
Chapter 11
Abstractions Refinement for Hybrid
Systems Diagnosability Analysis

Hadi Zaatiti, Lina Ye, Philippe Dague, Jean-Pierre Gallois,
and Louise Travé-Massuyès

11.1 Introduction

The increasing complexity of systems makes it challenging to detect and isolate
faults. Hybrid systems are no exception, combining both discrete and continuous
behaviors. Verifying behavioral or safety properties of such systems, either at design
stage such as state reachability, diagnosability, and predictability or on-line such as
fault detection and isolation is a challenging task. Actually, computing the reachable
set of states of a hybrid system is an undecidable matter due to the infinite state space

H. Zaatiti
CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems,
Gif-sur-Yvette, France

LRI, Univ. Paris-Sud & CNRS, Univ. Paris-Saclay, Gif-sur-Yvette, France
e-mail: hadi.zaatiti@cea.fr; hadi.zaatiti@lri.fr

L. Ye
CentraleSupélec, Univ. Paris-Saclay, Gif-sur-Yvette, France

LRI, Univ. Paris-Sud & CNRS, Univ. Paris-Saclay, Gif-sur-Yvette, France
e-mail: lina.ye@lri.fr

P. Dague (�)
LRI, Univ. Paris-Sud & CNRS, Univ. Paris-Saclay, Gif-sur-Yvette, France
e-mail: philippe.dague@lri.fr

J. -P. Gallois
CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems,
Gif-sur-Yvette, France
e-mail: jean-pierre.gallois@cea.fr

L. Travé-Massuyès
LAAS-CNRS, Univ. de Toulouse, Toulouse, France
e-mail: louise@laas.fr

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4_11

279

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74962-4_11&domain=pdf
mailto:hadi.zaatiti@cea.fr; hadi.zaatiti@lri.fr
mailto:lina.ye@lri.fr
mailto:philippe.dague@lri.fr
mailto:jean-pierre.gallois@cea.fr
mailto:louise@laas.fr
https://doi.org/10.1007/978-3-319-74962-4_11

280 H. Zaatiti et al.

of continuous systems. One way to verify those properties over such systems is by
computing discrete abstractions and inferring them from the abstract system back
to the original system. Methods have been proposed for diagnosability verification
for continuous and discrete systems separately, few of them handle hybrid automata
[21, 35, 62]. Diagnosability is a property describing the system ability to determine
whether a fault has effectively occurred based on the observations, which has
received considerable attention in the literature [16, 32, 48, 52, 53, 60]. However,
most of the existing works are applied on discrete event systems.

In this chapter, we are concerned with abstractions oriented towards hybrid
systems diagnosability checking. Our goal is to create discrete abstractions in
order to verify, at design stage, if a fault that would occur at runtime could be
unambiguously detected in finite time (or within a given finite time bound for
bounded diagnosability) by the diagnoser using only the allowed observations.
This verification can be done on the abstraction by classical methods developed
for discrete event systems, which provides a counterexample in case of non-
diagnosability. The absence of such a counterexample proves the diagnosability of
the original hybrid system. In presence of a counterexample, the first step is to check
if it is not a spurious effect of the abstraction and actually exists for the hybrid
system, witnessing thus non-diagnosability. Otherwise, we show how to refine
the abstraction, guided by the elimination of the counterexample, and continue
the process of looking for another counterexample until either a final result is
obtained or we reach an inconclusive verdict. We make use of qualitative modeling
and reasoning to compute discrete abstractions and we define several refinement
strategies. Abstractions as timed automata are particularly studied as they allow
one to capture qualitative temporal constraints [10, 13]. The chapter is organized as
follows. We first present the hybrid automata formalism and define diagnosability
for hybrid systems. We then introduce a formal framework for constructing hybrid
automata abstractions while defining the refinement relation. Lastly, we detail
the counterexample guided abstraction refinement (CEGAR) scheme adapted for
diagnosability verification and a case study example illustrating this scheme.

11.2 Hybrid Dynamical Systems

In this section, we start with a brief general description of hybrid systems and then
move on to propose a formal representation framework for hybrid automata that is
adopted throughout the chapter. Later on, we provide an example of a practical
system modeled as a hybrid automaton. Lastly, we introduce various classes of
hybrid automata, among which timed automata are our primary interest.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 281

11.2.1 Hybrid Automata Definition

Hybrid systems are dynamical systems that include discrete and continuous
behaviors [38]. Hybrid automaton (HA) is a mean to model such systems; it
is an infinite state machine frequently used for this purpose among the scientific
community. Each state of the hybrid automaton is twofold with a discrete and a
continuous part. The discrete part ranges over a finite domain while the continuous
part ranges over the Euclidean space Rn.

Definition 1 (Hybrid Automaton (HA)) An n-dimensional hybrid automaton
(HA) is a tuple H D .Q;X; S0; †;F; Inv;T/ where:

• Q is a finite set of modes (or locations), that can be possibly defined as the
valuations set of a finite number of finite valued variables, and represents the
discrete part of H. X is a set of n real-valued variables (which are continuously
differentiable functions of time), whose valuations set X � R

n represents the
continuous part of H. S D Q � X is the state space of H, whose elements, called
states, are noted .q; x/ with q and x the respective discrete and continuous parts
of the state.

• S0 � S is the set of initial states. If unique, the initial state is noted .q0; x0/.
• † is a finite set of events.
• F W S ! 2R

n
is a mapping assigning to each state .q; x/ 2 S a set F.q; x/ �

R
n constraining the time derivative Px of the continuous part of the mode q by

Px 2 F.q; x/. If there is no uncertainty on the derivative, then F is a function
S ! R

n specifying the flow condition Px D F.q; x/ in each mode q (the dynamics
in each mode is thus given by a set of n first-order ordinary differential equations
(ODEs)).

• Inv W Q ! 2X assigns to each mode q an invariant set Inv.q/ � X, which
constrains the value of the continuous part of the state while the discrete part is
q. We require, for all q 2 Q, that fx j .q; x/ 2 S0g � Inv.q/.

• T � S � † � S is a relation capturing discontinuous state changes, i.e.,
instantaneous discrete transitions from one mode to another one. Precisely,
t D .q; x; �; q0; x0/ 2 T represents a transition whose source and destination
states are .q; x/ with x 2 Inv.q/ and .q0; x0/ with x0 2 Inv.q0/, respectively, and
labeled by the event � . It represents a jump from x in mode q to x0 in mode q0.

We will call (concrete) behavior ofH any sequence of continuous solution flows and
discrete jumps, rooted in an initial state, satisfying all the constraints above defining
H. Hybrid systems are typically represented as finite automata with (discrete, i.e.,
modes) states Q, initial states Q0 D fq 2 Q j 9x 2 Inv.q/.q; x/ 2 S0g and
transitions ı defined by ı D f.q; �; q0/ 2 Q � † � Q j 9x; x0.q; x; �; q0; x0/ 2 Tg.
To each state q 2 Q0 is associated an initial (continuous) nonempty set Init.q/ D
fx 2 Inv.q/ j .q; x/ 2 S0g. To each transition � D .q; �; q0/ 2 ı are associated a
nonempty guard set G.�/ D fx j 9x0.q; x; �; q0; x0/ 2 Tg � Inv.q/ and a set-valued

282 H. Zaatiti et al.

reset map R.�/ W G.�/ ! 2Inv.q0/ given by R.�/.x/ D fx0 j .q; x; �; q0; x0/ 2 Tg. It
is actually equivalent in the definition to provide either T or ı, G and R. In the last
case,H is denoted by .Q;X; S0; †;F; ı; Inv;G;R/ and we have: 8.q; x/; .q0; x0/ 2 S,
8� 2 †, ..q; x; �; q0; x0/ 2 T , � D .q; �; q0/ 2 ı ^ x 2 G.�/ ^ x0 2 R.�/.x//.

It can be in some cases more convenient to adopt a relational-based represen-
tation than a set-based representation and to use predicates instead of subsets. By
a slight abuse of notation, for each mode q, Init.q/ (for q 2 Q0), F.q/ and Inv.q/

indicate then predicates whose free variables are respectively from X, X � PX and X
and Init.q/.x/, F.q/.x; Px/ and Inv.q/.x/ being true means respectively x 2 Init.q/,
Px 2 F.q; x/ and x 2 Inv.q/. In the same way, for each mode transition � , G.�/ and
R.�/ indicate predicates whose free variables are respectively from X and X�X and
G.�/.x/ and R.�/.x; x0/ being true means respectively x 2 G.�/ and x0 2 R.�/.x/.
We will make use equally of both representations.

Guards in any mode q will be assumed non-intersecting: 8q 2 Q; 8�1 D
.q; �1; q1/ 2 ı; 8�2 D .q; �2; q2/ 2 ı; .�1 ¤ �2) G.�1/ \ G.�2/ D ;/. Thus,
at any moment of its continuous evolution in a mode q, the system may jump to at
most one another mode and by a unique event. Nevertheless, a HA is generally non-
deterministic: the continuous dynamics in each mode may be non-deterministic,
the moment where a jump occurs is non-deterministic (as long as Inv.q/.x/ and
G.�/.x/ are true, where q is the source mode of the mode transition � , the system
may continue to continuously evolve in q or make the transition �) and the reset
after a jump may be non-deterministic.

11.2.2 Modeling with Hybrid Automata

Hybrid automata represent an intuitive modeling framework. They are used in
various domains to model complex hybrid systems. Here is a practical case where a
hybrid automaton is used for modeling a system.

Example 1 A simple thermostat system maintains the temperature of an object
quasi-constant by turning on and off a heater device. In practice such system
contains at least, a temperature sensor, a heater device and logic control electronic
circuits. The circuitry decides, given the actual measured temperature of the object,
to activate or not the heater. A hybrid automaton H D .Q;X; S0; †;F; ı; Inv;G;R/

models the behavior of such system (see graphical representation on Fig. 11.1):

• Q D fon; off g, X D fxg, S0 D .off ; Œ80; 90�/

• † D fBon;Boff g, F.on/ D fPx D �x C 100g, F.off / D fPx D �xg
• ı D f�1 D .off ;Bon; on/; �2 D .on;Boff ; off /g, Inv.off / D x � 68, Inv.on/ D

x � 82

• G.�1/ D x � 70, G.�2/ D x � 80, R.�1/ D R.�2/ D .x D x0/

The assigned hybrid automaton H is one dimensional, where x represents the sensed
temperature.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 283

o f f

ẋ= −x

x ≥ 68

on

ẋ= −x+100

x ≤ 82

x ∈ [80,90]
x ≤ 70/Bon

80 ≤ x/Bo f f

Fig. 11.1 One-dimensional hybrid automaton modeling a thermostat

11.2.3 Hybrid Automata Semantics

We denote by q0; q1; : : : the modes of Q, and by x1; x2; : : : ; xn the variables of X.

Definition 2 (Hybrid Automaton Semantics) The semantics of a hybrid automa-
ton H, denoted by ŒŒH��, is the set of all executions, which are labeled sequences of

states from S with labels in L D † [RC: .q0; x0/
l0�! .q1; x1/ : : : .qi; xi/

li�! : : : such

that .q0; x0/ 2 S0 and, for any two successive states .qi; xi/
li�! .qiC1; xiC1/ in the

sequence, one of the following is true:

• li D �i 2 † and .qi; xi; �i; qiC1; xiC1/ 2 T;
• li D di 2 RC, qi D qiC1, xi; xiC1 2 Inv.qi/ and 9x W Œ0; di� ! X continuously

differentiable function, with x.0/ D xi, x.di/ D xiC1 and 8t 2 .0; di/Px.t/ 2
F.qi; x.t// and x.t/ 2 Inv.qi/.

In the first case, the system executes a discrete transition (also called discrete jump)
�i D .qi; �i; qiC1/ from the mode qi to the destination mode qiC1. Such a transition
is possible (enabled) as soon and as long as xi 2 G.�i/. After the jump, the system
may follow the new dynamics given by F.qiC1/, starting from the continuous state
xiC1 2 R.�i/.xi/. Notice that no time elapses during a discrete jump, which is
instantaneous. In the second case, the system performs a continuous transition
(also called continuous flow) of duration di inside the mode qi, constrained by the

dynamics F.qi/ and the invariant set Inv.qi/. The sequence h D .off ; 80/
0:15��!

.off ; 69/
Bon��! .on; 69/

0:5�! .on; 81/
Boff��! .off ; 81/ : : : is valid for the thermostat

example (Fig. 11.1), thus h 2 ŒŒH��. The trace of an execution h, i.e., the sequence of
its labels, is a word from L? (or L! for infinite h), denoted as trace.h/. We denote the
total time duration of h by time.h/ 2 RC [fC1g, which is calculated as the sum
of all time periods in the trace of h: time.h/ D P

di.
Let S D S

q2Q.fqg � Inv.q// � S the (infinite) set of invariant satisfying states

of H, S0 D S
q2Q0

.fqg � Inv.q// � S0 the subset of invariant satisfying initial states

and ! � S � L � S the transition relation defined by one or the other condition in
Definition 2. The semantics of H is actually given by the labeled transition system
StH D .S; S0;L; !/, i.e., ŒŒH�� is the set of all paths of StH issued from an initial
state. StH , called the timed transition system of H, is thus a discretization of H
with infinite sets of states and of transition labels. It just abstracts continuous flows

284 H. Zaatiti et al.

by timed transitions retaining only information about the source, the target and the
duration of each flow and constitutes the finest abstraction of H we will consider.

The timeless abstraction of StH , called the timeless transition system of H, is
obtained by ignoring also the duration of flows and thus defined as SH D .S; S0; †[
f"g; !/, obtained from StH by replacing any timed transition .qi; xi/

di�! .qiC1; xiC1/

with di 2 RC by the " transition .qi; xi/
"�! .qiC1; xiC1/, that can be considered

as a silent transition. It has infinite set of states but finite set of transition labels. It
constitutes the finest timeless abstraction of H we will consider.

Theorem 1 (Correction and Completeness of the Semantics) Any concrete
behavior of H is timed (resp. timeless) abstracted into an S0 rooted path in StH (resp.
SH). Conversely, any path in StH (resp. SH) that alternates continuous and discrete
transitions (in particular any single transition) abstracts a part of a concrete
behavior of H and, if F is a singleton function (i.e., deterministic derivative), any
S0 rooted path in StH (resp. SH) abstracts a concrete behavior of H. In this latter
case, there is thus no spurious abstract behavior in StH (resp. SH), which expresses
faithfully the behavior of H.

11.2.4 Hybrid Automata Classes and Particular Cases

Definition 3 (Discrete Automaton (DA)) It is the case where there is no contin-
uous part. Thus, a (finite) discrete automaton (DA) is a tuple D D .Q;Q0; †; ı/

where Q is a finite set of discrete states (modes), Q0 � Q is the set of initial states,
† is a finite set of events, and ı � Q � † � Q is a set of transitions of the form
� D .q; �; q0/.

The semantics ŒŒD�� of D is given by the set of sequences (called paths) made up
of successive states transitions labeled by events and rooted in an initial state. The
trace of such a path is the word in †? whose letters are the successive labels of the
path.

Definition 4 (Continuous System (CS)) It is the case where there is no discrete
part. Thus, an n-dimensional continuous system (CS) is a particular hybrid automa-
ton C with only one mode (jQj D 1) and †;T D ; (and thus ı;G;R too). It can
thus be denoted as C D .X; S0;F; Inv/ with S0 � Inv.

The semantics ŒŒC�� of C is the set of all time labeled sequences of continuous states,
rooted in an initial state, corresponding to the continuous transitions of a hybrid
automaton, constrained by the dynamics F and the invariant set Inv.

The form of the dynamics F determines primarily the class of the hybrid
automaton. The rectangular class, for which the dynamics valuations are a cartesian
product of intervals, lies on the boundary of the decidability over reachability
problem with some restrictions [39]. We will present some classes of hybrid
automata starting from the particular to the more general classes.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 285

Timed Automata We are particularly interested in timed automata, a class of
hybrid automata where the continuous variables xi, 1 � i � n, with values in RC,
called clocks, have all first order derivatives equal to one. So time elapses identically
for all clocks. The setC.X/ of constraints over a set of clocks X is defined as follows:
a constraint is either a primitive constraint of the form xi op ci, where ci 2 RC
(at the theoretical level because, in practice, Q is used instead of R for computer
implementation reasons) and op is one of the operators <; �; D; �; >, or a finite
conjunction of primitive constraints. The satisfiability set of a constraint is thus a
rectangle in R

nC, i.e., the product of n intervals of the half real line RC, and we will
identify C.X/ to the set of rectangles.

Definition 5 (Timed Automaton (TA)) A timed automaton (TA) is a hybrid
automaton T D .Q;X; S0; †;F; ı; Inv;G;R/ such that:

• X D R
nC.

• S0 D Q0 � f0g.
• 8q 2 Q F.q; :/ D 1, which means that the dynamics of clocks evolution in each

mode q is given by Pxi D 1.
• Inv W Q ! C.X/ associates to each mode q a rectangle invariant in X. We require

0 2 Inv.q0/.
• G W ı ! C.X/ associates to each discrete transition .q; �; q0/ a rectangle guard in

Inv.q/.
• 8� 2 ı9Y.�/ � X8x 2 G.�/R.�/.x/ D fx0g with x0i D 0 if xi 2 Y.�/ and

x0i D xi otherwise, i.e., clocks in Y.�/ are reset to zero with transition � , the
others keeping their values.

The notation of a timed automaton T is generally simplified as T D
.Q;X;Q0; †; Inv; .ı;G;Y//. The semantics of T as a hybrid automaton, given
by Definition 2, can be simplified by merging together in an execution successive
timed transitions between two discrete transitions and summing up their time period
labels. An execution in ŒŒT�� is thus a sequence h of alternating time steps (possibly

with 0 time period) and discrete steps of the form .q0; x0/
d1�! .q0; x0 C d1/

�1�!
.q1; x1/

d2�! : : : whose trace trace.h/ is the timed word d1�1d2 : : : 2 RC.†RC/�
and duration is time.h/ D P

di.
The class of timed automata is particularly interesting as the reachability and

language emptiness problems are decidable for that class [2]. Actually, decidability
still holds for the larger class of rectangular automata (RA), where the unique flow
condition F.:; :/, the same for all modes, is given by a rectangle in R

n (instead of
the singleton 1), Init.q/ is a bounded rectangle and R.�/.x/ D fx0 j x0i 2 Ii if xi 2 Y
and x0i D xi else}, where the Ii’s are bounded intervals depending only on � [38].
And thus holds for the subclass of singular automata, where the flow rectangle is
reduced to a singleton, whose timed automata are a particular case.

But decidability does not hold any more if the flow condition is allowed to change
from one mode to another one. The simplest example of this is the generalization of
timed automata where we allow the presence of stopwatches. A stopwatch is a clock

286 H. Zaatiti et al.

which can switch from active (turned on) to inactive (turned off), or vice versa, when
transiting between two modes. The generalized flow condition is thus given by:
8q 2 Q 9c 2 f0; 1gn F.q; :/ D c, which means that the dynamics of clocks evolution
in each mode q is given by Pxi D 1 for those clocks active in q and Pxi D 0 for those
clocks inactive in q. Thus, during inactivity, a stopwatch holds its last valuation
when it was active (or 0 in case of reset). It happens that reachability decidability
does not hold for a generalized timed automaton if only one clock is allowed to be
a stopwatch, i.e., when the flow conditions are not independent of the mode (and
thus also for the more general classes of multisingular automata, where the flow
singletons depend on the mode, and of the multirectangular automata, where the
flow rectangles depend on the mode). Notice nevertheless that, allowing changes of
flow conditions with changes of modes may remain manageable if, e.g., we require
a reset of the variables concerned when it occurs. That is how initialized multi-
rectangular automata, i.e., where for each discrete jump, each variable whose flow
interval is changed in this jump has to be reset (reinitialized), can be translated to
rectangular automata. Another case where decidability is lost in general for a hybrid
system (but not for a timed automaton, for which it does not change the expressivity)
is when the set C.X/ of constraints is extended to contain primitive constraints of the
form .xi � xj/ op cij, i.e., if variables are not pairwise independent (and thus also for
the class of triangular automata which generalize rectangular automata by adding
such constraints). Linear automata generalize both multirectangular and triangular
automata by allowing sets F.q/; Init.q/; Inv.q/;G.�/ to be any convex polyhedra in
R

n (instead of just rectangles or triangles) and different flows conditions for different
modes. And polynomial automata generalize linear automata by allowing those
sets to be defined no longer by just linear constraints but by polynomial constraints.

11.3 Diagnosability of Hybrid Dynamical Systems

We will now introduce the model of hybrid systems that is used for diagnosability
analysis and remind some methods from the literature aimed at verifying this
property.

11.3.1 Hybrid System Model for Diagnosability Analysis

Fault diagnosis is a crucial and challenging task in the automatic control of complex
systems, whose efficiency depends on the system property called diagnosability.
This is a property describing the system ability to determine without ambiguity
whether a fault of a given type has effectively occurred based on the observations.
Diagnosability analysis has already received considerable attention in the literature
over latest decades. However, most of the existing works refer to discrete event
systems [16, 32, 34, 48, 52, 53, 60] with stochastic and fuzzy variants [41, 44, 54] or

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 287

continuous systems [5, 15, 47, 57]. Diagnosability was also studied in the framework
of decentralized and distributed architectures [46, 49, 50, 59].

But many modern technological processes exhibit both continuous evolution and
discrete transitions whose combination is at the origin of complex behavior and
important phenomena of such systems. To the best of our knowledge, very few
works handle diagnosability of hybrid systems with satisfactory results.

As a first step, Travé-Massuyès et al. [56] proved that the existing definitions of
diagnosability for discrete event systems and for continuous systems can be stated
as a property of the system fault signatures, and a unified definition of diagnosability
was established. However hybrid system diagnosability was not considered.

Among the contributions concerned with hybrid diagnosability, we can mention
[11] that slightly modified the classical necessary and sufficient condition for
diagnosability of a discrete event system of [52] and expressed it in terms of
reachability. Reference [29] generalized this condition requiring more restrictive
hypotheses. Despite the claim that the two above methods deal with hybrid systems,
these works do not really account for the hybrid nature of the system as they use
only a very high level discrete abstraction and ignore the continuous dynamics. On
the other hand, in [19], diagnosability is expressed in terms of mode discernability
(also called distinguishability by other authors) and is only based on the continuous
dynamics.

Reference [8] was among the early works that coped with actual hybrid systems,
introducing the idea to consider a hybrid model as a twofold mathematical object.
A hybrid system is modeled as a hybrid automaton whose discrete states represent
its operation modes for which the continuous dynamics are specified. The discrete
event part (automaton) constrains the possible transitions among modes and is
referred to as the underlying DES. The restriction of the hybrid system to the
continuously-valued part of the model is defined as the multimode system.

Considering the analytical redundancy approach to define a set of residuals [33]
for every mode, Bayoudh et al. [8] introduced the concept of mode signature
which refines the classical concept of fault signature. Mode signatures determine
mode distinguishability. The key idea of [8] is to abstract the continuous dynamics
by defining a set of “diagnosis-aware” events, called signature-events, associated
to mode signature changes across modes. Signature-events are used to enrich
appropriately the underlying DES. The behavior of the abstract system is then
modeled by a prefix-closed language over the alphabet enriched by these additional
events. The finite state machine generating this language is called the behavior
automaton. Based on the abstract language, the diagnosability analysis of the hybrid
system is cast into a discrete event framework and standard methods of this field can
be used.

The approach of [8] later consolidated in [6] can be compared to the approach
proposed in [22, 23] which uses fault signatures to capture the continuous dynamics.
The fault signatures of [22, 23] are based on fault transients and they directly express
the expected dynamic behavior of measured variables after the fault abstracted in
qualitative terms. The approach of [6, 8] differs in that it uses mode signatures that
are specifically built for diagnosis, based on standard analytical redundancy residual

288 H. Zaatiti et al.

methods of the FDI control field [27]. Its originality relies in that it proposes a way
to integrate these methods with equally standard methods of the DES diagnosis
field [63]. Bayoudh et al. [6, 8] adopt the diagnoser approach [52] because it has
the advantage to also support straightforwardly online diagnosis. Diene et al. [25]
repeats these ideas differing by the fact that the diagnoser is directly built from the
underlying DES and mode distinguishability is used to cluster its state labels. This
method leads to a so-called clustered diagnoser. Let us note that this method only
applies to a restricted class of hybrid systems for which transitions triggered by
continuous dynamics are not allowed.

Checking DES diagnosability with methods based on the construction of diag-
nosers has exponential complexity with the size of the underlying DES automaton.
Hence, approaches based on verifiers, also known as twin plant approaches, are
generally preferred. This is because, although a twin plant cannot be used for online
diagnosis, it can be constructed in polynomial time. Methods integrating a twin
plant approach with mode distinguishability checking for assessing hybrid system
diagnosability are recent. The reader can refer to [26] as a first piece of work
in this direction. Later, Grastien et al. [35] indicated that mode distinguishability
could be complemented by another property of the continuous dynamics named
ephemerality. Ephemerality states when the system cannot stay forever in a given
set of modes. The continuous dynamics are hence abstracted remembering only
these two pieces of information. In addition to this, Grastien et al. [35] checks
diagnosability in an incremental way. It starts by generating the most abstract DES
model of the hybrid system and checking diagnosability of this DES model. A
“counterexample” that negates diagnosability is possibly provided based on the
twin plant. The model is then refined to try to invalidate the counterexample and
the procedure repeats as far as diagnosability is not proved. This approach hence
uses just the necessary information about continuous dynamics, in an “on request”
manner, hence making the best out of computation.

In the most recent literature concerned with hybrid system diagnosability like
[35] and also [24], which characterizes the maximum delay for diagnosing faults
given measurement uncertainty, abstraction is key. Abstraction is also at the core of
other methods to check other properties of hybrid systems.

This is why this chapter reviews different ways of abstracting hybrid automata in
the next section, then elaborates from the diagnosability procedure proposed in [35]
that uses the counterexample guided abstraction refinement (CEGAR) as initially
introduced in [3, 28]. The algorithmic basis refers to CEGAR considering that
the verification problem for even very simple hybrid systems is undecidable [39].
The method abstracts the hybrid automaton and then refines the abstraction while
being guided by a diagnosability counterexample found at this abstract level. A first
discrete abstraction of the hybrid system is computed, diagnosability is then verified
using classical discrete methods. The verification could either yield the abstraction
as diagnosable, which infers the diagnosability property back to the hybrid system,
or non-diagnosable with a generated counterexample that validates this decision.
The produced counterexample is either present in the original system in which case

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 289

the hybrid system is not diagnosable, or it is a spurious effect of the abstraction. In
the latter case, the counterexample is analyzed and the current abstraction is refined
according to this analysis and the diagnosability verification task is iterated.

11.3.2 Observations and Faults

Remind that diagnosability is a system property allowing one to determine with
certainty, at the design stage, a fault occurrence, based on available observations.
Precisely, in a given system model, the existence of two infinite behaviors, with
the same observations but exactly one containing the considered fault, violates
diagnosability. Hence, to be able to analyze such property, it is necessary to define
what can be observed for given systems as well as what are considered as faults.
In practice, the observations are partial, only parts of the system are known and are
usually obtained from sensors. In whole generality we will consider that both some
discrete jumps between modes and some continuous variables inside a mode may
be observable. The sets of observable events and variables are assumed to be time
invariant, the second one being also assumed to be independent of the mode for the
sake of simplicity. Events are observed together with their instantaneous occurrence
time and variables values are assumed to be observed at any moment. E.g., for our
thermostat system in Fig. 11.1, transitions Bon;Boff and temperature x are assumed to
be observable. For what concerns faults, we will suppose that they are modeled, as
for discrete event systems, by some unobservable discrete jumps, between precisely
a normal mode and a faulty mode, translating often in a change of dynamics. This
is well adapted for abrupt faults but progressive faults or degraded modes (as a shift
of parameter) can be also represented in this way, the designer abstracting a slow
evolution in a sudden change when he estimates that the behavior variation induced
(that he will model by means of the invariant and the guard) cannot any more let
consider the given mode as normal. To sum up, we obtain the following definition.

Definition 6 (Partially Observable Hybrid Automaton (POHA)) A partially
observable hybrid automaton (POHA) is a hybrid automaton H according to
Definition 1 where:

• † D †o] †u] †f , i.e., the set of events is the disjoint union of the set †o of
observable (normal) events, the set †u of unobservable normal events and the set
†f of unobservable fault events.

• X D Xo]Xu, i.e., the set of continuous real-valued variables is the disjoint union
of the set Xo of observable variables and the set Xu of unobservable variables.

Definition 7 (Execution (Timed) Observation) Given an execution h 2 ŒŒH�� of a

POHA H, h D .q0; x0/
l0�! .q1; x1/ : : : .qi; xi/

li�! : : :, with li 2 † [RC, the (timed)
observation of h is defined as Obs.h/ D xo0; lo0; xo1 : : : xoi ; l

o
i ; : : :, where:

• xoi is obtained by projecting xi on variables in Xo.
• loi D li if li 2 †o [RC. Otherwise, loi D ", which is then removed from Obs.h/.

290 H. Zaatiti et al.

Note that all durations labels li D di in h are present inObs.h/. Thus, any observable
event li D �i in h is present in Obs.h/ together with its occurrence time, obtained by
adding up all durations dj in Obs.h/ from the origin up to the event �i. In the same
way, any observable variable x has its value known in Obs.h/ at all those instants
t obtained as the sums of consecutive durations in Obs.h/ from the origin. If t is
the occurrence time of an (observable or unobservable) event � and if x is reset
by the discrete transition � , then the value of x changes instantaneously after this
transition and the new value will be noted xC.t/ to distinguish it from the value x.t/
before the transition (a reset observable variable may thus identify the presence of
an unobservable event). Similarly, one can define observation for timed automata.
The difference is that we do not assume any information about continuous clocks,
so there is no xoi . Then, the observation is obtained from the trace (a timed word)
by erasing all unobservable events and by adding up the periods between any two
successive observable events in the resulting sequence. We have thus defined what is
the observation of a POHA H at the level of its timed transition system StH . Defining
its observation at the level of its timeless transition system SH is similar, with li 2
† [f"g and loi D li if li 2 †o and removed otherwise. This means that the timeless
observation is obtained from the timed observation Obs.h/ above by removing all
durations di, keeping thus only observable events in †o and values xoi of observable
variables at each transition step as an ordered sequence without any occurrence time
attached.

11.3.3 System Diagnosability Definition

As we just explained, a fault is modeled as a fault event that alters the system from
a normal mode to an abnormal mode. There may exist different fault events in a
given system. For the sake of reducing complexity (from exponential to linear in the
number of different fault events) and of simplicity, in the following only one fault
type, i.e. fault event, at a time is considered but multiple occurrences of this event
are allowed, and the other types of fault events are thus processed as unobservable
normal events. However, this framework can be extended in a straightforward way
such that a number of different faults can be considered simultaneously. Now we
adapt to hybrid systems the diagnosability definition [52] introduced for discrete
event systems (the bounded one and the unbounded one in terms of executions
lengths). hF denotes a finite execution whose last label is a first occurrence of
the fault event F considered. Given a finite execution h 2 ŒŒH�� such that h D
.q0; x0/

l0�! .q1; x1/ : : : .qi; xi/, the set of post-executions of h in ŒŒH�� is defined as

ŒŒH��=h D fh0 D .qi; xi/
li�! : : : j h:h0 2 ŒŒH��g, where h:h0 is obtained by merging

the final state of h and the first state of h0, both should be the same.

Definition 8 ((�-)Faulty Executions) Given a hybrid automaton H and F a fault
event, a faulty execution is an execution h 2 ŒŒH�� such that F 2 trace.h/. Thus

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 291

h D hFh0 where hF is the prefix of h whose last label is the first occurrence of F. We
denote the period from (the first occurrence of) fault F in h by time.h;F/ D time.h0/.
Given a positive real number 4 2 R

�C, we say that at least � time units pass after
the first occurrence of F in h, or, in short, that h is �-faulty, if time.h;F/ � �.

Definition 9 (Hybrid Automaton (Time Bounded and Unbounded) Diagnos-
ability) Given 4 2 R

�C, a fault F is said 4-diagnosable in a POHA H iff (we
abbreviate F 2 trace.h/ by F 2 h)

8h 2 ŒŒH��.h��faulty

) 8h0 2 ŒŒH��.Obs.h0/ D Obs.h/) F 2 h0//:

i.e.,

8hF 2 ŒŒH��8h 2 ŒŒH��=hF.time.h/ � 4
) 8h0 2 ŒŒH��.Obs.h0/ D Obs.hF:h/) F 2 h0//:

A fault F is said diagnosable in H iff

94 2 R
�C.F4-diagnosable in H/:

This definition states that F is 4-diagnosable (resp., diagnosable) iff, for each
execution hF in ŒŒH��, for each post-execution h0 of hF with time at least 4 (resp.,
with enough long time, depending only on F), then every execution in ŒŒH�� that
is observably equivalent to hF:h0 should contain F. Precisely, the existence of
two indistinguishable behaviors, i.e., executions holding the same observations,
with exactly one containing F and time long enough after F, i.e., whose time
after F is at least 4 (resp., is arbitrarily long), violates the 4-diagnosability
(resp., diagnosability) property for hybrid automata. Inspired from the framework
of discrete event systems, we define critical pairs for partially observable hybrid
automata taking into account both continuous and discrete dynamics.

Definition 10 (4-Critical Pair) A pair of executions h, h0 2 ŒŒH�� is called a
4-critical pair with respect to F iff: F 2 h and F … h0 and Obs.h/ D Obs.h0/ and
time.h;F/ � 4.

Theorem 2 A fault F is 4-diagnosable in a POHA H iff there is no 4-critical
pair in ŒŒH�� with respect to F. F is diagnosable in H iff, for some 4, there is no
4-critical pair in ŒŒH�� with respect to F (i.e., there is no arbitrarily long time after
F critical pair).

Note that all above definitions (e.g., observable projection, post-executions, diag-
nosability, critical pairs, etc.) are applicable in a similar way to timed automata,
which can be considered as a special type of hybrid automata. The only difference
is that the set of continuous variables is the set of clock variables whose derivative
is always 1 [7, 9, 20, 21, 35]. And, as for automata the existence of arbitrarily long

292 H. Zaatiti et al.

(in terms of transitions number) after F faulty executions implies the existence of
an infinite faulty execution, in the same way it has been proved [58] that for timed
automata the existence of arbitrarily long time after F faulty executions implies the
existence of a C1-faulty execution (extending the definition above to 4 D C1)
and thus that non-diagnosability is witnessed by the existence of a C1-critical pair
and its checking is PSPACE-complete.

Theorem 3 A fault F is diagnosable in a partially observable timed automaton T
iff there is no C1-critical pair in ŒŒT�� with respect to F. Checking diagnosability
of T is PSPACE-complete.

We will rest on this result as diagnosability checking of a POHA H will be done on
a time automaton T abstracting H.

11.4 Abstracting Hybrid Automata

For continuous systems, verifying the most basic properties such as “Is this state
reachable?” is not decidable, due in particular to the uncountability of continuous
domains [37]. A fortiori, for a hybrid system, a simple computation of the reachable
set of states starting from an initial state is not a decidable matter except for few
unpractical classes [39]. This is why a common practice is to partition infinite
domains into a finite number of subsets, abstracting the system behavior in each
of those subsets. The abstraction of the domain into representative sets is usable in
computations to possibly reason about the infinite domain. In this section, we thus
focus on abstractions that discretize the infinite state space defined by continuous
variables into finite sets. We show the targeted class of properties we wish to
verify. As our study considers abstractions of complex hybrid dynamical systems
for diagnosability analysis, it is therefore crucial to first introduce abstractions for
continuous dynamical systems which are a particular case of hybrid dynamical
systems. Utilizing these abstractions, we aim at verifying temporal properties and
bounding the time for fault detection and isolation. Abstractions retain less but
important information regarding a property that we wish to verify about a complex
system. Due to the uncountability of the continuous state space domain, verifying
simple properties of continuous and more generally hybrid systems via abstraction
becomes challenging. The challenging part about abstractions is the choice made to
select the representative sets and the criterion for choosing them. This choice relies
entirely on the class of the properties one wishes to verify and on the structure of
the hybrid system itself. Here, we are interested in hybrid systems abstraction aimed
towards diagnosability checking. Abstractions that can be refined if necessary are
of our concern, as refinement allows adding more information into the abstracted
system while being always guided by the property to check. In this section, we will
discuss abstractions in general and focus on those that capture time constraints in
particular.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 293

11.4.1 Different Abstraction Strategies

Using Qualitative Principles We first take a look at abstractions using qualitative
concepts. Given a set of ODEs, these concepts classically discretize the infinite state
space of the continuous variables into finite sets. The discretization of Rn is often
achieved by rectangles, i.e., is built by product from a discretization of R. And this
one is obtained by fixing a finite number of (rational) landmarks li, resulting in a
finite partition in terms of open intervals .li; liC1/ (with possibly infinite endpoints)
and singleton intervals Œli�, allowing what is called absolute order of magnitude
reasoning. The coarsest partition (except R itself) is obtained from the single
landmark 0 and corresponds to the sign partition: .�1; 0/, Œ0�, .0; C1/, giving
rise to a partition of size 3n of Rn. It is particularly interesting when applied to the
valuations of the variables derivatives, as it corresponds to discretize according to
the sign of the derivative, which is constant within each set of the partition, and
thus to the change direction of the variable itself (decreasing, constant, increasing) .
The variables being continuously differentiable, it is not possible for the sign of the
derivative to pass from negative to positive without crossing zero. Exploiting this
feature, it is possible to draw a rough scheme of the behavior of the variables called
“qualitative simulation” in the literature and to obtain a loose overview about how
the system will behave [30, 43, 55].

Example 2 Consider this simple linear continuous system:

Px D 3x

Py D y � 1
(11.1)

Adopting the partition of the state space given by the signs of the derivatives, the
abstract state space of size 9 is thus: .Px > 0_Px < 0_Px D 0/^.Py > 0_Py < 0_Py D 0/.
The transitions between the abstract states are computed according to the laws of
evolution given the signs of the derivatives. The abstract state .Px > 0 ^ Py > 0/

corresponds to the region fx; y j x > 0 ^ y > 1g in the state space. From this
state, no transition is possible to another abstract state. Suppose we wish to verify
a basic reachability property: starting from the state .1; 3/ is it possible to reach
the state .�5; �4/? The answer would be no, the proof is given using the previous
abstraction method and inferring the property back to the original system. Such
abstraction is sound: from any initial state .x0; y0/ the solutions of the differential
equation system (11.1) will always satisfy the constraints imposed by the abstract
system rules, i.e., the possible transitions.

Abstractions for the Verification of Temporal Properties The above abstraction
partitions the state space into sets with a constant sign of the derivative. This
abstraction is useful to trace the future evolution of the state given the initial one
to prove a safety property of avoiding an unwanted state. Nonetheless, for proving a
more complex property that involves the notion of time, classically expressed using
temporal logic, the above abstraction is not sufficient. One needs to add time as a
separate state variable and correlate the variables changes to changes in time.

294 H. Zaatiti et al.

Example 3 We consider the same continuous system and suppose the initial set of
states I such that I D f.x; y/ j 1 < x < 2 ^ 1 < y < 2 ^ x < yg and the property
F.x > y/ where F is the “eventually” linear temporal logic (LTL) operator. Fp,
where p is a Boolean proposition, is equivalent to 9t0 2 R

C; 8t > t0; p D true. It is
obvious that the rate at which x is increasing with respect to time is much larger than
that of y. Hence, for all the initial states within I the property is true. The previous
abstraction method however does not capture the rate at which the derivative of x
is changing and is thus useless for establishing the proof. Actually, changing the
first equation in (11.1) by Px D 0:5x would keep the abstract system unchanged and
nevertheless change the truth value of the property. In our case, the system can be
written as Px D Ax C b where x D .x; y/T and A is the corresponding matrix. We
then deduce by computing the eigenvalues of A which are 3 and 1 in our example
that the rate at which x increases is larger than the rate at which y increases, which
provides a sufficient proof that the above property holds when the system is initiated
from I.

The previous example illustrates the simple case of a linear dynamics where the
eigenvectors are not rotated by the linear transformation and are thus invariant for
the continuous system. Therefore, taking these two vectors into account during
the abstraction process is an obvious choice. However, in the more general case
of nonlinear dynamics, the invariant takes a more complex form. Some technique
encodes the hybrid system, the property to verify and a specific parametric form
of the invariant into an SMT (Satisfiability Modulo Theories) based solver and
evaluates the unknown parameters of the invariant automatically. Once computed,
the invariant is incorporated to make a finer and more representative abstraction
[36].

11.4.2 Geometric Decomposition of the State Space

We now introduce finite state space decomposition of a hybrid automaton. We will
then present an abstraction based on different decompositions that incorporates
reachability and time constraints. Later on, in the next section, we will discuss the
refinement of the abstraction yielding constraints with better precision than before
refinement.

Definition 11 (Continuous Space Partition) A (finite) partition P of the
Euclidean space R

n is a finite set of nonempty connected subsets of R
n such

that every point x 2 R
n is in one and only one of those subsets. We can write

R
n D U

p2P p. An element p of P will be referred to as a partition element and we
will call it a region. For a subset E of Rn, we will denote by P.E/ the subset of
regions of P that have a nonempty intersection with E.

The only smoothness hypothesis we will impose for the moment over a partition
is that any (finite) continuous path crosses only a finite number of times each

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 295

region, more precisely, 8x W Œ0; 1� ! R
n a continuous function, 8p 2 P a region,

x�1.p/ is a finite union of intervals. In practice, partitions are chosen enough regular
and smooth, with regions in any dimension from 1 to n such as (from simpler to
more complex) rectangles, zonotopes, polytopes or defined by a set of polynomial
inequalities. The choice among the different partitions is guided by the property
we wish to verify. For example, consider a continuous system with dynamics F.
A coarse but helpful way to obtain a high level reachability mapping would be to
identify regions of the state space that conserve the sign of F. E.g., in one dimension,
for all elements of the same region the derivative signs would be all either negative
or positive or null. Thus, the regions would be the connected components of the
three subsets p1; p2; p3 defined by:

p1 D fx 2 XjPx > 0g; p2 D fx 2 XjPx < 0g; p3 D fx 2 XjPx D 0g (11.2)

For n dimensional systems, the regions would be the connected components of the
3n subsets Es of Rn parametrized by sign vectors s 2 f�1; 0; C1gn: Es D fx 2 X j
8i; 1 � i � n; Pxi < 0 ifsi D �1; Pxi D 0 ifsi D 0; Pxi > 0 ifsi D C1g.
Example 4 (The Brusselator) We now illustrate some of the introduced concepts
on a mathematical model used for representing chemical reactions: the brusselator
whose dynamics is nonlinear. Consider a two-dimensional continuous system C D
.X; S0;F; Inv/ such that X D fx; yg are two continuously differentiable variables
and F given by [4]:

Px D 1 � .b C 1/x C ax2y

Py D bx � ax2y
(11.3)

where a; b 2 R are two real constants. The stationary point for which Px D Py D 0 is
M0.1; b

a /. If b < a C 1, then M0 is an attractor and all trajectories converge towards
M0; if b > aC1 then it is a repeller and all trajectories close toM0 converge towards
an orbit. We consider two cases where b D 1; a D 2 and b D 3; a D 1 illustrated
respectively in Fig. 11.2a, b. To characterize the dynamic behavior qualitatively as
in Eq. (11.2), consider a partition P yielding nine regions p1; : : : ; p9 illustrated in the
repeller case in Fig. 11.3 [30].

If the considered system is a hybrid automaton, it is practical to allow different
partitions in different modes. In the following, we will assume that the sets Init.q/,
Inv.q/,G.�/ and R.�/.p/ (for p connected subset ofG.�/) can be expressed as finite
unions of connected subsets (if this is not the case, we will over-approximate parts
of them). We define thus a decomposition of the hybrid state space as follows.

Definition 12 (Hybrid State Space Decomposition) Given a hybrid automaton
H D .Q;X; S0; †;F; ı; Inv;G;R/ and a set P of partitions of the valuations set
of X, X � R

n, we say that P decomposes H if there is an onto function d W Q ! P
which associates to each q 2 Q a partition d.q/ 2 P.

296 H. Zaatiti et al.

Fig. 11.2 Brusselator phase plane: (a) Attractor, (b) Repeller

Fig. 11.3 Qualitative
partitioning of the state space

The initial and invariant sets and the guards satisfiability domains and variables reset
domains are primary elements to take into consideration while abstracting. For q 2
Q and � D .q; �; q0/ 2 ı, we denote the regions families d.q/.Init.q//, d.q/.Inv.q//,
d.q/.G.�// by dInit.q/, dInv.q/, dG.q; �/ � d.q/ and, for a region p 2 dG.q; �/, we
denote d.q0/.R.�/.p\G.�/// by dR.q0; �; p/ � d.q0/. When possible, we will try to
define d such that Init.q/, Inv.q/, G.�/, and R.�/.p/ are exactly the unions of the
regions in those families (if not, those regions families over-approximate them).

11.4.3 Encoding Hybrid Automata Reachability Constraints

We have defined in Sect. 11.2.3, the timeless transition system SH of a hybrid
automaton H as the finest timeless abstraction that can be obtained. However, in
practice SH can only be computed for very restricted classes of hybrid automata. We
will define a less granular time-abstract transition system based on a set of partitions
and define the relations between adjacent regions.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 297

Definition 13 (Adjacent Regions) Two distinct regions p1; p2 of a partition P of
R

n are adjacent if one intersects the boundary of the other: p1 \p2 ¤ ; or p1 \p2 ¤
;, where p refers to the closure of p.
Definition 14 (Decomposition-Based Timeless Abstract Automaton of a Hybrid
Automaton) Given a hybrid automaton H D .Q;X; S0; †;F; Inv;T/ and a
decomposition .P; d/ of H, we define the timeless abstract (finite) automaton of
H with respect to P as DHP D .QDH;Q0DH ; †DH; ıDH/ with:

• QDH D f.q; p/jq 2 Q; p 2 d.q/g.
• Q0DH D f.q; pInit/jq 2 Q0; pInit 2 dInit.q/g.
• †DH D † [f"g.
• ..qi; pk/; �; .qj; pl// 2 ıDH iff one of both is true:

– qi ¤ qj and � 2 † and pk 2 dG.qi; �/ and pl 2 dR.qj; �; pk/ where � D
.qi; �; qj/ and 9t D .qi; x; �; x0; qj/ 2 T such that x 2 pk and x0 2 pl.

– qi D qj and � D " and pk; pl 2 dInv.qi/ are adjacent regions and 9d 2 R
�C

and 9x W Œ0; d� ! X continuously differentiable function such that 8t 2
.0; d/ Px.t/ 2 F.qi; x.t//, 8t 2 Œ0; d� x.t/ 2 Inv.qi/, x.0/ 2 pk, x.d/ 2 pl,
9c 0 � c � d 8t 2 .0; c/ x.t/ 2 pk 8t 2 .c; d/ x.t/ 2 pl and x.c/ 2 pk [pl.

The defined timeless abstract automaton encodes reachability with adjacent regions
of the state space, the events in † witnessing mode changes and " transitions
representing a continuous evolution between adjacent regions in the same mode.

Notice that ..qi; pk/; �; .qj; pl// 2 ıDH) 9xk 2 pk 9xl 2 pl .qi; xk/
��! .qj; xl/ in SH ,

the converse being true for � 2 †. The mapping ˛P defined by ˛P..q; x// D .q; p/

with p 2 d.q/ and x 2 p defines an onto timeless abstraction function ˛P W S !
QDH . If the flow condition F is a singleton, ˛P maps any transition of SH to a unique
path in DHP. The coarsest timeless abstract automaton is obtained when partitions
of P have all a unique region p D X and is thus .Q;Q0; †; ı/, i.e., the discrete part
of H without its continuous part. It corresponds to the coarsest timeless abstraction
function ˛ffXgg..q; x// D q. For our previous thermostat example, this gives
.foff ; ong; foff g; fBon;Boff g; f.off ;Bon; on/; .on;Boff ; off /g/ and the abstraction of

the execution h given previously (11.2.3) is just off
Bon��! on

Boff��! off : : :

Theorem 4 (Timeless Abstraction Completeness) Given a decomposition P of
H, any concrete behavior of H is timeless abstracted into a Q0DH rooted path in
DHP and any transition of DHP abstracts a part of a concrete behavior of H. If the
flow condition F is a singleton function then the timeless abstraction function ˛P

defines a trace preserving mapping (still denoted by ˛P) from S0 rooted paths in SH
(i.e., timeless executions of H) to Q0DH rooted paths in DHP and thus the language
defined by SH is included in the language defined by DHP.

Obviously, a path in DHP does not abstract in general a concrete behavior of H
(as the behaviors parts abstracted by the individual transitions do not connect in
general) which expresses that abstraction creates spurious behaviors.

298 H. Zaatiti et al.

If now H is a POHA, in the same way we defined the observation of a concrete
execution in Definition 7 we define the observation of its timeless abstraction.

Definition 15 (Timeless Abstraction Observation) Given a POHA H and h D
.q0; p0/

�0�! .q1; p1/ : : : .qi; pi/
�i�! : : :, with �i 2 † [f"g, a timeless abstract path in

DHP, the observation of h is defined as Obs.h/ D po0; �o
0 ; po1 : : : poi ; �o

i ; : : :, where

• poi is obtained by projecting pi on variables in Xo.
• �o

i D �i if �i 2 †o. Otherwise, �o
i D ", which is then removed from Obs.h/.

Consider an execution h 2 ŒŒH�� of the POHA H, h D .q0; x0/
l0�!

.q1; x1/ : : : .qi; xi/
li�! : : :, with li 2 † [RC, its (timed) observation

Obs.h/ D xo0; lo0; xo1 : : : xoi ; l
o
i ; : : : as in Definition 7, its timeless abstraction

˛P.h/ D .q0; p0/
�0�! .q1; p1/ : : : .qi; pi/

�i�! : : :, with �i 2 † [f"g, as
in Theorem 4 (assuming F a singleton) and the observation of this last one
Obs.˛P.h// D po0; �o

0 ; po1 : : : poi ; �o
i ; : : : as in Definition 15. We could try to

define the timeless abstraction of the observation Obs.h/. A natural definition
would be ˛P.Obs.h// D p00; �o

0 ; p01 : : : p0i; �o
i ; : : :, with �o

i D loi if loi 2 †o (and
D ", which is removed, otherwise), i.e., the same �o

i ’s as in Obs.˛P.h//, and
p0i D U

fpjxoi 2pog p
o the union of the projections on Xo of all regions containing a

value whose projection on Xo is equal to xoi (assuming to simplify the same partition
for each mode, as the mode may be unknown from observation). So, we notice that
Obs.˛P.h// is more precise than ˛P.Obs.h//, as poi � p0i, which we denote by
Obs.˛P.h// v ˛P.Obs.h// to mean that both sequences have common events and
there is inclusion of the qualitative space values as subsets of Xo, the valuations set
corresponding to the observable variables.

11.4.4 Encoding Hybrid Automata Time Constraints

We are concerned with verifying temporal properties of hybrid systems and
checking the diagnosability property using time constraints. For this reason, we
define in this subsection, always related to a decomposition of the state space into
partitions, an abstraction of the hybrid automaton as a timed automaton that partly
captures the time constraints at the level of the regions. We will first introduce some
intuitive ideas. Consider a partition P of the Rn state space of a continuous system
with arbitrary dynamics F, the set of trajectories (i.e., the continuous solution flows)
entering a region p 2 P is in one of these two cases: either at least one of the
trajectories ends up trapped inside p for all future times or all of them exit p to an
adjacent region within a bounded time under the continuity assumption. In the first
case, no time constraint can be associated with the region p unless a reshaping of
p is applied; in the latter, it is possible to compute time constraints satisfied by all
trajectories entering and leaving the region p. We will give a formal definition of the
timed automaton constructed from given hybrid automaton and partitions set and
then discuss some cases where a time bound can be practically computed.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 299

Definition 16 (Region Time Interval and Time Bounds) Given a continuous
system CS, a partition P of Rn and p 2 P one of its regions, we say that Ip D
Œtmin; tmax�, with tmin; tmax 2 RC [fC1g, is a region time interval of p for CS if all
trajectories of the CS entering p at time t leave p at time t C tmin at least and t C tmax
at most. tmin and tmax are lower and upper time bounds of p.

For a hybrid automaton, we denote the time interval relative to the region p in
mode q as I.q;p/.

Definition 17 (Decomposition-Based Timed Abstract Automaton of a Hybrid
Automaton) Given a hybrid automaton H D .Q;X; S0; †;F; ı; Inv;G;R/, a
decomposition .P; d/ and the timeless abstract automaton DHP D .QDH;Q0DH ;

†DH; ıDH/ of H with respect to P, we define the timed abstract automaton of H
with respect to P as THP D .QDH; fcg;Q0DH ; †DH; InvTH; .ıDH;GTH;YTH// such
that, 8.q; p/ 2 QDH with a region time interval I.q;p/ D Œtmin; tmax�:

• InvTH..q; p// D Œ0; tmax�.
• 8� D ..q; p/; �; .q1; p1// 2 ıDH , GTH.�/ D Œtmin; C1/ if � D " and p does not

intersect any reset set (i.e., 8� 0 D .q0; � 0; q/ 2 ıDH p … d.q/.R.� 0/.G.� 0///) or
Œ0; C1/ else.

and, 8� 2 ıTH , YTH.�/ D fcg.
The timed abstract automaton adds time constraints to those states .q; p/ of the
timeless abstract automaton for which an interval I.q;p/ is computable as non-trivial
(i.e., I.q;p/ ¤ Œ0; C1/), by using one local clock c (reset at 0 in each state) that
measures the sojourn duration t in each state .q; p/, i.e., in each region p, and coding
these constraints by means of invariant and guard of c in each state. The invariant
codes the maximum sojourn duration as the upper time bound of the region p and
the guard codes the minimum sojourn duration as the lower time bound of the
region p when both entering and leaving the region are not the result of discrete
jumps (controlled here directly for the out-transition and by requiring that p does
not intersect any reset set for all possible in-transitions). In the thermostat example,
consider the partition into two regions associated to the mode off given by the
initial states set .off ; Œ80; 90�/ and by .off ; Œ68; 80//. Then we take as time bounds
for .off ; Œ80; 90�/ tmin D 0 and tmax D 0:12 (the exact upper bound, i.e., the time
for the temperature to decrease from 90 to 80 is Log. 9

8
/). It means that we define

in the timed abstract automaton InvTH..off ; Œ80; 90�// D Œ0; 0:12�. A beginning

of execution of the timed abstract automaton is, for example, .off ; Œ80; 90�/
0:08��!

.off ; Œ68; 80�/.

Theorem 5 (Timed Abstraction Completeness) Given a decomposition P of H,
any concrete behavior of H is timed abstracted into an execution in THP. If the
flow condition F is a singleton function then the abstraction function ˛P defines
a mapping, denoted by ˛t

P, from S0 rooted paths in StH (i.e., executions of H) to
executions in THP. This mapping is trace preserving once � labels are erased
from executions traces in THP and time period labels are added up between two
consecutive events labels in both executions traces in StH and in THP. This means

300 H. Zaatiti et al.

that, for any execution .q0; x0/
w�!�.qi; xi/ 2 ŒŒH��, with w 2 L� (where L D ˙[RC),

it exists a unique execution .q0; p0/
w0

�!�.qj; pj/ 2 ŒŒTHP��, with w0 2 L0� (where
L0 D L [f�g), x0 2 p0, qj D qi, xi 2 pj, w0j˙ D wj˙ (where j˙ is the projection
of timed words on words on ˙�) and, for any two successive events wl D w0l0 and
wm D w0m0 of wj˙ ,

P
l0<k0<m0;w0

k0
¤� w

0
k0 D P

l<k<m wk.

Forgetting time, i.e., removing the clock, provides a natural abstraction function ˛

from THP to DHP which maps an execution .q0; p0/
l0�! .q1; p1/ : : : .qi; pi/

li�! : : :,

with li 2 †[f"g[RC, in THP into the execution .q0; p0/
�0�! .q1; p1/ : : : .qi; pi/

�i�!
: : :, with �i 2 †[f"g, inDHP, with �i D li if li 2 †[f"g and continuous transitions
labeled by li D di 2 RC are suppressed. We have: ˛P D ˛ ı ˛t

P.

Definition 18 (Timed Abstraction Observation) Given a POHA H and h D
.q0; p0/

l0�! .q1; p1/ : : : .qi; pi/
li�! : : :, with li 2 † [f"g [RC, an execution

in THP, i.e., a timed abstract path, the observation of h is defined as Obs.h/ D
po0; lo0; po1 : : : poi ; l

o
i ; : : :, where

• poi is obtained by projecting pi on variables in Xo.
• loi D li if li 2 †o [RC. Otherwise, loi D ", which is then removed from Obs.h/.

As for the timeless case, we can define the timed abstraction of an observation (of
an execution h 2 ŒŒH��) and we obtain: Obs.˛t

P.h// v ˛t
P.Obs.h//.

From another side, the abstraction function ˛ that forgets time maps a timed
abstract observation po0; lo0; po1 : : : poi ; l

o
i ; : : :, with loi 2 †o [RC, into the timeless

abstract observation po0; �o
0 ; po1 : : : poi ; �o

i ; : : :, with �o
i 2 †o, suppressing duration

labels li D di 2 RC. For any concrete execution h 2 ŒŒH��, we have: Obs.˛P.h// D
˛.Obs.˛t

P.h///, i.e., Obs ı ˛P D ˛ ı Obs ı ˛t
P.

11.4.5 Computing Time Bounds

In this subsection, we present and discuss some situations for which time bounds can
be computed for the continuous evolution of the hybrid system. In the following, CS
is a continuous system, and P is a partition of Rn, p 2 P and Ip D Œtmin; tmax� the
associated region time interval of p.

Proposition 1 (Sojourn Bounds) A sufficient but not necessary condition for the
region p to have finite time bounds (tmax finite, thus real nonnegative constant) is
that 9i 1 � i � n 8x 2 p Pxi ¤ 0.

If the condition in Proposition 1 is verified over p for a dimension i, then all
trajectories should respect finite time bounds for staying in the region p. On the
other hand, a trajectory making a finite number of orbital spins once inside p then
exiting p does not satisfy this condition while having finite time bounds. One way
to look for a finite time bound is to refine the partition with the objective that the

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 301

regions become small enough for the condition to hold for each of them. This idea
will be developed in Sect. 11.5. If the derivatives along each axis take each a finite
number of null values inside the partition, but never all at the same time, there is no
problem with refining the partition to have each null derivative point alone in one
region. In the other cases, we present now some examples for which a time bound
can be nevertheless obtained.

Finite Number of Equilibrium Points The derivatives along each coordinate are null
in a finite number of points Xeq at the same time, we repartition p such that each new
region pi has exactly one point of Xeq on its boundary. In one dimension, suppose
the null derivative point is at xeq and the initial value of x.t/ is x0. The time, which
we denote by T , taken by the continuous variable x.t/ to cross from x0 to xeq can
in some cases be finite. If Px is of the form xk where k 2 R, then by studying T in a
neighborhood around k D 1 we obtain:

T D
Z teq

0

dt D
Z xeq

x0

1

Px dx D
Z 0

x0

1

xk
dx D

�
x�kC1

.�k C 1/

�0

x0

(11.4)

T is convergent if k < 1. Thus a time bound can be computed for all dynamics
of the form Px D xk with k < 1, for example for the square root Px D p

x. In two
dimensions, let r be the distance from the equilibrium point Meq.xeq; yeq/ to a point
M.x; y/ which is initially in region p. Let X D xeq � x and Y D yeq � y. Since
r2 D X2 C Y2 then 2rPr D 2X PX C 2Y PY and if Pr ¤ 0 the time to reach Meq is :

T D
Z teq

0

dt D
Z 0

r0

1

Pr dr D
Z 0

r0

r

X PX C Y PY dr (11.5)

Example 5 Consider the two dimensional continuous system Px D �x2 and Py D �y
where .x; y/ 2 R

C � R
C. The equilibrium point is Meq.0; 0/. In polar coordinates

x D r cos.�/ and y D r sin.�/, then rPr D xPxCyPy D �x3 �y2 D �x2 �y2 Cx2 �x3 D
�r2 Cx2.1�x/ D r2.�1Ccos2.�/.1� r cos.�///. In a neighborhood around .0; 0/:

T D
Z 0

r0

1

r.�1 C cos2.�/.1 � r cos.�///
dr �

Z 0

r0

�1

r
dr (11.6)

Thus T is infinite, the equilibrium point is never reached. This reasoning can be
extended to dimension n by evaluating rPr and using spherical (or hyperspherical)
coordinates and to polynomial with real exponents. We can take an example of
square root, for instance Px D p

x and demonstrate the time T is finite, then the
equilibrium is reached.

Infinite Number of Null Derivatives Studying a case where at least one derivative
along an axis takes an infinite number of null values in a connected set can be
done by extending the previous method. For the particular class of continuous
systems where the dynamics are only allowed multi-affine function form, Maler

302 H. Zaatiti et al.

and Batt [45] showed how it is possible to capture time constraints by decomposing
the infinite state space R

n into hypercubes and evaluate the time elapsed between
entering and exiting each cube by bounding the dynamics.

Brusselator Time Bounds For our Example 4 of the brusselator dynamics, consider,
for the repeller case with b D 3; a D 1, a ring set R that excludes M0 such that
R D f.x; y/ j .�1 C x/2 C .�3 C y/2 > 0:09 ^ .�1 C x/2 C .�3 C y/2 < 0:5625g.
Let v D pPx2 C Py2 then v2 D .1 � 4x C x2y/2 C .3x � x2y/2 and, using a solver, we
compute a lower bound v2

low D 0:0051 of v2. It has been proven that all trajectories
initially in S0 D R

2 n fM0g converge towards a fixed orbit of the phase plane
contained within R. Suppose we split the region R into two connected sets R1 and
R2 such that R D R1

U
R2, for each of which the maximal sojourn duration tmax

is a positive real constant. This is possible since v admits a lower bound vlow. This
states that all trajectories initiated from S0 will cross R1 and R2 sequentially infinitely
often. In practice, the presence of the system in either R1 or R2 can correspond to
two different visible colors of the chemical reaction.

11.5 Hybrid Automata Abstraction Refinement

We will now explain and formalize the refinement process of the previously defined
abstraction. For this purpose, we construct a finer couple of discrete and timed
automata by defining a more granular decomposition for regions and give the
necessary assumptions to compute such refinement. By making the partition more
granular in regions of interest, tighter time bounds are also obtained. The refinement
is a necessary step for the CEGAR scheme, it is a required step when a proof for the
verification of a property could not be made at a given abstraction level.

Definition 19 (Partition Refinement) Given two partitions P and P0 of Rn, we say
that P0 is a refining partition of P iff 8p0 2 P0 9p 2 P p0 � p. This implies:
8p 2 P 9P0p � P0 p D U

p02P0p p
0.

Definition 20 (Hybrid State Space Decomposition Refinement) Given two
decompositions .P; d/ and .P0; d0/ of a hybrid automaton H D .Q;X; S0; †;F;

Inv;T/, we say that P0 refines P, denoted by P0 � P, if 8q 2 Q d0.q/ is a refining
partition of d.q/.

11.5.1 Refined Timeless Model

Definition 21 (Refined Timeless Abstract Automaton) Given a hybrid automa-
ton H and two abstract timeless automata DHP and DHP0 of H with respect to
two decompositions .P; d/ and .P0; d0/ respectively, we say that DHP0 is a timeless
refinement of DHP abstracting H if P0 	 P, which we denote by DHP0 	 DHP.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 303

Definition 22 (State Split Operation) Given an abstract timeless automaton DHP

of a hybrid automaton H, a split operation of the state .q; p/ 2 QDH is defined by
a partition fp1; p2g of p, p D p1

U
p2, and results in two states .q; p1/ and .q; p2/

and in the refined abstract timeless automaton DHP0 with P0 obtained from P by
replacing d.q/ by d0.q/ D d.q/nfpg [fp1; p2g.
The construction of DHP0 from DHP after a .q; p/ state split is a local operation as
only the transitions of ıDH having as source or as destination the state .q; p/ have to
be recomputed from H. In practice, the refined model is obtained by performing a
finite number of state split operations. After having performed the split operations
and in order for the obtained automaton to satisfy Definition 14, it is only required to
recompute some of its transitions, while inheriting the rest from DHP. Let Qsplit �
QDH be the set of split states and post.Qsplit/ D fq 2 QDH j 9qs 2 Qsplit9.qs; �; q/ 2
ıDHg and pre.Qsplit/ D fq 2 QDH j 9qs 2 Qsplit9.q; �; qs/ 2 ıDHg. Then to obtain
DHP0 it is sufficient to only recompute transitions .q; �; q0/ such that q; q0 2 Qsplit [
post.Qsplit/ [pre.Qsplit/.

The onto abstraction function ˛P0;P W QP0

DH ! QP
DH defined by ˛P0;P..q; p0// D

.q; p/ with p0 � p defines a trace preserving mapping ˛P0;P from DHP0 to DHP

(and thus the language defined by DHP0 is included in the language defined by
DHP) and we have: ˛P D ˛P0;P ı ˛P0 . Defining in a natural way as previously the
P-abstraction ˛P0;P of the observation of a timeless P0-abstract execution h, we
obtain: Obs.˛P0;P.h// v ˛P0;P.Obs.h//.

11.5.2 Refined Timed Model

Definition 23 (Refined Timed Abstract Automaton) Given a hybrid automaton
H and two abstract timed automata THP and THP0 of H with respect to two decom-
positions .P; d/ and .P0; d0/ respectively, we say that THP0 is a timed refinement
of THP abstracting H if P0 	 P. We denote it similarly by THP0 	 THP.

Concerning the refined abstract timed automaton THP0 resulting from a split of
.q; p/ into .q; p1/ and .q; p2/, if I.q;p/ D Œtmin; tmax� the region time intervals I.q;p1/ D
I.q;p2/ D Œ0; tmax� can be adopted in first approximation as they are safe, but in general
new tighter time bounds are recomputed from H for the sojourn duration in the
regions p1 and p2. Thus, the refined timed model is obtained by a finite sequence of
the two operations:

• State split: similar as before, the state split of .q; p/whose time interval is I.q;p/ D
Œtmin; tmax� yields .q; p1/ and .q; p2/. The time intervals for the new split regions
are set as I.q;p1/ D I.q;p2/ D Œ0; tmax� (tmax stays a safe upper bound of the sojourn
duration but tmin is reset to 0 since the split induces a distance shrink).

• Time bounds refinement: in this case, more precise time bounds are obtained for
a given region of a discrete state, i.e., if I.q;p/ D Œtmin; tmax� then I0.q;p/ D Œt0min; t0max�
with t0min � tmin and t0max � tmax, at least one of both being a strict inequality.

304 H. Zaatiti et al.

The onto abstraction function ˛P0;P defines a trace preserving mapping ˛t
P0;P from

THP0 to THP, after trace simplification as in Theorem 5 and provided the time
bounds used in THP0 , once added for all regions p0 included in a given region p,
are at least as tight as the time bounds used in THP. And we have: ˛t

P D ˛t
P0;P ı

˛t
P0 . Finally, for any timed P0-abstract execution h, we obtain: Obs.˛t

P0;P.h// v
˛t
P0;P.Obs.h//.

11.5.3 Refinement Guided by Reachability Analysis

We give here some general mathematical properties, in particular about conservation
of the connectivity property of the regions when following the solution flow, that are
useful for the refinement process when guided by the dynamics of the hybrid system
and reachability conditions.

Reachability from a Connected Set Let CS D .X; S0;F; Inv/ be a continuous
system with deterministic flow condition F W X ! R

n and K
 R
n a set, such that

the following hypotheses are verified:

• K is a connected and bounded closed (i.e., compact) set and 8x 2 K;F.x/ ¤ 0.
• The flow solution function x.t; x0/ initially starting at t D 0 from x0 2 K is

continuous with respect to x0 2 K and of class C1 with respect to the time t (this
property is true in the case of polynomial dynamics).

With these hypotheses, trajectories issued from x0 are continuous with respect to x0

(proof can be made using the uniform continuity deduced from the continuity as K
is a compact set).

Let y be a reachable element from K and x.t/ the trajectory reaching y at time t0.
We define the successor trajectory post.y/ and the predecessor trajectory pre.y/ by:

post.y/ D fx 2 X j 9t > t0x D x.t/gpre.y/ D fx 2 X j 90 < t < t0x D x.t/g
(11.7)

We extend this definition to the set K:

post.K/ D
[

k2K
post.k/ pre.K/ D

[

k2K
pre.k/ (11.8)

With continuity argument from the hypotheses, we have the following result.

Theorem 6 post.K/ and pre.K/ are connected sets.

This result shows that our connectivity property assumed for all regions is conser-
vative along trajectories (backward and forward) issued from set K.

Reachability from Initial State to Guard Set Let H be a hybrid automaton with
polynomial dynamics and X0 D fx j .q0; x/ 2 S0g the set of its initial states in a
mode q0. We suppose we have built an abstract automaton of H with respect to a

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 305

given partition. By construction of this partition, we consider that for each region
p, all incoming trajectories must exit and become outgoing trajectories after having
passed a bounded time in p. Then we can define in.p/ as the set of all trajectories
restricted to p, which is equal to post.X0/ \ p. We define also the subset pre.p/ of
the incoming points of in.p/ and the subset post.p/ of the outgoing points of in.p/.
It can be demonstrated that pre.p/, in.p/, and post.p/ are unions of a finite number
of connected sets. The proof can be made by induction starting from the initial set
assumed to be defined by convex linear predicates and using the fact the dynamics
is polynomial.

If we consider a guard set G.�/, assumed to be a convex linear predicate set,
the set of outgoing points of the trajectories crossing p and verifying this guard
is post.p/ \ G.�/ and it can be proved that this set is again a union of a finite
number of connected sets. So the time passed by a trajectory inside p with outgoing
points verifying G.�/ can be represented by a union of finite number of intervals,
as internal trajectories form a union of finite number of connected sets (the set
of instants passed in trajectories belonging to a connected set is a time interval if
the trajectories are continuous). Outside this union of time intervals for internal
trajectories in p, the guard G.�/ cannot be verified by outgoing points. This analysis
will provide important results for the diagnosability verification.

Brusselator Example This result applies to the polynomial dynamics of the brusse-
lator, more specifically the two defined regions R1 and R2 corresponding to the color
change of the system. We consider the repeller case of the brusselator as a discrete
hybrid mode. With the previous result, we demonstrate that any inconsistency in
observing the color change within the computed maximal time bound could be
diagnosed with a change of the current repellor mode. If we model the fault as a
discrete jump to the attractor case, the observations in terms of color change are
sufficient to diagnose this fault, since in the attractor case all trajectories converge
asymptotically toM0, thus there is no color change.

11.6 CEGAR Adaptation for Diagnosability Verification

Since hybrid systems have an infinite state space due to continuous dynamics,
verifying formally their properties often rests on using ordinary model checking
together with a finite-state abstraction. Model-checking can be inconclusive, in
which case the abstraction must be refined. In this section, we adapt counterexample
guided abstraction refinement (CEGAR) that was originally proposed to verify
safety properties [3, 28].

Note that to verify safety properties, it is sufficient to check one execution
at a time and verify whether the execution can reach an unsafe state. Verifying
diagnosability reveals a more complex task as one is required to simultaneously
analyze two executions at a time, i.e., to verify whether or not the two executions
have the same observations while only one of them contains the considered fault.

306 H. Zaatiti et al.

In our abstraction method, time constraints are used explicitly. When an abstrac-
tion refinement is required, tighter time bounds are obtained over the new regions
of the refined decomposition. The proposed abstraction method hence differs from
the one proposed in [35]. In [35], the abstraction consists in retaining properties of
the continuous dynamics, namely mode distinguishability and ephemerality, which
are directly checked on the concrete hybrid system when necessary. On the contrary,
in our approach the abstractions refer directly to the continuous state space and the
continuous dynamics are interpreted with increasing levels of granularity, which
results in finer and finer state space decompositions to which time constraints are
associated. These abstractions take the form of timed automata.

The adaptation of CEGAR to verify diagnosability of a hybrid automaton
H consists in three steps described as follows and to be detailed in the next
subsections:

• Diagnosability checking of a timed abstract automaton of H using the twin
plant method, which generates a counterexample C:E when diagnosability is not
verified.

• Validation of the C.E by checking whether the C:E is valid or spurious.
• Refinement of the timed abstract automaton by using a finer hybrid state space

decomposition.

11.6.1 CEGAR Scheme for Hybrid Automata Diagnosability
Verification

Verifying diagnosability of a hybrid automaton by checking it on abstractions of
this automaton is justified because if the diagnosability property is verified for an
abstraction, then it is verified also for the concrete hybrid system. This can be
established by showing that a concrete counterexample of diagnosability lifts up into
an abstract counterexample of diagnosability. Actually, given a hybrid automaton

H D .Q;X; S0; †;F; Inv;T/, two executions h, h0 2 ŒŒH��, h D .q0; x0/
l0�!

.q1; x1/ : : : .qi; xi/
li�! : : :, h0 D .q00; x00/

l00�! .q01; x01/ : : : .q0i; x0i/
l0i�! : : : are called a

counterexample of diagnosability in H with respect to the fault F if they satisfy the
three conditions defined in Definition 10, i.e., if h and h0 constitute a critical pair
of H.

We will denote each state .qi; xi/ by si and .q0i; x0i/ by s0i. We assume that the
flow condition F is a singleton function (deterministic). Then, from Theorem 5,
given a timed abstract automaton THP of H with abstraction function ˛t

P, h and

h0 are mapped by ˛t
P into executions Oh; Oh0 2 ŒŒTHP��, Oh D Os0

Ol0�! Os1 : : : Osi
Oli�! : : :,

Oh0 D Os00
Ol00�! Os01 : : : Os0i

Ol0i�! : : : and, as .h; h0/ is a critical pair in H with respect to F, so is

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 307

Algorithm 1 CEGAR scheme for hybrid automata diagnosability verification
INPUT: hybrid automaton H; considered fault F; constant positive integer precision
OUTPUT: decision WD H is diagnosable .true/ j H is not diagnosable .false/ j precision is
reached .max_reached/

TH Initial Timed Abstract Automaton of H
C:E Diagnosability Check .TH;F/

abstraction_level 0

while C:E ¤ ;^ abstraction_level < precision do
if Validate(C:E;H) then

decision false EXIT
else

TH Refine(TH;C:E;H)
C:E Diagnosability Check(TH;F)
abstraction_level abstraction_levelC 1

end if
end while
if C:E D ; then

decision true EXIT
else

decision max_reached EXIT
end if

.Oh; Oh0/ in THP, which establishes thus a counterexample of diagnosability in THP:
C:E D .Oh; Oh0/. This proves the following result.

Theorem 7 Given a hybrid automaton H with singleton flow condition, a timed
abstract automaton THP of H with abstraction function ˛t

P and a modeled fault F
in H, if F is diagnosable in THP then F is diagnosable in H.

Now, with this result, Algorithm 1 illustrates the CEGAR scheme adaptation for
hybrid automata diagnosability verification.

11.6.2 Twin Plant Based Diagnosability Checking

Diagnosability checking of a discrete event system, modeled as an automaton, based
on the twin plant method [40, 61] is polynomial in the number of states (actually
it has been proved it is NLOGSPACE-complete [51]). The idea is to construct a
non-deterministic automaton, called pre-diagnoser or verifier, that preserves only
all observable information and appends to every state the knowledge about past
fault occurrence. The twin plant is then obtained by synchronizing the pre-diagnoser
with itself based on observable events to get as paths in the twin plant all pairs
of executions with the same observations in the original system. Each state of the
twin plant is a pair of pre-diagnoser states that provide two possible diagnoses. A
twin plant state is called an ambiguous one if the corresponding two pre-diagnoser
states give two different diagnoses (presence for one and absence for the other of a

308 H. Zaatiti et al.

past fault occurrence). A critical path is a path in the twin plant with at least one
ambiguous state cycle. It corresponds to a critical pair and it has thus been proved
that the existence of a critical path is equivalent to non-diagnosability. The twin plant
method has been adapted to be applied to timed automata [58], where a twin plant
is constructed in a similar way except that the time constraints of two executions are
explicitly taken into account using clock variables. The idea is to verify whether the
time constraints can further distinguish two executions by comparing the occurrence
time of observable events. The definition of a critical path in the twin plant is analog,
except that ambiguous state cycle is replaced by infinite time ambiguous path.

Lemma 1 A fault is diagnosable in a timed automaton iff its twin plant contains no
critical path [58].

For timed automata, checking diagnosability is PSPACE-complete.

11.6.3 Counterexample Validation or Refusal

After applying the twin plant method on a timed abstract automaton THP of H as
described in [58], suppose that a critical pair C:E D .Oh; Oh0/ is returned (if not, it
means that THP, and thus H, is diagnosable). Whether we find or not two concrete
executions h; h0 2 ŒŒH�� whose abstractions by ˛t

P are Oh and Oh0 and form a concrete
critical pair decides if C:E is validated or refuted. We detail below both procedures
for validation or refusal and the reasons for which, in the latter case, a critical pair
can be assumed spurious.

Validated Counterexample If it exists h; h0 2 ŒŒH��, whose abstractions by ˛t
P

(according to Theorem 5) are Oh; Oh0 and such that Obs.h/ D Obs.h0/, then .h; h0/
constitutes a concrete counterexample realizing C:E and proves thus the non-
diagnosability of H. If not, the abstract counterexample C:E is said spurious.
In practice, this step involves computing reachable sets of states using safe
over approximations such as ellipsoids and zonotopes for complex dynamics or
hypercubes for simpler ones [1, 12]. Obviously, due to inherent undecidability of
reachability problem at the concrete level of the hybrid automaton, it can happen
that a concrete critical pair realizing C:E does actually exist but this existence will
not be proved and C:E will be declared spurious, with new chance to discover a
concrete critical pair at the next refinement loop.

Refuted Counterexample In case of spurious C:E D .Oh; Oh0/, the idea is to
construct longest finite executions h; h0 2 ŒŒH��, that abstract by ˛t

P into finite

prefixes of Oh; Oh0 and such that Obs.h/ D Obs.h0/. The fact they cannot be extended
means that 8h 2 ŒŒH��=h, h0 2 ŒŒH��=h0 one step executions, either (i) OsjhjC1 ¤
˛t
P.sjhjC1/ (or Os0jh0jC1

¤ ˛t
P.s0jh0jC1

/) or (ii) Oljhj ¤ ljhj (or Ol0jhj ¤ l0jhj) or (iii)

Obs.h/ ¤ Obs.h0/. In this case, sreachjhjC1
and s0reachjh0jC1

are returned, that represent the two

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 309

sets of reachable concrete states that are the first ones to disagree with the abstract
C:E. We summarize below the reasons resulting in the C:E being spurious.

Spurious State Reachability There is no concrete execution in H whose abstraction
is one of Oh or Oh0, as one of the set of states of H whose abstraction is an abstract
state Osi or Os0i is not reachable in H starting from the initial states of H. Note
that care will have to be taken when refining THP (see next subsection). E.g., a
possible case is that there exist two executions .h; h0/ reaching .s1; s01/ and then
.s2; s02/ but not reaching .s3; s03/ (and none passing by .s1; s01/ and .s2; s02/ reaches
.s3; s03/), and two other executions .u; u0/ reaching .s2; s02/ from .s; s0/ ¤ .s1; s01/,
with ˛t

P.s/ D ˛t
P.s1/ and ˛t

P.s0/ D ˛t
P.s01/, and then reaching .s3; s03/, all with

time periods compatible to those of the abstract executions. If the refined model
simply eliminated the transition from Os2 to Os3 or from Os02 to Os03 then it could no
longer be considered an abstraction of H, since some concrete execution in H would
have no abstract counterpart. Thus the refinement has to apply the split operation
as previously described, so that preserving the abstraction while eliminating the
spurious counterexample.

Spurious Time Constraints Satisfaction The abstract critical pair, when considered
timeless, owns a concrete critical pair realization in H but none verifying the time
bounds imposed by the abstract timed automaton. In this case it is not a spurious
state reachability problem but a spurious timed state reachability problem. Actually
the time constraints of the abstract critical pair cannot be satisfied by any concrete
critical pair realizing it in H.

Spurious Observation Undistinguishability The two executions of the abstract
critical pair share the same observations (observable events with their occurrence
times and snapshots of the values of observable continuous variables at arrival
times in each abstract state) but actually any two concrete executions realizing this
critical pair in H do distinguish themselves by the observation of some observable
continuous variable.

11.6.4 Refinement of the Abstraction

If it reveals that abstract counterexample C:E D .Oh; Oh0/ is spurious, then one refines
the timed abstract automaton THP to get THP0 , guided by the information from
C:E. The first step is analyzing C:E to identify the reasons why it is spurious (as
classified previously). The idea is to avoid getting relatively close spurious abstract
counterexample when applying twin plant method on the refined timed abstract
automaton THP0 . The refinement procedure is described as follows and will be
illustrated on our example in the next section.

310 H. Zaatiti et al.

1. Suppose that C:E is refuted due to an illegal stay, i.e., the corresponding invariant
is not respected. The consequence could be sreachjhjC1

D ;, i.e., an illegal transition.
To eliminate such spurious counterexample next time, one can partition the
region containing Osjhj to get a new region representing the legal stay such that
the refinement can be done based on this partition. The idea is to eliminate illegal
(unobservable) transitions between the new region and others by tightening time
constraints. In a similar way, one can handle spurious counterexamples with
illegal transitions due to the unsatisfiability of the corresponding guards by the
evolution of continuous variables, but with a legal stay this time.

2. Suppose that the refutation of C:E is due to different observations from sjhjC1 and
s0jh0jC1

without reachability problem. The idea is to calculate the exact moment,
denoted tspurious, before which it is still possible to get the same observations
while after it the observations will diverge. With tspurious, one can partition OsjhjC1

and Os0jh0jC1
to get a new region whose legal stay is limited by tspurious and transition

to another region gives birth to a new refined observation by means of an
observable continuous variable if any.

11.7 Case Study Example

The CEGAR scheme for diagnosability checking of hybrid automata will be
illustrated by the following case study example.

Example 6 (Fault Tolerant Thermostat Model) The two observable events Bon and
Boff allow one to witness mode changes and the continuous variable x is assumed
to be observable. The system starts from x 2 Œ80; 90�. Two faults are modeled as
unobservable events F1 and F2 2 †f shown in Fig. 11.4. In practice, the fault F1

models a bad calibration of the temperature sensor. As for fault F2, it represents a
defect in the heater impacting its efficiency and is modeled by a parametric change
of a constant in the expression of the first order derivative of x.

11.7.1 CEGAR Scheme for Fault F1

Initial Abstraction We consider an initial decomposition P D fPoff ;Pon;P
F1

off ;P
F1
on

PF2

off , P
F2
ong of the hybrid state space. Each partition P 2 P is made up of only one

region representing the reals R. Hence computing tmin and tmax for each region
p yields Ip D Œ0; C1/, in other words the initial abstraction contains no time
constraints.

Diagnosability Check The diagnosability check using the twin plant method
generates a counterexample C:E D .Oh; Oh0/ such that:

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 311

o f f

ẋ= −x

x ≥ 68

on

ẋ=− x+100

x ≤ 82

o f f F1

ẋ= −x

x ≥ 80

onF1

ẋ= −x+100

x ≤ 90

o f f F2

ẋ= −x

x ≥ 68

onF2

ẋ= −x+120

x ≤ 82

x ∈ [80,90]
x ≤ 70/Bon

80 ≤ x/Bo f f

F1

x ≤ 82/Bon

88 ≤ x/Bo f f

F2

x ≤ 70/Bon

80 ≤ x/Bo f f

Fig. 11.4 One-dimensional hybrid automaton modeling a faulty thermostat

Oh D .off ; poff /
0:15��! .off ; poff /

Bon��! .on; pon/
0:3�! .on; pon/

Boff��! .off ; poff / : : :

Oh0 D .off ; poff /
0:1�! .off ; poff /

F1�! .off F1 ; pF1

off /
0:05��! .off F1 ; pF1

off /
Bon��!

.onF1 ; pF1
on/

0:3�! .onF1 ; pF1
on/

Boff��! .off F1 ; pF1

off / : : :

Validation or Refusal The computation of the set of concrete executions fhg (resp.
fh0g) whose abstraction is Oh (resp. Oh0) yields an approximation as follows:

fhg D .off ; Œ80; 90�/
0:15��! .off ; Œ69; 77�/

Bon��! .on; Œ69; 70�/ : : :

fh0g D .off ; Œ80; 90�/
0:1�! .off ; Œ72; 81�/

F1�! .off F1 ; Œ80; 81�/
0:05��!

.off F1 ; Œ76; 77� W invalid/

The concrete state computations show that it is not possible to stay 0:05 time units
in mode off F1 as the temperature reached would be [76,77] violating the invariant
x � 80. The C:E is thus refuted.

Refinement of the State Space The refinement aims at eliminating the previous
spurious C:E. From this C:E, it is possible to compute the exact time constraint
for staying in mode off F1 and then triggering the transition Bon and refine the hybrid

312 H. Zaatiti et al.

state space accordingly. Once refined, the new abstraction should not contain similar
counterexamples. The validation process reveals that all trajectories entering mode
off F1 with x 2 Œ80; 81� cannot stay more than tmax D 0:0124 time units but it is
possible for some trajectories to instantaneously change from off to off F1 to onF1

in which case tmin D 0, thus I.off F1 ;Œ80;81�/ D Œ0; 0:0124�. The refined abstraction
would carry this new information by updating the partition of mode off F1 , from
R to .�1; 80/] Œ80; 81�] .81; C1/, thus ensuring that all future generated
counterexamples would satisfy this constraint.

11.7.2 CEGAR Scheme for Fault F2

Initial Abstraction The same as for F1.

Diagnosability Check The diagnosability check of the initial abstraction using the
twin plant method generates a C:E D .Oh; Oh0/:

Oh D .off ; poff /
0:5�! .off ; poff /

Bon��! .on; pon/
0:5�! .on; pon/

Boff��! .off ; poff / : : :

Oh0 D .off ; poff /
0:5�! .off ; poff /

Bon��! .on; pon/
0:4�! .on; pon/

F2�! .onF2 ; pF2
on/

0:1�!

.onF2 ; pF2
on/

Boff��! .off F2 ; pF2

off / : : :

Validation or Refusal The computation of the set of concrete executions fhg (resp.
fh0g) whose abstraction is Oh (resp. Oh0) yields an approximation as follows:

fhg D .off ; Œ80; 90�/
0:5�! .off ; Œ48:5; 54:58� W invalid/

fh0g D .off ; Œ80; 90�/
0:5�! .off ; Œ48:5; 54:58� W invalid/

This C:E is refuted due to illegal stay in the mode off violating the corresponding
invariant. In other words the trajectories are not feasible: if the system stays in
mode off for 0:5 time units, then the state invariant is no longer true. Thus, if Bon is
observed, then the duration of stay in off should be smaller.

Refinement of the State Space To prevent future similar spurious counterexamples,
a refinement is applied to the initial abstraction. The refined model considers
new regions in mode off : poff 1

D Œ80; 90� (initial region) and poff 2
D Œ68; 80/

(legal region). The computation of the time intervals relative to each region are:
I.off ;Œ68;80// D Œ0; 0:16� and I.off ;Œ80;90�/ D Œ0; 0:12�. The refined abstraction will
encode these time constraints and ensure that a set of similar counterexamples
(including this one) are eliminated. Regions that are not reachable will be elimi-
nated, such as Œ0; 68/.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 313

Second Abstraction

Diagnosability Check The second C:E generated from the refined twin plant is:

Oh D .off ; poff 1
/

0:08��! .off ; poff 1
/

"�! .off ; poff 2
/

0:07��! .off ; poff 2
/

Bon��! .on; pon/

0:5�! .on; pon/
Boff��! .off ; poff / : : :

Oh0 D .off ; poff 1
/

0:08��! .off ; poff 1
/

"�! .off ; poff 2
/

0:07��! .off ; poff 2
/

Bon��! .on; pon/

0:4�! .on; pon/
F2�! .onF2 ; pF2

on/
0:1�! .onF2 ; pF2

on/
Boff��! .off F2 ; pF2

off / : : :

Validation or Refusal Note that the continuous transitions in the second C:E respect
the temporal constraints added during the refinement based on the first C:E. The
corresponding concrete approximate executions of this C:E are:

fhg D .off ; Œ80; 90�/
0:15��! .off ; Œ69; 77�/

Bon��! .on; Œ69; 70�/
0:5�! .on; Œ80:5; 81:8�/ : : :

fh0g D .off ; Œ80; 90�/
0:15��! .off ; Œ69; 77�/

Bon��! .on; Œ69; 70�/
0:4�! .on; Œ79; 79:9�/

F2�! .onF2 ; Œ79; 79:9�/
0:1�! .onF2 ; Œ82:9; 83:7�/ : : :

In this case, this second C:E is also considered as spurious because, given the time
constraints, the two trajectories are different in the observations of x in the hybrid
system since the last regions are disjoint, i.e., Œ80:5; 81:8� \ Œ82:9; 83:7� D ;.
Refinement of the State Space The counterexample analysis could identify the time
boundary tspurious, up to which the observations could be the same for at least two
concrete trajectories, and after which the critical pair becomes spurious. In our
example, suppose the fault occurred at tf where x 2 Œa; b�, then tspurious is the time
instant from which faulty and nominal sets of trajectories are disjoint:

tspurious D ln

�
b � a C 20

20

�

C tf (11.9)

For the second spurious C:E, tf D 0:4 and tspurious � tf D 0:044. The two
concrete nominal and faulty executions originating from .on; Œ79; 79:9�/ will be
in the following temperature range after 0.044 time units: x 2 Œ79:90; 80:7� in
the mode on and x 2 Œ80:7; 81:6� in the mode onF2 . Hence, at any future time,
the observations are different. By incorporating the time constraint in the refined
abstraction, we ensure that counterexamples that are spurious because of disjoint
observations including the previous one cannot be generated again. For the sake of
simplicity, we analyzed the two faults separately. One more sophisticated strategy is
to analyze the next fault based on the refined abstraction obtained from the analysis
of the precedent fault.

314 H. Zaatiti et al.

11.8 Conclusion

In this chapter, we were interested in verifying a given formal safety property on a
hybrid system, based on discrete abstractions of this system, for which checking
this property is decidable and which guarantee that the property is satisfied at
the concrete hybrid level if it is satisfied at the abstract level. We focused on the
diagnosability property, for its importance in safety analysis at design stage and
the challenge it gives rise to. We presented elements from the literature regarding
hybrid automata abstractions, however few works handle diagnosability verification,
as this property deals with a pair of trajectories and partial observations of the
system and is thus more complex to check than reachability. In order to handle
time constraints at the abstract level, we chose abstractions of the hybrid automaton
as timed automata, related to a decomposition of the state space into geometric
regions, the abstract time constraints coming from the estimation of the sojourn time
of trajectories in each region. Thus the abstractions over-approximate the regions
of interest to which are added time constraints obtained from the dynamics of the
concrete system. We adapted a CEGAR scheme for hybrid systems diagnosability
verification, based on the counterexample provided at the abstract level by the twin
plant based diagnosability checking when diagnosability is proved to be unsatisfied.
We presented situations for which the produced counterexample is spurious and a
refinement in finer regions and tighter time constraints is then required.

This preliminary work draws many perspectives. First of all, we have to develop
refinement strategies by analysis of the counterexample and progress in the (partial)
automation of the whole process and the integration of the algorithms for abstract
diagnosability checking, for validation of the counterexample and for refinement.
We plan in particular to use and extend existing tools for timed automata model
checking and for over-approximation reachability at the continuous level. We want
to investigate also the usage of SMT solvers [17, 18], in particular with theories
including ODEs [31], to deal simultaneously with discrete and continuous variables.
Moreover, we plan to apply this approach to other formal safety properties such
as predictability, which guarantees to predict in advance the future unavoidable
occurrence of a fault given some sequence of observations. With all this, we will
be able to tackle real applications and get deeper experimental results.

Another promising aspect is the potential of this approach to deduce minimal
concrete sets of observations for which the system is diagnosable. These obser-
vations specify a minimal (for set inclusion) needed set of events and continuous
variables for which the system is diagnosable. If one element of this set is not
considered as observable, the system becomes non-diagnosable. Thus, such a
minimal set draws the boundary between the diagnosable and non-diagnosable
systems [14] from the point of view of their observability.

Up to now we assume a continuous domain for both the values and the time
stamps of the observable variables without taking into account sensor capability,
i.e., the minimal interval (of value and of time) that can be captured. This is the
reason why our current algorithm may not terminate, due to an infinite refinement

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 315

process. A fundamental and essential future work perspective is to provide a general
algorithm for diagnosability verification with "-precision [42], for " arbitrary small
(for a given metric to be defined). This will ensure theoretical termination of the
algorithm, as the number of refinement steps to reach the precision will then be
finite. And this is actually justified in practice because both model parameters and
observations cannot be infinitely accurate, thus the value " for the precision would
come from the precision of the model parameters and of the measurements, in space
and time. In the same spirit, one interesting future work would be to demonstrate
a bi-simulation relation between the concrete model and the final refined abstract
model when considering this minimal precision imposed by the model and the
sensors, where the termination of the refinement can thus be guaranteed. In other
words, theoretically, we could always deduce the right verdict, either the system is
diagnosable or it is not diagnosable with respect to a given minimal precision.

Acknowledgements The authors would like to thank Alban Grastien for his valuable comments
and suggestions.

References

1. M. Althoff, O. Stursberg, M. Buss, Computing reachable sets of hybrid systems using a
combination of zonotopes and polytopes. Nonlinear Anal. Hybrid Syst. 4(2), 233–249 (2010)

2. R. Alur, D.L. Dill, A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
3. R. Alur, T. Dang, F. Ivančić, Counterexample-guided predicate abstraction of hybrid systems.

Theor. Comput. Sci. 354(2), 250–271 (2006)
4. S. Ault, E. Holmgreen, Dynamics of the Brusselator. Academia (2009)
5. M. Basseville, M. Kinnaert, M. Nyberg, On fault detectability and isolability. Eur. J. Control.

7(6), 625–641 (2001)
6. M. Bayoudh, L. Travé-Massuyès, Diagnosability analysis of hybrid systems cast in a discrete-

event framework. Discrete Event Dyn. Syst. 24(3), 309–338 (2014)
7. M. Bayoudh, L. Travé-Massuyès, X. Olive, Hybrid systems diagnosability by abstracting

faulty continuous dynamics, in Proceedings of the 17th International Workshop on Principles
of Diagnosis (DX’06) (2006), pp. 9–15

8. M. Bayoudh, L. Travé-Massuyès, X. Olive, Coupling continuous and discrete event system
techniques for hybrid systems diagnosability analysis, in Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI-08), Patras (2008), pp. 219–223

9. M. Bayoudh, L. Travé-Massuyès, X. Olive, Active diagnosis of hybrid systems guided by
diagnosability properties. IFAC Proc. Vol. 42(8), 1498–1503 (2009)

10. G. Behrmann, A. David, K.G. Larsen, A tutorial on Uppaal, in Formal Methods for the Design
of Real-Time Systems (Springer, Berlin, 2004), pp. 200–236

11. S. Biswas, D. Sarkar, S. Mukhopadhyay, A. Patra, Diagnosability analysis of real time
hybrid systems, in Proceedings of the IEEE International Conference on Industrial Technology
(ICIT’06), Mumbai (2006), pp. 104–109

12. O. Botchkarev, S. Tripakis, Verification of hybrid systems with linear differential inclusions
using ellipsoidal approximations, in Proceedings of the 3rd International Workshop on Hybrid
Systems: Computation and Control (HSCC’00). LNCS, vol. 1790 (Springer, Berlin, 2000),
pp. 73–88

316 H. Zaatiti et al.

13. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, S. Yovine, Kronos: a model-checking
tool for real-time systems, in International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems (Springer, Berlin, 1998), pp. 298–302

14. L. Brandán Briones, A. Lazovik, P. Dague, Optimizing the system observability level for
diagnosability, in Proceedings of the 3rd International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA08), Chalkidiki, Kassandra (2008)

15. J. Chen, R. Patton, A re-examination of the relationship between parity space and observer-
based approaches in fault diagnosis, in Proceedings of the IFAC Symposium on Fault Detection,
Supervision and Safety of Technical Systems Safeprocess’94, Helsinki (1994), pp. 590–596

16. A. Cimatti, C. Pecheur, R. Cavada, Formal verification of diagnosability via symbolic model
checking, in Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI-03) (2003), pp. 363–369

17. A. Cimatti, S. Mover, S. Tonetta, SMT-based scenario verification for hybrid systems. Formal
Methods Syst. Des. 42(1), 46–66 (2013)

18. A. Cimatti, A. Griggio, S. Mover, S. Tonetta, HyComp: an SMT-based model checker for
hybrid systems, in Proceedings of the 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS-2015), London (2015), pp. 52–67

19. V. Cocquempot, T.E. Mezyani, M. Staroswiecki, Fault detection and isolation for hybrid
systems using structured parity residuals, in Proceedings of the IEEE/IFAC-ASCC: Asian
Control Conference, vol. 2, Melbourne (2004), pp. 1204–1212

20. M.J. Daigle, A qualitative event-based approach to fault diagnosis of hybrid systems. PhD
thesis, Vanderbilt University, 2008

21. M. Daigle, X. Koutsoukos, G. Biswas, An event-based approach to hybrid systems diagnos-
ability, in Proceedings of the 19th International Workshop on Principles of Diagnosis (DX’08)
(2008), pp. 47–54

22. M.J. Daigle, D. Koutsoukos, G. Biswas, An event-based approach to integrated parametric and
discrete fault diagnosis in hybrid systems. Trans. Inst. Meas. Control. (Special Issue on Hybrid
and Switched Systems) 32(5), 487–510 (2010)

23. M.J. Daigle, I. Roychoudhury, G. Biswas, D. Koutsoukos, A. Patterson-Hine, S. Poll, A
comprehensive diagnosis methodology for complex hybrid systems: a case study on spacecraft
power distribution systems. IEEE Trans. Syst. Man Cybern. Part A (Special Issue on Model-
based Diagnosis: Facing Challenges in Real-world Applications) 4(5), 917–931 (2010)

24. Y. Deng, A. D’Innocenzo, M.D. Di Benedetto, S. Di Gennaro, A.A. Julius, Verification of
hybrid automata diagnosability with measurement uncertainty. IEEE Trans. Autom. Control
61(4), 982–993 (2016)

25. O. Diene, E.R. Silva, M.V. Moreira, Analysis and verification of the diagnosability of hybrid
systems, in Proceedings of the 53rd IEEE Conference on Decision and Control (CDC-14)
(IEEE, New York, 2014), pp. 1–6

26. O. Diene, M.V. Moreira, V.R. Alvarez, E.R. Silva, Computational methods for diagnosability
verification of hybrid systems, in Proceedings of the IEEE Conference on Control Applications
(CCA-15) (IEEE, New York, 2015), pp. 382–387

27. S. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools
(Springer, London, 2008)

28. C. Edmund, F. Ansgar, H. Zhi, K. Bruce, S. Olaf, T. Michael, Verification of hybrid systems
based on counterexample-guided abstraction refinement, in Proceedings of International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS-
2003), ed. by H. Garavel, J. Hatcliff. Lecture Notes in Computer Science, vol. 2619 (Springer,
Cham, 2003), pp. 192–207

29. G. Fourlas, K. Kyriakopoulos, N. Krikelis, Diagnosability of hybrid systems, in Proceedings of
the 10th Mediterranean Conference on Control and Automation (MED-2002), Lisbon (2002),
pp. 3994–3999

30. J.-P. Gallois, J.-Y. Pierron, Qualitative simulation and validation of complex hybrid systems,
in Proceedings of the 8th European Congress on Embedded Real Time Software and Systems
(ERTS-2016), Toulouse (2016)

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 317

31. S. Gao, S. Kong, E. Clarke, Satisfiability modulo ODEs, in Formal Methods in Computer-
Aided Design (FMCAD) (2013)

32. V. Germanos, S. Haar, V. Khomenko, S. Schwoon, Diagnosability under weak fairness, in
Proceedings of the 14th International Conference on Application of Concurrency to System
Design (ACSD’14), Tunis (IEEE Computer Society Press, New York, 2014)

33. J. Gertler, Fault Detection and Diagnosis in Engineering Systems (Marcel Dekker, New York,
1998)

34. A. Grastien, Symbolic testing of diagnosability, in Proceedings of the 20th International
Workshop on Principles of Diagnosis (DX-09) (2009), pp. 131–138

35. A. Grastien, L. Travé-Massuyès, V. Puig, Solving diagnosability of hybrid systems via
abstraction and discrete event techniques, in Proceedings of the 27th International Workshop
on Principles of Diagnosis (DX-16) (2016)

36. S. Gulwani, A. Tiwari, Constraint-based approach for analysis of hybrid systems, in
Proceedings of the 20th International Conference on Computer Aided Verification (CAV-2008)
(2008), pp. 190–203

37. E. Hainry, Decidability and undecidability in dynamical systems. Rapport de recherche
(CiteSeer, 2009). http://hal.inria.fr/inria-00429965/en/

38. T.A. Henzinger, The theory of hybrid automata, in Proceedings of the 11th Annual IEEE
Symposium on Logic in Computer Science (IEEE Computer Society Press, Los Alamitos, CA,
1996), pp. 278–292

39. T.A. Henzinger, P.W. Kopke, A. Puri, P. Varaiya, What’s decidable about hybrid automata?, in
Proceedings of the 27th Annual Symposium on Theory of Computing (ACM Press, New York,
1995), pp. 373–382

40. S. Jiang, Z. Huang, V. Chandra, R. Kumar, A polynomial algorithm for testing diagnosability
of discrete-event systems. IEEE Trans. Autom. Control 46(8), 1318–1321 (2001)

41. E. Kilic, Diagnosability of fuzzy discrete event systems. Inf. Sci. 178(3), 858–870 (2008)
42. K.-D. Kim, S. Mitra, P.R. Kumar, Computing bounded epsilon-reach set with finite precision

computations for a class of linear hybrid automata, in Proceedings of the ACM International
Conference on Hybrid Systems: Computation and Control (2011)

43. B. Kuipers, Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge
(MIT Press, Cambridge, MA, 1994)

44. F. Liu, D. Qiu, Safe diagnosability of stochastic discrete-event systems. IEEE Trans. Autom.
Control 53(5), 1291–1296 (2008)

45. O. Maler, G. Batt, Approximating continuous systems by timed automata, in Formal Methods
in Systems Biology (Springer, Berlin, 2008), pp. 77–89

46. T. Melliti, P. Dague, Generalizing diagnosability definition and checking for open systems: a
Game structure approach, in Proceedings of the 21st International Workshop on Principles of
Diagnosis (DX’10), Portland, OR (2010), pp. 103–110

47. M. Nyberg, Criterions for detectability and strong detectability of faults in linear systems. Int.
J. Control. 75(7), 490–501 (2002)

48. Y. Pencolé, Diagnosability analysis of distributed discrete event systems, in Proceedings of the
16th European Conference on Artificial Intelligent (ECAI-04) (2004), pp. 43–47

49. Y. Pencolé, A. Subias, A chronicle-based diagnosability approach for discrete timed-event
systems: application to web-services. J. Universal Comput. Sci. 15(17), 3246–3272 (2009)

50. P. Ribot, Y. Pencolé, Design requirements for the diagnosability of distributed discrete
event systems, in Proceedings of the 19th International Workshop on Principles of Diagnosis
(DX’08), Blue Mountains (2008), pp. 347–354

51. J. Rintanen, Diagnosers and diagnosability of succinct transition systems, in Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad (2007),
pp. 538–544

52. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Diagnosability of
discrete event systems. Trans. Autom. Control 40(9), 1555–1575 (1995)

53. A. Schumann, J. Huang, A scalable jointree algorithm for diagnosability, in Proceedings of the
23rd American National Conference on Artificial Intelligence (AAAI-08) (2008), pp. 535–540

http://hal.inria.fr/inria-00429965/en/

318 H. Zaatiti et al.

54. D. Thorsley, D. Teneketzis, Diagnosability of stochastic discrete-event systems. IEEE Trans.
Autom. Control 50(4), 476–492 (2005)

55. L. Travé-Massuyès, P. Dague, Modèles et raisonnements qualitatifs (Hermès, Paris, 2003)
56. L. Travé-Massuyès, M. Cordier, X. Pucel, Comparing diagnosability criterions in continuous

systems and discrete events systems, in Proceedings of the 6th IFAC Symposium on Fault
Detection, Supervision and Safety of Technical Processes (Safeprocess’06), Beijing (2006),
pp. 55–60

57. L. Travé-Massuyès, T. Escobet, X. Olive, Diagnosability analysis based on component-
supported analytical redundancy relations. IEEE Trans. Syst. Man Cybern. Part A 36(6),
1146–1160 (2006)

58. S. Tripakis, Fault diagnosis for timed automata, in Proceedings of International Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT-2002). Lecture Notes
in Computer Science, vol. 2469 (Springer, Berlin, 2002), pp. 205–221

59. Y. Yan, L. Ye, P. Dague, Diagnosability for patterns in distributed discrete event systems, in
Proceedings of the 21st International Workshop on Principles of Diagnosis (DX’10), Portland,
OR (2010), pp. 345–352

60. L. Ye, P. Dague, Diagnosability analysis of discrete event systems with autonomous
components, in Proceedings of the 19th European Conference on Artificial Intelligence (ECAI-
10) (2010), pp. 105–110

61. T.-S. Yoo, S. Lafortune, Polynomial-time verification of diagnosability of partially observed
discrete-event systems. IEEE Trans. Autom. Control 47(9), 1491–1495 (2002)

62. M. Yu, D. Wang, M. Luo, D. Zhang, Q. Chen, Fault detection, isolation and identification for
hybrid systems with unknown mode changes and fault patterns. Expert Syst. Appl. 39(11),
9955–9965 (2012)

63. J. Zaytoon, S. Lafortune, Overview of fault diagnosis methods for discrete event systems.
Annu. Rev. Control. 37(2), 308–320 (2013)

	11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis
	11.1 Introduction
	11.2 Hybrid Dynamical Systems
	11.2.1 Hybrid Automata Definition
	11.2.2 Modeling with Hybrid Automata
	11.2.3 Hybrid Automata Semantics
	11.2.4 Hybrid Automata Classes and Particular Cases

	11.3 Diagnosability of Hybrid Dynamical Systems
	11.3.1 Hybrid System Model for Diagnosability Analysis
	11.3.2 Observations and Faults
	11.3.3 System Diagnosability Definition

	11.4 Abstracting Hybrid Automata
	11.4.1 Different Abstraction Strategies
	11.4.2 Geometric Decomposition of the State Space
	11.4.3 Encoding Hybrid Automata Reachability Constraints
	11.4.4 Encoding Hybrid Automata Time Constraints
	11.4.5 Computing Time Bounds

	11.5 Hybrid Automata Abstraction Refinement
	11.5.1 Refined Timeless Model
	11.5.2 Refined Timed Model
	11.5.3 Refinement Guided by Reachability Analysis

	11.6 CEGAR Adaptation for Diagnosability Verification
	11.6.1 CEGAR Scheme for Hybrid Automata Diagnosability Verification
	11.6.2 Twin Plant Based Diagnosability Checking
	11.6.3 Counterexample Validation or Refusal
	11.6.4 Refinement of the Abstraction

	11.7 Case Study Example
	11.7.1 CEGAR Scheme for Fault F1
	11.7.2 CEGAR Scheme for Fault F2

	11.8 Conclusion
	References

