . .

u8 3.5 2.5 . . . 3.7 4.4 . . .

u9 4.0 3.5 . . . 4.4 3.9 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Table 3.2 Example test set:
group ratings r.gi; tj/ and
group predictions Or.gi; tj/

where r.g; t/ D ˙u2g r.u;t/

jgj
and

Or.g; t/ D ˙u2g Or.u;t/

jgj

Ratings r.gi; tj/ Predictions Or.gi; tj/

Groups t1 t2 t1 t2
g1 4.2 3.7 3.8 4.0

g2 4.0 3.5 4.0 3.6

g3 4.0 3.2 3.8 4.0

For groups g1, g2, and g3, the item ratings of t1 and
t2 are considered as elements (holdouts) of the test
set

three users, and (2) predictions of item ratings (for items t1 and t2). For simplicity,
we assume that each group member provided a rating for each item consumed by
her/him.

The user-individual ratings and predictions are aggregated into (1) a group
rating r.gi; tj/ and (2) corresponding group predictions Or.gi; tj/ determined by an
aggregated predictions based group recommender system (see Table 3.2).2 In a
typical group recommendation scenario, a random set of group-level item ratings
is withheld and used as test set. In our example, we assume for simplicity that for
groups g1, g2, and g3, the ratings for item t1 and t2 have been selected as “holdouts”.
The rating predictions Or.gi; tj/ (assumed to be provided by a group recommender)
are depicted in the two rightmost columns of Table 3.2.

On the basis of the entries in Tables 3.1 and 3.2, we will now sketch the
application of the classification metrics precision and recall.

Precision is the fraction of the number of relevant recommended items (true
positives) in relation to the total number of recommended items. Recall is the
fraction of the number of relevant recommended items in relation to the number of
all relevant items. Both metrics are commonly expressed at a certain level k where
k is the length of the list of recommended items. For example, precision@1 D 1

indicates that one item was recommended and this item was deemed to be a relevant

2Predictions are determined using rating data not used as test cases.
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Table 3.3 Precision and
recall values in example
scenario

Groups Predicted Relevant precision@2 recall@2

g1 2 2 1.0 1.0

g2 2 1 0.5 1.0

g3 2 1 0.5 1.0

overall 6 4 0.67 1.0

recommendation. Furthermore, precision@2 D 0:5 denotes a situation where in a
list of two recommended items only one is deemed to be a relevant recommendation
(true positive). The precision of a group recommender that recommends k items
to a group g can be defined as follows where predictedk.g/ denotes a list of k
items recommended to group g and relevant.g/ represents all items relevant for
g. Definitions of precision and recall are given in Formulae 3.1 and 3.2.

precision@k.g/ D j predictedk.g/ \ relevant.g/j
k

(3.1)

recall@k.g/ D j predictedk.g/ \ relevant.g/j
jrelevant.g/j (3.2)

The calculation of precision and recall is sketched in Table 3.3—it is based on the
test dataset defined in Table 3.2. For the purpose of our example, we define an item
to be relevant, if the corresponding group rating > 3:5 (the relevance threshold). For
example, precision@2.g1/ D 1 since both items predicted to be relevant (rating >

3:5) are deemed as relevant by group g1. The overall precision and recall values
for the test set (see Table 3.2) are determined by integrating the group-specific
prediction and relevance counts, for example, six predicted items of four correctly
predicted items result in an overall precision of 0:67 (see Table 3.3).

Precision and recall can be used in aggregated predictions as well as in
aggregated models based group recommenders (see Chap. 2) since both eval-
uation metrics are applied to the recommendation result, i.e., are independent
from the underlying aggregation approach. The same holds for content-based,
constraint-based, and critiquing-based recommendation. In these scenarios, the
group recommender determines an overall item evaluation (similarity between
user and item in content-based filtering, user-specific item utility in constraint-
based recommendation, and similarity between candidate and reference item in
critiquing-based recommendation) which is then used for estimating item relevance.
Consequently, a threshold similar to the one used in our example can be applied.

As will be discussed in Chap. 7, some group recommenders operate on item
packages and parameters [11, 12]. Package recommendations can be evaluated
similarly to single item recommendations—a difference in this regard is that
package items get recommended at the same point of time whereas single items
are recommended at different points of time. Recommendations of configurations
[11] (see Chap. 7) consist of parameter settings related to requirements of a single
user (or a group). In this context, precision can be defined as the share of correctly
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Table 3.4 Relevant
(indicated by

p
) and

predicted (indicated by
p

)
parameter values in a
group-based configuration
scenario

Group g Relevant Predicted

par1 D a
p p

par1 D b � �
par1 D c � �
par2 D 1

p �
par2 D 2 � p
par3 D a

p �
par3 D b � p
par4 D u

p p
par4 D v

p �
par4 D w � �

par4 is assumed to be multi-valued,
i.e., can have more than one value at
a time

predicted parameter values compared to the total number of predicted parameter
values. Furthermore, recall can be defined as the share of correctly predicted
parameter values compared to the total number of relevant parameter values (see
Formulae 3.3 and 3.4).

precision.g/ D j predictedvals.g/ \ relevantvals.g/j
j predictedvals.g/j (3.3)

recall.g/ D j predictedvals.g/ \ relevantvals.g/j
jrelevantvals.g/j (3.4)

An example of the calculation of precision and recall for group g in a group-
based configuration scenario is sketched in Table 3.4. In this example, precision D
2
4

D 0:5 (2 correct predictions out of 4) and recall D 2
5

D 0:4. Our assumption is
that parameter values for parameters par1 .. par4 have been predicted by a (group)
recommender system.

Remark Note that this approach to determine precision and recall can also be
applied to evaluate the predictive quality of diagnosis algorithms [9] (see Chaps. 1
and 2). In this case, precision can be regarded as the share of correctly predicted
diagnoses compared to the total number of predictions. Likewise, recall is the share
of correctly predicted diagnoses compared to the total number of relevant ones.

3.3 Error Metrics

Error metrics can be used to measure the error made by a recommender system to
predict a rating of an item. The underlying assumption is that the smaller the error,
the better the evaluated algorithm. A basic means of measuring prediction errors
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Table 3.5 Mean absolute
error (MAE) values
determined on the basis of the
rating information included in
Table 3.2

Groups MAE

g1
0:4C0:3

2
D 0:35

g2
0:0C0:1

2
D 0:05

g3
0:2C0:8

2
D 0:5

overall.AVG/ 0.3

Table 3.6 Determining
MAE in configuration
scenarios (measuring the
distance between predicted
parameter values and those
regarded as relevant ones)

Group g1 Relevant Predicted MAE

par1.1; 2; 3/ 1 3 j1 � 3j D 2

par2.1; 2/ 2 2 j2 � 2j D 0

par3.1; 2; 3; 4/ 2 3 j2 � 3j D 1

overall.AVG/ – – 1:0

is mean absolute error (MAE) (see Formula 3.5). A detailed discussion of error
metrics is given, for example, in Shani and Gunawardana [24]. In Formula 3.5, Rg

denotes the set of ratings of group g contained in the test set (see Table 3.2).

MAE.g/ D ˙r.g;t/2Rg jr.g; t/ � Or.g; t/j
jRgj (3.5)

The determination of the MAE value for the rating predictions in the test set
shown in Table 3.2 is depicted in Table 3.5. The overall MAE value for a test set can
be determined by averaging group-specific MAE values.

Similar to precision and recall, MAE can be used in the context of aggregated
predictions and aggregated models based group recommenders. Given a function
that estimates user � item ratings, this metric can also be applied in content-
based, constraint-based, and critiquing-based recommendation. Furthermore, MAE
can be applied to scenarios such as package recommendation and group-based
configuration (see Chap. 7). An example of determining MAE in configuration
scenarios is given in Table 3.6. For simplicity, we assume that parameter values
are numeric.3

Remark Note that the usage of these metrics in the context of recommendation
scenarios has declined as other types of metrics such as classification-based methods
started to dominate. Recommendation is often interpreted as ranking problem.

3.4 Ranking Metrics

Ranking-dependent metrics do not only take into account item relevance but also
the item position in a recommendation list. An example of such a metric is
discounted cumulative gain (DCG) which is based on the idea that items appearing

3For a discussion of the handling of symbolic parameter values, we refer to [26].
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Table 3.7 Example
application of discounted
cumulative gain (DCG)

relevance

Groups pos1 W t1 pos2 W t2 DCG@k

g1 1 1 1
1

C 1
1:6

= 1:625

g2 1 0 1
1

C 0
1:6

= 1

g3 1 0 1
1

C 0
1:6

= 1

Overall DCG.AVG/ 1:21

lower in a recommendation result should be penalized by downgrading relevance
values logarithmically (see Formula 3.6). In Formula 3.6, k denotes the number of
recommended items and relevance.ti; g/ returns 1 if item ti (at position i) is relevant
for group g, and 0 otherwise.

DCG@k.g/ D ˙iD1::k
2relevance.ti;g/ � 1

log2.1 C i/
(3.6)

An example of the application of discounted cumulative gain (DCG) is provided
in Table 3.7. The relevance values are derived from the group rating values of
Table 3.2 (relevance D 1 if r.g; t/ > 3:5, 0 otherwise). The more relevant items
are included at the beginning of a list of k recommended items, the higher the
DCG value. Since DCG operates on lists of ranked items, it can be applied to
collaborative filtering as well as content-based, constraint-based, and critiquing-
based recommendation. The overall DCG value for a test set is based on averaging
group-specific DCG values.

If the length of recommendation lists for groups vary, i.e., there is no fixed k that
reflects the number of recommended items, DCG has to be normalized by setting
DCG in relation to the ideal discounted cumulative gain (iDCG)—see Formula 3.7.
The resulting value is used to determine the normalized discounted cumulative gain
(nDCG)—see Formula 3.8.

iDCG@k D ˙iD1::k
1

log2.1 C i/
(3.7)

nDCG@k.g/ D DCG@k.g/

iDCG@k
(3.8)

In line with the previously discussed evaluation metrics, DCG can be used in the
context of aggregated predictions as well as in the context of aggregated models-
based group recommendation. DCG can also be applied to package recommendation
(see Chap. 7) by evaluating the predictive quality with regard to different item types,
and by aggregating type-individual DCG values into an overall DCG value.

When evaluating sequences of recommended items, not only the position of
the item (the later the worse) but also the position of the item compared to the
position selected by the group, is of relevance. In this context, a simple approach
is to compare items at individual positions in the sequence of recommended items
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Table 3.8 Example application of Kendall’s � to sequence evaluation (RS = recommended
sequence, CS = chosen sequence)

Position 1 2 3 4 5

RS t4 t2 t5 t1 t3
CS t1 t2 t5 t3 t4

with the sequence chosen by a group (k denotes the length of the sequence). Such
an evaluation can be performed, for example, on the basis of Kendall’s � (see
Formula 3.9).

�.g/ D jconcordantpairsj � jdiscordantpairsj
k � .k�1/

2

(3.9)

An example of the application of Formula 3.9 is depicted in Table 3.8. A
recommended item sequence (RS) gets compared with an item sequence finally
chosen by a group (CS)—the ground truth. In this example, four concordances are
against six discordances. A concordant pair is (t1; t3) since these items are mentioned
in the same order in both sequences (RS and CS). In contrast, (t2; t4) is an example
of a discordant pair since the order of mentioning differs (t4 before t2 in RS and t2
before t4 in CS). Consequently, � D �0:2 (on a scale of �1 .. C1).

3.5 Coverage and Serendipity

In the context of recommender systems, coverage can be considered from different
points of view—see, for example, Ge et al. [13]. User coverage can be interpreted
as the number of users for whom at least one recommendation can be determined.
For group recommendation, we introduce the term group coverage (GC) which
represents the share of groups for whom at least one group recommendation
could be identified (see Formula 3.10). No recommendations for a group can be
determined in situations where, for example, the aggregated item ratings are below a
certain threshold (collaborative filtering), or where all the given group requirements
do not allow a recommendation (which could be the case in constraint-based
recommendation scenarios).

GC D jgroupswithpredictionj
jgroupsj (3.10)

Catalog coverage (CC) serves the purpose of analyzing which items from a
catalog get recommended to users (groups). It represents the share of items that
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were recommended to users (groups) at least once, compared to the total number of
items contained in the item catalog (see Formula 3.11).

CC D jrecommendeditemsj
jcatalogitemsj (3.11)

Serendipity, in the context of recommender systems, is defined as something
surprising or unexpected that a user might not have seen before. A corresponding
measure of serendipity (SER) is proposed in Ge et al. [13] (see also Formula 3.12).
In this context, RS.g/ denotes the (useful) recommendations for group g determined
by a group recommender system and PM.g/ denotes the recommendations gener-
ated by a primitive prediction model (e.g., based on item popularity). The overall
SER value can be derived by averaging group-specific SER values.

SER.g/ D jRS.g/ � PM.g/j
jRS.g/j (3.12)

3.6 Consensus and Fairness

Consensus can be regarded as a measure that evaluates to which extent group
members have established an agreement with regard to their item preferences—see,
for example, [5, 23]. In collaborative filtering, consensus can be measured in terms
of the pairwise distances between the item-t ratings r.ui; t/ of the individual group
members ui (see Formula 3.13) where rmax (the maximum rating possible) is used
as normalization factor.

consensus.g; t/ D 1 � ˙.ui;uj/2g.i¤j/jr.ui; t/ � r.uj; t/j
jgj � .jgj � 1/=2 � rmax

(3.13)

If rating information is available, the same measure can be applied in content-
based, constraint-based, and critiquing-based recommendation. In conversational
recommendation, i.e., in constraint-based or critiquing-based recommendation,
group members are engaged in an interactive process where they define and
refine their preferences. In constraint-based recommendation, group members define
their preferences as requirements whereas in critiquing-based recommendation
critiques are used to represent preferences. In both cases, preferences can become
inconsistent and have to be adapted so that a recommendation can be identified. In
the context of conversational recommendation, we define consensus as the share
of pairwise agreements (e.g., equal parameter value selections) between group
members in relation to the total number of pairwise agreements and disagreements
(conflicts) (see Formula 3.14).

consensus.g/ D #agreements.g/

#agreements.g/ C #conflicts.g/
(3.14)
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Table 3.9 Example: determining consensus in conversational recommendation

Users

Parameters u1 u2 u3 Agreements Disagreements Consensus

par1.1; 2/ 1 1 1 3 0 –

par2.1; 2; 3/ 1 2 1 1 2 –

par3.a; b/ a a b 1 2 –

overall – – – 5 4 0.56

A simple example of evaluating the degree of consensus in conversational
recommendation scenarios is shown in Table 3.9. In this example, we count
the pairwise agreements and disagreements between fu1; u2; u3g D g. The total
number of disagreements is 4 and the total number of agreements is 5. Following
Formula 3.14, the consensus level in this example is 5

5C4
= 0:56 (on a scale 0::1).

Since group recommender systems involve multiple stakeholders, they can give
rise to fairness issues [3]. Burke [3] introduces the concept of multi-sided fairness
where different stakeholder groups have different interests that should somehow be
balanced. In such a context, fairness can be considered as the extent of imbalance
between group member specific utilities [29]. If single items are recommended to a
group by collaborative filtering, fairness can be specified, for example, on the basis
of the share of item ratings above a relevance threshold th (see Formula 3.15).

fairness.g; t/ D jSu2g W r.u; t/ > thj
jgj (3.15)

If we evaluate the t1 ratings of group g1 in Table 3.1 on the basis of Formula 3.15
assuming th D 3:5, the overall degree of fairness with regard to item t1 is 2

3
D 0:66

(on a scale of 0::1). The fairness interpretation of Formula 3.15 primarily considers
situations where single items are recommended to groups, i.e., this metric does
not take into account situations where packages are recommended to groups [23].
Alternative definitions of fairness are the following.4

First, m-proportionality (see Formula 3.16) interprets fairness as the share of
group members ui with at least m items in the recommended (or selected) package
for which ui has a high preference [23]. In this context, gp denotes the set of users
for whom the m-proportionality condition holds.

fairnessm�prop.g/ D jgpj
jgj (3.16)

4See also Chap. 6.
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Table 3.10 Evaluating fairness based on m-proportionality (m-prop) where m D 2

Item ratings

g1 t1 t2 t3 Rating threshold > 3:5 m-prop

u1 5.0 4.0 1.0 2 1

u2 4.0 3.0 2.0 1 0

u3 4.5 5.0 5.0 3 1

u4 3.5 3.0 5.0 1 0

fairnessm�prop – – – – 2
4

D 0:5

Table 3.11 Fairness based
on m-envy-freeness (m-envy)
where m D 1 and x D 25%

Item ratings

g1 t1 t2 t3 m-envy

u1 5.0 4.0 1.0 1

u2 4.0 3.0 2.0 0

u3 4.0 5.0 5.0 1

u4 3.0 3.0 5.0 1

fairnessm�envy – – – 3
4

An example (m D 2) of the calculation of a fairness estimate following the m-
proportionality criteria is given in Table 3.10. The gp value in this example is 2 since
two users (u1; u3) each evaluated two items above the threshold rating of 3:5.

Second, m-envy-freeness (see Formula 3.17) interprets fairness as the share of
group members ui with at least m items for which ui is in the top x% item ratings.
If this condition does not hold, the user feels envy towards other group members. In
this context, gef denotes the users for whom m-envy-freeness holds [23].

fairnessm�envy.g/ D jgef j
jgj (3.17)

An example of the calculation of a fairness estimate following the m-envy-
freeness criteria (m D 1 and x D 25%) is given in Table 3.11. In this example,
the gef value is 3 since u1; u3, and u4 are group members of group g1 with at least
one item each for which they are in the top 25% of the item ratings.

The same approach to evaluate the fairness of recommendations proposed by
a group recommender system can be applied in the context of content-based,
constraint-based, and critiquing-based recommendation.

3.7 Conclusions and Research Issues

With a specific focus on group recommender systems, we have provided an
overview of evaluation techniques. We have learned that the evaluation of group
recommender systems can often be accomplished by employing standard evaluation
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approaches from single user recommender systems [24]. We want to emphasize that
there are several other metrics that one might want to consider when evaluating
group recommender systems. Examples thereof are trust, privacy, and performance.
Importantly, the usefulness of some evaluation metrics also depends on the item
domain. For example, food recommender systems are not only following the
goals of accuracy but also other criteria such as healthiness [22, 27]. An open
research issue in the context of group recommender systems but also single-user
recommender systems are evaluation metrics for complex, for example, configurable
items. In this chapter, we have provided a couple of examples of metrics for complex
items, but a more in-depth analysis and provision of corresponding metrics is an
issue for future research. Synthesis approaches to generate groups sound like a
promising and “cheap” alternative to studies with real groups. Often, clustering
approaches are applied to derive groups from single user datasets—see, for example,
Baltrunas et al. [2]. Group synthesis can also be based on analyzing social networks
where social ties can serve as an indicator for group membership [18]. However, it
should be mentioned that such approaches are based on simulations and should not
replace controlled lab-studies, crowd-sourcing studies, or naturalistic online tests.
For an overview of datasets related to single user recommender systems and existing
software frameworks that can serve as a basis for developing group recommender
systems, we refer to Said et al. [21].
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