
Chapter 1
Decision Tasks and Basic Algorithms

Alexander Felfernig, Müslüm Atas, and Martin Stettinger

Abstract Recommender systems are decision support systems helping users to
identify one or more items (solutions) that fit their wishes and needs. The most
frequent application of recommender systems nowadays is to propose items to
individual users. However, there are many scenarios where a group of users should
receive a recommendation. For example, think of a group decision regarding the
next holiday destination or a group decision regarding a restaurant to visit for a joint
dinner. The goal of this book is to provide an introduction to group recommender
systems, i.e., recommender systems that determine recommendations for groups.
In this chapter, we provide an introduction to basic types of recommendation
algorithms for individual users and characterize related decision tasks. This intro-
duction serves as a basis for the introduction of group recommendation algorithms
in Chap. 2.

1.1 Introduction

A recommender system is a specific type of advice-giving or decision support
system that guides users in a personalized way to interesting or useful objects
in a large space of possible options or that produces such objects as output
[14, 17, 23, 29, 43, 66, 76, 81, 82]. A decision problem/task emerges if a person
or a group of persons have an idea about a desired state [33]. If there are different
options to achieve the desired state, the decision task to be solved is to identify items
or actions that help to approach the target state in a suitable fashion. Recommender
systems can provide help in such a context by trying to find the suitable items
or actions that help to best reach the envisioned target. Arriving at a choice can
be seen as the result of a collaboration between the user and the recommender
system. Recommender systems support “good” choices within reasonable time
spans including corresponding justifications provided in terms of explanations
[42, 80].

© The Author(s) 2018
A. Felfernig et al., Group Recommender Systems, SpringerBriefs in Electrical
and Computer Engineering, https://doi.org/10.1007/978-3-319-75067-5_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75067-5_1&domain=pdf
https://doi.org/10.1007/978-3-319-75067-5_1


4 1 Decision Tasks and Basic Algorithms

There are different ways in which a recommender can support users in decision
making processes. First, it can act as a supporter to figure out candidate items, i.e.,
a large number of alternatives is reduced to a so-called consideration set—selecting
the favorite option is left to the user. Second, the recommender can help the user
select from the items in the consideration set, for example, by representing them in
convenient ways and providing explanations of why they have been recommended.
Only in “extreme” cases is the decision making authority taken over by the
recommender itself. Examples include music recommendation in a fitness studio,
the recommendation of information units on a public display, and the automated
adaptation of parameter settings such as light intensity in a smarthome [50].

An example of a single-user recommendation scenario is the following: when
navigating an online sales platform with the goal to find a book related to the
topic of, for example, deep learning, a recommender system will identify related
books and propose these to the user of the online platform. In this scenario, the
envisioned target state is to find a suitable book on the mentioned topic and the
options to achieve this state are the different existing books on the topic of deep
learning. Finding a book in an online sales platform is typically a single user
decision scenario. However, there are also scenarios where a group of users has
to make a decision. In this context, a recommender system must take into account
the potentially conflicting preferences of different group members. Such a situation
makes the recommendation task different and often more challenging.

The main focus of this book is recommendation techniques that provide help in
scenarios where a group of users is engaged. In many scenarios, the presentation
of recommendations to groups is a more natural approach than trying to address
individual users [40, 56, 58]. For example, music recommendations in fitness studios
have to take into account the preferences of all individuals currently present in the
studio [59]. Stakeholders in a software project have to establish agreement regarding
the requirements/features that have to be developed within the scope of the next
release [64]. Personnel decisions are often taken in groups, i.e., a group has to decide
which job applicant will be hired [78]. Groups of friends have to decide about the
hotel for the next summer holidays or a skiing resort for the next winter holidays
[39, 61]. A public display should be personalized in order to be able to display
information to persons currently in the surrounding [40]. Finally, travel groups
should receive a personalized museum guidance in such a way that the personal
preferences of group members are fulfilled [28, 47].

1.2 Characteristics of Decision Tasks

Decision tasks differ with regard to various aspects [69]. In the following, we
introduce basic dimensions of decision tasks (see [33]) which will help to better
understand which decisions are supported by group recommenders (see Table 1.1).1

1As mentioned in [33], this characterization of decision tasks is not complete but a good basis for
discussing properties relevant for group recommenders.



1.2 Characteristics of Decision Tasks 5

Table 1.1 Characteristics of
decision tasks [33]

Dimension Characteristic

Complexity low .. high

Structuredness low .. high

Decision type choice .. design

Sentiment opportunity .. threat

Dependence yes .. no

Level original .. meta

Actor person .. group

Complexity We interpret complexity of decision tasks in terms of the number of
decision dimensions and the degree of item involvement [33, 38]. Depending on
the underlying item domain, humans will invest more or less time to come to
a decision, i.e., to achieve an acceptable trade-off between decision effort and
accuracy [67]. Items with higher related decision efforts are often denoted as high-
involvement items whereas items with less related decision efforts are denoted as
low-involvement items [70]. Suboptimal decisions have a much higher negative
impact in the context of high-involvement items. For example, when purchasing an
apartment, a suboptimal decision manifests in search efforts for a new apartment,
unnecessary payments, relocation costs, and additional time efforts [27]. In contrast,
risks related to the purchasing of a low-quality book are negligible—in the worst
case, the user will provide negative feedback on the book and try to find other
alternatives that better fit his/her wishes and needs. When purchasing a book, the
number of decision dimensions is low—examples of dimensions are price and
quality. The number of decision dimensions of apartments is much higher (e.g.,
price, quality of public transport, neighborhood, schools in the neighborhood, etc.).
Aspects that further increase decision complexity especially in group decision
scenarios are, for example, contradicting preferences of group members, personal
relationships, personality factors, and emotion-related aspects (see Chap. 9).

Structuredness We interpret structuredness of decision tasks as the degree to which
underlying processes and decision policies are defined. Decision tasks are often
characterized by undefined processes and related decision policies are not pre-
defined but developed and adapted in the course of the decision process. If a group
of users has to decide on a holiday destination for the next summer, a recommender
system can propose alternative destinations but it is unclear which of the alternatives
will be chosen by the group. The final decision is something that has to be made
by group members (or an individual user) and is in many cases not handled by
the underlying decision support environment. There are exceptions to the rule, for
example, music recommendations in fitness centers and information units shown on
public displays. Specific decision types follow a formalized process. For example,
electoral systems are defined by precise rules that determine how elections and
referendums have to be conducted (the process) and how the results are determined
(decision making).



6 1 Decision Tasks and Basic Algorithms

Decision Type Decision tasks are often defined on the basis of known alternatives
or parameters out of which one or more alternatives (values) should be selected.
If alternatives (parameters) are predefined, the underlying decision task can be
regarded as a basic choice task [42]. Choice problems are considered as central
application area for recommender systems [42]. The other extreme are so-called
design tasks, where alternatives are not predefined but created throughout a decision
process. Design tasks are often related to creative acts where persons develop
ideas and solutions. In “pure” design scenarios, the application of recommendation
technologies is not widespread [75]. However, there are many scenarios located
in-between basic choice tasks and “pure” design tasks. For example, knowledge-
based configuration [25] can be considered as a simpler type of design task where
a solution is identified (configured) out of a set of pre-defined component types. In
this context, the alternatives (parameter values) are known beforehand; due to the
large option space, not all potential alternatives can be enumerated for performance
reasons—billions of alternatives would have to be managed and the corresponding
recommendation algorithms would become inefficient [13] (see Chap. 7).

Sentiment Decision support with included recommendation support is very often
opportunity-related, i.e., the goal is related to an opportunity and the best solution to
achieve a goal should be identified. Examples thereof are purchasing a book to better
understand a certain topic or choosing a holiday destination to spend unforgettable
days somewhere abroad. A similar argument holds for item domains such as songs,
digital equipment, food, and financial services. Certainly, decision problems also
exist in contexts where alternative outcomes can be considered as negative ones.
For example, choosing between alternative options to liquidate a company—in this
scenario, every outcome can be considered as a negative one (the company gets
liquidated). However, recommender systems can help to minimize damage, for
example, on the basis of a structured utility analysis [79].

Dependence We regard decision tasks as dependent if the outcome of a decision
has an impact on another decision. For example, the purchase of a movie typically
does not require a follow-up decision regarding the purchase of the next movie
or different item. Dependent decision tasks occur when one decision at an earlier
point of time leads to follow-up decision tasks at a later point of time. An example
of such a decision task is requirements release planning where for each software
requirement it has to be decided when the requirement should be implemented [64].
Consequently, decisions taken in early phases of a software project can have an
impact on or trigger decisions later in the project. For example, a decision that a
requirement should be implemented could trigger decisions regarding additional
resources in order to be able to provide the promised software functionalities in
time.

Level We can differentiate between original decisions operating on the object
level and decisions on the meta-level [33]. The first type is omni-present in many
recommendation-supported scenarios—the underlying task is to identify and choose
items of relevance. In contrast, meta-decisions are decisions about the qualities of



1.3 Recommendation Algorithms for Individual Users 7

a decision process and the way decisions are taken. For example, a group could
decide to use majority voting when it comes to the election of the next chairman.
A meta-decision in this context is to decide about the election formalism—related
alternatives can be, for example, relative majority and a single-shot election or
absolute majority in a potentially multi-level election process [51]. In many decision
scenarios—especially in the context of group decision making—recommendations
have an advisory function but are not considered imperative.

Actor Many recommendation approaches support individual decision making
where recommendation algorithms are focusing on determining recommendations
for individual users. The focus of this book are recommender systems that support
decision making for groups of users. The following types of groups are introduced
in [7]: (1) established groups with shared and long-term common interests (e.g.,
conference committees taking decisions about conference venues or families taking
a decision about purchasing a house), (2) occasional groups with a common aim
in a particular moment (e.g., a group of persons jointly participating in a museum
tour), (3) random groups (e.g., persons in a fitness center or persons around a public
display), and (4) automatically identified groups where individuals with similar
preferences have to be grouped (e.g., distribution of seminar papers to students and
distribution of conference papers to reviewers).

1.3 Recommendation Algorithms for Individual Users

Recommender systems [43, 58] propose items of potential interest to an individual
user or a group of users.2 They are applied in item domains such as books [52],
web sites [68], financial services [16], and software artifacts [20, 24]. In the
following, we introduce collaborative filtering [31, 48], content-based filtering [68],
constraint-based [8, 14], critiquing-based [10, 11], and hybrid recommendation
[9] which are basic recommendation approaches. The items in Table 1.2 (travel
destinations) serve as examples to demonstrate how basic recommendation algo-
rithms operate. In Chap. 2, we show how these approaches can be integrated into
corresponding group recommendation scenarios.

Collaborative Filtering

Collaborative filtering is based on the idea of word-of-mouth promotion where opin-
ions of relatives and friends play a major role when taking a decision [12, 48, 52]. In
online scenarios, family members and friends are replaced by nearest neighbors who

2Parts of this section are based on a discussion of recommendation technologies given in [24].



8 1 Decision Tasks and Basic Algorithms

Table 1.2 Example set of travel destinations

Travel destination (item) Name Beach City tours Nature Entertainment

t1 Vienna x x

t2 Yellowstone x

t3 New York x x x

t4 Blue Mountains x

t5 London x x

t6 Beijing x x

t7 Cape Town x x x x

t8 Yosemity x

t9 Paris x x

t10 Pittsburgh x x

These items will be used across the following sections for demonstration purposes. Each travel
destination is described by a set of meta-characteristics (categories), for example, travel destination
Yellowstone is famous for its experience of nature

are users with preferences similar to the ones of the current user. In collaborative
filtering, a user � item rating specifies to which extent a user likes an item. Rating
predictions are determined by a recommender algorithm to estimate the extent a user
will like an item he/she did not consume/evaluate up to now. A collaborative filtering
recommender first determines k nearest neighbors (k � NN).3 The preferences of
nearest neighbors are used to extrapolate future item ratings of the current user.
A user � item rating matrix that will be used in the following for explaining
collaborative filtering is shown in Table 1.3. In this example, all users ui visited
travel destinations and provided a corresponding rating. In collaborative filtering,
user � item ratings serve as input for the recommender.

Collaborative filtering identifies the k-nearest neighbors of the current user ua

(see Formula 1.1)4 and—based on the nearest neighbors—calculates a prediction
for the current user’s rating. When applying Formula 1.1, user u2 is identified as
the nearest neighbor of user ua (see also Table 1.3). The similarity between ua

and another user ux can be determined, for example, using the Pearson correlation
coefficient [43] (see Formula 1.1) where TDc is the set of items that have been rated
by both users (ua and ux), rx;ti is the rating of user x for item ti, and rx is the average
rating of user x. Similarity values resulting from Formula 1.1 can take values on a
scale of [�1:: C 1]. Sometimes, “neighbor” users with low or negative correlations
with the current user are filtered out [1].

3We focus on user-based collaborative filtering which is a memory-based approach that—in
contrast to model-based ones—operates on an uncompressed version of a user/item matrix [6, 12].
4We assume k = 2 in our example.



1.3 Recommendation Algorithms for Individual Users 9

Table 1.3 Example of collaborative filtering rating matrix: travel destinations (items) ti and ratings
(we assume a rating scale of 1..5)

Item Name u1 u2 u3 u4 ua

t1 Vienna 5.0 4.0

t2 Yellowstone 4.0

t3 New York 3.0 4.0 3.0

t4 Blue Mountains 5.0 5.0 4.0

t5 London 3.0

t6 Beijing 4.5 4.0 4.0

t7 Cape Town 4.0

t8 Yosemity 2.0

t9 Paris 3.0

t10 Pittsburgh 5.0 3.0

Average rating (rx) 4.33 3.625 4.0 3.75 3.67

Table 1.4 Similarity
between user ua and the users
uj ¤ ua determined based on
Formula 1.1

u1 u2 u3 u4

ua – 0.97 0.70 –

If the number of commonly
rated items is below 2, no
similarity between the two
users is calculated

similarity.ua; ux/ D
P

ti2TDc
.ra;ti � ra/ � .rx;ti � rx/

qP
ti2TDc

.ra;ti � ra/2 �
qP

ti2TDc
.rx;ti � rx/2

(1.1)

The similarity values for ua calculated based on Formula 1.1 are shown in
Table 1.4. For the purpose of our example, we assume the existence of at least two
items per user pair (ui, uj) (i ¤ j) in order to be able to determine a similarity. This
criterion holds for users u2 and u3.

A challenge when determining the similarity between users is the sparsity of the
rating matrix. Users typically provide ratings for only a very small subset of the
offered items. For example, given a large movie dataset that contains thousands of
entries, a user will typically be able to rate only a few dozen. One approach to this
problem is to take into account the number of commonly rated items as a correlation
significance [37], i.e., the higher the number of commonly rated items, the higher is
the significance of the corresponding correlation. For further information regarding
the handling of sparsity, we refer to [37, 43].

The information about the set of users with a rating behavior similar to that of
the current user (nearest neighbors NN) is the basis for predicting the rating of user
ua for an item t that has so far not been rated by ua (see Formula 1.2).

prediction.ua; t/ D Or.ua; t/ D ra C
P

uj2NN similarity.ua; uj/ � .rj;t � rj/
P

uj2NN similarity.ua; uj/
(1.2)



10 1 Decision Tasks and Basic Algorithms

Table 1.5 Collaborative filtering based recommendations (predictions) for items that have not
been rated by user ua up to now

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

u2 – – 3.0 5.0 – 4.5 – 2.0 – –

u3 – – 4.0 5.0 3.0 4.0 – – – –

ua – – – 4.0 – 4.0 – – 3.0

Prediction for ua – – 3.30
p

– 2.66 – – 2.04 – –

Based on the ratings of the nearest neighbors of ua, we are able to determine a
prediction for ua (see Table 1.5). The nearest neighbors of ua are assumed to be u2

and u3 (see Table 1.4). The travel destinations rated by the nearest neighbors but
not rated by ua are t3, t5, and t8. Due to the determined predictions (Formula 1.2),
item t3 would be ranked higher than the items t5 and t8 in a recommendation list.
For a discussion of advanced collaborative recommendation approaches, we refer
the reader to [49, 74].

Content-Based Filtering

This approach is based on the assumption of monotonic personal interests [68]. For
example, users interested in political news are typically not changing their interest
profile from one day to another. On the contrary, they will also be interested in
the topic in the (near) future. In online scenarios, content-based recommenders are
applied, for example, when it comes to the recommendation of websites [68].

Content-based filtering is based on (a) a set of users and (b) a set of categories
(or keywords) that have been assigned to (or extracted from) the set of items. It
compares the content of already consumed items with new items, i.e., it finds items
that are similar to those already consumed (positively rated) by the user (ua). The
basis for determining such a similarity are keywords extracted from the item content
descriptions (e.g., keywords extracted from news articles) or categories if items
have been annotated with the relevant meta-information. Readers interested in the
principles of keyword extraction are referred to [43]. In this book, we focus on
content-based recommendation which exploits item categories (see Table 1.2).

Content-based filtering will now be explained using Tables 1.2, 1.6, and 1.7.
Table 1.2 provides an overview of the relevant items and the assignments of items
to categories. Table 1.6 provides information on which categories are of relevance
for our example users. For example, user u1 is interested in items related to all
categories. Since user ua rated the items t4, t6, and t10 (see Table 1.3), we can infer
that ua is interested in the categories City Tours, Nature, and Entertainment (see
Table 1.6) where items related to the categories City Tours and Entertainment have
been evaluated twice and items related to Nature have been evaluated once by ua.

If we are interested in an item recommendation for the user ua, we have to search
for those items which are most similar to the items that have already been consumed



1.3 Recommendation Algorithms for Individual Users 11

Table 1.6 Example category
interests of users: users u1 –
u3 visited travel destinations
that cover all available
categories

Category u1 u2 u3 u4 ua

Beach x x x x –

City tours x x x x x

Nature x x x – x

Entertainment x x x x x

If a user accessed an item at least once
with a rating � 3 (see Table 1.3), it is
inferred that the user is interested in this
item

Table 1.7 Example of content-based filtering: user ua has already consumed the items t4, t6, and
t10 (see Table 1.3)

Item Rating (ua) Name Beach City tours Nature Entertainment Similarity(ua; ti)

t1 Vienna – x – x 4
5

t2 Yellowstone – – x – 1
2

t3 New York x x – x 2
3

t4 4.0 Blue Mountains – – x – –

t5 London – x – x 4
5

t6 4.0 Beijing – x – x –

t7 Cape Town x x x x 6
7

p
t8 Yosemity – – x – 1

2

t9 Paris – x – x 4
5

t10 3.0 Pittsburgh – x – x –

user ua x x x

The item most similar (see Formula 1.3) to the preferences of ua is t7

(evaluated) by ua. This relies on the simple similarity metric shown in Formula 1.3
(Dice coefficient which is a variation of the Jaccard coefficient “intensively” taking
into account category commonalities—see also [43]). The major difference to the
similarity metrics introduced in the context of collaborative filtering is that similarity
is measured using categories (in contrast to ratings).

similarity.ua; item/ D 2 � jcategories.ua/ \ categories.item/j
jcategories.ua/j C jcategories.item/j (1.3)

Constraint-Based Recommendation

Compared to the approaches of collaborative filtering and content-based filtering,
constraint-based recommendation [14, 16, 63] does not primarily rely on item
ratings and textual item descriptions but on deep knowledge about the offered items.
Such deep knowledge (semantic knowledge [16]) describes an item in more detail
and thus allows for a different recommendation approach (see Table 1.8).



12 1 Decision Tasks and Basic Algorithms

Table 1.8 Slightly adapted travel destinations described based on season (digit 1 indicates
a recommended season and 0 indicates a non-recommended one; seasons start with spring),
associated topics, and average user rating (eval)

Item Name Season Topics Eval

t1 Vienna 1110 City tours, entertainment 4.5

t2 Yellowstone 1110 Nature 4.0

t3 New York 1011 City tours, entertainment 3.3

t4 Blue Mountains 1001 Nature 5.0

t5 London 1010 City tours, entertainment 3.0

t6 Beijing 1010 City tours, entertainment 4.7

t7 Cape Town 1111 Beach, city tours, nature, entertainment 4.0

t8 Yosemity 1110 Nature 2.0

t9 Paris 1011 City tours, entertainment 3.0

t10 Pittsburgh 1010 City tours 5.0

Constraint-based recommendation relies on (a) a set of rules (constraints) and
(b) a set of items. Depending on the user requirements (a set of search criteria),
rules (constraints) describe which items should be recommended. The current
user (ua) articulates his/her requirements (preferences) in terms of item property
specifications which are internally represented as rules (constraints). In our example,
constraints are represented solely by user requirements, no further constraint types
are included. An example of a constraint is the following: topics = city tours (the
user is primarily interested in travel destinations allowing city tours). For a detailed
discussion of further constraint types, we refer the reader to [16]. Constraints are
interpreted and the resulting items are presented to the user. A detailed discussion
of reasoning mechanisms that are used in constraint-based recommendation can be
found in [14, 19, 22]. In order to determine a recommendation in a constraint-based
recommendation scenario, a recommendation task has to be solved.

Definition (Recommendation Task) A recommendation task can be defined by the
tuple (R; I) where R represents a set of user requirements and I represents a set of
items (in our case: travel destinations ti 2 I). The goal is to identify those items in I
which fulfill the given user requirements (preferences).

A solution for a recommendation task (also denoted as recommendation) can be
defined as follows.

Definition (Solution for a Recommendation Task) A solution for a recommendation
task (R; I) is a set S � I such that 8ti 2 S W ti 2 �.R/I where � is the selection operator
of a conjunctive query [19], R represents a set of selection criteria (represented as
constraints), and I represents an item table (see, e.g., Table 1.8). If we want to restrict
the set of item properties shown to the user in a result set (recommendation), we have
to additionally include projection criteria � as follows: �.attributes.I//.�.R/I/.

In our example, we show how to determine a solution for a given recom-
mendation task based on a conjunctive query where user requirements are used



1.3 Recommendation Algorithms for Individual Users 13

Table 1.9 Travel destinations described with regard to the dimensions security (high evaluation
represents a high security), attractiveness (high evaluation represents a high attractiveness), and
crowdedness (high evaluation represents a low crowdedness)

Item Name Security Attractiveness Crowdedness

t1 Vienna 5 5 2

t2 Yellowstone 4 4 4

t3 New York 3 5 1

t4 Blue Mountains 4 3 5

t5 London 3 4 1

t6 Beijing 3 3 1

t7 Cape Town 2 3 3

t8 Yosemity 4 4 4

t9 Paris 3 5 1

t10 Pittsburgh 3 3 3

For example, security = 5 for the item Vienna indicates the highest possible contribution to the
dimension security (scale 1..5)

as selection criteria (constraints) on an item table I. If we assume that the user
requirements are represented by the set R = fr1 W season D winter; r2 W topics D
city toursg and the item table I consists of the elements shown in Table 1.8,
then �.item/.�.seasonDwinter^topicsDcity tours/I/ = {t3; t7; t9}, i.e., these three items are
consistent with the given set of requirements.

Ranking Items Up to now we know which items can be recommended to a user.
One widespread approach to rank items is to define a utility scheme which serves
as a basis for the application of Multi Attribute Utility Theory (MAUT).5 Items
can be evaluated and ranked with respect to a set of interest dimensions. In travel
destinations, example interest dimensions are security (security level of the travel
destination), attractiveness (estimated attractiveness of the travel destination), and
crowdedness (degree of crowdedness of the travel destination). The first step to
establish a MAUT scheme is to relate the interest dimensions with the given set of
items. An example thereof is shown in Table 1.9 where the city of Vienna receives
the highest evaluations with regard to the dimensions security and attractiveness
and a low evaluation with regard to crowdedness.

We are now able to determine the user-specific utility of each individual item.
The calculation of item utilities for a specific user ua can be based on Formula 1.4.

utility.ua; item/ D
X

d2Dimensions

contribution.item; d/ � weight.ua; d/ (1.4)

If we assume that the current user ua assigns a weight of 0.6 to the dimension
security (weight(ua,security)=0.6), a weight of 0.3 to the dimension attractiveness

5A detailed discussion of MAUT in constraint-based recommendation is given in [2, 16, 18].



14 1 Decision Tasks and Basic Algorithms

Table 1.10 Item-specific
utility for user ua

(utility(ua; ti)) assuming the
personal preferences
{weight(ua,security)=0.6,
weight(ua,attractiveness)=0.3,
weight(ua,crowdedness)=0.1},
item t1 has the highest utility
for user ua

Item Security Attractiveness Crowdedness Utility

t1 3.0 1.5 0.2 4.7
p

t2 2.4 1.2 0.4 4.0

t3 1.8 1.5 0.1 3.4

t4 2.4 0.9 0.5 3.8

t5 1.8 1.2 0.1 3.1

t6 1.8 0.9 0.1 2.8

t7 1.2 0.9 0.3 2.4

t8 2.4 1.2 0.4 4.0

t9 1.8 1.5 0.1 3.4

t10 1.8 0.9 0.3 3.0

(weight(ua,attractiveness)=0.3), and a weight of 0.1 to the dimension crowdedness
(weight(ua,crowdedness)=0.1), then the user-specific utilities of the individual items
(ti) are the ones shown in Table 1.10.

Managing Inconsistencies In constraint-based recommendation scenarios, we have
to deal with situations where no solution (recommendation) can be identified for a
given set of user requirements, i.e., �.R/I D ;. In such situations, we are interested
in proposals for requirements changes such that a solution can be found. For
example, if a user is interested in travel destinations for entertainment with an
overall evaluation of 5.0 in the summer season, then no solution can be provided
for the given set of requirements R = fr1 W season D summer; r2 W topics D
entertainment; r3 W eval D 5:0g.

User support in such situations can be based on the concepts of conflict detection
[44] and model-based diagnosis [13, 15, 72]. A conflict (or conflict set) with regard
to an item set I in a given set of requirements R can be defined as follows.

Definition (Conflict Set) A conflict set is a set CS � R such that �.CS/I D ;. CS is
minimal if there does not exist a conflict set CS’ with CS’ � CS.

In our example, we are able to determine the following minimal conflict sets CSi:
CS1 W fr1; r3g, CS2 W fr2; r3g. We will not discuss algorithms that support the deter-
mination of minimal conflict sets but refer the reader to the work of Junker [44] who
introduces a divide-and-conquer based algorithm with a logarithmic complexity in
terms of the needed number of consistency checks.

Based on the identified minimal conflict sets, we are able to determine the
corresponding (minimal) diagnoses. A diagnosis for a given set of requirements
which is inconsistent with the underlying item table can be defined as follows.

Definition (Diagnosis) A diagnosis for a set of requirements R = fr1; r2; : : : ; rng is
a set � � R such that �.R��/I ¤ ;. A diagnosis � is minimal if there does not exist
a diagnosis �0 with �0 � �.

In other words, a diagnosis (hitting set) is a minimal set of requirements that have
to be deleted from R such that a solution can be found for R - �. The determination



1.3 Recommendation Algorithms for Individual Users 15

of the complete set of minimal diagnoses for a set of requirements inconsistent with
the underlying item table (the corresponding conjunctive query results in ;) is based
on the construction of hitting set trees [72].

There are two possibilities of resolving the conflict set CS1. If we decide to delete
the requirement r3, �.fr1;r2g/I ¤ ;, i.e., a diagnosis has been identified (�1 D fr3g)
and—as a consequence—all CSi have been resolved. Choosing the other alternative
and resolving CS1 by deleting r1 does not result in a diagnosis since the conflict CS2

is not resolved. Resolving CS2 by deleting r3 does not result in a minimal diagnosis,
since r3 already represents a diagnosis. The second (and last) minimal diagnosis that
can be identified in our running example is �2 D fr1; r2g. For a detailed discussion
of the underlying algorithm and analysis, we refer to [21, 72]. Note that a diagnosis
provides a hint to which requirements have to be changed. For a discussion of how
requirement repairs (changes) are calculated, we refer to Felfernig et al. [19].

Critiquing-Based Recommendation

Critiquing-based recommender systems support the navigation in the item space
where in each critiquing cycle a reference item is presented to the user and the
user either accepts the (recommended) item or searches for different solutions
by specifying critiques (see Fig. 1.1). Critiquing-based recommender systems are
useful in situations where users are not experts in the item domain and prefer to
specify their requirements on the level of critiques [46]. Critiques are basic criteria
that are used for determining new recommendations which take into account the
(changed) preferences of the current user. Examples of such critiques in the context
of our running example are higher level of security and higher attractiveness.
Critiques are used as search criteria to identify corresponding candidate items, i.e.,
items that are shown to the user if he/she has specified critiques on the current
reference item. Critiquing-based recommenders often search for items that are
similar to the current reference item and additionally take into account the new

Fig. 1.1 Example of a
critiquing scenario: an item
(t4) is shown as reference
item to the user. The user
specifies the critique “higher
security.” The new reference
item is t1 since it is consistent
with the critique and the item
most similar to t4 (here, it is
also the only remaining
alternative)



16 1 Decision Tasks and Basic Algorithms

criteria defined as critiques. When searching for a new reference item, similarity
and diversity metrics are applied to systematically guide the navigation in the item
space [43].

Similarity metrics in critiquing-based approaches are used to determine the
similarity between a reference item currently shown to the user and a set of
candidate items to be shown to the user in the next critiquing cycle. Example
similarity metrics often used in the context of critiquing-based recommendation
scenarios are represented by Formulae 1.5–1.9. In this context, sim.r; c/ denotes
the similarity between the reference item r and the candidate item c, the subroutine
s.r:i; c:i/ is represented by different attribute-level similarity metrics (MIB, LIB,
NIB, and EIB). If a higher attribute value is better than a lower one, More-Is-
Better (MIB) (Formula 1.6) is used to evaluate the attribute of a candidate item
(c:i). Vice versa, if low attributes values are considered better, the Less-Is-Better
(LIB) similarity metric is used (Formula 1.7). Furthermore, Nearer-Is-Better (NIB)
(Formula 1.8) is used if the attribute value of the candidate item should be as near
as possible to the attribute r:i. Finally, Equal-Is-Better (EIB) is used in situations
where attribute values should be equal (Formula 1.9). Besides taking into account
the similarity between the reference item and candidate items, some critiquing-
based systems also take into account the compatibility of a candidate item with
regard to the complete critiquing history [61]. Thus, a trade-off between similarity
to the reference item and critique compatibility can be achieved.

sim.r; c/ D
X

i2attributes

s.r:i; c:i/ � w.i/ .˙i2attributesw.i/ D 1/ (1.5)

MIB W s.r:i; c:i/ D val.c:i/ � minval.r:i/

maxval.r:i/ � minval.r:i/
(1.6)

LIB W s.r:i; c:i/ D maxval.r:i/ � val.c:i/

maxval.r:i/ � minval.r:i/
(1.7)

NIB W s.r:i; c:i/ D 1 � jval.r:i/ � val.c:i/j
maxval.r:i/ � minval.r:i/

(1.8)

EIB W s.r:i; c:i/ D
(

1 if r:i D c:i

0 otherwise
(1.9)

If users are knowledgeable in the item domain, the application of search-
based approaches such as constraint-based recommendation makes more sense.
Different types of critiquing-based approaches primarily differ in terms of the way
in which user preferences can be specified. Unit critiquing [10, 54] only supports
the definition of critiques (change requests) that are related to a single item property
(attribute). Compound critiques allow the specification of change requests over
multiple item properties and thus allow to reduce the number of needed critiquing
cycles [60]. Finally, experience-based critiquing takes into account critiquing



1.3 Recommendation Algorithms for Individual Users 17

histories of previous users to better predict reference items and thus to reduce
the number of needed interaction cycles [54, 62]. For an in-depth discussion of
different (additional) variants of critiquing-based recommendation, we refer to
[10, 11, 32, 54, 60, 73].

Hybrid Recommendation

After having discussed the basic recommendation approaches of collaborative
filtering, content-based filtering, constraint-based, and critiquing-based recommen-
dation, we will now present some possibilities to combine these.

A major motivation for the development of hybrid recommender systems is
the opportunity to achieve a better accuracy [9]. There are different approaches
to evaluate the accuracy of recommendation algorithms. These approaches can be
categorized into predictive accuracy metrics such as the mean absolute error (MAE),
classification accuracy metrics such as precision and recall, and rank accuracy
metrics such as Kendall’s Tau (see Chap. 3). For a discussion of accuracy metrics
in recommendation scenarios for individual users, we refer to Gunawardana and
Shani [34] and Jannach et al. [43].

We now take a look at example design types of hybrid recommenders [9, 43].
These are weighted, mixed, and cascade (see Table 1.11). The basic assumption
in the following example is that individual recommendation approaches return a
list of five recommended items where each item has an assigned (recommender-
individual) prediction out of {1.0, 2.0, 3.0, 4.0, 5.0}. For a more detailed discussion
of hybridization strategies, we refer the reader to Burke [9] and Jannach et al. [43].

Weighted Weighted hybrid recommendation is based on the idea of deriving
recommendations by combining the results (predictions) computed by individual
recommenders. An example thereof is depicted in Table 1.12 where the individual

Table 1.11 Examples of hybrid recommendation approaches (RECS = set of recommenders, s =
recommender-individual prediction, score = item score)

Method Description Calculation

Weighted Predictions (s) of individual
recommenders are summed up

score(item)=˙rec2RECS s.item; rec/

Mixed Recommender-individual predictions
(s) are combined into one
recommendation result

score(item) = zipper-function(item,
RECS)

Cascade The prediction of one recommender
(n� 1) is used as input for the next
recommender (n)

score(item) = s(item, recn) 
s(item,recn�1) . . .



18 1 Decision Tasks and Basic Algorithms

Table 1.12 Example of weighted hybrid recommendation: individual predictions are integrated
into a score

Items t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

s(ti, collaborative filtering) 1.0 3.0 � 5.0 � 2.0 � 4.0 � �
s(ti, content�based filtering) � 1.0 2.0 � � 3.0 4.0 5.0 � �
score(ti) 1.0 4.0 2.0 5.0 0.0 5.0 4.0 9.0 0.0 0.0

ranking(ti) 7 4 6 2 8 3 5 1 9 10

Item t8 receives the best overall score (9.0)

Table 1.13 Example of mixed hybrid recommendation: individual predictions are integrated into
one score conform the zipper principle (best collaborative filtering prediction receives score=10.0,
best content-based filtering prediction receives score=9.0 and so forth)

Items t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

s(li, collaborative filtering) 1.0 3.0 � 5.0 � 2.0 � 4.0 � �
s(li, content�based filtering) � 1.0 2.0 � � 3.0 4.0 5.0 � �
score(li) 4.0 8.0 5.0 10.0 0.0 6.0 7.0 9.0 0.0 0.0

ranking(li) 7 3 6 1 8 5 4 2 9 10

item scores of a collaborative and a content-based recommender are summed up.
Item t8 receives the highest overall score (9.0) and is ranked highest by the weighted
hybrid recommender.6

Mixed Mixed hybrid recommendation is based on the idea that predictions of
individual recommenders are shown in one integrated result. For example, the
results of a collaborative filtering and a content-based recommender can be ranked
as sketched in Table 1.13. Item scores can be determined, for example, on the
basis of the zipper principle, i.e., the item with the highest collaborative filtering
prediction value receives the highest overall score (10.0), the item with the best
content-based filtering prediction value receives the second best overall score, and
so forth.

Cascade The basic idea of cascade-based hybridization is that recommenders in
a pipeline of recommenders exploit the recommendation of the upstream recom-
mender as a basis for deriving their own recommendation. The constraint-based
recommendation approach is an example of a cascade-based hybrid recommen-
dation approach. First, items that are consistent with the given requirements are
preselected by a conjunctive query Q. We can assume, for example, that s(item,Q)
= 1.0 if the item has been selected and s(item,Q) = 0.0 if the item has not
been selected. In our case, the set of requirements {r1 W topics D nature} in
the running example leads to the selection of the items {t2; t4; t7; t8}. Thereafter,
these items are ranked conform to their utility for the current user (utility-based

6If two or more items have the same overall score, a possibility is to force a decision by lot; where
needed, this approach can also be applied by other hybrid recommendation approaches.



1.4 Relationship Between Algorithms and Choice Patterns 19

ranking U). Based on the entries of Table 1.10, a utility-based ranking (U) would
determine the item order utility(t2) � utility(t8) > utility(t4) > utility(t7), assuming
that the current user assigns a weight of 0.6 to the interest dimension security
(weight(ua,security) = 0.6), a weight of 0.3 to the interest dimension attractiveness
(weight(ua,attractiveness) = 0.3), and a weight of 0.1 to the interest dimension
crowdedness (weight(ua,crowdedness) = 0.1). In this example, the recommender Q
is the first one and the results of Q are forwarded to the utility-based recommender.

Further Approaches Further hybrid recommendation approaches are the following
[9]. Switching denotes an approach where—depending on the current situation—
a specific recommendation approach is chosen. For example, if a user has a low
level of product knowledge, then a critiquing-based recommender will be chosen.
Vice-versa, if the user is an expert, an interface will be provided where the
user is enabled to explicitly state his/her preferences on a detailed level. Feature
combination denotes an approach where different data sources are exploited by
a single recommender. For example, a recommendation algorithm could exploit
semantic item knowledge in combination with item ratings (see Table 1.8).

Outlook Due to the increasing popularity of social platforms and online com-
munities, group recommender systems are becoming an increasingly important
technology [36, 58]. Example application domains of group recommendation
technologies include tourism [61] (e.g., which hotels or travel destinations should
be visited by a group?) and interactive television [57] (which sequence of television
programs will be accepted by a group?). For the most part, group recommendation
algorithms are operating on simple items such as hotels, travel destinations, and
television programs. Examples of complex items are cars, round trips, and software
release plans. In the remainder of this book, we will discuss different approaches
that determine item recommendations for groups.

1.4 Relationship Between Algorithms and Choice Patterns

As already mentioned, recommender systems can be regarded as important support
for human decision making [42]. In the following, we will briefly discuss different
patterns of choice, i.e., approaches people use to solve a decision task/problem.
Following the concepts introduced in [41, 42], we will explain these patterns
and point out related recommendation approaches. Our major motivation for this
discussion is the increasingly perceived relevance of human decision making aspects
in recommendation contexts [42, 55].

Socially-Influenced Choice If someone is interested in purchasing a digital camera,
has no experiences in the item domain, but knows friends who are photography
enthusiasts, there is a high probability that the opinion of these friends can have
an impact on the camera purchase decision. People are influenced by the opinions
and advice of friends beyond item recommendation, for example, in terms of social



20 1 Decision Tasks and Basic Algorithms

expectations of what is “cool” or what is “politically correct” [42]. From the
viewpoint of recommender systems, collaborative filtering [48] simulates socially-
influenced decisions where the preferences of nearest neighbors (social environment
of the user) are taken as input for recommendations proposed to the current user.
In such recommendation scenarios, trust plays an important role since only the
preferences of trusted users should be taken into account by the recommendation
algorithm [30, 65]. If available, an important aspect to be taken into account are
social networks which can serve as a basis for representing a user’s trust networks
and also to determine the nearest neighbors relevant in the recommendation context
[35]. In scenarios where groups of users have to make a decision, the personal
opinion of a group member is in many cases influenced by his/her surroundings,
i.e., other group members or even other groups [71]. Consequently, a key feature of
group decisions is that social influence occurs not only in the environment but also
within the group of decision makers themselves (see Chap. 9)—a fact that makes
the socially-based pattern even more important than it is for individual choices.

Attribute-Based Choice This pattern is based on the idea that individual alternatives
(items) are described by attributes which can be associated with importance values
that reflect individual relevance. People can in principle evaluate an item by consid-
ering the values and importances of its attributes and computing something like a
weighted sum for each item. More typically, they apply less effortful strategies. For
example, attributes can serve as criteria to figure out whether an alternative should
be taken into account (also denoted as elimination by aspects where users are kept in
the loop), serve as a basis for the ranking of the available alternatives (utility-based
ranking), or can be used for both purposes [5, 42, 67]. Due to the fact that importance
of attributes and preferences for particular attribute levels are not stable and are not
known in detail from the beginning [4], decision processes are iterative where users
change or slightly adapt their preferences. Recommenders often integrated in such
scenarios are utility-based and constraint-based recommenders [8, 14]. Constraint-
based recommendation [14] is regarded as a special type of knowledge-based
recommendation approach where the recommendation knowledge is represented in
terms of explicitly defined attributes and constraints. The second type of knowledge-
based recommendation (if we interpret item attributes and corresponding critiques
as semantic knowledge) is represented by critiquing-based systems [11] where users
specify change requests with regard to a reference alternative and the recommender
system proposes a new candidate alternative that takes into account previous
critiques. Critiques are typically defined on item attributes, therefore critiquing-
based approaches can also be helpful to support attribute-based decision processes.
There are situations where attribute-based decisions have to be supported for groups.
Group members have to develop consensus with regard to a set of attributes,
for example, arriving at a common set of importance weights or agreeing on the
selection of an attribute value. If contradicting preferences occur, visualization and
analysis methods can be applied to resolve inconsistencies [26].

Trial & Error Based Choice This choice pattern is often used in situations where
the item domain is unknown and users want to better understand the domain and



1.4 Relationship Between Algorithms and Choice Patterns 21

analyze the pros and cons of the different existing options in more detail [41].
For example, customers purchase the trial version of a software, test different cars,
or evaluate some potential holidays within the scope of a short-term visit. In the
context of recommender systems, trial & error based decisions are supported, for
example, by critiquing-based recommendation approaches [11] where a user ana-
lyzes individual recommendations and then defines criteria that should additionally
be taken into account when presenting the next item. Critiquing-based approaches
support explorative navigation in large search spaces which better helps to develop
an understanding of the item domain [43]. Critiquing-based recommendation also
plays a role when it comes to determining recommendations for groups. For
example, a group makes a decision with regard to a skiing resort to visit in the
next winter season [61].

Experience-Based Choice This type of choosing can be applied to situations where
experiences of users from the past directly influence current decisions, often making
it unnecessary to apply any of the other choice patterns (see, e.g., [3]). For example,
if someone purchased a book from a specific author or a specific publisher, this
experience can be exploited in future purchasing scenarios and books from one
consideration set could be preferred based on these experience-based criteria.
Another example is car purchasing: if a customer is completely satisfied with his/her
car (specific brand), there is a good chance that he/she will stick with the brand when
purchasing a new car. In this context, positive feelings from the past trigger positive
feelings about specific alternatives in ongoing decision processes [42]. From
the point of view of recommendation approaches, content-based recommendation
implements experience-based decisions in the sense that positively-rated purchases
in the past represent major criteria to recommend similar items in the future. For
example, a user liked a book of a specific author, therefore a new book from the same
author is recommended to the user. We want to point out that in the recommender
systems community, critiquing-based recommendation [11] is also considered as
specific type of case-based recommendation [53, 77] where items are regarded as
cases and items similar to a given set of user requirements (the case description)
are recommended. Since cases represent experiences from the past, critiquing-
based recommendation can also be considered as representative of experience-based
decisions. This becomes even clearer if we take a look at recent experience-based
critiquing approaches where experiences from previous recommendation sessions
are taken into account and users with similar critiquing histories receive similar
recommendations [54, 62]. Here, the experience-based pattern is supplemented with
the socially-based, since the experiences of other persons are being exploited as
well.

Consequence-Based Choice An alternative decision strategy is to think about the
potential consequences of choosing a specific alternative. In contrast to decision
patterns such as attribute-based decisions and socially-influenced decisions, think-
ing about the consequences of making a specific decision (choosing a specific
alternative) constitutes an additional dimension of a decision process. One challenge
in this context is the uncertainty about the consequences of taking a decision



22 1 Decision Tasks and Basic Algorithms

and how to best deal with this. Since anticipating and evaluating consequences is
typically an effortful process, people are more likely to do so in some domains
than in others. Low involvement items, i.e., items with lower risk impacts related
to suboptimal decisions (e.g., movies, restaurants, and songs) will result in less
investment in the analysis of the impact of choosing such items. In contrast, high-
involvement items, i.e., items with higher associated risks, will result in higher
investment in the analysis of the consequences of choosing a specific alternative.
We want to point out that consequence-based decision patterns are often orthogonal,
i.e., they play a role in combination with each of the mentioned recommendation
approaches. Like all of the choice patterns, the consequence-based pattern can be
combined with other patterns. For example, a chooser may apply the attribute-based
pattern to quickly form a consideration set and then apply the consequence-based
pattern to the consideration set. An important aspect of decision making is the
relatively strong emphasis on the potential negative consequences of a decision—
this aspect is taken into account in prospect theory [45], an asymmetric utility
function which postulates that losses have a higher negative evaluation compared
to equal gains.

Policy-Based Choice In the initial phase of a decision process, it can be the case that
decision makers also define their decision policy. For example, during the weekend,
if a movie recommender proposes a thriller and a cartoon, a family may apply
a general policy of first consuming the movie that is suitable for children. They
don’t need to think in each case about the justification for this policy (i.e., that
children need to go to bed earlier). When deciding about the next restaurant for a
Christmas party, a company could have predefined the (meta-level) decision policy
of majority voting, i.e., the majority defines which restaurant will be chosen for
the next Christmas party. If two books with equal average ratings and high-quality
reviews are in a consideration set, the customer could purchase the book from a
publisher he/she previously found satisfying. A book customer may (for any of
various reasons) have acquired the policy of buying a particular type of book from a
particular publisher. In that case, the customer does not even need to consider books
from other publishers. As these examples suggest, the policy-based decision pattern
can play a role in the context of each basic recommendation scenario (collaborative,
content-based, constraint-based, and critiquing-based).

1.5 Book Overview

In this chapter, we introduced recommender systems as a basic technology to
support different decision scenarios. We gave an overview of recommendation
algorithms and showed their application in the context of a scenario from the
travel domain. Finally, we discussed the relationship between basic patterns of
human choice and related supportive recommendation approaches. The remainder
of this book is organized as follows. In Chap. 2, we provide an overview of group



References 23

recommendation algorithms with the goal of showing how basic recommendation
algorithms (collaborative filtering, content-based filtering, constraint-based, and
critiquing-based recommendation) can be tailored to group settings. In this context,
we show the relationship of group recommenders to the algorithms discussed in
Chap. 1. In Chap. 3, we sketch approaches to evaluate group recommender systems.
An overview of existing applications of group recommendation technologies is
provided in Chap. 4. In Chap. 5, we focus on a discussion of ways to elicit and
manage user preferences. Chapter 6 deals with explanation approaches in the
context of group recommendation. In Chap. 7, we introduce additional decision
scenarios, for example, group-based configuration, group-based resource balancing,
and group-based release planning. Chapter 8 analyzes the existence and ways to
counteract decision biases that can occur in the context of group decision making.
Chapter 9 focuses on the role of personality and emotion in group recommendation.
Finally, the book is concluded with a summary and an outlook (see Chap. 10).

References

1. C. Aggarwal, Recommender Systems: The Textbook (Springer, New York, 2016)
2. L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach, G. Petrone, R. Schäfer,

M. Zanker, A framework for the development of personalized, distributed web-based configu-
ration systems. AI Mag. 24(3), 93–108 (2003)

3. T. Betsch, S. Haberstroh, The Routines of Decision Making (Lawrence Erlbaum Associates,
Mahwah, NJ, 2005)

4. J. Bettman, M. Luce, J. Payne, Constructive consumer choice processes. J. Consum. Res. 25(3),
187–217 (1998)

5. S. Bhatia, Associations and the accumulation of preference. Psychol. Rev. 120(3), 522–543
(2013)

6. D. Billsus, M. Pazzani, Learning collaborative information filters, in 15th International
Conference on Machine Learning (ICML’98), pp. 46–54 (1998)

7. L. Boratto, S. Carta, State-of-the-art in group recommendation and new approaches for
automatic identification of groups, in Information Retrieval and Mining in Distributed
Environments. Studies in Computational Intelligence, vol. 324 (Springer, Heidelberg, 2011),
pp. 1–20

8. R. Burke, Knowledge-based recommender systems. Encycl. Library Inform. Syst. 69(32),
180–200 (2000)

9. R. Burke, Hybrid recommender systems: survey and experiments. User Model. User-Adap.
Inter. (UMUAI) 12(4), 331–370 (2002)

10. R. Burke, K. Hammond, B. Young, The FindMe approach to assisted browsing. IEEE Expert:
Intell. Syst. Appl. 12(4), 32–40 (1997)

11. L. Chen, P. Pu, Critiquing-based recommenders: survey and emerging trends. User Model.
User-Adap. Inter. (UMUAI) 22(1–2), 125–150 (2012)

12. M. Ekstrand, J. Riedl, J. Konstan, Collaborative filtering recommender systems. Found. Trends
Human-Comput. Interact. 4(2), 81–173 (2011)

13. A. Falkner, A. Felfernig, A. Haag, Recommendation technologies for configurable products.
AI Mag. 32(3), 99–108 (2011)

14. A. Felfernig, R. Burke, Constraint-based recommender systems: technologies and research
issues, in ACM International Conference on Electronic Commerce (ICEC08), Innsbruck,
Austria, pp. 17–26 (2008)



24 1 Decision Tasks and Basic Algorithms

15. A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, Consistency-based diagnosis of config-
uration knowledge bases. Artif. Intell. 152(2), 213–234 (2004)

16. A. Felfernig, G. Friedrich, D. Jannach, M. Zanker, An integrated environment for the
development of knowledge-based recommender applications. Int. J. Electron. Commer. (IJEC)
11(2), 11–34 (2006)

17. A. Felfernig, G. Friedrich, L. Schmidt-Thieme, Guest editors’ introduction: recommender
systems. IEEE Intell. Syst. 22(3), 18–21 (2007)

18. A. Felfernig, B. Gula, G. Leitner, M. Maier, R. Melcher, E. Teppan, Persuasion in knowledge-
based recommendation, in 3rd International Conference on Persuasive Technology. Lecture
Notes in Computer Science (Springer, Berlin, 2008), pp. 71–82

19. A. Felfernig, G. Friedrich, M. Schubert, M. Mandl, M. Mairitsch, E. Teppan, Plausible repairs
for inconsistent requirements, in Proceedings of the IJCAI’09, Pasadena, CA, pp. 791–796
(2009)

20. A. Felfernig, W. Maalej, M. Mandl, M. Schubert, F. Ricci, Recommendation and decision
technologies for requirements engineering, in ICSE 2010 Workshop on Recommender Systems
in Software Engineering (RSSE 2010), Cape Town, pp. 11–15 (2010)

21. A. Felfernig, M. Schubert, C. Zehentner, An efficient diagnosis algorithm for inconsistent
constraint sets. Artif. Intell. Eng. Des. Anal. Manuf. (AIEDAM) 26(1), 53–62 (2012)

22. A. Felfernig, M. Schubert, S. Reiterer, Personalized diagnosis for over-constrained problems,
in 23rd International Conference on Artificial Intelligence (IJCAI 2013), Peking, China,
pp. 1990–1996 (2013)

23. A. Felfernig, M. Jeran, G. Ninaus, F. Reinfrank, S. Reiterer, Toward the next generation of
recommender systems, in Multimedia Services in Intelligent Environments: Recommendation
Services (Springer, Heidelberg, 2013), pp. 81–98

24. A. Felfernig, M. Jeran, G. Ninaus, F. Reinfrank, S. Reiterer, M. Stettinger, Basic approaches
in recommendation systems, in Recommendation Systems in Software Engineering (Springer,
Berlin, 2013), pp. 15–37

25. A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen, Knowledge-Based Configuration: From Research
to Business Cases, 1st edn. (Elsevier/Morgan Kaufmann, Waltham, MA, 2014)

26. A. Felfernig, M. Atas, T.N. Trang Tran, M. Stettinger, Towards group-based configuration, in
International Workshop on Configuration 2016 (ConfWS’16), pp. 69–72 (2016)

27. A. Felfernig, M. Atas, T.N. Trang Tran, M. Stettinger, S. Polat-Erdeniz, An analysis of group
recommendation heuristics for high- and low-involvement items, in International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE
2017), Arras, pp. 335–344 (2017)

28. H. Garcia-Molina, G. Koutrika, A. Parameswaran, Information seeking: convergence of search,
recommendations, and advertising. Commun. ACM 54(11), 121–130 (2011)

29. M. Gasparic, A. Janes, What recommendation systems for software engineering recommend:
a systematic literature review. J. Syst. Softw. 113, 101–113 (2016)

30. J. Golbeck, Computing with Social Trust (Springer, London, 2009)
31. D. Goldberg, D. Nichols, B. Oki, D. Terry, Using collaborative filtering to weave an

information tapestry. Commun. ACM 35(12), 61–70 (1992)
32. P. Grasch, A. Felfernig, F. Reinfrank, ReComment: towards critiquing-based recommendation

with speech interaction, in 7th ACM Conference on Recommender Systems (ACM, New York,
2013), pp. 157–164

33. R. Grünig, R. Kühn, Successful Decision-Making (Springer, Heidelberg, 2013)
34. A. Gunawardana, G. Shani, A survey of accuracy evaluation metrics of recommendation tasks.

J. Mach. Learn. Res. 10, 2935–2962 (2009)
35. J. He, W. Chu, A social network-based recommender system (SNRS), in Data Mining for

Social Network Data. Annals of Information Systems, vol. 12 (Springer, New York, 2010),
pp. 47–74

36. T. Hennig-Thurau, A. Marchand, P. Marx, Can automated group recommender systems help
consumers make better choices? J. Market. 76(5), 89–109 (2012)



References 25

37. J. Herlocker, J. Konstan, A. Borchers, J. Riedl, An algorithmic framework for performing
collaborative filtering, in Conference on Research and Development in Information Retrieval,
Berkeley, CA, pp. 230–237 (1999)

38. C. Huffman, B. Kahn, Variety for sale: mass customization or mass confusion? J. Retail. 74(4),
491–513 (1998)

39. A. Jameson, More than the sum of its members: challenges for group recommender systems,
in International Working Conference on Advanced Visual Interfaces, pp. 48–54 (2004)

40. A. Jameson, B. Smyth, Recommendation to groups, in The Adaptive Web, ed. by P. Brusilovsky,
A. Kobsa, W. Nejdl. Lecture Notes in Computer Science, vol. 4321 (Springer, Heidelberg,
2007), pp. 596–627

41. A. Jameson, B. Berendt, S. Gabrielli, F. Cena, C. Gena, F. Vernero, K. Reinecke, Choice
architecture for human-computer interaction. Foundations and Trends in Human-Computer
Interaction, vol. 7 (Now Publishers Inc., Hanover, MA, 2014)

42. A. Jameson, M. Willemsen, A. Felfernig, M. de Gemmis, P. Lops, G. Semeraro, L. Chen,
Human decision making and recommender systems, in Recommender Systems Handbook, 2nd
edn., ed. by F. Ricci, L. Rokach, B. Shapira (Springer, New York, 2015), pp. 611–648

43. D. Jannach, M. Zanker, A. Felfernig, G. Friedrich, Recommender Systems – An Introduction
(Cambridge University Press, New York, 2010)

44. U. Junker, QUICKXPLAIN: preferred explanations and relaxations for over-constrained
problems, in 19th International Conference on Artifical Intelligence, AAAI’04 (AAAI Press,
San Jose, 2004), pp. 167–172

45. D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk. Econometrica
47(2), 263–291 (1979)

46. B. Knijnenburg, N. Reijmer, M. Willemsen, Each to his own: how different users call
for different interaction methods in recommender systems, in RecSys 2011, Chicago, IL,
pp. 141–148 (2011)

47. M. Kompan, M. Bielikova, Group recommendations: survey and perspectives. Comput. Inform.
33(2), 446–476 (2014)

48. J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon, J. Riedl, GroupLens: applying
collaborative filtering to usenet news. Commun. ACM 40(3), 77–87 (1997)

49. Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems. IEEE
Comput. 42(8), 30–37 (2009)

50. G. Leitner, A. Fercher, A. Felfernig, K. Isak, S. Polat Erdeniz, A. Akcay, M. Jeran, Recom-
mending and configuring smart home installations, in International Workshop on Configuration
2016 (ConfWS’16), pp. 17–22 (2016)

51. J. Levin, B. Nalebuff, An introduction to vote-counting schemes. J. Econ. Perspect. 9(1), 3–26
(1995)

52. G. Linden, B. Smith, J. York, Amazon.com recommendations – item-to-item collaborative
filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

53. F. Lorenzi, F. Ricci, Case-based recommender systems: a unifying view, in International
Conference on Intelligent Techniques for Web Personalization, pp. 89–113 (2003)

54. M. Mandl, A. Felfernig, Improving the performance of unit critiquing, in 20th International
Conference on User Modeling, Adaptation, and Personalization (UMAP 2012), Montreal,
pp. 176–187 (2012)

55. M. Mandl, A. Felfernig, E. Teppan, M. Schubert, Consumer decision making in knowledge-
based recommendation. J. Intell. Inform. Syst. 37(1), 1–22 (2010)

56. A. Marchand, Empfehlungssysteme für Gruppen (EUL Verlag, 2011)
57. J. Masthoff, Group modeling: selecting a sequence of television items to suit a group of

viewers. User Model. User-Adap. Inter. (UMUAI) 14(1), 37–85 (2004)
58. J. Masthoff, Group recommender systems: combining individual models, in Recommender

Systems Handbook (Springer, New York, 2011), pp. 677–702
59. J. McCarthy, T. Anagnost, MusicFX: an arbiter of group preferences for computer supported

collaborative workouts, in Conference on Computer Support Cooperative Work, Seattle, WA,
pp. 363–372 (1998)



26 1 Decision Tasks and Basic Algorithms

60. K. McCarthy, J. Reilly, L. McGinty, B. Smyth, On the dynamic generation of compound
critiques in conversational recommender systems, in International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems (Springer, Berlin, 2004), pp. 176–184

61. K. McCarthy, L. McGinty, B. Smyth, M. Salamó, Social Interaction in the CATS Group
Recommender, in Workshop on the Social Navigation and Community based Adaptation
Technologies (2006)

62. K. McCarthy, Y. Salem, B. Smyth, Experience-based critiquing: reusing critiquing experiences
to improve conversational recommendation, in International Conference on Case-Based
Reasoning (ICCBR 2010), Alessandria, pp. 480–494 (2010)

63. H. Mengash, A. Brodsky, A group recommender for investment in microgrid renewable energy
sources, in 50th Hawaii International Conference on System Sciences, Hawaii, pp. 1485–1494
(2017)

64. G. Ninaus, A. Felfernig, M. Stettinger, S. Reiterer, G. Leitner, L. Weninger, W. Schanil,
INTELLIREQ: Intelligent techniques for software requirements engineering, in Prestigious
Applications of Intelligent Systems Conference (PAIS), pp. 1161–1166 (2014)

65. J. O’Donovan, B. Smyth, Trust in recommender systems, in ACM IUI 2005, San Diego, CA,
pp. 167–174 (2005)

66. D. Paraschakis, Recommender systems from an industrial and ethical perspective, in 10th ACM
Conference on Recommender Systems, Boston, MA, pp. 463–466 (2016)

67. J. Payne, J. Bettman, E. Johnson, The Adaptive Decision Maker (Cambridge University Press,
New York, 1993)

68. M. Pazzani, D. Billsus, Learning and revising user profiles: the identification of interesting web
sites. Mach. Learn. 27(3), 313–331 (1997)

69. K. Peniwati, Criteria for evaluating group decision-making methods. Math. Comput. Model.
46(7–8), 935–947 (2007)

70. R. Petty, J. Cacioppo, D. Schumann, Central and peripheral routes to advertising effectiveness:
the moderating role of involvement. J. Consum. Res. 10(2), 135–146 (1983)

71. L. Recalde, A social framework for set recommendation in group recommender systems, in
European Conference on Information Retrieval (Springer, New York, 2017), pp. 735–743

72. R. Reiter, A theory of diagnosis from first principles. Artif. Intell. J. 32(1), 57–95 (1987)
73. F. Ricci, Q. Nguyen, Acquiring and revising preferences in a critique-based mobile recom-

mender systems. IEEE Intell. Syst. 22(3), 22–29 (2007)
74. B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation

algorithms, in 10th WWW Conference, pp. 285–295 (2001)
75. G. Sielis, C. Mettouris, G. Papadopoulos, A. Tzanavari, R. Dols, Q. Siebers, A context aware

recommender system for creativity support tools. J. Universal Comput. Sci. 17(12), 1743–1763
(2011)

76. B. Smith, G. Linden, Two decades of recommender systems at Amazon.com. IEEE Internet
Comput. 21(3), 12–18 (2017)

77. B. Smyth, Case-based recommendation, in The Adaptive Web, ed. by P. Brusilovsky, A. Kobsa,
W. Nejdl. Lecture Notes in Computer Science, vol. 4321 (Springer, Berlin/Heidelberg, 2007),
pp. 342–376

78. M. Stettinger, A. Felfernig, CHOICLA: Intelligent decision support for groups of users in
context of personnel decisions, in ACM RecSys’2014 IntRS Workshop, Foster City, CA,
pp. 28–32 (2014)

79. M. Stettinger, A. Felfernig, G. Leitner, S. Reiterer, M. Jeran, Counteracting serial position
effects in the CHOICLA group decision support environment, in 20th ACM Conference on
Intelligent User Interfaces (IUI2015), Atlanta, GA, pp. 148–157 (2015)

80. N. Tintarev, J. Masthoff, Designing and evaluating explanations for recommender systems, in
Recommender Systems Handbook (Springer, New York, 2011), pp. 479–510

81. N. Tintarev, J. O’Donovan, A. Felfernig, Human interaction with artificial advice givers. ACM
Trans. Interact. Intell. Syst. 6(4), 1–10 (2016)

82. A. Valdez, M. Ziefle, K. Verbert, A. Felfernig, A. Holzinger, Recommender systems for
health informatics: state-of-the-art and future perspectives, in Machine Learning for Health
Informatics (Springer, Cham, 2016), pp. 391–414


	1 Decision Tasks and Basic Algorithms
	1.1 Introduction
	1.2 Characteristics of Decision Tasks
	1.3 Recommendation Algorithms for Individual Users
	Collaborative Filtering
	Content-Based Filtering
	Constraint-Based Recommendation
	Critiquing-Based Recommendation
	Hybrid Recommendation

	1.4 Relationship Between Algorithms and Choice Patterns
	1.5 Book Overview
	References


