
Chapter 10
Aerospace Engineering Curricular
Expansion in Information Systems

Ella M. Atkins

Abstract This chapter investigates specific approaches to evolve the Aerospace
Engineering curricula to increase coverage of the fundamentals of computer science
and deepen student experience in programming. First, existing K-12, Aerospace
Engineering, and Computer Science and Engineering curricula are examined. Mul-
tidisciplinary programs including robotics and Cyber-Physical Systems (CPS) are
reviewed to provide insight into potential directions in which an Aerospace-centric
program might expand. Student, faculty, and industry interests offer insight into key
Computer Science and Engineering (CSE) content to infuse into next-generation
Aerospace curricula. The approach being taken at the University of Michigan, the
author’s home institution, is described, including plans to increase curricular flexi-
bility and introduce a new course providing students background in key computer
science concepts such as data structures and complexity, computational science with
application to Aerospace analysis and design, and embedded data management and
control. A discussion of potential future curricular extensions into human–machine
systems and electromechanical devices concludes the chapter.

10.1 Introduction

Modern Aerospace systems integrate traditional physical vehicle structural and
mechanical components with avionics, software, and people. Embedded sensors and
microcontrollers have substantially reduced aircraft weight and increased reliability
through local data processing, redundancy, and lightweight communication. High-
bandwidth sensor data streams and advanced decision algorithms require capable
onboard computers. Computers with increasingly complex software are now tasked
with managing the payload, controlling vehicle motions, and supporting increas-
ingly autonomous decision systems. Manned vehicles require software and devices
to assure an onboard pilot remains situationally aware whereas unmanned vehicles
must rely on communication links to remote ground or mission control stations.

E. M. Atkins (B)
University of Michigan, Ann Arbor, MI, USA
e-mail: ematkins@umich.edu

© Springer International Publishing AG, part of Springer Nature 2018
U. Durak et al. (eds.), Advances in Aeronautical Informatics,
https://doi.org/10.1007/978-3-319-75058-3_10

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75058-3_10&domain=pdf


136 E. M. Atkins

Operator interface designs require careful consideration of real-time data stream
and communication link properties as well as human factors. A twenty-first-century
Aerospace system designer faces the difficult challenge of understanding both the
traditional physics-basedmodels underlying structure, aerodynamic, propulsion, and
flight dynamics foundations as well as understanding the computer science founda-
tions necessary to design, implement, and validate/verify the avionics and software
supporting onboard and network-wide data-to-decision systems.

To face this challenge, the industry has staffed Aerospace systems design teams
with diverse technical experts organized to collectively provide the breadth and depth
of expertise needed to produce modern Aerospace systems. For example, to design
a fighter or transport aircraft, teams of Aerospace engineers propose and optimize
aerostructural and vehicle control designs; teams of electrical engineering propose
and optimize avionics and power systems designs; teams of computer scientists pro-
pose and optimize onboard, network, and off-board software; and teams of human
interface experts, including pilots, propose logical user interfaces. Engine manufac-
turers organize into similar subteams to produce efficient FADEC (Full Authority
Digital Engine Control)-equipped products that can be hosted on a variety of air-
frame designs. Specialized subteams make sense so long as the subsystem designs
can be developed independently, with consideration of design elements exclusively
within that field of study. For example, an Aerospace engineer offering Computa-
tional Fluid Dynamics (CFD) expertise will still have sufficient background in rigid
body vehicle dynamics and structures from their undergraduate studies to communi-
cate effectively with vehicle control and structural experts. Electrical engineers will
have sufficient background in analog, digital, and power systems to optimize over all
avionics system elements. Computer scientists will similarly have sufficient back-
ground in logic, data structures, algorithms, and software engineering practices to
work as a team despite specializations ranging from real-time embedded computing
to artificial intelligence and cybersecurity. Human factors or cognitive engineering
teams understand operators and ensure interfaces are informative, intuitive, and not
distracting/misleading. Human-centered designs assure the “people in the system”,
pilots, remote operators, passengers, the overflown public, remain situationally aware
and are comfortable rather than threatened.

These four subteams form the four pillars supporting the modern “Aerospace Sys-
tem” enterprise as shown in Fig. 10.1: (Traditional) Aerospace Engineering, Elec-
trical Engineering, Computer Science, and Human Factors and Operations. With
reference to the USA education system, Aerospace system designers enter higher
education programswith a K-12 background and first-year university experience that
is nearly common across the engineering fields. This foundation provides excellent
coverage of traditional mathematics through Calculus and the traditional sciences,
e.g., physics and chemistry. Computer science, circuits, and human–machine sys-
tem exposures tend to occur through extracurricular activities in robotics or game
development, requiring universities to fill knowledge gaps in these areas. Following
a nearly common year 1 curriculum, university students select one of the “pillars”
or majors and specialize in that area for the remainder of their degree. Project-based
experiences can expose students to the challenges related to other “pillars”, but a



10 Aerospace Engineering Curricular Expansion in Information Systems 137

Fig. 10.1 Foundations of a
Modern Aerospace System

minor or double major is required for a student to gain depth in any of these other
pillar areas.

As Aerospace systems more tightly couple Fig. 10.1 “pillars” to achieve new
levels of performance, it is clear new graduates will require a new level of crosscut-
ting expertise. Today’s entering college students increasingly recognize that future
Aerospace Engineers will benefit from an improved foundation in computer sci-
ence, while future Computer Scientists electing a career in Aerospace system design
recognize they will benefit from improved foundation in vehicle aerostructural, elec-
tromechanical, and control systems. At the University of Michigan, we find evidence
of the former in terms of the steadily increasing rates at which our Aerospace under-
graduates pursueComputer Science minors or doublemajors.Wefind evidence of the
latter in terms of the steadily increasing rates at which Computer Science undergrad-
uates pursue robotics-centric coursework, research experiences, and student teams.
In our growing robotics graduate program, entering students are eager to learn what
they do not know. In particular, Aerospace and Mechanical Engineering graduates
seek knowledge of software and autonomy, while Computer Science and Engineer-
ing graduates seek knowledge in electromechanical (robot) system design, build,
and test. While robotics indeed provides multidisciplinary exposures, knowledge of
the domain (e.g., Aerospace) tends to be limited, and graduates have statistically
selected employment outside the Aerospace sector. It therefore remains critical for
the Aerospace Systems community to work toward improved holistic education in
Aerospace and Computer Science for the twenty-first-century workforce.

Researchers and educators have recognized the engineering/computer science
curricular gap for more than a decade. The National Science Foundation (NSF) has
established a robust Cyber-Physical Systems (CPS) program aimed at encouraging
researchers in traditional engineering and computer science disciplines to closely
collaborate on crosscutting researchprojects and to improveCPSeducationgenerally.
The robotics community has also shared the vision of crosscutting expertise, placing
importance on tight integration of sensors and mechanisms with capable perceive-
decide-act logic and code. Independent programs dedicated to CPS and/or robotics,
though still the exception rather than the rule, can offer guidance on what is possible
in crosscutting curricular programs.



138 E. M. Atkins

This paper proposes potential strategies for improving the exposure of Aerospace
students to Computer Science foundations, and improving the exposure of Com-
puter Science students to Aerospace/Robotics. Legacy curricula, degree credit lim-
its, students’ interests, and faculty expertise are all critical factors to examine in this
context. Higher education curricula are already packed with required courses, so
some sacrifice in traditional foundational background is required to maintain degree
credit limits. Curricular additions must therefore be defined alongside methods to
relax existing coursework requirements when needed. This paper is structured as
follows. First, background in K-12 foundations, undergraduate Aerospace Engineer-
ing, and undergraduate Computer Science curricula is presented. Next, efforts to
establish multidisciplinary programs in CPS and robotics are summarized, along
with a review of open questions that must be addressed when considering options to
infuse computer science into traditional engineering programs. Specific initiatives
to improve computer science coverage in the University of Michigan’s Aerospace
Engineering curriculum are described in the context of student, industrial advisory
board, and faculty input. The paper concludes with a summary of presented strategies
and remaining challenges.

10.2 Current Curricula

This section first reviews typical student preparation for Aerospace Systems careers
in precollege (K-12) curricular and real-world exposures.Next, traditionalAerospace
Engineering (AERO) and Computer Science and Engineering (CSE) curricula are
reviewed in the context of the author’s current institution, theUniversity ofMichigan.
The author recently published a survey of computational course requirements for
Aerospace Engineering programs in the USA [1]; results indicateMichigan’s current
Aerospace curricula are representative as discussed further below.

10.2.1 K-12 Education

Today’s youth have cell phones and access to laptop and/or desktop computers. Teens
communicate fluently online and very quickly embrace new apps. Higher education
courses can therefore assume a student will easily use a Windows environment,
downloadable apps, and course web pages. Students will have significant experience
with online search engine use and will likely find relevant YouTube and Wikipedia
pages faster than faculty.Many students have had “technology” courses inwhich they
learn to use graphics and office software packages. These courses teach navigation
through menus, websites, and disk/cloud storage options. However, K-12 does not
yet provide consistent coverage of computer science fundamentals, resulting in a
significant gap between “usage” of an app and “understanding” of the code needed
to realize that app. Because the K-12 curriculum is still struggling to establish a



10 Aerospace Engineering Curricular Expansion in Information Systems 139

rigorous and consistent computer science curricular standard, K-12 educators often
rely on extracurricular activities such as team-based robotics or gaming competitions
to at least attract students willing to devote their spare time to such pursuits.

The current state-of-the-practice inK-12 education has the following results. First,
most all K-12 graduates are comfortablewith “apps” and can easily communicate and
navigate using online resources. Some K-12 students have computer programming
experience for activities such as robotics and gaming, but few K-12 students have
knowledge of computer science foundations. In contrast, most all K-12 graduates
entering a top engineering program will be well versed in math and physics, as
evidenced by the fact that most undergraduates arrive at top-tier universities with
Advanced Placement (AP) math and/or physics credit.

K-12 students with computer programming exposure certainly capitalize on this
exposure in their improved conceptual understanding. However, because program-
ming experiences are primarily extracurricular, no specific foundation can be pre-
sumed at a university. What language has a student used, e.g., C++, Java, Python,
Basic, JavaScript? Is the student’s exposure general or specialized to the particu-
lar extracurricular activity, e.g., JavaScript for Minecraft, Arduino C code loops for
robots? Because even students with computer programming background in K-12
have such diverse exposures, entry-level college courses cannot assume proficiency
in specific procedural or object-oriented code foundations, nor can such courses
assume all students have even basic mastery of a common programming language.
As a result, freshman programming courses, evenwithin a top college of engineering,
have to “start from scratch”.

Researchers in K-12 Computer Science (CS) education have long studied the
challenges of establishing a standard curriculum ensuring rigorous K-12 student CS
preparation. Hubwieser et al. [2] provide a statistical overview of CS education
programs internationally, revealing that the struggle to establish a consistent and rig-
orous K-12 education in CS is worldwide. This study [2] presented statistical results
on CS educational terminology, curricular competencies and goals, learning content,
assessment strategies, and teacher training requirements. Terminologywas varied and
somewhat challenging to precisely correlate, a product of the relative youth of CS in
comparison to established subjects such as physics. Terminology variance led to large
sets of goals and competencies, though aggregation led to “super-categories” such
as “Representing, Understanding, Creating, and Testing Algorithms”. In the final
analysis, the following languages were taught in more than one country surveyed:

• Java,
• C++, C,
• Python,
• AppInventor,
• BASIC, VisualBasic,
• HTML,
• JavaScript, and
• Pascal.



140 E. M. Atkins

The above list represents an impressively broad suite of languages with different
features. Evenwhen a student has had the opportunity to pursueK-12CS coursework,
this breadth in language choices illustrates a major challenge in student preparation
inconsistency for entry-level engineering programming courses.

Perhapsmore important than programming language is foundational concept cov-
erage. Per Ref. [2] study, the following curricular content was covered in over half
of the surveyed countries’ curricula: algorithms, applications, computer and com-
munication devices, networks, data structures, database systems, information and
digitalization, CS mathematics, modeling, object-oriented concepts, operating sys-
tems, problem-solving, and programming. This is an extensive list that sets a high
mark for K-12 CS educators; K-12 coverage of this set of competencies could revolu-
tionize our ability to build toward advanced CS concepts in all engineering programs.
That said, there remains a substantial gap between the ideals of [2] and the actual K-
12 CS preparation observed in students entering US university engineering programs
today.

To reflect howsignificantly the current deficiency inK-12 computer science educa-
tion impacts a student’s educational experience, consider for comparison the current
K-12 curricula in traditional mathematics and physics. Any K-12 student aspiring
to gain admission to a top-tier university engineering program is advised to take as
many math and science courses as they can handle in their K-12 education, with
emphasis on basic math skills, algebra, geometry, and calculus. Top students tend
to complete all the math available in their high schools, with many adding courses
from local community colleges in their senior year. Most high schools now offer
some form of calculus, and the majority of students entering a top university earn AP
exam credit to place out of at least the first-semester Calculus course. Top students
in good schools also pursue AP science credit in physics, chemistry, and biology.
This consistent, long-term series of K-12 exposures in math and science provides an
undeniable foundation on which college coursework can directly build. For example,
even aCalculus I course can assume all entering students understand basicmath oper-
ations, algebra, geometry, and trigonometry. If a student is not prepared for Calculus
I, it is expected the student will “catch up”. This is in sharp contrast to the necessary
“no student left behind” posture a first-year programming course must take, which
ultimately results in a one-term programming course covering only basic concep-
tual material more akin to Algebra I than to Calculus. As engineering students enter
their second year of an undergraduate program, most are still at a low proficiency
level in computer programming. As described below, computer science programs
incrementally build student knowledge as needed, whereas traditional engineering
programs tend to “sweep this deficiency under the carpet” in courses emphasizing
math/physics fundamentals. This deficiency can no longer be ignored in preparing
the twenty-first-century student for anAerospace Systems career, regardless ofwhich
Fig. 10.1 pillar a student selects.



10 Aerospace Engineering Curricular Expansion in Information Systems 141

10.2.2 Traditional Aerospace Engineering (AERO)
Curriculum

The traditional Aerospace Engineering curriculum is built on a foundation of K-12
plus first-year engineeringmath, science, and humanities coursework. Over a century
ago, academia recognized the need to splitAeronautics fromMechanical Engineering
to enable focus on the atmosphere and flight vehicles in coursework. Researchers
envisioned a timewhen space flightwould also be possible, resulting in the creation of
Aerospace aswell asAeronautics andAstronautics departments atmajor universities.
Because of its heritage in mechanical engineering, Aerospace fundamentals were
organized around topics with analogs in Mechanical Engineering: structures and
materials, gas dynamics (a generalization of aerodynamics and propulsion), and
vehicle flight dynamics and control. This “pillar structure” for traditional Aerospace
Engineering is shown in Fig. 10.2.

Early aircraft designs focused on optimizing aerodynamics and propulsion sys-
tems. Structures have evolved from fabric and wood to metal and now to composite
materials. Early aircraft hosted mechanical actuation and instrumentation systems.
Aircraft and spacecraft have evolved to fly-by-wire vehicle designs, and Unmanned
Aircraft Systems (UAS) are fully capitalizing on lightweight, low-cost avionics com-
ponents. Increasingly-autonomous onboard data-to-decision systems are found on
most mass-produced Aerospace vehicles. Still, Aerospace foundations focus on the
traditional pillars, though laboratory and design project experiences have evolved to
capitalize on modern hardware and software.

The current University of Michigan Aerospace Engineering curriculum has tra-
ditional content and is shown in Fig. 10.3. Note that general elective credits are not
shown. The University requires the core engineering courses shown in the left col-
umn. The next category, Core Aerospace, illustrates the traditional “three-pillar”
organization of lecture-based coursework. We currently require a sequence of three
laboratory-based courses. Figure10.3 groups an introductory Aerospace course, a
sophomore seminar, and a senior system design course in a single category. Cur-

Fig. 10.2 The traditional
pillars of Aerospace
Engineering



142 E. M. Atkins

Fig. 10.3 University of Michigan Aerospace Engineering (AERO) curriculum (current)

rently, all Aerospace majors must take an introduction to materials class (taught in
Materials Science and Engineering (MSE)) along with an electronic circuits class
(taught by Electrical Engineering (EE)), but this is expected to evolve, as discussed
later in this paper. The final Aerospace degree requirement, beyond general electives,
is a Technical Elective distribution of 7 credits, 3 of which must be acquired in an
advanced math course.

As shown in Fig. 10.3, there is very little required CS content in Michigan’s
current Aerospace Engineering degree program. Required courses containing some
CS content are highlighted in the figure. A single freshman programming course
introduces engineering students to CS concepts, but as discussed above, this course
must cater to students across all K-12 preparation levels. Further, the course needs
to cater to all engineering majors, resulting in emphasis on two languages (C++
and Matlab), which further limits coverage depth. This freshman course was never
intended to cover CS theory given its main priority to ensure students have at least
some programming proficiency for upper-level engineering coursework.

At the sophomore level, two required Aerospace courses require computer pro-
gramming content. The “Introduction to Aerospace” course, currently taught by the
author and two other Aerospace faculty interested in improving the Aerospace CS
curricula, has evolved to require Matlab for every assignment and every exam. Early
lectures assure students have understanding of the basic language mechanics, impor-
tant especially for transfer students who have not seen Matlab previously. Assign-
ments then progressively build on numerical methods and plotting capabilities to
expose students to the use of amathematical programming language for aerodynamic,
steady flight, orbit, and launch analyses. The “Introduction to Aerospace Systems”
laboratory course is structured as a custom hovercraft design, build, test experience
in which students learn Computer-Aided Design (CAD), composite manufacturing,
and apply basic principles of structural and aerodynamics in their iterative designs.
Once students are able to successfully drive their hovercraft via radio-control link,



10 Aerospace Engineering Curricular Expansion in Information Systems 143

they are asked to write specific Arduino C control code functionality. These two
courses give students some sophomore-level exposure to analysis and embedded
code development. These exposures are important, and they reinforce concepts and
the languages covered in freshman programming. However, these exposures are not
currently followed-through with any further CS content, resulting in limited maturity
and confidence for students who choose not to take elective courses involving CS
theory or practice.

The Aerospace Engineering graduate curriculum currently follows the same pillar
structure organization depicted in Fig. 10.2. While traditional structures, gas dynam-
ics, and control theory courses lay the traditional foundation for students pursuing
degrees in this area, specific courses have been added to address computational sci-
ence and real-time decision-making areas crosscutting with computer science. In gas
dynamics, courses in numerical methods and Computational Fluid Dynamics (CFD)
expose students to numericalmethods and also computational strategies formanaging
high-performance computing resources needed to solve most important Aerospace
flowfield problems. In flight dynamics and control, courses in flight software systems
andAerospace information systems have been developed to help students gain further
competence in embedded coding for autonomous control, as well as exposing stu-
dents to CS theoretical underpinning they have not previously seen. The information
systems course, in particular, covers concepts from data structures and complexity
through finite state automata and discrete search. Our experience is that students find
the theoretical underpinnings fairly easy to grasp but find coding projects muchmore
difficult. This finding is not surprising given that students have substantial practice
with pencil-and-paper problems in almost every undergraduate Aerospace course,
but students have mostly used short Matlab codes to assist with Aerospace problem-
solving thus are not well equipped to scale their coding experience to larger projects
implemented in a lower level language such as C or C++.

10.2.3 Computer Science and Engineering (CSE)
Curriculum

Computer Science and Engineering (CSE) is a relatively new discipline in com-
parison to Aerospace Engineering. Many universities including the University of
Michigan offer two forms of computer science degrees: one within a humanities
umbrella (e.g., literature, science, and arts) and another in engineering. New degrees
in data and information technology have also emerged in recent decades. Because
AerospaceEngineering andCSEhave themost natural overlap, CSE is theCS-related
degree of reference for this paper.

Figure 10.4 shows required coursework for the University of Michigan CSE pro-
gram. The left column of core engineering coursework is the same as core course-
work for Aerospace except that CSE students are required to take linear algebra
in lieu of either Calculus III or Differential Equations. The 24-credit core com-



144 E. M. Atkins

Fig. 10.4 University of Michigan Computer Science and Engineering (CSE) curriculum

puter science required for all students includes fundamental content in discrete math,
object-oriented programming and data structures, algorithms, computer organization
(introduction to computer architectures), and theoretical foundations. Students learn
complexity theory, foundational data structures, and algorithms, and are introduced
to grammars, languages, finite state automata, and Turing Machines. CSE students
have substantial flexibility in selection of junior and senior level technical electives,
and are required to complete amajor design experience that typically includes a team-
based software development effort along with a formal project reporting (technical
communication) requirement.

Figure10.5 illustrates CSE course prerequisites as a dependency graph.1 Required
sophomore and junior courses are highlighted. As shown, Discrete Math (EECS
203) and the sophomore-level programming course (EECS 280) precede the three
remaining required courses (EECS281, EECS370, andEECS376).2 As shown, there
are numerous technical electives available to CSE undergraduates, providing under-
graduates substantial specialization opportunities. CSE has experienced remarkable
growth in the past decade, so even elective classes tend to have most every classroom
seat filled.

Typically, students take EECS 281 (Data Structures and Algorithms) prior to
taking either junior-level course. EECS 280 and 281 in particular have lengthy coding
project requirements. From the author’s experience with undergraduate students,

1This chart is reproduced fromhttps://www.eecs.umich.edu/eecs/undergraduate/computer-science/
17_18_cs_eng.pdf.
2EECS refers to Electrical Engineering and Computer Science.

https://www.eecs.umich.edu/eecs/undergraduate/computer-science/17_18_cs_eng.pdf
https://www.eecs.umich.edu/eecs/undergraduate/computer-science/17_18_cs_eng.pdf


10 Aerospace Engineering Curricular Expansion in Information Systems 145

Fig. 10.5 University ofMichigan Computer Science and Engineering (CSE) prerequisite map with
lists of CSE technical electives

completion of EECS 281 is the “minimumbar” for a student to have reliably achieved
a strong foundation in data structures and programming. This implies that non-CSE
students seeking competence in CSE will need to take a minimum of 12 credit hours
of CSE coursework, EECS 203, EECS 280, and EECS 281, to gain CSE competence.

The Aerospace Engineering department currently recommends students inter-
ested in CSE pursue a CSE minor to supplement their Aerospace major. Students
pursuing this minor must complete EECS 203, EECS 280, EECS 281, and one of
the listed upper-level technical electives. Common choices by Aerospace students
include computer vision, artificial intelligence, and autonomous robotics. The CSE
minor is a good option for an undergraduate student who either can afford tuition
for an extra semester or who arrives with substantial Advanced Placement (AP)
credit. However, a CSE minor is not practical for most students following a standard
curricular track, suggesting the need for further Aerospace curricular revision.3

3The University of Michigan Aerospace Engineering Department does not currently offer a minor
degree option; if available a student selecting a CSEmajor and Aerospace minor would face similar
course credit challenges.



146 E. M. Atkins

10.3 Cross-Disciplinary Programs

Two multidisciplinary fields have emerged that have made progress in integrating
Aerospace (AERO) and CSE foundations to some extent: Cyber-Physical Systems
(CPS) and robotics. Background in each is provided below, although the author
acknowledges that in practice neither have targeted Aerospace-specific systems as a
focus of attention.Certainly,CPSand robotics programgraduates have competence in
physics, math, and CSE. However, the Aerospace industry has had trouble attracting
themost talentedCPS and robotics students due to the extremely favorablemarket for
current CPS and robotics graduates. The high demand for CSE, CPS, and robotics
graduates is yet another motivation for augmenting traditional Aerospace degree
programs.

10.3.1 Cyber-Physical Systems (CPS)

The CPS focuses on modeling and control of sensing, mobility, information, and net-
working systems operating in and making decisions about a complex environment
[3–5]. The nature of data, translation, and abstraction of this data, and subsequent
control decisions made in CPS, depend substantially on both the application and
the perspective taken by the researcher studying CPS. CPS research tends to be
customized to the domain of interest, from an autonomous vehicle or cooperative
vehicle team to collaborative human–robot systems. CPS decisions range from coor-
dination and fault-tolerant control of physical actuators to real-time datamanagement
and secure networking. CPS are inherently multidisciplinary, challenging educators
and practitioners to build knowledge of fundamental and application concepts that
cut across, at a minimum, the fields of dynamics and control (control theory) and
computer science (real-time computing).

CPS graduate degree programs have been proposed with some success. In [6], an
embedded systems focus is achieved with curricular content in control, communi-
cation, distributed systems, machine learning, sensors, and security. Reference [7]
emphasizes balance in theoretical and applied CPS coursework and hands-on expe-
rience to support “ready to engineer” graduates. In this work, the goal is to graduate
CPS engineers with knowledge of physics, software, and systems. Specific educa-
tion and experience in collaboration across multidisciplinary teams is encouraged.
Impact of CPS to society should be recognized in the context of economics, human–
machine interfaces, and social/legal contexts. Textbooks in CPS are beginning to be
published [8]. Authors have attempted to undertake the challenge of simultaneously
providing depth in CS, particularly real-time embedded systems, along with depth
in mathematics and control theory for sensor data fusion and robust control.

CPS hold potential to bridge the specific Aerospace—CSE gaps related to
computer-based data management and control for complex physical systems. How-
ever, most CPS research does not extend consideration to the other aspects of the



10 Aerospace Engineering Curricular Expansion in Information Systems 147

Aerospace System, e.g., aerostructural and propulsive systems as well as mission-
specific challenges, particularly for space applications.

10.3.2 Robotics

Robotics is a multidisciplinary area of study that integrates principles of mechani-
cal engineering, electrical engineering, and computer science to design, build, and
deploy physical systems that assist humans or independently complete physical tasks.
Coursework may be characterized in three contexts: sensing, reasoning, and acting.4

Although plagued by comparisons to science fiction, robotic systems first experi-
enced widespread use decades ago in factory assembly environments. Robotics has
experienced rapid growth in the past decade due to affordable microelectronics,
capable processors, and high-density energy storage systems. It is now possible to
rapidly assemble and test gadgets that drive, fly, swim, and grasp at reasonable mon-
etary and time investment. Robotics programs therefore can introduce students to
foundational mathematics and real robotic systems through hands-on manipulator,
driving, and flying systems equipped with onboard sensors, including cameras and
lidar, augmented by off-board motion capture systems.

The goal of “first courses” in “mathematics for roboticists” and “robotic systems”
is to prepare highly capable graduate students with diverse backgrounds for the
spectrum of follow-on robotics courses they select. Today, popular robotics subjects
include machine learning, machine vision, artificial intelligence and planning, linear
and nonlinear control systems, signal processing, mechatronics, and navigation and
mapping. New courses in nontraditional areas such as “robot ethics” are also being
introduced as issues in policy, law, and culture. While robotics programs currently
tend to place primary focus on manipulation, self-driving cars, and human–robot
interaction, UAS or “drones” provide rich experiences for students with interest in
flight, and robotics principles such as task and path planning and navigation through
obstacle fields can also be directly applied to flight vehicles and planetary exploration
systems. A number of high-quality robotics textbooks have been published; early
texts focused on robotic manipulator kinematics, dynamics, and control. Special-
ized texts, online courseware, multimedia instructional materials, and open-access
databases have been developed for use in robotics education and practice. Of partic-
ular relevance are open-source community-developed toolchains such as ROS, the
Robot Operating System (http://www.ros.org), and cloud databases such as Open
Street Map (OSM) (http://www.openstreetmap.org).

4These areas are used to loosely organize the robotics graduate curriculum at the University of
Michigan.

http://www.ros.org
http://www.openstreetmap.org


148 E. M. Atkins

10.4 Evolving the Aerospace Engineering Curriculum

This section explores opportunities to evolve the Aerospace Engineering curricula
given topics in CSE, CPS, and Robotics that could improve students’ expertise in
twenty-first-century Aerospace Systems. Certainly, no one, including the author,
would like to see key topics in the current curriculum sacrificed, but future Aerospace
graduate could benefit frommore than the tenuous required CS content included now.

At the core of this challenge are the following key questions:

• What aspects of computer science theory and practice are essential for the
Aerospace Engineering student?

• Given credit limits, what do we remove from the required Aerospace Engineering
curriculum to “make space” for new content?

The first question is beginning to be addressed through analysis of critical founda-
tions for both Aerospace research and projects in industry. The second question has
been more problematic to address, as faculty need to acknowledge that some exist-
ing required course content must become elective. Another barrier to evolution is
accreditation, with organizations such as ABET (http://www.abet.org) insisting that
Aerospace meet the standards required decades ago. Standards must evolve along
with curricula to assure relevance in twenty-first-century Aerospace curricula.

This is not the first paper to address extension of the “traditional Aerospace
pillars”. In 2004, Long [9] proposed a five-pillar structure consisting of (1) fluid
dynamics and thermophysics; (2) propulsion and power; (3) structuralmechanics and
materials; (4) guidance, control, and dynamics; and (5) computing, information, and
communication. This publication appears in the inaugural issue of the AIAA Jour-
nal of Aerospace Computing, Information, and Communication, now the Journal of
Aerospace Information Systems (JAIS). The first four pillars map to the three-pillar
structure presented in Fig. 10.2 with fluid dynamics and propulsion both included
within gas dynamics. The final or fifth pillar represented what Long considered the
essential next step toward a more holistic Aerospace Engineering–CS education.
In later publications, Long described a successful Aerospace software engineering
course introduced at Penn State University [10], with follow-up publications such as
Ref. [11]. The author feels Long’s pain, in that she has spent her career pleading for
Aerospace curricular reform only to face the curriculum shown in Fig. 10.2 despite
over a decade of attempted reform.

Finally, over the past year, steps toward curricular reform have been seriously
taken. Though small steps, there is hope at the University of Michigan, a tradi-
tional department, which means there is also hope for evolution in other traditional
Aerospace programs.5 Ultimately, the pressure to evolve has not come from tradi-

5The Massachusetts Institute of Technology (MIT) has embraced information systems long-term,
with some growing pains as traditional faculty felt fundamentals were being sacrificed. Stanford
University recently introduced an undergraduate Aerospace degree, which offered them a clean
slate in which they were able to include CS content. Other universities have not yet responded;
however, it is likely they are feeling similar pressures to the University of Michigan’s Aerospace
Department.

http://www.abet.org


10 Aerospace Engineering Curricular Expansion in Information Systems 149

Fig. 10.6 Proposed distribution elective for the University of Michigan’s Aerospace Engineering
program

tional Aerospace faculty, nor has it come from the Aerospace industry. It instead has
come from students, who have increasingly sought CS minors and who have begun
to, in some cases, abandon Aerospace as a major due to the challenge of fitting both
AERO and CS into a 4-year program of study. A committee of six faculties covering
Aerospace autonomy, validation and verification, space systems, and computational
fluid dynamics has engaged in proposing specific computing curriculum reforms. To
date, there has been little appetite for adding Aerospace courses that fully mirror CS
courses, but the faculty has approved a curriculum change that will increase student
flexibility, and a new course is being developed to address what are viewed as key
gaps in Aerospace student CS background.

Figure10.6 illustrates a welcome curricular change recently approved by the fac-
ulty. Specifically, the two required extra-departmental courses, one in materials and
one in electrical circuits, have morphed into a “Distribution Elective” to increase stu-
dent flexibility. In the revised curriculum, students can select any two of the six listed
courses, two from Materials Science and Engineering (MSE), two from Electrical
Engineering (EE), and two from CSE. This change will make it easier for Aerospace
students to elect a CSE minor in that at least one CSE minor courses, EECS 280 or
EECS 281, can also count toward the Aerospace degree. Note that students opting
for EECS 281 will have to complete prerequisite EECS 203, but this one additional
course will not prevent most students from selecting the CSE distribution elective
given interest.

With the modified curriculum, Aerospace students will have the opportunity to
deepen their exposures in one ormore out-of-department course sequences.However,
students who do not elect the EECS 280-281 sequence will graduate with no better
CS background than they obtain today. To address this problem, a group ofAerospace
faculty are developing a new 4-credit course with a computer laboratory component



150 E. M. Atkins

that assures one-on-one oversight. The course will be comprised of three CS-centric
modules with acknowledged connection to Aerospace: CS fundamentals including
data structures, iterative and recursive algorithms, and computational complexity,
Computational Science including key numerical methods and efficient memory and
computational approaches, and embedded real-time data management and control
with a hardware-based final project (quadcopter operating indoors and outdoors in
a netted facility). As a junior course, students will continue to build on their Matlab
analysis experiences and C/C++ (Arduino) experiences from sophomore year. The
course will offer a combination of new materials and repeat exposures to key CSE
concepts studentsmight not remember long-termwithout this new required exposure.
We envision a team of two faculties, one with expertise in embedded systems and
one with expertise in computational science, to teach the course until clear notes and
baseline projects are established. One in place, students will have required course-
work exposures to CSE topics at freshman, sophomore, and junior levels. Senior
electives in numerical methods and flight software systems will offer students the
option of continuing their CSE studies in Aerospace-centric analysis and embedded
control.

10.5 Conclusion and Discussion

This chapter has summarized state-of-the-practice in K-12, Aerospace Engineering,
and CSE education. Emerging CPS and robotics disciplines were reviewed to offer
ideas for extending the traditional Aerospace curriculum to better incorporate the
breadth of Aerospace Systems topics, particular computer CSE. CSE augmentations
to the University of Michigan’s Aerospace program are proposed and discussed.

Exposure of Aerospace students to CSE concepts now appears within reach; how-
ever, there are two remaining pillars underlying the twenty-first-century “Aerospace
System”: electrical engineering and human factors/operations. While consideration
of fundamentals for these areas is beyond the scope of this paper, it will be important
for Aerospace and CSE programs to continue evolving. Otherwise the gap between
“operators” and “engineers” will continue to widen, and Aerospace Engineers might
eventually be as unaware of how analog and digital circuitry work as they are of
computer science foundations today.

References

1. E.M. Atkins, Education in the crosscutting sciences of aerospace and computing, J. Aerosp.
Inf. Syst. 11(10), 726–737 (2014)

2. P. Hubwieser, M.N. Giannakos, M. Berges, T. Brinda, I. Diethelm, J. Magenheim, Y. Pal,
J. Jackova, E. Jasute, A global snapshot of computer science education in K-12 schools, in
Proceedings of the 2015 ITiCSE on Working Group Reports, ACM, 2015, pp. 65–83



10 Aerospace Engineering Curricular Expansion in Information Systems 151

3. R.R. Rajkumar, I. Lee, L. Sha, J. Stankovic, Cyber-physical systems: the next computing
revolution, in Proceedings of the 47th Design Automation Conference, ACM, 2010, pp. 731–
736

4. E.M. Atkins, J.M. Bradley, Aerospace cyber-physical systems education, in Infotech@
Aerospace (I@ A) Conference. (American Institute of Aeronautics and Astronautics, USA,
2013), p. 4809

5. E.M. Atkins, Education in the crosscutting sciences of aerospace and computing. J. Aerosp.
Inf. Syst. (2014)

6. F. Kurdahi, M.A.A. Faruque, D. Gajski, A. Eltawil, A case study to develop a graduate-level
degree program in embedded and cyber-physical systems, ACM SIGBED Rev. 14(1), 16–21
(2017)

7. M. Törngren,M.E.Grimheden, J. Gustafsson,W.Birk, Strategies and considerations in shaping
cyber-physical systems education, ACM SIGBED Rev. 14(1), 53–60 (2017)

8. E.A. Lee, S.A. Seshia, Introduction to Embedded Systems: A Cyberphysical Systems Approach
(MIT Press, USA, 2016)

9. L.N. Long, Computing, information, and communication: the fifth pillar of aerospace engi-
neering, J. Aerosp. Comput. Inf. Commun. 1(1), 1–4 (2004)

10. L.N. Long, O. Janrathitikarn. A new software engineering course for undergraduate and grad-
uate students, in AIAA Infotech@ Aerospace Conference 2010, pp. 20–22

11. L.N. Long, On the need for significant reform in university education, especially in aerospace
engineering, in Aerospace Conference (IEEE, New York, 2015), pp. 1–7


	10 Aerospace Engineering Curricular Expansion in Information Systems
	10.1 Introduction
	10.2 Current Curricula
	10.2.1 K-12 Education
	10.2.2 Traditional Aerospace Engineering (AERO) Curriculum
	10.2.3 Computer Science and Engineering (CSE) Curriculum

	10.3 Cross-Disciplinary Programs
	10.3.1 Cyber-Physical Systems (CPS)
	10.3.2 Robotics

	10.4 Evolving the Aerospace Engineering Curriculum
	10.5 Conclusion and Discussion
	References




