
Moamar Sayed-Mouchaweh Editor

Diagnosability, Security
and Safety of Hybrid
Dynamic and Cyber-
Physical Systems

Diagnosability, Security and Safety of Hybrid
Dynamic and Cyber-Physical Systems

Moamar Sayed-Mouchaweh
Editor

Diagnosability, Security and
Safety of Hybrid Dynamic
and Cyber-Physical Systems

123

Editor
Moamar Sayed-Mouchaweh
Institute Mines-Telecom Lille Douai
Douai, France

ISBN 978-3-319-74961-7 ISBN 978-3-319-74962-4 (eBook)
https://doi.org/10.1007/978-3-319-74962-4

Library of Congress Control Number: 2018934979

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part
of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-74962-4

Preface

Cyber-physical systems (CPS) are characterized as a combination of physical (phys-
ical plant, process, network) and cyber (software, algorithm, computation) com-
ponents whose operations are monitored, controlled, coordinated, and integrated
by a computing and communicating core. The interaction between physical and
computational components in CPS is intensive. They cover an increasing number of
real life applications such as autonomous vehicles, aircrafts, smart manufacturing
processes, surgical robots and human robot collaboration, smart electric grids,
home appliances, air traffic control, automated farming, and implanted medical
devices. The interaction between both physical and cyber components requires
tools allowing analyzing and modeling both the discrete (discrete event control,
communication protocols, discrete sensors/actuators, scheduling algorithms, etc.)
and continuous (continuous dynamics, physics, continuous sensors/actuators, etc.)
dynamics. Therefore, many CPS can be modeled as hybrid dynamic systems in
order to take into account both discrete and continuous behaviors as well as the
interactions between them.

Many critical infrastructures, such as power generation and distribution net-
works, water networks and mass transportation systems, autonomous vehicles and
traffic monitoring, are CPS. Such systems, including critical infrastructures, are
becoming widely used and covering many aspects of our daily life. Therefore,
the security, safety, and reliability of CPS is essential for the success of their
implementation and operation. However, these systems are prone to major incidents
resulting from cyberattacks and system failures. These incidents affect significantly
their security and safety. Attacks can be represented as an interference in the com-
munication channel between the supervisor and the system intentionally generated
by intruders in order to damage the system or as the enablement, respectively
disablement, of actuators events that are disabled, respectively enabled, by the
supervisor. In general, intruders hide, create, or even change intentionally events
that transit from one device (actuator, sensor) to another in a control communication

v

vi Preface

channel. These attacks in a supervisory control system can lead the plant to execute
event sequences entailing the system to reach unsafe or dangerous states that can
damage the system.

Therefore, reliable, scalable, and timely fault diagnosis is crucial in order to
improve the robustness of CPS to failures. In addition, it is primordial to detect
intrusions that exploit the vulnerabilities of industrial control systems in order
to alter intentionally the integrity, confidentiality, and availability of CPS. These
cyberattacks affect the control commands of the controller [Programmable Logic
Controller (PLC)], the reports (sensors readings) coming from the plant as well
as the communication between them. Moreover, a thorough understanding of the
vulnerability of CPS’ components against such incidents can be incorporated in
future design processes in order to better design such systems. Finally, the timely
fault diagnosis can help operators to have better situation awareness and give them
ample time to implement correction (maintenance) actions.

However, guaranteeing the security and safety of CPS requires verifying their
behavioral or safety properties either at design stage such as state reachability,
diagnosability, and predictability or online such as fault detection and isolation. This
is a challenging task because of the inherent interconnected and heterogeneous com-
bination of behaviors (cyber/physical, discrete/continuous) in these systems. Indeed,
fault propagation in CPS is governed not only by the behaviors of components in
the physical and cyber subsystems but also by their interactions. This makes the
identification of the root cause of observed anomalies and predicting the failure
events a hard problem. Moreover, the increasing complexity of CPS and the security
and safety requirements of their operation as well as their decentralized resource
management entail a significant increase in the likelihood of failures in these
systems. Finally, it is worth mentioning that computing the reachable set of states of
HDS is an undecidable matter due to the infinite state space of continuous systems.

This edited Springer book presents recent and advanced approaches and tech-
niques that address the complex problem of analyzing the diagnosability property
of CPS and ensuring their security and safety against faults and attacks. The
CPS are modeled as hybrid dynamic systems using different model-based and
data-driven approaches in different application domains (electric transmission net-
works, wireless communication networks, intrusions in industrial control systems,
intrusions in production systems, wind farms, etc.). These approaches handle the
problem of ensuring the security of CPS in presence of attacks and verifying their
diagnosability in presence of different kinds of uncertainty (uncertainty related to
the event occurrences, to their order of occurrence, to their value etc.).

Finally, the editor is very grateful to all authors and reviewers for their very
valuable contribution allowing setting another cornerstone in the research and
publication history of studding the diagnosability, security, and safety of CPS
modeled as hybrid dynamic systems. I would like also to acknowledge Mrs. Mary E.
James for establishing the contract with Springer and supporting the editor in any

Preface vii

organizational aspects. I hope that this volume will be a useful basis for further
fruitful investigations and fresh ideas for researcher and engineers as well as a
motivation and inspiration for newcomers to address the problems related to this
very important and promising field of research.

Douai, France Moamar Sayed-Mouchaweh

Contents

1 Prologue . 1
Moamar Sayed-Mouchaweh

2 Wind Turbine Fault Localization: A Practical Application
of Model-Based Diagnosis . 17
Roxane Koitz, Franz Wotawa, Johannes Lüftenegger,
Christopher S. Gray, and Franz Langmayr

3 Fault Detection and Localization Using Modelica
and Abductive Reasoning . 45
Ingo Pill and Franz Wotawa

4 Robust Data-Driven Fault Detection in Dynamic Process
Environments Using Discrete Event Systems . 73
Edwin Lughofer

5 Critical States Distance Filter Based Approach for Detection
and Blockage of Cyberattacks in Industrial Control Systems 117
Franck Sicard, Éric Zamai, and Jean-Marie Flaus

6 Active Diagnosis for Switched Systems Using Mealy
Machine Modeling . 147
Jeremy Van Gorp, Alessandro Giua, Michael Defoort,
and Mohamed Djemaï

7 Secure Diagnosability of Hybrid Dynamical Systems 175
Gabriella Fiore, Elena De Santis, and Maria Domenica Di Benedetto

8 Diagnosis in Cyber-Physical Systems with Fault Protection
Assemblies . 201
Ajay Chhokra, Abhishek Dubey, Nagabhushan Mahadevan,
Saqib Hasan, and Gabor Karsai

ix

x Contents

9 Passive Diagnosis of Hidden-Mode Switched Affine Models
with Detection Guarantees via Model Invalidation . 227
Farshad Harirchi, Sze Zheng Yong, and Necmiye Ozay

10 Diagnosability of Discrete Faults with Uncertain Observations 253
Alban Grastien and Marina Zanella

11 Abstractions Refinement for Hybrid Systems Diagnosability
Analysis . 279
Hadi Zaatiti, Lina Ye, Philippe Dague, Jean-Pierre Gallois,
and Louise Travé-Massuyès

Index . 319

Chapter 1
Prologue

Moamar Sayed-Mouchaweh

1.1 Cyber-Physical Systems as Hybrid Dynamic Systems

Cyber-physical systems (CPS) [1] are characterized as a combination of physical
(physical plant, process, network) and cyber (software, algorithm, computation)
components whose operations are monitored, controlled, coordinated, and inte-
grated by a computing and communicating core. The interaction between physical
and computational components in CPS is intensive. They cover increasing number
of real life applications such as autonomous vehicles, aircrafts, smart manufacturing
processes, surgical robots and human robot collaboration, smart electric grids, home
appliances, air traffic control, automated farming and implanted medical devices.

Hybrid dynamic systems (HDS) [2] are systems in which the discrete and
continuous dynamics cohabit. The discrete dynamics is described by discrete state
variables while the continuous dynamics is described by continuous state variables.
HDS exhibit different continuous dynamic behavior depending on the current
operation mode q as follows:

PX D A.q/ X C B.q/ u

where X is the state vector and u is the input vector. In the case of linear systems,
A(q) and B(q) are constant matrices of appropriate dimensions.

The interaction between both physical and cyber components requires tools
allowing analyzing and modeling both the discrete (discrete event control,
communication protocols, discrete sensors/actuators, scheduling algorithms, etc.)
and continuous (continuous dynamics, physics, continuous sensors/actuators, etc.)

M. Sayed-Mouchaweh (�)
Institute Mines-Telecom Lille Douai, Douai, France
e-mail: moamar.sayed-mouchaweh@imt-lille-douai.fr

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74962-4_1&domain=pdf
mailto:moamar.sayed-mouchaweh@imt-lille-douai.fr
https://doi.org/10.1007/978-3-319-74962-4_1

2 M. Sayed-Mouchaweh

Fig. 1.1 Three-cell power converter as discretely controlled continuous system (DCCS) where
capacitors C1 and C2 represent the continuous components (Cc) and switches S1, S2 and S3 the
discrete components (Dc)

dynamics. Therefore, many CPS can be modeled as hybrid dynamic systems [3, 4]
in order to take into account both discrete and continuous behaviors as well as the
interactions between them.

There are different classes of HDS, e.g., autonomous switching systems [5],
discretely controlled switching systems [2], pricewise affine systems [6], discretely
controlled jumping systems [7]. Many complex systems are embedded in the sense
that they consist of a physical plant with a discrete controller. Therefore, the system
has several discrete changes between different configuration modes through the
actions of the controller exercised on the system plant (e.g., actuators). This kind
of HDS is called discretely controlled continuous or switching systems (DCCS) [7].
Piecewise affine systems [6] are another important class of HDS where complex
nonlinearities are substituted by a sequence of simpler piecewise linear behaviors.

The three-cellular power converter [8], depicted in Fig. 1.1, presents an example
of DCCS. The continuous dynamics of the system is described by state vector
X D [Vc1 Vc2 I]T , where Vc1 and Vc2 represent, respectively, the floating voltage
of capacitors C1 and C2 and I represents the load current flowing from source E
towards the load (R, L) through three elementary switching cells Sj, j 2 f1, 2, 3g.
The latter represent the system discrete dynamics. Each discrete switch Sj has two
discrete states: Sj opened or Sj closed. The control of this system has two main tasks:
(1) balancing the voltages between the switches and (2) regulating the load current
to a desired value. To accomplish that, the controller changes the switches’ states
from opened to closed or from closed to opened by applying discrete commands

1 Prologue 3

”CSj” or “OSj” to each discrete switch Sj, j 2 f1, 2, 3g (see Fig. 1.1) where CSj refers
to “close switch Sj” and OSj to “open switch Sj.” Thus, the considered example is a
DCCS.

There are three major modeling tools widely used in the literature to model HDS.
These tools are hybrid Petri nets [9], hybrid bond graphs [10], and hybrid automata
[11].

Hybrid Petri nets (HPN) model HDS by combining discrete and continuous parts.
HPN is formally defined by the tuple:

HPN D fP;T; h;Pre;Postg

where P D Pd [Pc is a finite, not empty, set of places partitioned into a set
of discrete places Pd, represented as circles, and a set of continuous places Pc,
represented as double circles. T D Td [Tc is a finite, not empty, set of discrete
transitions Td and a set of continuous transitions Tc represented as double boxes.
h : P \ T ! fD, Cg, called “hybrid function,” indicates for every node whether it is
a discrete node (D) or a continuous node (C). Pre : PcxT ! R

C or Pre : PdxT ! N

is a function that defines an arc from a place to a transition. Post : PixTj ! R
C or

Post : PdxT ! Nis a function that defines an arc from a transition to a place.
Hybrid bond graph is a graphical description of a physical dynamic system with

discontinuities. The latter represent the transitions between discrete modes. Similar
to a regular bond graph, it is an energy-based technique. It is directed graphs
defined by a set of summits and a set of edges. Summits represent components.
The latter are: (1) passive components which transform energy into potential
energy (C-components), inertia energy (L-components), and dissipated energy (T-
components), (2) active components that can be source of effort or source pf flow.
The edges, called bonds (drawn as half arrows), represent ideal energy connections
between the components. The components interconnected by the edges construct the
model of the global system. This model is represented by 1 junction for components
having a common flow, 0 junction for common effort and transformers and gyrators
to connect different kinds of energy. In order to take into account the information
during the transitions between discrete modes, hybrid bond graph is extended by
adding controlled junctions (CJs). The latter allow considering the local changes in
individual component modes due to discrete transitions. The CJs may be switched
ON (activated) or OFF (deactivated). An activated CJ behaves like a conventional
bond graph junction. Deactivated CJs turn inactive the entire incident junction and
hence do not influence any part of the system.

Hybrid automata are a mathematical model for HDS, which combines, in a single
formalism, transitions for capturing discrete change with differential equations for
capturing continuous dynamics. A hybrid automaton is a finite state machine with
a finite set of continuous variables whose values are described by a set of ordinary
differential equations. A hybrid automaton is defined by the tuple:

G D .Q; †;X;flux; Init; ı/

4 M. Sayed-Mouchaweh

where Q is the set of states, † is the set of discrete events, X is a finite
set of continuous variables describing the continuous dynamics of the system,
flux : Q � X ! R

n is a function characterizing the continuous dynamics of X in
each state q of Q, Init D (q 2 Q, X(q), flux(q)) is the set of initial conditions and
ı : Q �†!Q is the state transition function. A transition ı(q, e)D qC corresponds
to a change from state q to state qC after the occurrence of discrete event e 2 †.

1.2 Diagnosability, Security, and Safety in Cyber-Physical
Systems: Problem Formulation, Methods, and Challenges

A fault can be defined as a non-permitted deviation of at least one characteristic
property of a system or one of its components from its normal or intended
behavior. Fault diagnosis is the operation of detecting faults and determining
possible candidates that explain their occurrence. Online fault diagnosis is crucial
to ensure safe operation of complex dynamic systems in spite of faults affecting
the system behaviors. Consequences of the occurrence of faults can be severe and
result in human casualties, environmentally harmful emissions, high repair costs,
and economical losses caused by unexpected stops in production lines. Therefore,
early detection and isolation of faults is the key to maintaining system performance,
ensuring system safety, and increasing system life.

Faults may manifest in different parts of the system, namely, the actuators (loss
of engine power, leakage in a cylinder, etc.), the system (e.g., leakage in the tank),
the sensors (e.g., reduction of the displayed value relative to the true value, or the
presence of a skew or increased noise preventing proper reading), and the controller
(i.e., the controller does not respond properly to its inputs sensor reading). Faults can
be abrupt (e.g., the failed-on or failed-off of the pump and the stuck opened or stuck
closed of the valve), intermittent or gradual (degradation of a component). Faults
also may occur in a single or a multiple scenario. In the former, one fault candidate
explains the observations (is responsible for the fault behavior). In the latter, several
fault candidates are responsible for the fault behavior.

In HDS, faults can occur as a change in the nominal values of parameters
characterizing the continuous dynamics, and are called parametric faults. Faults
can also occur in the form of abnormal or unpredicted mode-changing behavior
and are called discrete faults. Therefore, two types of faults should be considered
for HDS depending on the dynamics that is affected by faults (parametric or
discrete). Discrete faults are related to faults in actuators and usually exhibit great
discontinuities in system behavior, whilst parametric faults are related to tear
and wear and introduce faults with much slower dynamics. For parametric faults,
after the fault detection and isolation (determining the fault candidate), a fault
identification phase is required in order to estimate the amplitude (e.g., the section
of leakage of a tank) of the fault, its time of occurrence, its importance, etc.

1 Prologue 5

Fault types Fault labels Fault event - Fault description

Discrete

faults

1

fs1so - 1 stuck opened

fs1sc - 1 stuck closed

2

fs2so - 2 stuck opened

fs2sc - 2 stuck closed

3

fs3so - 3 stuck opened

fs3sc - 3 stuck closed

Parametric

faults

4

fC1 – Abnormal change in the nom-

inal values of 1due to C1 ageing

fC2 - Abnormal change in the nomi-

nal values of due to C22 ageing

Fig. 1.2 Faults for the diagnosis of three-cell converters

For the example of three-cellular converters, eight faults can be considered for
the diagnosis [7] as it is depicted in Fig. 1.2. Parametric faults (abnormal deviation
of the nominal value of capacitors) are principally due to the effect of aging or
pollution. The discrete faults (switch stuck-on or stuck-off) are more frequent and
their consequences are more destructive. For instance, in open-circuit (stuck-off)
failure, the system operates in degraded performance. However, unstable load may
lead to further damage on the system. Therefore, the fault diagnosis of these faults
is necessary to ensure the system safety and quality.

The fault diagnosis task [12, 13] is generally performed by reasoning over
differences between desired or expected behavior, defined by a model, and observed
behavior provided by sensors. This task can be performed offline or online. Offline
diagnosis assumes that the system is not operating in normal conditions but it is in a
test bed, i.e., ready to be tested for possible prior failures. The test is based on inputs,
e.g. commands, and outputs, e.g. sensors readings, in order to observe a difference
between the resulting signals with the ones obtained in normal conditions. In online
diagnosis, the system is assumed to be operational and the diagnostic module is
designed in order to continuously monitor the system behavior, isolate and identify
failures. Within these methods, we can distinguish between active diagnosis that
uses both inputs and outputs, and passive diagnosis that uses only system outputs.
The diagnosis can also be non-incremental (i.e., the diagnosis inference engine
is built offline) or incremental (the diagnosis inference engine is built online in
response to the observation).

Diagnosability notion [13] aims at verifying if the system model is rich enough
in information in order to allow the diagnosis inference engine, generally called
diagnoser, to infer the occurrence of parametric and discrete faults within a bounded
delay after their occurrence. The diagnosability notion was initially defined for
discrete event systems (discrete faults) but it can be extended for HDS (parametric
and discrete faults). In general, there are two categories of methods to build fault
diagnosis inference engine allowing taking into account both the discrete and
continuous dynamics in HDS as well as the interactions between them. In the first
category, [14], the system’s model is an extension of the continuous model by
adding the system discrete modes. The fault-free continuous behavior is defined

6 M. Sayed-Mouchaweh

Inputs
HDS

Measured outputs

Model for parameter or

state/output estimation

Estimated

Parameters/outputs
Nominal

parameters/

Measured

outputs
Residuals

Disturbances Faults

+- Residual

evaluation

Fault

analysis

Fault

detection

Fault

isolation/

identificaion

Fig. 1.3 Internal methods for fault diagnosis

in each discrete mode by relations over observable variables. These relations are
used in order to generate residuals sensitive to a certain subset of faults. A fault is
diagnosed when the value of the sensitive residuals to this fault is different from
zero. In the second category, the discrete model is extended or enriched by adding
events generated by the abstraction of system’s continuous dynamics.

There are numerous methods in the literature that are used to build the fault
diagnosis inference engine in HDS. They can be divided into internal, or model-
based, and external, or data-driven, methods. The internal methods (see Fig. 1.3)
use a mathematical or/and structural model to represent the relationships between
measurable variables by exploiting the physical knowledge or/and experimental data
about the system dynamics. They can be categorized into residual-based and set-
membership [15] approaches. In residual-based approaches, the response of the
mathematical model is compared to the observed values of variables in order to
generate indicators used as a basis for the fault diagnosis. Generally, the model
is used to estimate the system state, its output or its parameters. The difference
between the system and the model responses is monitored on the basis of residual
generation. Then, the trend analysis of this difference can be used to detect changing
characteristics of the system resulting from a fault occurrence. Set-membership
based fault diagnosis techniques are used for the detection of some specific faults.
Generally, they discard models that are not compatible with observed data, in
contrast to the residual-based approaches which identify the most likely model.

The external methods [6, 16–19] (see Fig. 1.4) consider the system as a black
box, in other words, they do not need any mathematical model to describe the system
dynamical behaviors. They use exclusively a set of measurements or/and heuristic
knowledge about system dynamics to build a mapping from the measurement space
into a decision space. They include expert systems and machine learning and data
mining techniques.

1 Prologue 7

Data

preparation

Useful

data

Feature

space

Data

preprocessing

Data

labeling

Data

analysis
Model

design
Model

validation

Historical/

stream data

Clean

data

Labeled

data

Decision

space
Evaluation

criteria

Fig. 1.4 External methods for fault diagnosis

Many critical infrastructures, such as power generation and distribution net-
works, water networks and mass transportation systems, autonomous vehicles and
traffic monitoring, etc., are CPS. Such systems, including critical infrastructures,
are becoming widely used and covering many aspects of our daily life. Therefore,
the security, safety, and reliability of CPS is essential for the success of their
implementation and operation. However, these systems are prone to major incidents
resulting of cyberattacks and system failures. These incidents affect significantly
their security and safety. Attacks can be represented as an interference [20, 21] in
the communication channel between the supervisor and the system intentionally
generated by intruders in order to damage the system or as the enablement,
respectively disablement, of actuators events that are disabled, respectively enabled,
by the supervisor. In general, intruders hide, create, or even change intentionally
events that transit from one device (actuator, sensor) to another in a control
communication channel. These attacks in a supervisory control system can lead the
plant to execute event sequences entailing the system to reach unsafe or dangerous
states that can damage the system. Therefore, reliable, scalable, and timely fault and
attack diagnosis is crucial in order to improve the robustness of CPS to failures and
adversarial attacks. Moreover, a thorough understanding of the vulnerability of CPS’
components against such incidents can be incorporated in future design processes
in order to better design such systems. Finally, the timely fault diagnosis can help
operators to have better situation awareness and give them ample time to implement
correction (maintenance) actions.

However, guaranteeing the security and safety of CPS requires verifying their
behavioral or safety properties either at design stage such as state reachability,
diagnosability, and predictability or online such as fault detection and isolation.
This is a challenging task because of the inherent interconnected and heterogeneous
combination of behaviors (cyber/physical, discrete/continuous) in these systems.
Indeed, fault propagation in CPS is not only governed by the behaviors of
components in the physical and cyber sub-systems but also by their interactions.
This makes the identification of the root cause of observed anomalies and predicting
the failure events a hard problem. Moreover, the increasing complexity of CPS and
the security and safety requirements of their operation as well as their decentralized

8 M. Sayed-Mouchaweh

resource management entail a significant increase in the likelihood of failures in
these systems. Finally, it is worth to mention that computing the reachable set of
states of HDS is an undecidable matter due to the infinite state space of continuous
systems.

1.3 Contents of the Book

This edited Springer book presents recent and advanced approaches and techniques
that address the complex problem of analyzing the diagnosability property of cyber-
physical systems and ensuring their security and safety against faults and attacks.
The CPS are modeled as hybrid dynamic systems using different model-based and
data-driven approaches in different application domains (electric transmission net-
works, wireless communication networks, intrusions in industrial control systems,
intrusions in production systems, wind farms, etc.). These approaches handle the
problem of ensuring the security of CPS in presence of attacks and verifying their
diagnosability in presence of different kinds of uncertainty (uncertainty related to
the event occurrences, to their order of occurrence, to their value, etc.).

1.3.1 Chapter 2

This chapter treats the problem of fault diagnosis of complex dynamic systems and
its application to the aid of conditional maintenance of wind turbines. The proposed
approach is an abductive model-based diagnosis where the system behavior is
described logically by a set of propositions as premises (hypotheses) that entail
conclusions (diagnoses). The set of propositions, describing how failures affect
the system variables (i.e., components), represents the knowledge base that the
diagnosis engine uses to provide an explanation for an observation. The pro-
posed approach is based on three main phases: offline/online model development,
online fault detection, and fault identification. The offline portion of the model
is automatically built by exploiting failure assessments (e.g., Failure Mode Effect
Analysis (FMEA) allowing failure modes characterizations and their manifestations
or symptoms). The online portion of the model is built based on the fault detection
phase. When the latter detects a new, unrecorded, abnormal behavior, the knowledge
base of the model is updated in order to integrate this new abnormal behavior. The
fault identification engine is triggered when an incorrect behavior is detected. It
uses both the observed symptoms and the offline constructed model to compute
the abductive diagnoses or explanations. The latter are continuously refined over
time thanks to the discovered new symptoms and to the interactions with the
maintenance technicians. The interactions with the latter are achieved through an
interface allowing supporting the service technicians in preparing all spare parts and

1 Prologue 9

tools necessary before traveling to a wind turbine to ensure minimal downtime. In
addition, on site, this interface provides contextual information as well as interactive
questions in order to facilitate the diagnosis refinement or/and the discovering of
new failures/abnormal behaviors. The advantage of the proposed approach is mainly
related to its capacity to explain the occurrence of a failure using taxonomy adapted
to the mode reasoning of technicians, operators, and supervisors. It is also related
to its capacity to interact with technicians in order to facilitate the refinement of
diagnosis candidates and the discovering of new failures/abnormal behaviors. The
latter lead to enrich continuously the model/knowledge base over time. However,
the computational complexity of the model/fault identification computation remains
an issue to be solved in particular for large scale systems.

1.3.2 Chapter 3

This paper presents a solution in order to perform abductive fault diagnosis using
the popular modeling language Modelica. The latter is an object-oriented, open,
and multi-domain language used for representing hybrid cyber-physical systems.
It allows generating intuitively models that are used to simulate the system normal
behavior. The presented solution enriches Modelica models by creating a knowledge
base (i.e., rules) used for abductive diagnosis. The knowledge base is built by
extracting cause-effect rules from Modelica models. These rules are intuitive to
designers familiar with failure mode and effect analysis (FMEA). When the dif-
ference is significant between a simulation of the normal (fault-free) model and the
one where individual fault’s effects are integrated, a rule is extracted automatically.
This rule is used for the identification of this individual fault. Therefore, the set
of these extracted rules represents the behavior deviations of a system in response
to a set of pre-defined individual faults. To compute the difference (deviation)
between the signals representing normal (fault-free) and faulty behaviors, three
different approaches are used: the average values (reference signal) and pre-defined
tolerances, temporal band sequences, and the Pearson correlation coefficient. The
time when a significant deviation is detected represents the fault detection time. The
chapter uses two examples (voltage divider circuit and a switch circuit with a bulb
and capacitor) in order to illustrate the proposed solution. The switch circuit is an
example of a hybrid dynamic system where the continuous dynamics is represented
by the current and voltage of the capacitor and resistor and the discrete dynamics
is represented by the switch state (on/off). The represented solution is flexible in
the sense that the augmented Modelica models can be reused for other components.
The adaptation of these Modelica models to perform the abductive diagnosis allows
them to be used in decision support tools to aid human operators to make decisions
as the conditional/predictive maintenance. However, the robustness of the proposed
solution against outliers, noises, environment, and load variations as well as other
types of uncertainties need to be improved.

10 M. Sayed-Mouchaweh

1.3.3 Chapter 4

This chapter presents a data-driven modeling approach in order to perform the
fault diagnosis of a production system represented as a multi-sensor network. The
sensors are spatially distributed and measuring one or more channels. The different
data streams, generated by the sensors, are gathered in a central data sink together
with the discrete control events coming from the process control system. The
fault diagnosis is performed by investigating the causal relations and dependencies
between the system variables (channels). These causal relations and dependencies
characterize the system states (normal/faulty) and are represented as causal relation
network where nodes and vertices denote the channels and input/output variables,
respectively. The use of such causal relation network may help operators and
experts to gain insights into the interpretation and understanding of a failure mode
development and causes. The reference models, representing the causal relations
and dependencies, in fault-free conditions are used to compare the measurements
issued from current conditions with the normal ones. This comparison generates
residuals that are used to form a feature space. In the latter, the data measurements
corresponding to normal operation conditions occupy restricted zones. When a
fault occurs, the measurements occupy spaces far from these “normal” zones. The
reference models are regularly updated in order to include the novelties of the
system (new normal operation conditions, fault operation conditions) and thus to
omit high false alarms and missed fault detection due to wrong predictions and
quantifications on new samples. This update leads to more reliable fault detection
and more stable model updates. A drift detection mechanism is used in order to
detect a fault in early stage before becoming more severe or downtrends in the
quality of components or products. The main advantages of the proposed approach
are its capacity to update the generated models in response to the novelties and
changes in the system environment and internal state and the use of drift detection
mechanism to detect a fault in its early stage. However, updating the causal relation
network (vertices and nodes) is a time-consuming task in particular for a hybrid
dynamic system with multiple discrete modes.

1.3.4 Chapter 5

This chapter presents an approach for detecting intrusions in industrial control
systems (ICS). These intrusions exploit the vulnerabilities of ICS in order to alter
intentionally the integrity, confidentiality, and availability of the production system.
These cyberattacks affect the control commands of the controller (Programmable
Logic Controller PLC), the reports (sensors readings) coming from the plant as
well as the communication between them. The proposed approach is based on the
use of two filters: control and report filters. The control filter aims at verifying
the consistency of control commands according to the current state and the sensor
outputs while the report filter checks the integrity of the measurements (reports)

1 Prologue 11

according to the current state and the predicted (sent) control commands. Both filters
are integrated out the production system and communicate through an independent
and secured network in order to limit the cyberattack surface. They are based on
three steps. The first and second steps aim at identifying offline the critical and
prohibited states as well as the sequences (actions/sensor outputs) required to reach
the prohibited states from any other normal (initial) state. The third state aims at
detecting the cyberattacks online by observing a deviation from the normal behavior.
The latter is described by the sequences of the pairs (state/action). This deviation
is computed as a distance between the current state and the prohibited one. This
distance is characterized by the minimal number of actions that can be applied on
the process in order to reach a prohibited state. The main advantages of this approach
are: (1) it is a non-intrusive approach since it does not need to install new probes in
the production system and (2) it limits the cyberattack surface since the control and
report filters are installed out the PLC and the plant and they communicate through
an independent and secure network. However, the proposed approach cannot adapt
to new cyberattacks (new prohibited and dangerous states) and its computation
complexity grows exponentially for large scale systems with multiple discrete states.

1.3.5 Chapter 6

This chapter presents an approach to fault diagnosis of switched systems modeled
by a Mealy machine (an automaton with inputs and outputs). Some transitions of
this automaton, including those corresponding to faults, may occur in the absence
of a control input and therefore are unobservable. Consequently, several states of
the diagnoser (the model performing the fault diagnosis) are uncertain in the sense
that they contain several fault labels (indicating several faulty components) and
therefore they cannot isolate the responsible component of the fault occurrence.
The diagnosis, performed by the proposed approach, is active in the sense that it
ensures simultaneously the control and the diagnosability of the system. In order
to remove the diagnosis uncertainty, the proposed approach computes the fault
isolating sequence that leads to reach a certain diagnosis state with one fault
label indicating the fault component. The proposed approach considers the initial
conditions of the system are known and the initial mode is without fault. It considers
also that only control input that drives the evolution of the system is represented
by the switching function. This function specifies the active mode. Furthermore,
discrete outputs are also available, as a result of each mode transition, in order
to detect and isolate the fault. When a fault is detected, the nominal control is
suspended for safety reason. The proposed approach requires building the system
model with all its nominal and fault discrete states. This model, called diagnose, is
then associated with the minimal fault isolating sequences for all uncertain states in
the diagnoser. The proposed approach is illustrated and tested using a multicellular
power converter in order to diagnose the discrete faults (switch blocked-on/blocked-
off). The discrete dynamics of the power converter is represented by the on/off

12 M. Sayed-Mouchaweh

switches, while the continuous dynamics are related to the charging/discharging of
the capacitors. The advantage of the proposed approach is related to its improvement
of the system diagnosability by applying the fault isolating sequences. However, the
proposed approach does not scale well according to the system size in particular
with multiple discrete modes.

1.3.6 Chapter 7

This chapter studies and investigates the security issues for hybrid dynamic systems
in presence of attacks. The latter are represented by compromised sensor measure-
ments exchanged by the means of a wireless communication network. The challenge
to ensure the system security and safety is to correctly estimate or reconstruct
instantaneously or within a finite time interval the system internal state despite
the presence of corrupted sensor measurements by external hackers. This chapter
formalizes the required conditions in order to perform a secure state estimation
despite the malicious attacks. To this end, the continuous dynamics is abstracted
in order to generate discrete events that are used to enrich the system model. Only
a subset of sensors of fixed size is considered to be corrupted. However, the sensors
of this subset are unknown. Then, the link between diagnosability notion, developed
for discrete event systems, and the secure state estimation is explored. The goal is
to determine the conditions that allow distinguishing normal states from corrupted
ones. The main advantage of the proposed approach is its capacity to estimate the
secure state in the context of hybrid dynamic states where problems of decidability
and computational complexity arise because of the cohabitation of both discrete and
continuous dynamics. However, the proposed approach is restricted to linear non-
Zeno systems with fixed size of corrupted sensors.

1.3.7 Chapter 8

This chapter proposes a hierarchical component-based approach for fault diagnosis
and prognosis as well as failure mitigation in critical cyber-physical systems (CPS).
The latter is composed by the physical system (plant), the actuators, the protection
devices, and the discrete controllers. The latter try to arrest the failure effect
if detected. The proposed approach uses temporal causal diagrams in order to
describe the consequences of fault occurrence and propagation in physical and
cyber components. The built model accounts for normal and fault behaviors. Each
behavior is represented by a sequence of states and events. A state is characterized as
safe or harmful. When a primary fault occurs, its propagation enforces the protection
devices to be activated. This leads the system to a blackout state. The fault prognosis
is based on the determination whether the system at its current state satisfies the
constraints to reach a blackout state. If the answer is yes, then the trajectory (set of

1 Prologue 13

states and transitions) reachable from the current state is computed. The proposed
approach is used for fault diagnosis and prognosis as well as failure mitigation of
power systems, in particular electric transmission networks. The physical system
consists of generators, buses, transmission lines and loads, while actuators are the
circuit breakers and the protection devices are the relays. The latter cause system
reconfiguration by instructing actuators to change their state. Two types of faults
are considered: phase to phase faults and phase to ground fault. The faults of
the breakers (breaker stuck-closed and breaker stuck-opened) and distance relays
(missed detection faults and false alarms) are considered. The observable events in
the case of power transmission system are commands sent by relays to breakers,
messages sent by relays to each other, state change of breakers, physical fault
detection alarms, etc. The faults are the unobservable events. The proposed approach
is modular in the sense that each component has its proper model and its proper local
diagnoser and a reasoner is used to compute the global diagnosis decision. However,
a global model is needed to build the diagnosers and the reasoner.

1.3.8 Chapter 9

This chapter presents a model-based and data-driven approach to perform the fault
diagnosis of cyber-physical systems that are safety critical, yet prone to system
failures. Fault refers to any fault, attack, or anomaly. The nominal behaviors and
the fault modes are represented by hidden-mode switched affine models with time-
varying parametric uncertainty subject to process and measurement noise. The
proposed approach is based on three steps: model invalidation, fault detection, and
fault isolation. Model invalidation aims at determining whether an input–output
sequence over a horizon T is compatible with a switched affine model. If the data
is not compatible with the nominal model, then the model is invalidated and a
fault is detected. When a fault is detected, the fault isolation step aims at uniquely
determining which specific fault model is validated or rather, not invalidated, based
on the measured input–output data. The proposed approach is evaluated for the sim-
ple and multiple fault diagnosis of the Heating, Ventilating, and Air Conditioning
(HVAC) system. The considered faults are: faulty fan (the fan rotates at half of its
nominal speed), faulty chiller water pump (the pump is stuck and spins at half of its
nominal speed), and faulty humidity sensor (the humidity measurements are biased
by an amount of C0.005). The advantage of this approach is its ability to diagnose
simple and multiple faults either discrete or continuous (parametric) by taking into
account the noises and parameter uncertainties. However, it requires an important
effort and depth knowledge to build offline the nominal and fault models. Moreover,
it needs to determine the horizon T (time delay) required to distinguish between
normal and fault behaviors (T-detectability) and between two different fault models
(I-isolability).

14 M. Sayed-Mouchaweh

1.3.9 Chapter 10

This chapter proposes an extension of the diagnosability notion proposed for
discrete event systems (DES) for hybrid dynamic systems (HDS) with uncertain
observation. This chapter provides the answer to the question: can diagnosability
be achieved even if the observation is uncertain? that is, when the order of the
observed events and/or their (discrete) values are partially unknown. Indeed, in
many applications, the temporal order of the observable events that have occurred
within the DES is not always known, in particular when they occur in a short time
span. In addition, the occurrence of some events is not certain in the sense that they
may have occurred or not. Therefore, the developed diagnosability notion in this
chapter considers the combination of these two types of uncertainties. However, the
time delay required to verify the diagnosability for HDS is not proved to be bounded.

1.3.10 Chapter 11

This chapter proposes a diagnosability notion adapted to hybrid dynamic systems
(HDS). It proposed an algorithm able to verify at design state if a fault that would
occur at runtime could be unambiguously detected within a given finite time using
only the allowed observations. The proposed algorithm is based on the abstractions
that discretize the infinite state space of the continuous variables into finite sets.
It starts by generating the most abstract discrete event system (DES) model of
the HDS and checking diagnosability of this DES model. A counterexample that
negates diagnosability is provided based on the twin plant. This counterexample
is obtained when there is a path in the twin model with at least one ambiguous
state (state with two different diagnosis labels) cycle. The model is then refined
in order to try to invalidate the counterexample and the procedure repeats as
far as diagnosability is not proved. If the counterexample is validated, then the
system is not diagnosable. If there is no validated counterexample, then the system
is diagnosable. The refinement is based on the understanding of the causes that
entailed the refusal of the counterexample. Then, this spurious counterexample or
any close spurious counterexamples will be eliminated next time. This will make
the best out of computation. The proposed algorithm was illustrated using two
examples. The first example is a server with 4 buffers. Each buffer is assigned
a workflow and the switching between buffers is controlled by a user input. The
second example is a classical thermostat with two different faults. The first fault is
discrete fault due to a bad calibration of the temperature sensor, while the second
fault is parametric due to a problem in the heater. The proposed algorithm has the
advantage to account explicitly for the hybrid dynamic nature of the system and
to verify the diagnosability in cost-effectiveness analysis. However, the time delay
required to verify the diagnosability is not proved to be bounded.

1 Prologue 15

References

1. R. Rajkumar, I. Lee, L. Sha, J. Stankovic, Cyber-physical systems: the next computing
revolution, in Proceedings of the 47th Design Automation Conference (ACM, 2010), pp. 731–
736

2. A.J. Van Der Schaft, J.M. Schumacher, An Introduction to Hybrid Dynamical Systems, vol 251
(Springer, London, 2000)

3. A. Benveniste, T. Bourke, B. Caillaud, M. Pouzet, in Hybrid systems modeling challenges
caused by cyber-physical systems, cyber-physical systems (CPS) foundations and challenges,
ed. by J. Baras, V. Srinivasan. Lecture Notes in Control and Information Sciences (2013)

4. Y. Yalei, X. Zhou, Cyber-physical systems modeling based on extended hybrid automata, in 5th
IEEE International Conference on Computational and Information Sciences (ICCIS) (2013)

5. M.S. Branicky, V.S. Borkar, S.K. Mitter, A unified framework for hybrid control: model and
optimal control theory. IEEE Trans. Autom. Control 43(1), 31–45 (1998)

6. L. Rodrigues, S. Boyd, Piecewise-affine state feedback for piecewise-affine slab systems using
convex optimization. Syst. Control Lett. 54(9), 835–853 (2005)

7. H. Louajri, M. Sayed-Mouchaweh, Decentralized diagnosis and diagnosability of a class of
hybrid dynamic systems, in Informatics in Control, Automation and Robotics (ICINCO), 2014
11th International Conference on, vol. 2 (2014)

8. M. Shahbazi, E. Jamshidpour, P. Poure, S. Saadate, M.R. Zolghadri, Open-and short-circuit
switch fault diagnosis for nonisolated dc dc converters using eld programmable gate array.
IEEE Trans. Ind. Electron. 60(9), 4136–4146 (2013)

9. R. David, H. Alla, Discrete, Continuous, and Hybrid Petri Nets (Springer, Berlin, 2010)
10. D. Wang, S. Arogeti, J.B. Zhang, C.B. Low, Monitoring ability analysis and qualitative fault

diagnosis using hybrid bond graph. IFAC Proc. 41(2), 10516–10521 (2008)
11. T.A. Henzinger, The theory of hybrid automata, in Verification of Digital and Hybrid Systems,

(Springer, Berlin, 2000), pp. 265–292
12. M. Sayed-Mouchaweh, E. Lughofer, Decentralized fault diagnosis approach without a global

model for fault diagnosis of discrete event systems. Int. J. Control. 88(11), 2228–2241 (2015)
13. M. Sayed-Mouchaweh, Discrete Event Systems: Diagnosis and Diagnosability (Springer, New

York, 2014)
14. T. Kamel, C. Diduch, Y. Bilestkiy, L. Chang, Fault diagnoses for the Dc filters of power

electronic converters, in Energy Conversion Congress and Exposition (ECCE) (IEEE, 2012),
pp. 2135-2141

15. M. Tabatabaeipour, P.F. Odgaard, T. Bak, J. Stoustrup, Fault detection of wind turbines with
uncertain parameters: a set-membership approach. Energies 5(7), 2424–2448 (2012)

16. L. Hartert, M. Sayed-Mouchaweh, Dynamic supervised classification method for online
monitoring in non-stationary environments. Neurocomputing 126, 118–131 (2014)

17. M. Sayed-Mouchaweh, N. Messai, A clustering-based approach for the identification of a class
of temporally switched linear systems. Pattern Recogn. Lett. 33(2), 144–151 (2012)

18. H. Toubakh, M. Sayed-Mouchaweh, Hybrid dynamic data-driven approach for drift-like fault
detection in wind turbines. Evol. Syst. 6(2), 115–129 (2015)

19. M. Sayed-Mouchaweh, Diagnosis in real time for evolutionary processes in using pattern
recognition and possibility theory. Int. J. Comput. Cognit. 2(1), 79–112 (2004)

20. L.K. Carvalho, Y.C. Wu, R. Kwong, S. Lafortune, Detection and prevention of actuator
enablement attacks in supervisory control systems, in 13th International Workshop on Discrete
Event Systems (2016), pp. 298–305

21. D. Thorsley, D. Teneketzis, Intrusion detection in controlled discrete event systems, in 45th
IEEE Conference on Decision and Control (2006) pp. 6047–6054

Chapter 2
Wind Turbine Fault Localization: A
Practical Application of Model-Based
Diagnosis

Roxane Koitz, Franz Wotawa, Johannes Lüftenegger, Christopher S. Gray,
and Franz Langmayr

2.1 Introduction

The increasing complexity and magnitude of technical systems is leading to a
demand for effective and efficient automatic diagnosis procedures to identify
failure-inducing components in practice. This is especially true in application areas
experiencing excessive service costs and idle time revenue loss. In the industrial
wind turbine domain operation and maintenance constitute significant factors in
terms of turbine life expenditure. Given the remote locations onshore and offshore of
wind turbine installations, accurate fault identification is essential for reducing costs
and risks of component failures as well as turbine downtime [14]. Wind turbine
diagnosis is complicated, however, since their overall reliability is affected by a
multitude of failure modes concerning all major sub-systems and environments
and furthermore the load conditions change regularly [36]. While electrical and
control systems account for most wind turbine failures, other sub-systems, such
as gearboxes, cause extensive downtimes due to the complexity of maintenance and
thus pose a higher cost risk [35]. Unfortunately, currently implemented standard
alarm systems deliver a large number of false alarms and thus are not suitable for
standalone fault detection and identification [14].

Wind turbine operators often rely on time-based maintenance, where turbines
are inspected periodically to assess their condition. This practice may lead to
unnecessary turbine downtime for healthy systems, while failure-inducing condi-
tions between services remain unnoticed. Due to these disadvantages predictive

R. Koitz (�) · F. Wotawa · J. Lüftenegger
Graz University of Technology, Graz, Austria
e-mail: rkoitz@ist.tugraz.at; wotawa@ist.tugraz.at; jlueften@ist.tugraz.at

C. S. Gray · F. Langmayr
Uptime Engineering GmbH, Graz, Austria
e-mail: c.gray@uptime-engineering.com; f.langmayr@uptime-engineering.com

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74962-4_2&domain=pdf
mailto:rkoitz@ist.tugraz.at
mailto:wotawa@ist.tugraz.at
mailto:jlueften@ist.tugraz.at
mailto:c.gray@uptime-engineering.com
mailto:f.langmayr@uptime-engineering.com
https://doi.org/10.1007/978-3-319-74962-4_2

18 R. Koitz et al.

and condition-based maintenance have become increasingly popular. Both rely on
condition monitoring software and diagnosis methods [23]. Condition monitoring
software utilizes the signals transmitted from the sensors integrated within the
turbine and further processes the information to derive health information of critical
components, e.g., gearboxes and main bearings. Some specification indicators of
the subsequent failure are observable prior to around 99% of equipment fault
occurrences [35]. Unnecessary maintenance activities can be avoided by scheduling
repair or replacement of components based on their present or impending failure
risks [1].

Numerous approaches exist for wind turbine diagnosis. Signal processing tech-
niques analyze the multidimensional turbine data without considering an a priori
developed mathematical model to extract faults based on spectral analysis or trend
checking techniques, while machine learning methods, such as neural networks,
can rely on historic data for failure identifications [16]. Zaher and McArthur [41]
introduce a fault and degradation detection system for entire wind turbine instal-
lations based on supervised learning of the nominal behavior. By collecting data
from various downtimes their system computes an overall turbine operational
behavior model. Schlechtingen et al. [29] also adopt machine learning by creating
neural networks based on the normal wind turbine behavior in combination with
fuzzy rules representing expert knowledge on faults. Their approach requires the
availability of Supervisory Control And Data Acquisition (SCADA) operation logs,
which provide 10-min values of various measurements, such as power output, rotor
speed, or gearbox oil temperature [40]. Anomalies can be detected by comparing the
normal-behavior model with the actual performance. The fuzzy inference system
then automatically identifies the faulty components. Gray et al. [14, 15] describe
a combination of diagnostic and prognostic techniques exploiting the relations
between operational and environmental loads as also damage accumulation rates.
Based on an analysis of potential component-based failure modes and their damage
driving physics, a mathematical model is computed that can be used to calculate the
rate at which damage accumulates in response to the operating environment. This
method offers a means for determining current and projected failure probabilities
based on the derived damage model and statistical failure model. Statements about
absolute remaining useful life cannot be made, since the load capacity would
have to be known in advance to a high degree of accuracy. This is very rarely
the case, and considerable variation occurs due to, e.g., variations in material
quality, tolerances in component manufacture, influence of transport, installation
and configuration. Therefore the prognostic method focuses on quantification of
the applied loads instead, and uses probabilistic methods to relate the said loads to
damage accumulation.

Model-based diagnosis (MBD) techniques have been developed in the Fault
Detection and Isolation (FDI) and the Artificial Intelligence (AI) community.
Approaches stemming from the FDI field usually depend on quantitative models,
while the AI methods utilize qualitative/symbolic representations of the underlying
system to draw conclusions regarding the state of the system and its components

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 19

[1, 6, 9, 28]. For instance, Echavarria et al. [10] utilize qualitative physics to
formalize the behavior of wind turbines. Combined with a solver, their model-based
system is capable of detecting and identifying faults.

In this chapter, we focus on the AI variation of MBD. MBD relies on a descrip-
tion of the system, which together with abnormal observations of the current system
state is exploited to derive root causes [9, 28]. Multiple applications have been
developed for diverse fields, e.g., the automotive industry [32] or environmental
decision support systems [39]. Even though MBD can look back on decades of
research, a widespread dissemination in practice is still lacking. The reasons for
this include the effort associated with the development of diagnosis models [4]
and the difficulties of adequately integrating MBD into current industrial work
processes [12, 24, 31].

In cooperation between Graz University of Technology and Uptime Engineering1

a project was initiated with the aim of providing a methodology and framework
for MBD in the industrial domain. Due to Uptime Engineering’s many years of
experience and expertise in the field of wind power plant maintenance, industrial
wind turbines constitute an ideal test bed and application area for MBD. In this
chapter, we present some of the results of the collaboration as well as the ongoing
realization of MBD in practice. With this work we aim to bridge the gap between
the theory of MBD and its practical application. We first discuss the foundations of
MBD and present a general process for integration of this approach in real-world
fault identification. Subsequently, we introduce an application designed to facilitate
diagnosis in the industrial wind turbine domain. In particular, the application’s
graphical user interface (GUI) is presented, which has been created taking the needs,
work processes, and environments of the maintenance personnel into consideration.
Subsequently, we discuss the current status of the integration of an MBD engine in
the industrial wind turbine domain and provide some concluding remarks.

2.2 Model-Based Diagnosis

Model-based reasoning fosters the idea of reusing knowledge by relying on a
formalization of the system under consideration. The model together with a set
of observed symptoms can be exploited to obtain diagnostic hypotheses for the
observations. Two variations have emerged in the literature: consistency-based
and abductive MBD. Consistency-based diagnosis utilizes a description of the
correct system behavior and identifies root causes through inconsistencies arising
from the model in combination with the given symptoms. A diagnosis is then a
set of abnormality assumptions about the system such that the observations and
assumptions are consistent [9, 28]. In contrast, abductive diagnosis is based on
the notion of logical entailment [26]. A set of premises logically entails a

1Uptime Engineering GmbH provides consulting services as well as software tools in the field of
technical reliability.

http://www.uptime-engineering.com

20 R. Koitz et al.

conclusion � if and only if for any interpretation in which holds � is also
true. We write this relation as ˆ � and call � a logical consequence of
 . A set of abnormality assumptions entailing the observations constitutes an
abductive diagnosis or explanation. To derive causes for observed anomalies by
utilizing this type of inference, the abductive MBD approach depends on a model
representing the links between faults and their manifestations. Even though both
variations are based on different reasoning techniques, Console et al. [5] showed the
close relation between consistency-based and abductive diagnosis. In the upcoming
portion of the chapter, we focus on abductive MBD. First, we describe an abductive
diagnosis problem and its solution based on a subset of propositional logic, namely
Horn clauses. Subsequently, we discuss a process facilitating the incorporation of
abductive MBD in real-world applications.

2.2.1 Propositional Horn Clause Abduction

A Horn clause is defined as a disjunction of literals featuring at most one positive
literal and can be described by a rule, e.g., f:a1; : : : ;:an; anC1g can be written as
a1 ^ : : : ^ an ! anC1. Similar to Friedrich et al. [13], we define a knowledge base
(KB) representing the abductive diagnosis model in the context of propositional
Horn clause abduction.

Definition 1 A knowledge base (KB) is a tuple (A,Hyp,Th) where A denotes the set
of propositional variables, Hyp � A the set of hypotheses, and Th the set of Horn
clause sentences over A.

A hypothesis, also referred to as an assumption, is a propositional variable for which
we can presume a certain truth value. Hypotheses are the propositions which can be
part of a diagnosis, while the Horn theory depicts the relationships between the
variables.

Example 1 Gearbox lubrication is an essential aspect of industrial wind
turbine reliability as it protects the contact surfaces of gears and bearings from
excessive wear and prevents overheating. Considering a simplified scenario,
insufficient lubrication can be caused by a damaged oil pump, which leads to
loss of oil pressure and therefore a reduction in the flow rate of oil through the
system. Furthermore, a blockage of the filter in the oil cooling system may
cause overheating of the oil, which also negatively affects the lubrication due
to a reduction in the film thickness at the bearing and gear contacts.

(continued)

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 21

Example 1 (continued)

Starting from this description, we can identify two root causes of insuf-
ficient lubrication: a blocked filter or a damaged oil pump. These causes
constitute the faults we want to identify during diagnosis and thus their
corresponding variables form the set of hypotheses:

Hyp D ˚
damaged_pump; blocked_filter

�

The set of propositional variables A comprises all hypotheses as also proposi-
tions representing effects:

A D
8
<

:

damaged_pump; blocked_filter; reduced_pressure; overheating;
reduced_film_thickness_bearing_contacts;

reduced_film_thickness_gear_contacts; poor_lubrication

9
=

;

Given the set of propositional variables, the circumstances leading to an
insufficient greasing of the gearbox can be represented by a Horn theory:

Th D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂
ˆ̂̂
:̂

damaged_pump! reduced_pressure;
reduced_pressure! poor_lubrication;

blocked_filter! overheating;
overheating! reduced_film_thickness_bearing_contacts;

overheating! reduced_film_thickness_gear_contacts;
reduced_film_thickness_bearing_contacts^

reduced_film_thickness_gear_contacts! poor_lubrication

9
>>>>>>>>>=

>>>>>>>>>;

Definition 2 Given a knowledge base (A,Hyp,Th) and a set of observations Obs
� A then the tuple (A,Hyp,Th,Obs) forms a propositional Horn clause abduction
problem (PHCAP).

A diagnosis problem involves a KB plus a set of observations for which the
explanations are to be computed. In our context, these observables may only be
a conjunction of propositions and not an arbitrary logical sentence. The solution to
a PHCAP or diagnosis � is a set of hypotheses explaining the propositions in Obs,
i.e., entailing them together with the theory Th. In other words, the observations
are a logical consequence of the failure relations described in the theory and the
determined explanation. An additional requirement is that only consistent diagnoses
are permitted, thus solutions leading to a contradiction are disregarded. Imposing a
parsimonious criterion on the solutions is a principle commonly used in diagnosis.
From our practical point of view only subset minimal explanations are of interest.

22 R. Koitz et al.

Definition 3 Given a PHCAP (A,Hyp,Th,Obs). A set � � Hyp is a solution if and
only if � [Thˆ Obs and � [Th 6ˆ ?. A solution � is parsimonious or minimal
if and only if no set �0 � � is a solution. �-Set contains all solutions obtained
from a PHCAP.

Example 1 (continued) Considering the PHCAP and assuming we detect
an insufficient lubrication of the gearbox, i.e., Obs = fpoor_lubricationg,
we can derive two minimal explanations; either the oil pump is faulty
inducing a reduction of the oil flow (�1 D fdamaged_pumpg) or a
blocked filter causes poor cooling which leads to insufficient greasing of
the bearing and gear contacts (�2 D fblocked_filterg), i.e., ��Set D
ffdamaged_pumpg; fblocked_filtergg.

While abductive reasoning provides an intuitive approach for fault localization,
its computational complexity for general propositional theories is located within the
second level of the polynomial hierarchy [11]. Focusing on a less expressive model-
ing languages, such as in our case Horn clause models, reduces the complexity. Yet,
Friedrich et al. [13] showed that computing the solution to a PHCAP is still NP-
complete. Thus, for practical applications efficient solvers are essential to compute
diagnoses in a reasonable time frame.

2.2.2 Incorporating Diagnosis into Practice

While MBD offers several attractive features, such as allowing the reuse of already
created system models and a clean separation between the problem description
and its solving mechanism, the dissemination of implementations in practice is
limited [31]. The integration of MBD in industrial applications is impeded by two
main drawbacks associated with this type of reasoning. First, the computational
complexity as mentioned in the previous section discourages the practical use in
cases where diagnoses are to be computed within short periods of time. Second,
model-based reasoning techniques always demand the existence of a system
description, whether it is of the correct behavior in consistency-based diagnosis
or how failures affect system variables in the context of the abductive variation.
Developing a model is associated with an initial effort and acquiring a technical
description of a system suitable for diagnostic purposes can be challenging and is
often hindered by organizational issues. Further, a lack of tools facilitating the model
generation and integrating it into existing work processes complicates the modeling
phase [2].

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 23

Fault Identification

Model Development

Mapping

KB

Failure

Assessment

Fault Detection

Data

Analysis

Data

Acquisition

Probing

ResultsObservations
Diagnosis

Engine
Diagnoses

Ranking Ranked

Diagnoses

Observation

Discrimination
Ranked Probing

Points

Additional

Measurements

Repair or Replacement

OFFLINE ONLINE

Fig. 2.1 Abductive MBD process (adapted from [18])

To counteract these factors Koitz and Wotawa [18] have defined a process
based on discussion with Uptime Engineering for applying abductive MBD to
real-world applications. The method relies on an automated model creation on the
one hand and on the other hand ensures an efficient diagnosis computation by
limiting the models to Horn logic. A graphical representation of the activities is
depicted in Fig. 2.1. The process is divided into three phases: model development,
fault detection, and fault identification. In order to lower the entrance barrier for
implementing the MBD approach, models are automatically built by exploiting
failure assessments frequently used in practice. Such analyses must characterize
failures and their manifestations to be mapped to a KB required for abductive
reasoning. A wide-spread tool which can be used for this purpose is Failure
Mode Effect Analysis (FMEA) incorporating expert knowledge on component
failures [38]. Constructing the model from a fault assessment only needs to be
performed once—given that there are no updates to the analysis—and can be
accomplished offline. The online portion of the MBD process is prompted once the
presence of a fault has been detected by a mechanism discovering the existence
of an incorrect system behavior such as a condition monitoring system. Based
on the observed symptoms and the offline constructed model, the fault can be
identified by deriving the abductive diagnoses. Various approaches are capable of
computing abductive explanations [17] and further additional refinements to the
initial diagnoses can be made via additional observations and prioritization of the
results in regard to certain objectives, e.g., diagnosis likelihood or maintenance cost.

2.2.2.1 Model Development

Automatic generation of a suitable knowledge base using information available
a priori is an essential feature of the proposed diagnosis process as it reduces
additional modeling efforts. While different assessments can be utilized, we show

24 R. Koitz et al.

Table 2.1 Example 2: FMEA excerpt (adapted from [27])

Component Failure mode Failure effect Likelihood Severity

Yaw drive Fails to rotate No yaw, safety system failure,
decrease of efficiency

2.2E�5 V

Yaw drive Drive shaft blocked No yaw, decrease of efficiency 1.3E�5 IV

here an example of a conversion based on FMEA [38]. FMEA is an established
standardized reliability approach, in which an expert group analyzes a system and
determines potential component-based single faults. Each failure mode is examined
in regard to its causes, consequences, and various other characteristics [3]. Table 2.1
depicts an excerpt of an FMEA for the yaw drive of a wind turbine presenting two
failure modes.

While in general an FMEA can feature more columns than the ones shown
in Table 2.1 depending on the standard followed, the modeling methodology as
proposed by Wotawa [38] focuses on three aspects which have to be considered
within the analysis: the components (COMP), the failure modes (MODES), and
moreover, the existence of propositions PROPS corresponding to observable failure
effects.

Definition 4 An FMEA is a set of tuples (C, M, E) where C 2 COMP is a
component, M 2MODES is a failure mode, and E � PROPS is a set of effects.

As the FMEA typically contains a description of how each fault affects a set
of system variables, we can convert this information in a straightforward manner
to a logical KB, where the hypotheses comprise the component-based failures and
the theory consists of propositional Horn clause sentences describing the cause-
effect relation depicted in the FMEA. A variable mode(C,M) is constructed for each
component-failure mode pair in the analysis, where C is the component and M is
the failure mode. These propositions compose the set of hypotheses:

Hyp Ddef

[

.C;M;E/2FMEA

fmode.C;M/g (2.1)

To form the set of all variables A, the union over all hypotheses as well as
propositions representing effects is constructed:

A Ddef

[

.C;M;E/2FMEA

E [fmode.C;M/g (2.2)

Each record in the FMEA describes the effects of a single fault, thus, the relations
between defects and their manifestations can be transformed into a Horn model in a
straightforward way. Let HC be the set of Horn clause sentences, then the mapping
function M W 2FMEA 7! HC generates a set of Horn clauses which are a subset of
HC for each record in the FMEA.

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 25

Definition 5 Given an FMEA, the function M is defined as follows:

M.FMEA/ Ddef

[

t2FMEA

M.t/ (2.3)

where

M.C;M;E/ Ddef fmode.C;M/! e je 2 E g (2.4)

Example 2 (continued) The FMEA in Table 2.1 features the two component-
fault mode pairs (Yaw Drive, Fails to rotate) and (Yaw Drive, Drive shaft
blocked). Their corresponding propositional variables are added to Hyp.

Hyp D
�

mode(Yaw_Drive;Fails_to_rotate);
mode(Yaw_Drive;Drive_shaft_blocked)

�

The set of all propositions then contains the hypotheses as well as all variables
corresponding to effects.

A D
8
<

:

mode(Yaw_Drive;Fails_to_rotate);
mode(Yaw_Drive;Drive_shaft_blocked);

no_yaw; safety_system_failure; decrease_of _efficiency

9
=

;

For each manifestation contained in a record, a rule is built such that the single
hypothesis representing the component-fault mode pair implies the effect. The
theory is then simply a union over all these Horn clauses.

Th D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

mode(Yaw_Drive;Fails_to_rotate)! no_yaw;
mode(Yaw_Drive;Fails_to_rotate)! safety_system_failure;

mode(Yaw_Drive;Fails_to_rotate)! decrease_of _efficiency;
mode(Yaw_Drive;Driveshaft_blocked)! no_yaw;

mode(Yaw_Drive;Drive_shaft_blocked)! decrease_of _efficiency

9
>>>>>=

>>>>>;

Due to the structure of an FMEA, the resulting logical system description is
acyclic2 and consists of bijunctive Horn clauses, i.e., implications always lead from
one hypothesis to a single effect variable. This results in an efficient diagnosis
computation and a system considering the single fault assumption [19].

2A logical theory is acyclic in cases when it can be represented by a directed acyclic graph where
each proposition is represented as a node and an edge is drawn from a proposition to another in
case the former directly implies the latter.

26 R. Koitz et al.

A shortcoming of FMEA is that it does not take into account the potential
interdependencies between various manifestations, which might be essential from
a practical point of view to describe how a fault affects the system. Thus, other
failure assessments, such as fault trees, can be used as the basis of the automatic
modeling [20]. Depending on the underlying failure analysis type, the resulting
diagnosis system description may feature different characteristics, such as being
a non-bijunctive Horn model.

Independent of the assessment type, the accuracy and composition of the failure
analysis largely impact the quality of the automatically generated diagnosis model.
It is apparent that failures and manifestations disregarded in the failure review
are missing from the system description and thus cannot be considered during
fault identification. Hence, to achieve precise diagnoses, model completeness is an
essential premise [24]. Furthermore, manifestations must be detectable in order to
be useful in a diagnostic context and effects as well as failures have to be coherently
reported throughout the assessment to allow automatic processing.

2.2.2.2 Fault Identification

Abductive diagnosis, even in the case where the system description is restricted
in expressiveness to Horn sentences, is at least NP-complete [13]. Hence,
efficient methods for deriving diagnoses are required in practice. There are
various techniques capable of computing abductive diagnoses such as SAT-
based approaches [17], consequence finding procedures [30], or the well-known
Assumption-based Truth Maintenance System (ATMS) [8]. Internally the ATMS
operates on a directed graph representing the logical relations contained in the
theory, where propositions and the contradiction are nodes and implications
determine the edges. Each node is equipped with a label recording for the
corresponding variable the sets of assumptions, i.e., hypotheses, it can be derived
from. Thus, the ATMS documents the entailment relations characterized within
the theory [22] and ensures that labels are consistent and minimal with respect
to subsumption. To compute the abductive diagnoses an additional implication is
added to the ATMS such that o1 ^ : : :^ on ! ex, where fo1; : : : ; ong D Obs and ex
represents a new propositional variable not yet contained within A. The label of ex
then comprises all solutions to the PHCAP.

MBD may yield an exponential number of explanations in the worst case. Thus,
techniques assisting in distinguishing diagnoses are required to allow for an effective
decision making in regard to repair and replacement activities. Subsequently,
we present two methods aiming at supporting fault identification: observation
discrimination and diagnosis ranking.

Observation Discrimination Probing has been proposed as a means to decrease
the solution space by supplying additional facts to the diagnostic reasoner. While
Friedrich et al. [13] propose an interleaved process between diagnosis, probing and
repair, Wotawa [37] suggests computing all explanations and subsequently adding
new symptoms, which allows either the removing or confirming of diagnoses.

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 27

Definition 6 Given a PHCAP (A,Hyp,Th,Obs) and two diagnoses �1 and �2. A
new observation o 2 A n Obs discriminates two diagnoses if and only if � is a
diagnosis for (A,Hyp,Th,Obs [fog) but �2 is not.

Once discriminating observations have been selected, probes are taken and the
fault identification process is restarted with the additional measurement information.
Determining an ideal probing point is essential in order to converge to a plausible
solution efficiently. The best new observation o is the probing point with the highest
entropy H(o). Entropy represents the information gain; thus, a higher entropy value
indicates a measurement with a greater discrimination capability [9].

H.o/ D �p.o/ � log2 p.o/ � .1 � p.o// � log2.1 � p.o// (2.5)

Equation (2.5) defines the entropy value for an observation o, where p(o) is the
probability of o defined as the ratio between the diagnoses entailing the symptom
together with the theory and the total number of explanations:

p.o/ D jf� j � 2 ��Set; � [Th ˆ foggj
j��Setj (2.6)

Diagnosis Ranking Depending on the underlying logical theory and set of obser-
vations, there might not be a single solution available. Thus, in these cases a
prioritization of the diagnosis results can be useful to initiate appropriate mainte-
nance activities. A common strategy is to exploit probabilities. Considering Bayes
rule for conditional probability, we can define the probability of an explanation �
given an observation o as

p.� j o/ D p.o j �/p.�/
p.o/

: (2.7)

Under the presumption that there is no uncertainty in the measurement, i.e., the data
has not been subjected to errors or noise, we can state for any o 2 Obs that p.o/ D
1. As we known from the entailment relation required by abductive diagnosis that
the explanation logically implies the observation, we can assign p.o j �/ D 1.
Consequently from these two assignments and Eq. (2.7) it follows that p.� j o/ D
p.�/. Assuming independence amongst faults, the probability of each diagnosis �
can be computed based on the a priori probabilities p(h) of the hypotheses:

p.�/ D
Y

h2�
p.h/

Y

h…�
.1 � p.h// (2.8)

Given a PHCAP’s solutions we compute p(�) for all diagnoses in�-Set and subse-
quently assign ranks accordingly. FMEA, for instance, holds additional information
such as failure likelihoods, which can be utilized for prioritization. Other criteria,
such as repair and replacement costs or fault and diagnosis severity, i.e., seriousness
of consequences in regard to safety or monetary considerations, could also be
considered instead [34].

28 R. Koitz et al.

2.3 Industrial Wind Turbine Diagnosis

Wind turbine reliability presents a very interesting use-case for the application of
diagnostic methods. The cost of electrical energy produced depends strongly on
the operational efficiency of the machines as also on the availability. Component
faults leading to unplanned downtime have been shown to impact the overall energy
production significantly, the financial motivation for optimization in this respect
is thus high. The use of remote detection and diagnostic technology is an area
which is receiving an increasing level of focus, in particular in the offshore wind
energy industry, where turbine failures are even more critical due to the difficulties
related to accessing and repairing the machines in potentially harsh environmental
conditions.

All modern wind turbines use sensors, data acquisition, and on-board processing
as part of the closed-loop control system. Furthermore, a range of diagnostic
functions is typically included within the system controller, so that at least basic
status information can be provided in case of faulty operation. However, such on-
board diagnostics are limited by the computing resources of the turbine controller
and the absence of instant access to a long-term historical database.

The turbine continuously stores operational data logs (SCADA logs), which can
be retrieved and transferred to a central data store. The use of such data stores for
detailed performance analysis and diagnostic work is becoming standard in the wind
industry, since the data is readily available and provides information about a number
of systems and components within the turbine.

Today most medium to large scale operators of wind turbine fleets have
installed centralized data management systems to collect and store such SCADA
logs. Uptime Engineering has developed a software application that is capable of
performing automated and continuous analysis of such data, typically with the
aim of detecting anomalies in the behavior of individual turbines. Continuous
advances have been made in the capabilities of the analytic models, and it is now
possible to detect outlying behavior with a high degree of sensitivity. The results of
such analysis are combined with the above-mentioned on-board diagnostic results
together with general information concerning the turbine age, type and build status,
in order to support the turbine operator in efficiently reacting to detected anomalies.

However, such analysis activities often produce a high volume of information
(multiple turbines monitored, multiple alarms originating from many systems and
accompanied by a range of heterogeneous supporting information). The main
challenge facing the user of such a system is efficient interpretation of the results
and the derivation of an effective response strategy. Therefore a strong need has
been identified to provide the software user with “decision support”; i.e., an
additional layer of intelligence built in to the software, which combines all generated
observations and produces clear recommendations for action. MBD is a highly
relevant solution, due to the strong capability of the approach in combining state
information from a multitude of sources and identifying the root cause with the
highest likelihood.

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 29

The project between Uptime Engineering and Graz University of Technology
aims at integrating an abductive MBD engine, created by the university, taking
into account the process shown in Sect. 2.2.2 into Uptime Engineering’s wind
turbine condition monitoring software. Uptime Engineering continuously extends
and updates a comprehensive failure assessment of industrial wind turbines, pro-
viding a structured evaluation of faults and their manifestations. This analysis
can be exploited by the MBD engine as the basis of the model development
phase to construct a suitable diagnostic system description. Once an anomaly has
been detected by Uptime Engineering’s condition monitoring software, an MBD
computation is triggered taking into account of the abductive KB created and the
symptom discovered. Given the results of the diagnosis, the MBD engine then
provides additional information on the next best measurement based on entropy
values. To ensure a suitable integration into the actual wind turbine maintenance
workflow, we collaborate with an energy provider employing Uptime Engineering’s
condition monitoring. In this section, we first describe the interface and interaction
design of the diagnosis engine and how it will be incorporated into the work
processes of the maintenance personnel of the energy provider. We then describe
the phases of the integration and its current status.

2.3.1 Abductive Model-Based Diagnosis Prototype

To enable MBD in industrial practice as proposed in Sect. 2.2.2, the necessary
failure information must be available to automatically extract a suitable diagnostic
model and an anomaly detection method is needed to initiate the fault identification
phase. Furthermore, in order to yield benefits from deploying such a system,
solutions need to be computed efficiently3 and effectively reflecting defects present
in the system. We argue, however, that these technical features are not the only
deciding factors determining the success of a newly integrated diagnosis software.
While current research frequently focuses on developing and improving reasoning
techniques, the suitable integration of MBD in operational processes is rarely
addressed [24, 33]. In addition, it is well known that the acceptance of new
technology is tightly linked to the perceived usefulness of the product as well as
its perceived ease of use [7]. The former refers to the benefits for the users and other
stakeholders in regard to the performance of work tasks, whereas the latter is on par
with the usability of a product.

Hence, in developing an MBD application for use in the field within our project,
we focus not only on the technical aspects of feasibility but further account for
the human factor. An interface and interaction design was incrementally developed

3Here, efficiency is subjective to the application domain, e.g., in the context of wind turbines
deriving explanations in minutes is sufficient, while for automotive on-board diagnosis this
computation time is unacceptable.

30 R. Koitz et al.

for an abductive MBD engine, which should function as a template for the actual
implementation of the tools which will be integrated into Uptime Engineering’s
software. Various prototypes were created iteratively, starting from a low-fidelity
paper mock-up to a clickable prototype depicting a usual fault identification
scenario. These prototypes reflect the above-described general process of abductive
MBD in the context of wind power plants. Particular attention was paid to respecting
current work processes and accounting for a usable design.

The design process started with eliciting the requirements of the diagnosis
application in consideration of the stakeholders involved in the project, who were:

• the service technicians, who are the users, will operate the diagnosis software for
troubleshooting from the service center as also in the field, and are responsible
for performing the turbines’ planned maintenance, repair as well as replacement
activities

• the management of a wind energy provider, planning on extending their self-
maintenance activities for their wind turbine plants in the future

• Uptime Engineering, who currently develops condition monitoring software
for wind turbines and will extend their portfolio with usable and extendable
diagnosis software

2.3.1.1 Requirements

A list of requirements in regard to the final diagnosis application was established
during the course of the various design iterations. The three distinct stakeholder
groups have differing requests, which were analyzed in order to resolve conflicts and
prioritize the resulting requirements. Since the success of the application depends to
a great extent on being used by the service technicians, special attention was given
to their suggestions and needs.

An important observation is that current fault detection activities performed by
the service personnel typically rely on visual inspection. Hence, in order to support
diagnosis, images should be used for easier recognition. Once a fault has been
identified, the repair or replacement task is executed according to the wind turbine
manufacturer’s instruction manuals. Therefore, such documents need to be easily
accessible via the software. After the maintenance activities have been completed,
the service technicians are required to create a report of the task and the actions
performed. The software should thus support automation of the reporting step to
reduce the overall effort. The working environment inside a wind turbine is often
uncomfortable and limited in space, and work is performed under time pressure
in potentially difficult weather conditions. The user interface therefore needs to
be intuitive in use and must guide the user through a strictly defined sequence
with minimal user interactions. Considering the overall work process, the software
should feature a desktop software part operated in the service center as well as a
mobile application, which should be used within the turbine itself.

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 31

The management of the energy provider is interested in promoting digitalization
as well as increasing the productivity and safety of their wind operations in use. On
the one hand, the software should support the service technicians in preparing all
spare parts and tools necessary before traveling to a wind turbine to ensure minimal
downtime, while on the other hand given the hazardous environment in the field it
should support the safety processes already in place, e.g., the service technicians
personal safety equipment. In addition to the user and management requirements,
the specifications of Uptime Engineering needed to be satisfied. To extend and
update the knowledge base, i.e., abductive model, the users should be able to report
new fault modes, which have not been previously contemplated. Further, the user
interface should be extendable and adaptable to satisfy other customers as well as
other domains for future projects.

2.3.1.2 Design Process

To ensure a user friendly end product, the diagnosis engine GUI was developed
using an iterative process [25]. Each iteration starts with a definition or adaptation
of the requirements, a design is then created and subsequently a prototype is
implemented. This prototype is evaluated by users from the target group to
determine usability issues, which must be fixed in the design of the proceeding
iteration. According to Nielsen [25] due to the various repetitions of this cycle, this
type of design process allows gaining sufficient insight into usability issues even
given a limited number of test users.

In our case, the first iteration was kicked-off with a meeting between Graz Uni-
versity of Technology and Uptime Engineering to elicit the first set of requirements.
One of the main goals identified was that the software should be designed in a
way that supports the service technicians’ current work processes without causing
additional effort. Facilitating the service personnel’s work tasks is essential as this
assures usefulness, which is a key aspect in technology acceptance [7]. Furthermore,
we defined the overall workflow for the application, the general structure for an
initial paper mock-up, and a small set of features, which should be realized. The
initial paper prototype and all following designs were evaluated at meetings with
the management of the energy provider and service technicians. At these meetings
the current prototype was presented and a more detailed knowledge about the users
and their work process was gained, usability issues could be uncovered and useful
features, which would aid the maintenance personnel throughout the fault correction
process, were identified. During the first iterations predominant usability problems
were detected and some more drastic changes to the design were introduced, while
in the later iterations only minor issues were found and as a result only slight GUI
alternations were necessary. The product of the design phase is a clickable prototype
which has undergone a small-scale qualitative usability test involving five service
technicians. In the test scenario the users performed a mock-up fault identification
process from start to finish. The design of the final prototype is presented below
together with the overall application workflow.

32 R. Koitz et al.

1.send alarms

Service Center
Employee

5. prepares tools, spare parts and safety equipment at
service center

6a.performs part
inspection at turbine,

adds additional
measurements

7.repairs/replaces
faulty

component(s)

Service Technician

8. creates report of maintenance activities

6b.manually restarts
diagnosis

4.selects
work assignments

based on diagnosis
results

Uptime
Engineering

Condition
Monitoring 2.triggers

diagnosis

Diagnosis
Engine 3.provides

diagnoses

Fig. 2.2 Workflow of the diagnosis application (adapted from [21])

2.3.1.3 Workflow and GUI Design

The workflow of the diagnosis application was created in consideration of the
current functionality of Uptime Engineering’s condition monitoring software, the
maintenance process of the energy provider, and the general abductive diagnosis
procedure. Figure 2.2 depicts the identified activity sequence of the diagnostic
process. The interface and interaction design decisions of the application were taken
based on the workflow and requirement analysis. As mentioned in the previous
section, a diagnosis computation is invoked once an anomaly has been encountered.
Each wind turbine includes a set of sensors and a basic on-board system that triggers
alarms whenever measurements fall outside certain limits (Step 1 in Fig. 2.2).
Uptime Engineering’s condition monitoring software extends and refines the fault
detection by further processing the available sensor information.

Once a symptom of a faulty turbine has been identified, the Uptime Engineering’s
software triggers the root cause identification by supplying the previously created
system description as well as the observations to an MBD engine (Step 2 in Fig. 2.2).
After the computation, the results are accessible to the employees at the service
center (Step 3 in Fig. 2.2). The diagnosis results are displayed as part of Uptime
Engineering’s web interface, i.e., at the Operations Center, which is depicted in
Fig. 2.3 and designed for desktop or laptop computers. The results are available per
turbine instance and displayed as collapsible panels. For each triggering symptom,

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 33

Fig. 2.3 Operations Center [21]

e.g., Error Converter Bus, the panel contains the possible root causes4 as well as
diagnosis likelihood expressed as percentages.

Based on the outcome, the service center employee can create and assign
repair tasks for the service technicians preselecting some of the possible faults
for consideration during the field work (Step 4 in Fig. 2.2). Each repair task is
either preformed in conjunction with the next planned maintenance, scheduled,
or immediately executed. Figure 2.4 depicts an example for a scheduled repair
tasks, consisting of the anomaly and the corresponding error codes. The service
center employee can then define a trouble shooting task, schedule the activity under
consideration of the time table depicting the availability of service technicians,
assigning both a supervisor and a team for the task, add the corresponding parts and
tools to the work assignment depending on the failures proposed by the engine, and
provide additional auxiliary information to the work assignment such as previous
issues with the targeted wind turbine. Several repair tasks can be scheduled for the
same day and the same maintenance team.

In the context of diagnosis within the field, we concluded that the software would
be most usable on a mobile device since the technicians prefer not to carry a laptop.
Thus, once work assignments have been created, the rest of the diagnosis process is
conducted by the service technician teams over a mobile application. An essential
aspect of the software design, was to follow guidelines and best practices for mobile
user interfaces to ensure an easy-to-use application. A flat navigation was thus
chosen for the prototype featuring little nesting of sub-levels, and thus warranting
minimal user interaction and proving a defined role in the work process of the

4In the case of wind turbines, there is generally a strong single fault assumption. Thus, each
depicted root cause in this example only consists of a single failure, e.g., IGBT module:
Diode/IGBT wire bonding—TMF. Yet, the diagnosis engine is of course capable of determining
multiple fault diagnoses.

34 R. Koitz et al.

Fig. 2.4 Repair task screen

technicians. A simple navigation drawer is used to allow the user to switch quickly
between the top-level sites. In Fig. 2.5a the Home screen of the mobile application is
shown, where the technician can see all work assignments for the day as collapsible
panels with additional information. Based on their tasks the technicians can obtain a
list containing all necessary spare parts, tools, and safety equipment required for all
maintenance activities planned on that day from the Preparation view depicted in
Fig. 2.5b. The preparation would usually be performed at the service center, where
the stockroom is also located (Step 5 in Fig. 2.2). Once at the turbine, an overview
of the maintenance task for this particular instance and assignment is shown in the
overview screen (see Fig. 2.5c), where an enforcement permit for the activity must
be acquired.5

5A notification for the person responsible for the entire installation is automatically generated
containing the request. Only after the permission has been granted, may the technicians perform
the maintenance work.

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 35

Fig. 2.5 Preparation and overview interface. (a) Home screen. (b) Preparation screen. (c)
Overview screen

36 R. Koitz et al.

When at the turbine, the service technicians can review the computed and ranked
diagnoses represented in a collapsible panel as well as their percentage value (see
Fig. 2.6a). Expanding a diagnosis, a short description of the root cause of the failure
is depicted as well as a Repair task button, leading to additional information on
the required activities to restore a healthy turbine state, e.g., manufacturer manuals
on repair and replacement of the faulty component. In cases where there is still no
clear indication of the most likely diagnosis, the service technician can improve the
initial results by supplying additional observations via Improve diagnosis. The next
best probing points are determined via entropy as described in the previous section.
To obtain the additional turbine state information the application asks the users to
answer a set of questions as seen in Fig. 2.6b (Step 6a in Fig. 2.2). Besides the textual
representation, a picture is provided for each probe to facilitate visual identification.
Each observation can either be confirmed (Yes), denied (No), or bypassed (?).
The device camera can be used to document the measurements separately and the
pictures are later appended to the maintenance report. The layout to enter new
symptoms ensures efficient use of available screen space, logically structures the
tasks, and requires minimal interaction. Once the additional observations have been
made, the diagnoses are updated by manually restarting the computation given the
new information from the device (Step 6b in Fig. 2.2). Given the updated results, the
probabilities and arrangements of the faults change accordingly in the Diagnosis
screen with arrows indicating if the fault converges or not (see Fig. 2.6c). The
diagnoses can be refined several times until an acceptable certainty for a fault has
been reached.

Once the root cause of the detected anomaly has been repaired (Step 7 in
Fig. 2.2), the service technicians must create a report of the activities (Step 8
in Fig. 2.2). This has previously been a tedious task and therefore an essential
requirement by the users was that the application provides support for their
reporting. Thus, the mobile application allows the user to notify the system of the
final confirmed diagnosis as well as spare parts consumed and repair or replacement
activities carried out (see Fig. 2.7a, b). The observations made and their visuals are
automatically included in the report. Since it might be possible that a fault has
not been considered within the failure assessment and thus abductive model, the
interface provides a simple way for the service technician to reject all proposed
diagnoses and add a custom fault, as shown in Fig. 2.7c. Based on the entered
data the work assignment documentation is automatically generated and sent to
the Operations Center. There it is either stored or post processed, depending on
whether crucial information is missing from the report or a custom failure has
been created, which needs to be analyzed and subsequently added to the failure
assessment. It is currently planned to have the knowledge acquired from the custom
failures inserted into the failure assessment manually after ensuring the information
provided is sound and complete.

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 37

Fig. 2.6 Diagnosis and probing interface. (a) Initial Diagnosis screen. (b) Adding new observa-
tions. (c) Diagnosis screen after recomputation

38 R. Koitz et al.

Fig. 2.7 Mobile reporting interface. (a) Report screen (I) [21]. (b) Report screen (II). (c) Adding
a new custom fault

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 39

2.3.2 Realization of the Diagnosis Engine

The full integration of the diagnosis engine as well as the associated user interfaces
into the existing Uptime Engineering condition monitoring tool was dealt with in
three main project phases. Initially it was necessary to introduce a structure to
manage the newly introduced system taxonomy. Next an interface was generated
between the condition monitoring system and the MBD engine, via messaging bus.
Finally, the user interface was adapted to incorporate the functionality as described
in the previous section. Each of these project phases is now described in further
detail.

The use of a strict taxonomy to describe individual system components (such as
bearing, filter, fan) as well as sub-systems (such as gearbox, generator, pitch drive)
within the turbine is critical for effective automation of the diagnostic process. The
absence of such a system would lead to errors in the definition of observed system
behavior, issues in regard to the model generation based on failure assessments, as
also problems in interpretation of the recommendations. Furthermore, the naming of
input signals (such as power, wind speed, oil temperature) and the behavior of such
signals (e.g., “high power relative to the expectation, as defined by historical power
performance”) must be coded according to a strict and consistent taxonomy. Once
established, this taxonomy must be applied accurately and consistently throughout
the software environment. Further complication results from the need to develop a
general solution that can be deployed across multiple organizations (e.g., several
different energy utilities) and monitor technology from a variety of wind turbine
manufacturers, each with its own internal preferences for system taxonomy. There-
fore much attention was paid to the generation of a global, independent taxonomy
specifically suited to the purpose of anomaly detection and fault diagnosis.

The MBD engine provided by Graz University of Technology is based on a Java
implementation of the model mapping as also an ATMS for the fault identification
portion and the entropy-based computation of the next best probing point, while
Uptime Engineering’s the condition monitoring system was developed using a
range of technologies including .NET, MSSQL, Matlab, Java. The frameworks
and languages have been selected based on their capabilities to perform signal
analysis as well as their suitability for building commercial tools. An effective
communication between these two systems was achieved using a Messaging Bus
solution. Upon detection of abnormal system behavior, the condition monitoring
software generates Events, with a specific content adhering to the taxonomy rules
aforementioned. This Event is stored within the condition monitoring system and
also converted into a message which is sent via the bus system to the reasoning
engine. The message contains the latest observations for a specific instance (e.g.,
wind turbine) and the current failure assessment to be converted to an abductive
KB. While the model generation can be performed offline, we decided to perform
the transformation of the failure analysis whenever a diagnosis is triggered since the
mapping implementation is very efficient and thus constitutes a negligible factor in
the overall computation time. In addition, this means the engine can be memory-

40 R. Koitz et al.

less from one diagnosis computation to the next and failure assessment updates are
always considered during fault identification. The model-based reasoning engine
then processes the information received and generates its own message, containing
all possible root causes as well as recommendations for additional turbine state
information that could be added as effective discriminators and hence improve
the accuracy of the diagnosis. Note here that for each turbine instance a new
MBD engine instance is created once an abnormal behavior has been encountered.
Through this exchange of information, the capability of the condition monitoring
system is significantly enhanced.

An intuitive and efficient user interface is seen as critical for acceptance of
the system by its users, as described in Sect. 2.3.1.1 above. Since the software
application is used both in the office environment (e.g., at the wind turbine service
center) and on mobile applications (e.g., by service staff working on the wind
turbines), it was important to develop a graphical interface that works effectively
in both cases. In order to provide the user with a consistent solution and also to
minimize development effort, it was decided to create “adaptive user interfaces”,
which recognize the device currently in use and automatically switch to the most
suitable layout. The diagnosis GUI is currently in a prototype stage and still in
development, while the back-end has already been fully developed and tested. Parts
of the system, however, are already being evaluated by Uptime Engineering and the
energy provider. Due to the lack of a user interface at this point in time, a broad
and exhaustive acceptance study is planned for future work. The final product is
expected to provide all relevant stakeholders with a comfortable user experience and
improve and facilitate the fault diagnosis procedure of the wind turbine operator and
its maintenance staff.

2.4 Conclusion

The theories and techniques of model-based reasoning have been applied to
industrial problems, but the approach is not well represented as yet in practical
every-day use. Computation of root causes relies on the presence of a suitable
system description. From a practical point of view, however, due to the unavailability
of tools that can be used by people who are not experts in logical-based modeling,
model generation remains a hindering factor in the adoption of MBD in practice.
As in the abductive variation of MBD the model characterizes the relations between
faults and their manifestations. The proposed general process allows the utilizing
of failure assessments commonly used in practice for computerized knowledge
base generation. Automating this task should facilitate the introduction of MBD
in industrial applications.

We applied this process to the domain of industrial wind turbines. Uptime
Engineering maintains a comprehensive failure analysis of turbine faults and

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 41

their effects, which can be used as input for the automatic diagnosis model
generation. Furthermore, their condition monitoring software allows the detection
of abnormal turbine behavior. Graz University of Technology implemented an MBD
engine, which creates abductive knowledge bases from failure analyses, computes
explanations based on the determined symptoms, and provides recommendations
on additional observations to refine the diagnosis results based on entropy. Various
aspects, e.g., as ensuring a suitable communication between existing software tools,
need to be considered when deploying MBD to practical domains as the wind
turbine industry. Moreover, (1) integrating the approach into already established
work processes, (2) delivering a benefit to the users of the diagnosis software, and
(3) providing intuitive and easy-to-use interfaces and interactions are key factors in
promoting user acceptance. In this regard, a main goal was to facilitate not only the
diagnosis portion of the work process, but also to simplify and improve the related
tasks, such as the maintenance report creation. Working closely with the service staff
and energy provider while creating and revising the user interface and interaction
design as well as the application workflow ensures a usable template for the final
software product. A prototype is currently being tested by Uptime Engineering and
the energy provider to verify the feasibility of the approach.

Nevertheless open issues in the fault identification of wind turbines still remain.
Even after performing a repair, a failure might prevail in the system and its
manifestations will be visible for a certain period of time. In this case, the diagnosis
must be repeated and the original failure report should be re-opened. In addition, the
automatic acquisition of additional expert knowledge is challenging. Updating the
failure assessment and thus the abductive model cannot solely be performed by the
user due to quality concerns of the inserted data in regard to its technical soundness
and the knowledge engineering capabilities of the service staff. Nevertheless, the
question remains as to whether there is a feasible way to have the maintenance
personnel make additions to the model. Further refinements to the diagnosis results
based on knowledge about damage accumulation and load history could improve the
fault identification process. This type of information can be exploited to determine
the remaining life time of components which subsequently can be used to derive
and update fault likelihoods. Other common considerations concern maintenance
decisions based on the expected cost accounting for all expenditures associated
with the diagnostic task, such as probing, repair, or replacement costs. In the future
other application domains, such as truck fleets, should clarify whether abductive
reasoning is a suitable diagnosis approach for industrial domains in general.

Acknowledgements The work presented in this paper has been supported by the FFG project
Applied Model Based Reasoning (AMOR) under grant 842407 and the SFG project EXPERT. We
would further like to express our gratitude to VERBUND Hydro Power GmbH.

42 R. Koitz et al.

References

1. B. Abichou, D. Flórez, M. Sayed-Mouchaweh, H. Toubakh, B. François, N. Girard, Fault
diagnosis methods for wind turbines health monitoring: a review, in European Conference
of the Prognostics and Health Management Society (2014)

2. R. Bakker, P. Van den Bempt, N.J. Mars, D.J. Out, D. van Soest, Issues in practical model-based
diagnosis. Futur. Gener. Comput. Syst. 9(4), 329–337 (1993)

3. C.S. Carlson, Understanding and applying the fundamentals of FMEAs, in Annual Reliability
and Maintainability Symposium (2014)

4. L. Console, O. Dressler, Model-based diagnosis in the real world: lessons learned and
challenges remaining, in Proceedings of the Sixteenth International Joint Conferences on
Artificial Intelligence (1999), pp. 1393–1400

5. L. Console, D.T. Dupre, P. Torasso, On the relationship between abduction and deduction. J.
Log. Comput. 1(5), 661–690 (1991)

6. M.O. Cordier, P. Dague, F. Lévy, J. Montmain, M. Staroswiecki, L. Travé-Massuyès, Conflicts
versus analytical redundancy relations: a comparative analysis of the model based diagnosis
approach from the artificial intelligence and automatic control perspectives. IEEE Trans. Syst.
Man Cybern. B Cybern. 34(5), 2163–2177 (2004)

7. F.D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Q. 13, 319–340 (1989)

8. J. de Kleer, An assumption-based TMS. Artif. Intell. 28(2), 127–162 (1986)
9. J. de Kleer, B.C. Williams, Diagnosing multiple faults. Artif. Intell. 32(1), 97–130 (1987)

10. E. Echavarria, T. Tomiyama, W. Huberts, G.J. van Bussel, Fault diagnosis system for an
offshore wind turbine using qualitative physics, in Proceedings of EWEC (2008)

11. T. Eiter, G. Gottlob, The complexity of logic-based abduction. J. ACM 42(1), 3–42 (1995)
12. G. Fleischanderl, T. Havelka, H. Schreiner, M. Stumptner, F. Wotawa, DiKe-a model-based

diagnosis kernel and its application, in KI 2001: Advances in Artificial Intelligence (Springer,
Berlin, 2001)

13. G. Friedrich,G. Gottlob, W. Nejdl, Hypothesis classification, abductive diagnosis and therapy,
in Expert Systems in Engineering Principles and Applications (Springer, Berlin, 1990),
pp. 69–78

14. C.S. Gray, S.J. Watson, Physics of failure approach to wind turbine condition based mainte-
nance. Wind Energy 13(5), 395–405 (2010)

15. C. Gray, F. Langmayr, N. Haselgruber, S.J. Watson, A practical approach to the use of
SCADA data for optimized wind turbine condition based maintenance, EWEA Offshore Wind
Amsterdam (2011)

16. Z. Hameed, Y. Hong, Y. Cho, S. Ahn, C. Song, Condition monitoring and fault detection of
wind turbines and related algorithms: a review. Renew. Sust. Energ. Rev. 13(1), 1–39 (2009)

17. R. Koitz, F. Wotawa, Finding explanations: an empirical evaluation of abductive diagnosis
algorithms, in Proceedings of the International Conference on Defeasible and Ampliative
Reasoning, CEUR-WS.org (2015), pp. 36–42

18. R. Koitz, F. Wotawa, From theory to practice: model-based diagnosis in industrial applications
(2015), in Proceedings of the Annual Conference of the Prognostics and Health Management
Society (2015)

19. R. Koitz, F. Wotawa, On the feasibility of abductive diagnosis for practical applications, in
Proceedings of the 9th IFAC symposium on fault detection, supervision and safety of technical
processes (2015)

20. R. Koitz, F. Wotawa, Integration of failure assessments into the diagnostic process, in
Proceedings of the Annual Conference of the Prognostics and Health Management Society
(2016)

CEUR-WS.org

2 Wind Turbine Fault Localization: A Practical Application of Model-Based. . . 43

21. R. Koitz, J. Lüftenegger, F. Wotawa, Model-based diagnosis in practice: interaction design
of an integrated diagnosis application for industrial wind turbines, in Proceedings of the
30th International Conference on Industrial Engineering and Other Applications of Applied
Intelligent Systems (2017)

22. H.J. Levesque, A knowledge-level account of abduction, in Proceedings of the Eleventh
International Joint Conferences on Artificial Intelligence (1989), pp. 1061–1067

23. B. Lu, Y. Li, X. Wu, Z. Yang, A review of recent advances in wind turbine condition monitoring
and fault diagnosis, in Power Electronics and Machines in Wind Applications, 2009. PEMWA
2009. IEEE (IEEE, Piscataway, 2009), pp. 1–7

24. H. Milde, T. Guckenbiehl, A. Malik, B. Neumann, P. Struss, Integrating model-based diagnosis
techniques into current work processes–three case studies from the INDIA project. AI
Commun. 13(2), 99–123 (2000)

25. J. Nielsen, Iterative user-interface design. Computer 26(11), 32–41 (1993)
26. D. Poole, R. Goebel, R. Aleliunas, Theorist: a logical reasoning system for defaults and

diagnosis, in The Knowledge Frontier (Springer, New York, 1987), pp. 331–352
27. L. Rademakers, A. Seebregts, B. van Den Horn, Reliability analysis in wind engineering.

Netherlands Energy Research Foundation ECN (1993)
28. R. Reiter, A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)
29. M. Schlechtingen, I.F. Santos, S. Achiche, Wind turbine condition monitoring based on scada

data using normal behavior models. Part 1: system description. Appl. Soft Comput. 13(1),
259–270 (2013)

30. L. Simon, A. Del Val, Efficient consequence finding, in Proceedings of the Seventeenth
International Joint Conference on Artificial intelligence (2001), pp. 359–365

31. P. Struss, Model-based problem solving, in Handbook of Knowledge Representation, Chap. 10,
ed. by F. van Harmelen, V. Lifschitz, B. Porter (Elsevier Science, Oxford, 2008), pp. 395–465

32. P. Struss, A. Malik, M. Sachenbacher, Case studies in model-based diagnosis and fault analysis
of car-subsystems, in Proceedings of the 1st International Workshop Model-Based Systems and
Qualitative Reasoning (1996), pp. 17–25

33. P. Struss, M. Sachenbacher, C. Carlén, Insights from building a prototype for model-based
on-board diagnosis of automotive systems, in Proceedings of the International Workshop on
Principles of Diagnosis (2000)

34. Y. Sun, D.S. Weld, A framework for model-based repair, in Proceedings of the Eleventh
National Conference on Artificial Intelligence (1993), pp. 182–187

35. N. Tazi, E. Châtelet, Y. Bouzidi, Using a hybrid cost-FMEA analysis for wind turbine reliability
analysis. Energies 10(3), 276 (2017)

36. M. Wilkinson, B. Hendriks, F. Spinato, K. Harman, E. Gomez, H. Bulacio, J. Roca, P. Tavner,
Y. Feng, H. Long, Methodology and results of the reliawind reliability field study, in European
Wind Energy Conference and Exhibition 2010, EWEC 2010, Sheffield, vol. 3 (2010), pp. 1984–
2004

37. F. Wotawa, On the use of abduction as an alternative to decision trees in environmental decision
support systems, in International Conference on Complex, Intelligent and Software Intensive
Systems, 2009. CISIS’09. (IEEE, Piscataway, 2009), pp. 1160–1165

38. F. Wotawa, Failure mode and effect analysis for abductive diagnosis, in Proceedings of the
International Workshop on Defeasible and Ampliative Reasoning (2014), pp. 1–13

39. F. Wotawa, I. Rodriguez-Roda, J. Comas, Environmental decision support systems based on
models and model-based reasoning. Environ. Eng. Manag. J. 9(2), 189–195 (2010)

40. W. Yang, J. Jiang, Wind turbine condition monitoring and reliability analysis by SCADA
information, in Second International Conference on Mechanic Automation and Control
Engineering (MACE), 2011. (IEEE, Piscataway, 2011), pp. 1872–1875

41. A.S. Zaher, S. McArthur, A multi-agent fault detection system for wind turbine defect
recognition and diagnosis, in 2007 IEEE Lausanne Power Tech (2007), pp. 22–27

Chapter 3
Fault Detection and Localization Using
Modelica and Abductive Reasoning

Ingo Pill and Franz Wotawa

3.1 Introduction

On an abstract level, fault diagnosis encompasses two tasks; that of fault detection
where we decide whether there is a fault, and that of fault isolation where we
are interested in identifying the cause of some unexpected behavior. This book is
a perfect showcase that there are many solutions to these two non-trivial tasks,
where in practice the available resources, the application domain, the availability
of detailed system models, and many other aspects limit our choices for a specific
scenario.

In this chapter we take a focus on diagnosis scenarios where we have some
Modelica system model and would like to detect and isolate occurring faults. As will
be discussed in Sect. 3.2, Modelica [12] is an intuitive to use programming language
that allows us to directly execute our models in simulations. Due to features like the
availability of libraries for digital circuits, fluids, and mechanics, Modelica is an
attractive means for modeling hybrid cyber-physical systems. The scenario we are
facing in this chapter is now one where we do have a Modelica system model, and
observe some actual behavior that we would like to evaluate. In particular, we would
like to determine whether there is a fault in the system, and if there is a fault, then
we would like to derive diagnoses explaining the encountered error—exploiting the
Modelica system model in this process.

A key element of any model-based diagnosis approach is the system model that
allows us to reason about the correctness of individual system components [6, 9, 25].
Unfortunately, the task of coming up with an effective diagnosis model has
been turning out to be a stumbling block, prohibiting a wide-spread adoption of

I. Pill (�) · F. Wotawa
Institute for Software Technology, Graz University of Technology, Graz, Austria
e-mail: ipill@ist.tugraz.at; wotawa@ist.tugraz.at

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4_3

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74962-4_3&domain=pdf
mailto:ipill@ist.tugraz.at
mailto:wotawa@ist.tugraz.at
https://doi.org/10.1007/978-3-319-74962-4_3

46 I. Pill and F. Wotawa

model-based diagnosis in practice. In particular, there is a gap between development
models we create, e.g., for some simulation, and the models we require for
diagnosing the deployed system. This gap originates in the different objectives
behind the models. So, for instance, a simulation-oriented model usually has to
be as detailed and as close to the system’s real-world behavior as is required by
the simulation objectives. In contrast, diagnosis models usually rely on qualitative
system descriptions that merge behaviors we do not need to distinguish for
diagnostic purposes into qualitative (in other words symbolic) ones with the aim
of restricting the search space. So far, the expertise and additional resources needed
for coming up with a well-defined diagnosis model have been countermanding the
advantages of model-based approaches in many cases. A prominent aspect here is
that we often lack options for integrating the modeling process for development
purposes and the process of modeling for diagnosis purposes.

In this chapter, and in particular in Sect. 3.4.2 we thus discuss a solution for
automatically compiling Modelica development models into ones that we can use
for diagnosis. In the literature, there have been several approaches dealing with this
idea, e.g., [21, 22, 28] (see Sect. 3.6). In contrast to earlier work, we are interested
in providing models to be used for abductive diagnosis. This means that we extract
cause-effect rules from Modelica models, where such rules are intuitive to designers
familiar with failure mode and effect analysis (FMEA) [4, 15]. This familiarity
makes the approach quite attractive for practical purposes. The basic idea for the
extraction is to compare simulations of the correct model with simulation results for
faulty variants that we create via fault injection [30]. In case of detected deviations,
we extract a rule stating that the introduced fault leads to the observed deviations.

Before triggering a diagnostic process, we have to determine whether the
observed behavior is faulty in the first place. Bearing noisy signals, minimal
parameter deviations for component instances, and physical component degradation
over time on our minds, we present in Sect. 3.3 three approaches for comparing
observed with simulated behavior. That is, based on average values and tolerances,
temporal band sequences, or the Pearson correlation coefficient, we aim to detect
the presence of a fault when comparing simulated with observed signal behavior.

As is illustrated by the examples spread throughout the chapter, the proposed
combination of technologies provides an intuitive approach that minimizes the
additional resources needed for diagnosis purposes, and which is based on concepts
like simulation and cause-effect-rules that engineers are, in principle, familiar
with—certainly a plus when it comes to consider the attractiveness of deploying
a new technology to enrich an already installed and proven development process.
This is also highlighted in our case studies in Sect. 3.5, where our corresponding
observations are one pillar of the summary that we provide in Sect. 3.7.

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 47

3.2 Using Modelica for Describing a System’s Behavior

There are many languages that we can use to model physical and hybrid systems,
including Modelica [12] which is an object-oriented, open, and multi-domain lan-
guage. Using Modelica, we define models via sets of equations that can range from
simple algebraic equations to complex differential ones. When using Modelica,
a designer has the luxury of being able to draw on a huge variety of available
libraries targeting, e.g., digital circuits, electronics, mechanics, or fluids. All these
characteristics distinguish Modelica from other modeling languages, making it very
flexible, easy to employ, and an attractive means for modeling hybrid systems. In
Fig. 3.1 you can see simple example code for describing a pin in an electronic circuit,
a grounded pin, and an abstract component with two pins.

An attractive feature for established development workflows is that Modelica is
optimized for simulation. Consequently, we have that any Modelica model has to
ensure that its corresponding equations allow for computing exactly one solution,
i.e., an assignment of variable values that solve all the equations at any point in
time. Otherwise, an error message is raised. This means, however, that we cannot
use Modelica for diagnosis directly, due to the lacking capabilities for dealing with
unknown values or sets of values to be assigned to a variable.

The main question now is how we can use Modelica for diagnostic purposes.
While we introduce the formal background of our corresponding concept in the
following sections, let us at this point briefly introduce the underlying ideas using
the voltage-divider circuit shown in Fig. 3.2. It contains two resistors R1 and
R2 (100 and 50�) and a battery BAT with a nominal voltage of 12 V. If every
component works as intended, we see voltage drops of V1 D 8V at R1 and
V2 D 4V at R2. If now the battery would be completely empty (or one of its pins

Fig. 3.1 Simple Modelica
code for a pin, a “ground
pin,” and a component with
two pins

connector MyPin
Real v;
flow Real i;

end MyPin;

model MyGround
MyPin p;

equation
p.v = 0.0;

end MyGround;

partial model MyComponentSimple
MyPin p,m;
Real v;
Real i;

equation
v = p.v - m.v;
i = p.i;
0.0 = p.i + m.i;

end MyComponentSimple;

48 I. Pill and F. Wotawa

14

50 Ohm

R2 V2

100 Ohm

R1 V1

12 V

BAT

R2 short

BAT em
pty

r1.v r2.vr1.vr2.v

12

10

8

6

4

2

0

0.0 0.2 0.4 0.6 0.8 1.00.0

0

2

4

6

8

0.2 1.00.4 0.6 0.8
-2

Fig. 3.2 A voltage divider circuit

is broken) the voltage drops V1 and V2 would decline to 0 V. On the other hand, if
there is a short at R2, V2 would become 0 V and V1 would rise to 12 V (see Fig. 3.2
for corresponding diagrams, when assuming that the faults appear individually after
half a second).

Such knowledge can be used to create an abductive diagnosis model. There we
would state, for instance, that an empty battery causes both V1 and V2 to be 0 V,
and/or that the voltage drops on both resistors are smaller than expected then:

emptyBat! .val.v1; 0/ ^ smaller.v1//
emptyBat! .val.v2; 0/ ^ smaller.v2//

A similar model for a short resistor R2 could look as follows, where other faults
like broken pins can be handled in a similar way:

short.R2/! .val.v1; 12/ ^ higher.v1//
short.R2/! .val.v2; 0/ ^ smaller.v2//

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 49

Fig. 3.3 A MyComponent
model augmented with a
health state, and a derived
resistor’s model

type FaultType = enumeration(
ok,broken,short,empty);

partial model MyComponent
MyPin p,m;
Real v;
Real i;
FaultType state(start = FaultType.ok);

equation
v = p.v - m.v;
i = p.i;
0.0 = p.i + m.i;

end MyComponent;

model MyResistor
extends MyComponent;
parameter Real r;

equation
if state == FaultType.ok then

v = r * i;
elseif state == FaultType.short then

v = 0;
else

i = 0;
end if;

end MyResistor;

Now, if we would have models for simulating the individual faults’ effects,
we could automate this rule extraction idea. Ideally, we would have a single
simulation model, where we only need to activate/deactivate the individual faults to
be considered in a simulation (switching between equations when doing so). Then,
comparing a simulation where no fault is active with simulations where we activate
individual faults would enable us to obtain data about an individual fault’s effects
and in the end to come up with the desired abductive diagnosis model.

Before offering the details of our concept for creating such an augmented
simulation model in Sect. 3.2.1, let us briefly illustrate the needed steps for some
Modelica code related to the voltage divider example. That is, as a first step, we add a
system state mode of the newly introduced type FaultType to the abstract component
model from Fig. 3.1, which results in the model MyComponent as shown in Fig. 3.3.
We use this state variable to select between equations for the nominal and individual
fault behavior. For a resistor’s model MyResistor derived from MyComponent and
also shown in Fig. 3.3, we define three such modes, and depending on the fault state
the corresponding equations are used for our simulations.

If we have a closer look at MyResistor, we can see that our changes lead to
a hybrid model, even if the core model is an analog one. That is, we do have a
discrete valued system state for the component’s health, and the continuous system
signals for the resistor’s voltage and current. Consequently, this shows that our
concept works for hybrid models and we can use this simple scenario for illustration
purposes. Please note that we briefly discuss extending this circuit to include a bulb,

50 I. Pill and F. Wotawa

a capacitor, and a switch for controlling the lighting situation in Sect. 3.5—which
is closer to the expectations about a hybrid system (especially if the switch is
controlled by a digital pulse-width controller).

3.2.1 A Modelica Simulation Model with Fault Modes

As depicted in the introduction, at the beginning of our process we have a system’s
Modelica model that was developed for simulation purposes. Aiming at an auto-
mated extraction of the desired cause-effect rules, we need also characterizations
of fault effects. Our basis for obtaining such fault effect data is that of using fault
injection [30] and simulating the faulty behavior. To this end, we aim at a system
model where the individual components may have several modes describing their
nominal and faulty behavior. As suggested above, we furthermore assume that the
Modelica model offers the means to enable or disable individual fault modes defined
for the individual components. Every such mode of a particular component can be a
hypothesis explaining some observed faulty behavior, i.e., the observed symptoms,
in our abductive diagnostic reasoning (see Sect. 3.4.1). Please note that we also
distinguish input from output variables (signals). That is, input variables are those
for specifying a certain desired input scenario, and the outputs are those variables
that we can observe and which provide the symptoms.

Definition 1 (System Model) A system model M D .COMP;MODES; �; I;O;P/
is a tuple that comprises a set of components COMP, a set of modes MODES that has
at least the correct mode ok as element, a function � W COMP 7! MODES mapping
components to their featured modes, a set I of variables considered as inputs, a set
O of variables considered as outputs, and a Modelica model P that allows us to set
an individual mode m 2 �.c/ for each individual component c 2 COMP.

Example 1 In Fig. 3.4, we show the Modelica source code for our voltage-divider
circuit example from Fig. 3.2, reusing components from Figs. 3.1 and 3.3.
MyBattery and MyResistor (Fig. 3.3) are sub-classes of MyComponent
(Fig. 3.3), inheriting its equation, but extending it to capture the more specific
behavior of the component type. The union of all fault modes for the individual
components (type FaultType in Fig. 3.3) contains ok for the ordinary nominal
behavior, broken and short for a resistor’s fault modes, and empty for a faulty
battery. Hence, a system model .COMP;MODES; �; I;O;P/ for our voltage divider
circuit would comprise the following elements:

COMP D fbat;r1;r2g
MODES D fok; broken; short; emptyg
�.bat/ D fok; emptyg
�.r1/ D �.r2/ D fok; broken; shortg
I D ;
O D fr1:v;r2:vg

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 51

Fig. 3.4 The Modelica
program implementing the
voltage divider circuit

model MyBattery
extends MyComponent;
parameter Real vn;

equation
if state == FaultType.ok then

v = vn;
else

v = 0.0;
end if;

end MyBattery;

model MySimpleCircuit
MyResistor r1(r=100);
MyResistor r2(r=50);
MyBattery bat(vn=12);
MyGround gnd;

equation
connect(bat.p,r1.p);
connect(r1.m,r2.p);
connect(bat.m,r2.m);
connect(bat.m,gnd.p);

end MySimpleCircuit;

�
In addition to a system model, we need to introduce the concept of simulation.

That is, the computation of values for a system’s variables over time, given the
system model and an input scenario. To this end, we first introduce the concept of
mode assignments, i.e., assignments of modes to components at points in time.

Definition 2 (Mode Assignment) Let TIME be a finite set of time points. A mode
assignment � is a set of functions ıi W COMP � TIME 7! MODES that assign to
each component c 2 COMP for each time point t 2 TIME a mode m 2 �.c/, i.e.,
� D fı1; : : : ; ıjTIMEjg where 8i 2 f1; : : : ; jTIMEjg W 8t 2 TIME W 8c 2 COMP W
ıi.c; t/ 2 �.c/.

During simulation, a mode assignment allows us to change a component’s
behavior and in turn change that of the entire system—even dynamically if desired.
Thus also in our definition of a simulation function, we use a mode assignment.

Definition 3 (Simulation) Let us assume that we have a system model M as of
Definition 1, a test bench T specifying the desired system inputs over time, a mode
assignment �, and an end time te. A simulation function sim is a function that
computes via P the values of all variables over time between 0 and te, considering
(a) test bench T for inputs I and (b) the mode assignment �.

We can easily implement such a simulation function sim using a Modelica
simulator. To this end, we construct a new test bench T0 from T and �. A typical
test bench T for a Modelica circuit SUT would follow, e.g., the following structure
if we desire the inputs to change over time:

52 I. Pill and F. Wotawa

model Testbench
SUT sys;

equation
if (time < t1) then

.... // First inputs
elsif (time >= t1 and time < t2) then

.... // Next inputs
elsif

....
else

....
end if;

end Testbench;

When taking � into account, we can easily extend T to derive T0 that contains
also the mode assignments for the individual components.

Example 2 Let us continue Example 1, considering the mode assignment
ı.bat; ok; 0/, ı.r1; ok; 0/, ı.r2; ok; 0/, ı.bat; ok; 0:5/, ı.r1; ok; 0:5/, ı.r2;
short; 0:5/. Due to the fact that the voltage divider has no input values, we can
easily obtain test bench T0 by considering only �.

model TestbenchPrime
MySimpleCircuit sut;

equation
if (time < 0.5) then

sut.r1.state = FaultType.ok;
sut.r2.state = FaultType.ok;
sut.bat.state = FaultType.ok;

else
sut.r1.state = FaultType.ok;
sut.r2.state = FaultType.short;
sut.bat.state = FaultType.ok;

end if;end Testbench;

�
Using a Modelica simulator and the extended test bench T0, the simulation

function sim can be defined as a call to this simulator using P [T0 and end time
te as parameters. All values for outputs o 2 O in M will be computed during the
simulation, and we assume that they are returned as a set of tuples .o; v/ for t where
o 2 O and v gives o’s value.

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 53

3.3 Comparing Signals for Detecting the Presence of Faults

Before starting a diagnostic process, we would like to determine whether the system
exhibits some unexpected behavior in the first place. To this end, we would compare
expected with observed signal behavior in order to classify the observed one to
be faulty or within expected limits. In this section, we compare several techniques
for such a comparison. All of them rely on some assumptions and corresponding
definitions. That is, we assume that signals change their value over time. Second,
we assume that there is a fixed finite set TIME of points in time where we consider
the signals’ values. Note that for a hybrid system, the sampling frequency will most
likely be determined by the analog part, rather than the clocked digital one. And
third, we assume that we know the values for “reference” signals for each t 2 TIME.

Given such data for two signals s1 and s2, we are then interested in assessing
whether their temporal behavior is equivalent with respect to a chosen equivalence
operator. It is important to note that such an equivalence operator might take certain
tolerance values (to cover for expected system parameter deviations and expected
exogenous influences like noise and temperature effects) into account. Formally, we
express the equivalence problem for two signals as follows:

Definition 4 (Equivalence Problem) Given two signals s1 and s2 from a set of
signals SIGS, a set of time points TIME, and a function f W SIGS�TIME 7! VALUE
mapping signals to their corresponding values at a certain point t 2 TIME . We say
that s1 is equivalent to s2, i.e., s1 D s2 , if and only if8t 2 TIME W f .s1; t/ DC f .s2; t/
for a certain equivalence operatorDC. If s1 is not equivalent to s2, we write s1 6DC s2.
In particular, if there exists a point t 2 TIME such that f .s1; t/ DC f .s2; t/ does not
hold, we write f .s1; t/ 6DC f .s2; t/.

When comparing two signals for diagnostic purposes, one signal is the reference
describing the expected behavior, and the other one is the observed signal. For such
a diagnostic scenario, we are not only interested in whether we indeed have s1 D s2,
but also in knowing the first timestamp where the equivalence would be violated. In
the following definition we capture this situation:

Definition 5 Given all prerequisites of Definition 4. If s1 6DC s2, we define tD as the
first point in time where the signal values fail to be equivalent with respect to DC,
i.e., f .s1; tD/ 6DC f .s2; tD/ ^ 8t 2 TIMEsuchthatt < tD W f .s1; t/ DC f .s2; t/.

Intuitively, the point in time when we are able to detect a signal deviation should
be as close as possible in time to the faults’ occurrence. For given observable signals,
the delay between the time of fault detection and the time where the isolated fault
occurred is a good measure for the quality of the operator DC. Other measures are
the capability to detect all faults, and the rate of false alarms (such that a certain
behavior is identified as being faulty when it is not). In the following, we discuss
several different definitions of comparison operators DC, starting with intuitive
comparisons using tolerance values, and continuing with temporal band sequences
and the Pearson correlation coefficient.

54 I. Pill and F. Wotawa

Fig. 3.5 Defining the bounds for the expected signal corridor using tolerances in the value

3.3.1 Tolerance Values

For the tolerance value approach illustrated in Fig. 3.5, we intuitively take the
reference signal and derive upper and lower signal bounds for the expected signal
corridor by considering two individual values for the respectively allowed distance
to the reference values. Formally, we define the equivalence operator D.vl;vu/

T , such
that vl represents the lower bound and vu the upper bound tolerance value.

Definition 6 (Tolerance Value Comparison Operator) In accordance with Defi-
nition 4, we define the comparison operator D.vl;vu/

T as a variant of DC as follows,
where parameters vl; vu � 0 define the desired tolerance values for the lower and
upper bounds, and we assume that s1 is the reference signal:

f .s1; t/ D.vl;vu/
T f .s2; t/ �DEF . f .s1; t/ � vl/ � f .s2; t/ � . f .s1; t/C vu/

Following the definition, we can easily see that with the static definitions of vu

and vl, we have that the normal distances of the upper and lower bounds to s1 vary
over time, in contrast to the constant vertical distances. Thus, while it allows for
possible shifts in the amplitude of the signal, slight shifts of signal parts in time
(relative to each other) are not considered systematically. In order to address this
to some extent, we can define tolerance also using the normal distance from the
reference signal as is illustrated in Fig. 3.6. That is, for every t 2 TIME we can
calculate an upper and a lower point using the normal on the tangent passing through
the point, in order to obtain functions for the upper and lower bounds.

Definition 7 (Alternative Tolerance Value Comparison Operator) As a variant
of Definition 6, we define the comparison operator D.vl;vu/

TF
as follows:

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 55

Fig. 3.6 An alternative way of defining tolerance

f .s1; t/ D.vl;vu/
TF

f .s2; t/ �DEF fl.s1; t/ � f .s2; t/ � fu.s1; t/

Let � be the first derivative of function f (s.t. � D f 0.s1; t/), ısu D vup
1C�2 ,

ıtu D ısu 	 �, sl D vlp
1C�2 , and ıtl D ısl 	 �. Then the upper and lower bound

functions fu and fl are computed as follows:

8f .s1; t/ W fl.s1; tC ıtl/ D f .s1; t/ � ısl

8f .s1; t/ W fu.s1; t � ıtu/ D f .s1; t/C ısu

With this definition we have to assume in principle a differentiable function f .
Thus, when considering this method for a digitized signal with a finite set TIME of
timestamps, one has to take care that two segments with individual (and possibly
different) steepnesses �t� and �tC would meet at such a point t 2 TIME.

An approximation for such a scenario would then be to compute two points with
the individual steepnesses�t� and�tC of the adjacent segments for the convex side
(upper or lower bound), and for the concave side one point using the average of the
two steepnesses. Interpolations between those computed points then represent the
functions fl and fu. While this takes care of the situation from an abstract point of
view, still, for high values for vl / vu together with rapidly changing signals, this can
lead to issues. That is, let us assume that we have a signal that has a steep rising
edge immediately followed (i.e., within a millisecond) by a steep falling edge. If we
now assume a value of 0:1 for vl and compute the lower bound for some timestep in
the rising edge, then, if the angle of the curve is steep enough on both flanks, it can
occur that with the falling edge, the signal would fall below this value fast enough
so that even the reference signal would violate this lower bound value.

56 I. Pill and F. Wotawa

Fig. 3.7 Reference signal covered using a temporal band sequence hB1;B2;B3;B4;B5;B6i

A more complex solution addressing also these scenarios would be to compute
circles with diameters vu and vl around all signal values (the areas within the
circles—or respective circle segments (divided by s1/ if vu and vl differ—describe
all acceptable signal values), and fl and fu could be defined using tangents to
these circles for approximating the lower and upper hulls. While this might be
intuitive for a human designer, please note that this certainly would be quite complex
computation-wise.

3.3.2 Temporal Band Sequences

Loiez et al. [19] introduced temporal band sequences for diagnostic purposes.
In particular they provided the foundations for using temporal band sequences
directly for model-based analog circuit diagnosis. Later on, Alaoui and colleagues
[1] presented the results of experiments comparing temporal band diagnosis with
statistical diagnosis approaches based on the false positive rate of the approaches. In
the context of fault detection, temporal band sequences can be seen as an extension
of tolerance approaches. In Fig. 3.7, we show an illustration of a reference signal
being covered by a sequence of temporal bands, each individual band defining part
of the corridor we expect the signal to adhere to.

According to Loiez et al. [19], a temporal band is an area between two points in
time, where the upper and lower bounds are given using boundary functions. The
authors defined functions fl, fu as polynomials, e.g.,

Pn
iD0 ai
 ti where the ais are the

parameters. Formally, we can define a temporal band as follows:

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 57

Definition 8 (Temporal Band) Given a signal s, a temporal band B is a tuple
..ti; te/; . fl; fu// where

• ti and te are time points 2 TIME with ti < te.
• fl and fu are functions defining the lower and upper bounds of the band such that
8t 2 Œti; teŒW fl.s; t/ � fu.s; t/.

Definition 9 (Temporal Band Sequence) A sequence of temporal bands TBS D
hB1; : : : ;Bki is a temporal band sequence for TIME, iff for all j D 1; : : : ; k � 1 with
Bj D ..tj

i; t
j
e/; . f j

l .s; t/; f
j
u.s; t/// and BjC1 D ..tjC1

i ; tjC1
e /; . f jC1

l .s; t/; f jC1
u .s; t/// it

holds that tj
e D tjC1

i , and for all t 2 TIME it holds that t0i � t < tk
i .

A temporal band sequence TBS connects several individual temporal bands,
where we have to ensure that TBS defines a temporal band for all t 2 TIME,
and that the sequence is ordered in respect of time. We say that a temporal band
sequence is defined for a reference signal s, if for each function value f .s; t/ there
exists a temporal band ..ti; te/; . fl.s; t/; fu.s; t/// 2 TBS with ti � t < te so
that fl.s; t/ � f .s; t/ � fu.s; t/. From these definitions, we can easily define the
equivalence of signals with respect to temporal bands:

Definition 10 (Temporal Band Sequence Equivalence) Given signals s1; s2 with
a function and a temporal bands sequence TBS D hB1; : : : ;Bki for the reference
signal s1. Then we have f .s2; t/ DTBS f .s1; t/ if and only if

9..ti; te/; . fl.s1; t/; fu.s1; t/// 2 TBS W .ti � t < te/ ^ . fl.s1; t/ � f .s2; t/ � fu.s1; t//

It is important to note that such bands could be in principle defined without
referring to a reference signal (s1 in the definition), so that functions fl and fu of
a band are just functions of time t. So, we could define them also using “lines” as
upper and lower bound functions (see Fig. 3.7). Furthermore it is not necessary that
the boundary values for two connected temporal bands match each other.

Since we noted that temporal band sequences can be seen as an extension
of tolerance approaches, immediate questions arising are those regarding the
differences and whether there is an advantage to be gained with using temporal band
sequences. As we can gather from Definition 6, we have that the tolerance values
vl and vu are constants for the tolerance value approach, and thus define a validity
corridor of a certain vertical width (vl C vu) with the reference signal defining the
vertical placement. Temporal bands as of Definition 8 allow us to define tolerance
as a dynamic function of the reference signal and time. This allows us to take
temporal signal segments where we expect more noise into account. That is, since
tolerance can be defined via a dynamic function, we can define a higher tolerance
for this segment without sacrificing preciseness for segments where we expect
almost no deviation from the “ideal” reference signal. Temporal band sequences
as of Definition 9 then add the comfort that we can use more than one function
for defining tolerance for the signal’s whole duration, i.e., by defining individual
temporal bands with individual tolerance functions for the signal’s individual

58 I. Pill and F. Wotawa

segments in time. Thus, especially if the tolerance function would consider time
only as mentioned before, the concept of having a sequence of segments adds further
flexibility and room for optimization.

3.3.3 Pearson Correlation Coefficient

In his Master’s thesis and the resulting book [14], Schneider used the Pearson
correlation coefficient for comparing a measured signal with a reference. In the
system testing framework he considered, using the Pearson correlation coefficient
offered improvements on previous comparison algorithms used for classifying
signals as being equivalent or different. Thus it seems an attractive variant also for
our comparison of a reference signal with observed behavior. Some advantage of
this coefficient is that it is well known to be invariant to linear transformations of
either signal. Depending on the actual scenario and fault effect, this can also be
an issue though, as you can see in our experiments in Sect. 3.5. In our context, we
can formalize the Pearson correlation coefficient r.s1; s2/ for signals s1 and s2 as
follows:

Definition 11 (Pearson Correlation Coefficient) For signals s1 and s2 over TIME,
we define the Pearson correlation coefficient r as follows, where m1 and m2 are the
mean values of signals s1 and s2 respectively:

r D
P

t2TIME.. f .s1; t/ � m1/
 . f .s2; t/ � m2//p
.
P

t2TIME. f .s1; t/ � m1/2/
 .Pt2TIME. f .s2; t/ � m2/2/

In the literature we can find the following interpretation of the result:

0:0 � r � 0:2 Too weak a linear connection

0:2 < r � 0:5 Weak to moderate linear connection

0:5 < r � 0:7 Significant linear connection

0:7 < r � 0:1 High to perfect linear connection

When defining equivalence based on the Pearson correlation coefficient for our
context, we have to take such values into account.

Definition 12 (Pearson Correlation Coefficient Equivalence) Given two signals
s1 and s2 together with their behavioral functions over time TIME and their Pearson
correlation coefficient r as of Definition 11. We say that s1 and s2 are Pearson
correlation coefficient equivalent (or PCC equivalent for short—s1 Drb

PCC s2) if and
only if r � rb for a decision value rb.

In this definition, obviously rb is not fixed but has to be obtained from
experiments with the problem domain in order to maximize the fault detection rate

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 59

and minimize the false positive rate. An educated guess could be, for instance,D0:75PCC
dividing the best correlation range given in the above table into halves. Please note
in this respect also our corresponding experiments in Sect. 3.5.

3.4 Abductive Diagnosis for Modelica Models

In this section we show how to automatically derive a knowledge base for abductive
diagnosis using the Modelica system model and simulation concept discussed in
Sect. 3.2. Before we disclose our rule extraction process in Sect. 3.4.2, we briefly
recapitulate the basic definitions of abductive diagnosis in Sect. 3.4.1.

3.4.1 Abductive Diagnosis

Let us first introduce the concept of a knowledge base. A knowledge base comprises
a set of horn clause rules HC over propositional variables PROPS. When diagnosing
engineered systems, such propositional variables state, for example, some compo-
nents’ particular mode or a certain value. Considering our voltage-divider example
from Fig. 3.2, we might use, e.g., proposition short.R2/ for stating that the resistor
R2 has a short. A proposition nok.R2:v/ might be used to indicate that the voltage
at resistor R2 deviates from the expected voltage. For stating a behavior, e.g., saying
that a short of R2 leads to an unexpected voltage drop at the same resistor, we use
the horn clause short.R2/! nok.R2:v/. Using the definitions of [11], we define a
knowledge bases formally as follows:

Definition 13 (Knowledge Base (KB)) A knowledge base (KB) is a tuple
.A;Hyp;Th/ where A � PROPS denotes a set of propositional variables, Hyp � A
a set of hypotheses, and Th � HC a set of horn clause sentences over A.

In the context of our work, hypotheses correspond directly to causes, i.e., faults.
Thus, in the following, we use the terms hypothesis and cause interchangeably.

Example 3 A partial KB for our voltage divider example looks like:

0

@
fshort.R2/; nok.R2:v/g;

fshort.R2/g;
fshort.R2/! nok.R2:v/g

1

A

�
In the next step we define a propositional horn clause abduction problem.

60 I. Pill and F. Wotawa

Definition 14 (PHCAP) Given a knowledge base .A;Hyp;Th/ and a set of obser-
vations Obs � A, the tuple .A;Hyp;Th;Obs/ forms a propositional horn clause
abduction problem (PHCAP).

A solution for some PHCAP is a set of hypotheses that allows deriving the given
observations or symptoms. The following definition from [11] states this formally.

Definition 15 (Diagnosis; Solution of a PHCAP) Given a PHCAP .A;Hyp; Th;Obs/,
a set � � Hyp is a solution if and only if � [Th ˆ Obs and � [Th 6ˆ ?. A
solution � is parsimonious or minimal if and only if no set �0 � � is a solution.

A solution � for some PHCAP is an explanation for the given observations.
Thus we refer to� as abductive diagnosis (or diagnosis for short). In Definition 15,
diagnoses do not need to be minimal or parsimonious. In most practical cases,
however, only minimal diagnoses or minimal explanations for given effects are of
interest. Hence, from here on, we assume that all diagnoses are minimal ones, if not
specified explicitly otherwise.

Example 4 Let us continue Example 3 and add the observation nok.R2:v/ to the
KB to form a PHCAP. The only solution for this problem is fshort.R2/g. If we
assume an observation :nok.R2:v/, then there is no solution given the partial KB
of Example 3. �

Finding minimal diagnoses for a given PHCAP is an NP-complete problem
(see [11]). However, computing all parsimonious solutions can be done easily and
efficiently in cases where the number of hypotheses is not too big. An algorithm
for computing abductive solutions might use De Kleer’s Assumption-based Truth
Maintenance System (ATMS) [7], where we refer the interested reader to [8] for an
ATMS algorithm. When using an ATMS for abductive diagnosis, we only need to
encode observations as a single rule, i.e., for observations Obs D fo1; : : : ; okg, we
generate a new proposition � and add o1^: : :^ok ! � to the theory Th that is passed
to the ATMS. The label of the corresponding node of � is an abductive diagnosis
for Obs. Due to the rules for the node labels, which only comprise hypotheses, it
is ensured that the solution is minimal, sound, complete, and consistent. For more
technical details, including computing distinguishing diagnoses and characterizing
knowledge bases according to their capability of distinguishing diagnoses, we refer
the interested reader to [31]. For a discussion on whether abductive reasoning can
be used in practice, we recommend reading [16].

3.4.2 Automated Rule Extraction

As briefly depicted in the introduction, we extract the desired cause-effect rules
from a system model M via comparing the outcome of two simulation runs. That
is, one run where no fault is enabled for any component, and one with exactly
one fault mode enabled for some individual component. The difference between

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 61

Algorithm 1 Rule extraction from Modelica models
Require: System model .COMP;MODES; �; I;O;P/, a test bench T, a time tf where a fault

should be injected, and an end time te
Ensure: A KB .A;Hyp;Th/
1: Let Ip be the propositional representation of I.
2: Let A be Ip and let Hyp, and Th be empty sets.
3: for c in COMP do
4: for m in �.c/ n fokg do
5: Let �1.c; 0/ D ok
6: Let �2.c; 0/ D ok and �2.c; tf / D m
7: for c0 in COMP n fcg do
8: �1.c0; 0/ D ok
9: �2.c0; 0/ D ok and �2.c0; tf / D ok

10: end for
11: Let sim.P;T; �1; te/ be Bcorr .
12: Let sim.P;T; �2; te/ be Bfaulty.
13: Let D be the result of diff.Bcorr;Bfaulty/ considering variables in O only.
14: Add all elements of D to A.
15: Add the proposition m.c/ to A and Hyp.
16: for d in D do
17: Add the rule m.c/^ .Vp2Ip

p/! d to Th
18: end for
19: end for
20: end for
21: return .A;Hyp;Th/

the two behaviors is mapped to a proposition that we can use as an observation
in a PHCAP (see Definition 14). Also the inputs are mapped to propositions, as
are the assigned modes of components ci 2 COMP that are not ok. The latter are
furthermore considered as hypotheses for diagnosis purposes.

Algorithm 1 formalizes the individual steps for our rule extraction concept. In
lines 1–2, we initialize the individual sets of the knowledge base (see Definition 13)
used in the computation. That is, the set of propositions A, the set of hypotheses Hyp,
and Th—the horn clauses over A. We assume here that we have input values over
time in I, as is necessary for stimulating the system under consideration. We further
assume that this information can be mapped to a set of propositional variables and
that it is also represented in the given test bench T. A simple mapping would state
that each variable occurring in I over time is ok, i.e., ok.v; t/ such that v is a variable
and t 2 TIME a point in time where a value is set.Alternatively, we might state
a precise certain value, which has to be provided in order to be able to use the
extracted rules for diagnosis purposes, i.e., value.v; t; x/ such that v is the name of
the variable, t 2 TIME the considered timestamp, and x the value to be set for v at t.

Lines 3–20 implement the core of our rule extraction process. For all components
and their modes, we iterate over lines 5–17 in lines 3–4. In the first part of the
inner loop’s body (lines 5–10), we generate the mode assignments for the correct
simulation run (�1) and for the faulty one (�2): With the exception of the currently

62 I. Pill and F. Wotawa

“active” component c (chosen in line 3), all components are assigned mode ok.
For component c though, we assign mode m (selected in line 4) for �2, and ok
for �1. Note that we implement a “simple” temporal mode assignment with only
one permanent change at tf . Considering variants more complex in a temporal
sense would require many more simulation runs which would affect computational
complexity. Thus, for our purpose of isolating fault effects at specific points in time,
this restriction seems to be appropriate. Note that tf should be selected such that
the system’s initialization is finished so that we can observe the ordinary expected
behavior.

In lines 11–13, we start the simulation runs and compare the observed results
with function diff. In the simulation function sim, we assume that the test bench
T is merged with the mode assignment � (T ! T0) as discussed in Sect. 3.2.1
(see Example 2). Please note that the set TIME is indirectly defined by the
sampling frequency of these simulation runs and te—and is thus not a parameter
of Algorithm 1.

The function diff deserves special attention in that there are two potential
concepts for implementing it. Either, diff returns a propositional representation of
values for all output variables from O if there is at least one output where the
behaviors differ. Or, we have that diff reports the deviation of values between Bcorr

and Bfaulty, stating, e.g., that the value caused by the fault for some observed variable
o 2 O is smaller than the nominal value determined via the correct simulation run
Bcorr. Please note that also Struss used the latter variant for diagnosis purposes [29].

The former mapping option requires a propositional representation for translating
the real simulation values to a qualitative domain. For example, we might consider
only values like 0, vmax, or v as qualitative values for a variable, such that 0
represents the zero value, vmax the maximum value that can be reached, and v
any value between 0 and vmax. Obviously, the diagnosis capabilities might vary,
depending on the chosen qualitative representation and the encoded information. In
[26, 27], the authors discuss this issue, i.e., the task of finding an appropriate task
dependent qualitative abstraction, and also show how to automate this abstraction.
Now let us formalize these two approaches at implementing diff:

Qualitative representations: For a qualitative representation, we assume a quanti-
tative domain D and its qualitative representation DQ, together with a mapping
function � W D 7! DQ. Then, we define diff as:

diff.B1;B2/ D
� ; if 6 9.x; v/ 2 B1; .x; v0/ 2 B2 W v 6D v0
fval.x; �.v//j.x; v/ 2 B2g otherwise

Deviation models: In case we prefer a deviation model, we are “only” interested
in whether the value for a variable is, e.g., smaller, equal, or larger than its
expected value. Hence, we define diff straightforwardly as follows:

diff.B1;B2/ D fo.x/j.x; v/ 2 B1; .x; v
00/ 2 B2 ^ v0 o� vg

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 63

In this definition, o and o� represent the relational operator on the side of the
qualitative and quantitative domain, respectively. For example, the operator o 2
fsmaller; equal; largerg in the qualitative domain corresponds to o� 2 f<;D; >g
in the quantitative (integer, real) domain. While we showed the obvious relational
operators that we might want to consider, for some projects, we might also want
to add, e.g, ones indicating that there is a huge difference in the values (i.e., a
deviation above a certain threshold).

In the last part of the rule extraction algorithm’s core functionality (i.e., lines
14–18), we add the obtained propositions, hypotheses, and horn clause rules to the
respective sets. Finally, we return the knowledge base in line 21, which we can then
use to specify and solve diagnosis problems as of a PHCAP (see Definition 14).

It is easy to see that, by construction, our rule extraction algorithm works as
expected. If we assume that sim and diff terminate, then termination is ensured
since we only have a finite number of components and modes. In respect of time, the
complexity of Algorithm 1 is bounded by O.jCOMPj2
 jMODESj/ when assuming
that sim and diff run in unit time. Note that in practice simulation is very much
likely to be responsible for most of the experienced run-time. However, since we
can automate all parts of the algorithm and can execute them before deploying the
system (and in turn before deploying the diagnosis engine), the time complexity of
the rule conversion process seems to be negligible since we do not encounter it when
running the diagnosis engine itself.

3.5 Case Studies

In order to show the viability of our proposed method, we carried out two case
studies. So let us start with the first case study showing the results we obtained
when using Algorithm 1 for our voltage-divider example. Please note that we
focus first on the model extracting step, and only for the second case study we
illustrate also the aspects of the fault detection step as discussed in Sect. 3.3. The
corresponding source code for the first Modelica model is shown in Fig. 3.4, and
the list of components COMP, the list of behavioral modes MODES, etc. were
derived in Examples 1 and 2. When applying Algorithm 1 considering COMP D
fbat;r1;r2g, MODES D fok; broken; short; emptyg, and assuming tf to be set to
0.5 s like for Example 2, we would obtain the following results when simulating the
resulting faulty behavior.

Component Mode v1 v2 e1 e2
BAT empty 0 0 Smaller Smaller
R1 short 0 12 Smaller Larger
R1 broken 12 0 Larger Smaller
R2 short 12 0 Larger Smaller
R2 broken 0 12 Smaller Larger

64 I. Pill and F. Wotawa

In this table, we also state the deviations (or effects e1, e2) for variables v1 and
v2 and the individual fault modes (let us remind you that the nominal values should
be 8V for v1 and 4V for v2). What we see also from our example is that the values
obtained when simulating the Modelica program do not necessarily guarantee that
we are able to distinguish between all diagnoses. For example, both a broken R1
and a short R2 would produce the same values for v1 and v2, so that we do not
end up with a single explanation/diagnosis in general. Let us now use this table to
generate the qualitative and the deviation model (concerning diff in Algorithm 1)
for the voltage divider. For both models we have the same set of hypotheses:

�
empty.BAT/; short.R1/; broken.R1/;

short.R2/; broken.R2/

�

Qualitative model: For this kind of model we assume a qualitative domain
of f0; .0; 4/; 4; .4; 8/; 8; .8; 12/; 12g such that we consider all voltage values
occurring in the correct model. The open interval .x; y/ stands for any value larger
than x and smaller than y. For this representation, the algorithm would return the
following rules:

empty.BAT/! val.v1; 0/
empty.BAT/! val.v2; 0/

short.R1/! val.v1; 0/
short.R1/! val.v2; 12/

broken.R1/! val.v1; 12/
broken.R1/! val.v2; 0/
short.R2/! val.v1; 12/
short.R2/! val.v2; 0/

broken.R2/! val.v1; 0/
broken.R2/! val.v2; 12/

For this case, the set of propositions includes the hypotheses (like empty.BAT/
and the elements in fval.v1; 0/; val.v1; 12/; val.v2; 0/; val.v2; 12/g. No other
qualitative values are necessary for this example.

Deviation model: The example’s deviation model comprises the following rules:

empty.BAT/! smaller.v1/
empty.BAT/! smaller.v2/
short.R1/! smaller.v1/
short.R1/! larger.v2/

broken.R1/! larger.v1/
broken.R1/! smaller.v2/

short.R2/! larger.v1/
short.R2/! smaller.v2/

broken.R2/! smaller.v1/
broken.R2/! larger.v2/

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 65

Fig. 3.8 A switch circuit
example

In this case, the set of propositions is formed by the hypotheses together with
propositions fsmaller.v1/; larger.v1/; smaller.v2/; larger.v2/g.
Both kinds of model represent the obtained information in a qualitative way.

It is worth mentioning that, in addition, we might also want to encode in a
knowledge base that some values cannot occur at the same time. For example, a
voltage drop cannot be larger and smaller than some value at the same time. Such
knowledge can be added easily via stating smaller.v1/ ^ larger.v1/ ! ? and
smaller.v2/ ^ larger.v2/ ! ?. Of course, we can also automate the process of
adding such mutual exclusiveness data.

The purpose of the second case study is to show that our approach can be applied
also to hybrid/analog circuits comprising capacitors and switches such that the
behavior over time is more complicated. In Fig. 3.8, we show such a circuit, where
we use a switch SW for turning a bulb BULB on or off. The purpose of capacitor C1
is such that the bulb stays on (red line in Fig. 3.9) for a short while after switching
it off (see blue line in Fig. 3.9), drawing from the energy stored while loading C1—
see the green line for the current in the capacitor). Thus, we have one input, i.e., SW,
and one output, i.e., BULB transmitting light or not. Appropriate sets of behavioral
modes would be fok; emptyg for the battery, and fok; short; brokeng for the other
components. Via corresponding simulations, we obtained the results shown in the
following table, where we focus on the first difference between the expected value
of light and the observed one at a particular point in time. In the table we see also
the value of the input variable on stating the status of SW.

66 I. Pill and F. Wotawa

Fig. 3.9 The correct behavior of the switch circuit behavior (picture at the top) versus the behavior
for the case that R1 has a short (picture at the bottom)

Component Mode On Light Time
BAT empty On Off 0:5

R1 short Off On 1:13

R1 broken On Off 0:5

SW short Off On 0:0

SW broken On Off 0:5

C1 short Off Off 1:0

C1 broken Off Off 1:0

R2 short Off Off 1:09

R2 broken Off Off 1:0

BULB short On Off 0:5

BULB broken On Off 0:5

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 67

Again, it is evident from the table that we cannot distinguish between all faults
via the obtained deviations. We also see from Fig. 3.9 that for a short in R1, the
output might have the same shape, but would show a slightly different timing.
Using the obtained table of behavioral deviations, computing the knowledge base
for abductive diagnosis as described in this paper is straightforward. However, for
more detailed results, we should probably introduce the means for reasoning about
differences in the timing, e.g., stating that BULB goes off too late. Thus, we see
that our approach for extracting a PHCAP can be used for many systems, and that
the detail level of the obtained knowledge base depends on the chosen deviation
description as expected and discussed.

The slight timing deviations for the faulty case are also something that affects
fault detection as described in Sect. 3.3. That is, let us assume that we can observe
the bulb’s current I, its voltage V , and also its lighting status light. In particular, it is
more likely that we have sensors there, rather than for the current of the capacitor in
Fig. 3.9 (but which is be equal to the current of the bulb if the switch is off).

To this end, let us assume that we have vl D 0:01=vu D 0:02 for both tolerance
approaches, and let us neglect the more flexible TBS approach at this point since
we will see that already the basic tolerance approaches work well. Of course, we
will also have a look at the PCC. Considering the faulty scenario, we have that
the bulb’s current I is completely different in value when we turn the switch on,
since then it is only determined by the bulb’s resistance and the battery voltage
(R1 has a short). Assuming that we have simulations with a 1 kHz sampling rate,
both tolerance approaches can recognize the fault at simulation time 501 ms when
focusing on the bulb’s current or voltage. This means right for the first sample when
the fault in R1 starts affecting the circuit after the switch is turned on. If we, however,
consider the light status light instead, we can detect the fault’s presence only at
simulation times 1.098 s and 1.101 s respectively (tolerance/alternative tolerance).
This means about 100 samples after turning the switch off, and quite some time
later than when considering I or V . This was to be expected though, since the fault
effects would not be visible earlier for this “signal.” Consequently, the observed
signals have to be chosen wisely.

As we wrote above, while there are differences in the timing, the “shape” of the
signals is quite similar for the scenario. That is, while there is a difference also in
the amplitude (at 0.65 s we have I D 90mA=V D 4:5V for the faulty scenario, and
I D 64:3mA=B D 3:21V for the correct scenario), the overall shape is still similar.
Due to the specific values in the scenario, this results in the PCC values to be 0:992
for the current, 0:992 for the voltage, and 0:975 for the lighting status. So, while we
would have violations with the tolerance approaches (and thus also if we defined a
TBS), the PCC method is not ideal for this scenario despite its advantages that we
discussed in Sect. 3.3. Consequently it is not only the observed signals that have to
be chosen wisely, but also the fault detection method(s). In this respect, we would
like to point out that a portfolio approach would be of advantage in practice.

68 I. Pill and F. Wotawa

3.6 Related Research and Discussion

For model-based diagnosis approaches, e.g. [9, 25], we can use the diagnostic model
for fault localization via checking whether the observations are consistent with
the behavior predicted by the model for the considered stimuli. In Sect. 3.3, we
considered several approaches that allow us to detect the presence of some fault(s)
via considering the output and some tolerance specified one or the other way. That
is, without the use of a model, but using a “specification” in the form of an expected
behavior corridor or our expectations regarding a statistic correlation to reference
signals. As discussed in that section, these concepts have been considered in fault
detection and diagnosis before [14, 19], and perfectly fit our scenario of Modelica
models of hybrid systems where we can simulate the expected behavior.

We proposed in Sect. 3.4 an automated extraction of a diagnostic model that
would support abductive diagnostic reasoning for identifying the cause(s) of some
unexpected behavior as briefly outlined in [23]. In the literature, there have been
three major approaches to using Modelica models for diagnosis. The first one
implements the basic idea of applying those changes necessary for computing
diagnoses to the language Modelica itself. This includes adaptions for handling
unknown behavior, allowing us to come up with simulations where no single value
can be determined anymore, and the introduction of corresponding fault modes
and their behavior. In [20], Lunde presented such an approach leading to the
language Rodelica as used in the model-based diagnosis system RODON [3]. In
contrast to [20], we neither change the modeling language, nor do we rely on
specific simulation engines. Rather, we use Modelica and its available simulation
infrastructure. Regarding available data, we also assume that the components’
specific fault modes are known and that we can activate and deactivate them
individually during simulation.

The second approach augments Modelica models with fault modes and their
behavior. In [10, 22] the authors correspondingly suggested to automatically aug-
ment Modelica models, and to use them for diagnosis as follows. When simulating
the model with faults turned on or off, the outcome is compared with the expected
fault free behavior. In case of differences that are considered to be large enough, the
activated fault mode can be given back as result. The interesting idea behind [22] is
that the authors suggested a Bayesian approach for checking similarity. This work is
close to ours, with an important difference. That is, we use an augmented Modelica
model for creating a knowledge-base for abductive reasoning, which can be used
later on, i.e., after deployment, for diagnosis purposes.

The third approach to using Modelica for diagnosis (see [28]) uses corresponding
models for computing a system’s expected behavior to be compared with the
actually observed and measured one. In case of a deviation, a model-based diagnosis
engine is then used for computing explanations, i.e., diagnoses. The required model
is extracted from the Modelica model such that basic components are replaced
with qualitative models in order to come up with a component-connection model.
Correspondingly, we can use this concept for all cases where there are qualitative

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 69

models available for all the library components contained in a model. An advantage
of this approach is that we can use Modelica for obtaining a system’s structure
and for checking deviations between the expected and observed system output.
A significant drawback is, however, that somebody has to develop the qualitative
models for library components used in the system model.

There is further work dealing with diagnosis in the context of Modelica. For
example, Lee et al. [18] presented a very different and interesting approach. Also
relying on component fault models, they use machine learning for identifying the
root cause of an issue, rather than using a logic-based reasoning. In particular, the
idea is to use simulation results from models where a component is assumed to be
faulty for training a belief network. Once a certain behavior is observed, the network
can then be used to isolate the corresponding faulty component. A related approach
was presented in [21] where the authors used partial models of a railway switch to
learn diagnosis classifiers with a random-forest algorithm.

In contrast to Lee and colleagues, we rely on model-based diagnosis and in
particular on abductive diagnosis. We furthermore do not rely on machine learning
and we are also able to derive all diagnoses for a certain behavior, which is usually
not possible when relying on belief networks.

The concept discussed in this chapter extends previous work in the domain of
abductive diagnosis [13, 31] where we used FMEA like tables for extracting the
cause-effect rules. In those papers, the authors introduced an algorithm that converts
available tabular data on the available components, potential faults occurring for the
individual components and the resulting effects, as well as supporting conditions
into horn clauses for abductive diagnosis. The advantage of that approach is that it
draws on information that is available in practice. Hence, an easy integration into
existing processes for diagnosis and monitoring can be assured. On the downside,
the tabular information has to be provided manually. The concept discussed in this
chapter improves on this situation, in that we suggest to use popular modeling
languages like Modelica for generating the desired abductive diagnosis models.

While the proposed concept has several advantages, our current variant of Algo-
rithm 1 has a limitation that is of interest for practical applications. That is, when
gathering the data for creating the knowledge base KB, we limit the simulations to
the exploration of single fault behavior in order to limit the algorithm’s complexity.
If we assume that individual faults are indeed independent, this still allows for
a correct isolation of diagnoses for multi fault scenarios. If faults interact with
each other though, KB does not contain any data about effects resulting from such
interactions, which will add some impreciseness regarding multi-fault diagnosis
results.

If KB shall rely also on data about possible fault interactions, we need to conduct
also simulations where multiple faults are active simultaneously. This would
certainly increase the algorithm’s complexity though. For example, if assuming
that the mutual exclusiveness of fault modes for a single component still holds, we
would need then jMODESjjCOMPj simulations for investigating the entire behavior
for some input stimulus, compared to jCOMPj:jMODESj simulations for the current
version. For a mere 20 components with 5 fault modes each, this would result in

70 I. Pill and F. Wotawa

520 simulations compared to 100 simulations for the current algorithm version. A
combinatorial exploration like adopted for combinatorial testing [2, 5, 17] could be
a promising technique to tackle this problem via exhaustively considering all locally
possible fault interactions for all component subsets of a certain size x < jCOMPj
(x is then referred to as the strength of the combinatorial approach). The advantage
then would be that a single simulation with several activated faults would cover more
than one such local combination of various component subsets. For considering
the effect, let us assume a simple scenario where we have two modes OK and
F1 and three components fc1; c2; c3g that can all feature either of the two modes.
Furthermore let us assume that the faults are active for the whole simulation
duration. For an exhaustive approach we would need jMODESjjCOMPj D 23 D 8

simulations, while for a combinatorial strength of x D 2, we could use the following
four simulations shown in the table below. We can easily see that for any component
subset of size two, and for any possible mode assignment to the components in this
subset, there is at least one simulation that features exactly this mode assignment.

�.c1/ �.c2/ �.c3/
Simulation 1 OK OK OK
Simulation 2 OK F1 F1
Simulation 3 F1 OK F1
Simulation 4 F1 F1 OK

In [24] we outlined a preliminary concept for such an extension of Algorithm 1,
and discussed several questions that immediately arise (like that of exploiting
structural dependency information in the combinatorial exploration) and should be
investigated as well as solved in order to gain enough confidence in the effectiveness
of such a concept for practical purposes. In the context of combinatorial testing,
Kuhn et al. showed, for instance, that a strength of x D 6 should suffice in practice,
but it is an open question whether this would suffice for our purposes. Since we
usually have a large number of components (e.g., 100), requiring a strength of
6 << jCOMPj would allow a significant reduction in the number of required
simulations though. Still, future research will have to show the effectiveness of
adopting such a concept.

3.7 Summary

When facing the decision of whether to employ some model-based diagnosis
approach for a project, more often than not the resources and knowledge to create
the needed model prohibit a positive decision. With the concept discussed in this
chapter, we address some of the issues that make the required modeling step so
demanding. That is, we show for a popular modeling language how to automatically
derive a model containing cause-effect rules that we then can use for abductive
diagnosis. We use Modelica’s simulation engine to compute these rules, and the

3 Fault Detection and Localization Using Modelica and Abductive Reasoning 71

only data a designer has to provide are data that she would consider during FMEA
anyway. This data—concerning component fault models and input vectors for
triggering them—can, which is important, be defined in Modelica. In particular, a
designer can add multiple behaviors for a component in Modelica, and our approach
will enable them individually in order to simulate the corresponding behavior for
deriving the desired diagnosis model.

The derived abductive diagnosis model can then be used to solve propositional
horn clause abduction problems which basically consist of the data we derived when
creating our cause-effect rules plus the observed symptoms. An advantage of this
type of model-based reasoning is that it is quite intuitive to what a maintenance
expert would think about when considering FMEA data, but offers the advantage
of a formal background and thus is amenable to automated reasoning. For fault
detection, we discussed three different approaches to trigger the diagnosis process
by considering tolerances or statistic correlation in the context of the observed
signals.

So far, we have been limiting our algorithm to single fault simulations. For future
work, we intend to extend our concept to include also simulations of scenarios with
multiple faults using a combinatorial exploration strategy as outlined in Sect. 3.6.
Like we mentioned, we plan to extend the algorithm also to incorporate a more
general temporal fault activation as hinted at in our definitions. Last but not least,
while we showed the viability of our approach for some examples, we need also
industrial sized case studies as showcases. Hopefully corresponding results can
contribute to increasing the deployment of model-based diagnosis in practice.

References

1. R.M. Alaoui, B.O. Bouamama, P. Taillibert, Diagnosis based on temporal band sequences -
a empirical comparison to statistical approaches, in Proceedings of the Automation Congress,
vol. 17 (2004), pp. 435–440

2. M.N. Borazjany, L. Yu, Y. Lei, R. Kacker, R. Kuhn, Combinatorial testing of ACTS: a case
study, in 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation (2012), pp. 591–600. https://doi.org/10.1109/ICST.2012.146

3. P. Bunus, O. Isaksson, B. Frey, B. Münker, Rodon - a model-based diagnosis approach for the
DX diagnostic competition, in International Workshop on Principles of Diagnosis (DX) (2009)

4. M. Catelani, L. Ciani, V. Luongo, The FMEDA approach to improve the safety assessment
according to the IEC61508. Microelectron. Reliab. 50, 1230–1235 (2010)

5. D.M. Cohen, S.R. Dalal, M.L. Fredman, G.C. Patton, The AETG system: an approach to testing
based on combinatorial design. IEEE Trans. Softw. Eng. 23(7), 437–444 (1997). https://doi.org/
10.1109/32.605761

6. R. Davis, Diagnostic reasoning based on structure and behavior. Artif. Intell. 24, 347–410
(1984)

7. J. de Kleer, An assumption-based TMS. Artif. Intell. 28, 127–162 (1986)
8. J. de Kleer, A general labeling algorithm for assumption-based truth maintenance, in Proceed-

ings AAAI (1988), pp. 188–192
9. J. de Kleer, B.C. Williams, Diagnosing multiple faults. Artif. Intell. 32(1), 97–130 (1987)

https://doi.org/10.1109/ICST.2012.146
https://doi.org/10.1109/32.605761
https://doi.org/10.1109/32.605761

72 I. Pill and F. Wotawa

10. J. de Kleer, B. Janssen, D.G. Bobrow, T. Kurtoglu, B. Saha, N.R. Moore, S. Sutharshana, Fault
augmented Modelica models, in 24th International Workshop on Principles of Diagnosis (DX)
(2013), pp. 71–78

11. G. Friedrich, G. Gottlob, W. Nejdl, Hypothesis classification, abductive diagnosis and therapy,
in International Workshop on Expert Systems in Engineering (1990)

12. P. Fritzson, Object-Oriented Modeling and Simulation with Modelica 3.3 – A Cyber-Physical
Approach, 2nd edn. (Wiley-IEEE Press, New York, 2014)

13. C.S. Gray, R. Koitz, S. Psutka, F. Wotawa, An abductive diagnosis and modeling concept for
wind power plants, in 9th IFAC Symposium on Fault Detection, Supervision and Safety of
Technical Processes (2015)

14. S. Hannes, Automated Measurement Evaluation for Combustion Analysis (AV Akademik-
erverlag, Riga, 2016). https://www.akademikerverlag.de/catalog/details//store/de/book/978-
3-639-67777-5/automated-measurement-evaluation-for-combustion-analysis; https://dl.acm.
org/citation.cfm?id=3002640

15. P.G. Hawkins, D.J. Woollons, Failure modes and effects analysis of complex engineering
systems using functional models. Artif. Intell. Eng. 12, 375–397 (1998)

16. R. Koitz, F. Wotawa, On the feasibility of abductive diagnosis for practical applications, in 9th
IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (2015)

17. D.R. Kuhn, R.N. Kacker, Y. Lei, Sp 800-142. Practical combinatorial testing. Tech. rep. (2010).
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf

18. D. Lee, B. Lee, J.W. Shin, Fault detection and diagnosis with modelica language using deep
belief network, in Proceedings of the 11th International Modelica Conference, Versailles
(2015), pp. 615–623. https://doi.org/10.3384/ecp15118615

19. E. Loiez, P. Taillibert, Polynomial temporal band sequences for analog diagnosis, in 15th
International Joint Conference on Artificial Intelligence, IJCAI’97 (1997), pp. 474–479

20. K. Lunde, Object oriented modeling in model based diagnosis, in Modelica Workshop 2000
Proceedings (2000), pp. 111–118

21. I. Matei, A. Ganguli, T. Honda, J. de Kleer, The case for a hybrid approach to diagnosis: a
railway switch, in 26th International Workshop on Principles of Diagnosis, (2015), pp. 225–
234. http://ceur-ws.org/Vol-1507/dx15paper29.pdf

22. R. Minhas, J. de Kleer, I. Matei, B. Saha, Using fault augmented modelica models for
diagnostics, in 10th International Modelica Conference (2014)

23. B. Peischl, I. Pill, F. Wotawa, Abductive diagnosis based on modelica models, in 27th
International Workshop on Principles of Diagnosis (DX) (2016). No archival proceedings

24. I. Pill, F. Wotawa, Model-based diagnosis meets combinatorial testing for generating an
abductive diagnosis model, in 28th International Workshop on Principles of Diagnosis
(DX’17), ed. by M. Zanella, I. Pill, A. Cimatti, Kalpa Publications in Computing, vol. 4
(EasyChair, 2018), pp. 248–263. https://easychair.org/publications/paper/7t86

25. R. Reiter, A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)
26. M. Sachenbacher, P. Struss, Automated qualitative domain abstraction, in International Joint

Conference on Artificial Intelligence (2003), pp. 382–387
27. M. Sachenbacher, P. Struss, Task-dependent qualitative domain abstraction. Artif. Intell.

162(1–2), 121–143 (2005). https://doi.org/10.1016/j.artint.2004.01.005
28. R. Sterling, P. Struss, J. Febres, U. Sabir, M.M. Keane, From modelica models to fault diagnosis

in air handling units, in Proceedings of the 10th International Modelica Conference, Lund
(2014)

29. P. Struss, Deviation models revisited, in Working Papers of the 15th International Workshop
on Principles of Diagnosis (DX-04) (2004)

30. J. Voas, G. McGraw, Software fault injection: inoculating programs against errors. Softw. Test.
Verif. Reliab. 9(1), 75–76 (1999)

31. F. Wotawa, Failure mode and effect analysis for abductive diagnosis, in Proceedings of
International Workshop on Defeasible and Ampliative Reasoning (DARe-14) (2014)

https://www.akademikerverlag.de/catalog/details//store/de/book/978-3-639-67777-5/automated-measurement-evaluation-for-combustion-analysis
https://www.akademikerverlag.de/catalog/details//store/de/book/978-3-639-67777-5/automated-measurement-evaluation-for-combustion-analysis
https://dl.acm.org/citation.cfm?id=3002640
https://dl.acm.org/citation.cfm?id=3002640
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf
https://doi.org/10.3384/ecp15118615
http://ceur-ws.org/Vol-1507/dx15paper29.pdf
https://easychair.org/publications/paper/7t86
https://doi.org/10.1016/j.artint.2004.01.005

Chapter 4
Robust Data-Driven Fault Detection
in Dynamic Process Environments Using
Discrete Event Systems

Edwin Lughofer

4.1 Introduction

In today’s industrial systems with increasing complexity, the supervision of (on-
line) processes [3] is of utmost importance in order to guarantee a failure-free
continuation of their life-cycles and thus to reduce the likelihood of waste during
production. This also leads to a decrease of wrong feedbacks to operators (half
on-line systems) or to system/control components (within full in-line installations),
which may guide the whole process into a “wrong direction.” Process or system
failures could even lead to risks for operators in certain constellations (e.g., consider
a leaky pipe transferring emission gases) [11] or to significant down-times of system
components, which would make the process non-operable. This may even lead
to halts of important machines. Production waste should be ideally kept at a low
level in order not to significantly increase the production costs or not to disappoint
customers due to the delivery of faulty, defective or incomplete items [37].

Therefore, the concept of fault detection, as the business of detecting the
occurrence of a fault in a system, has been seen as one of the major priorities in
several companies and (applied) research programmes across Europe: for instance,
within the Horizon 2020 programme, there exist several objectives related to the
Factories of the Future (FoF) track1 which particularly demand for developments
within the field of fault detection and diagnosis as well as predictive maintenance.
The concept of fault detection was formally defined by IFAC Technical Committee

1http://ec.europa.eu/research/industrial_technologies/factories-of-the-future_en.html.

E. Lughofer (�)
Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz,
Linz, Austria
e-mail: edwin.lughofer@jku.at

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4_4

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74962-4_4&domain=pdf
http://ec.europa.eu/research/industrial_technologies/factories-of-the-future_en.html
mailto:edwin.lughofer@jku.at
https://doi.org/10.1007/978-3-319-74962-4_4

74 E. Lughofer

SAFEPROCESS as the “Determination of faults present in a system and the time
of detection.” They also defined a fault as an “Unpermitted deviation of at least
one characteristic property or variable of the system from acceptable/usual/standard
behaviour” [58].

The techniques for fault detection existing in literature can be loosely classified
into [108]:

1. differential equations, modeling physical laws within the systems [33, 57]
2. fault models based on expert knowledge from experienced operators of the

system [31], and
3. fault detection based on data-driven models serving as a fault-free reference of

interrelations and dependencies among process variables [11, 106].

The first two techniques, even when successful, are mainly bounded by their (high)
development effort, which may last over several months and thus induce significant
costs for companies and/or research facilities. In order to reduce the efforts,
automatic extraction of these dependencies in multi-sensor systems [42] using either
data-driven methods, machine learning methods and/or fusion methods has been
emerged during the last years. This approach led to the so-called data-driven System
Identification based fault detection (FD), where the learnt models are known as
System Identification (SysID) models [75, 94, 112] and reflect higher-dimensional
relations between the considered variables. The models are then used as monitoring
reference for the nominal, fault-free situation of the system. In contrast to other
data-driven (more univariate) FD techniques that rely on (1) the supervision of
abnormal behavior based on the recorded measurements [25], (2) frequency-based
analysis of measurement signals [20, 98], or (3) autoregressive moving average
models [122], SysID models do not require any re-occurring (typical) patterns
representing the fault-free cases in the signals and thus are applicable to a wider
range of measurement signals.

A particular challenge in fault detection systems is the detection of faults
at an early stage, ideally as early as possible before more severe failures or
downtrends in the quality of components or products can happen at all. This often
makes the application of a-posteriori checks by surface inspection [21, 52] or
structural health monitoring [45] inefficient and unpracticable. Therefore, the usage
of process/system variables which are able to track the state of the system over time,
thus to contain information about the system state at discrete time points already
at ‘processing stage’, is of much more interest. An example from a real-world
process (rolling mills at cold rolling plants) is provided in Fig. 4.1, which shows
the development of a particular process variable (its values measured by a sensor)
over a certain time frame. Obviously, the sensor signal of the process variable starts
to significantly drift at around Sample #450 (exceeding a tolerance band shown
as solid line), but the real failure became visible at the (surface of the) steel sheet
product much later, namely at around Sample #600, which is a time gap of 150 min
= 2 1/2 h in this case. Hence, in this case an adequate warning to operators at the
early stage would have omitted a bad product and thus would have reduced the waste
and costs significantly.

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 75

Fig. 4.1 Problem starts already much earlier in the process value than the real fault becomes
visible and recognizable from outside—a real-world example from condition monitoring at rolling
mills [105]

In this chapter, we therefore concentrate on the fully automated early detection
of faults by means of supervising the process variables using two particular types of
data-driven Sys-ID models, namely (1) causal relation networks and (2) distribution-
based reference models. We thereby assume that process variables are recorded
regularly with a certain frequency by multiple sensors, which can be typically
located among different spatial sites in order to collect data from different positions
within the system, and fuse them adequately [42]. We will address several well-
known state-of-the-art techniques as well as recently introduced approaches for the
two types of data-driven FD models (Sects. 4.3 and 4.4). The basic FD idea in all of
them is that new incoming states (reflected in newly recorded samples) are checked
in terms of their “deviation degree” to the fault-free reference models, and upon
violation a certain tolerance level, a fault can be alarmed.

A particular challenge to the approaches will arise when significant dynamics in
the system is present. Then, the reference models require to be (regularly) updated
in order to include the latest trend(s) of the system. This omits high false positives
(leading to wrong alarms) and false negatives (leading to misses) due to wrong
predictions and quantifications on new samples. Techniques from the fields of
incremental learning of data-driven models [28, 66] as well as evolving systems
[12, 62, 77] can be used for establishing model updates with a reasonable stability-
plasticity tradeoff and a good parameter convergence (as will be described in detail
throughout Sect. 4.5). However, the major problem especially in an FD system is
how to distinguish between intended changes (=regular system dynamics, drifts,
etc.) [64, 67] and non-intended changes. The latter typically points to upcoming
problems/faults in the system which should therefore not be integrated into the

76 E. Lughofer

model updates (but better alarmed to system operators). In both cases, an exceed
of a signal tolerance band as shown in Fig. 4.1 is highly likely. Thus, an automatic
distinction without operator intervention is not reliably possible. At the end of this
chapter (Sect. 4.6) we will discuss and present a concept how discrete event signals
[102] can be used in combination with predictive mappings and change isolation
(as a form of fault isolation [65]) for a fully automatic distinction. To our best
knowledge, such a distinction and such a combined approach forming a kind of
hybrid dynamic FD system has been not addressed in literature so far.

The organization of this chapter is thus arranged in the following way: first, we
define in more detail the problem statement when conducting FD in dynamic multi-
sensor networks (Sect. 4.2), then we describe various approaches for establishing
causal relation networks and distribution-based reference models from multiple
channels recorded within sensor networks and how fault and anomaly detection can
be achieved based on such model types (Sects. 4.3 and 4.4). In Sect. 4.5, we extend
the description to the case when significance dynamics is present in the system by
demonstrating ways how the reference models can be updated and evolved over
time. Finally, we address a concept for the automatic distinction between intended
and non-intended changes (Sect. 4.6), which can be used (1) for more reliable fault
detection and (2) for more stable model updates.

4.2 Problem Statement

Within the context of an FD approach relying on data-driven SysID models,
typically a large amount of data is gathered from multi-sensor networks, where
various sensors may contain different channels and where these may be also located
among spatial (local) sites. A typical sensor network example is shown in Fig. 4.2,
containing five sensors located at five different sites; each of the sensors contains
one or more channels, as indicated by the number of strokes going into them. We
assume that the channels are dynamically and continuously measured over time and
recorded through the central database sink (bottom box). Sensors #2, #3, and #4 are
connected, thus could exchange the channel data and perform a partial modeling
on their channel views. The data is fused and stored at a central database server
(bottom box) which is connected to all sensors (and included channel), thus is able
to process all 16 channels in parallel together with the event signals coming from
a process control system. Synchronization and fusion of the data is a sophisticated
challenge, especially in Big Data applications, but not the focus of this chapter—
we thus refer to [2, 63]. We assume that the data-driven modeling phase can be
performed on the central database server.

In principle the modeling and also the whole FD can be conducted in each sensor
individually, which is, for instance, established in so-called smart or intelligent
sensors embedding some artificial intelligence on chip devices [18, 41]. However,
this typically leads to a smaller partial view of the whole possible interrelations
between channels in the system than when performing the modeling at the central

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 77

Fig. 4.2 Example of a multi-sensor network with five spatially distributed sensor sites, each sensor
measuring one or more channels, which are all collected in a central data sink; discrete event signals
from the process control system also may flow into the data sink

site. In particular, some important channels embedding high FD capabilities may
be excluded, and thus an increase of misses of particular faults may be caused,
especially of those ones which crystallize much better in higher-dimensional
channel spaces than in more univariate views [26, 108]. On the other hand, the
isolation of faults is much easier or even for free.

The aim of a data-driven modelling approach is to establish as many relations
between all the M available channels as possible solely based on the data, and
this is fully automatically by appropriate learning procedures. This ideally includes
most of the channels in order to approach an “all-coverage” situation of so-called
reference models, which decreases the likelihood of overseeing any potential faults.
In order to address system dynamics properly and to handle any regular changes
(such as system drifts [64] or non-stationary environmental conditions [101]), the
established reference models should be updateable over time with high robustness.
The whole model may also include some additional statistical help measures, which
needs to be updated synchronously to the “real” model.

The selection of the measurements with which the model should be updated is
indispensable once intended and non-intended changes occur, both typically leading
to violations of the model f (see Sects. 4.3 and 4.4 below). This is because only in
the former case the model should be updated to reflect new operations modes, etc.,
as otherwise faults/failures/problems in the system would be wrongfully learnt into
the models. Therefore, we propose a new concept in Sect. 4.6 how to distinguish
between intended changes and non-intended ones. It is based on a combination of
change isolation and influence analysis between discrete event signals and process

78 E. Lughofer

variables. This combination leads to a hybrid dynamic system, where the event
signals (reflecting, e.g., crisp switches or parameter settings) play an essential role
because they often induce intended changes in the system and in the continuous
sensor measurement flow.

Ideally, fault and anomaly detection and the concepts for distinguishing intended
and non-intended changes (drifts) are done on instance-based level, i.e. for each
newly recorded sample instance it can be decided whether it stems from a faulty
or abnormal system situation. This abandons any delays which would occur when
using past data chucks, sliding windows, etc. In the following Sects. 4.3 and 4.4, the
concentration lies on fault detection concepts based on data-driven reference models
which are able to fully operate on instance-based level.

4.3 Residual-Based Fault Detection Based on Causal
Relation Networks (Model-Based)

This approach builds upon linear or non-linear system identification from (measure-
ment) data [94]. The basic intrinsic motivation is the intention to find causal relations
and dependencies between certain system variables, basically among channels
(also termed process values) which are characterizing the system states and are
being permanently recorded over time by one or several sensors (see Fig. 4.2). The
essential point is that this can be done in a fully unsupervised manner, which means
that no quality information about the current process/system/product states needs to
be available. Therefore,

1. The automatization capability of such an approach is expected to be very high.
2. Annotation effort in terms of labeling costs for historic data samples [87] can

be completely avoided. Opposed to classification approaches for fault detection
[34, 74], where ML classifiers are trained based on pre-labelled data, there is no
necessity to collect data in advance and to divide it into faulty and non-faulty
phases.

3. It is possible to detect problems at an early stage, as the inter-relations between
variables are expected to be violated before the fault is recognized on the
industrial plant or on the production items themselves. This could be, e.g.,
verified before in [92, 105, 108] for several industrial applications, and is
especially true when mappings are achieved with a high predictive quality and a
high confidence in their output predictions.

These circumstances trigger an applicability to a wide range of (on-line) quality
control systems, where quality information and/or analytical models cannot be
provided at all [117].

The basic motivation for using such an unsupervised, automated approach within
the context of quality control is to represent various states in the system for the
nominal, fault-free case (=the regular process case), and to check new on-line data

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 79

Fig. 4.3 Characteristics engine map (colored surface) as a model for representing the causal
relation between torque, rotation speed and Lambda; data points, which have been caused by a
fault in the system, significantly deviate from the map, indicating potential fault candidates

from the production how well they fit into the models [84], often represented by
mappings and approximation surfaces. An example of a faulty situation is shown
in Fig. 4.3 for a three-dimensional characteristic map established at an engine test
bench [11]. New on-line data samples are shown as dotted points and significantly
deviate from the real functional trend (surface of the engine map), thus can be
correctly detected as faults when including an appropriate analysis of the residuals,
see below (in this case shown in Fig. 4.3, these have been in fact caused by a leaky
pipe).

Usually, there are several such causal relation mappings within a complete causal
relation network, which then can be checked for violations and deviations of new
samples altogether (for details see Sect. 4.3.2)—an example of such a network from
a micro-fluidic chip production process is provided in Fig. 4.4, where the nodes
represent various channels = process values in this case (from sensors). Dark (red)
highlighted nodes occur as targets and white ones only as inputs in the partial
causal relation mappings; the input/output relations are given by the arrows which
automatically define all these mappings (e.g., target sink S0 can be represented by a
causal mapping using T11, T21, T144, P125, P126, and T143 as input). Such causal
relation networks may also be used by operators and experts for gaining insights
into the system process and interpretability purposes—e.g., the network shown in
Fig. 4.4 contains a clear clustered structure of dependencies between measurement
channels, which, e.g., could be used for parameter fine-tuning of the chip production
process.

80 E. Lughofer

Fig. 4.4 A typical causal relation network from an industrial production system (of micro-fluidic
chips); dark (red) nodes denote the target channels in high quality relations, all inflowing vertices
indicate input channels to these

4.3.1 Establishment of Causal Relation Networks

One central goal of the whole modeling framework is to establish as many high-
qualitative mappings between the channels as possible, in order to assure a nice
coverage of the parameter space. This in turn decreases the likelihood to oversee
any upcoming problems respectively potential faults in the system: the more
(distributed) channels are involved, the higher the detection capabilities of the
system. Separate validation data is important in order to judge the model quality
in a fair manner and to avoid over-fitting effects [51].

A typical modeling framework for causal relation networks employing data-
driven system identification is shown in Fig. 4.5, whose components will be
explained in the itemization below. The big block into which the data set is fed
is carried out for each channel, meaning that each channel is fixed as target (sink)
node in the network once and a causal mapping is tried to be established based
on the remaining channels—whereas we assume to have M channels available from
the multi-sensor network (compare with Fig. 4.2). Ideally, it contains various system
states and modes—how to best establish a “rich” data set in this direction is typically
application-dependent.

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 81

Fig. 4.5 Typical data-driven system identification framework aiming for an “all-coverage”
approach to establish causal mappings between the M channels recorded from sensors (recording
stored in a data set)

82 E. Lughofer

Data Cleaning The first two components are application-dependent and include
issues regarding which channels to remove in advance, such as channels with no
information content regarding faults in the systems, channels that appear pretty
constant (they would not contribute in the modeling process), or channels which are
simply duplicated and thus would lead to dummy correlations. Here, it is possible
to include some specific expert knowledge about channel pre-selection, based
on her/his expertise about knowing which channels have a substantial influence
on the system process and which ones not. This helps to reduce the curse of
dimensionality effect, which usually causes over-fitting during model training from
data [51]. Alternatively, someone may even exploit here the spatial sensor structure
as indicated in Fig. 4.2, e.g., to take only those channels as input for data-driven
model building whose sensors lie close to the sensor of the current target channel
for which a model is sought (see below).

Outliers removal concerns pre-processing on the sample level and is intrinsically
important to assure a robust modelling, afterwards. This is because typically an
outlier is characterized by an unexpected deviation in the data which denotes
an erroneous situation (e.g., as arised during the data recordings). Typically,
the distribution of the data streams from the channels is not known advance.
Thus, a distribution-free approach is a promising option which loosens the strict
interpretation of data densities and envelopes in a statistical sense. This can be
accomplished by characterizing an outlier to have an untypical occurrence in the
feature space in terms of a distance from the main trend in the training data [125].
The main trend can be characterized by the average distance avdist between samples
pairs dist.xi; xj/. Then, the idea is to record samples which have an extraordinary
above-average number of high distances to other samples, i.e. a kind of outlier
degree is calculated for each sample xi by:

Degi D card.Candi/

N � 1 card.Candi/ D jfxjji ¤ j; dist.xi; xj/ � avdistgj; (4.1)

which measures the proportion of samples which have an above-average distance
to sample xi. If this proportion is high, the sample can be recognized as an outlier
sample as clearly deviating from the main average trend of the training data in-
between distances. Once having extracted all outlier degrees Degi; i D 1; : : : ;N,
a threshold is extracted based on the functional trend shape of its ordered list
Degi�; i	 2 f1; : : : ;Ng with Degi� � Deg.i�1/�.

System Identification For each single channel (chosen once as target), the inter-
relations with the remaining channels are elicited. Each iteration takes a channel
ch1; : : : ; chm as the target of the relation to be identified (=the “cause”) and searches
through the remaining ones the best possible combination to “explain” the target
(=“the effect of the cause”). This can formally be expressed by:

chi.t/ D fi.chi1; : : : ; chiL/ 8i D 1; : : : ;M (4.2)

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 83

Usually, a subset of the remaining channels is used, i.e. L < M is aimed to be
as small as possible, in order to reduce the curse of dimensionality effect [51];
possible methods for determining the optimal number of inputs L are variable
ranking methods [48] or feature space transformation method extracting the most
essential components such as partial least squares analysis coming with different
variants [7], curvilinear component analysis [32], stochastic neighbor embedding
[54], or factor analysis [15].

The choice of the function f in (4.2) depends strongly on the current data set
and contained learning problem. For instance, if a significant non-linearity can be
expected to be present in the system, linear models are not an adequate choice;
or, if some interpretation requirements are given by the experts (so they want to
check and inspect the models), black-box models such as neural networks or support
vector machines should be avoided. Fuzzy systems with interpretability assurance
techniques embedded [80] or symbolic formulas (as obtained through genetic
programming (GP) [1] or fast function extraction (FFX) for compact symbolic
formula representations [90]) are much better alternatives then. A promising way to
establish f is given by interpreting the modeling problem as a regression problem.
This has the advantageous side-effect to act as a kind of filter in cases when the
channel signals are non-smooth, showing abrupt changes, which, however, do not
indicate faults, but are basically due to the nature of the process. In order to underline
this visually, an example of the regression process and its advantageous impact on
fault detection is shown Fig. 4.6.

Fig. 4.6 Upper row: original correlated measurement channels with significant discontinuities
(abrupt changes in the signals), which vanishes in the joint product-amplitude space when
establishing a smooth regression model between them (right image); lower row: influence of a fault
in the first channel (indicated by ellipsis): its pattern (between samples# 350 and 400) cannot be
safely discriminated to an abnormal, but fault-free sudden change in the original signal (samples#
600–700), however in the product-amplitude space (right image) a clear deviation of these faulty
samples to the regression trend as indicated by the line shows up

84 E. Lughofer

Equation (4.2) represents the classical static case leading to causal relation
mappings. Often, dynamic causal relations are present in the system which needs
the integration of the time components for establishing adequate prediction horizons
between causes and effects. This leads to the functional definition:

chi.t/ fi.chi1.t � n1/; chi1.t � n1 � 1/; : : : ; chi1.t � n2/; : : : ; chiL.t � n1/; : : : ;

chiL.t � n2// 8i D 1; : : : ;M (4.3)

In [106], a system identification approach for extracting dynamic relations by
employing channel space transformation is suggested, whose components (includ-
ing orthogonal transformations and channel expansions due to lags) are nicely
visualized in an overall workflow framework.

Checking the Model-Ability of the Process Once the inputs are identified for each
target channel, the model-ability for each sub-problem can be justified with the so-
called Gamma Test [38]; the aim is to check how the mean squared error (MSE)
can be minimized, independently from the chosen model structure/architecture. As
a side output of the Gamma test, the gradient of regression fit provides a useful
information on the complexity of the process under study [104].

Model Training and Evaluation Once the inputs are identified for all target
ch1; : : : ; chM (and the model-ability is checked), the models are trained, i.e. their
structures and parameters are extracted from the training data, whose concrete
algorithms depend on the chosen functional mapping structure f (see discussion
above). The evaluation approaches often use an N-fold cross validation (CV)
strategy [114] or repeated bootstrapping [36] to elicit the optimal parameter
setting(s) over a pre-defined grid of learning parameters. This relies on model
selection techniques, because for each setting an own model is constructed, which
are based on the tradeoff between model accuracy and model complexity—models
with lower complexities, but similar accuracies are usually preferred, as being less
prone to over-fitting on new samples [27].

A straightforward technique of model selection is simply to use the minimal
error as achieved from the statistical evaluation procedure (e.g., the minimal CV
error) when conducting it with different parameter settings, typically arranged
in a grid-like manner. This technique, however, does not take into account the
complexity or sensitivity of models. Especially, lower complex models with a
similar or even the same accuracy as higher complex ones should be tendentially
preferred during model selection. An often applied possibility is to integrate also
the model sensitivity regarding the training data selection, which can be measured
by the variance of models errors obtained over different (CV) folds. In this way, a
prominent selection in literature [19] is the model having lowest complexity but still
being not significantly worse than the model with lowest error, i.e. its error lying
within the one-sigma sensitivity band of the model with the lowest error. Figure 4.7

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 85

Fig. 4.7 Enhanced model selection example, also respecting the model sensitivity (indicated by
vertical markers around the dots) when being trained from different data set folds/bootstraps

shows exemplarily how model selection is done in this way. Other techniques
include the direct punishment of model complexity in the error calculation such
as AIC (Akaike’s information criterion), BIC (Bayesian information criterion) and
extensions, see [27].

Model Assessment The purpose is to check the expected model quality on new
unseen (on-line) data. Only the models with sufficient quality together with their
uncertainty information (confidence intervals) are then further processed for fault
detection (see subsequent section). This is because for low quality models typically
many false alarms and misses can be expected due to the delivery of inaccurate
predictions.

Sufficient quality Qi can be understood as a combination of high expected
predictive quality PQi and high output certainty Certi, which can be, for instance,
combined in a weighted convex combination when normalizing the certainty outputs
to Œ0; 1	:

Qi D ˛PQi C .1 � ˛/
 Certi > threshold (4.4)

If (4.4) holds, the model where channel chi appears as target can be used for residual
analysis and is thus also established in the final causal relation network. PQi denotes
the expected predictive quality of the model, which can be, for instance, measured
during the training process by the K-fold cross-validated adjusted R2 measure,
which is given by:

CV
� NR2� D 1

K

KX

iD1

0

@1 �
1

N=K�p�1
Pi.N=K/

kD.i�1/.N=K/C1 . yk � Oyk/
2

1
N=K�1

Pi.N=K/
kD.i�1/.N=K/C1 . yk � Ny/2

1

A (4.5)

86 E. Lughofer

with p the complexity of the model, typically comprised by the number of inputs
(+ number of structural components in case of non-linear models), and Ny the mean
value of the target y. Obviously, higher p’s lead to a punishment of more complex
models. Certi denotes the output certainty and is typically measured by confidence
intervals, error bars, sensitivity over the training folds/bootstraps, etc. [30], see
subsequent section.

Another viewpoint of model assessment is the reliability of the established causal
relation network and embedded mappings to be able to recognize fault and failure
modes in the system. Due to its visual and eye-catching transparency, experts can
easily check whether the structure is reliable and essential from “systems point of
view,” i.e. in a medical, physical, biological sense. This includes the check whether
important variables are included at all or not, whether the relations are plausible,
etc.: if so, we can assume some meaningfulness of the data with respect to potential
failure modes, as these usually affect (one or more) important variables and violate
valid relations among these. The detection of these violations will be studied in the
subsequent section.

4.3.2 Advanced Residual Generation and Analysis

Assuming to have m � M high quality mappings within the causal relation networks
available. Now, when a new on-line sample x D .ch1.t/; : : : ; chM.t// at time
instance t is recorded, which contains the values from all M channels. Then, first
the corresponding subset of this value is elicited for each target channel chi, i.e.
xsub D .chi1.t/; : : : ; chiL.t//, which in the static case can then be sent into the model
as defined in (4.2) for receiving a prediction of channel i, chi. In case of a high
model quality, it is expected that the prediction is close to the measured value, thus
the residual

resi.t/ D chi.t/ � chi.t/

certi
(4.6)

is small. In the dynamic case, the past recordings for all channels .chi1.t �
1/; : : : ; chiL.t � 1/; chi1.t � n2/; : : : ; chiL.t � n2// need to be stored (for instance,
in a ring-buffer containing n2 samples). These then can be processed through (4.3)
for obtaining chi.t/, the prediction in the current time instance t from n2 � n1 past
values of channels chi1; : : : ; chiL which are used in (4.3), namely from .chi1.t �
n1/; : : : ; chiL.t � n1/; chi1.t � n2/; : : : ; chiL.t � n2//.

In (4.6), certi denotes a normalization factor which is important in order to adjust
the residual to the model output uncertainty. The higher the output uncertainty for
a current prediction is, the less trustful the residual becomes. In such cases, a high
(untypical) residual may thus not necessarily indicate an anomaly. A possible and
likely false alarm is therefore prevented by normalization. Or in other words, for
models where the predictions are highly uncertain, thus allowing a large bandwidth

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 87

Fig. 4.8 Three cases of model uncertainty shown as dotted lines around the solid model trends;
the grey big dot denotes a new incoming sample and has the same deviation to the predicted value
(=vertical distance to the model in sold line) in all cases. However, it is obviously more likely to
be an anomaly in case of narrower bands falling out of these (as in the left case and in the middle
right case) than when occurring significantly inside these bands (as in the middle left and the right
case)

of prediction values, samples significantly deviating from the mapping may not
be assessed as anomalies. On the other hand, for models producing very certain
predictions, tiny deviations from the real mapping trend can be already classified
as anomalies with high likelihood. Figure 4.8 shows three examples of error bars
(with different widths) for two-dimensional examples as dotted lines surrounding
the solid lines.

The model uncertainty can be estimated during the training process and measured
in various forms. The most convenient way is to estimate it through the expected
error on separate validation data, as can be, for instance, approximated with the
usage of the cross-validation error [114] or bootstrapping [36] methods, see Chapter
7 in [51] for a comparison on error estimation methods.

A more accurate representation of the model uncertainty can be expressed by
so-called local error bars or confidence intervals [49]. These respect the change
in uncertainty over local parts of the input space, so in some parts the model
outputs may be more certain than in others—as is shown in the examples in
Fig. 4.8. Such error bars are easy to compute for linear models (usually based on
the Fisher information matrix reflecting internal parameter uncertainty) [94], but are
more sophisticated in case of non-linear models, as requiring specific developments
and derivations with respect to the chosen model architecture and internal model
structure [81, 97].

The magnitude of the residuals defined in (4.6), however, may be not sufficient to
discriminate between normal and anomal system behavior. It is more the trend of the
residual signals over time which makes the appearance of current residuals atypical.
Moreover, it is very difficult or even impossible to set a fixed, reliable threshold on
the magnitude in advance (upon exceed of which, an alarm is triggered), which
discriminates well between normal and real abnormal behaviors. Examples of
residual signals and an inappropriate setting of the magnitude threshold (from a real-
world application case) are provided in Fig. 4.9, the left case shows the detection

88 E. Lughofer

Fig. 4.9 Left: residual signal trend line and a fixed threshold of 3 (as tuned on some initial data
set), leading to many false alarms indicated by small red dots; right: the same with the dynamic
tolerance band, avoiding false alarms, but still being exceeded by (and thus being able to detect)
the one sample outlier fault at the beginning and the significant jump towards the end

outcomes in case of a fixed threshold (a value of 3), which has been a good default
value on first initial trial-and-error runs within the same application. Obviously, it
leads to too many false alarms, as not being able to follow the natural (fault-free)
dynamic trend of the residual signal.

Thus, in order to abandon a fixed threshold and to make the warning level
dynamically adaptive, it is necessary to analyze the residual signals over time how
they develop, evolve. In [106], a statistical-oriented tolerance band is introduced
which checks the hypothesis whether a new residual falls out of the univariate
Gaussian process model. Therefore, the tolerance band is defined as:

tolbandi.t/ D �i.t/C n
 �i.t/ (4.7)

with n a factor typically set to (inbetween) 2 or 3 in order to retrieve a 2-sigma or
3-sigma area covering 95.9–99.6% of the regular cases. Thus, the fixed magnitude
threshold 	0;1Œ is shrinked to a relatively local threshold inbetween 2 or 3. The
mean value �i.t/ and the standard deviation �i.t/ over past values can be updated
in an incremental, decremental way over consecutive sliding windows (thus, no re-
estimation is necessary [106]):

�i.t/ D N1�i.t � 1/C resi.t/ � resi.t � T/

N2
(4.8)

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 89

�i.t/ D 1

N2
.N1�i.N � 1/C N2��i.t/

2 C .�i.t/ � resi.k//
2

� N2��i.t � T/2 � .�i.t � T/ � resi.t � T//2/ (4.9)

whereas resi.t � T/ D 0; �i.t � T/ D 0;N1 D t � 1;N2 D t for all t < T and
N1 D N2 D T for t � T , and ��i.t/ D �i.t/ � �i.t � 1/.

This then leads to the dynamically adaptive threshold as shown in the right image
in Fig. 4.9: false alarms are completely avoided, but the tiny peak-based (outlier-
type) fault at the beginning is still detected, so is the longer, severe abrupt fault
towards the end of the stream. Please note that the update of the � and � and thus
the tolerance threshold is only triggered when the signal stays within the tolerance
band. In case of detected faults, � and � are kept constant such that they are not
wrongly adjusted to include faulty situations.

4.3.3 Enhanced Residual Analysis

The strategy aforementioned in the previous section may get biased towards
significant false alarms in case when there is significant high noise level in the data,
which leads to a (mostly slight) exceed of the tolerance band, typically occurring in
some regular intervals over time.

In order to overcome such unpleasant situation, on-line filtering techniques were
suggested in [108] which can be applied within incremental adaptive learning
scenarios from streams over time based on sliding windows concepts. This approach
employs different types of filters, namely modified moving average filters (adaptable
in single-pass manner), median average filters (adaptable due to re-estimation
over sliding-windows), and Gaussian filters with a parametrizable number of
bells (adaptable in single-pass manner). The results on four real-world application
scenarios showed remarkable performance boosts of the ROCs (Receiver Operating
Curves): these curves visualize the false positive rates (x-axis) versus the true
positives rates (y-axis). The faster the curve rises and thus the larger the area under
it becomes, the better the performance of the method is. A performance example
of enhanced residual analysis employing filters based on a causal relation network
for engine test benches, where each mapping is realized by a sparse fuzzy inference
learning scheme (termed as SparseFIS [82]), is shown in Fig. 4.10. The ROC curves
for filtered and non-filtered residuals (in two line styles and colors) are drawn. These
curves are obtained when using different threshold levels in the tolerance band,
whose values are steered by the factor n in (4.7) (here using n D 1; 2; : : : ; 8), and
plotting the false positive (FP) and true positive (TP) rates obtained from an (on-
line) test set (including known faults) as points (FP,TP) in the coordinate system.
Higher AUCs (areas under the curve) point to better methods. Thus, obviously, the
performance is significantly improved with the moving median filter.

90 E. Lughofer

Fig. 4.10 Significant improvement in the fault detection performance when applying moving
median filter (MMED) in the residual analysis obtained from fuzzy mappings within the causal
relation networks (the mappings are achieved through SparseFIS method [82])

Another enhancement concerns a multi-variate analysis of residual signals
extracted from more than one model, i.e. from several mappings within a causal
relation network. Assuming to have m high quality models available, this would
lead to an m-dimensional space of residual signals which can be imagined (plotted)
sample-wise as stationary points in this space, as it is assumed that all channels
are consecutively measured and collected in parallel at a central sink (Sect. 4.2,
Fig. 4.2). An exemplary realization of such a residual signal space is shown in
Fig. 4.11 for a two-dimensional case. In this joint feature space, atypical occurrences
can then be characterized by significant deviations to density distributions reflecting
the nominal, fault-free case [16]. Thereby, it is assumed that these distributions are
estimated from the first on-line phase, i.e. from initial signal values retrieved from
the causal relation models. Various methods exist in literature for characterizing
and establishing the distribution of samples in the feature space together with the
recognition of deviations and novelty content in new data chunks, see [26] and [88].
These will be discussed in more detail in Sect. 4.4 below.

An alternative how to treat residual signals in a univariate way is demonstrated
in [81]. This is a more generic form of the approach discussed in Sect. 4.3.2, which
does not assume that residuals are approximately normally distributed during the
nominal, fault-free case. It therefore uses the concept of trend analysis in univariate
signals with the usage of regression fits and its surrounding confidence bands. Once
a new sample (or a bunch of new samples) falls out of this band, which characterizes
the most recent trend of the signal, a problem/fault may be indicated. An example
is provided in Fig. 4.12 below. The newly loaded point denotes an anomaly due to a
significant jump of more than double of the most recent past values. Such trend fits
can be incrementally sample-wise updated with the usage of recursive (weighted)
least squares (R(W)LS) approach [75], which is a modified form of the Kalman
filter [61] including the Kalman gain for achieving fast updates of inverse Hessian
matrices (second order information to assure robust convergence). The inclusion of a
smooth forgetting factor mechanism [113] is important in order to always represent
the most recent local trend of the signal.

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 91

Fig. 4.11 Data is transformed from the time-series based residual signals (upper rows) to the two-
dimensional product feature space (lower row); the fault-free states characterized by density-based
descriptors are highlighted by surrounding hulls, a new sample (in red) seems to fall significantly
outside these regions, thus marking a potential fault candidate

Fig. 4.12 A typical tend of a residual signal (its absolute value) over time with some slight, regular
fluctuations from Sample 200 to 340, but suddenly jumping to an untypical values (indicated by
arrow markers), the error bars marking the confidence region of the local trend are shown as dashed
lines

92 E. Lughofer

4.4 Recognition of Untypical Occurrences in the
Unsupervised Feature Space (Distribution-Based)

This is the second major research line in today’s data-driven fault detection
approaches and usually applied when no model(s) describing causal relations or
dependencies within the system is(are) available. In this sense, residuals as defined
in (4.6) cannot be explicitly calculated and thus their signals not analyzed/tracked
over time with any of the techniques described in Sect. 4.3.

There may be several cases why causal relations are not available:

• No significant implicit relations or dependencies between system variables exist,
such that models with sufficient quality can be extracted; i.e., the system is not
“modellable.”

• The extraction of (complex, highly non-linear) causal relation models takes
significant amount of time, especially when the number of channels is very
broad and/or a detailed optimization of parameters (within a statistical evaluation
procedure) is too time intensive.

• The data has not been sufficiently recorded such that high-dimensional causal
relation models cannot be reliably built without significant over-fitting.

• A fast model update with new on-line data should be carried out (ideally in real-
time) to account for system dynamics, which may not be possible in case of huge
causal relation networks.

In such occasions, the options discussed in the subsequent subsections can be
considered as reliable alternatives.

4.4.1 Deviation Analysis in the (Global) Principal
Component Space

The basic principle of this concept, as, e.g., used in [96] or [115] for on-line
fault detection, is to elicit how well a new incoming data sample x fits into
the principal component space of the data, represented by loadings p1; : : : ; pM

extracted from the original N � M training data matrix X (comprising N samples
as rows and all M sensor channels as columns). The principal component technique
treats all process values equally and searches for successive orthogonal directions
in the multi-dimensional space which best explain the variance contained in the
data [60]. The directions are linear combinations of the original features and thus
represent rotations of the original main coordinate system. This results in an optimal
representation of the (fault-free) data with respect to its variance elongations along
certain directions in the high-dimensional feature space. It does not require that
concrete dependencies, relations between variables are present in the system, so this
restriction of causal relation networks is cancelled.

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 93

In order to reduce the dimensionality, usually a subset of k loadings (correspond-
ing to the k largest eigenvalues of the covariance matrix † D XTX=.N � 1/ is
used, where k is elicited through a criterion reflecting the “optimal capture of the
variations in the data.” Typically, the criterion is a saturation threshold (such as 95
or 98% of the data), or it can be elicited dynamically through the knee point in the
accumulated variance explained curve [60]. The basic idea is now to use the reduced
principal component space and to check how a new sample fits into it with respect
to two criteria:

• Its deviation to the center of the data along the projected component space—
termed as T2 statistics.

• Its orthogonal deviation to the principal component space—termed as Q-
statistics.

Both deviation concepts are visualized in Fig. 4.13 below, assuming a two-
dimensional (reduced) principal component space (spanned by the two orthogonal
axes) and a three-dimensional original data space: the sample (marked by a bold
fat cross) appears in the three-dimensional space and its deviation degree to the
principal component space (sometimes also called energy [96]) is measured by the
Q-statistics:

Q D e 	 eT (4.10)

Fig. 4.13 Hotelling (T2) and Q-statistics for a data set example; the new sample is shown as bold
fat cross and appears in the three-dimensional space, the ellipsoid span the reduced PCA space in
the two-dimensional projected plane

94 E. Lughofer

with e D x�xPkPT
k , with Pk containing the k first (main) loadings as column vectors.

It can be matched against a statistical, dynamic threshold, directly extracted from the
data according to a certain significance level, thus no tuning is required, see [24]. Its
projected deviation to the center of the PCA space is calculated by the T2 statistics:

T2 D
kX

iD1

�
ti

i

�2
(4.11)

with ti the score of the ith component in the current data sample and
i the
eigenvalue of the ith component. It can be fundamentally compared with the critical
value of the Fisher-Snedecor distribution, see [24].

4.4.2 Analysis in the Partial Local Principal Component Space

The aforementioned approach is able to model the data variance behavior in a
global way, as it extracts its covariance matrix for all samples over the whole input
space, which then defines an ellipsoidal influence region of the data—as drawn in
Fig. 4.13 by a dark, black solid line. However, in practical settings the data may
be spread up in different local regions which are not necessarily connected and
which do not follow the same trend; e.g., there could be various operation modes
or transient conditions included—this is even the ideal case for retrieving a “rich”
data set covering the whole usage space (if it is not the case, operation modes may
dynamically show up and should be integrated on the fly, again requiring local
structures, see subsequent Sect. 4.5).

An example is visualized in Fig. 4.14. There, the different local clouds are
represented in different point markers and colors (green, blue, red). When being
joined together, a global representation of the first two principal components would
lead to the axes represented by the two orthogonal (dotted) straight lines and the
big, inaccurate ellipsoid.

In such cases, a pre-clustering step would help to recognize the actual number
of data clouds and to be able to perform a partial principal component analysis
per cloud. Possible (prototype-based) clustering techniques to be applied in batch,
off-line mode are Gustafson-Kessel clustering [47] or a generalized variant of vector
quantization [79]. Both use the Mahalanobis distance measure to update the inverses
of all the cluster covariance matrices within multiple iterations over the complete
data set. Then again, as in the global case, any significant deviation from the
recognized ellipsoids (one per cluster), as measured in terms of local Q-statistics
or T2-statistics, may point to anomalies or other upcoming problems.

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 95

Fig. 4.14 Different local data clouds indicated by different point markers and representing
different (normal, fault-free) system states, the big dark dots denote new samples belonging to
an anomal behavior (not seen before), the big solid ellipsoid would be the shape obtained when
extracting the (inexact) covariance matrix from all samples together—the fault mode could not be
detected from the inexact global representation, but from the more accurate local one

4.4.3 Advanced Possibilities Based on Mixture Models
and (Generalized) Data Clouds

A possible significant extension has been presented in [68], which expands the usage
of classical principal component directions in fault detection to the usage of prob-
abilistic principal components (PPCA) [116], which embed a local dimensionality
reduction and thus acts on a smaller sample covariance matrix (with p � q entries =
parameters instead of p.pC 1/=2 parameters, with typically q << p). In this way,
it suffers less from curse of dimensionality than using the full sample covariance
matrix.

A further extension is provided in [93], where a mixture of probabilistic PCAs
is employed for representing one single operation mode/condition (instead of one
single PPCA). This provides more freedom for well representing a normal operation
mode behavior appearing in sample clouds with arbitrary shapes. Interestingly, a
mixture of PPCA is a special case of a class of Parsimonious Gaussian Mixture
Models (PGMM), as demonstrated in [91].

96 E. Lughofer

Although a mixture of PCA can better represent operation modes inducing
arbitrarily distributed samples in the feature space, it still embeds a(n) (partial local)
ellipsoidal description with the help of a strict mathematical construct. In order
to relax this strict definition and underlying formulation of mode components, the
authors in [29] exploited the more loose concept of data cloud—according to the
original definitions in [9]—to be used for fault detection and identification purposes.
A cloud is just represented by its center �i, calculated through the mean of the
neighboring points being close to the cloud, and a density measure. The latter can
be calculated for each sample differently belonging to the cloud in the following
way:

Di.x/ D 1

1C kx � �ik C 1
Ni

PNi
kD1 xk � k�ik2

(4.12)

With Ni the number of data samples seen so far and belonging to cloud i, x the
current sample for which the density is computed and �i the mean value over all Ni

samples.
In [9], it has been shown that this is equivalent to the classical definition of

the Cauchy distribution, but can be exactly updated in recursive manner. Hence,
a cloud is loosely represented by a sample density region without requiring a fixed,
predefined shape, and thus is more generically applicable than covariance matrix
estimates and partial local (P)PCAs. A comparison between conventional clustering-
based and cloud-based partitioning of the feature space is shown in Fig. 4.15.

Fig. 4.15 Left: clusters representing operation modes defined in conventional ellipsoidal shapes
(as in the previous approaches above), right: clouds are just loose representations of sample
densities—a new sample Z is then associated to belong to the nearest cloud according to its
density [9]

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 97

Fig. 4.16 Different parametrizations of the one-Class SVM classifier lead to different complexi-
ties of the hulls

4.4.4 One-Class Classifiers for Non-linear Hull
Representations

A further generalization of the cloud-based approach can be achieved through a
one-class classifier representation of the normal operation mode. The basic idea is
to characterize fault-free data by a non-linear and, if necessary, a complex hull which
internally embeds the data. The hull then defines the border of the decision between
fault and non-fault. There are different possibilities for establishing complex linear
boundaries, by using different types of one-Class classifiers. One of the most
convenient options is the so-called one-Class SVM classifier [89], which is able
to model data clouds with (a) very complex shapes and (b) appearing wide-spread
over partial local regions (i.e., partial sample-embedding clouds which are not
necessarily connected). The most essential parameter is the kernel width size which
steers the degree of non-linearity and can be optimized through the reverse cross-
validation approach [126], which is not requiring any supervised samples (with
target values available). An example for different parameterizations of this width
is provided in Fig. 4.16.

The structural elements are support vectors, which are sample points lying on
or close to the border of the hull. In case when the kernel width is low (s D 1), a
highly non-linear shape of the hull is induced and the sample marked by a dark dot
is recognized as an outlier, which may represent a new state (upon confirmation by
increased sample significance). In case when the width is high (s D 25), an almost
spherical characterization of the fault-free training samples is induced, leading to
a more generous surrounding of the sample cloud. One-class SVMs have been
successfully applied for anomaly and fault detection in [26, 40, 88].

A final, remarkable note goes to the applicability range of all unsupervised
approaches: they can be applied to original sample signals (raw process values),
features extracted from original sample signals as well as to residual signals in the
same way. It is basically always possible to transfer the multi-variate input signals
into a multi-dimensional feature (sample) space as shown in Fig. 4.11.

98 E. Lughofer

4.5 Self-adaptive Reference Models for Handling
System Dynamics

The aforementioned modeling approaches work fine when the system dynamics
is low and the environmental influences are stationary or known to have little
effects on the process. However, in case of systems/processes embedding significant
dynamics over time as well as in case of non-stationary environments, off-line
trained models typically become outdated over time. This leads to a successively
increasing deterioration of their predictive performance [101], which in turn also
decreases their fault detection capabilities. For instance, a big error in predictions of
a target in a causal relation network also causes a big error in the residuals according
to (4.6). This means that the residuals are not representative and the likelihood of
frequent false alarms becomes pretty high. Furthermore, upcoming new process
states, operation modes [69] or system behaviors or simply changes in the process
settings (leading to so-called drifts) [64] which were not included in the historical
data are often not adequately represented by the model. This typically leads to severe
extrapolation cases during model inference processing, which are known to be risky
and to lead to erroneous model behavior [77, Chapter 4].

In order to resolve such system dynamics, it is necessary to adapt and mostly
also to evolve the models on the fly, ideally in single-pass on-line manner [22] based
on new incoming recordings from the sensor(s) (networks). Single-pass means that
a data stream is sequentially passed through the model update engine and older
samples do not need to be re-entried [44]: once a sample or a whole chunk of
samples is processed through the update engine, it is discarded forever. This makes
it very efficient for fast on-line (or even real-time) training purposes [22]. On-line
means that the update engine is able to work fully autonomously without any user
intervention or without any (time-intensive) batch re-design phases requiring model
and/or process experts [17, 50]. This makes it very efficient in terms of efforts and
man-power for servicing and maintenance.

Basically there can be three concepts when updating reference models for fault
detection:

• Incremental adaptation of parameters [109]: this concerns the update of the
model parameters estimated during the off-line stage. This accounts for dynamic
adjustment of the models to process changes and for increasing parameter
significance (refinement). Often, this is conducted in recursive manner, which
induces an exact convergence to the (hypothetical) batch off-line solution, which
would have been obtained when being fed with all the data seen so far at once.
Thereby, an objective function with a clear optimization goal can be formulated
which is solved in incremental, single-pass manner [55, 118].

• Changes in the model structure by evolving and pruning model components
(neurons, fuzzy rules, support vectors, etc.) with incremental learning methods on
the fly [81]: this accounts for knowledge expansion and contraction in order to be
able to integrate new modes and states and to delete obsolete ones. It is important
for assuring compactness of the models and for preventing an ever-growing

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 99

Fig. 4.17 Upper left: case where parameter adaptation (gradient of linear model) is sufficient to
follow the slightly updated trend in the lower region; upper right: case where component evolution
is required in order to sufficiently resolve the arising non-linear trend due to new samples !
non-linear model with two components; lower: case where structural pruning (merging) can be
performed to reduce complexity of the model (as there are two clusters alongside representing the
same functional trend)

structure, which would cause significant computational burden. Techniques from
the field of evolving (intelligent) systems are appropriate choices to address these
tasks [12, 62, 77].

• Changes in the input structure of the models by updating the influence of input
features in the original or transformed feature space on the fly [71]; this accounts
for significant changes in the relationships contained in the systems (between
variables/channels)—e.g., when introducing new educts [23] or product types
[59] which often change the constellation in the production process. In the
original space, it is addressed by on-line feature selection [119] and weighting
mechanisms [85]. The latter acts in a continuous, smooth manner without
explicit structural changes. This induces higher stability than a crisp removal
or adjoinment of features. In the transformed space, an incremental update of the
principal components in unsupervised (PCA) [120] and supervised form (PLS)
[123] may be conducted.

Figure 4.17 demonstrates a two-dimensional regression modeling example (input
channel X is regressed on Y) showing in which cases only parameters are required to
be updated (left), structural components need to be evolved (middle), and structural
components should be merged (right).

100 E. Lughofer

4.5.1 Self-adaptive Causal Relation Networks

In the realm of causal relation networks, the update may take place within the
particular partial mappings as well as in changes of the whole network structure
by the addition or deletion of arrows between the nodes (compare with Fig. 4.4).

The partial mappings typically appear in form of regression models, i.e. having
continuous targets and some input channels (original or transformed ones). Thus, in
case of linear parameters, the recursive update is very often accomplished with the
recursive (weighted) least squares (R(W)LS) estimator due to favorable convergence
properties, see [77, Chapter 2]. It is based on the (weighted) least squares functional
and defined as:

Ow.kC 1/ D Ow.k/C �.k/. y.kC 1/ � rT.kC 1/ Ow.k// (4.13)

�.k/ D P.k/r.kC 1/
ƒ

‰.x.kC1// C rT.kC 1/P.k/r.kC 1/ (4.14)

P.kC 1/ D 1

ƒ
.I � �.k/rT.kC 1//P.k/ (4.15)

with w the linear parameter vector, P.k/ D .R.k/TQ.k/R.k/ C
I/�1 the (ridge
regularized) inverse weighted Hessian matrix (with
 optimized during batch
learning stage) and r.kC 1/ D Œ1 x1.kC 1/ x2.kC 1/ : : : xp.kC 1/	T the regressor
values of the kC1th data sample containing p input variables.ƒ denotes a forgetting
factor, which steers the degree of exponential forgetting (=outweighing older
samples more and more over time), with default value equal to 1 (no forgetting).

Forgetting may be important to increase flexibility in a very dynamic pro-
cess, thus to represent the latest trend more accurately; however, a too fast
down-weighting of older samples may lead to catastrophic forgetting and thus to
significant deterioration of model performance [4]. In this sense, an appropriate
setting of the forgetting factor is a challenging issue. Self-adaptive approaches based
on tracked change intensity levels have been proposed and discussed in [110, 113].
The symbol‰ denotes a weight which can be given individually to the actual sample
x.kC1/ (apart from a regular pre-defined forgetting weight). Thus, different samples
may receive different “importance” degrees during the update process. Whenever a
sample receives a low weight, the Kalman gain �.k/ in (4.14) becomes a value
close to 0 and the update of P and w is marginal. This update mechanism has the
great advantage to converge in each iteration step, as the optimization function is a
(convex) parabola and the update step is equivalent to the Gauss-Newton iteration
step [13]. On the other hand, a disadvantage is that it may over-fit in case of complex
model structures, as it does not integrate any punishment or regularization term.
Therefore, extensions of RLS such as generalized RLS (GRLS) [121], sparse RLS
[14], or kernel-based RLS with extensions [127] may be more robust choices in case
of higher-dimensional inputs.

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 101

For the non-linear parameters (defining sizes, orientations and shapes of struc-
tural components in non-linear models), advanced incremental optimization tech-
niques such as the incremental Levenberg-Marquardt or the incremental Gauss-
Newton algorithm can be applied, see [95] for a collection of possible algorithms.
More complex incremental optimization algorithms are needed when extending
the conventional least-squares problems with punishment terms regarding model
complexity and feature space coverage [86] in order to reduce the risk of over-fitting.
A collections of possible algorithms are presented in [12, 77] and [95].

Often, the predictive mappings are non-linear machine learning or soft comput-
ing (regression) models containing several so-called structural components ((fuzzy)
rules, neurons, terms in symbolic formulas, etc.), which model different parts of the
system. This gives them the opportunity (1) to model any degree of non-linearity
contained in the system with sufficient accuracy (universal approximation theorem
[124]) and (2) to expand and shrink on the fly based on new data, usually with
little “disturbance” of the (convergence of the) already learnt components (and the
implicitly contained parameters) [76]. Component evolution for expanding the pre-
dictive mappings can be achieved through the usage of concepts and methodologies
from the field of evolving intelligent systems [12, 62, 77]. For instance, adding new
fuzzy rules or neurons in (neuro-)fuzzy systems or neural networks is typically
accomplished by checking the novelty content information of new data samples:
if they indicate a new (type of) knowledge, as, e.g., verified by a high dissimilarity
to already learnt structures [70], they are potential candidates for representing new
operation modes/system states. Thus, the complexity and hence the non-linearity
degree of the model have to be increased. However, the new knowledge could also
stem from upcoming problems or failure trends in the system, which should be not
integrated into the models. A proper distinction in a fully automatic way is still an
unresolved problem and will be the main focus of Sect. 4.6 below.

Component pruning methods for mapping shrinkage check for (1) redundant
information contained in the model components [80, 83]—e.g., consider two
significantly overlapping Gaussian distributions which could be merged without loss
of significant information—and (2) for parts of the model not visited for a longer
time frame, thus becoming obsolete [8, 56]! pruning beneficial.

Regarding structural changes on network level (adding, pruning of arrows), this
can be seen as more or less equivalent to incremental subspace learning [71]: inputs
(features) can change their importance levels over time and thus may be discarded
or even be reactivated in different stages of the stream learning process. The latter
issue has been only loosely handled so far. There have been first attempts in the
direction of feature weighing which assign the most important features higher
weights than the lower important ones [85, 99]. The weights are then used during
incremental model update steps to reduce the curse of dimensionality effect and thus
to improve precision of the model [85], because features with low weights can be
ignored during the learning process. However, the problem is that redundant features
may receive similar high weights despite not contributing something additional for
explaining the (causal relation to the) target. Recently, an approach in [6] partially
resolves this problematic by a local feature selection per local region individually.

102 E. Lughofer

Input features with low weights can be seen as not represented in the network, thus
the arrows to and from them can be discarded. Weights to the edges can be assigned
to tell users how much influence from an input to a target is expected.

4.5.2 Self-adaptive Distribution-Based Reference Models

This form of reference models differs from causal relation networks in a way that
they are established in fully unsupervised manner. Thus, there is no possibility to
update linear and non-linear parameters within the context of classical recursive
adaptation approaches relying on optimization functions and step-ahead prediction
errors on new samples.

We now discuss incremental updating possibilities for the various reference
model types discussed in Sect. 4.4.

• For the native PCA-based approach described in Sect. 4.4.1: the principal
component space can be either updated (1) by adaptation of the loading vectors
(PCA directions) one-by-one, conducting iteratively the deflation of new points
over the already updated components—as done in [120]. This leads to successive
step-wise (small) rotations of the feature axes; however, it may have some
problems when a significant shift in the mean of the input variables takes place
over time, or (2) by updating the covariance matrix †, which can be established
in a recursive, more stable manner when including a rank-1 modification term
[78]:

†.new/ D N

N C 1†.old/C N

.N C 1/2 .Nx.N/�xNC1/T.Nx.N/�xNC1/C�.NC1/
(4.16)

where N denotes the number of samples seen so far, xNC1 the new sample and
Nx.N/ the mean over all input features up to sample N;�i;j.NC1/ D .Nxi.NC1/�
Nxi.N//.Nxj.NC 1/� Nxj.N//, i.e. the degree of mean shifts from sample N to NC 1
in the variables i and j multiplied with each other (! rank-1 modification). On
the other hand, this requires the eigen-decomposition of the covariance matrix in
each update step to obtain the updated loadings, which may be time-intensive.

• For the partial local principal component space described in Sect. 4.4.2,
which splits regular modes already into various principal components (due
to the nature of the data clouds, see Fig. 4.14), the model update concept
relies on the tradeoff between adapting already available components (with the
aforementioned techniques) and the evolution of new ones, based on significant
novelty content of new samples. In [69], a remarkable solution is suggested,
where the authors apply an adaptive fuzzy classifier which can identify new
states on the fly based on a cluster evolution criterion (founded in the evolving
participatory learning concept (ePL) [73]). This is directly associated with a rule
evolution criterion: thus, if a new cluster is created, it automatically results in

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 103

a new rule in the fuzzy classifier. Upon the violation of the evolution criterion,
a feedback from the operator is requested whenever the membership value to
the closest rule is low enough, which means that the sample is significantly
falling out of already available rules. Otherwise, the consequent class of the most
active rule is used as mode for the new rule. The workflow of this approach
is visualized in Fig. 4.18 below. This feedback comprises the type of the mode
(=regular operation mode or fault class). In this sense, it works only in a semi-
supervised, half-automatic way and not in a fully unsupervised, automatic way.
A fully automatic approach is still an open problem in the evolving systems
community—we will propose a solution by the usage of discrete event systems,
see Sect. 4.6.

• For the generalized data clouds described in Sect. 4.4.3, which provides a
generalized viewpoint on data distributions, the update of the sample density
information to the clouds can be achieved by using the recursive density estimator
concepts developed in [8, 10] and recently extended in [100]. In [29], the
authors use these concepts for conducting fault and anomaly detection in on-line

Fig. 4.18 Workflow for
updating system mode
classifier based on new
incoming samples denoting
old and new system
states—according to the
approach used in [69]

104 E. Lughofer

single-pass manner, also with the possibility to add new clouds on the fly and on
demand. If significant consecutive new samples are falling outside two times
the zone of influence of a cloud (and thus are treated as outliers) and if the
density of the outliers (stored in the vector of past outliers) is higher than the
average density (recursively calculated) of all existing clouds, then a new cloud is
evolved. Each (evolved) cloud is then inspected as an operation mode, which can
be a normal mode or an anomal (fault) mode. A filter stage based on the mean
density over all data samples (when this falls below a threshold) is applied in
order to distinguish between anomal and normal modes in advance. The evolved
cloud is then always automatically associated with a new fault mode indexed
by the next integer. In this sense, no operator intervention is needed to decide
whether a new state is anomal or normal and whether it is a new anomal state.
However, this approach requests two specific (application-based) features which
are sent into the evolving cloud modeling approach for distinguishing new regular
and fault modes.

• For the more complex non-linear representations, the update of their shapes and
sizes becomes more complicated. In case of one-class SVMs (the most widely
used approach), support vectors can be updated by the incremental techniques
as suggested in past publications [72, 111]. Some embed the possibility to
automatically evolve support vectors on the fly to significantly expand hulls or
evolve new hulls in other parts of the feature space. But, also here the problem of
an automatic appropriate distinction between new regular and fault-case modes
remains open.

4.6 Distinction Between Intended and Non-intended Changes
in Dynamic Systems

The model update mechanisms as discussed throughout the preliminary section
are blindly using all the data stream samples recorded and available during the
(dynamic) on-line process. They try to incrementally optimize parameters and
evolve structures according to best principles and concepts in terms of maximizing
model precision based on all these samples. Now, it may happen that changes or
drifts in the system appear which point to potential upcoming problems (faults) in
the system, whereas in other cases such changes are natural according to variations
in the process settings or environmental influences. We call the former non-intended
changes or non-intended drifts and the latter intended changes or intended drifts.

It is now an essential task to distinguish between intended and non-intended
changes. This is because the former should be taken into account during model
updates to assure sufficient flexibility of the model and especially to further
guarantee high model performance also after the drift has occurred (see previous
section), whereas the latter should not be respected and integrated into the model
update as it typically would lead to a deterioration of model performance. This

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 105

distinction is even more precarious in dynamic fault detection (and diagnosis)
systems, as

1. the likelihood that both, dynamic changes and faults, appear unpredictably and
variantly are usually much higher than in other environments and

2. an integration of fault modes would let the model forget how to detect such types
of faults and thus would lead to a deterioration in fault detection performance
regarding a correct detection of these types of faults which have been wrongly
learnt into the models (no deviation would be visible any more, because the fault
mode is part of the (wrongly) updated reference model).

Ideally, the distinction should be also performed fully autonomously and auto-
matically without costly operator interventions. This abandons the usage of semi-
supervised adaptive and evolving learning system as, e.g., shown in Fig. 4.18
requiring operator’s feedback for each newly detected mode. Furthermore, the
distinction should be as generically applicable as possible and not be restricted
to particular applications. This abandons the usage of expert-based pattern-like
descriptions for fault and non-fault modes, e.g., in form of fault signatures [5, 46]
indicating the expected violation trend and/or intensity levels of residuals. Someone
may consider that changes induced by faults are affected with higher intensity
levels than changes induced by regular dynamics or vice versa. For instance, when
inspecting Fig. 4.1 (in Sect. 4.1), someone may have the intuition to see the small
drift starting around Sample #300 as a regular dynamical fluctuation (=intended
change) in the system, and the much heavier drift starting after Sample #400 as a
real fault case—which is true in this particular situation, and which would be even
correctly handled by our residual signal analysis approach. However, this can be not
generalized with sufficient accuracy, as non-intended changes may be small (e.g.,
5% fault levels) but intended ones may be big in other cases.

4.6.1 Discrete Event Signals Indicating (Intended) Process
Changes

The basic idea of our approach is to exploit the presence of discrete event signals
in on-line processes in order to distinguish between intended and non-intended
changes. A discrete event signal is a dynamic time-based signal with discrete
states, the transitions of which are triggered by events. Events can not only follow
physical laws, but are often induced by man-made rules or regulations from outside
(e.g., an environmental change or a switch in process settings). For instance,
in most conventional production systems of the today’s Factories of the Future,
the parameters settings or the charge types for producing particular products are
changed during the production process [39, 103] from one particular setting of
values to another one. A particular example of a discrete event signal from a
rolling mill production process embedding changes in parameter settings is shown
in Fig. 4.19, including four events leading to five states.

106 E. Lughofer

Fig. 4.19 A typical discrete event signal containing five process states induced by four events
(=crisp changes) over time frame of 2500 samples (=24 h of process uptime in this case); two
recognized changes in the process are indicated by vertical markers and surrounded by tolerance
areas which represent the (known, elicited) delay between the happening of the events and their
affect onto the process

Typically such changes affect the system in a way that relations and inter-
dependencies modeled before are not valid or not partially valid any longer. Thus,
the on-line samples recorded during or after such changes appear as significant
deviations (anomalies) to the models.

4.6.2 Identification of Intended Changes by Hybridization of
Discrete Events and Change Isolation

The basic idea is now

1. to check whether changing events in these discrete event signals happened before
or during the time span when potential fault candidates have been elicited (by any
of the methods described in Sects. 4.3 and 4.4), subject to an influencing level of
delay; and

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 107

2. if so, to check whether the fault candidates (as significant violations of the
reference models) occurred in channels (=influencing process variables) which
can be actually affected by the “before-happening” changing events at all.

If both are true, the change is likely to be an intended one (thus the fault candidate
is not confirmed as a real fault) and the model should be autonomously updated in
order to expand its knowledge to new states and to avoid further false alarms. If (1)
and (2) above are not the case, the change is likely to be a non-intended one and thus
the likelihood of a fault is pretty high. Therefore, the operator should be alarmed,
who can then give a final feedback. This leads to a reduction of false positives =
false information to operators in case of intended changes happened (and no real
faults).

4.6.2.1 Delay Elicitation for Process Changes

Regarding the first issue, in several cases there may be expert knowledge available
knowing about the (expected) time delay between a discrete event (e.g., process
setting change) and its actual effect on the process (and included variables/values).
In other cases, the delay can be elicited within a design of experiment (DoE) stage
[43], where various event settings (guided by the DoE) are tested and the corre-
sponding process variables recorded over time. Then, it is a matter of establishing
a predictive mapping between events and process variables in connection with a
search procedure for the ideal prediction horizon in these mappings (optimizing the
tradeoff between the length of the horizon and the accuracy of the mapping). The
latter can then be associated with the intrinsic delay between events and process
changes. The found (or known) delay L can then be matched against the time
duration T which passed by between the happening of the discrete event and the
actual process change detected as fault candidate by the reference model(s). A
certain tolerance area A might be useful, as the detection of the changes may be
also affected by some delays (depending on the accuracy of the method). If the time
duration falls within the tolerance area, i.e. if

L 2 ŒT � A;T C A	 (4.17)

the change is likely to be an intended one, as the duration between the discrete event
and the detected process change is similar to the known delay. The level of this
likelihood is verified by a change isolation component (subsequent section), which
checks whether the detected process change is located in at least one process channel
(contained in any of the reference models) which can be affected by a discrete event
at all.

108 E. Lughofer

4.6.2.2 Location of Changes with Change Isolation

It is a major task to find out which channels are most likely affected by the change,
or in other words where in the sensor network is the change located which leads to
the violation of the reference model(s). The concept of fault isolation [35, 46, 107]
is a promising and widely used methodology for such a task, where the violated
reference models are used as basis for the search. In the context when we see each
model violation as a change in the process and not necessarily as a fault, we can use
this directly for change isolation.

In case of the residual-based approach with the usage of causal relation networks
(Sect. 4.3), the change/fault isolation problematic can be ideally investigated by
exploiting the multi-model nature, because various channels may appear or not
appear in more than one model (as input or target) and this with different influence
levels. If, for instance, a channel appears in many different violated models (=models
where the extracted residual signal exceeds the tolerance band), it is more likely
that the change happened in this channel than in another one appearing only in one
violated model. However, this also may depend on the influence of this channel
onto the target of the violated model(s), on the quality of the violated model(s)
and on the intensity of violation(s), i.e., whether the tolerance band is slightly or
significantly exceeded. According to the consideration in [107], we suggest the
following isolation indicators:

• model gradients (along each input variable) in the current sample as a measure
for the degree of variable influence,

• model quality, measured by the coefficient of determination R2 over a statistical
evaluation procedure (e.g., cross-validation), and

• the degree of model violation measured by the distance between the residuals
and the dynamic tolerance band surrounding them (compare with Fig. 4.9).

These are accumulated over all violated models f1; : : : ; fv . Formally, the relative
likelihood that the detected change appears in channel xj based solely on a single
(violated) model fi, where channel xj appears as input or target variable, is given by

indij D jgradijj
 quali
 violi (4.18)

with quali the quality of the ith model measured in terms of the cross-validated R2

obtained in the preliminary off-line training process (assuming K folds):

R2.CV/D 1

K

KX

iD1

Pi�.N=KC1/
kD.i�1/�.N=K/C1.by.k/ � y.k//2

Pi�.N=KC1/
kD.i�1/�.N=K/C1.by.k/ � y.k//2CPi�.N=KC1/

kD.i�1/�.N=K/C1.y.k/�by.k//2

(4.19)

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 109

where y denotes the average over the target values and thus represents a dummy
model with a constant surface. violi is calculated by

violi D resi

tolbandi
(4.20)

i.e., it measures the proportion of the residual to the tolerance band, which is always
greater than 1, as otherwise the model would not be violated. The calculation of the
gradient gradij depends on the model architecture/structure used for establishing the
partial mappings within the causal relation networks, but usually can be elicited once
the model can be represented as differentiable functional form—as is, e.g. the case
for all types of linear regression models as well as neural networks, fuzzy systems,
or symbolic regression formulas.

Then, the likelihood that the change affects or appears in channel xj is given by:

likj D Aggf fi2F_viol.x/jxj2fig.indij/ (4.21)

with Agg an aggregation operator and F_viol.x/ the set of violated models in the
current sample x, which is normalized by the maximal likelihood among all N
channels involved in any of the violated models in F_viol.x/:

likj.normed/ D likj

maxkD1;:::;N.likk/
: (4.22)

In this sense, variables with similar but slightly lower degree than the maximum
are considered as potential isolation candidates iso1; : : : ; isok, as their likj.normed/
value will be close to 1; other channels with low likelihoods compared to the
maximum will be assigned a value close to 0 and can be neglected.

4.6.2.3 Hybridization of Isolation Candidates with Discrete Event Signals
to Identify Intended Changes

Afterwards, it can be checked whether any event e1; : : : ; el occurring before the
detection of the process change (candidate) does have a (time-delayed) affect on
any of the isolation candidates iso1; : : : ; isok, i.e. whether

9jD1;:::;k
�
qualj. fpredj.efull/! isoj/ � thr ^ 9iD1;:::;l.infl.ei/! isoj/ D sign˛

�

(4.23)

is met. The first condition checks whether there is a predictive mapping of high
quality between the complete set of event signals efull D .e1; : : : ; el/ and any
isolated channel (with prediction horizon lying in the ŒT � A;T C A	 interval),
the second one checks whether any event e1; : : : ; el has a significant influence on
any of the isolated candidate (as could be conducted with ANOVA test [53] or

110 E. Lughofer

gradient-based sensitivity analysis based on pre-recorded data or known due to
expert knowledge).

• If (4.23) holds, the likelihood is high that the change is an intended one
and the model can be updated to account for the change, to integrate the
changed/expanded system behavior in its structure (according to the techniques
discussed in Sect. 4.5.1).

• If (4.23) does not hold, the process change is probably not intended, thus a fault
alarm is triggered to the operator.

In case of unsupervised distribution-based models, change isolation is more
sophisticated high-dimensional because distribution-based models are used as refer-
ence, where all or a larger subset of channels are involved. In case of PCA or partial
PCA based approaches, the loadings of the channels over the most important (highly
ranked) components could be used as indicator how much important channels are
for describing the distributions. These loadings may then substitute the gradients in
(4.18), and the violation degrees violi can be interpreted as the proportional distance
of the sample to the surface of the cloud.

A final note goes to SCADA systems where events may appear with a very
high frequency and thus the time fraction for model maintenance may become
dominant. On the other hand, events only concern the maintenance whenever
they are significant, i.e. are able to trigger a process change (=potential fault
candidate) detected as such by one of the methods described above (thus, others
are automatically filtered). Second, maintenance is done by updating the models in
a single-pass, sample-wise manner by using the incremental learning and evolving
methods described throughout Sects. 4.3 and 4.4: from our experience, these are
all very fast methods operating in real-time even in high-dimensional cases, much
faster than re-calibration cycles based on past samples and sliding windows, such
that no significant delay for model updating can be expected. Similar considerations
hold for the change isolation component, as the values in (4.18) are fast to compute
(gradients can be approximately calculated by difference quotients).

Acknowledgements The author acknowledges the Austrian research funding association (FFG)
within the scope of the “IKT of the future” programme, project “Generating process feedback from
heterogeneous data sources in quality control (mvControl)” (contract # 849962).

References

1. M. Affenzeller, S. Winkler, S. Wagner, A. Beham, Genetic Algorithms and Genetic Pro-
gramming: Modern Concepts and Practical Applications (Chapman & Hall, Boca Raton,
FL, 2009)

2. S. Agarwal, D. Starobinski, A. Trachtenberg, On the scalability of data synchronization
protocols for PDAs and mobile devices. IEEE Netw. 16(4), 22–28 (2002)

3. J. Aguilar-Martin, Qualitative control, diagnostic and supervision of complex processes.
Math. Comput. Simul. 36(2), 115–127 (1994)

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 111

4. D. Albesano, R. Gemello, P. Laface, F. Mana, S. Scanzio, Adaptation of artificial neural
networks avoiding catastrophic forgetting, in International Joint Conference on Neural
Networks 2006 (2006), pp. 1554–1561

5. C. Alcala, S. Qin, Reconstruction-based contribution for process monitoring. Automatica
45(7), 1593–1600 (2009)

6. S. Alizadeh, A. Kalhor, H. Jamalabadi, B. Araabi, M. Ahmadabadi, Online local input
selection through evolving heterogeneous fuzzy inference system. IEEE Trans. Fuzzy Syst.
24(6), 1364–1377 (2016)

7. M. Andersson, A comparison of nine pls1 algorithms. J. Chemometr. 23, 518–529 (2009)
8. P. Angelov, Evolving Takagi-Sugeno fuzzy systems from streaming data, eTS+, in Evolving

Intelligent Systems: Methodology and Applications, ed. by P. Angelov, D. Filev, N. Kasabov
(Wiley, New York, 2010), pp. 21–50

9. P. Angelov, R. Yager, A new type of simplified fuzzy rule-based system. Int. J. Gen. Syst.
41(2), 163–185 (2012)

10. P. Angelov, X. Zhou, Evolving fuzzy-rule-based classifiers from data streams. IEEE Trans.
Fuzzy Syst. 16(6), 1462–1475 (2008)

11. P. Angelov, V. Giglio, C. Guardiola, E. Lughofer, J. Luján, An approach to model-based fault
detection in industrial measurement systems with application to engine test benches. Meas.
Sci. Technol. 17(7), 1809–1818 (2006)

12. P. Angelov, D. Filev, N. Kasabov, Evolving Intelligent Systems — Methodology and Applica-
tions (Wiley, New York, 2010)

13. K. Aström, B. Wittenmark, Adaptive Control, 2nd edn. (Addison-Wesley Longman, Boston,
MA, 1994)

14. B. Babadi, N. Kalouptsidis, V. Tarokh, SPARLS: the sparse rls algorithm. IEEE Trans. Signal
Process. 58(8), 4013–4025 (2010)

15. D. Bartholomew, F. Steele, J. Galbraith, I. Moustaki, Analysis of Multivariate Social Science
Data. Statistics in the Social and Behavioral Sciences Series, 2nd edn. (Taylor & Francis,
London, 1993)

16. S. Bay, K. Saito, N. Ueda, P. Langley, A framework for discovering anomalous regimes
in multivariate time-series data with local models, in Symposium on Machine Learning for
Anomaly Detection, Stanford, 2004

17. A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: massive online analysis. J. Mach. Learn.
Res. 11, 1601–1604 (2010)

18. P. Boltryk, C.J. Harris, N.M. White, Intelligent sensors - a generic software approach. J. Phys.
Conf. Ser. 15, 155–160 (2005)

19. L. Breiman, J. Friedman, C. Stone, R. Olshen, Classification and Regression Trees (Chapman
& Hall, Boca Raton, FL, 1993)

20. E. Brusa, L. Lemma, D. Benasciutti, Vibration analysis of a sendzimir cold rolling mill and
bearing fault detection. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 224(C8), 1645–1654
(2010)

21. P. Caleb-Solly, J. Smith, Adaptive surface inspection via interactive evolution. Image Vis.
Comput. 25(7), 1058–1072 (2007)

22. V. Carvalho, W. Cohen, Single-pass online learning: performance, voting schemes and online
feature selection, in Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (ACM Press, New York, 2006), pp. 548–553

23. C. Cernuda, E. Lughofer, P. Hintenaus, W. Märzinger, T. Reischer, M. Pawlicek, J. Kasberger,
Hybrid adaptive calibration methods and ensemble strategy for prediction of cloud point in
melamine resin production. Chemom. Intell. Lab. Syst. 126, 60–75 (2013)

24. C. Cernuda, E. Lughofer, G. Mayr, T. Röder, P. Hintenaus, W. Märzinger, J. Kasberger,
Incremental and decremental active learning for optimized self-adaptive calibration in viscose
production. Chemom. Intell. Lab. Syst. 138, 14–29 (2014)

25. V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey. ACM Comput. Surv. 41(3),
1–58 (2009)

112 E. Lughofer

26. H. Chen, P. Tino, X. Yao, A. Rodan, Learning in the model space for fault diagnosis. IEEE
Trans. Neural Netw. Learn. Syst. 25(1), 124–136 (2014)

27. G. Claeskens, N. Hjort, Model Selection and Model Averaging (Cambridge University Press,
Cambridge, 2008)

28. L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, O. Kipersztok, Real-time data mining of
non-stationary data streams from sensor networks. Inf. Fusion 9(3), 344–353 (2008)

29. B. Costa, P. Angelov, L. Guedes, Fully unsupervised fault detection and identification based
on recursive density estimation and self-evolving cloud-based classifier. Neurocomputing
150(A), 289–303 (2015)

30. D. Cox, D. Hinkley, Theoretical Statistics (Chapman & Hall, London, 1974)
31. J.C. da Silva, A. Saxena, E. Balaban, K. Goebel, A knowledge-based system approach for

sensor fault modeling, detection and mitigation. Expert Syst. Appl. 39, 10977–10989 (2012)
32. S.J. Delany, P. Cunningham, A. Tsymbal, L. Coyle, Curvilinear component analysis: a self-

organizing neural network for nonlinear mapping of datasets. IEEE Trans. Neural Netw. 8(1),
148–154 (1997)

33. S. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools
(Springer, Berlin, 2008)

34. D. Dou, S. Zhou, Comparison of four direct classification methods for intelligent fault
diagnosis of rotating machinery. Appl. Soft Comput. 46, 459–468 (2016)

35. H. Efendic, A. Schrempf, L.D. Re, Data based fault isolation in complex measurement
systems using models on demand, in Proceedings of the IFAC-Safeprocess 2003 (IFAC,
Washington, DC, 2003), pp. 1149–1154

36. B. Efron, R. Tibshirani, Improvements on cross-validation: the .632+ bootstrap method. J.
Am. Stat. Assoc. 92(438), 548–560 (1997)

37. C. Eitzinger, W. Heidl, E. Lughofer, S. Raiser, J. Smith, M. Tahir, D. Sannen, H. van Brussel,
Assessment of the influence of adaptive components in trainable surface inspection systems.
Mach. Vis. Appl. 21(5), 613–626 (2010)

38. D. Evans, A. Jones, A proof of the gamma test. Roy. Soc. 458, 2759–2799 (2002)
39. X. Fang, J. Du, Z. Wei, P. He, H. Bai, X. Wang, B. Lu, An investigation on effects of process

parameters in fused-coating based metal additive manufacturing. J. Manuf. Process. 28(2),
383–389 (2017)

40. D. Fernández-Francos, D. Martínez-Rego, O. Fontenla-Romero, A. Alonso-Betanzos, Auto-
matic bearing fault diagnosis based on one-class v-svm. Comput. Ind. Eng. 64(1), 357–365
(2013)

41. L. Fortuna, S. Graziani, A. Rizzo, M. Xibilia, Soft Sensor for Monitoring and Control of
Industrial Processes (Springer, London, 2007)

42. H. Fourati, Multisensor Data Fusion: From Algorithms and Architectural Design to Applica-
tions (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2015)

43. G. Franceschini, S. Macchietto, Model-based design of experiments for parameter precision:
state of the art. Chem. Eng. Sci. 63(19), 4846–4872 (2008)

44. J. Gama, Knowledge Discovery from Data Streams (Chapman & Hall/CRC, Boca Raton, FL,
2010)

45. V. Giurgiutiu, Structural Health Monitoring: Fundamentals and Applications: With Piezo-
electric Wafer Active Sensors (Academic, San Diego, CA, 2007)

46. D. Gorinevsky, Bayesian fault isolation in multivariate statistical process monitoring, in
Proceedings of the American Control Conference, San Francisco, CA (2011), pp. 1963–1968

47. D. Gustafson, W. Kessel, Fuzzy clustering with a fuzzy covariance matrix, in Proceedings of
the IEEE CDC Conference 1979, San Diego, CA (1979), pp. 761–766

48. I. Guyon, A. Elisseeff, An introduction to variable and feature selection. J. Mach. Learn. Res.
3, 1157–1182 (2003)

49. F. Harrel, Regression Modeling Strategies (Springer, New York, 2001)
50. L. Hartert, M. Sayed-Mouchaweh, Dynamic supervised classification method for online

monitoring in non-stationary environments. Neurocomputing 126, 118–131 (2014)

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 113

51. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference and Prediction, 2nd edn. (Springer, New York, 2009)

52. W. Heidl, S. Thumfart, E. Lughofer, C. Eitzinger, E. Klement, Machine learning based
analysis of gender differences in visual inspection decision making. Inf. Sci. 224, 62–76
(2013)

53. T. Hill, P. Lewicki, Statistics: Methods and Applications (StatSoft, Tulsa, 2007)
54. G. Hinton, S. Roweis, Stochastic neighbor embedding. Adv. Neural Inf. Process. Syst. 15,

833–840 (2003)
55. M. Hisada, S. Ozawa, K. Zhang, N. Kasabov, Incremental linear discriminant analysis for

evolving feature spaces in multitask pattern recognition problems. Evol. Syst. 1(1), 17–27
(2010)

56. G. Huang, P. Saratchandran, N. Sundararajan, An efficient sequential learning algorithm for
growing and pruning RBF (GAP-RBF) networks. IEEE Trans. Syst. Man Cybern. B Cybern.
34(6), 2284–2292 (2004)

57. R. Isermann, Fault Diagnosis Systems: An Introduction from Fault Detection to Fault
Tolerance (Springer, Berlin, 2009)

58. R. Isermann, P. Ballé, Trends in the application of model-based fault detection and diagnosis
of technical processes. Control. Eng. Pract. 5(5), 709–719 (1997)

59. H. Jiang, C. Kwong, W. Ip, T. Wong, Modeling customer satisfaction for new product
development using a PSO-based ANFIS approach. Appl. Soft Comput. 12(2), 726–734 (2013)

60. I. Jolliffe, Principal Component Analysis (Springer, Berlin, 2002)
61. R. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME J. Basic

Eng. 82, 35–45 (1960)
62. N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd

edn. (Springer, London, 2007)
63. B. Khaleghi, A. Khamis, F.O. Karray, S.N. Razavi, Multisensor data fusion: a review of the

state-of-the-art. Inf. Fusion 14(1), 28–44 (2013)
64. I. Khamassi, M. Sayed-Mouchaweh, M. Hammami, K. Ghedira, Discussion and review on

evolving data streams and concept drift adapting. Evol. Syst. (2017, on-line and in press).
https://10.1007/s12530-016-9168-2

65. J. Korbicz, J. Koscielny, Z. Kowalczuk, W. Cholewa, Fault Diagnosis - Models, Artificial
Intelligence and Applications (Springer, Berlin, 2004)

66. P. Laskov, C. Gehl, S. Krüger, K. Müller, Incremental support vector learning: analysis,
implementation and applications. J. Mach. Learn. Res. 7, 1909–1936 (2006)

67. D. Leite, R. Palhares, C.S. Campos, F. Gomide, Evolving granular fuzzy model-based control
of nonlinear dynamic systems. IEEE Trans. Fuzzy Syst. 23(4), 923–938 (2015)

68. A. Lemos, Adaptive fault detection and diagnosis using evolving intelligent systems, in
Proceedings of the IEEE Evolving and Adaptive Intelligent Systems Conference (EAIS) 2016,
Natal (2016)

69. A. Lemos, W. Caminhas, F. Gomide, Adaptive fault detection and diagnosis using an evolving
fuzzy classifier. Inf. Sci. 220, 64–85 (2013)

70. G. Leng, X.J. Zeng, J. Keane, An improved approach of self-organising fuzzy neural network
based on similarity measures. Evol. Syst. 3(1), 19–30 (2012)

71. Y. Li, On incremental and robust subspace learning. Pattern Recogn. 37(7), 1509–1518 (2004)
72. Z. Liang, Y. Li, Incremental support vector machine learning in the primal and applications.

Neurocomputing 72(10–12), 2249–2258 (2009)
73. E. Lima, M. Hell, R. Ballini, F. Gomide, Evolving fuzzy modeling using participatory

learning, in Evolving Intelligent Systems: Methodology and Applications, ed. by P. Angelov,
D. Filev, N. Kasabov (Wiley, New York, 2010), pp. 67–86

74. D. Liu, Y. Zhang, Z. Yu, M. Zeng, Incremental supervised locally linear embedding for
machinery fault diagnosis. Eng. Appl. Artif. Intell. 50(C), 60–70 (2016)

75. L. Ljung, System Identification: Theory for the User (Prentice Hall PTR, Prentice Hall, Upper
Saddle River, NJ, 1999)

https://10.1007/s12530-016-9168-2

114 E. Lughofer

76. E. Lughofer, FLEXFIS: a robust incremental learning approach for evolving TS fuzzy models.
IEEE Trans. Fuzzy Syst. 16(6), 1393–1410 (2008)

77. E. Lughofer, Evolving Fuzzy Systems — Methodologies, Advanced Concepts and Applications
(Springer, Berlin, 2011)

78. E. Lughofer, On-line incremental feature weighting in evolving fuzzy classifiers. Fuzzy Sets
Syst. 163(1), 1–23 (2011)

79. E. Lughofer, eVQ-AM: an extended dynamic version of evolving vector quantization, in
Proceedings of the 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems
(EAIS), Singapore (2013), pp. 40–47

80. E. Lughofer, On-line assurance of interpretability criteria in evolving fuzzy systems —
achievements, new concepts and open issues. Inf. Sci. 251, 22–46 (2013)

81. E. Lughofer, C. Guardiola, On-line fault detection with data-driven evolving fuzzy models. J.
Control Intell. Syst. 36(4), 307–317 (2008)

82. E. Lughofer, S. Kindermann, SparseFIS: data-driven learning of fuzzy systems with sparsity
constraints. IEEE Trans. Fuzzy Syst. 18(2), 396–411 (2010)

83. E. Lughofer, J.L. Bouchot, A. Shaker, On-line elimination of local redundancies in evolving
fuzzy systems. Evol. Syst. 2(3), 165–187 (2011)

84. E. Lughofer, C. Eitzinger, C. Guardiola, On-line quality control with flexible evolving fuzzy
systems, in Learning in Non-stationary Environments: Methods and Applications, ed. by
M. Sayed-Mouchaweh, E. Lughofer (Springer, New York, 2012), pp. 375–406

85. E. Lughofer, C. Cernuda, S. Kindermann, M. Pratama, Generalized smart evolving fuzzy
systems. Evol. Syst. 6(4), 269–292 (2015)

86. E. Lughofer, S. Kindermann, M. Pratama, J. Rubio, Top-down sparse fuzzy regression
modeling from data with improved coverage. Int. J. Fuzzy Syst. 19(5), 1645–1658 (2017)

87. E. Lughofer, R. Richter, U. Neissl, W. Heidl, C. Eitzinger, T. Radauer, Explaining classifier
decisions linguistically for stimulating and improving operators labeling behavior. Inf. Sci.
420, 16–36 (2017)

88. S. Mahadevan, S. Shah, Fault detection and diagnosis in process data using one-class support
vector machines. J. Process Control 19(10), 1627–1639 (2009)

89. L. Manevitz, M. Yousef, One-class svms for document classification. J. Mach. Learn. Res. 2,
139–154 (2001)

90. T. McConaghy, Fast scalable, deterministic symbolic regression technology, in Genetic
Programming Theory and Practice IX, ed. by R. Riolo et al. Genetic and Evolutionary
Computation (Springer Science+Business Media, Heidelberg, 2011), pp. 235–260

91. P. Mcnicholas, T. Murphy, Parsimonious gaussian mixture models. Stat. Comput. 18(3), 285–
296 (2008)

92. L. Mendonça, J. Sousa, J.S. da Costa, An architecture for fault detection and isolation based
on fuzzy methods. Expert Syst. Appl. 36(2), 1092–1104 (2009)

93. T. Nakamura, A. Lemos, A batch-incremental process fault detection and diagnosis using
mixtures of probabilistic PCA, in Proceedings of the Evolving and Adaptive Intelligent
Systems (EAIS) Conference 2014 (IEEE Press, Linz, 2014)

94. O. Nelles, Nonlinear System Identification (Springer, Berlin, 2001)
95. L. Ngia, J. Sjöberg, Efficient training of neural nets for nonlinear adaptive filtering using

a recursive Levenberg-Marquardt algorithm. IEEE Trans. Signal Process. 48(7), 1915–1926
(2000)

96. P. Odgaard, B. Lin, S. Jorgensen, Observer and data-driven-model-based fault detection in
power plant coal mills. IEEE Trans. Energy Convers. 23(2), 659–668 (2008)

97. W. Penny, S. Roberts, Error bars for linear and nonlinear neural network regression models
(1998). http:\citeseer.nj.nec.com/penny98error.html

98. K. Pichler, E. Lughofer, M. Pichler, T. Buchegger, E. Klement, M. Huschenbett, Fault
detection in reciprocating compressor valves under varying load conditions. Mech. Syst.
Signal Process. 70–71, 104–119 (2016)

99. M. Pratama, S. Anavatti, E. Lughofer, C. Lim, An incremental meta-cognitive-based scaffold-
ing fuzzy neural network. Neurocomputing 171, 89–105 (2016)

http:citeseer.nj.nec.com/penny98error.html

4 Robust Data-Driven Fault Detection in Dynamic Process Environments. . . 115

100. M. Pratama, J. Lu, E. Lughofer, G. Zhang, M. Er, Incremental learning of concept drift using
evolving type-2 recurrent fuzzy neural network. IEEE Trans. Fuzzy Syst. 25(5), 1175–1192
(2017)

101. M. Sayed-Mouchaweh, E. Lughofer, Learning in Non-stationary Environments: Methods and
Applications (Springer, New York, 2012)

102. M. Sayed-Mouchaweh, E. Lughofer, Decentralized fault diagnosis approach without a global
model for fault diagnosis of discrete event systems. Int. J. Control. 88(11), 2228–2241 (2015)

103. M. Schrenk, S. Krenn, M. Ripoll, A. Nevosad, S. Paar, R. Grundtner, G. Rohm, F. Franek,
Statistical analysis on the impact of process parameters on tool damage during press
hardening. J. Manuf. Process. 23, 222–230 (2016)

104. A. Seifi, H. Riahi-Madvar, Input variable selection in expert systems based on hybrid gamma
test-least square support vector machine, ANFIS and ANN models, in Advances in Expert
Systems (Springer, Berlin, 2012)

105. F. Serdio, E. Lughofer, K. Pichler, T. Buchegger, H. Efendic, Residual-based fault detection
using soft computing techniques for condition monitoring at rolling mills. Inf. Sci. 259, 304–
320 (2014)

106. F. Serdio, E. Lughofer, K. Pichler, M. Pichler, T. Buchegger, H. Efendic, Fault detection in
multi-sensor networks based on multivariate time-series models and orthogonal transforma-
tions. Inf. Fusion 20, 272–291 (2014)

107. F. Serdio, E. Lughofer, K. Pichler, M. Pichler, T. Buchegger, H. Efendic, Fuzzy fault isolation
using gradient information and quality criteria from system identification models. Inf. Sci.
316, 18–39 (2015)

108. F. Serdio, E. Lughofer, A.C. Zavoianu, K. Pichler, M. Pichler, T. Buchegger, H. Efendic,
Improved fault detection employing hybrid memetic fuzzy modeling and adaptive filters.
Appl. Soft Comput. 51, 60–82 (2017)

109. M. Shabanian, M. Montazeri, A neuro-fuzzy online fault detection and diagnosis algorithm
for nonlinear and dynamic systems. Int. J. Control. Autom. Syst. 9(4), 665–670 (2011)

110. A. Shaker, E. Lughofer, Self-adaptive and local strategies for a smooth treatment of drifts in
data streams. Evol. Syst. 5(4), 239–257 (2014)

111. A. Shilton, M. Palaniswami, D. Ralph, A. Tsoi, Incremental training of support vector
machines. IEEE Trans. Neural Netw. 16(1), 114–131 (2005)

112. S. Simani, C. Fantuzzi, R. Patton, Model-Based Fault Diagnosis in Dynamic Systems Using
Identification Techniques (Springer, Berlin, 2002)

113. C. So, S. Ng, S. Leung, Gradient based variable forgetting factor RLS algorithm. Signal
Process. 83(6), 1163–1175 (2003)

114. M. Stone, Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc.
36(1), 111–147 (1974)

115. M. Tamura, S. Tsujita, A study on the number of principal components and sensitivity of fault
detection using PCA. Comput. Chem. Eng. 31(9), 1035–1046 (2007)

116. M. Tipping, C. Bishop, Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B Stat.
Methodol. 61(3), 611–622 (1999)

117. L. Wang, R. Gao, Condition Monitoring and Control for Intelligent Manufacturing (Springer,
London, 2006)

118. W. Wang, J. Vrbanek, An evolving fuzzy predictor for industrial applications. IEEE Trans.
Fuzzy Syst. 16(6), 1439–1449 (2008)

119. J. Wang, P. Zhao, S. Hoi, R. Jin, Online feature selection and its applications. IEEE Trans.
Knowl. Data Eng. 26(3), 698–710 (2004)

120. J. Weng, Y. Zhang, W.S. Hwang, Candid covariance-free incremental principal component
analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1034–1040 (2003)

121. Y. Xu, K. Wong, C. Leung, Generalized recursive least square to the training of neural
network. IEEE Trans. Neural Netw. 17(1), 19–34 (2006)

122. M. Yang, V. Makis, ARX model-based gearbox fault detection and localization under varying
load conditions. J. Sound Vib. 329(24), 5209–5221 (2010)

116 E. Lughofer

123. X.Q. Zeng, G.Z. Li, Incremental partial least squares analysis of big streaming data. Pattern
Recogn. 47, 3726–3735 (2014)

124. Y.Q. Zhang, Constructive granular systems with universal approximation and fast knowledge
discovery. IEEE Trans. Fuzzy Syst. 13(1), 48–57 (2005)

125. Y.Q. Zhang, Combining uncertainty sampling methods for supporting the generation of meta-
examples. Inf. Sci. 196(1), 1–14 (2012)

126. E. Zhong, W. Fan, Q. Yang, O. Verscheure, J. Ren, Cross validation framework to choose
amongst models and datasets for transfer learning, in Proceedings of the Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, Banff, AB (2010),
pp. 547–562

127. P. Zhu, B. Chen, J. Principe, A novel extended kernel recursive least squares algorithm. Neural
Netw. 32, 349–357 (2012)

Chapter 5
Critical States Distance Filter Based
Approach for Detection and Blockage
of Cyberattacks in Industrial Control
Systems

Franck Sicard, Éric Zamai, and Jean-Marie Flaus

5.1 Introduction

In this section, components and architecture of ICS will be described as well as
the main purpose of these systems. Then, vulnerabilities of ICS and their causes
will be explained in detail. Thereafter, a history of main successful attacks against
control-command systems will be drawn. Finally, details on ICS’s specificities and
problematics of cybersecurity in control-command systems will be given.

5.1.1 Industrial Control Systems (ICS)

Industrial Control Systems (ICS) are a combination of cyber and physical layers that
act together to achieve an objective in industrial environments. Nowadays, they are
integrated in many sectors with critical infrastructures such as: energy production
and distribution (electricity, water, oil and gas, etc.), manufacturing systems,
transportation systems, health services, or defense [1]. Different typologies and
materiel architectures can be found for describing ICS; however, CIM (Computer-
Integrated Manufacturing) architecture formalizes ICS in several hierarchical layers
[2] as represented in Fig. 5.1. Each layer has different information according to
processing capacity and decision-making power of the component. In this paper,
the term ICS architecture can be replaced by SCADA architecture; more details are
presented in Sect. 5.1.1.3.

F. Sicard (�) · É. Zamai · J.-M. Flaus
Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France
e-mail: franck.sicard@grenoble-inp.fr

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4_5

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74962-4_5&domain=pdf
mailto:franck.sicard@grenoble-inp.fr
https://doi.org/10.1007/978-3-319-74962-4_5

118 F. Sicard et al.

Fig. 5.1 Illustration of an ICS architecture from a functional point of view with CIM real time
levels

5.1.1.1 Level 0: Sensors and Actuators

The purpose of an ICS is to transform raw materials into finished product by
interacting on the production flow. In other words, the control system has to bring
the process from an initial to final state (production flow) by acting on it to ensure
productivity and reliability.

Sensors and actuators link cyber and physical layers. Sensors convert physical
measurements into electrical signal transmitted to the upper layer (level 1). Actua-
tors convert electrical signals from numerical layer into mechanical motion in order
to act on the production flow. These components constitute the Operative Part (OP)
that is equivalent to level 0 in CIM architecture. The OP and the production flow are
called the physical system.

5.1.1.2 Level 1: Control

This layer has to acquire data from the field devices (level 0), control actuators (level
0), and communicate with operators (local HMI) and control room (level 2). The

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 119

main device is the Programmable Logic Controller (PLC) that controls the process
in real time. For this purpose, PLC repeats a scan cycle composed of three steps:
(1) PLC acquires sensors measurements of the physical system, (2) logic program
embedded in PLC (control law) runs and determines actions that have to be applied
on the system then (3) orders are sent to actuators.

Level 1 is also called Control Part (CP).

5.1.1.3 Level 2: Supervision (SCADA)

Level 2 has several objectives in an ICS. It gathers data from lower layers in order to
show an image of the process. Through HMI and SCADA, operators and managers
are able to oversee the production flow. Work orders are transmitted to level 1 to
adjust control law or to avoid damages on the process. Finally, level 2 communicates
with the upper levels. This layer is called the control room. The term “SCADA” is
also found in the literature, it can design the ICS architecture: SCADA is thus a
synonym of ICS and refers to SCADA architecture; or level 2 of CIM architecture
and it refers to level 2 (supervision). If that is the case, SCADA represents only the
supervision part of the ICS.

5.1.1.4 Communication Networks

Communication networks connect the different layers. Originally, ICS used analog
or discrete inputs/outputs (I/O) or proprietary protocols (fieldbuses) to communicate
but in recent architectures, devices draw on TCP/IP protocols mainly. Increasing
the volume and speed of data transported is the main benefit. However, by
introducing technologies inherited from Information Technology (IT), new vul-
nerabilities appear in ICS (see Sect. 5.1.2). Moreover, wireless protocols, such as
WirelessHART or ISA100, are gaining more and more attention from both academic
and industrial point of view. In the meantime, these protocols make the cybersecurity
issues even more critical.

Between level 1 and level 0, communication [2, 3] has to transport few volumes
of data (Bytes/Bits) but with a shortened response time (10 ms/ms). Point-to-
point connection or fieldbuses are used to communicate. These buses are mainly
proprietary protocols, such as Profibus (Siemens) or Fipway1 (Schneider Electric),
specific application protocols like AS-i, CAN, or open protocols, as Modbus.
Wireless protocols are increasingly being used to communicate in low layers
in cyberphysical systems [4], mainly for transmitting sensors values (SmartGrid,
Industry 4.0, etc.).

On the contrary, levels 2 and 1 have to communicate with a large volume
(Kb/Bytes) of data with a longer response time (min-s/ms). These protocols

1Fipway is no longer supported by Schneider Electric that focuses on Ethernet based protocols.

120 F. Sicard et al.

[2, 3], such as Profinet (Siemens), are based on Ethernet TCP/IP protocol. Nowa-
days, protocols allowing connection of all the architecture are developed to unify
industrial communication protocols. This is the purpose of EtherNet/IP [5] that
is based on Ethernet TCP/IP protocol respecting recent norms as IEEE 802.3 or
EtherCAT [6] that is an Ethernet fieldbus facilitating connection with upper level of
CIM architecture and normalized by IEC and ISO.

5.1.1.5 Other Levels

Our study only focuses on level 0, 1, and 2 of the CIM architecture. Upper levels (3
and 4) referring to scheduling and global management of production flow will not
be discussed.

5.1.2 Vulnerabilities and Attacks against ICS

Since the beginning of the century, ICS are targeted by hackers who exploit
vulnerabilities on components or the architecture in order to perform cyberattacks
[7, 8]. The interest of hackers concerning industrial systems comes from the fact
that they are designed to solve production issues (productivity and safety) without
taking into account security issues. Thus, the use of IT technologies introduces new
vulnerabilities. Moreover, cyberattacks can inflict important damages to the process
(production shutdown, repair time, recovery time, etc.), the environment (negative
impact on human, heath, ecology, social, etc.), and company (financial loss, negative
image, etc.) [1, 7].

An exhaustive list of cyberattacks can be found in McLaughlin [8], Khorrami [9],
and RISI database [10]. However, we will focus on three major attacks:

• Maroochy Shire sewage spill (Australia, 2000) [11]: it is the first attack on ICS in
the sense that intrusion was performed and processes were impacted. A former
employee used his access to SCADA equipment and poured 800,000 L of raw
sewage causing huge ecological damages.

• Stuxnet (Iran, 2010) [12]: Stuxnet is the reference of what a cyberattack can be.
This computer worm was introduced in the industrial network via a USB key. It
targeted PLC Siemens S7 via the infection of a computer where Siemens software
Step7 (programming software) was installed. Thus, Stuxnet sent false orders
to wear centrifuges out prematurely. Meanwhile, data sensors were spoofed to
prevent operators from detecting abnormal operations.

• Steel mill plant attack and Power grid attack (Germany, 2014 and Ukraine, 2015)
[13, 14]: these attacks are a milestone because attackers used an office network
to get into an industrial network and damage the process.

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 121

Fig. 5.2 Main vulnerabilities and potential attack surfaces on ICS

An updated list of attacks and vulnerabilities is available on ICS-CERT [15].
Moreover, aside from classical IT attacks as DOS (Denial of Service) or DDOS
(Distributed Denial of Service), Man-in-the-middle (MITM) or replay attack that
affect level 2, other attacks inherent to levels 1 and 0 can be performed on an
ICS. Thus, random attacks send information without taking into account the process
states or process knowledge; sequential attacks [16, 17] break the sequential logic
of the control law and false data injection attacks [18] where data is intercept and
spoofed. To complete this range of attacks, we introduce attacks on PLC developed
in [8, 9] as modification of control law, alteration of configuration, or attacks on the
firmware.

Attacks can be performed because ICS have vulnerabilities that can be exploited.
Indeed, components, architecture, and environment of a control-command system
can be used to perform an attack as presented in [8, 19]. Figure 5.2 and Table 5.1
summarize vulnerabilities and attacks presented in this section.

122 F. Sicard et al.

Table 5.1 Some vulnerabilities of an ICS classified by layers

Location Vulnerabilities Effects

SCADA Code injection Integrity
SCADA DOS Availability
SCADA Information disclosure Confidentiality
SCADA Buffer overflow Availability
Control room/HMI Various attacks (virus, worm,

malware, ransomware, etc.)
Integrity/confidentiality/availability

Communication levels
2–1

Data spoofing Integrity

Communication levels
2–1

Communication removal Availability

PLC Firmware modification Integrity
PLC Buffer overflow Availability
PLC Configuration modification Integrity
PLC Alteration of control law Availability
Communication levels
1–0

Data spoofing for
orders/reports

Integrity

Communication levels
1–0

Communication removal Availability

Smart equipment Data spoofing Integrity

Table 5.2 Differences between industrial control systems and information systems

Information technology (IT) Operational technology (OT)

Controls only digital systems Controls cyber physical systems
No real-time constraints Strong real-time constraints
Priorities: confidentiality, integrity,
availability

Priorities: availability, integrity,
confidentiality

Protocols and communication technologies
standardized

Heterogeneous stacking of protocols and
technologies

Large material resource (memory) Limited material resource
Running can be suspended, frequent updates Continuous production (24/24, 7/7),

infrequent updates

5.1.3 Problematic

Part of the problem lies in the fact that IT technologies have been deployed in ICS
without taking into account security aspects. However, ICS have specificities com-
pared to Information System (IS) making it difficult or impossible to use “classical”
solutions. Table 5.2 presents some differences between ICS and classical IS.

Moreover, solutions applied in traditional IS cannot be used in ICS. Indeed,
cryptographic solutions raise the question of compliance with real-time constraints
and management of encryption keys. Antivirus uses processing time and needs

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 123

Fig. 5.3 Superposition of attacks and failures in ICS architectures

updated viral databases. Employee training, regular backup and enhanced access
control need time to be applied and to become efficient. Finally, firewalls and IDS
are key components for ICS security, operating at all levels. However, bandwidth,
integration in the architecture, response time, lack of knowledge of industrial
protocols, and limited availability of resources in ICS complicate their integration.

Our study focuses on levels 1 and 0 of ICS architecture in order to bring
automation-specific knowledge. Thus, the main objective of our work is the detec-
tion of cyberattacks between OP and CP. Indeed, as ICS architecture is vulnerable,
blocking orders between PLC and actuators is the last occasion to stop any illicit
action. Anticipation of deviations in order to avoid blockage moves in the same vein.
However, the main problematic of our work is how we can distinguish an attack from
a failure in a fallible environment. Indeed, an attack, as a failure, has a service lost
effect but has also a notion of intentionality. Nguyen [20] identifies four sources of
failure: human factor, equipment, recipes, and product. The scientific problem of our
work is the distinction of attacks in an environment subject to hazard as presented
in Fig. 5.3 and Table 5.3. A technological problem appears regarding the location of
the detection and its integration in the ICS architecture.

124 F. Sicard et al.

Table 5.3 Sources, causes, and location of failures in an ICS based on Nguyen [20]

Location Source Causes

Levels 2, 1, and 0 Human factor Lack of overall vision
Levels 2, 1, and 0 Human factor Fallible in tasks voluntarily or not
Levels 2, 1, and 0 Human factor Irreplaceable/adaptation capacities
Levels 2, 1, and 0 Equipment Breakage of components related to incorrect assembly,

bad manufacture or incorrect use
Levels 2, 1, and 0 Equipment Fast and uncheck technological evolutions
Level 2 Work order Tests performed in unstressed environments
Level 0 Product Non-conforming raw materials

• Damaged equipment
• Premature wear

In this chapter, we propose an approach to protect ICS from cyberattacks by
using filters between levels 0 and 1. These filters based on models of both control
and operative parts are analyzing information exchanged to detect anomalies.
Mechanisms exploiting the notion of distance between states are able to stop orders
to secure the system and anticipate deviations to avoid blockages. In this approach,
after detecting an anomaly, discrimination is performed with trajectory concept to
distinguish between an attack and a failure. Limits of this aspect will be discussed.

This chapter is organized as follows. In Sect. 5.2, a brief state of the art of works
dealing with cybersecurity of ICS issues has been done. Then, the principles of
the proposed approach are detailed. Methodology to obtain filters, the principle
of functioning, and the notion of distance and its improvements are explained.
Section 5.4 is a study case, after applying our approach on an example, advantages
and drawbacks are discussed, in particular about the discrimination of detected
anomalies. We finish the chapter with a conclusion and perspectives on future works.

5.2 State of the Art in Cybersecurity

As explained in Sect. 5.1.3, our approach to secure ICS from cyberattacks is based
on knowledge of automation between level 1 and 0. Thus, approaches in the field of
systems monitoring, especially for detection issues, can provide solution to secure
ICS. This section presents approaches in safety and security fields that can be
efficient in order to protect ICS from cyberattacks.

5.2.1 From a Security Point of View

In the field of security research, Intrusion Detection System (IDS) is generally
proposed to detect attacks against computer systems and networks. Denning [21]

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 125

Fig. 5.4 Illustration of main functions and running of an IDS probe

in 1987 provides an IDS framework that is still used and efficient in IS. IDS is a
posteriori security measure and detection occurs after an intrusion. An IDS auto-
matically identifies violation of a system security policy based on confidentiality,
availability, and integrity. To do so, IDS is based on data acquired by probes from
the environment to protect. Thus, location of probes in the network is essential
to ensure good detection. Fig. 5.4 presents main functions of an IDS probe. As
formalized by Mitchell and Chen [22], different aspects of IDS must be considered
toward the choice of detection method and data source. Some IDSs detect deviations
from behavior model (behavioral approach) and others rely on abnormal behavior
knowledge database (signature approach). IDSs that monitor network are called
Network Intrusion Detection System (NIDS) and those using host data are called
Host Intrusion Detecting System (HIDS).

Studies based on NIDS take an interest in specification on message structure
used in industrial protocols. Thus, Cheung et al. [23] propose to specify function
codes, exception codes, and protocol identifiers. Goldenberg and Wool [24] model
exchanges between PLC and control room without taking into account semantic.
Barbosa [25] studies frequency and number of exchanged packets in the network
based on the hypothesis that an intrusion degrades exchange periodicity. Finally, in
[26], Barbosa presents an approach based on flow whitelisting. Normal behavior
of the network needs to be identified on the client address, server address, and
communication port and communication protocol.

Some works focus on components with processing capacities inside ICS archi-
tecture. HIDS is investigated less than NIDS for ICS because of the specificities
of components and availability constraints of the resources. Zimmer et al. [27]
propose an approach based on execution time analysis for tasks in components with
real time constraints. Bellettini and Rrushi [28] study a mechanism for detecting
incorrect access to memory. A state-machine is defined to follow the evolution of
memory. Finally, McLaughlin [29] develops several approaches for verifying the
code integrity or orders before they are sent to the system.

Signature approach is based on recognition of specific behavior as used in Pan
et al. [30]. The main issue of this approach is the non-detection of zero-day attacks.
By definition, these attacks are unknown when these are performed. It involves
to regularly update the database to be protected. Behavioral approach, or model-
based approach, seems to be more adapted because ICS control physical process.
Specifications of the system are studied to define rules to insure safety, reliability,
and security of the system. These specifications can be expressed with mathematical
equations (quantitative method) or with models (qualitative method). Although,

126 F. Sicard et al.

quantitative methods allow knowing state variables of the process. However,
complexity of the system, non-linearities, or the lack of available data makes
mathematical modeling difficult even impossible. Qualitative methods describe the
system through process modeling (what we can do) and control modeling (what
we want to do). An interesting use of process knowledge can be found in [31, 32].
After identifying safety area for the process by setting ranges of running for each
variable, authors use the concept of distance from critical state to detect attacks.
Evaluating the distance defines the increasing closeness between safe state and
critical area. Four fundamental hypothesis are needed: (1) the set of critical states
has to be known and relatively small for sub-systems, (2) hackers must interfere with
system state in order to damage the process, (3) monitoring evolution of critical
states allows detecting attacks using legal orders, (4) by monitoring system state,
failure or cyberattacks can be distinguished. More details about distance concept
are given in Sect. 5.3.1.4.

5.2.2 From a Safety Point of View

As explained in the introduction, our problematic joins the already established and
classic problem of detection where different approaches are known to detect failures
in a system. In Zamaï [33], three approaches attract our attention:

• Reference model [34]: process model is the reference for the control part and
defines normal behavior of the system. Before each transmission from CP to
OP, the order is tested on the reference model in order to check whether all
the conditions are met for sending this request. Failures in OP can be detected
by comparing report received and the state in reference model. This method
guarantees an exact representation of current state of the system.

• Emulator approach [35]: it compares data from the operative part (process)
and emulator (model). Any inconsistency shows a failure in the process. This
approach does not detect any errors on the command.

• Filter approach [36]: it is based on two validation blocks called filters. The filter
between CP and OP is control filter. The block ensures the consistency of orders
emitted with respect to the predicted orders and the current state of the system
(detection of command failure). The second block is called report filter and
it is located between OP and CP. The filter confirms achievement of services
requested to the process (detection of process failure).

Filter approach, represented in Fig. 5.5, seems to be an interesting solution with
several advantages as evaluating the accuracy of information exchanged before
execution by actuators for control filter (control failures) or taking into account by
CP for report filter (process failure). Moreover, filters allow implementing models
and thus bringing process knowledge in detection mechanism. Finally, integration of
filters in the actual ICS architecture is rather non-intrusive. However, modifications

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 127

Fig. 5.5 Illustration of the filter approach defined by D. Cruette

on the location of the filters have to be made. Indeed, filters cannot be located inside
PLC, as in failure detection, because PLC is vulnerable to cyberattacks (see Sect.
5.1.2).

5.2.3 Safety and Security: Mutual Reinforcement

As explained in [7], safety and security are distinct but related concepts. Safety
studies accidental risks (failure, accident, etc.) affecting environment of the system,
goods and people [37]. Security deals with hazard in relation to malicious acts
and cybersecurity focuses on malicious acts by numerical vector. Four varieties of
interdependence are listed in [7]:

• Conditional dependence: respect of safety requirement determines the level of
safety and vice versa,

• Mutual reinforcement: security measures contribute to safety of the system and
vice versa,

• Antagonism: security or safety requirements or measures lead to conflicting
situations,

• Independent: no interactions.

In our study, we will use benefits of IDS combining with filter approach in
a mutual reinforcement. Indeed, behavioral and host based IDS provides good
solution with the notion of distance to critical state. Indeed, zero-day attacks are
detected and models of the system can be used. Thus, risk assessment, required for
safety, will identify these critical states. Moreover, as probes in a network, filters
will be located before actuators (control filter) and PLC (report filter) in order
to minimize attack surface and secure data transiting. Finally, filter approach has
proved its efficacy in safety field for detecting failures and allows checking, and
even blocking, orders and reports in the ICS. Our approach leads to a solution for
protecting ICS against cyberattacks on levels 1–0 unlike other approaches in the
literature or industrial solutions that focus on the protection of levels 2–1.

128 F. Sicard et al.

5.3 Our Approach: Filters with Distance Concept for ICS
Cybersecurity

In this section, filters methodology of conception is explained as well as their
integration and running in the ICS architecture. Finally, the notion of distance is
explained in order to anticipate deviations and, if necessary, to distinguish an attack
from a failure.

5.3.1 Methodology

This methodology is based on three steps: (1) the two first are off-line: critical
states are identified, (2) models of the system are built and sequences leading to
prohibited states are explored; (3) the third is online: this is the detection mechanism
based on the notion of distance. Step zero illustrates the integration of filters in
the ICS architecture. The main objective is to obtain filters on the control and on
the report based on models that analyze information exchanged by the system. If
so, information may be blocked by one of these blocks to prevent damages. After
detection of an anomaly, filters will try to determine whether it is a failure or an
attack.

5.3.1.1 Step 0: Integration in the ICS Architecture

As presented in Sect. 5.2, filters are based on IDS and filter approach. In the first
approach, probes are deployed in the network in order to analyze exchanged data
with system policy. Thus, no limitation on the number of probes exists in IS. In
ICS, filters need to be easily implemented in the architecture with a minimum of
probes in order to preserve material architecture. Filter approach completes this
objective with two verification blocks: control filter and report filter. However, filters
are implemented directly in the PLC initially. As seen in Sect. 5.1, PLC is vulnerable
to cyberattacks in several ways. Filters may be corrupted and an attack could be
performed on the system.

To be efficient, filters have to be located outside the PLC, or any electronic
devices connected with the industrial network, and as close as possible to compo-
nents that have to be protected. Connection with actuators is made by digital link or
industrial protocol but isolated from the one used in the ICS. This disposition allows
reducing the attack surface for a hacker. Actuators are sort of separated from the ICS
and the control filter is like a power switch. For example, if a PLC communicates
by digital outputs and Modbus protocol with actuators, control filter is placed as
close as possible to devices (last distributed I/O module). This validation block
communicates with actuators by digital outputs and another Modbus channel. So
that, actuators are protected by the control filter.

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 129

Fig. 5.6 Implementation of filters in ICS architecture in order to reduce attack surface for hackers

Report filter acquires data from sensors in the same way as control filter and
transmits them to the PLC. Attackers may corrupt this communication as well as
data inside PLC before logical processing. However, the main purpose of this block
is to be a trust anchor for control filter by transmitting current state of the physical
system and distance with predicted reports. That is also why only control filter can
block information in our approach.

Finally, communication between the two filters is on a different network isolated
from industrial network. Attackers cannot affect confidentiality, availability or
integrity of data exchanged by the control or the report filter. Moreover, filters
are considered as invulnerable to cyberattacks, for example by restricting memory
access or conditions for uploading models. Algorithms inside filters and commu-
nication between them cannot be attacked which thus guarantee a reliable security
solution for ICS. Illustration of filters implementation is available in Fig. 5.6.

The developed approach proposes simple, reliable, and secure implementation in
the ICS architecture between levels 1 and 0. However, detection mechanism is now
based on algorithms presented in the following sections.

5.3.1.2 Step 1: Risk Assessment

This first step is based on work done in risk assessment. This analysis is made on a
critical part of the process to identify failure modes and to determine causes leading
to these critical states. Fourastier and Pietre-Cambacedes [7] define this analysis by
the verification of the ability of an entity to satisfy one or more requirement under
given conditions.

130 F. Sicard et al.

Fig. 5.7 Illustration of the different set of states possible in an ICS

Risk assessment is a powerful tool to design our filters and prevents cyberattacks.
Indeed, when hackers launch an attack on an ICS, they always try to degrade the
process (final product, production equipment, configurations, etc.) by bringing the
system into critical states. Moreover, contrary to failure, an attack will always try to
deteriorate the service (production flow) of the system.

ICS can be defined by a unique type of state as presented by Mitchell and Chen
[22] and in Fig. 5.7. Risk assessment identifies critical states of the system and the
necessary parameters for modeling the system. Indeed, this approach is designed
to protect the most sensitive parts of ICS and not the entire infrastructure. For our
study, EBIOS norm [38], recommended by the ANSSI, is used.

In this chapter, lowercases denote states and capital letters refer to sets of state.
Thus, a state si that is in the set of system states S is composed by sensors and
actuators values and step states of the system. This state si represents the current
state of the system. An action aj that is in the set of possible system actions A is
PLC output and corresponds to orders that can be applied on production flow by
actuators. A given state si can be reachable or not depending on effects of actions.
This study will only focus on the set of reachable states SReach. Such states can be in
only one subset at the same time:

• Optimal State sOpt with SOpt �SReach respects the running of the process and the
constraint imposed by the control law in the PLC. PLC is programmed to keep
the system in this subset of safe state.

• Dangerous State sDan with SDan � SReach. In this subset, constraints imposed by
control law are violated without inflicting critical damages on the process.

• Prohibit State sPro with SPro �SReach. Constraints of control law and integrity of
the process are transgressed causing significant degradation on the system and its
environment. This subset has to be avoided and the system stopped before being
in this subset.

To conclude, AOpt represents the set of orders respecting the control law and SPre

and APre respectively the set of states and orders predicted by filters.

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 131

5.3.1.3 Step 2: System States Exploration

Previous step identifies the fact that an ICS is in a unique subset of states at each
time. Risk assessment makes the highlight on subset of critical states. These states
damage the system (production flow, equipment, etc.) and its environment. Once
causes and consequences are identified, we describe a pair fstate si; action ajg such
that if action aj2A is applied on system state si 2 SReach\fSProg the resulting state
siC1 belongs to prohibited states subset SPro. This pair is called context.

It should be noted that knowing action effects of the system allows detecting
context leading to critical state. So that, the objective of this second step is to
explore all the different states of the system, categorize them in the different subsets,
and list all the contexts. The a priori knowledge of our system allows to identify
sequences leading to one or several prohibited states and Sect. 5.3.1.4 will illustrate
how distance between the current state and the forbidden state is calculated. All
the necessary parameters for modeling the physical system stem from the risk
assessment step. Indeed, detection mechanisms are based on this step where critical
states that have to be detected are deduced as well as parameters representing the
system.

To do so, control model and process model of the system are required. The first
model organizes and schedule actions that have to be done on the system in order to
reach the final state of the process in the fastest and safest way. It represents what
we want to achieve on the system. We choose to describe control model with Petri
nets. This representation allows expressing constraints easily, especially sequence
properties (task scheduling), parallelism (execution of several tasks at the same
time), mutual exclusion (execution of an activity prevents execution of others),
and synchronization (waiting the end of one, or several, specific activity before
executing others). Petri net is a place/transition net. Graphical and mathematical
writings allow expressing pre and post conditions explicitly as well as the marking
to fire a transition. For control model, places represent actions that are sent to the
operational part (OP) and transitions are reports transmitted by sensors. Process
model details all reachable states based on the description of actions and their
effects on the system. It represents what is possible to do on the process. In the
process model, a finite number of actions can be executed by the control part on
the operative part so that the number of states is also limited. Modeling by using
automaton is adapted to represent the process. In this work, only deterministic finite
automaton M is used to illustrate detection mechanisms of cyberattacks. However,
for more complex systems, hybrid automata can also be used as in [39] or [40]. Such
automaton is a formal model for a dynamic system with discrete and continuous
component. The following quintuplet defines the automaton M:

M D fSn;Am; ı; S0; Sfinalg (5.1)

• Sn is the finite set of possible states for the system, in other words SReach where
n denotes total number of states si. Vector si representing the state of the system

132 F. Sicard et al.

can be in the subset of optimal states SOpt, dangerous states SDan or prohibited
states SPro,

• Am is the finite set of orders that can be performed by the system. That is the set
A defined in previous part with m representing number of actions,

• ı is the transition function that represents relation between states and orders.
These relationships will change the automaton by simulating the evolution of the
system. To do that, each action has to be modeled by its effect on the process (see
paragraph below),

• S0 � SReach is the set of initial states of the system,
• Sfinal is the set of final states. When one of these final states is reached, evolution

in the automaton is stopped.

To obtain all reachable states of the system, we first need to define the transition
function that models effects, conditions and associated constraints of each actuator
on the production flow. To do so, works of Henry [41] are used. Behavior of each
operation of the process is listed. Therefore, we define a transition function ı which
associates a state s’ to a pair fstate s; action ag. We denote Si the set of states before
applying function ı and SiC1 the set of states obtained after function ı such that:

8s 2 Si � Sn;8a 2 Am such that s0 D ı .s; a/ 2 SiC1 � Sn (5.2)

Based on Eq. (5.2), we generalize the transition function ı to the set of states. Thus,
the set of child states SiC1 is obtained by applying the set of action Ai to a set of
states Si such that:

SiC1 D
˚
s0 D ı .s; a/ j s 2 Si � Sn; a 2 Am

�
(5.3)

Algorithm computes image of Si through transition function •. So that, the
automaton M represents evolution of the process. M starts with the initial state
s0 (Si D s0) and compute evolutions SiC1 by applying each possible orders ai 2
Am. Then, set SiC1 is reduced if some state s0 has already been explored during
previous iteration, in other words s02[Si. These states are not considered because
they have been already met which means that this path has already been studied:
similar actions lead to similar states. Thus, for each state of Si, images through • are
computed. Algorithm ends when final states are found. States of SiC1 are composed
of:

• Initial state S0: SiC1 \ S0 ¤ fØg $ 9s0 2 SiC1 such that s0 2 S0,
• Prohibited states s0 2 SPro � SReach because when these states are reached

no further evolution of the process is possible (production flow is severely
impacted): SiC1 \ SPro ¤ fØg $ 9s0 2 SiC1 such that s0 2 SPro. Let F be the
set of intersection between SiC1 and SPro,

• Loops !: one or several states s0 have already been met, which means that this
path has been studied: SiC1�[Si$9s0 2 SiC1 s.t. s02[Si. These states are called
previous states sprev of the system and composed the set Sprev. Let P be the set of
intersection of SiC1 and [Si.

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 133

This algorithm explores all possible combinations for the system by applying
every possible sequence on the process model. Combinatory explosion is prevented
by deleting states already computed and the choice of parameters for modeling the
system. Thus, a unique branch is explored at each iteration.

Contexts leading to prohibited states sPro are listed in the set SPro. These contexts
can be easily identified because state s0 2 SiC1 as defined in Eq. (5.2) also belongs
to prohibited state subset s0 2 SPro. The concept of finding contexts that lead to
critical states in order to compute a notion of distance is closely similar with the
theory of prognosability developed in Genc and Lafortune [42] or Chen and Kumar
[43]. A prognoser that predicts a fault at least m-steps before the occurrence is built.
These works provide significant results for failure prognosis but they do not take
into account the context of cyberattacks explained in previous sections. Indeed, the
normal and abnormal behaviors of the system must be defined in the approaches,
that is not the case in our approach. In our approach, we just have to specify normal
behaviors. Despite the similarities, our work focuses more on the distance from
current state to the nearest critical state (on line prediction of system trajectory)
rather than identification of contexts leading to prohibited states (safeguard in case
of attack that cannot or has not been predicted). Optimal states sOpt are obtained by
applying control law orders AOpt on the process model. Set of dangerous states SDan

regroups all states that are not classified in previous subsets SPro and SOpt.
At the end of this step, control model and process model are designed and

sequences leading to prohibited states have been identified. Following step makes
use of these results to build detection mechanisms.

5.3.1.4 Step 3: Detection Mechanisms

The first step identifies context leading to critical states of the system and the
second step allows us to write an algorithm for classifying all reachable states and
finding sequences leading to prohibited states. During this third stage, detection
mechanisms are implemented into filters in order to block “wrong” orders and as far
as possible anticipate deviations. These two objectives are linked to the detection
part of our filter. Distinction between failures and cyberattacks is performed after
detection of an anomaly.

“Static” Rules: Immediate Blocking

The purpose of this part of the filter is to identify contexts leading to critical states.
To do so, current context, which is the current pair order and state, is compared with
contexts contained in Matlab structure Forbidden_States.mat obtained by automaton
M during step 2. These contexts tally to the states preceding prohibited states and
associated to an action. If the current context matches with one of the contexts
contained in this structure then order is blocked. This mechanism is implemented
only in the control filter. Indeed, this block is the last bulwark in the ICS architecture

134 F. Sicard et al.

to prevent an order to be executed. Report filter could also stop reports but there is
no immediate danger by sending wrong report to CP. Indeed, if this report results in
a wrong order leading to critical state, it will be blocked by control filter. So that, no
such detection mechanism is implanted in report filter. Rules R are a set of contexts
leading to prohibited states such that:

R D true$ 9s02SiC1 � Sn; 9s2Si � Sn; 9a 2 Am such that s0 D ı .s; a/ 2 SPro

(5.4)

Rules are a static security measure that protects the system against immediate
danger by blocking wrong order. However, step two provides models of control and
process that is used in the next section to anticipate deviations. Indeed, with this
paragraph, we anticipate by using the algorithm with a short prediction horizon.

“Dynamic” Detection: Anticipation of Possible Deviations

The main objective of this part of the filter is to identify deviations and send
alarms to operator. To do so, prediction horizon of our approach is increased by
improving algorithm proposed in step 2. Filters do not look at the previous states
before forbidden states but go up in the arborescence to detect possible deviation
earlier. Therefore, some actions can be defined as legitimate or not by knowing the
current state of the system. In this sense, notion of distance from critical states is
defined and informs about proximity of current state with prohibited states. Carcano
[31] has announced an interesting concept of distance but that cannot be used for
discrete systems; we will explain why after having defined it. Distance is based on
the comparison of the current state s and the prohibited states represented by the
critical formula ˆ. ˆ is defined as the set of constraints ci that the system has to
respect. Distance d is defined as the minimum dmin between two types of distance
computation (d1 and dv) described below such that:

d W <n � <n ! <C; s 2 <n

d .s; ˆ/ D minjdmin
�
s;Cj

�
with dmin D d1 D

nX

i
jsi � cij or

dmin D dv D # fijsi ¤ cig (5.5)

d1 computes the gap between two states components by components and dv counts
difference between two vectors based on the number of different components.
Distance to critical state is the minimal distance d1 or dv between current state
and critical formula. This notion is interesting because distance between current
state and prohibited state can be computed that provides information to operators.
Moreover, distance to optimal states can also be computed in order to know if the
process follows optimal trajectory. To conclude, based on the models of second step,
deviations are detected faster than with static rules. However, this notion of distance

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 135

gives a relevant information only for continuous values. Indeed, for discrete systems
with all-or-nothing sensors, distance information is useless. If actions applied on
the system deviate from control law, then the system directly goes into dangerous
or forbidden state. No information is provided by such a distance. For example, a
system can be at a distance of 10 from a prohibited state and sending an order may
lead to a forbidden state. To develop detection mechanisms for systems modeled
with hybrid automata, this notion of distance has to be extended to discrete values.

Based on the models developed in Sect. 5.3.1.3, notion of distance is enriched by
the number of actions to apply before being in a prohibited state. So that, algorithm
is improved to compute the shortest possible way from current state to prohibited
states, in other words the minimal number of actions that can be applied on the
process before a prohibited state. Adaptation of second step algorithm, presented in
Algorithm 5.1, returns the number of stages before a prohibited state, sequence of
orders that leads to this state and states path. So that, drawing from (2), we denote a
set transition function � such that:

For a 2 Am;8S0 � Sn;8S � Sn; S
0 D �.S; a/ (5.6)

Thus, distance notion can be defined as minimum number of iterations to reach a
prohibited state from a state s 2 Si � Sn:

D .sjSPro/ D minn �
n .Si; a/ 2 SPro8s 22 Si � Sn;8a 2 Am (5.7)

This solution provides information about critical states as the same way as
prediction of checkmate during chess game.

Algorithm 5.1 Algorithm to find the nearest prohibited state from state s 2
Si � Sn (shortest possible way)

Function Find nearest Prohibited State
IterationD 0
WHILE (Stop¤ 0)

Iteration D IterationC1
S’D �(Si, A)
IF (S’\SPrev ¤ fØg)THEN

S’D S’\P
SPrev D SPrev \ S’

ELSE
SPrev D SPrev \ S’

ENDIF
IF (S’\SPro ¤ fØg) THEN

S’D S’\F
StopD 0

ENDIF
Si D S’
DONE
End

136 F. Sicard et al.

At the end of this algorithm, the way and the distance D(sjSPro) from the starting
state s to the nearest prohibited state sPro is computed.

To conclude, detection of anomaly is efficient and filters protect the system
against them: blockage of immediate danger and anticipation of deviations. When
data is received to be checked, filters proceed as follows:

• Estimation of the context (blockage of immediate danger),
• Reconstruction of current state, computation of shortest way to prohibited

states for discrete values and distance in the sense of Carcano for continuous
components. So that, filters compute actions that have not to be performed by the
system and distance to forbidden states,

• Check between actual data and result of previous computation (sending an alert
to supervision if needed).

Two types of attacks have to be distinguished: brutal and sequential attacks.
Contrary to the last type of attacks, in brutal attacks, hackers want to bring the
system into a prohibited state as soon as possible. Rules, based on the contexts and
Eq. (5.4), protect the system against brutal attacks. By definition, these attacks are
not easily predictable. The concept of distance is more appropriate for sequential
attacks to detect deviations from the control law (see Algorithm 5.1).

In case of detection, previous sequences of control are checked to determine if the
cause of this detection is a failure or an attack. Main assumption for discriminating
is to assume that an attacker will always seek to damage the system immediately
or later. So that, distance will always tend to toward 0. On the opposite, a failure
is a non-intentional event that punctually will tend the distance toward 0. Thus,
discrimination is based on models developed during step 2. Indeed, the normal
behavior of a system is characterized, in Fig. 5.8, by a trajectory always equal to
zero for distance between sent orders and expected orders (top left figure). Equally,
distance that measures gap between predicted states and optimal ones is equal to
zero (middle left figure). Finally, trajectory of shortest path to a forbidden state

1 1 2 3 4 5

Nb of StatesNb of States

Control Filter: distance globalControl Filter: distance global

Control Filter: distance on expected stateControl Filter: distance on expected state

Control Filter: distance on ordersControl Filter: distance on orders

6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1.5 2 2.5

dS
ta

te
In

t

dS
ta

te
In

t

dS
ta

te
O

pt
dO

rd
re

O
pt

dO
rd

re
O

pt
dS

ta
te

O
pt

3 3.5 4

1 1.5 2 2.5 3 3.5 4

1

1

1.5

0.5

0

1

0.5

0

2

1

0

2

1

0

1

0

-1

1

0

-1
2 2.5 3 3.5 4

Fig. 5.8 Trajectories computed by control filter for a system with a normal behavior (right) and a
system under attack (left)

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 137

evolves with states modifications (bottom left figure). During an attack, if filters
detect that sent order is different from optimal order, the distance is different from
0 (top right figure). Thus, optimal state expected is different from current state and
distance increases (middle right figure) as well as the distance of shortest path to
forbidden state is decreasing (bottom right figure). The notion of distance combined
with control law model allows detecting some attacks on ICS; however, if an attacker
mimics failure or launches his attack at a specific moment, our approach will block
the attack but will not distinguish with failure. This aspect is detailed in Sect. 5.4
“Application on an example”.

Concept of trajectory, which is the evolution of distance across time, has to be
developed in future works. Correlation algorithms with previous states and control
model will also be developed.

5.3.2 About Filters for ICS Cybersecurity

As presented in Sect. 5.3.1.1 filters are divided into two validation blocks: a control
filter that analyzes orders and report filter which correlates data sent by sensors
with information of the other filter. In this section, details about filters and their
implementation are provided.

Control filter receives an order to evaluate from PLC and information from report
filter (list of predicted orders and last validated report). Filter analyzes the order with
rules and trajectory detection mechanisms. Finally, order can be:

• Validated. Thus, order is sent to actuators and data is transmitted to report filter
as the validated order and the list of expected report,

• Validated with an alarm. The same previous procedure is done but with an alarm
sent to operators,

• Stopped. Thus, the filter blocks order, it is not transmitted to the operative part
and an alert is sent to report filter and control room.

Report filter received data from sensors of operational part and information of
control filter (list of expected report and last order validated). Algorithm computes
distance to prohibited states. Then, report is sent to control part and data are
transmitted to control filter (list of orders expected and last report validated).

Integration of these filters is presented in Sect. 5.3.1.1, control filter is located just
before actuators and report filter just before PLC, as trust anchor for the other filter.
The communication between both filters is considered as secured (on a different
network than industrial network for example). Programming of filters will reduce
vulnerabilities with interpreter inside validation blocks to secure the code with
models.

Illustration of control and report filters is available in Fig. 5.9.

138 F. Sicard et al.

Fig. 5.9 Representation of inputs/outputs and processing for control and report filters

5.4 Application on an Example

To illustrate this work, a well-known example of the literature is used as provided
in [17]. The system, illustrated in Fig. 5.10, is composed of three tanks. Two tanks
T1 and T2 of infinite capacity contain respectively product A and product B. Each
tank discharges its product into a melting tank T3 in order to produce a product C.
The filling stage is done by opening valve V1 and V2. Level sensors show the height
of the product in the tank. Three sensors are used in this system: H0 indicates the
draining of tank T3, H1 the quantity of product A, and H2 the quantity of product B.
Control law imposes a filling by T1 then T2. When sensor H2 is activated, valve V3

opens to drain T3. A new cycle of production starts.
The step of risk assessment identifies only one forbidden state for this system that

is reached when level in tank T3 exceeds sensor H2. Moreover, necessary parameters
to describe the process have been identified. So that, the system is defined by vectors
and sets as follow:

• State vector s represents correct behavior of the system, faults are not considered
in this model. Thus, the vector s is composed by sensors and actuators values as
s D [Sensors values; Actuators states] D (Hi, V1, V2, V3) with Hi 2 f0 : : : 2g, V1

2f0, 1g, V22f0, 1g, V32f0, 1g where Hi indicates which sensor is activated in the
state vector (0 no sensor is activated, 1 sensor H1 is activated, and 2 sensor H2 is
activated). The set of states S includes at most 25 states (24 possible states and
the prohibited state),

• Order vector represents actions that can be executed on the system. a D (a1, a2,
a3) with ai 2 f0 closes valve Vi, 1 opens valve Vig i 2 f1 : : : 3g,

• Reachable state set SReach is composed of 13 states which contains 6 optimal
states SOpt D f[0 0 0 0], [1 1 0 0], [1 0 0 0], [2 0 1 0], [2 0 0 0], [0 0 0 1]g,
1 forbidden state SPro D sOverflow and 6 dangerous states SDan D SReach\(SOpt \
SPro)D f[1 0 1 0], [2 1 1 0], [0 1 0 1], [0 0 1 1], [0 1 1 1], [2 1 0 0]g,

• unreachable state set SUnreach D S\SReach contains 12 states,

In this example, we assume that the execution of an order on the system imme-
diately fills/drains the tank and thus the direct activation of the upper/lower level
sensor. By removing this simplifying assumption, which facilitates the illustration

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 139

Fig. 5.10 Illustration of
application example: 2 tanks
discharging products in
tank T3

of the presented detection algorithms, the exploration step finds: 24 out of 25
possible states are reachable states with 9 optimal states, 14 dangerous states, and 1
prohibited state.

Prohibited and dangerous states are different in the sense that we will try to avoid
the first one (for example, an overflow characterized by ı([2 0 0 0], [1 0 0])) while
the others are a transition between optimal and forbidden states (these states are
neither critical nor optimal). For example, the filing state [2 1 1 0] of tank T3 by
valves V1 and V2 while T3 is empty. The control model is directly designed from
the control law of the system, described from explanations at the beginning of this
section. The process model is obtained by the automaton M and is used to obtain
contexts and sequences leading to prohibited states regrouped in Table 5.4:

M D fS25;A8; ı; s0; Sfinalg (5.8)

with S25 the set of possible states for the system, A8 the set of orders that can be
applied (all possible combinations), s0 the initial state (s0 D [0 0 0 0]), Sfinal the set

140 F. Sicard et al.

Table 5.4 Risk assessment of the system

Forbidden states SPro Order a 2 A8

State s 2 S25 of the process before
the action a 2 A8

Case 1: only one order
Tank overflow Open V1 or V2: [1 0 0] or [0 1 0] Sensor H2 activated: sD [2 x x x]
Case 2: multiple orders
Tank overflow Open V1 or V2: [1 0 0] or [0 1 0] Sensor H2 activated: sD [2 x x x]
Tank overflow Open V1 and V2: [1 1 0] Sensor H2 or H1 activated: sD [2 x

x x] or sD [1 x x x]

of final states composed by the initial state s0, prohibited state sOverflow or a loop and
ı the transition function. For example, a final state can be characterized by:

8s 2 S25nSPro; a3 2 A8 s:t: s0 D ı .s; a3/ D s0 (5.9)

The exploration state step is performed: only 13 states are reachable in the set
of possible states S25 and 69 contexts, that lead to critical states, are identified.
Then, during the third step, distances to critical states are computed and detection
mechanisms are implemented in filters depending on the location in the ICS
architecture (contexts and distance). A “Man in the middle” attack is simulated
on our system. When hackers launch an attack, all the orders are intercepted and
replaced by a predefined order. In this example, order a 2 A8 is replaced by order
aattack 2 A8 and replays the first action of the control law a1 D [1 0 0] that opens
valve V1.

During the first cycle, filters detect no deviation because attack corresponds
to optimal order. The system goes from an optimal state (initial state) to another
optimal state (filling of tank). Everything is good until sensor H1 is activated. Then,
PLC sends order a2 D [0 1 0] for opening valve V2 but this action is replaced by
aattack. Order is sent because context does not lead to prohibited state. Moreover,
from a distance point of view, control filter does not detect an issue because filling
state is reached. As algorithm takes into account sequences of actions an alert is
raised to warn operators that a bad order has been sent to the process. When sensor
H2 is activated, order a3 D [0 0 1] is sent to drain tank T3. When control filter
received this order, it is blocked because one of the security rules has been violated
and application of aattack leads to prohibited state. Discrimination is also possible
because the control law was not respected several times during this attack. So that,
distance between received and expected orders is not equal to zero.

Now, anticipation of attack is studied. Let us consider an attack sequence that
respects the control law but an order of filling is sent instead of draining. Control
filter blocks the order immediately because it leads directly to prohibited state.
Contrary to the last example, filters cannot anticipate the blockage because attackers
have a high knowledge of the system and the attack occurs at the right moment to
prevent anticipation. However, the physical system is not damaged.

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 141

Now we consider an attack that replaces any order by the following one
aattack2 D [1 1 0] that opens the two valves V1 and V2. At the first cycle, when control
filter received this order two alerts are raised. One because control law constraints
are violated and the system moves away from the optimal trajectory and the other
because child state leads quickly to forbidden state (3 transitions). After filling state,
sensors H0, H1, and H2 are activated. When control filter received aattack2, the order
is blocked because one of the security rules is not respected. Distinction identifies
attack because sequence orders does not respect the control law and a failure on
valves does not open these components. Thus, an attack on ICS is detected and
identified by the filters.

To conclude, a failure occurs on our system and sensor H1 breaks down. PLC
that sends order a1 will not receive event H1 activated but H2 activated. Indeed,
control filter will accept the order waiting for event H1. The report filter will detect
an anomaly by receiving the event H2 activated whereas event H1 is expected.
Distinction based only on distance cannot be done. Indeed, failure and attack are
possible causes of this anomaly. For example, an attacker may inject a false report
to fail the control law. In this example, the system is protected from damage but
distinction is not possible.

These examples show that type of attacks and hackers knowledge impact
performances of filters on anticipation and distinction criteria. Thus, attacks that
mimic failures are impossible to distinguish. However, filters protect the system by
preventing execution of illicit order that leads the system in prohibited state. To
complete our case study, a step of heating is added on the product C just before
emptying the tank T3. Our model of the process becomes a hybrid automaton
because a continuous component appears in the system (temperature). In order to
monitor the evolution of this variable, the use of distance in the sense of Carcano
is necessary. Thus, if the temperature gets close to a critical area (too high for
example), then the filter will be able to detect it and stop the heating of the tank.
This mechanism completes previous ones when systems have continuous variables.

5.5 Conclusions and Perspectives

5.5.1 Conclusions

Industrial Control Systems are used in many critical infrastructures and application
domains to insure productivity and safety. Introduction of Ethernet TCP/IP or other
technologies inherited from Information Systems improves on several aspects these
ICS. However, IT solutions also bring vulnerabilities that have not been anticipated
and fixed. Hence, hackers exploit vulnerabilities to target ICS and severely damage
physical systems, goods, and people. This work highlights the need of detection
mechanisms to stop bad orders and anticipate deviations. Thus, the main issue is

142 F. Sicard et al.

to distinguish an attack from a failure that leads to the scientific problem. Then, a
technological obstacle is alighted on the implantation in an existing architecture.

Our approach proposed to take advantages of security (Intrusion Detection
System) and safety solutions (Filter Approach) in a mutual reinforcement. Our
study offers ICS a solution for level 1 and 0, as the last bulwark for protecting the
system. Thus, filters implementation for detecting cyberattacks and methodology for
synthetizing these verification blocks are enounced. Integration in ICS architecture
is easy and reduces the surface contact for an attacker. Methodology of conception
takes advantage of risk assessment for finding critical states as well as necessary
parameters and also Petri nets and deterministic-finite automaton models for detec-
tion mechanisms. So, any action leading to critical states is blocked by control filter.
Notions of distance by computing shortest way to prohibited states are explained
to anticipate deviations for discrete events systems and indicate if ICS get closer
to prohibited states. Adaptation of detection mechanisms for hybrid systems, with
continuous components, has also been highlighted. The application example shows
efficiency of our approach to protect these systems.

However, the concept of distance alone does not provide solutions to distinguish a
failure from an attack. The concept of trajectory, which follows evolution of distance
across time, correlated with previous sequences of states and actions opens new
perspectives.

5.5.2 Perspectives

Distinction between attacks and failures is clearly an issue for our work. Indeed, they
both lead to a loss of service of the installation but, in case of attacks, hackers will
always try to bring the system into a prohibited state in order to make it inoperative.
Thus, by studying evolution of distance and sequence of orders sent to the process,
our work will be able to identify attacks. To do so, evolution of distance between
current and prohibited states is studied in parallel with evolution of the orders sent.
Indeed, a system can completely get closer to a prohibit state and respect the control
law. For example, the order to open a valve fulfilling a tank respects the control law
but brings prohibited state of overflow closer. If sequence orders break control law, a
hacker may damage the system. The limit of this approach is the identification of an
attack when hackers mimic a failure on the system. An other issue can come from
the risk assessment step if prohibited states are not identified or if some parameters
are missing to describe the system. Machine learning can be a good solution to
endow filters with adaptive capacities. This solution will be studied in future works.
However, learning approaches face several issues in the context of cyberattacks,
mainly the learning structure and the volume and the quality of data computed.

Moreover, in this paper, filters take into account only combinational constraints,
detection mechanism can be improved by adding temporal windows in our process
model. In this paper, an approach for protecting critical parts of a process has been
developed. It focuses only on the lower levels of the CIM architecture which makes

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 143

it possible to reduce the complexity of the studied system by targeting only the
most critical parts. This implies that not all the system is protected. The question
of applicability of this approach on higher levels will be raised, knowing that the
complexity will also grow. So that, our approach need to be improved to deal with
multiple discrete modes in the case of large scale systems.

However, our approach presents good results for this example and tests on
larger examples will be conducted. Finally, the implementation of this solution on
real industrial platforms is scheduled for the coming months. Time detection and
influence of architecture on detection rate will be studied.

Acknowledgments This research was supported by the Direction Generale de l’Armement
(DGA) Maîtrise de l’Information based in Bruz, France.

References

1. K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, A. Hahn, Guide to Industrial Control
Systems (ICS) Security, National Institute of Standards and Technology, NIST SP 800-82r2
(2015)

2. J. Clarhaut, N. Dupoty, F. Ebel, J. Hennecart, F. Vicogne, Cyberdéfense: La sécurité de
l’informatique industrielle (domotique, industrie, transports) Editions (ENI, France, 2015)

3. E.D. Knapp, Industrial Network Security: Securing Critical Infrastructure Networks for Smart
Grid, Scada, and Other Industrial Control Systems, 2nd edn. (Elsevier, Waltham, 2014)

4. Y. Ashibani, Q.H. Mahmoud, Cyber physical systems security: analysis, challenges and
solutions. Comput. Secur. 68, 81–97 (2017)

5. ODVA, EtherNet/IP - CIP on Ethernet Technology (2016)
6. EtherCAT Technology Group, EtherCAT: The Ethernet Fieldbus (2012)
7. Y. Fourastier et al., Pietre-Cambacedes, Cybersécurité des installations industrielles: défendre

ses systèmes numériques. Cépaduès Editions, 2015
8. S. McLaughlin et al., The cybersecurity landscape in industrial control systems. Proc. IEEE

104(5), 1039–1057 (2016)
9. F. Khorrami, P. Krishnamurthy, R. Karri, Cybersecurity for control systems: a process-aware

perspective. IEEE Des. Test 33(5), 75–83 (2016)
10. RISI - The Repository of Industrial Security Incidents, 09 Sept 2016. [En ligne]. Disponible

sur: http://www.risidata.com/Database/event_date/asc. Consulté le: 09 Sept 2016
11. M. Abrams, J. Weiss, Malicious Control System Cyber Security Attack Case Study - Maroochy

Water Services (Secur. Water Wastewater Syst, Australia 2008)
12. N. Falliere, L.O. Murchu, E. Chien, W32. stuxnet dossier. Symantec Security Response,

Version 1.4, févr. (2011)
13. R.M. Lee, M.J. Assante, T. Conway, German steel mill cyber attack, in SANS ICS 2014 (2014)
14. R.M. Lee, M.J. Assante, T. Conway, Analysis of the Cyber Attack on the Ukrainian Power

Grid, in SANS ICS 2016 (2016)
15. ICS-CERT, ICS-CERT/The Industrial Control Systems Cyber Emergency Response Team, 15

Sept 2016. [En ligne]. Disponible sur: https://ics-cert.us-cert.gov/. Consulté le: 15 Sept 2016
16. M. Caselli, E. Zambon, F. Kargl, Sequence-aware intrusion detection in industrial control

systems, in Proceedings of the 1st ACM Workshop on Cyber-Physical System Security (New
York, NY, 2015), pp. 13–24

17. W. Li, L. Xie, Z. Deng, Z. Wang, False sequential logic attack on SCADA system and its
physical impact analysis. Comput. Secur. 58, 149–159 (2016)

http://www.risidata.com/Database/event_date/asc
https://ics-cert.us-cert.gov

144 F. Sicard et al.

18. Y. Wang, Z. Xu, J. Zhang, L. Xu, H. Wang, G. Gu, SRID: state relation based intrusion
detection for False data injection attacks in SCADA, ed. by M. Kutyłowski, J. Vaidya, in
Computer Security - ESORICS 2014 (Springer, Heidelberg, 2014), pp. 401–418

19. J. Graham, J. Hieb, J. Naber, Improving cybersecurity for industrial control systems, in 2016
IEEE 25th International Symposium on Industrial Electronics (ISIE) (2016), pp. 618–623

20. D.-T. Nguyen, Diagnostic en ligne des systèmes à événements discrets complexes: approche
mixte logique/probabiliste, (Université Grenoble Alpes, Français, 2015)

21. D.E. Denning, An intrusion-detection model. IEEE Trans. Softw. Eng. 13(2), 222–232 (1987)
22. R. Mitchell, I.-R. Chen, A survey of intrusion detection techniques for cyber-physical systems.

ACM Comput. Surv. 46(4), 1–29 (2014)
23. S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, A. Valdes, Using model-based

intrusion detection for SCADA networks, in Proceedings of the SCADA security scientific
symposium, vol. 46 (2007), pp. 1–12

24. N. Goldenberg, A. Wool, Accurate modeling of Modbus/TCP for intrusion detection in
SCADA systems. Int. J. Crit. Infrastruct. Prot. 6(2), 63–75 (2013)

25. R.R.R. Barbosa, R. Sadre, A. Pras, Difficulties in modeling SCADA traffic: a comparative
analysis, in Passive and Active Measurement, vol. 7192 (Berlin, Germany, 2012), pp. 126–135

26. R.R.R. Barbosa, R. Sadre, A. Pras, Flow whitelisting in SCADA networks. Int. J. Crit.
Infrastruct. Prot. 6(3–4), 150–158 (2013)

27. C. Zimmer, B. Bhat, F. Mueller, S. Mohan, Time-based intrusion detection in cyber-physical
systems, in Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical
Systems (New York, NY, 2010), pp. 109–118

28. C. Bellettini, J.L. Rrushi, A product machine model for anomaly detection of interposition
attacks on cyber-physical systems, ed. by S. Jajodia, P. Samarati, S. Cimato, in Proceedings of
The Ifip Tc 11 23rd International Information Security Conference (Springer, Boston, 2008),
pp. 285–300

29. S. McLaughlin, Blocking unsafe behaviors in control systems through static and dynamic
policy enforcement, in Proceedings of the 52nd Annual Design Automation Conference, (New
York, NY, 2015), pp. 55:1–55:6

30. S. Pan, T. H. Morris, U. Adhikari, V. Madani, Causal event graphs cyber-physical system intru-
sion detection system, in Proceedings of the Eighth Annual Cyber Security and Information
Intelligence Research Workshop (New York, NY, 2013), pp. 40:1–40:4

31. A. Carcano, A. Coletta, M. Guglielmi, M. Masera, I. Nai Fovino, A. Trombetta, A Multidi-
mensional critical state analysis for detecting intrusions in SCADA systems. IEEE Trans. Ind.
Inform. 7(2), 179–186 (2011)

32. I.N. Fovino, A. Coletta, A. Carcano, M. Masera, Critical state-based filtering system for
securing SCADA network protocols. IEEE Trans. Ind. Electron. 59(10), 3943–3950 (2012)

33. É. Zamaï, Architecture de surveillance-commande pour les systèmes à événements discrets
complexes, PhD thesis, Université Paul Sabatier - Toulouse III (1997)

34. M. Combacau, M. Courvoisier, A hierarchical and modular structure for FMS control and
monitoring, in Proceedings [1990]. AI, Simulation and Planning in High Autonomy Systems
(1990), pp. 80–88

35. L.E. Holloway, B.H. Krogh, Monitoring behavioral evolution for on-line fault detection, in
IFAC/IMACS International Conference “Fault Detection, Supervision and Safety for Technical
Processes”, SAFEPROCESS’91 (Baden Baden, Germany, 1991), pp. 313–319

36. D. Cruette, J.P. Bourey, J.C. Gentina, Hierarchical specification and validation of operating
sequences in the context of FMSs. Comput. Integr. Manuf. Syst. 4(3), 140–156 (1991)

37. J.M. Flaus, Risk Analysis: Socio–technical and Industrial Systems (Wiley, Somerset, 2013)
38. ANSSI. Ebios méthode de gestion des risques (2010)
39. G. Zhou, G. Biswas, W. Feng, A comprehensive diagnosis of hybrid systems for discrete and

parametric faults using hybrid I/O automata, in 9th IFAC Symp. Fault Detect. Superv. AndSafety
Tech. Process. SAFEPROCESS 2015, vol. 48, issue 21 (2015), pp. 143–149

5 Critical States Distance Filter Based Approach for Detection and Blockage. . . 145

40. A. Favela, H. Alla, J.M. Flaus, Modeling and analysis of time invariant linear hybrid systems,
in 1998 IEEE International Conference on Systems, Man, and Cybernetics, 1998, vol. 1 (1998),
pp. 839–844

41. S. Henry, E. Zamaï, M. Jacomino, Logic control law design for automated manufacturing
systems. Eng. Appl. Artif. Intell. 25(4), 824–836 (2012)

42. S. Genc, S. Lafortune, Predictability of event occurrences in partially-observed discrete-event
systems. Automatica 45(2), 301–311 (2009)

43. J. Chen, R. Kumar, Stochastic failure prognosability of discrete event systems. IEEE Trans.
Autom. Control 60(6), 1570–1581 (2015)

Chapter 6
Active Diagnosis for Switched Systems
Using Mealy Machine Modeling

Jeremy Van Gorp, Alessandro Giua, Michael Defoort, and Mohamed Djemaï

6.1 Introduction

Switched systems are systems involving both continuous and discrete dynamics.
They can describe a wide range of physical and man-made systems (i.e., power
converters, multi-tank systems, transmission systems, etc.). They have been widely
studied during the last decade (see, for instance, [15]). Most of the attention has
been focused on stability and stabilization problems [2, 14, 15, 18]. In the power
electronic field, since the 1950s, power converters are used in traction systems,
power supplies, or numerical amplifiers. Among these systems, multicellular con-
verters, which appeared at the beginning of the 1990s are based on the association in
series of elementary commutation cells. The multicellular converter is an interesting
switched system widely studied in the literature on control, observation, and
diagnosis. Its structure enables the reduction of the losses due to the commutations
of power semiconductors while allowing low cost components. A blocked cell or a
blocked switch or the internal components ageing can lead to critical situations for
the system if the control law is not broken off or adapted (tolerant control).

J. Van Gorp (�)
Conservatoire National des Arts et Métiers (CNAM), CEDRIC - LAETITIA, Paris, France
e-mail: jeremy.van_gorp@cnam.fr

A. Giua
Aix Marseille Université, CNRS, ENSAM, Université de Toulon, Marseille, France
DIEE, University of Cagliari, Cagliari, Italy
e-mail: alessandro.giua@lsis.org; giua@diee.unica.it

M. Defoort · M. Djemaï
University of Valenciennes, CNRS, UMR 8201 - LAMIH, Valenciennes, France
e-mail: michael.defoort@univ-valenciennes.fr; mohamed.djemai@univ-valenciennes.fr

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4_6

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74962-4_6&domain=pdf
mailto:jeremy.van_gorp@cnam.fr
mailto:alessandro.giua@lsis.org
mailto:giua@diee.unica.it
mailto:michael.defoort@univ-valenciennes.fr
mailto:mohamed.djemai@univ-valenciennes.fr
https://doi.org/10.1007/978-3-319-74962-4_6

148 J. Van Gorp et al.

Occurrence of faults can be extremely detrimental, not only to the equipment
and surroundings but also to the human operator if they are not detected and
isolated in time. Moreover, usually, a fault tolerant controller [16, 23] cannot be
applied if the fault is not isolated, i.e., if the exact nature of the fault that has
occurred is not identified. Fault detection and isolation (FDI) have been widely
investigated using various methods [8, 11, 12]. Observer-based FDI techniques
rely on the estimation of outputs from measurements with the observer in order
to detect the fault. The observability and observer design problems for hybrid
systems have been studied using different approaches. The Z-observability concept
was introduced in [13] to study the observability of some particular classes of
hybrid systems. Using a similar approach in [24], it is provided a generalization
of observability concepts. Analytical redundancy, i.e., mathematical relationship
between measured and estimated variables in order to detect possible faults, can
be computed by the analysis of the parity space [9, 29] or using a Bond Graph [17],
for instance. However, due to the particular structure of the multicellular converter,
the state components are only partially observable for every fixed configuration of
the switches. Hybrid observers have been proposed for this system [7, 25, 27, 28]
but they cannot be easily applied in real-time to solve the fault observation
problem.

Several contributions have also been presented in the discrete event systems
(DES) framework. Necessary and sufficient conditions for diagnosability, in the
case of multiple failures, are developed both for automata [20] (I-diagnosability)
and Petri nets [4, 5]. For DES, the diagnosability analysis and the online diagnosis
are computed by a diagnoser where the available measurements are considered as
inputs of the diagnoser. It leads to an estimated state which could be either “normal”
or “faulty” or “uncertain” after the occurrence of every observable event.

The classical model used in DES diagnosis is finite state machine (FSM) and
a system is seen as a spontaneous generator of events. However, in many physical
systems, the system evolution is driven by the control input and the diagnosability
conditions depend both on the system structure and on the control strategy. Hence,
some studies proposed an active diagnosis, using a supervisor, to simultaneously
ensure the control and the diagnosability of the system. It is proposed, in [1],
an algorithm that controls the system toward diagnosable states when a fault is
detected. However, following this approach, the system may cross nondiagnosable
regions in order to isolate the fault. In [6, 21], a diagnoser was used to block
controllable events that drive the system into nondiagnosable regions. For the
multicellular converter, the control law design, satisfying the stability conditions
associated with the diagnosability, is complex. Indeed, the unobservable events,
related to the system, define uncertain states in the diagnoser and the diagnosability
conditions cannot be satisfied. In our approach, the algorithm of [1] is extended.
The set of uncertain states, associated to the diagnoser, is partitioned in order to
distinguish uncertain states, which may be explained by a fault but consistent with
the evolution of the nominal model, from uncertain fault state where the occurrence
of a fault has been detected and a suitable control input can be applied to identify it.

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 149

In this chapter, an active diagnosis algorithm for switched systems is proposed.
The introduced algorithm in [26] is extended and an experimental validation is
developed. Here, we assume that the only control input that drives the evolution
of the system is represented by the switching function. This function specifies the
active mode. Furthermore, discrete outputs are also available, as a result of each
transition between modes, in order to detect and isolate the fault. Under these
assumptions, a Mealy Machine (MM), i.e., an automaton with inputs and outputs,
may be used to represent the system. Indeed, if suitably selected, an input applied
to the MM may be used to steer the diagnoser out of the set of uncertain states,
thus improving the detection procedure. In this context, the diagnoser, presented in
[21], is re-defined in order to introduce the uncertain states and the uncertain fault
states. Some transitions of the automaton, including those corresponding to faults,
may occur in the absence of a control input and may be unobservable.

In the nominal situation, the control input is selected by the controller according
to a given specification and a diagnoser observes the evolution. Although the state
of the diagnoser may be uncertain (i.e., a fault may have or may have not occurred),
as long as the observed evolution can be explained by the nominal model, no alarm
is generated by the diagnoser. Hence, such a system may be nondiagnosable in the
sense of [20]. However, when the diagnoser detects an abnormal behavior, i.e., an
evolution that cannot be explained without the occurrence of a fault, an alarm is
generated and the control objective becomes the isolation of the fault if necessary.
A fault isolating sequence can be determined based on the well-known notion of
homing sequences defined in testing theory [3].

The study of testing procedure for FSM has been first motivated as fundamental
research in computer science [3]. In [10], a fault diagnosis algorithm based on
testing was investigated. In [22] the testing theory was applied for diagnosis using
Input/Output automata. They consider state faults contrary to our approach where a
fault is modeled by an unobservable event on transitions and thus is more general.
The problem of determining a synchronizing sequence for interpreted Petri nets, i.e.,
an input sequence that drives the system to a known state is considered in [19]. In
this paper, an adapted algorithm to compute the fault isolating sequences for MMs,
and a generic algorithm, for the active diagnosis, are presented. If a corresponding
isolating sequence can be computed for each uncertain fault state of the diagnoser,
using interconnection between a diagnoser and an online testing algorithm we are
able to isolate every fault for switched systems.

The chapter is organized as follows. Section 6.2 deals with the problem formu-
lation and introduces the system and diagnoser modeling. In Sect. 6.3, a testing
condition is defined. An algorithm is presented in order to compute the fault iso-
lating sequences. An algorithm combining a MM diagnoser and a testing procedure
is also proposed in order to solve the fault diagnosis problem. Simulation results,
on the 2-cells converter, and experimentation results, on the 3-cells converter, are
presented in Sect. 6.4 to highlight the efficiency of the proposed approach.

150 J. Van Gorp et al.

6.2 Problem Statement and Modeling

6.2.1 Preliminaries on DES Diagnosis

Hereafter, some definitions from [21] and the diagnoser modeling are reformulated
to account for faulty uncertain states. The classical DES approach for diagnosis
[20, 21] considers a system modeled by a deterministic finite automaton (DFA):

G D .X; ˙; ı; x0/ (6.1)

where X is the state set, ˙ is the set of events, ı W X � ˙ ! X is the (partial)
transition function and x0 is the initial state of the system. The state x0 is assumed
to be known.

The model G accounts for the normal and faulty behavior of the system,
described by the prefix-closed language L.G/ generated by G, i.e., a subset of
˙� where ˙� denotes the Kleene closure of ˙ . The event set ˙ is partitioned
as ˙ D ˙o [˙uo where ˙o represents the set of the observable events and ˙uo

the unobservable events. The fault event set is defined as ˙f � ˙uo and may be
partitioned into m different fault classes ˙f D ˙f1 [˙f2 [: : : [˙fm .

Let us re-define [21] the projection operator P W ˙� ! ˙�o such that:

P.�/ D �
P.�/ D � if � 2 ˙o

P.�/ D � if � 2 ˙uo

P.s�/ D P.s/P.�/ if s 2 ˙�; � 2 ˙

where � is the empty word. Therefore, P simply erases the unobservable events
from a trace. The inverse projection operator with codomain in L.G/ is the relation
P�1 W ˙�o ! 2L.G/ that associates to each word of observable events w the set of
traces that may have generated it, i.e., P�1.w/ D fs 2 L.G/ j P.s/ D wg: In the
following, we will denote by s 2 ˙� a trace of events generated by the DFA and
by w D P.s/ 2 ˙�o an observed word, i.e., the observable projection of a generated
trace.

The diagnosis problem for a DFA G consists in determining if, given an observed
word w 2 ˙�o , a fault has occurred or not, i.e., if a transition labeled with a fault
event in ˙f � ˙uo has been fired or not and find the fault class. This may be done
using a diagnoser, i.e., a DFA on the alphabet of observable events.

Definition 1 Given a DFA G with set of events ˙ D ˙o [˙uo and set of fault
events ˙f D ˙f1 [˙f2 [: : : [˙fm . Let F D fF1;F2; : : : ;Fmg be the set of labels
associated to the fault classes. A diagnoser for the DFA defined by Eq. (6.1) is a
DFA

Diag.G/ D .Y; ˙o; ıy; y0/

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 151

such that

• Y � .X � fNg/ [.X � 2F /, i.e., each state of the diagnoser is a set of pairs

y D f.x1; �1/; .x2; �2/; : : : ; .xk; �k/g;

where xi 2 X and �i D N or �i � F (with �i ¤ ;), for i D 1; 2; : : : ; k. Here N is
interpreted as meaning Normal (no fault has occurred), while Fi as meaning that
a failure of class Fi has occurred.

• The initial state y0 of the diagnoser is defined to be f.x0;N/; .x1; �1/; : : : ; .xk; �k/g,
i.e., from a known initial state x0, if there exist unobservable traces si, for
i D 1; : : : ; k, whose projections are �, the initial state y0 also contains all pairs
.xi; �i/ such that xi 2 X is reachable with an unobservable trace si and �i denotes
the fault classes that may have occurred in si or N if no fault has occurred in si.

• ıy.y0;w/ D yw if and only if

yw D f.x;N/ j .9s 2 P�1.w// ı.x0; s/ D x ^ s \˙f D ;g
[f.x; �i/ j .9s 2 P�1.w// ı.x0; s/ D x ^ i 2 f1; 2; : : : ;mg;

s \˙fi ¤ ; ^ �i D Fig;

i.e., the execution in Diag.G/ of a word w yields a state yw containing:

– all pairs .x;N/ where x can be reached in G executing a string in P�1.w/ that
does not contain a fault event;

– all pairs .x; �i/ where x can be reached in G executing a string in P�1.w/ that
contains, for each �i � F , a fault event of class ˙fi .

For each state, y D f.x1; �1/; .x2; �2/; : : : .xk; �k/g of Diag.G/, a diagnosis value
'.y/ is associated such that:

• '.y/ D N (no fault state): if �i D N for all i D 1; 2; : : : ; k,
• '.y/ D U (uncertain state): if there exist i; j 2 f1; 2; : : : ; kg such that �i D N and
�j � F ,

• '.y/ D F (isolated fault state): if �i ¤ N and �i D �j for all i; j D 1; 2; : : : ; k,
• '.y/ D UF (uncertain fault state): if �i ¤ N for all i D 1; 2; : : : ; k and there exist

i; j D 1; 2; : : : ; k such that �i ¤ �j.

Thus, a diagnoser allows one to associate to each observed word w a diagnosis state
'.yw/ where yw D ıy.y0;w/ is the state reached in Diag.G/ by executing word w
from the diagnoser initial state y0.

Remark 1 Following Definition 1, if the diagnosis value is '.y/ D UF, it means
that the detection of the fault is ensured whereas its isolation is only possible when
'.y/ D F. A fault is not diagnosable if there does not exist a corresponding state in
the diagnoser with '.y/ D F.

152 J. Van Gorp et al.

The objective of this chapter is to design an algorithm which solves the fault
diagnosis problem for a large class of switched systems.

6.2.2 Switched System Modeling

In this chapter, the proposed approach can address the diagnosis problem of a class
of switched systems which is generally represented by the following model:

Px.t/ D A.t/.x.t/; f.t//
O.t/ D C.t/.x.t/; f.t//

(6.2)

where x.t/ is the continuous state, O.t/ is the continuous output, f.t/ is the fault
vector, and .t/ represents the switching function which is piecewise constant and
.t/ W Œ0;1/ ! f1; 2; : : : ;Ng. N denotes the known number of discrete modes
or subsystems. In general, function .t/ could depend on an external control input
and/or the state x.t/ and/or the fault vector f.t/. The measured variables are the
output signal O.t/ and eventually the continuous state x.t/ if it is observable. Here, a
fault can be considered on the system parameters, actuators, or sensors. The multiple
fault occurrences are not considered. Hereafter, we assume that all continuous
variables of system (6.2) can be represented by sets of discrete variables.

In most of the existing studies on the diagnosis in the DES framework, the
set of events is only based on one information from the system (input or output
signal). The hybrid models allow representing the complex dynamics (continuous
and discrete) of a system. It can appear that this class of systems needs a more
accurate method for the diagnosis. In order to design a new approach of diagnosis
using the formalism of DFA for the class of switched systems, it is interesting to
consider the system as a MM. Using this particular modeling, the set of discrete
events can be enriched with the combination of input and output signals. An event
will be defined by a pair input/output. The idea is to highlight the equivalence
between DFA and MM in order to deduce a MM diagnoser using the formalism
of DFA previously redefined.

The switched systems can be modeled as MMs, where the input event corre-
sponds to the active mode of the system and the output event to the sensor readings.

Formally a Mealy Machine is a structure:

M D .X; I;O; �;
; x0/ (6.3)

where X is the set of discrete states, I and O are the set of input and output events,
� W X � I ! X is the transition function,
 W X � I ! O is the output function, and
x0 is the initial state of the system.

Here, we consider that the set of input events can be partitioned as I D Ic [Iuc.
Events in Ic are controllable events, i.e., they denote controlled transitions that are
triggered by an external control input. Events in Iuc are uncontrollable events, i.e.,

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 153

they denote autonomous transitions that may occur without being triggered by an
external control input. The set of fault events If D If1 [: : : [Ifm is a subset of Iuc.
Note that the transition function of a MM is total on the set of controllable input
events, i.e., for all x 2 X and for all i 2 Ic, �.x; i/ is defined. This means that
a controllable input may be applied regardless of the state of the machine. We also
assume that the set of output events O may contain the special symbol ; that denotes
transitions whose occurrence does not generate as output a measurable event.

One can easily convert, for the purpose of diagnosis, a MM to an equivalent DFA
with the same state set and alphabet ˙ D I �O. A transition of the MM �.x; i/ D Nx
with output function
.x; i/ D o can be represented in the DFA by a transition
ı.x; .i; o// D Nx. The set of unobservable events of the DFA is ˙uo D Iuc � f;g, the
set of fault events can be redefined as ˙f D f If � f;gg and ˙o D ˙ n ˙uo. Once
a MM has been converted into an equivalent DFA, a diagnoser can be designed to
solve the diagnosis problem. Below, an example is given in order to highlight the
equivalence between MM and DFA. The corresponding MM diagnoser is illustrated.

Example 1 Consider the MM M D .X; I;O; �;
; x0/ with X D f1; 2; 3g, I D
fa; b; "1; "f g, Ic D fa; bg, Iuc D f"1g, If D f"f g, O D fo1; o2; o3;;g, x0 D f1g,
transition and output function:

� a b "1 "f

1 3 2

2 1 2 1

3 2 3 1

 a b "1 "f

1 o1 o2
2 o3 o2 ;
3 o2 o1 ;

Using the first line of the left table, one can see that, in the MM M, there exist
transitions from the state 1 to states 2 and 3 using input events noted b and a with
�.1; a/ D 3, �.1; b/ D 2. Associated to the second table, the corresponding output
event is represented with
.1; a/ D o1,
.1; b/ D o2. Using the proposed modeling,
an equivalent DFA of this MM can be deduced. Couples .a; o1/ and .b; o2/ are two
events of ˙o in the new representation using the formalism of DFA.

The equivalent DFA is shown in Fig. 6.1(left) where the set of observable events
is ˙o D f.a; o1/; .a; o2/; .a; o3/; .b; o1/; .b; o2/g, the set of unobservable events is
˙uo D f."1;;/; ."f ;;/g, and the set of fault events is ˙f1 D f."f ;;/g (here we have
a single fault class). The diagnoser for this DFA is shown in Fig. 6.1(right), where
each state y of Diag.G/ is labelled with its corresponding diagnosis value '.y/ in
square brackets.

The objective of the following section is to design an algorithm in order to detect
and isolate faults in spite of the presence of uncertain fault states (i.e., '.y/ D UF)
in the diagnoser.

154 J. Van Gorp et al.

Fig. 6.1 On the left, a DFA G. On the right, its diagnoser automaton Diag.G/

6.3 Active Diagnosis

It is assumed that in normal conditions the control inputs of the MM (i.e., the
switching sequence of the system) are selected by a controller to satisfy a given
objective. In parallel to the controller, a diagnoser is used to detect the evolution of
the system. There is no interaction between the diagnoser and the controller when
no fault has been detected, i.e., while the diagnoser is in a state with diagnosis value
N or U. In such a condition, in fact, the diagnoser behavior may be explained by
a nominal evolution and no alarm is generated. However, when a fault has been
detected (when '.y/ D UF or F), the control objective is suspended for safety
reasons and a fault isolation procedure is applied. Here, the trade-off between the
control objective and the active diagnosis is not studied.

In particular, if the diagnoser is in a state F, the fault has been isolated because
it is known exactly which fault classes have occurred. On the contrary, when the
diagnoser is in one of the uncertain fault states UF, the control input sequence will
be selected on the basis of a testing procedure to design an active diagnoser [21] that
isolates the fault identifying the class of the fault that has occurred.

6.3.1 Testing Condition

In this subsection, the active diagnosis procedure for the MM defined in Eq. (6.3) is
described. It consists in finding a control input sequence which isolates the fault.

In order to design the proposed algorithm, we need to define a function which
specifies, for each state y 2 Y of the diagnoser and for each control input sequence
˛ 2 Ic, the set of pairs .y0; ˇ/ where y0 2 Y is the state of the diagnoser reached if
ˇ 2 O has been observed.

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 155

Definition 2 Given the diagnoser (Definition 1) associated with the DFA equivalent
to the MM Eq. (6.3), we define the following function f W Y�I�c ! 2Y�O�

as follows.
For all y 2 Y and all ˛ 2 I�c :

f . y; ˛/ D f. y0; ˇ/ j ıy. y; �/ D y0;

� D .i1; o1/.i2; o2/ : : : .ik; ok/; (6.4)

˛ D i1i2 : : : ik; ˇ D o1o2 : : : okg:

Proposition 1 The input sequence ˛ 2 I�c isolates the faults from uncertain fault
state yu 2 Y such that '.yu/ D UF if and only if

f . yu; ˛/ � f. yi; ˇi/ j '. yi/ D Fg: (6.5)

Proof Obviously, condition (6.5) is a necessary condition for sequence ˛ to isolate
the fault. Since the diagnoser is a deterministic automaton, .y0; ˇ/; .y00; ˇ/ 2 f .y; ˛/
implies y0 D y00, i.e., the state of the diagnoser, reached by applying a given control
input sequence ˛, is perfectly known from the observed output sequence ˇ. This
ensures that condition (6.5) is also sufficient.

From Proposition 1, an active diagnosability condition for the MM Eq. (6.3) can
be deduced.

Proposition 2 A switched system modeled by a MM Eq. (6.3) is actively diagnos-
able, using the MM diagnoser (corresponding to Definition 1), if there is at least one
control input sequence which verifies Proposition 1 for each uncertain fault state of
its diagnoser.

Remark 2 The above Proposition 2 is slightly different from the active diagnos-
ability definitions usually considered in the literature [1, 21]. In this study, a MM
modeling is used for the system and its diagnoser in order to highlight input/output
transitions and to design an adapted algorithm which solves the active diagnosis
problem for the class of switched systems.

The proposed approach is inspired by the notion of homing sequence that is
studied in testing theory [3]. A homing sequence is an input sequence that brings a
MM (with outputs) from an unknown state to a known state, i.e., after the input
sequence is applied by observing the output sequence, one can unambiguously
determine the current state of the MM (see [3] for further details). Indeed, our
objective consists in finding a control input sequence in the MM diagnoser which
isolates the fault or disambiguates the fault class by observing the output sequence.

For a system which satisfies Proposition 2, a sequence that isolates the fault can
be determined, using the following approach to compute all fault isolating sequences
corresponding to the set of uncertain fault states.

156 J. Van Gorp et al.

6.3.2 Algorithm

Before introducing our proposed algorithm, let us consider the following example.

Example 2 Consider the MM given in Fig. 6.2. There are three different fault
classes, i.e., ˙f1 D F1, ˙f2 D F2, and ˙f3 D F3. X D f1; 2; 3; 4; 5; 6; 7g,
I D fa; b; c; d;F1;F2; F3g with If1 D fF1g, If2 D fF2g and If3 D fF3g, Iuc D If ,
Ic D fa; b; c; dg, O D f1; 2;;g and x0 D f1g. The corresponding diagnoser
contains 41 states and it is not detailed here. Our approach consists in applying
an algorithm which detects and isolates the fault that has occurred. In the following
figures, we have chosen to decompose the diagnoser in steps in order to explain
the algorithm. Figures 6.3 and 6.4 illustrate two parts of the diagnoser during its
construction in order to achieve the fault detection and isolation. Figure 6.3 presents
the MM diagnoser of detection in the detection step. It has a unique nominal state
.1 N; 2 F1; 3 F2; 5 F3/ since we assume that an uncertain state U in the MM
diagnoser is not a faulty situation. This diagnoser shows transitions which allow
the fault diagnosis or only detection. It has four uncertain fault states UF and three
isolated fault states F.

Considering the system in Fig. 6.2 with initial state 1, the sequence of observable
events .b;;/.d; 2/, for instance, allows detecting a fault but not to isolate it. On the
diagnoser (Fig. 6.3), this sequence leads to the uncertain fault state .6 F1; 7 F2/with
'.y/ D UF. When a fault is detected, the nominal control objective is suspended for
safety reason.

Fig. 6.2 Example of a MM with three fault classes

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 157

Fig. 6.3 MM diagnoser for
the detection step

Fig. 6.4 MM active diagnoser for the isolation step, condition (6.5) is satisfied

158 J. Van Gorp et al.

The proposed approach is to compute a fault isolating sequence from the MM
diagnoser. Figure 6.4 presents the MM active diagnoser when a sequence ˛ 2 I�c ,
defined by k D 1 event can be observed for the isolation step. It highlights the set
of reachable states from the detection step after observation of k˛k D k D 1 event,
where k:k is the length of a string. Our off-line objective is to analyze this part of
the diagnoser in order to find a fault isolating sequence for each uncertain fault state
of the MM diagnoser of detection (Fig. 6.3). The idea is to increment k while no
input sequence ˛ 2 I�c with k˛k D k verifying Proposition 1 can be found for an
uncertain fault state UF of the detection step.

Following this MM active diagnoser Fig. 6.4, all sequences of one event can be
tested from each uncertain fault state. Considering condition (6.5) on the diagnoser,
the control input event b can be applied as a fault isolating sequence for the states
.4 F1; 7 F3/ (blue state) and .6 F1; 7 F2/ (green state). Indeed, observing if the
corresponding output event is ; or 1, we can isolate the fault F1 or F2 or F3. The
event b is not a valid isolating sequence for the uncertain fault states .4 F2; 6 F3/
(magenta state) and .2 F1; 3 F2; 5 F3/ (red state). This sequence does not verify
Proposition 1 because it leads to uncertain fault states .4 F2; 6 F3/ or .2 F2; 2 F3/.
The input event c can be taken as a fault isolating sequence for the state .4 F2; 6 F3/.
If the corresponding output event is ;, we can isolate the fault F3 and if the output
event is 1, then the fault F2 can be isolated. Following this strategy, the uncertain
fault state .2 F1; 3 F2; 5 F3/ requires k˛k D 2. Hereafter, the corresponding
diagnoser with k D 2 is not presented but from Fig. 6.4, we can propose the fault
isolating sequence bc whereas bb is not a valid isolating sequence.

The proposed idea is to compute a minimal fault isolating sequence for each
uncertain fault states (UF) of the MM diagnoser in the detection step using the
testing theory and based on homing sequences.

Function HomingSequence can be applied off-line to compute all fault isolating
sequences.

Function HomingSequence.Diag.G//

1. Input: The diagnoser Diag.G/ D .Y; ˙o; ıy; y0/
2. Create a set I 0 D ;
3. For all yui 2 Y

3.1. If '.yui/ D UF and 9� 2 ˙o, 9y 2 Y with '.y/ D N or U s.t. ıy.y; �/ D yui

3.1.1. Let ˛ui D " (" is the empty word)
3.1.2. Let k=1
3.1.3. While ˛ui D "

• If 9˛ 2 I�c s.t. k˛k D k and ˛ verifies Proposition 1 for the state yui

˛ui ˛

• Else

k kC 1

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 159

End if

End while
3.1.4. I 0 D I 0 [f.yui; ˛yui/g

End if

End for
4. Output: I 0 D f.yu1; ˛yu1 /; .yu2; ˛yu2 /; : : : ; .yui; ˛yui/; : : :g ! all pairs combining

an uncertain fault state yui with a minimal fault isolating sequence ˛yui .

For a system which satisfies Proposition 2, Function HomingSequence allows
finding the set of minimal fault isolating sequences in order to isolate the fault as
quickly as possible after its detection. Indeed, in Function HomingSequence, step
3.1. verifies that there exists a transition between the uncertain fault state yui and a
state y such that '.y/ D N or U. This function is designed in order to increment the
size k of the sequence when no sequence can be found for an uncertain fault state
yui. A set of pairs can be proposed in order to combine each uncertain fault state with
a fault isolating sequence. If a fault is not diagnosable, this function could return an
empty set and the variable k goes to infinity.

According to the example (Fig. 6.2), the Function HomingSequence can be
applied on the MM diagnoser (Fig. 6.3) in order to find all minimal fault isolating
sequences. The following algorithm is an application of the proposed example. The
function is illustrated just for 2 uncertain fault states (steps between lines 3.1.4 and 4
correspond to other uncertain fault states of the MM diagnoser, these are not detailed
in this chapter in order to simplify notations). The computed output in line 4 is for
all uncertain fault states.

Function HomingSequence.Diag.G// applied on the MM diagnoser (Fig. 6.3)

1. Input: The diagnoser Diag.G/ corresponding to the MM Fig. 6.2
2. Create a set I 0 D ;
3. For yui D .6 F1; 7 F2/ (or yui D .4 F1; 7 F3/)

3.1. '.yui/ D UF and 9� D .d; 2/ (or 9� D .c; 2/), 9y D .1 N; 2 F1; 3 F2; 5 F3/
with '.y/ D U such that ıy.y; �/ D yui

3.1.1. Let ˛ui D "
3.1.2. Let k=1
3.1.3. While ˛ui D "

• 9˛ D b such that kbk D 1 and b verifies Proposition 1 for the state
.6 F1; 7 F2/ (or .4 F1; 7 F3/)

˛ui b

End while
3.1.4. I 0 D I 0 [f..6 F1; 7 F2/; b/g (or [f..4 F1; 7 F3/; b/g)

160 J. Van Gorp et al.

:::

4. Output: I 0 D f..6 F1; 7 F2/; b/; ..4 F1; 7 F3/; b/; ..4 F2; 6 F3/; c/; ..2 F1;
3 F2; 5 F3/; bc/g
The proposed MM active diagnoser algorithm can be summarized by Algo-

rithm 1.

Algorithm 1 Active diagnoser
1. Compute I D HomingSequence.Diag.G//
2. Loop

2.1. Nominal control of the system (defined according to the control objective)
2.2. Follow the occurred events .i; o/ in the MM active diagnoser
2.3. If a fault is detected ('.y/ D UF or F)

2.3.1. Stop the control objective
2.3.2. If '.y/ D F

• The fault is isolated using the MM diagnoser

2.3.3. Else

• Apply the homing sequence ˛y corresponding to the pair .y; ˛y/ 2 I
• Follow the occurred events .i; o/ in the MM diagnoser in order to reach a final state

yf 2 Y such that '.yf / D F and the fault is isolated

End if
2.3.4. STOP

End if

End loop

Following Algorithm 1, in the first step, all minimal fault isolating sequences are
computed off-line using Function Homing Sequence for each uncertain fault state of
the MM diagnoser computed for the detection step. In the second step, the nominal
control can be applied and the MM diagnoser follows the occurred events .i; o/
(the diagnosis value '.y/ can be equal to N, U, UF or F). If a fault is detected, the
control objective is broken off. If the diagnosis value '.y/ D F, the fault class is
isolated and the algorithm is ended. If the fault is only detected (i.e., '.y/ D UF),
then corresponding fault isolating sequence can be applied in order to achieve the
diagnosis objective.

6.4 Application to the Multicellular Converter

In this section, the proposed diagnosis algorithm is applied to the multicellular
converter. The details of the algorithm are presented with simulation results using a
2-cells converter (4 modes). Experimental results on a 3-cells converter (8 modes)

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 161

S1

Sj

S2Sp Sj

S1S2Sp

E

L

R

I
 Vc Vc Vc

 Vs

p-1 j-1 1

Fig. 6.5 Multicellular converter associated to an inductive load

highlight the effectiveness of the proposed approach and show that the algorithm
can be generalized for this class of switched system and applied in real time.

6.4.1 Multicellular Converter Modeling

The multicellular converter is based on the combination of p elementary cells of
commutation. The current flows from the source E toward the output through the
different switches. The converter shows, by its structure illustrated in Fig. 6.5, a
hybrid behavior due to the discrete variables, i.e., switches. Note that because of
the presence of .p � 1/ floating capacitors, there are also continuous variables, i.e.,
currents and voltages.

The dynamics of the converter, with a load consisting in a resistance R and an
inductance L, can be expressed by the following differential equations:

8
<̂

:̂

PI D �R
L I C E

L Sp �Pp�1
jD1

Vcj

L .SjC1 � Sj/

PVcj D I
cj
.SjC1 � Sj/; j D 1; : : : ; p � 1

(6.6)

where I is the load current, cj is the capacitance, Vcj is the voltage in the j-th
capacitor, and E is the voltage of the source. Here, it is assumed that only the output
voltage Vs can be measured:

Vs D ESp �
p�1X

jD1
Vcj.SjC1 � Sj/ (6.7)

Each commutation cell is controlled by the binary signal Sj 2 f0; 1g. Signal
Sj D 1 means that the upper switch of the j-th cell is “on” and the lower switch is
“off” whereas Sj D 0 means that the upper switch is “off” and the lower switch is
“on.”

162 J. Van Gorp et al.

Remark 3 System defined by (6.6) and (6.7) is not observable in the classical sense.
Indeed, if 8j 2 f1; : : : ; pg; Sj D 0 or Sj D 1, then the internal voltages Vcj cannot be
estimated.

It is important to highlight that in order to standardize the industrial production,
the electrical switches constraints should be similar in each cell. This requirement
implies a unique voltage switch constraint of E

p . Thus, the discrete control laws,
which determine the evolution of the control signals Sj, ensure the simultaneous
regulation of the load current and capacitor voltages such that:

Vcj;ref D j
E

p
; 8j 2 f1; : : : ; pg (6.8)

A driver applies the control strategy on the switches of each cell (see Fig. 6.6(left)
for the 2-cells converter). ŒS1; : : : ; Sp	

T 2 f0; 1gp is a boolean vector describing the
configuration or mode of the system.

Assuming that the control law is computed using a PWM module (Fig. 6.6(left)),
the switching sequence, which depends on the desired load current, is known. Since
the transient period is very short, one can only consider the steady state value for
each mode. Therefore, the hybrid control strategy is defined by 2p modes. It creates
a stairs behavior of the output voltage, i.e., Vs 2 f0; E

p ;
2E
p ; : : : ;Eg. In order to

reduce the harmonic contents and the switching losses of semiconductors during
the different commutations, the control limits the variation of the output voltage to
E
p . Indeed, the control operates one cell at once.

Fig. 6.6 Topology of a 2-cells converter with a PWM based control and the corresponding MM in
its nominal behavior

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 163

6.4.2 Active Fault Diagnosis for a 2-Cells Converter

Without loss of generality, we consider the case p D 2 in order to simplify notations.
Anyway, the proposed approach can be easily applied for any p.

6.4.2.1 2-Cells Converter Modeling

Figure 6.6 depicts the topology of the 2-cells converter associated to an inductive
load and its corresponding MM for the nominal modes, where the control signals
S1S2 represent the input events and the discrete values, associated to Vs, are the
output set.

The model of the 2-cells converter involves that the reference voltage of the
capacitor is such that Vc D E

2
and the output voltage is defined as Vs 2 f0; E

2
;Eg

when the transient is ignored.
In this work, only faults which occur on a commutation cell are considered. It

is possible that a commutation cell is blocked due to a faulty driver. For the 2-cells
converter, four faults can be defined. The fault event set is ˙f D f1 [f2 [Nf1 [Nf2,
where fj (resp. Nfj) indicates that the j-cell is blocked in Sj D 1 (resp. Sj D 0). The
fault states are denoted according to the corresponding nominal state. For instance,
the fault state 2 Nf2 is the equivalent state of 2 in the presence of fault Nf2.

Figure 6.7 shows the MM representation of the 2-cells converter. The output set
is O D f;; 0; 1; 2g and corresponds to Table 6.1. The output set represents the output
voltage variations. The input set is I D f"f ; s1s2; Ns1s2; s1 Ns2; Ns1 Ns2g with Iuc D f"f }. sj

Fig. 6.7 MM modeling for the 2-cells converter considering (.S2; S1/;Vs variation) as the
observable quantity

164 J. Van Gorp et al.

Table 6.1 Output voltage
variations and the output set
for the 2-cells converter

O D f;; 0; 1; 2g Vs variation

; No variation

0 E=2 to 0

1 0 or E to E=2

2 E=2 to E

Table 6.2 Observable faults
associated with the fault
classes

Fault events Classes

. Ns1s2; 2/ f1

.s1 Ns2; 2/ f2

. Ns1 Ns2; 1/ f1; f2

.s1s2; 1/ Nf1; Nf2

. Ns1s2; 0/ Nf2

.s1 Ns2; 0/ Nf1

(resp. Nsj) indicates a control law Sj D 1 (resp. Sj D 0). Each transition edge is
labeled with the values of the input and output. The system has unobservable faults,
noted by pair ."f ;;/.
Remark 4 The MM of the converter (given in Fig. 6.7) contains observable faults
based on physical considerations of the system between the input and output (linked
to the output value Vs). An expert can associate these faults with the different
fault classes. Observable faults represented by the events associated with their fault
classes are given in Table 6.2.

The MM modeling allows taking into account the change in sensor readings when
a same control is applied. It improves the fault detection procedure.

6.4.2.2 Algorithm Associated with the 2-Cells Converter

Figure 6.8 shows the diagnoser corresponding to the 2-cells converter, modeled
by its equivalent DFA and assuming that the control is broken off if a fault is
detected. Each state of the diagnoser is a set of pairs .xi; �i/ where xi 2 X and
�i 2 fN; f1; Nf1; f2; Nf2g. It should be pointed out that it has two uncertain fault states,
.2 Nf2; 3 Nf1/ and .2f1; 3f2/. Indeed, if the state of the system is, for instance, 1 (or 4),
a fault event . Ns1 Ns2; 1/ (or .s1s2; 1/) enables to detect a fault but does not enable
to isolate it. Using the proposed diagnoser, the states 4f1, 4f2, 1 Nf1, and 1 Nf2 can be
directly isolated using the observations . Ns1s2; 0/, .s1 Ns2; 0/, . Ns1s2; 2/, and .s1 Ns2; 2/
(see Fig. 6.8). By a classical approach [21], from the state of the system 2 or 3, the
observations . Ns1Ns2;;/ and .s1s2;;/ also lead to the fault diagnosis. Therefore, a fault
can always be detected but may not directly be isolated.

Associated to the MM diagnoser, a fault isolating sequence can be computed,
using Function HomingSequence, to eliminate the uncertainty between states
.2 Nf2; 3 Nf1/ and .2f1; 3f2/ (see Fig. 6.9). The input event . Ns1s2/ 2 I�c satisfying

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 165

Fig. 6.8 Part of the diagnoser associated to the 2-cells converter, considering that the control is
broken off if a fault can be detected

Fig. 6.9 Homing sequences allowing faults isolation (i.e., .s1Ns2/ and .Ns1s2/ with k˛k D 1)

condition (6.5) can be a fault isolating sequence for the system (the input event
.s1 Ns2/ 2 I�c can be also used).

Remark 5 The diagnoser given in Fig. 6.8 cannot isolate a fault if the initial state
x0 is unknown. Here, it is considered that the initial conditions of the system are
known and the initial mode is without fault. The initial mode corresponds to the
mode without control (all Sj D 0) (see Fig. 6.5) and will be defined with mode 1.

166 J. Van Gorp et al.

Fig. 6.10 Fault detection and isolation, using the proposed active diagnosis algorithm. (a) Fault
evolution. (b) Fault detection using the proposed diagnoser. (c) Isolation using the diagnoser and
the homing sequences given in Figs. 6.8 and 6.9

6.4.2.3 Simulation Results

In this section, some simulations are carried out to show the effectiveness of the
proposed approach. Equations (6.6) and (6.7) are written using Matlab/Simulink, a
PWM module controls the 2-cells converter and a Stateflow module is used to model
the DFA. The parameters used in the simulation are as follows:

E D 60V; c D 400�F; R D 200�; L D 0:1H

Figure 6.10a depicts the evolution of faults. In order to highlight the efficiency of the
diagnoser, the simulation takes into account all kind of faults ff1; f2; Nf1; Nf2g. Figure
6.10b highlights the fault detection and Fig. 6.10c illustrates the fault diagnosis
using the proposed strategy. Indeed, a reset of the system is realized between each
fault. The state is re-initialized at x0 D ŒVcref ; Iref 	

t D Œ30; 0:2	t and the mode is 1.
Figure 6.11 shows the evolution of the mode of the DFA.

One can see, in Fig. 6.10, that the diagnoser, using the MM representation, fulfils
the objective, i.e., the faulty modes are well detected and isolated. In Fig. 6.11,
one can note that faults Nf1 and Nf2 are identified using the proposed fault isolating

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 167

Fig. 6.11 Mode commutations (nominal and faulty)

sequence. Indeed, these faults generate an uncertain fault state in the diagnoser.
Using the testing theory, a sequence is applied, among the fault isolating sequences
given in Fig. 6.9, i.e., .s1Ns2/ or .Ns1s2/. This sequence depends on the uncertain
state of the diagnoser. It enables to eliminate the uncertain states and isolate the
corresponding fault.

6.4.3 Active Fault Diagnosis for a 3-Cells Converter

In order to highlight the performance of the proposed active diagnosis, we have also
performed some experimental validations.

6.4.3.1 Experimental Setup

To demonstrate the effectiveness of the proposed strategy, experimental investiga-
tions have been realized on a test bench which consists of a 3-cells converter. The
schematic view of the overall platform is shown in Fig. 6.12a. The experimental
setup (see Fig. 6.12b) is described as follows:

• The power block is composed of a 3-cells converter with three legs. The nominal
bench characteristics, obtained after identification, are: c1 D 40 � 10�6 F; c2 D
40 � 10�6 F; E D 60V.

168 J. Van Gorp et al.

Fig. 6.12 Schematic view of the overall platform (a). A photography of the experimental setup (b)

• The measurement part is composed of voltage sensors to measure the voltage
across the floating capacitors and a current transductor to measure the load
current. A low pass filter has been added.

• The computer is equipped with Mathworks software and an interface Dspace
card DSP1103, based on a floating point DSP (TMS320C31) with ControlDesk
software in order to visualize the state during the experiment. In order to obtain
the best resolution, the minimum sampling period for the Dspace has been
chosen, i.e. Tech D 7 � 10�5 s.

• The three control inputs, designed by the proposed scheme, are computed and
delivered by the interface Dspace card. An interface card allows to protect, by
insulation, the DSP of the power electronics.

• The load is composed of an inductance and a resistance: R D 200�; L D 1H.

6.4.3.2 3-Cells Converter Modeling

Figure 6.13 depicts the MM of the 3-cells converter associated to an inductive load
for the nominal modes.

The model of the 3-cells converter involves that the reference voltages of the
capacitors are such that Vc1ref D E

3
and Vc2ref D 2E

3
. The output voltage is defined

as Vs 2 f0; E
3
; 2E
3
;Eg (considering the system in the steady state). Similarly with

the model of the 2-cells converter, the fault event set may be defined with 6 fault
classes˙f D f1[f2[f3[Nf1[Nf2[Nf3 (associated to each cells of the converter). The
output set is O D f;; 0; 1; 2; 3g and corresponds to Table 6.3. The input set is I D
f"f ; s1s2s3; Ns1s2s3; s1 Ns2s3; Ns1 Ns2s3; s1s2 Ns3; Ns1s2 Ns3; s1 Ns2 Ns3; Ns1 Ns2 Ns3g. The initial conditions
of the system are defined by x0 D ŒVc1 ;Vc2 ; I	

T D Œ0; 0; 0	T and the initial mode is 1.

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 169

Fig. 6.13 Nominal MM of the 3-cells converter (without faults)

Table 6.3 Output voltage
variations and the output set
for the 3-cells converter

O D f;; 0; 1; 2; 3g Vs variation

; No variation

0 E=3 to 0

1 0 or 2E=3 to E=3

2 E=3 or E to 2E=3

3 2E=3 to E

Remark 6 If the fault Nf1 or Nf2 or Nf3 occurs, then Vs 2 f0; E
3
; 2E
3
g. If the fault f1 or f2

or f3 occurs, then Vs 2 fE
3
; 2E
3
;Eg. When a fault occurs (when a cell is blocked), the

system becomes similar to the 2-cells converter (4 modes).

Remark 7 This work considers the system in steady state. During the exper-
imentation, there is a transient period to fulfil the control objective xref D
ŒVc1ref ;Vc2ref ; Iref 	

T D Œ20; 40; 0; 17	T . Therefore, after each reset, the system is re-
initialized at x0 and a delay, corresponding to its transient time, is considered on the
active diagnosis procedure.

In this paper, the diagnoser, associated to the 3-cells converter, is not detailed
in order to simplify notations. The diagnosis algorithm follows the same procedure
than the 2-cells converter. Some experimental results are carried out to show that the
approach can be generalized for this class of systems and applied in real time.

170 J. Van Gorp et al.

0 10 20 30 40 50 60
0

2

4

6

0 10 20 30 40 50 60

0

1

0 10 20 30 40 50 60
0

2

4

6

Fault generating(a)

(b)

(c)

Fault detection

Fault diagnosis

Time (s)

Fault

No Fault

Fig. 6.14 Fault detection and isolation, using the proposed active diagnosis algorithm for the 3-
cells converter. (a) Fault evolution. (b) Fault detection using the proposed diagnoser. (c) Isolation
using the diagnoser and the homing sequences

6.4.3.3 Experimental Results

Figure 6.14a depicts the evolution of faults. In order to highlight the efficiency of
the approach in real time, the experimentation takes into account all kind of faults
ff1; f2; f3; Nf1; Nf2; Nf3g. The faults are manually generated in order to interact with the
control. A reset of the system is realized between each fault (see Fig. 6.15b). Figures
6.15 and 6.16 show, respectively, the evolution of the actual mode of the DFA and
the state evolution of the converter. For each fault class, the diagnoser is initialized
and the control ensures the state regulation. In Fig. 6.16, the nominal working of
the converter between each generated fault is illustrated. When a fault is detected,
the control is broken off and a fault isolating sequence can be applied in order to
isolate it.

One can see, in Fig. 6.14, that the diagnoser, using the MM representation, fulfils
the objective, i.e., the faulty modes are well detected and isolated. In Fig. 6.15, one
can note that faults are identified by the same approach as the 2-cells converter and
using the fault isolating sequences.

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 171

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Active mode of the system

0 10 20 30 40 50 60
0

1

Reset

Time (s)

Fig. 6.15 Mode commutations (nominal and faulty) for the 3-cells converter

0 10 20 30 40 50 60
0

20

40

60

Internal voltage V
c1

V
c1

V
c1ref

0 10 20 30 40 50 60
0

20

40

60

Internal voltage V
c2

V
c2

V
c2ref

0 10 20 30 40 50 60

0

0.2

0.4
Load current I

Time (s)

I
I
ref

Fig. 6.16 Evolution of the state and the reference for the 3-cells converter

172 J. Van Gorp et al.

6.5 Conclusion

An active diagnosis for a class of switched systems which may not satisfy the
diagnosability conditions is designed. A Mealy Machine modeling is used to
define an appropriate diagnoser which reduces the uncertain state subset. Some
diagnosability conditions of faults are deduced using this representation. If the MM
diagnoser satisfies these conditions, an algorithm combining the proposed diagnoser
and a testing procedure can be used in order to solve the fault diagnosis problem.
A study on the cascade multicellular converter is carried out to detect and isolate
faulty cells. Simulation results, on the 2-cells converter, are detailed and highlight
the effectiveness of the proposed algorithm. Experimental results, on the 3-cells
converter, show that the approach can be generalized for this class of switched
system and applied in real time.

References

1. M. Bayoudh, L. Travé-Massuyès, An algorithm for active diagnosis of hybrid systems casted
in the DES framework, in 2nd IFAC Workshop on Dependable Control of Discrete Systems
(2009), pp. 329–334

2. M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid
systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998)

3. M. Broy, B. Jonsson, J.-P. Katoen, Model-Based Testing of Reactive Systems, ed. by M.
Leucker, A. Pretschner. Lecture Notes in Computer Science, vol. 3472 (Springer, Berlin, 2005)

4. M.P. Cabasino, A. Giua, S. Lafortune, C. Seatzu, A new approach for diagnosability analysis
of Petri nets using verifier nets. IEEE Trans. Autom. Control 57(12), 3104–3117 (2012)

5. M.P. Cabasino, A. Giua, C. Seatzu, Diagnosis using labeled Petri nets with silent or undistin-
guishable fault events. IEEE Trans. Syst. Man Cybern. A 43(2), 345–355 (2013)

6. M. Daigle, G. Biswas, Improving diagnosability of hybrid systems through active diagnosis, in
Safeprocess09 (2009), pp. 217–222

7. M. Defoort, J. Van Gorp, M. Djemaï, K. Veluvolu, Hybrid observer for switched linear systems
with unknown inputs, in 7th IEEE Conference on Industrial Electronics and Applications
(2012), pp. 594–599

8. P.M. Franck, Fault diagnosis in dynamic systems using analytical and knowledge-based
redundancy-a survey and some new results. Automatica 26(3), 459–474 (1990)

9. J. Gertler, Fault detection and isolation using parity relations. Control. Eng. Pract. 5(5), 653–
661 (1997)

10. Q. Guo, R.M. Hierons, M. Harman, K. Derderian, Heuristics for fault diagnosing when testing
from finite state machines. J. Softw. Test. Verif. Reliab. 17(1), 41–57 (2007)

11. I. Hwang, S. Kim, Y. Kim, C.E. Seah, A survey of fault detection, isolation, and reconfiguration
methods. IEEE Trans. Control Syst. Technol. 18(3), 636–653 (2010)

12. R. Isermann, Fault Diagnosis of Technical Process-Applications (Springer, Heidelberg, 2006)
13. W. Kang, J.P. Barbot, L. Xu, On the Observability of Nonlinear and Switched Systems. Lecture

Notes in Control and Information Sciences (Springer Berlin, 2009)
14. D. Liberzon, Switching in Systems and Control. Systems and Control: Foundations and

Applications (Birkhäuser, Boston, MA, 2003)
15. H. Lin, P.J. Antsaklis, Stability and stabilizability of switched linear systems: a survey of recent

results. IEEE Trans. Autom. Control 54(2), 308–322 (2009)

6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling 173

16. L. Maharjan, T. Yamagishi, H. Akagi, J. Asakura, Fault-tolerant operation of a battery-energy-
storage system based on a multilevel cascade PWM converter with star configuration. IEEE
Trans. Power Electron. 25(9), 2386–2396 (2010)

17. K. Medjaher, J. Andrews, C.H. Bérenguer, L. Jackson (eds.), A bond graph model-based
fault detection and isolation, in Maintenance Modelling and Applications. Chapter 6 : Fault
Diagnostics (Det Norske Veritas, Akershus, 2011), pp. 503–512

18. S. Pettersson, B. Lennartson, Hybrid system stability and robustness verification using linear
matrix inequalities. Int. J. Control 75(16–17), 1335–1355 (2002)

19. M. Pocci, I. Demongodin, N. Giambiasi, A. Giua, Testing experiments on synchronized Petri
nets. IEEE Trans. Autom. Sci. Eng. 11(1), 125–138 (2014)

20. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D.C. Teneketzis, Failure diagnosis
using discrete-event models. IEEE Trans. Control Syst. Technol. 4(2), 105–124 (1996)

21. M. Sampath, S. Lafortune, D. Teneketzis, Active diagnosis of discrete-event systems. IEEE
Trans. Autom. Control 43(7), 908–929 (1998)

22. M. Schmidt, J. Lunze, Active diagnosis of deterministic I/O automata, in 4th IFAC Workshop
on Dependable Control of Discrete Systems (2013), pp. 79–84

23. W. Song, A.Q. Huang, Fault-tolerant design and control strategy for cascaded H-bridge
multilevel converter-based STATCOM. IEEE Trans. Ind. Electron. 57(8), 2700–2708 (2010)

24. A. Tanwani, D. Liberzon, Invertibility of switched nonlinear systems. Automatica 46(12),
1962–1973 (2010)

25. J. Van Gorp, M. Defoort, M. Djemai, N. Manamanni, Hybrid observer for the multicellular
converter, in Proceedings IFAC ADHS 12 (2012), pp. 259–264

26. J. Van Gorp, A. Giua, M. Defoort, M. Djemai, Active diagnosis for a class of switched systems,
in IEEE 52nd Annual Conference on Decision and Control (2013), pp. 5003–5008

27. J. Van Gorp, M. Defoort, K. Veluvolu, M. Djemai, Hybrid sliding mode observer for switched
linear systems with unknown inputs. J. Franklin Inst. 351(7), 3987–4008 (2014)

28. J. Van Gorp, M. Defoort, M. Djemai, K. Veluvolu, Fault detection based on higher-order sliding
mode observer for a class of switched linear systems. IET Control Theory Appl. 9(15), 2249–
2256 (2015)

29. S. Yoon, S. Kim, J. Bae, Y. Kim, E. Kim, Experimental evaluation of fault diagnosis in a skew-
configured UAV sensor system. Control Eng. Pract. 19(2), 158–173 (2011)

Chapter 7
Secure Diagnosability of Hybrid
Dynamical Systems

Gabriella Fiore, Elena De Santis, and Maria Domenica Di Benedetto

7.1 Introduction

Hybrid systems are heterogeneous dynamical systems characterized by the inter-
action of continuous and discrete dynamics. Hybrid systems provide a powerful
modeling framework to deal with a great variety of applications (such as smart grids,
automotive and air traffic management systems, unmanned vehicles, and many
others) where physical processes (described by means of differential or difference
equations) and computational and communication components (modeled as discrete
systems) are tightly interconnected. All the above-mentioned applications are safety
critical, in the sense that their failure can cause irreparable damage to the physical
systems being controlled and to the people who depend on it [2, 3]. Even when the
disruption of these complex systems is not life threatening for people, it could have
a large impact on society, by causing large direct and indirect economic losses.
For these reasons, the study of security issues for hybrid systems is presently
one of the most significant challenges. In this respect, the observability and
diagnosability properties of a hybrid system play an important role. In fact, they are
essential in characterizing the possibility of identifying the system’s hybrid state,
and in particular the occurrence of some specific states that may correspond to a
malfunctioning of the system due to a fault or an attack.

One of the most important challenges when dealing with security for hybrid
systems is to provide countermeasures to the aim of increasing the resilience of
the system with respect to malicious attacks. One possible strategy is being able

G. Fiore (�) · E. De Santis · M. D. Di Benedetto
University of L’Aquila, Department of Information Engineering, Computer Science and
Mathematics (DISIM), Center of Excellence DEWS, L’Aquila, Italy
e-mail: gabriella.fiore@univaq.it; elena.desantis@univaq.it;
mariadomenica.dibenedetto@univaq.it

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4_7

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74962-4_7&domain=pdf
mailto:gabriella.fiore@univaq.it
mailto:elena.desantis@univaq.it
mailto:mariadomenica.dibenedetto@univaq.it
https://doi.org/10.1007/978-3-319-74962-4_7

176 G. Fiore et al.

to reconstruct the true state of the system despite the presence of an adversarial
attacker. For this reason, the main focus of this chapter is on investigating under
which conditions the hybrid system’s internal state can be correctly estimated,
despite the presence of attacks, and to provide efficient algorithms to perform this
estimation.

The state can be reconstructed instantaneously or within a finite time interval.
More precisely, observability corresponds to the possibility of determining the
current discrete state of the process as well as the continuous one, on the basis
of the observed output information. Diagnosability, a property that is closely related
to observability but is more general, corresponds to the possibility of detecting the
occurrence of particular subsets of hybrid states, for example faulty states, on the
basis of the observations, within a finite time interval.

Diagnosability has been extensively studied for Finite State Machines (FSMs)
in the last two decades, with different approaches depending on the model, on the
available output information, and on the objective for which state reconstruction
is needed (see [18, 19, 24, 27, 37] to name a few). Recently, decentralized and
distributed approaches to diagnosability have also been investigated [25, 26, 36].
An exhaustive review of the state of the art of diagnosis methods for discrete event
systems can be found in the survey [38] and in [28]. Due to the lack of a common
formalism, in [8] the authors propose a unifying framework where observability
and diagnosability are defined and characterized with respect to a subset of the state
space for finite state systems. For this class of systems, time flow is not taken into
account, so that the results obtained for FSMs cannot, in general, be applied directly
to hybrid systems where the discrete evolution interacts with the continuous one.

In the hybrid domain, checking the diagnosability property and determining its
decidability and computational complexity are difficult issues and several problems
remain open [7]. Some efforts in this direction have been made in [1, 9–12, 21, 23].
In [21] and [23] the authors formulate the hybrid diagnosis problem as a model
selection problem, to detect and isolate a component fault causing a deviation from
the nominal system operation. In [1] continuous dynamics of the hybrid system
are abstracted by defining a set of signature events associated to mode signature
changes, which are used to properly enrich the underlying discrete event system.
Thanks to this abstraction, diagnosability analysis of the hybrid system is cast into a
purely discrete event framework and hybrid diagnosability conditions are provided.
A similar approach is used in [11] and [12], where the event signatures are generated
on the basis of the distinguishability between continuous dynamics associated
to the discrete states, when the underlying original discrete event system is not
diagnosable. However, the distinguishability notion is not explicitly characterized.
In [35] distinguishability between continuous dynamics is exploited, and an online
diagnoser is proposed. In [10] an abstraction procedure is presented, which verifies
the diagnosability of a hybrid automaton by means of an equivalent durational
graph (a special subclass of timed automata [34]). Instead, in [9] a trajectory-
based abstraction is proposed to take into account also the presence of measurement
uncertainty.

7 Secure Diagnosability of Hybrid Dynamical Systems 177

In this chapter, we propose a formal definition of diagnosability for hybrid sys-
tems, and we characterize this property in the case where the available information
may be corrupted by an external attacker. We also provide an abstracting procedure
that can be used to determine if a hybrid system is diagnosable. More specifically,
our procedure combines the available continuous and discrete information of the
hybrid dynamical system and obtains an abstracted FSM M . Then, by checking the
diagnosability of M it is possible to infer the diagnosability of the original hybrid
system.

The detection of the occurrence of some particular hybrid states is based on the
observed output information, which consists of a continuous output and a discrete
one. We suppose that the continuous output information is measured by sensors that
monitor the system and send information to the estimator, which has to reconstruct
the hybrid state of the system. Sensor measurements are exchanged by means
of a wireless communication network and may be compromised by a malicious
attacker. Our purpose is to investigate how adversarial attacks on the observed
output information may affect the estimation of the hybrid state. In this chapter, we
make use of a model-based approach to investigate hybrid system’s diagnosability.
Other techniques have been proposed for this purpose, which are based on machine
learning algorithms (as described, e.g., in [29]), but the comparison between data-
based and model-based approaches is out of scope of this chapter.

This chapter is organized as follows. In Sect. 7.2 we introduce the secure state
estimation problem for dynamical systems. In Sect. 7.3 we define the hybrid system
model and describe the property of distinguishing between any two discrete states
of the hybrid system, on the basis of the continuous output information only. In
Sect. 7.4 we focus on the discrete structure of the hybrid system. In particular, as
the diagnosability of the hybrid system is investigated by means of an abstracted
discrete event system, we provide a general description of FSMs as well as a
characterization of diagnosability for this class of systems. In Sect. 7.5 we provide
a formal definition of diagnosability for hybrid systems, by considering the general
case where the available information may be corrupted by an external attacker. We
describe the abstracting procedure that allows inferring diagnosability of the hybrid
system, and provide an example. Finally, we illustrate sufficient conditions for the
hybrid system to be diagnosable.

Notation In this chapter we use the following notation. The symbols N, R denote
the set of nonnegative integer, and real numbers, respectively. I indicates the identity
matrix, 0 indicates the null matrix of proper dimensions (which can be trivially
deduced by the context). Given a vector x 2 R

n, supp.x/ is its support, that is the
set of indexes of the non-zero elements of x; kxk0 is the cardinality of supp.x/, that
is the number of non-zero elements of x. The vector x 2 R

n is said to be s-sparse if
kxk0 � s. Sn

s indicates the set containing all the s-sparse vectors xi 2 R
n such that

kxik0 � s. Given the function y W N! R
p, yjŒt0;t0CT�1	 is the collection of T samples

of y, i.e. yjŒt0;t0CT�1	 D .y.t0/> y.t0 C 1/>

 y.t0 C T � 1/>/>. The function y is
said to be cyclic s-sparse if, given a set � � f1; : : : ; pg, such that j� j D s, y.t/ 2 S

p
s

and supp.y.t// � � , for all t 2 N. CSpT
s is the set containing all the cyclic s-sparse

178 G. Fiore et al.

vectors y 2 R
pT . Given a matrix M 2 R

n�m and a set � � f1; : : : ; ng, we denote by
M� 2 R

.n�j� j/�m the matrix obtained from M by removing the rows whose indexes
are contained in � . For a set Y 2 X, the symbol Y denotes the complement of Y
in X, i.e. Y D fx 2 X W x … Yg. � indicates the null event. For a string � , j� j
denotes its length; �.i/ denotes the i-th element, i 2 f1; : : : ; j� jg; � jŒa;b	 indicates
the string �.a/�.a C 1/

 �.b/. P.�/ is the projection of the string � , that is the
string obtained from � by erasing the symbol �.

7.2 The Problem of Secure State Estimation

Given a physical process, we consider the scenario illustrated in Fig. 7.1, where
sensor measurements are sent to the controller through a wireless communication
network. The controller estimates the state of the system and, based on this estima-
tion, sends the control signal to the actuators. We assume that sensor measurements
may be compromised by an external malicious attacker, and we consider both the
case in which the attacker compromises the sensor nodes and the case in which
the attacker affects the communication links between sensors and controller, for
example by spoofing sensor measurements or launching deception attacks [33]. We
suppose that the attack is not represented by a specific model, but it is assumed
to be unbounded and influencing only a small subset of sensors, that is, the attack
intensity may be unbounded but it is sparse. More precisely, when the attacker has
the ability to compromise s nodes on a set of p devices, we define it as a s-sparse
attack. We assume that the actual number of nodes under attack is unknown, but an
upper bound is known, that is, s � s � p. This assumption is motivated by the
fact that it is reasonable to consider that, in a real system, the attacker cannot reach
the whole set of monitoring devices. We also assume that the set of attacked nodes
is unknown, but fixed over time. This is compatible with the assumption that the
attacker does not have arbitrary access to the whole set of devices.

The problem of estimating the internal state of a system, when sensors can be
corrupted by a malicious attacker, is called “secure state estimation” problem [13].

Fig. 7.1 Conceptual block diagram of the control system. Sensor measurements y.t/ are
exchanged by means of a communication network, Ox indicates the estimate of the state

7 Secure Diagnosability of Hybrid Dynamical Systems 179

Recent results on security for dynamical systems focus on this case. In [14] the
authors propose a method to estimate the state of a linear time invariant system
when a fixed set of sensors and actuators is corrupted by deception attacks. They
prove that, if the number of corrupted nodes is smaller than a certain threshold,
then it is possible to exactly recover the internal state of the system by means of
an algorithm derived from compressed sensing technique and error correction over
the reals. A computationally efficient version of the algorithm is presented in [30],
where a notion of strong observability is introduced as well as a recursive algorithm
that estimates the state despite the presence of the attack. In order to overcome the
limitations imposed by the combinatorial nature of the problem, in [32] the authors
formulate the problem as a satisfiability one, and propose a sound and complete
algorithm based on the Satisfiability Modulo Theory paradigm. This approach is
extended to nonlinear differentially flat systems in [31]. The same assumption on
the sparsity of the attack signal is made in [5] and [16], but here the authors consider
a more general case where the set of attacked nodes can change over time. A similar
approach is used in [6] where a continuous time linear system is considered.

Within this framework, the corrupted discrete-time linear dynamical system can
be described as follows:

x.tC 1/ D Ax.t/C Bu.t/

y.t/ D Cx.t/C w.t/
(7.1)

where t 2 N, x.t/ 2 R
n is the system’s state, y.t/ 2 R

p is the output signal,
u.t/ 2 R

m is the input signal, and w.t/ 2 S
p
s is the s-sparse attack vector on sensor

measurements. In the papers mentioned above the authors assume that the malicious
attacker has only access to a subset of sensors Kw � f1; : : : ; pg, meaning that the
set of attacked nodes is fixed over time (but unknown). It is only assumed that the
number or attacked sensors is bounded above by s.

Assumption 1 The attack on sensor measurements is cyclic s-sparse (for brevity,
s-sparse).

Roughly speaking, Assumption 1 means that we know that the set of attacked
sensors has bounded cardinality (that is, jKwj � s < p), but we do not know which
nodes are actually compromised. Let wk.t/ denote the k-th component of w.t/ 2 R

p,
k 2 f1; : : : ; pg (i.e., the component of w.t/ corresponding to the k-th sensor), at time
t 2 N. If k … Kw, then wk.t/ D 0 for all t 2 N and the k-th sensor is said to be secure
(i.e., not attacked). If k 2 Kw, then wk.t/ can assume any value and this corresponds
to the case in which the attacker has access to the k-th sensor.

All of the above-mentioned works are concerned with the state estimation for
linear or nonlinear systems and cannot be directly applied to hybrid systems. To the
best of our knowledge, we provide in this chapter the first contribution to the study
of the secure state estimation problem for hybrid systems, which we introduce in
the next section.

180 G. Fiore et al.

7.3 Hybrid Dynamical Systems

In this section we first introduce the general model of a linear hybrid dynamical
system (see [7, 20] for additional details), whose continuous output may be
corrupted by a sparse attack. Then, we provide conditions for the distinguishability,
only based on the continuous output information, between any two discrete states of
the hybrid system, and for the detection of a transition between them.

7.3.1 Definition of a Hybrid Dynamical System

Definition 1 A linear hybrid dynamical system (LH-system) is a tuple

H D .�;�0;Y; h; S;E;G;R; ı;�/ (7.2)

in which:

• � D Q � R
n is the hybrid state space, where the finite set Q D f1; : : : ;Ng

is the discrete state space, Rn is the continuous state space. The hybrid state is
� D .q; x/ with q 2 Q the discrete state (also called mode or location), and
x 2 R

n the continuous state.
• �0 D Q0 � R

n � � is the set of initial hybrid states, Q0 is the set of initial
discrete states.

• Y D Yd � R
p is the hybrid output space, where the finite set Yd is the discrete

output space, Rp is the continuous output space.
• h W Q! Yd is the discrete output function.
• S is a function which associates a linear dynamical system S.q/ to each discrete

state q 2 Q. S.q/ (also indicated as Sq) is described by the following equations:

x.tC 1/ D Aqx.t/C Bqu.t/

y.t/ D Cqx.t/C w.t/
(7.3)

where t 2 N, x.t/ 2 R
n is the (continuous) state of the system, y.t/ 2 R

p is the
(continuous) output signal, u.t/ 2 R

m is the (continuous) input signal, w.t/ 2 S
p
s

is the s-sparse attack vector on sensor measurements, Aq 2 R
n�n, Bq 2 R

n�m,
Cq 2 R

p�n, for all q 2 Q.
• E � Q � Q is the set of admissible discrete transitions. A transition (also called

switching) from the discrete state i 2 Q to j 2 Q is indicated by the pair .i; j/.
• G W E ! 2R

n
is the function which associates to the transition e 2 E a linear

subspace G.e/ � R
n, called guard set.

• R W E � R
n ! R

n is the linear reset function. R.e; x/ D Rex, with Re 2 R
n�n.

• ı W Q! R
C is the function which associates to q 2 Q the minimum dwell time

ı.q/.

7 Secure Diagnosability of Hybrid Dynamical Systems 181

• � W Q ! R
C [f1g is the function which associates to q 2 Q the maximum

dwell time �.q/.

To refer to the evolution in time of an LH-system we resort on the concepts of hybrid
time set and execution, as follows (see [20] and [7]).

A hybrid time basis � is defined as a finite or infinite sequence of time intervals
Œtk�1; tk/, k D 1; : : : ; card.�/, with tk > tk�1 and t0 D 0. Given a hybrid time basis � ,
time instants tk are called switching times. Let card.�/ D L, a time basis can be:

• finite, if L is finite and tL ¤1;
• infinite, if either L D1 or tL D1;
• Zeno, if L D1 and tL ¤1.

Throughout this chapter we assume that the LH-system H is non-Zeno, that is,
for each finite time interval, a finite number of switching occurs. We also indicate
by T the set of all non-Zeno hybrid time bases, and by U the set of admissible
control inputs.

Definition 2 ([7]) An execution of an LH-system is a tuple � D .�0; �; u; �/ in
which:

• �0 D .q0; x0/ 2 �0 is the initial hybrid state;
• � 2 T is the hybrid time basis. The switching times are such that the minimum

and maximum dwell time constraints are satisfied in each discrete state, that is:

ı .q.tk�1// � tk � tk�1 � �.q.tk�1// ; k D 1; : : : ;L I

• u 2 U is the continuous control input;
• � W N! � is the hybrid state evolution, defined as:

�.t0/ D �0
�.t/ D .q.t/; x.t// ; t 2 Œt0; tL/

where q W N ! Q is the discrete state evolution, and x W N ! R
n is the

continuous state evolution. At time t 2 Œtk�1; tk/, q.t/ D q.tk�1/, x.t/ is the
unique solution of Eq. (7.3) for the dynamical system S.q.tk�1//, with initial
time tk�1, initial state x.tk�1/ and control law ujŒtk�1;t/, .q.tk�1/; q.tk// 2 E,
x.tk/ D Rq.tk/;q.tkC1/x.t

�
k /, and x.t�k / 2 G ..q.tk/; q.tkC1///.

Given a state execution �, the output function W N! Y is defined as:

.t/ D .yd.t/; y.t//

where y.t/ is the continuous component of the output, and yd.t/ is the discrete
component of the output such that:

182 G. Fiore et al.

yd.tk/ D h.q.tk//; k D 0; : : : ;L � 1
yd.t/ D �;8t 2 N W t ¤ tk:

The evolution in time of the discrete state of the LH-system is described by the triple
.q0; �; q/.

7.3.2 Secure Mode Distinguishability

Reconstructing the discrete mode of an LH-system corresponds to understanding
which continuous dynamical system is evolving. This can be done either by using
only the discrete output information or only the continuous output information, or
by using mixed information, both discrete and continuous. When the discrete infor-
mation is not sufficient to identify the discrete state, the possibility of distinguishing
between two continuous dynamical systems on the basis of the continuous output
information is needed. Therefore, in this section we introduce the distinguishability
property between two dynamical systems Si and Sj, .i; j/ 2 Q � Q of H . This will
be instrumental in providing conditions for the diagnosability of the LH-system
(further details can be found in [15] and [17]).

Let yi, i 2 Q, be the continuous output evolution when the dynamical system Si

is active with initial state x.0/ D x0i, and let U be the set of all input functions
u W N ! R

m. A generic input sequence ujŒ0;��1/ is any input sequence that belongs
to a dense subset of the set Rm� , equipped with the L1 norm.

Definition 3 Two linear systems Si and Sj, .i; j/ 2 Q � Q, are securely distinguish-
able with respect to generic inputs and for all s-sparse attacks on sensors (shortly,
s-securely distinguishable), if there exists � 2 N such that yijŒ0;��1	 ¤ yjjŒ0;��1	,
for any pair of initial states x0i and x0j, for any pair of s-sparse attack vectors
wijŒ0;��1	 2 CS

�p
s and wjjŒ0;��1	 2 CS

�p
s , and for any generic input sequence ujŒ0;��1/,

u 2 U . The linear systems Si and Sj are called s-securely indistinguishable if they
are not s-securely distinguishable.

In order to characterize the s-secure distinguishability property, we consider the
augmented linear system Sij depicted in Fig. 7.2, which is fully described by triple
.Aij;Bij;Cij/, such that:

Aij D
	

Ai 0
0 Aj

; Bij D

	
Bi

Bj

; Cij D

�
Ci �Cj

�
(7.4)

with Aij 2 R
2n�2n, Bij 2 R

2n�m, Cij 2 R
p�2n. The following matrices are also

associated with the augmented system Sij:

7 Secure Diagnosability of Hybrid Dynamical Systems 183

Fig. 7.2 Attack on sensors
and secure actuators: the
augmented controlled linear
system Sij

Oij D

2

666
4

Cij

CijAij
:::

CijA2n�1
ij

3

777
5
D

h
O.2n�1/

i �O.2n�1/
j

i
;

Mij D

2

666
4

0 0

 0
CijBij 0

 0
:::

:::

 :::

CijA2n�2
ij Bij CijA2n�3

ij Bij

 CijBij

3

777
5

(7.5)

where 0 2 R
p�m is the null matrix, and Mij 2 R

2np�.2n�1/m. Oij 2 R
2np�2n is the

2n steps-observability matrix for the augmented system Sij, and it is made up of the

2n steps-observability matrices O.2n�1/
i and O.2n�1/

j for the linear systems Si and Sj,
respectively.

Given the set � � f1; : : : ; pg, j� j � 2s, let Mij;� 2 R
2n.p�2s/�.2n�1/m be the

matrix obtained by the triples .Ai;Bi;Ci;� / and .Aj;Bj;Cj;� /.

Theorem 1 Two linear systems Si and Sj, .i; j/ 2 Q�Q, are s-securely distinguish-
able with respect to generic inputs and for all s-sparse attacks on sensors if and
only if for any set � , with � � f1; : : : ; �g, j� j � 2s, the matrix Mij;� ¤ 0.

In the following we provide conditions to detect the occurrence of a transition
between two discrete modes of the LH-system, by using only the (corrupted)
continuous output information (the control signals are assumed to be secure).

Definition 4 A discrete transition e D .i; j/ 2 E with G.e/ D R
n is said to be

x-observable, x 2 R
n, if there exists d 2 N such that, for any switching time tk 2 N,

for any pair of s-sparse attack vectors wijŒtk ;tkCd	 2 CS
dp
s and wjjŒtk ;tkCd	 2 CS

dp
s , and

for any generic input sequence ujŒtk ;tkCd/, with u 2 U , yijŒtk ;tkCd	 ¤ yjjŒtk ;tkCd	. The
transition is said to be observable if it is x-observable for any x 2 R

n.

Since we are considering the transition between mode i and mode j, then yijŒtk ;tkCd	

represents the continuous output of the linear system Si with initial state xi.tk/ D
x.t�k /, whereas yjjŒtk ;tkCd	 represents the continuous output of the linear system Sj

with initial state xj.tk/ D Rijx.t�k /. x.t�k / indicates the continuous state before the
transition takes place, Rij denotes the reset map.

184 G. Fiore et al.

Proposition 1 A discrete transition e D .i; j/ 2 E with G.e/ D R
n is observable

if and only if the pair .Si; Sj/ is s-securely distinguishable (that is, securely
distinguishable with respect to generic inputs and for all s-sparse attacks).

A weaker condition holds for a transition to be x-observable. In this case, the pair of
linear systems .Si; Sj/ is not required to be distinguishable.

Proposition 2 A discrete transition e D .i; j/ 2 E with G.e/ D R
n is x-observable

if and only if the following holds:

x … ker.Oi;� � Oj;� Rij/

for any set � such that j� j � 2s.

7.4 Finite State Systems

It is possible to associate an FSM to an LH-system, by extracting the dependence of
the discrete dynamics from its continuous evolution. Therefore, in this section we
provide some background on FSMs. Moreover, we recall the diagnosability notion
for FSMs as defined in [8].

7.4.1 Background on FSMs

Definition 5 A Finite State Machine (FSM) is a tuple

M D .Q;Q0;Yd; h;E/ (7.6)

in which Q is the finite set of states, Q0 � Q is the set of initial states, Yd is the
finite set of outputs, h W Q! Yd is the output function, E � Q � Q is the transition
relation.

For a state i 2 Q, we can define the set of its successors succ.i/ D fj 2 Q W .i; j/ 2 Eg
and the set of its predecessors pre.i/ D fj 2 Q W .j; i/ 2 Eg. In this chapter, we make
the following standard assumption:

Assumption 2 (Liveness) succ.i/ ¤ ;, for all i 2 Q.

The discrete behavior of a linear hybrid system H D .�;�0;Y; h; S;E;G;R; ı;�/,
defined as in Eq. (7.2), is usually represented by means of the nondeterministic FSM
M D .Q;Q0;Yd; h;E/. Given a time basis � with card.�/ D L, and the evolution in
time .q0; �; q/ of the discrete state of H , the corresponding state evolution of the
associated M is described by a string �.k/ D q.tk�1/, k D 1; : : : ;L.

7 Secure Diagnosability of Hybrid Dynamical Systems 185

In particular, a state execution of an FSM M is any finite or infinite string � with
symbols in Q which satisfies:

�.1/ 2 Q

�.kC 1/ 2 succ.�.k//; k D 1; : : : ; j� j � 1 (7.7)

We denote by Q� the set of all finite and infinite strings with symbols in Q, by
X � the set of all state executions, by X �

Q0
the set of state executions � 2 X �

with �.1/ 2 Q0, by X the set of infinite state executions with �.1/ 2 Q0, thus
X � X � � Q�. Given a set ‰ � Q, X ‰ is the set of finite state executions
� 2X �nX with last symbol in ‰.

We indicate by h W X � ! .Ydnf�g/� the function which associates the
corresponding output string to a state execution of M (� indicates the null event).
That is, given a state execution � 2 X �, and the corresponding output string
s D h.�.1//

 h.�.j� j//,

h.�/ D P.s/ (7.8)

if � is finite, otherwise h.�/ D P.s1/, where s1 is an infinite string recursively
defined as:

s1 D h.�.1//

skC1 D skh.�.kC 1//; k D 1; 2; : : : (7.9)

Given the state execution � 2X �
Q0

, h�1.h.�// D fb� 2X �
Q0
W h.b�/ D h.�/g.

Let Q0 � Q be given, reach.Q0/ is the set of states which can be reached starting
from Q0, that is:

reach.Q0/ D fi 2 Q W .�.1/ 2 Q0/ ^ .�.k/ D i/ ^ .� 2X �/g: (7.10)

7.4.2 Definitions of Diagnosability for FSMs

In this section, we consider FSMs as in Definition 5, in which h W Q! Yd.
Given a set Qc � Q, we investigate the possibility of inferring from the output

execution, that the state belongs to the set Qc at some step during the execution of
the FSM. The set Qc may represent any set of states of interest (including faulty and
unsafe states).

For a state execution � 2X , two cases are possible:

1. �.k/ 2 Qc, for some k 2 N,
2. �.k/ … Qc, for any k 2 N.

186 G. Fiore et al.

If the first condition holds, let k� denote the minimum value of k 2 N such that
�.k/ 2 Qc, that is:

k� D k 2 N W .�.k/ 2 Qc/ ^ .k D 1 _ �.l/ … Qc;8 l 2 Œ1; k � 1	/ (7.11)

If the second condition holds, then k� D1.

Definition 6 The FSM M is diagnosable with respect to a set Qc � Q (shortly,
Qc�diagnosable) if there exists T 2 N such that, for any string � 2 X with finite
k� , any string b� 2 h�1.h.� jŒ1;k�CT	// is such that b�.k/ 2 Qc.

We can also propose an equivalent definition of Qc-diagnosability based on the
existence of a diagnoser, as follows:

Definition 7 The FSM M is diagnosable with respect to a set Qc � Q (shortly,
Qc-diagnosable) if there exist T 2 N and a function D W .Ydnf�g/� ! f0; 1g called
diagnoser such that

i) if .�.Ok/ 2 Qc/^ .Ok D 1_�.k/ … Qc;8k 2 Œ1; Ok�1	/, then D.h.� jŒ1;OkCT	// D 1;
ii) if D.h.� jŒ1;k	// D 1 ^ ..k D 1/ _ .D.h.� jŒ1;l	// D 0;8l 2 Œ0; k � 1	/, then

�.Ok/ 2 Qc for some Ok 2 Œmaxf1; k � Tg; k	.
The following notions are instrumental to recall the result on Qc-diagnosability of
FSM M, as stated in [8]. Throughout the rest of this section we make the following
assumption.

Assumption 3 � … Yd.

We define the following symmetric sets:

… D f.i; j/ 2 Q � Q W h.i/ D h.j/g (7.12)

and

� D f.i; j/ 2 Q � Q W i D jg (7.13)

We can now recall the indistinguishability notions between state trajectories of M.

Definition 8 Two state trajectories �1 2 X � and �2 2 X � are called indistin-
guishable if h.�1/ D h.�2/. The pair .i; j/ 2 … is k�forward distinguishable if
there exist �1 2 Xfig and �2 2 Xfjg such that j�1j D j�2j D k and h.�1/ D h.�2/.
The pair .i; j/ 2 ˙ � … is k-backward distinguishable in˙ if there exist �1 2X fig
and �2 2 X fjg such that j�1j D j�2j D k, �1.l/ 2 ˙ , �2.l/ 2 ˙ , for all l 2 Œ1; k	
and h.�1/ D h.�2/.

To characterize the diagnosability property for FSMs, we define the following
subsets (see [8] for additional details and for recursive algorithms to compute these
sets):

7 Secure Diagnosability of Hybrid Dynamical Systems 187

1. S� � … is the maximal set of pairs .i; j/ 2 … such that there exist two
indistinguishable state executions �1 2X fig \XQ0 ;

2. F� � … is the maximal set of pairs .i; j/ 2 … which are k-forward
indistinguishable, for any k 2 N; k � 1;

3. �k is the set of pairs .i; j/ 2 S�, with i 2 Qc and j 2 Qc (or vice versa i 2 Qc and
j 2 Qc) for which there exist two indistinguishable state trajectories �1 2 Xfig
and �2 2 Xfig, j�1j D j�2j D k, such that �2.l/ 2 Qc, for all l 2 Œ1; k	 (or,
conversely �1.l/ 2 Qc, for all l 2 Œ1; k);

4. �� � .F� \ S�/ is the set of pairs .i; j/ 2 S�, such that for all k 2 N, there exists
k � k such that .i; k/ 2 �k.

Given the FSM M D .Q;Q0;Yd; h;E/, we define the FSM eM D .Q;Q0;Yd; h;eE/,
where .i; j/ 2 eE if and only if .i; j/ 2 E and i … Qc. Let eS� be the set of pairs
reachable from Q0 with two indistinguishable state evolutions, computed for eM.

The following theorem will be instrumental in proving the main result of this
chapter.

Theorem 2 ([8]) The FSM M is Qc-diagnosable if and only if eS� \�� D ;.
Remark 1 The set eS� \�� is the set of pairs .i; j/ 2eS� such that:

• only one of the two states i or j belongs to Qc,
• i and j are the ending states of a pair of indistinguishable state executions of the

FSM eM, with initial state in Q0, such that one of these executions never crosses
the set Qc,

• i and j are the initial states of a pair of arbitrarily long indistinguishable state
executions of the FSM M, such that one of these executions never crosses the
set Qc.

7.5 Diagnosability of LH-Systems

In this section, we define and characterize the diagnosability property for LH-
systems. We provide a formal definition of diagnosability of an LH-system. Then,
we propose an abstracting procedure that can be used to determine if a hybrid system
is diagnosable. More specifically, our procedure combines the available continuous
and discrete information of the LH-system H to obtain an abstracted FSM M .
Then, by checking the diagnosability of M it is possible to infer the diagnosability
of H . Finally, sufficient diagnosability conditions are established.

188 G. Fiore et al.

7.5.1 Definitions of Diagnosability

Given a linear hybrid system H as in (7.2), let U and Y denote the collection of
all input and hybrid output sequences of H , respectively. In this section we make
the following assumptions.

Assumption 4 ı.q/ � ımin, for all q 2 Q.

Assumption 5 �.q/ ¤1, for all q 2 Q.

Definition 9 The LH-system H is s-securely diagnosable with respect to ˝ �
� (shortly, s-securely ˝-diagnosable) if there exists T 2 N and a function D W�
U � Y � S

p
s

�! f0; 1g, called the diagnoser, such that

i) if

�
�
bt
� 2 ˝ ^ �

bt D 0 _ �
� .t/ … ˝;8t 2 �

0;bt � 1� ;bt > 0��

then D
�
ujŒ0;OtCT�1	; jŒ0;OtCT	

� D 1, with jŒ0;OtCT	 D .ydjŒ0;OtCT	; yjŒ0;OtCT	 C
wjŒ0;OtCT	/, for any generic input sequence ujŒ0;OtCT�1	, with u 2 U , and for any

attack sequence wjŒ0;OtCT	 2 CS
.OtCT/p
s ;

ii) if for any generic input sequence ujŒ0;t�1	, with u 2 U , and for any attack
sequence wjŒ0;t	 2 CS

tp
s , D

�
ujŒ0;t�1	 ; jŒ0;t	

� D 1 and

�
t D 0 _ �

D
�

ujŒ0;t0�1	 ; jŒ0;t0	
� D 0;8t0 2 Œ0; t � 1	 ; t > 0��

then �
�
bt
� 2 ˝, for somebt 2 Œmax f0; t � Tg ; t	.

The previous definition extends the notion of ˝-diagnosability presented in Def-
inition 7 for FSMs to the class of LH-systems. The more general case where the
continuous output information may be corrupted by s-sparse attacks is taken into
account here.

The case where the sensor measurements are secure is considered in the
following definition.

Definition 10 The LH-system H is diagnosable with respect to ˝ � � (shortly,
˝-diagnosable) if there exist T 2 N and a function D W .U � Y /! f0; 1g, called
the diagnoser, such that

i) if

�
�
bt
� 2 ˝ ^ �

bt D 0 _ �
� .t/ … ˝;8t 2 �

0;bt � 1� ;bt > 0��

then D
�
ujŒ0;OtCT�1	; jŒ0;OtCT	

� D 1, with jŒ0;OtCT	 D .ydjŒ0;OtCT	; yjŒ0;OtCT	/, for any
generic input sequence ujŒ0;OtCT�1	, with u 2 U ;

ii) if for any generic input sequence ujŒ0;t�1	, with u 2 U , D
�

ujŒ0;t�1	 ; jŒ0;t	
� D 1

and

7 Secure Diagnosability of Hybrid Dynamical Systems 189

�
t D 0 _ �

D
�

ujŒ0;t0�1	 ; jŒ0;t0	
� D 0;8t0 2 Œ0; t � 1	 ; t > 0��

then �
�
bt
� 2 ˝, for somebt 2 Œmax f0; t � Tg ; t	.

In [8] some diagnosability definitions for FSMs are proposed, which are parametric
with respect to the delay required for the detection of a critical state, and the
uncertainty in the determination of the time step at which the crossing event
�.k/ 2 ˝ occurs. This parametric approach can be extended to the case of LH-
systems, but we leave this extension for future work.

7.5.2 Abstracting Procedure

In this section, we provide a detailed description of an abstracting procedure that,
starting from an LH-system H , derives an LH-system having purely discrete output
information, which is equivalent to H with respect to diagnosability.

Let � indicate the s-secure indistinguishability relation on the set of discrete
modes Q, as defined in Sect. 7.3.2. We define the equivalence class of a state i 2 Q
as the set fj 2 Q j Sj � Sig. The set of equivalence classes induces a partition of Q,
which is called the quotient space of Q by the relation � and is denoted by Q= �.
To each equivalence class, we can associate a label in a certain set of labels Y�.

The abstracting procedure consists of the following three main phases.

Step 0. Given the linear hybrid system H as in Eq. (7.2), define the quotient space
Q= � and associate a label (in the set Y�) to any equivalence class.

Step 1. H ! H .1/, where H .1/ is a linear hybrid system in which the initial
states have no predecessors.

Step 2. H .1/ ! H .2/, where H .2/ has additional outputs associated to discrete
transitions.

Step 3. H .2/ ! H .3/, in which H .3/ is a linear hybrid system with purely
discrete information.

7.5.2.1 Step 0

In the first step, given the linear hybrid system H , we derive the quotient space
induced by the s-secure indistinguishability relation. This phase can be represented
by the following algorithm.

procedure QUOTIENT SPACE(Q)
Initialize Nclass D 0; class D zeros.N;N/
while Q ¤ ; do

NclassCC; col D 1
for i 2 Q do

classŒNclass; 1	 D i

190 G. Fiore et al.

Q D Qni
for j 2 Q do

Check the s-secure distinguishability property
if Mij;� D 0; 8� then

classŒNclass; col	 D j
Q D Qnj

end if
end for

end for
end while
Return class

end procedure
Then, we associate a label in the set Y� to each equivalence class.

7.5.2.2 Step 1

Let the LH-system H as in Eq. (7.2) be given. Consider the associated FSM M D
.Q;Q0;Yd; h;E/, and apply Algorithm 0, as described in section “From Mealy to
Moore” in the Appendix, to obtain the FSM M.1/ D .Q.1/;Q.1/

0 ;Yd; h.1/;E.1//, in
which the set of initial states has no predecessors, and the injection map g W Q! N

is defined in Eq. (7.26). Based on the FSM M.1/, the following LH-system is defined:

H .1/ D .�.1/; �
.1/
0 ;Y; h.1/; S.1/;E.1/;G.1/;R.1/; ı.1/; �.1// (7.14)

in which:

• �.1/ D Q.1/ � R
n

• �
.1/
0 D Q.1/

0 � R
n

• S.1/.i/ D S.i/; S.1/.g.i// D S.i/; i 2 Q
• G.1/..i; j// D G..i; j//; G.1/..g.i/; j// D G..i; j//; .i; j/ 2 E
• R.1/..i; j// D R..i; j//; R.1/..g.i/; j// D R..i; j//; .i; j/ 2 E
• ı.1/.i/ D ı.i/; ı.1/.g.i// D ı.i/; i 2 Q
• �.1/.i/ D �.i/; �.1/.g.i// D �.i/; i 2 Q

Proposition 3 The LH-system H is s-securely ˝-diagnosable if and only if H .1/

is s-securely ˝-diagnosable.

Proof Directly follows from Algorithm 0.

7.5.2.3 Step 2

Throughout the rest of this chapter we make the following assumption.

7 Secure Diagnosability of Hybrid Dynamical Systems 191

Assumption 6 We assume that the LH-system H has initial states with no
predecessors, i.e. pre.i/ D ;; 8 i 2 Q0.

Assumption 6 is made for the ease of notation, to consider H .1/ D H . It is
motivated by the equivalence with respect to diagnosability between the LH-systems
H and H .1/ stated in Proposition 3.

In this section we describe how to obtain the LH-system H .2/, in which an
additional binary output is associated to each discrete transition. In particular, a
binary signal with logical value 1 is associated if the transition can be detected
from the continuous or discrete output information; otherwise, a binary signal with
logical value 0 is associated. This additional signal associated to each transition can
be modeled as a discrete input, therefore H .2/ can be described as:

H .2/ D .�;�0;Wd D f1; 0g;Y.2/; h.2/; S.2/;E.2/;G;R; ı;�/ (7.15)

where Y.2/ D Y.2/d � f0g, Y.2/d D .Yd [Y� [f1; 0g/�, Wd D f1; 0g is the finite
discrete input space (with input symbol being associated to the discrete transition),
h.2/ W .Q[Wd/! Y.2/d . E.2/ � Q�Wd�Q is the set of admissible discrete transitions
(a transition from i 2 Q to j 2 Q determined by an event ! 2 Wd is indicated by the
triple .i; !; j/).

Concerning the discrete output function, the following holds:

h.2/.!/ D !; ! 2 Wd

h.2/.i/ D
(

c.i/ ı h.i/; i 2 Q ^ h.i/ ¤ �
c.i/ ı 0; i 2 Q ^ h.i/ D �

(7.16)

where c.i/ 2 Y� indicates the label associated to the equivalence class to which the
discrete state i 2 Q belongs, and the symbol ı represents the concatenation between
two strings.
The set E.2/ is constructed with the following procedure:

procedure SET E.2/(H)
Initialize E.2/ D ;
for .i; j/ 2 E do

if h.j/ D � then
Case 1 The pair .S.i/; S.j// is s-securely distinguishable.
According to Proposition 1 in Sect. 7.3.2 the transition .i; j/ is
observable, thus E.2/ D E.2/ [f.i; 1; j/g.
Case 2 The pair .S.i/; S.j// is s-securely indistinguishable and
there exists a set � , j� j � 2s, such that .Oi;� D Oj;� Rij/.
According to Proposition 2 in Sect. 7.3.2 the transition .i; j/ can not
be detected for any generic input function and for any value of the
continuous state at the switching time instant, thus
E.2/ D E.2/ [f.i; 0; j/g.

192 G. Fiore et al.

Case 3 The pair .S.i/; S.j// is s-securely indistinguishable but
.Oi;� ¤ Oj;� Rij/ for any set � , j� j � 2s.
According to Proposition 2 in Sect. 7.3.2 the transition .i; j/ can be
detected depending on the state at the switching time, (that is
x.t�k / … ker.Oi;� � Oj;� Rij/, for any set � , j� j � 2s), thus
E.2/ D E.2/ [f.i; 0; j/ [f.i; 1; j/g.

else E.2/ D E.2/ [f.i; 1; j/g
end if

end for
end procedure

Remark 2 H .2/ is an LH-system system with purely discrete information. In
fact, the continuous output information which allows to distinguish between the
continuous dynamics is remodeled as a discrete output associated to the discrete
transitions (therefore H .2/ is modeled by a Mealy Machine).

As H .2/ and H are not equivalent with respect to the s-secure ˝-diagnosability
property, further steps are required.

7.5.2.4 Step 3

The discrete behavior of H .2/ is described by the Mealy Machine M.2/, which can
be transformed (by using Algorithm 1 described in the Appendix) into a Moore
Machine M0.3/ D .Q.3/;Q.3/

0 ;Y
.3/
d ; h0.3/;E.3//, in which no information is associated

to discrete transitions.
From the finite state machine M0.3/, the LH-system

H 0.3/ D .�.3/; �
.3/
0 ;Y.3/; h0.3/; S.3/;E.3/;G.3/;R.3/; ı.3/; �.3// (7.17)

is derived, with:

• �.3/ D Q.3/ � R
n

• �
.3/
0 D Q.3/

0 � R
n

• Y.3/ D Y.3/d � R
p

• S.3/.i/ D S.f�1.i//
• G.3/.i; j/ D G.f�1.i/; f�1.j//
• R.3/.i; j/ D R.f�1.i/; f�1.j//
• ı.3/ D ı.f�1.i//
• �.3/ D �.f�1.i//
where f W Q ! 2Q is the point to set mapping defined in Algorithm 1 in the
Appendix. Recalling that c.i/ 2 Y� indicates the label associated to the equivalence
class to which the discrete state i 2 Q.3/ belongs, the discrete output function h0.3/
is defined as:

7 Secure Diagnosability of Hybrid Dynamical Systems 193

• for i 2 Q.3/
0

h0.3/.i/ D
(

c.i/ ı 0; i 2 Q.3/
0 ^ h.i/ D �

c.i/ ı h.i/; i 2 Q.3/
0 ^ h.i/ ¤ � (7.18)

• for i 2 Q.3/nQ.3/
0

h0.3/.i/ D
(

t.i/ ı c.i/ ı 0; i 2 Q.3/
0 ^ h.i/ D �

t.i/ ı c.i/ ı h.i/; i 2 Q.3/
0 ^ h.i/ ¤ � (7.19)

where t.i/ is a symbol representing the possibility to detect a transition .j; i/ 2
E.3/ by using the continuous output information. In particular:

t.i/ D
(
0; if.j; i/ 2 E.3/cannot be detected for any j 2 pre.i/

1; if.j; i/ 2 E.3/can be detected for any j 2 pre.i/
(7.20)

From the LH-system H 0.3/, the LH-system

H .3/ D .�.3/; �
.3/
0 ;Y.3/; h.3/; S.3/;E.3/;G.3/;R.3/; ı.3/; �.3// (7.21)

is derived, by only reformulating the discrete output function h0.3/ into h.3/. For the
ease of notation, let i indicate the string h0.3/.i/, and let i.k/ indicate the k-th
symbol of the string i (e.g., i.1/ is the first symbol of the string h0.3/.i/). The
discrete output function h.3/ W Q.3/ ! Y.3/ is defined as in the following:

• for i 2 Q.3/
0

h.3/.i/ D
(
 i D c.i/ ı h.i/ if .2/ ¤ 0
 i.1/ D c.i/ if .2/ D 0 (7.22)

• for i 2 Q.3/nQ.3/
0

h.3/.i/ D

8
ˆ̂<

ˆ̂:

 i.2/ ı i.3/ D c.i/ ı h.i/ if .3/ ¤ 0
 i.2/ D c.i/ if .1/ D 1 ^ .3/ D 0
� if .1/ D 0 ^ .3/ D 0

(7.23)

7.5.2.5 Abstracting Procedure: An Example

In this section we propose an example to better understand the abstracting procedure
described in Sect. 7.5.2. We consider a dynamical network made up of n nodes,

194 G. Fiore et al.

where each node updates its state xi 2 R, i D 1; : : : ; n on the basis of the states
of its neighbors and other m external nodes providing an external input. We also
assume to measure the state of p nodes. The network topological structure can be
represented by an undirected graph G D .V ;E /, where V D f1; : : : ; ng is the set
of nodes, and E is the set of edges. The discrete time collective dynamics of the
network can be written as:

x.tC 1/ D �Lx.t/C Bu.t/

y.t/ D Cx.t/
(7.24)

where L is the Laplacian induced by the graph G D .V ;E / (see [22] for further
information), x 2 R

n, u 2 R
m, y 2 R

p.
Given the nominal dynamics of the network, a node or link disconnection

changes the network’s topology, thus changing the network collective dynamics,
too. We assume that some disconnections can be directly measured (by means of
a discrete label representing the active or inactive state of a certain link/node), and
some of them cannot be measured (therefore the null event � can be associated to
them).

We can represent this scenario by means of an LH-system, in which each discrete
state q 2 Q is associated to a particular network topology. A discrete label belonging
to the discrete output set Yd is associated to each discrete state, as described above.
Moreover, a linear dynamical system Sq is associated to each discrete state q 2 Q,
as follows:

x.tC 1/ D �Lqx.t/C Bqu.t/

y.t/ D Cqx.t/C w.t/
(7.25)

where w.t/ 2 S
p
s represents an s-sparse attack vector on continuous output

measurements.
As an example, let us assume that all the network’s topologies can be represented

by the LH-system in Fig. 7.3 Let� indicate the s-secure indistinguishability relation
on the set of discrete modes Q, as defined in Sect. 7.3.2. We define the equivalence
class of a state i 2 Q as the set fj 2 Q j Sj � Sig. The set of equivalence classes
induces a partition of Q, which is called the quotient space of Q by the relation �
and is denoted by Q= �. In this case, we assume that Q= �D f.1; 2; 3/; .4; 5/g. To
each equivalence class, we can associate a label in the set of labels Y� D f˛; ˇg.

The LH-system obtained as a result of the first step of the proposed abstracting
procedure is represented in Fig. 7.4.

The second step of the abstracting procedure associates an additional binary out-
put to each discrete transition e D .i; j/ 2 E, based on the s-secure distinguishability
property between Si and Sj and the possibility to detect the transition e D .i; j/ 2 E,
as described in Sect. 7.5.2. At the end of Step 2 the LH-system in Fig. 7.5 is obtained.

7 Secure Diagnosability of Hybrid Dynamical Systems 195

Fig. 7.3 Example: LH-system representing all the network’s topologies. Topologies associated to
S1 and S2 are measured by means of discrete labels fa; bg 2 Yd , whereas topologies associated to
S3, S4, and S5 cannot be measured

Fig. 7.4 Example:
LH-system obtained as a
result of Step 1

Fig. 7.5 Example:
LH-system obtained as a
result of Step 2

Fig. 7.6 Example:
LH-system obtained as a
result of Step 3

The third step of the abstracting procedure transforms the Mealy Machine
obtained at the end of the second step into a Moore Machine, and further
manipulates the output labels, as shown in Fig. 7.6.

196 G. Fiore et al.

7.5.3 Checking the Secure Diagnosability Property

Thanks to the abstraction algorithm proposed in Sect. 7.5.2, it is possible to
investigate the s-secure ˝-diagnosability of the initial LH-system H by means of
the LH-system H .3/, which has purely discrete output (only associated to discrete
states).

Let M be the FSM associated to H .3/, that is M D .Q.3/;Q.3/
0 ;Y

.3/
d ; h.3/;E.3//.

In this section we make the following assumption.

Assumption 7 ˝ D Qc � R
n � � , where Qc � Q is a set of discrete states of

interest.

Theorem 3 Suppose Assumptions 4, 5, 7 hold. If M is Qc-diagnosable (Qc �
Q.3/), then H is s-securely ˝-diagnosable with ˝ D Qc � R

n.

Proof If the FSM M is Qc-diagnosable, Qc � Q.3/, there exists T 2 N such that
the discrete output information h.� jŒ1;Ok	/ allows to infer if �.k/ 2 Qc for some

k 2 Œmaxf1; Ok�Tg; Ok	. Therefore H .3/ is˝-diagnosable with˝ D Qc�Rn, and the
same property holds for H 0.3/. H 0.3/ is obtained from H .2/ by applying Algorithm
1 in the Appendix to obtain a Moore Machine, therefore to a state q.2/.k/ D i
corresponds a discrete state q.3/.k/ 2 f .i/. Thus, ˝-diagnosability of H 0.3/ implies
s-secure ˝-diagnosability of H .2/ as H .2/ encodes also the information related
to the possibility of s-securely distinguishing between any two discrete states .i; j/
belonging to the same equivalence class or to detect a transition between them. s-
secure ˝-diagnosability of H .2/ implies s-secure ˝-diagnosability of H as for
any execution of H there is an execution of H .2/ such that q.2/.k/ D q.k/.

Theorem 3 provides a sufficient condition to infer the s-secure ˝-diagnosability,
˝ D Qc �Rn of the LH-system H , based on the Qc-diagnosability of the FSM M
abstracted from H by means of the procedure described in Sect. 7.5.2. Actually,
in this result, we are not exploiting the information related to the elapsed time.
Therefore, less conservative conditions could be derived by taking into account this
additional information.

7.6 Conclusions

In this chapter we introduced a formal definition of diagnosability for LH-systems
by extending the one provided in [8] for FSMs. We also defined diagnosability
for LH-systems when the continuous output information may be corrupted by an
adversarial attacker. Furthermore, we proposed a procedure to obtain an abstracted
FSM from the original hybrid system, by combining the available continuous and
discrete information. Sufficient conditions for the diagnosability of the given LH-
system can then be obtained on the basis of the diagnosability conditions for the
abstracted FSM. In our model, the continuous output information may be corrupted

7 Secure Diagnosability of Hybrid Dynamical Systems 197

by an external malicious attacker. This is motivated by the fact that, since hybrid
systems are an important mathematical paradigm to deal with a great variety
of safety critical applications, investigating security issues for hybrid systems is
particularly relevant.

Appendix

From Mealy to Moore

Depending on the nature of the discrete output signal, two variants of FSMs could
be used [4]:

• Moore Machines: the output function associates a discrete output to each discrete
state, no output is associated to discrete transitions;

• Mealy Machines: the output function associates a discrete output to each discrete
transition, no output is associated to discrete states.

It is possible to transform a Mealy Machine into a Moore Machine, and there exists
a vast literature dealing with this transformation (see [7] for a detailed description
on this topic). For the sake of clarity, we recap the procedure proposed in [7].

First, we recall the procedure called Algorithm 0 that transforms a finite
state machine M D .Q;Q0;Y; h;E/ into a finite state machine M.1/ D
.Q.1/;Q.1/

0 ;Y; h
.1/;E.1//, in which the set of initial states has no predecessors (i.e.,

pre.i/ D ;; 8 i 2 Q.1/
0). Algorithm 0 is described in detail in [7].

Given the set P D fi 2 Q0 W pre.i/ ¤ ;g, we define the injection map g W Q !
N, where:

g.i/ D i; i 2 QnP
g.i/ 2 NnQ; i 2 P

(7.26)

Roughly speaking, Algorithm 0 splits any state i 2 P in the pair of states i and g.i/
(which can assume any arbitrary value in NnQ).

procedure ALGORITHM 0(M)
Q.1/ D Q [fg.i/; i 2 Pg
Q.1/
0 D .Q0nP/ [fg.i/; i 2 Pg

h.1/.i/ D h.i/I h.1/.g.i// D h.i/; i 2 Q
E.1/ D E [f.g.i/; h/ W i 2 P; .i; h/ 2 Eg

end procedure
We now describe the procedure called Algorithm 1 which transforms a Mealy FSM
M D .Q;Q0;Wd;Yd; h;E/ into a Moore FSM M0 D .Q0;Q0;Wd;Y 0d; h0;E0/ in which
h0.w/ D � for any transition .i;w; j/ 2 E, w 2 Wd. Each state of the finite state
machine M is decomposed in a certain number of new states, any transition ending

198 G. Fiore et al.

in each of these new states shares the same discrete input w 2 Wd. Without loss
of generality, we assume now that the FSM M is such that pre.i/ D ;; 8 i 2 Q0

(otherwise, Algorithm 0 can be used to obtain this case).
First, for any state i 2 QnQ0, we define the subset of discrete inputs Wi � Wd,

such that the following holds:

• for any j 2 pre.i/, there exists w 2 Wi such that .j;w; i/ 2 E,
• for any w 2 Wi, there exists j 2 Q such that .j;w; i/ 2 E.

Let �i be the cardinality of the subset Wi. We define a point to set mapping f W Q!
2Q, where Q D fih W i 2 Q; h D 1; 2; : : : g and:

f .i/ D
(
fih; h D 1; : : : ; �ig; i 2 QnQ0

fig; i 2 Q0

(7.27)

For a given s 2 Q, f�1.s/ indicates the state i 2 Q such that s 2 f .i/.
Lastly, the discrete output space Y 0d of the FSM M0 is defined as in the following:

Y 0d D fh.w/ ı s; w 2 Wd; s 2 Ydg.
procedure ALGORITHM 1(M)

Initialize Q0 D Q; E0 D E
for i 2 Q do

Q0 D .Q0nfig/ [f .i/
E0 D E0nfe 2 E0 W .e D .j;w; i// _ .e D .i;w; j//g
E0 D E0 [f.j;w; ih/ W .j;w; i/ 2 E; h D 1; : : : ; �ig
E0 D E0 [f.ih;w; j/ W .i;w; j/ 2 E; h D 1; : : : ; �ig

end for
for s 2 Q0 do

h0.s/ D h.w/ ı h.f�1.s//; w W .j;w; s/ 2 E0
end for

end procedure

References

1. M. Bayoudh, L. Travé-Massuyès, Diagnosability analysis of hybrid systems cast in a discrete-
event framework. Discret. Event Dyn. Syst. 24(3), 309–338 (2014)

2. A.A. Cárdenas, S. Amin, S. Sastry, Research challenges for the security of control systems,
in Proceedings of the 3rd Conference on Hot Topics in Security, HOTSEC’08, Berkeley, CA.
USENIX Association (2008), pp. 6:1–6:6

3. A.A. Cárdenas, S. Amin, S. Sastry, Secure control: towards survivable Cyber-Physical
Systems, in 2008 The 28th International Conference on Distributed Computing Systems
Workshops (2008), pp. 495–500

4. C. Cassandras, S. Lafortune, Introduction to Discrete Event Systems. SpringerLink Engineering
(Springer, Berlin, 2009)

5. Y.H. Chang, Q. Hu, C.J. Tomlin, Secure estimation based Kalman filter for Cyber-Physical
Systems against adversarial attacks. CoRR, abs/1512.03853v2 (2016)

7 Secure Diagnosability of Hybrid Dynamical Systems 199

6. M.S. Chong, M. Wakaiki, J.P. Hespanha, Observability of linear systems under adversarial
attacks, in American Control Conference (ACC) (2015), pp. 2439–2444

7. E. De Santis, M.D. Di Benedetto, Observability of hybrid dynamical systems. Found. Trends
Syst. Control 3(4), 363–540 (2016)

8. E. De Santis, M.D. Di Benedetto, Observability and diagnosability of finite state systems: a
unifying framework. Automatica 81, 115–122 (2017)

9. Y. Deng, A. D’Innocenzo, M.D. Di Benedetto, S. Di Gennaro, A.A. Julius, Verification of
hybrid automata diagnosability with measurement uncertainty. IEEE Trans. Autom. Control
61(4), 982–993 (2016)

10. M.D. Di Benedetto, S. Di Gennaro, A. D’Innocenzo, Verification of hybrid automata diagnos-
ability by abstraction. IEEE Trans. Autom. Control 56(9), 2050–2061 (2011)

11. O. Diene, E.R. Silva, M.V. Moreira, Analysis and verification of the diagnosability of hybrid
systems, in 53rd IEEE Conference on Decision and Control (2014), pp. 1–6

12. O. Diene, M.V. Moreira, V.R. Alvarez, E.R. Silva, Computational methods for diagnosability
verification of hybrid systems, in 2015 IEEE Conference on Control Applications (CCA)
(2015), pp. 382–387

13. H. Fawzi, P. Tabuada, S. Diggavi, Secure state-estimation for dynamical systems under
active adversaries, in 2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton) (2011), pp. 337–344

14. H. Fawzi, P. Tabuada, S. Diggavi, Secure estimation and control for Cyber-Physical Systems
under adversarial attacks. IEEE Trans. Autom. Control 59(6), 1454–1467 (2014)

15. G. Fiore, Secure state estimation for cyber-physical systems. PhD thesis, University of
L’Aquila, Department of Information Engineering, Computer Science and Mathematics, 2017

16. G. Fiore, Y.H. Chang, Q. Hu, M.D. Di Benedetto, C.J. Tomlin, Secure state estimation for cyber
physical systems with sparse malicious packet drops, in 2017 American Control Conference
(ACC) (2017), pp. 1898–1903

17. G. Fiore, E. De Santis, M.D. Di Benedetto, Secure mode distinguishability for switching
systems subject to sparse attacks. IFAC-PapersOnLine 50(1), 9361–9366 (2017). https://doi.
org/10.1016/j.ifacol.2017.08.1442

18. P.M. Frank, Fault diagnosis in dynamic systems using analytical and knowledge-based
redundancy. Automatica 26(3), 459–474 (1990)

19. F. Lin, Diagnosability of discrete event systems and its applications. Discret. Event Dyn. Syst.
4(2), 197–212 (1994)

20. J. Lygeros, K.H. Johansson, S.N. Simic, J. Zhang, S.S. Sastry, Dynamical properties of hybrid
automata. IEEE Trans. Autom. Control 48(1), 2–17 (2003)

21. S. McIlraith, G. Biswas, D. Clancy, V. Gupta, Hybrid Systems Diagnosis (Springer, Berlin,
2000), pp. 282–295

22. M. Mesbahi, M. Egerstedt, Graph Theoretic Methods in Multiagent Networks (Princeton
University Press, Princeton, 2010)

23. S. Narasimhan, G. Biswas, Model-based diagnosis of hybrid systems. IEEE Trans. Syst. Man
Cybern. Part A Syst. Hum. 37(3), 348–361 (2007)

24. A. Paoli, S. Lafortune, Safe diagnosability for fault-tolerant supervision of discrete-event
systems. Automatica 41(8), 1335–1347 (2005)

25. Y. Pencolé, Diagnosability analysis of distributed discrete event systems, in Proceedings of
the 16th European Conference on Artificial Intelligence, ECAI’04, Amsterdam (IOS Press,
Amsterdam, 2004), pp. 38–42

26. W. Qiu, R. Kumar, Decentralized failure diagnosis of discrete event systems. IEEE Trans. Syst.
Man Cybern. Part A Syst. Hum. 36(2), 384–395 (2006)

27. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Diagnosability of
discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–1575 (1995)

28. M. Sayed-Mouchaweh, Discrete Event Systems: Diagnosis and Diagnosability (Springer
Science & Business Media, New York, 2014)

29. M. Sayed-Mouchaweh, E. Lughofer, Learning in Non-stationary Environments: Methods and
Applications (Springer Science & Business Media, New York, 2012)

https://doi.org/10.1016/j.ifacol.2017.08.1442
https://doi.org/10.1016/j.ifacol.2017.08.1442

200 G. Fiore et al.

30. Y. Shoukry, P. Tabuada, Event-triggered state observers for sparse sensor noise/attacks. IEEE
Trans. Autom. Control 61(8), 2079–2091 (2016)

31. Y. Shoukry, P. Nuzzo, N. Bezzo, A.L. Sangiovanni-Vincentelli, S.A. Seshia, P. Tabuada,
Secure state reconstruction in differentially flat systems under sensor attacks using satisfiability
modulo theory solving, in 2015 54th IEEE Conference on Decision and Control CDC) (2015),
pp. 3804–3809

32. Y. Shoukry, M. Chong, M. Wakaiki, P. Nuzzo, A.L. Sangiovanni-Vincentelli, S.A. Seshia, J.P.
Hespanha, P. Tabuada, SMT-based observer design for Cyber-Physical Systems under sensor
attacks, in 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)
(2016), pp. 1–10

33. A. Teixeira, I. Shames, H. Sandberg, K.H. Johansson, A secure control framework for resource-
limited adversaries. Automatica 51, 135–148 (2015)

34. S. Tripakis, Fault Diagnosis for Timed Automata (Springer, Berlin, 2002), pp. 205–221
35. J. Vento, L. Travé-Massuyès, V. Puig, R. Sarrate, An incremental hybrid system diagnoser

automaton enhanced by discernibility properties. IEEE Trans. Syst. Man Cybern. Syst. 45(5),
788–804 (2015)

36. L. Ye, P. Dague, An optimized algorithm of general distributed diagnosability analysis for
modular structures. IEEE Trans. Autom. Control 62(4), 1768–1780 (2017)

37. T.-S. Yoo, S. Lafortune, Polynomial-time verification of diagnosability of partially observed
discrete-event systems. IEEE Trans. Autom. Control 47(9), 1491–1495 (2002)

38. J. Zaytoon, S. Lafortune, Overview of fault diagnosis methods for discrete event systems.
Annu. Rev. Control. 37(2), 308–320 (2013)

Chapter 8
Diagnosis in Cyber-Physical Systems with
Fault Protection Assemblies

Ajay Chhokra, Abhishek Dubey, Nagabhushan Mahadevan, Saqib Hasan,
and Gabor Karsai

8.1 Introduction

The Smart Electric Grid is a CPS: it consists of networks of physical components
(including generation and transmission subsystems) interacting with cyber compo-
nents (e.g., intelligent sensors, communication networks, computational and control
software). Reliable operation of such CPS is critical. Therefore, these systems are
equipped with specialized protection devices that remove the faulty component
from the system. However, if there are failures in the fault protection units, this
leads to a situation where an incorrect local mitigation in a subsystem results in a
larger fault cascade, leading to a blackout. This phenomenon was observed in the
recent blackouts [1], where tripping of some lines by the relays (protection devices)
overloaded some other parts of the system. These secondary overloaded components
were again isolated by pre-defined protection schemes, leading to tertiary effects
and so on. This domino effect got disseminated into the whole system, pushing it
towards total collapse.

The ultimate challenge in doing fault diagnosis in these cyber-physical systems
is to handle the complexity: the sheer size, large number of components, anomalies,
and failure modes. Furthermore, the subsystems are often heterogenous and the
typical approach is to try and understand the interactions among them, even if the
subsystems are from different domains. In the past, we have used the high-level con-
cept to model the interaction between the subsystems—(1) observable degradations,

A. Chhokra (�) · A. Dubey · N. Mahadevan · S. Hasan · G. Karsai
Institute for Software Integrated Systems, Vanderbilt University, Nashville, 37212, TN, USA
e-mail: ajay.d.chhokra@vanderbilt.edu; abhishek.dubey@vanderbilt.edu;
nag.mahadevan@Vanderbilt.Edu; saqib.hasan@vanderbilt.edu; gabor.karsai@Vanderbilt.Edu

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4_8

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74962-4_8&domain=pdf
mailto:ajay.d.chhokra@vanderbilt.edu
mailto:abhishek.dubey@vanderbilt.edu
mailto:nag.mahadevan@Vanderbilt.Edu
mailto:saqib.hasan@vanderbilt.edu
mailto:gabor.karsai@Vanderbilt.Edu
https://doi.org/10.1007/978-3-319-74962-4_8

202 A. Chhokra et al.

anomalies, discrepancies caused by failure modes, (2) their propagation, and (3)
their temporal evolution towards system-level fault (effects). This approach called
Timed Fault Propagation Graphs (TFPG) has been applied to avionics systems, fuel
assemblies, and software component assemblies [2, 3] and is based on a discrete-
event model that captures the causal and temporal relationships between failure
modes (causes) and discrepancies (effects) in a system, thereby modeling the failure
cascades while taking into account propagation constraints imposed by operating
modes and timing delays. In this graphical model, nodes represent failure modes
and discrepancies, edges represent the direction of causality, and attributes of edges
capture the conditions (mode and temporal delays) under which the edge is active.
The model-based fault diagnostics reasoner receives observations in the form of
time-stamped alarms that indicate whether a discrepancy is present and, using
abductive reasoning, generates a set of hypotheses about the failure modes that could
explain the observed fault signature, i.e. the fault effects.

However, the approach of failure diagnosis with timed fault propagation graphs
does not deal with the built-in automatic fault-protection mechanisms of the
system. Such local fault protection components are designed to mask the effect of
failures and thereby arrest the fault cascades. Additionally, these fault protection
components introduce failure modes that are specific to the operation or lack
of operation of the protection components. A classical TFPG model is not well
suited for capturing the specializations that are introduced by the inherent fault
protection mechanisms built into the system. For example, in power systems, there is
already a fault-detection/protection system (relays and breakers) that autonomously
protects elements of the network. Any protection operation performed by these
systems can fall into one of these categories: (a) correct and thereby isolate the
area where the fault occurred, (b) incorrect: fires incorrectly when it is not supposed
to, (c) backup: accounting for lack of firing of another protection system, or (d)
consequence of a previous firing which was incorrect when considering its effect on
the global or regional system stability. In effect, the failure can be introduced by the
physical components of the power system (e.g. cables) as well as components of the
fault-protection system (e.g., breakers/sensors). Furthermore, the autonomous fault
protection mechanism changes the network topology automatically (i.e., changes
the mode of the system).

To solve this problem, we have developed an extension of TFPG called Temporal
Causal Diagrams (TCDs). A TCD model is a behavioral augmentation of Temporal
Fault Propagation Graphs (TFPGs) that can efficiently model fault propagation
in various domains. The TCD-based diagnosis system is hierarchical. The lower
level uses local discrete event diagnosers, called Observers, which are generated
from the behavior specification of fault management controllers. A higher level
reasoner produces system level hypotheses based upon the output of local observers.
The approach does not involve complex real-time computations with high-fidelity
models, but reasons using efficient graph algorithms to explain the observed
anomalies. This approach is applicable to CPS that include supervisory controllers
that arrest fault propagation based upon local information without considering
system-wide effects. To explain TCD we use examples from power system domain.

8 Diagnosis in Cyber-Physical Systems 203

The paper is organized as follows, Sect. 8.2 describes the background and
literature review followed by brief explanation of cascade phenomenon caused
by misoperation of fault management assemblies in power systems (Sect. 8.2.3).
Section 8.3 gives an overview of our approach and describes the TCD modeling
formalism and diagnosis methodology in detail. The fault diagnosis approach is
described in the context of a power system example in Sect. 8.4, followed by
concluding remarks in Sect. 8.5.

8.2 Background

8.2.1 Diagnosis in CPS

Diagnostic reasoning techniques share a common process in which the system is
continuously monitored and the observed behavior is compared with the expected
one to detect abnormal conditions. In many industrial systems, diagnosis is limited
to signal monitoring and fault identification via threshold logic, e.g., detecting if
a sensor reading deviates from its nominal value. Failure propagation is modeled
by capturing the qualitative association between sensor signals in the system for
a number of different fault scenarios. Typically, such associations correspond to
relations used by human experts in detecting and isolating faults. This approach has
been effectively used for many complex engineering systems. Common industrial
diagnosis methods include fault trees [4–7], cause-consequence diagrams [8, 9],
diagnosis dictionaries [10], and expert systems [11, 12].

Model-based diagnosis (see [13–15] and the references therein), on the other
hand, compares observations from the real system with the predictions from a
model. Analytical models such as state equations [16], finite state machines [17],
hidden Markov models [18], and predicate/temporal logic [19] are used to describe
the nominal system behavior. In the presence of a fault, the observed behavior of the
system deviates from the nominal behavior expected by the model. The associated
discrepancies can then be used to detect, isolate, and identify the fault depending on
the type of model and methods used. In consistency-based diagnosis the behavior
of the system is predicted using a nominal system model and then compared with
observations of the actual behavior of the system to obtain the minimal set of
faulty component that is consistent with the observations and the nominal model.
Consistency-based diagnosis was introduced in a logical framework in [19] and
was later extended in [20]. The approach has been applied to develop diagnosis
algorithms for causal systems [21, 22] and temporal causal systems [23, 24].

The diagnosis approach presented here is conceptually related to the temporal
causal network approach presented in [24]. However, we focus on incremental
reasoning and diagnosis robustness with respect to sensor failures. The causal
model presented in this paper is based on the timed failure propagation graph

204 A. Chhokra et al.

(TFPG) introduced in [25, 26]. The TFPG model is closely related to fault models
presented in [27–29] and used for an integrated fault diagnosis and process control
system [30]. The TFPG model was extended in [31] to include mode dependency
constraints on the propagation links, which can then be used to handle failure
scenarios in hybrid and switching systems. TFPG modeling and reasoning tool has
been developed and used successfully in an integrated fault diagnoses and process
control system [30].

Additionally, the temporal aspects of the TFPG model are closely related to the
domain theoretic notion of temporal dependency proposed in [32]. However, there
are several major differences between the two approaches. In particular, TFPG-
based diagnosis implements a real-time incremental reasoning approach that can
handle multiple failures including sensor/alarm faults. In addition, the underlying
TFPG model can represent a general form of temporal and logical dependency that
directly incorporates the dynamics of multi-mode systems.

8.2.2 Diagnosis in Power Systems

Since power systems is our example domain, we now present a brief review of
fault diagnosis approaches in that domain, which can be categorized into three main
branches based on their underlying technique: expert systems [33–36], artificial neu-
ral networks [37–40], and analytical model based optimization [41–44]. In addition,
approaches based on Petri nets [45] and cause-effect Bayesian networks [46–50]
have also been proposed. Expert systems are one of the earliest techniques proposed
to address the failure diagnosis problem in power systems. A comprehensive survey
of such knowledge-based approaches is available in [51]. The expert systems, in
general, suffer from limitation imposed due to the maintenance of the knowledge
database and slow response time. Moreover, expert system based approaches are
known to produce wrong hypothesis in presence of missing and/or spurious alarms.
Artificial neural networks (ANNs) are adaptive systems inspired by biological
systems. These approaches, in general, suffer from convergence problems. Further,
the ANNs have to be retrained whenever there is a change in network topology as
the weights are dependent upon the structure of the power system. A number of
model-based analytical methods have been devised over the years for diagnosing
failures by generating optimal failure hypotheses that best explain all the events and
anomalies. However, these techniques rely heavily on critical and computationally
expensive tasks such as the selection of an objective function, development of exact
mathematical models for system actions and protective schemes, which greatly
influence the accuracy of the failure diagnosis.

8 Diagnosis in Cyber-Physical Systems 205

System
Subjected To
Component

Failures

Power Flow
Surges

Voltage and
Current
Change

,

Failure
Isolation By
Protection

Relay Actions

System
Instability
Overloads
Voltage or
frequency

Collapse

,
,

Complete
System Failure

or Blackout

Nominal
System

State

Fig. 8.1 Typical blackout progression in power systems

8.2.3 Cascade Phenomenon: When Fault Management
Controllers Misoperate

Cascading failures in networked systems are defined as the set of independent
events that trigger a sequence of dependent events. Such cascading failures in power
grids successively weaken the system by increasing stress on other components
and sometimes lead to major blackouts. According to North American Reliability
Corporation (NERC), a cascading outage is defined as an uncontrolled loss of any
system facilities or load, whether because of thermal overload, voltage collapse, or
loss of synchronism, as a result of fault isolation.

Figure 8.1 shows a typical blackout scenario in power systems. The nominal
system is subjected to failures from physical and cyber components. These failure
modes change the voltage and current at different buses. Fast acting protection
devices (relays) react to these changes based on predefined strategies. While these
actions are intended to isolate the faulty components and arrest fault propagation,
they could have unintended secondary effects such as branch overloads, voltage
and/or frequency collapse that can cause instability in the system. A new set of
protection elements react to arrest these secondary effects. These secondary actions
may cause different tertiary effects and the cycle continues until the system reaches
a blackout or there are no more consequences of protective actions.

A simple example of cascading phenomenon using a standard IEEE 14 bus
system is shown in Fig. 8.2. It is a simple approximation of American electric power
system as of 1960s [52, 53]. The system consists of 14 buses, 5 generators, 11 loads,

206 A. Chhokra et al.

B1

B2

B3

B4

B5

B6

B12

B13

B14

B8B9

B10
B11

G1

C1

C2

C3

G2

L2_4

L3_2

L4_5

PA1

PA2

PA8

PA9

PA23

PA24

L1_2

L1_5

L2_5

L6_12

L12_13

L6_13

L6_11

L10_11 L9_10 L9_14

L13_14

L3_4

L4_9
B7
L7_8

L7_9

L4_7

Load10
Load2

Load5

Load8

Load9

Load3

L5_6

Load11

Load4

Load6

Load1

Load7

Fig. 8.2 Cascade progression in IEEE 14 Bus system with initial outage in L4_5 leading to outages
in L3_4, L2_4, and L2_3 followed by outages in L6_11, L13_14, L9_10, L4_9, and ultimately
leading to blackout

and 20 branches (transmission lines and transformers). Reference [52] provides bus
and branch data in IEEE common data format [54] for creating OpenDSS [55]
simulation models. A three phase to ground phase fault is injected in line, L4_5.
The fault is isolated by tripping the line. This control actions of protection devices
lead to overloading of lines L3_4, L2_4, and L2_3. These overloads are removed
by tripping these lines. The removal of these secondary effects leads to overloads in
lines L6_11, L13_14, L9_10, L4_9. The removal of these overloaded branches de-
energizes more than 40% of the total system load and is considered as catastrophic
event or blackout.

8 Diagnosis in Cyber-Physical Systems 207

8.3 Temporal Causal Diagrams (TCD)

TCDs are discrete models that appropriately model failure modes, anomalies,
and their propagation in both physical and cyber systems. TCD is a combination
of Temporal Fault Propagation Graphs (TFPGs) and Time Triggered Automata
(TTAs). TFPG based models and reasoning schemes have been used in the past
to diagnose faults in physical systems including industrial plants [56, 57], aerospace
systems [3], and software systems [58].

However, in cyber-physical systems, there are discrete controllers that try to
arrest the failure effect if detected. These protection devices can cause system
reconfiguration by instructing actuators to change their state. These devices can also
have faults that alter their response to the detection of failure effects and control
commands. TFPG based reasoning schemes are not very effective in accounting
for faults in both physical system and their corresponding protection assembly
(i.e., anomaly detectors, mode detectors, actuators). Failure diagnosis of protection
devices is critical for cyber-physical systems, where realistic assessment of fault
propagation is not possible without accounting for the behavior of the deployed
sensors, controllers, and actuators. The second component of the TCD model, TTA
is responsible for modeling the behavior of discrete components in both faulty and
non-faulty modes.

TCD framework consists of hierarchical event-driven reasoning engines as
shown in Fig. 8.3. The diagnosis system consists of multiple local diagnosers, called
Observers that track the behavior of protection devices and estimate the presence of
failures in both physical and cyber infrastructure (fault management controllers are
often implemented in software). These estimates are then passed to a system level
reasoner that creates system level hypotheses temporally consistent with the fault
propagation graph. The observable events in the case of power transmission system
are commands sent by relays to breakers, messages sent by relays to each other,
state change of breakers, physical fault detection alarms, etc. The following sections
describe the modeling formalism of TCD, which includes an extension to TFPG.

8.3.1 Extending TFPG with Non-deterministic Semantics

A temporal fault propagation graph is a labeled directed graph where nodes are
either failure modes or discrepancies. Discrepancies are the failure effects, some
of which may be observable. Edges in TFPG represent the causality of the fault
propagation and edge labels capture operating modes in which the failure effect can
propagate over the edge, as well as a time-interval by which the failure effect could
be delayed (see Fig. 8.4). Classically, the diagnostic reasoner of TFPG assumed the
correct knowledge of the system modes is always available. However, in the context
of self-correcting cyber-physical systems such as power grids, the system mode or

208 A. Chhokra et al.

Actuator
Command

Physical System
(Generators +

TL+ Load +Bus)

Protection
Relays

Circuit
Breakers

(Actuators)

Observers (Actuator + Protection Relays)

TCD Reasoner

V-I
Signals

Observer Reports (Hypothetical state of
Physical system, protection relays and

actuators)

Observable events (Alarms, Actuator
state change messages, Actuator

commands)

System
Failure

Propagation
Graph

D
ia

gn
os

is
 S

ys
te

m
Cy

be
r P

hy
si

ca
l S

ys
te

m

Actuator
State

Diagnoser
Layer

Observer
Layer

Protection
System Layer

Plant Layer

Fig. 8.3 The block-diagram of the Temporal Causal Diagram Diagnosis Framework in the Context
of Power Systems

operating conditions depend upon the state of sources, sinks, and the topology of
the system. Identification of all operating conditions, i.e. unique system modes is
computationally very expensive. In this paper, we use the system topology dictated
by the state of the actuators to map an operating condition (i.e., mode) to the fault
propagation. However, while such a constraint imposed due to topology of the
system is deemed necessary to identify when a fault will not propagate, it is not
sufficient to state that the failures will propagate. So we need to extend the TFPG
language with an additional map that associates uncertainty to failure edges.

Formally, the extended TFPG is represented as a tuple {Fphysical, Dphysical, E, M,
ET, EM, ND}, where

• Fphysical is a nonempty set of fault nodes in physical system. A fault node can be
in two states either present denoted by ON state or absent represented by OFF
state. A fault node represents a failure mode of the system or a component, and

8 Diagnosis in Cyber-Physical Systems 209

FM4

FM3

FM2

FM1

t=1
[2,3]

C1

C2

t=6t=3

t=7

[1,4]

[2,6] A

[1,5] B

[1,3] A

[2,5] A

[3,7] A

[4,5]

[1,3]

D1 D2

D8

D11

D10

D9

D6D4

D5 D7
[2,8] [2,5]

[1,4]

[2,3] A

[2,5] B

C3

[1,4]

D3
[1,6] B

Fig. 8.4 TFPG Model with Failure Modes (FM), Discrepancies (D), and fault propagation links
(edges). Labels on edges indicate delay (min,max) values and modal dependencies (letters)

its state represents whether the failure mode is present or not. In the subsequent
discussion we will use the terms fault node and failure mode interchangeably.

• Dphysical is a nonempty set of discrepancy nodes related to fault effects of physical
faults.

• E � V�V is a set of edges connecting the set of all nodes V D Fphysical[Dphysical.
• M is a nonempty set of system modes. At each time instance t the system can be

in only one mode.
• ET W E! I is a map that associates every edge in E a time interval Œtmin; tmax	 2 I

that represents the minimum and maximum time for fault propagation over the
edge.

• EM W E ! M is a map that associates every edge in E with a set of modes in
M when the edge is active. For any edge e 2 E that is not mode-dependent (i.e.,
active in all modes), EM.e/ D ∅.

• ND W E! fTrue;Falseg is a map that associates an edge, e 2 E to True or False,
where True implies the propagation along the edge, e Will happen, whereas
False implies the propagation is uncertain and Can happen. The destination
node of any uncertain edge is referred to as secondary discrepancy while primary
discrepancy implies a certain edge. These labels are defined with respect to edges
as same discrepancy can act as a destination node of both uncertain and certain
edge.

210 A. Chhokra et al.

8.3.2 Modeling the Behavior of Fault Management Controllers

The TCD framework relies on the use of an extended time triggered automaton [59]
to model the interaction between the fault management controllers and the plant
model (TFPG model). Then, given these behaviors we can synthesize the observers
that are used in diagnosis step.

Mathematically, the extended time triggered automaton is represented as tuple
(†, Q, q0, Qm, Fcyber, Dcyber, M, ˛.F/, ˆ, T).1

• Event Set:† is a finite set of events that consists of observable and unobservable
events partitioned as † D †obs [†unobs such that †obs \ †unobs D �.
Observable events are alarms, commands, and messages exchanged between
discrete components, whereas unobservable events are related to introduction of
faults in system components.

• Locations: Q is a finite set of locations. q0 2 Q is the initial location of the
automaton and Qm � Q is a finite set of marked locations.

• Discrepancy Set: Dcyber is a finite set of discrepancies associated with the
component behavior, partitioned into the sets of observable and unobservable
discrepancies.

• Failure Mode Set: Fcyber is a finite set of unobservable failure modes associated
with the component. Similar to a fault node in TFPG, failure mode also has ON
and OFF states. ıt is a function defined over Fcyber�RC that maps a failure mode
f 2 Fcyber at time t 2 RC to True if the state of failure mode is ON and to False
if the state is OFF.

• Failure Mode Constraints: ˛.Fcyber/ represents the set of all constraints defined
over members of set Fcyber. An individual failure mode constraint, !t 2 ˛.Fcyber/,
is a Boolean expression defined inductively as

!t WD ıt.f / j :ıt.f / j !1;t ^ !2;t (8.1)

where f 2 Fcyber is a failure mode and !1, !2 are failure mode constraints. A
failure mode constraint is True if the Boolean expression is evaluated to be True
and False otherwise.

• Timing Constraints: ˆ is a set of timing constraints defined as ˆ D
Œn	; .n/jn 2 NC, where Œn	 denotes instantaneous constraints and .n/ represents
periodic constraints. The timing constraints specify a pattern of time points at
which the automaton checks for events and failure node constraints. For instance,
periodic constraint, .4/, on any outgoing transition from the current state forces
the automaton to periodically look for events specified by the edge, every 4 units
of time whereas in the case of instantaneous constraint, Œ4	, automaton checks
only once.

• Mode Map: M W Q! 2m is a function that maps location q 2 Q to mode m 2 M
defined in the fault propagation graph.

1The extension includes sets of failure modes and failure mode guards.

8 Diagnosis in Cyber-Physical Systems 211

• Edge: T � Q� p.†/�ˆ�˛.Fcyber/� p.†/�Q is a finite set of edges. An edge
represents a transition between any two locations. The activation conditions of an
edge depend upon the timing, failure mode constraints, and an input event. For
example, an edge < q1, �1, [n], ı.f1/ ^ :ı.f2/, �2, q2 > represents a transition
from location q1 to q2 with an instantaneous time constraint of n units of time and
failure mode constraint ı.f1/^:ı.f2/ 2 ˛.Fcyber/ defined over the failure modes
f1; f2 2 Fcyber. �1 2 † is the required input event for this transition to be valid.
�2 2 † represents the event generated when the transition is taken. Syntactically,
a transition is represented as Event(timing constraint){failure constraint}/Event.
If no event is mentioned, then the transition is valid only if the failure mode
constraint evaluates to true as per the timing constraints.

8.3.3 Observers for Postulating the Failures of Controllers

Observers are discrete, finite state machines that consume events produced by their
respective tracked devices in order to diagnose faults in their behaviors. There exist a
number of approaches for generating discrete diagnosers for dynamic systems based
on [60] and [61]. However, the observers presented here are created manually. The
events produced by the various observers fall into two categories; an estimation of
a state change in discrete components, and a discrepancy detection. The detected
anomalies and the local estimate of the state of different components in the plant
and protection layer are passed by the observer to the next layer for system level
diagnosis.

8.3.4 Combined Diagnosis and Reasoning Approach

The TCD reasoner relies on the fault propagation graph and the output of various
observers to hypothesize about the anomalies observed in the system.2 The reasoner
attempts to explain the observations in terms of consistency relationship between
the states of the nodes and edges in the fault propagation graph. The states of a node
in a fault propagation graph can be categorized as Physical (Actual), Observed, and
Hypothetical state [57].

• Physical state corresponds to the actual state of the nodes and edges.
• An Observed state is the same as the Physical state, but defined only for

observable nodes.
• A Hypothetical state is an estimate of the node’s physical state and the time since

the last state change happened by the TCD reasoner.

2In order to relate to the alarms generated by observers with the failure graph few modifications
are performed. The alarms signaled by relays are replaced by their corresponding observers.

212 A. Chhokra et al.

Every reasoner hypothesis hf 2 HSett consists of a map, HNodet that associates
to every node in the failure graph an evaluation, (ON, OFF) and time estimate
(t1, t2). The time estimate (t1, t2) denotes the earliest and latest time estimates for
the state changes of node v, i.e. from ON to OFF or vice versa. The structure of a
hypothesis is described as follows: Hypothesis is a tuple, where elements are related
based on temporal consistency. Formally, hypothesis hf ={f, terl, tlat, S, C, I, M, E,
U} where:

• f 2 Fphysical is a physical failure mode projected by the hypothesis, hf and F is the
set of physical failure modes defined in Sect. 8.3.1. We are using single physical
fault hypothesis which lists only one fault per element of the physical system
along with multiple faults in protection system.

• S�Fcyber is a set of faults active in the system. These faults are related to
components in the protection system layer as defined in Sect. 8.3.2.

• The interval Œterl; tlat	 is the estimated earliest and the latest time during which
the failure mode f could have been activated. The time estimate for protection
layer faults is not supported in the current implementation.

• C � Dphysical is the set of discrepancies that are consistent with the hypothesis hf ,
where Dphysical is the set of physical discrepancies described in Sect. 8.3.1. These
discrepancies are referred to as consistent discrepancies. We partition the set C
into two disjoint subsets, C1, C2 where C1 consists of primary discrepancies
and C2 contains secondary discrepancies. A discrepancy d w.r.t hypotheses hf

is called primary if the fault propagation linking the discrepancy, d, is certain
otherwise it’s termed secondary as defined in Sect. 8.3.1.

• E � Dphysical is the set of discrepancies which are expected to be activated in the
future according to hf . This set is also partitioned into E1 and E2 that contain
primary and secondary discrepancies, respectively.

• M�Dphysical is the set of discrepancies that are missing according to the hypoth-
esis hf , i.e. alarms related to these discrepancies should have been signaled. This
set is also composed of two disjoint sets M1 and M2 based on primary and
secondary discrepancies.

• I�Dphysical is the set of discrepancies that are inconsistent with the hypothesis
hf . These are the discrepancies that are in the domain of f but cannot be explained
in the current mode.

• U�Dphysical is the set of discrepancies which are not explained by this hypothesis
hf as there is no fault propagation link between d 2 U and s 2 f [S[C, i.e. the
discrepancy is not in the domain of f.

For every scenario, the reasoner creates one special hypothesis (conservative), H0
that associates a spurious detection fault with each of the triggered alarms.

The quality of the generated hypotheses is measured based on four metrics
defined as follows:

• Plausibility: It is a measure of the degree to which a given hypothesis explains
the current fault and its failure signature. Mathematically, it’s defined as

8 Diagnosis in Cyber-Physical Systems 213

Plausibility D jC1j C jC2j
jC1j C jC2j C jM1j C jIj

• Robustness: It is a measure of the degree to which a given hypothesis will remain
constant. Mathematically, it’s defined as

Robustness D jC1j C jC2j
jC1j C jC2j C jM1j C jE1j C jE2j C jIj

• Rank: It is a measure that a given hypothesis (a single physical fault along
with multiple cyber faults) completely explains the system events observed.
Mathematically, it is defined as Rank D jC1j C jC2j � jM1j � jUj

• Failure Mode Count: is a measure of how many failure modes are listed by the
hypothesis. The reasoner gives preference to hypotheses that explain the alarm
events with a limited number of failure modes (i.e., it follows the parsimony
principle). This metric plays an important role while pruning out H0 from the
final hypothesis report.

There are three types of events that invoke the reasoner to update the hypotheses.
The first two are external physical events related to a change in the physical state
of a monitored discrepancy and system mode. The third event is an internal timeout
event that corresponds to the expectation of an alarm. A physical event is formally
defined as a tuple e = .da, t/, where da 2 D0[M is either an observable discrepancy
or a system mode. The timeout event is described as a tuple e = < hf , da, t > which
implies as per hypotheses hf , any alarm related to discrepancy da should have been
signaled by time t. Figures 8.5 and 8.6 give an overview of the underlying algorithm
of reasoner response to three different type of events.

Timeout Event Whenever the observed state of a discrepancy does not change as
expected by the reasoner, an internal timeout event, (h, da, t) is generated, where h
denotes the set of hypotheses to be updated and da is the expected discrepancy and
t is the current time. This event causes reasoner to update the expected sets of all
hypotheses, h. If the expected sets, E1(E2), of any hypothesis in h, list da, then it is
moved to missing sets M1(M2).

Mode Change Event If any actuator component in the protection layer changes its
state, a mode change event is triggered by the corresponding observer. This event
causes reasoner to update the expected sets of all hypotheses as the new actuator
state might influence the operating modes and disable or enable failure propagation
edges.

Discrepancy Mode Change Event This event is triggered if any observer detects
appearance or disappearance of failure effects in both plants and protection devices.
The event is denoted by (da, t), where da is a discrepancy that activated or
deactivated at time t. If the observed state of this alarm is ON (activated), then
reasoner iterates over all the hypotheses at time, t, to find hypotheses that explain
this discrepancy (which lists da in expected sets). If found, expected and consist

214 A. Chhokra et al.

Monitor State Change
Event

End

Alarm Turned On
(da,t)

Yes

Iterate over
hypothesis set, h

= Hset.begin

No

Update hypothesis h:
Remove da from

consistent set
Modify the expected

and missing set

x = False

Consistent
set contains

da

Yes

Increment h

No

H == HSet.end

Yes

No

Yes

Iterate over
hypothesis set, h =

Hset.begin

Update hypothesis h:
Remove da from expected set

Add da to consistent set

Is da temporally
consistent w.r.t h

Yes

Increment h

No

h == HSet.end

No
x = True

x==False

Yes

No

Iterate over parent failure
modes of da, f =
Parent(da).begin

Create New hypothesis hnew:
Add hnew to Hset

Add da to consistent set
Update expected and missing sets

Is da temporally
consistent with f

Yes

Increment f

No

F==Parent(da).end

No

x = True

Yes

Yes

X : Temp Variable

Fig. 8.5 Flowchart for handling Monitor or Discrepancy State Change Event

8 Diagnosis in Cyber-Physical Systems 215

Input Event

Internal
Timeout

Event
(h, da, t)

External
EventNo

Mode
Change
Event

Yes

End

No

Expected Set
contains da

Yes

Update hypothesis h:
Remove da from

expected set
Add da to missing set

Update plausibility

Yes

No

Iterate over
hypothesis

set, h =
Hset.begin

Update expected Set

Increment h

h = Hset.end

Yes

No

Yes

Fig. 8.6 Flowchart for handling Timeout and Mode Change Event

sets of those hypotheses are updated. In case, no hypothesis is discovered, a new
hypothesis is generated and added to the hypothesis set. On the other hand, if the
observed state of the discrepancy is OFF (deactivated), reasoner iterates over all
hypotheses and update the consistent and expected sets of all hypotheses that list da
in their consistent sets.

8.4 Example System: Electric Transmission Network

8.4.1 System Under Test

An electric power system can be considered as a tripartite graph with sources at one
end and loads at the other with a complex transmission and distribution system in
the middle. Figure 8.7 shows a segment of a transmission network where a load, L1

216 A. Chhokra et al.

G1 G2
PA4 PA3PA2 PA1TL1

B1 B3
TL2

L1

B2

Fig. 8.7 A simple two transmission line system

is being fed by two generators G1, G2 through transmission lines TL1, TL2. The
transmission lines are connected by buses B1, B2, B3. All these components are
protected by specialized relays and breaker assemblies. In this work, we are focusing
on transmission lines only, each transmission line is protected by a set of distance
relays and breaker assemblies, installed at each end, collectively represented as a
protection assembly labeled as PA1, PA2, PA3, PA4 in Fig. 8.7.

Distance relays are used for detecting two types of faults in transmission lines:
(1) phase to phase faults, and (2) phase to ground faults. Both phase to phase and
phase to ground faults cause an increase in current flowing through the conductor
and decrease in voltage at the buses connected on both ends of the transmission
line. This decrease in impedance (V/I) is detected as physical fault and typically
categorized by the relay into the following three categories depending upon the
calculated impedance:

• Zone 1 Fault: If the measured impedance is less than .0:7 � 0:8/ 	 ZTL and the
phase angle is between 0 and �=2, where ZTL is the impedance of the line. The
distance relay acts as a primary protection device and instructs the corresponding
breaker to open immediately.

• Zone 2 Fault: If the measured impedance is greater than .0:7 � 0:8/ 	 ZTL but
less than 1:25 	 ZTL with phase angle being in first quadrant. After detecting a
zone 2 fault, distance relay waits for 0.05–0.1 s before sending trip signal to the
breaker. This wait time ensures the distance relay to act as a secondary or back-
up protection element. If the fault is in any neighboring transmission line, then
the wait time ensures the primary protection associated with that line to engage
first. In case, the primary distance relays fail, then secondary protection kicks in
after the waiting period expires.

• Zone 3 Fault: If the measured impedance is in the range .1:25 � 2/ 	 ZTL with
phase angle between 0 and �=2, then the fault considered as zone 3 fault. Similar
to zone 2, the protection device acts as a back-up element in case primary device
fails to engage. The wait time is of the order of 1 : : : 1:5 s.

The time to detect fault depends upon the sampling period of the relay and is of the
range 16–30 ms.

8 Diagnosis in Cyber-Physical Systems 217

F_TL1

d_TL1_
PA1

d_TL1_
PA2

d_TL1_
PA3

F_TL2

d_TL2_
PA3

d_TL2_
PA4

d_TL2_
PA2

[0, 0.030]
PA3_BR_close

[0, 0.030]
PA1_BR_close and
PA3_BR_close and

PA4_BR_close

[0, 0.030]
PA1_BR_close &
PA3_BR_close &

PA4_BR_close

[0, 0.030]
PA2_BR_close

[0, 0.030]
PA2_BR_close &
PA1_BR_close &

PA4_BR_close

[0, 0.030]
PA2_BR_close &
PA1_BR_close &

PA4_BR_close

Fig. 8.8 Fault propagation graph for faults in two different transmission lines

Table 8.1
Discrepancy–Alarm
Association Map

Discrepancy Alarms

d_TL1_PA1 PA1_DR_Z1, PA1_DR_Z2

d_TL1_PA2 PA2_DR_Z1, PA2_DR_Z2

d_TL1_PA3 PA3_DR_Z2, PA3_DR_Z3

d_TL2_PA3 PA3_DR_Z1, PA3_DR_Z2

d_TL2_PA4 PA4_DR_Z1, PA4_DR_Z2

d_TL2_PA2 PA2_DR_Z2, PA2_DR_Z3

8.4.2 TCD: Fault Propagation Graph

The fault detection events are recorded by Sequence Event Recorders installed at
substations. Using these events as alarms fault propagation graph can be created.
Figure 8.8 shows such a graph for the segment of transmission network. The set
of nodes labeled as F_TLn represents physical fault in transmission line, TLn.
The discrepancy d_TLn_PAk represents the effect of failure F_TLn and the node
represents the decrease in impedance as detected by relay in PAk. The edge between
nodes represents the fault propagation and is constrained by the timing and operating
conditions. The operating conditions are modeled in terms of the physical state of
the breakers. The distance relay in PA4 will detect the failure mode F_TL1 as long as
all the breakers in the path between G2 and TL1 are in close state. Table 8.1 lists the
alarms that can signal discrepancies shown in Fig. 8.8, where the columns identify
discrepancies, alarms, and the uncertainty associated to it. The failure edges that
link failure source and discrepancy related to secondary protection relay are marked
uncertain, i.e. ND(e) = false, depicted as dotted lines in Fig. 8.8.

A primary protection element will always signal Zone 1 or Zone 2 alarm for fault
injected at any point in the transmission line. The secondary protection devices will
always signal either Zone 2 or Zone 3 alarm depending upon the location of the
fault.

218 A. Chhokra et al.

idle

tripped

chkZ2 waiting1

c_reset(R)/

E1 (R) {f}/Z1, cmd_open, TripSen

E2(R) {f} / Z2

Null[R]

[z2Wt] E2[R] {f}/ cmd_open

detErr3
(R){δ(F_de2_z2)}/ Z2

(R){ δ(F_de2_z1)}/ Z1, cmd_open

[z2Wt]/cmd_open

detErr1(R){δ(F_de1)}/

(R){ δ(F_de1)}/

detErr2
(R){δ(F_de2_z3)}/ Z3

[z3Wt]/cmd_open

chkZ3 waiting2
E3(R) {f} / Z3

Null[R]

[z3Wt] E2[R] {f} / cmd_open

close

open

openingclosing

Cmd_open (R)
{¬δ(F_stuck_close)}/

Cmd_close (R)
{¬δ(F_stuck_open)}/

[t3] /st_open

[t3] /st_close

TripRec(R) {f}/cmd_open

[t3]
{¬δ(F_stuck_close)}/

[t3]
{¬δ(F_stuck_open)}/

Fig. 8.9 Protection System Behavior Components (Left: Distance Relay; Right: Breaker),
where f is a failure mode constraint defined as f ::ı(F_de1) ^:ı(F_de2_z1) ^:ı(F_de2_z2)
^:ı(F_de2_z3)

The failure graph captures the propagation of failures under different conditions
(breaker states) but does not contain any information to diagnose faults related with
the behaviors of breakers and relays. Figure 8.9 shows the TTA model of a protection
assembly (distance relay and breaker).

8.4.3 TCD: Distance Relay Behavioral Model

Modern relays are reactive devices that monitor the health of the physical devices
at a fixed rate, R secs. Figure 8.9 shows a time triggered model of a distance relay
configured to detect Zone 1, 2, 3 faults. The time triggered automaton appropriately
models the behavior of a relay under both faulty and non-faulty conditions. The
model considers two types of faults, F D f1 [f2, where f1 D fFde1g is a set
of missed detection faults and f2 D fFde2z1;Fde2z2;Fde2z3g is the collection
of spurious detection faults related to three zones. As the name implies, a missed
detection fault forces the relay to skip the detection of any fault conditions and
a spurious detection fault, Fde2zk, ensues incorrect inference of zone k fault by
the relay. Figure 8.9 lists five different failure mode constraints, namely, ı.Fde1/,
ı.Fde2z1/, ı.Fde2z2/, ı.Fde2z3/, :ı.Fde1/ ^ :ı.Fde2z1/ ^ :ı.Fde2z2/ ^
:ı.Fde2z3/, where the first four imply the presence of a failure mode, i.e. its state
is ON while the last means none of the failure modes in F are present.

There are a total of nine events used to model the behavior of the relay. Out
of nine events, three are unobservable, labeled as E1, E2, and E3. These events
represent the presence of zone 1, 2, 3 fault conditions. The state machine consists
of nine locations, with idle being the initial location. In the idle location, automaton

8 Diagnosis in Cyber-Physical Systems 219

check for events—E1, E2, E3, and the status of failure modes every R seconds.
If the distance relay detects zone 1 fault (modeled by the presence of the event
E1), then the distance relay moves to the tripped location and issues a Z1 alarm
and commands the breaker to open by emitting event, cmd_open. For zone 2
and zone 3 faults conditions (E2, E3), the protection relay does not issue an open
command after moving to the chkZ2 or chkZ3 locations. The state machine waits
for predefined time, zn2wt; zn3wt 2 RC and confirms again the presence of the fault
conditions, once the time expires. If the fault is still present, the relay commands
the breaker to open and transitions to tripped location, otherwise moves back to
idle location. Additionally, distance relays may be configured with overreach trip
transfer protocols. In this case, the primary relays associated with a transmission
line send permissive trip signals to each other, TripSen, in order to avoid zone 2
wait time.

The deviation in the normal behavior of the relay is caused if any of the failure
mode constraints evaluates to true. For instance, if the current location of the
automaton is idle and failure mode Fde1 is present then automaton jumps to detErr1
location and stays there until the fault is persistent. Similarly if any of the spurious
detection faults are present, then irrespective of the presence of E1, E2, and E3, the
state machine jumps to detErr2 or detErr3 and finally transitions to tripped
state. In this model, the faults (F_de1, F_de2_z1, F_de2_z2, F_de2_z3) are
assumed to be mutually exclusive, i.e. one of the cyber faults can be present at a
given time.

8.4.4 TCD: Breaker Behavioral Model

Figure 8.9 also shows TTA model of a breaker with two failure modes, F =
{F_stuck_close, F_stuck_open}. The breaker automaton has four states labeled as
open, opening, close, and closing, with close being the initial state.
All the events used in the state machine are observable. The events cmd_open,
cmd_close represent the commands received by the breaker assembly and st_open,
st_close signify change in the physical state of the breaker. The transition from
open to close and vice verse is not instantaneous. The lag is caused due to
mechanical nature of the breaker and zero crossing detection, which is modeled by
parameter t3. Automaton consists of two failure mode constraints,:ı.Fstuckclose/,
:ı.Fstuckopen/, which evaluates to true when respective failure modes are not
present.

The breaker is also modeled as reactive component which is periodically
checking for commands. While in the close location, the automaton looks for
event cmd_open and evaluates the failure constraint every R secs. If the event is
present and F_stuck_close fault is absent, the state machine transitions to opening
state. After t3 secs, the automaton moves to open state if failure mode constraint still
evaluates to false. Similarly in open location, the presence of the event cmd_close
and validity of failure constraint is checked.

220 A. Chhokra et al.

8.4.5 TCD Diagnosis System: Observers

The TCD based diagnosis system employs a hierarchical framework as shown
in Fig. 8.3. The lower layer includes observers that track the operation of cyber
components (distance relays and circuit breakers) to detect and locally diagnose
faults in physical and protection systems. The observers feed their results to the
reasoning engine as explained in previous section. The TCD reasoning engine
produces a set of hypotheses that explain the current system states as per the output
of various observers by traversing the fault propagation graph. The traversal is
constrained by the state of the protection system as predicted by observers tracking
it. The following sections provide a detailed description of the model and operation
of the observers related with power system protection devices.

8.4.5.1 Observer: Distance Relay

The TTA model of a distance relay observer can be seen in Fig. 8.10. The state
machine has eight locations with idle being the initial state. The observer machine
consumes the observable zone alarms (Z1, Z2, Z3), commands sent to breaker
(cmd_open) and reset events and produce h_Z1, h_Z2, h_Z3 to indicate or confirm
the presence of zone 1, 2, 3 faults. The observer also produces h_Z10, h_Z20 and
h_Z30 to indicate absence of zone 1, 2, 3 fault conditions. The observer remains
in the idle position until zone fault conditions are reported by the corresponding
distance relay. Once the distance relay fires a Z1 event, the observer machine jumps
to the chkZ1 location while emitting h_Z1 event. The observer machine waits for
t2 seconds for open command (cmd_open event). If received, the observer moves

idle

tripped

chkZ2 waiting1

c_reset(R)/h_Z1', h_Z2', h_Z3'

Z1 (R)/h_Z1

Z2 (R) / h_Z2

[t3]/h_Z2'

[z2Wt] cmd_open (R)

chkZ3 waiting2
Z3 (R) / h_Z3

[t3]/ h_Z3'

[z3Wt] cmd_open (R)

close

open

openingclosing

cmd_open (R)/

cmd_close(R)/
st_open (R)/

h_open
h_stuck_close’

chkZ1
cmd_open(R)

[t3] /

st_close (R)/
h_close

h_stuck_open’

[t4] /
h_stuck_close

[t4] /
h_stuck_open

TripRec (R) /

chkZ2_Z1[t3] /
cmd_open(R)

Fig. 8.10 Protection System Observer Models, Distance Observer Model (Left); Breaker
Observer Model (Right)

8 Diagnosis in Cyber-Physical Systems 221

to the tripped state, otherwise transitions back to idle state. t2 is a parameter
of the distance relay observer machine that models propagation delay and relay
frequency. Please note that the transition from chkZ1 state to the idle state implies
a communication channel fault, but in this paper we are not considering such faults.

Similarly, the observer machine moves to the chkZ2 state when the distance
relay reports a Z2 event after detecting zone 2 fault conditions. Upon the confirma-
tion of zone 2 fault, the observer waits t3 seconds for the arrival of the cmd_open
command. t3 is a parameter which is equal to the sum of zone 2 wait time and t2.
If the cmd_open event is not observed within t3 seconds the automaton moves back
to the idle state and concludes that the zone 2 fault condition has disappeared
by generating h_Z20 event. The observer machine moves from chkZ2 state to
chkZ2_Z1 state if the event TripRec occurs and waits for the cmd_open event and
concludes the presence of fault by producing h_Z2 event. In a similar fashion, the
distance relay observer diagnoses zone 3 faults.

8.4.5.2 Observer: Circuit Breaker

The breaker observer model is shown in the right side of Fig. 8.10. It consists of four
states labeled as open, close, opening, and closing and correlate directly to
the four states of the breaker automaton. Initially the state machine is in the close
state and jumps to the opening state after observing cmd_open event. The breaker
observer transitions to the open state if it receives an st_open event from the breaker
assembly within t4 seconds. t4 is a model parameter that is equal to the sum of
propagation time and the maximum time required to open the breaker. If the event
is observed in the time limit, the observer concludes the physical state of breaker
is open and stuck close fault is not present by producing an event, h_stuck_close0.
Otherwise it hypothesizes that the breaker has the stuck close fault. The fault is
signaled by generating an event, h_stuck_close. Similarly, when the breaker is in the
open state it has the same timed behavior and an h_stuck_open event is generated
if an st_close event is not observed within t4 seconds of receiving the cmd_close
event.

8.4.6 Results

Figure 8.11 shows the sequence of events generated by protection devices,
observers, and reasoning engine when a three phase to ground fault is injected in
transmission line TL2 along with the presence of missed detection fault in PA4_DR
and stuck close fault in PA2_BR. At t D 0:501, PA3_DR_OBS and PA2_DR_OBS
report h_Z1 and h_Z3 alarms. These alarms produce two hypotheses H0, H1. H1
lists faults in line TL2 with two consistent discrepancies and expects an alarm
from PA4_DR_OBS (h_Z1 or h_Z2). At t D 0:531, timeout forces the expected
discrepancy to shift to the missing set. H1 and H0 both list two failure modes.

222 A. Chhokra et al.

Plant layer
Protection

System Layer Observer Layer Diagnoser Layer

PA2_DR: Z3
PA3_DR: Z1,
cmd_open

PA3_DR: Trip

Fault Injected

PA2_DR_OBS:
h_Z3,

PA3_DR_OBS:
h_Z1,

PA3_DR:
cmd_open

PA3_BR:
st_open

PA3_BR_OBS:
h_open,

h_stuck_close’

Hypothesis
created : 2

Waiting for
Hypotheses

set to stabalize

Hypothesis: H1
Failure Mode:

F_TL2,
F_PA4_DR_de

1, Rank=2
Plausibility =

66.7%
Robustness =

100%

T = 0.5 secs

T = 0.501 secs

T = 0.502 secs

T = 0.531 secs

T = 0.532 secs

T = 1.502 secs PA2_DR:
cmd_open

PA2_BR_OBS:
h_stuck_close

T = 1.552 secs

Hypothesis: H1
Failure Mode:

F_TL2,
F_PA4_DR_de

1,
F_PA2_BR_SC

Rank=2
Plausibility =

66.7%
Robustness =

100%

Stuck Close &
Missed

Detection
Faults

Injected

Fig. 8.11 Diagnosis results for scenario 4

H1 lists physical faults associated with line TL2 along with a missed detection
fault in PA4_DR whereas H0 blames both the distance relays for having spurious
detection faults. At t D 1:552, PA2_BR_OBS concludes a stuck fault in breaker
PA2_BR after failing to receive a state change event (st_open). Both hypotheses are
updated to reflect the breaker fault. The hypothesis H1 is given preference over H0
as the probability of two cyber faults is less than a physical and a cyber fault [62].
Figure 8.11 shows the events sequence and hypotheses evolution.

8 Diagnosis in Cyber-Physical Systems 223

8.5 Conclusion

We have presented a new formalism: Temporal Causal Diagrams with the aim
of diagnosing failures in cyber-physical systems that include local fast-acting
protection devices. Specifically, we have demonstrated the capability of the TCD
model to capture the discrete fault propagation and behavioral model of a segment
of a power transmission system protected by distance relays and breakers. The paper
also presented hierarchical TCD-based reasoner to diagnose faults in the physical
system and its protection elements.

Acknowledgements This work is funded in part by the National Science Foundation under
the award number CNS-1329803. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of
NSF. The authors would like to thank Rishabh Jain, Srdjn Lukic, Saqib Hasan, Scott Eisele, and
Amogh Kulkarni for their help and discussions related to the work presented here.

References

1. North American Electric Reliability Corporation, 2012 state of reliability, Tech. Rep. (2012).
Available: http://www.nerc.com/files/2012_sor.pdf

2. S. Abdelwahed, G. Karsai, G. Biswas, A consistency-based robust diagnosis approach for
temporal causal systems, in The 16th International Workshop on Principles of Diagnosis
(2005), pp. 73–79

3. N. Mahadevan, A. Dubey, G. Karsai, Application of software health management techniques,
in Proceedings of the 6th International Symposium on Software Engineering for Adaptive and
Self-managing Systems, ser. SEAMS ’11 (ACM, New York, 2011), pp. 1–10. Available: http://
doi.acm.org/10.1145/1988008.1988010

4. P. Seifried, Fault detection and diagnosis in chemical and petrochemical processes, Bd. 8 der
Serie „Chemical Engineering Monographs”. Von D. M. Himmelblau, herausgegeben von S.
W. Churchill, Elsevier Scientific Publishing Company, Amsterdam – New York 1978. 1. Aufl.,
X, 414 S., 137 Abb., 66 Tab., DM 145,–. Chem. Ing. Tech. 51, 766 (1979). https://doi.org/10.
1002/cite.330510726

5. N. Viswanadham, T.L. Johnson, Fault detection and diagnosis of automated manufacturing
systems, in 27th IEEE Conference on Decision and Control (1988)

6. R. Hessian, B. Salter, E. Goodwin, Fault-tree analysis for system design, development,
modification, and verification. IEEE Trans. Reliab. 39(1), 87–91 (1990)

7. Y. Ishida, N. Adachi, H. Tokumaru, Topological approach to failure diagnosis of large-scale
systems. IEEE Trans. Syst. Man Cybern. 15(3), 327–333 (1985)

8. S.V.N. Rao, N. Viswanadham, Fault diagnosis in dynamical systems: a graph theoretic
approach. Int. J. Syst. Sci. 18(4), 687–695 (1987)

9. S.V.N. Rao, N. Viswanadham, A methodology for knowledge acquisition and reasoning in
failure analysis of systems. IEEE Trans. Syst. Man Cybern. 17(2), 274–288 (1987)

10. J. Richman, K.R. Bowden, The modern fault dictionary, in International Test Conference
(1985), pp. 696–702

11. W.T. Scherer, C.C. White, A survey of expert systems for equipment maintenance and
diagnostics, in Knowledge-Based System Diagnosis, Supervision and Control, ed. by S.G.
Tzafestas (Plenum, New York, 1989), pp. 285–300

http://www.nerc.com/files/2012_sor.pdf
http://doi.acm.org/10.1145/1988008.1988010
http://doi.acm.org/10.1145/1988008.1988010
https://doi.org/10.1002/cite.330510726
https://doi.org/10.1002/cite.330510726

224 A. Chhokra et al.

12. S. Tzafestas, K. Watanabe, Modern approaches to system/sensor fault detection and diagnosis.
J. A. IRCU Lab. 31(4), 42–57 (1990)

13. P. Frank, Fault diagnosis in dynamic systems using analytical and knowledge-based redun-
dancy – a survey and some new results. Automatica 26(3), 459–474 (1990)

14. W. Hamscher, L. Console, J. de Kleer, Readings in Model-Based Diagnosis (Morgan Kauf-
mann Publishers Inc., San Francisco, 1992)

15. R. Patton, Robust model-based fault diagnosis: the state of the art, in IFAC Fault Detection,
Supervision and Safety for Technical Processes, Espoo (1994), pp. 1–24

16. R. Patton, P. Frank, R. Clark, Fault Diagnosis in Dynamic Systems: Theory and Application
(Prentice Hall International, Englewood Cliffs, 1989)

17. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Failure diagnosis
using discrete event models. IEEE Trans. Control Syst. Technol. 4, 105–124 (1996)

18. A.N. Srivastava, Discovering system health anomalies using data mining techniques, in
Proceedings of the Joint Army Navy NASA Air Force Conference on Propulsion (2005)

19. R. Reiter, A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)
20. J. de Kleer, A. Mackworth, R. Reiter, Characterizing diagnoses and systems. Artif. Intell. 56,

197–222 (1992)
21. A. Darwiche, Model-based diagnosis using structured system descriptions. J. Artif. Intell. Res.

8, 165–222 (1998)
22. A. Darwiche, G. Provan, Exploiting system structure in model-based diagnosis of discrete-

event systems, in Proceedings of the Seventh International Workshop on Principles of
Diagnosis (1996), pp. 95–105

23. J. Gamper, A temporal reasoning and abstraction framework for model-based diagnosis
systems. Ph.D. dissertation, RWTH, Aachen, 1996

24. L. Console, P. Torasso, On the co-operation between abductive and temporal reasoning in
medical diagnosis. Artif. Intell. Med. 3(6), 291–311 (1991)

25. A. Misra, Sensor-based diagnosis of dynamical systems. Ph.D. dissertation, Vanderbilt Univer-
sity, 1994

26. A. Misra, J. Sztipanovits, J. Carnes, Robust diagnostics: structural redundancy approach, in
SPIE’s Symposium on Intelligent Systems (1994)

27. S. Padalkar, J. Sztipanovits, G. Karsai, N. Miyasaka, K.C. Okuda, Real-time fault diagnostics.
IEEE Expert 6(3), 75–85 (1991)

28. G. Karsai, J. Sztipanovits, S. Padalkar, C. Biegl, Model based intelligent process control for
cogenerator plants. J. Parallel Distrib. Syst. 15, 90–103 (1992)

29. P.J. Mosterman, G. Biswas, Diagnosis of continuous valued systems in transient operating
regions. IEEE Trans. Syst. Man Cybern. 29(6), 554–565 (1999)

30. G. Karsai, G. Biswas, S. Abdelwahed, Towards fault-adaptive control of complex dynamic
systems, in Software-Enabled Control: Information Technology for Dynamical Systems, ch. 17,
ed. by T. Samad, G. Balas (IEEE Publication, Piscataway, 2003)

31. S. Abdelwahed, G. Karsai, G. Biswas, System diagnosis using hybrid failure propagation
graphs, in The 15th International Workshop on Principles of Diagnosis, Carcassonne, 2004

32. V. Brusoni, L. Console, P. Terenziani, D.T. Dupre, A spectrum of definitions for temporal
model-based diagnosis. Artif. Intell. 102(1), 39–79 (1998)

33. Z. Yongli, Y.H. Yang, B.W. Hogg, W.Q. Zhang, S. Gao, An expert system for power systems
fault analysis. IEEE Trans. Power Syst. 9(1), 503–509 (1994)

34. Y.-C. Huang, Fault section estimation in power systems using a novel decision support system.
IEEE Trans. Power Syst. 17(2), 439–444 (2002)

35. G. Cardoso, J.G. Rolim, H.H. Zurn, Identifying the primary fault section after contingencies in
bulk power systems. IEEE Trans. Power Deliv. 23(3), 1335–1342 (2008)

36. J. Jung, C.-C. Liu, M. Hong, M. Gallanti, G. Tornielli, Multiple hypotheses and their credibility
in on-line fault diagnosis. IEEE Trans. Power Deliv. 16(2), 225–230 (2001)

37. G. Cardoso, J.G. Rolim, H.H. Zurn, Application of neural-network modules to electric power
system fault section estimation. IEEE Trans. Power Delivery 19(3), 1034–1041 (2004)

8 Diagnosis in Cyber-Physical Systems 225

38. R.N. Mahanty, P.B.D. Gupta, Application of RBF neural network to fault classification and
location in transmission lines. IEE Proc. Gener. Transm. Distrib. 151(2), 201–212 (2004)

39. D. Thukaram, H.P. Khincha, H.P. Vijaynarasimha, Artificial neural network and support
vector machine approach for locating faults in radial distribution systems. IEEE Trans. Power
Delivery 20(2), 710–721 (2005)

40. T. Bi, Z. Yan, F. Wen, Y. Ni, C. Shen, F.F. Wu, Q. Yang, On-line fault section estimation in
power systems with radial basis function neural network. Int. J. Electr. Power Energy Syst.
24(4), 321–328 (2002)

41. Y.-X. Wu, X.N. Lin, S.H. Miao, P. Liu, D.Q. Wang, D.B. Chen, Application of family eugenics
based evolution algorithms to electric power system fault section estimation, in Transmission
and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES (2005), pp. 1–5

42. F. Wen, C. Chang, Probabilistic approach for fault-section estimation in power systems based
on a refined genetic algorithm. IEE Proc. Gener. Transm. Distrib. 144(2), 160–168 (1997)

43. Z. He, H.-D. Chiang, C. Li, Q. Zeng, Fault-section estimation in power systems based on
improved optimization model and binary particle swarm optimization, in IEEE Power &
Energy Society General Meeting, 2009. PES’09 (IEEE, Piscataway, 2009), pp. 1–8

44. W. Guo, F. Wen, G. Ledwich, Z. Liao, X. He, J. Liang, An analytic model for fault diagnosis in
power systems considering malfunctions of protective relays and circuit breakers. IEEE Trans.
Power Deliv. 25(3), 1393–1401 (2010)

45. J. Sun, S.-Y. Qin, Y.-H. Song, Fault diagnosis of electric power systems based on fuzzy petri
nets, IEEE Trans. Power Syst. 19(4), 2053–2059 (2004)

46. W.-H. Chen, C.-W. Liu, M.-S. Tsai, Fast fault section estimation in distribution substations
using matrix-based cause-effect networks. IEEE Trans. Power Deliv. 16(4), 522–527 (2001)

47. W.H. Chen, S.H. Tsai, H.I. Lin, Fault section estimation for power networks using logic cause-
effect models. IEEE Trans. Power Deliv. 26(2), 963–971 (2011)

48. W. Guo, L. Wei, F. Wen, Z. Liao, J. Liang, C.L. Tseng, An on-line intelligent alarm analyzer
for power systems based on temporal constraint network, in International Conference on
Sustainable Power Generation and Supply, 2009. SUPERGEN ’09 (2009), pp. 1–7

49. W.H. Chen, Online fault diagnosis for power transmission networks using fuzzy digraph
models. IEEE Trans. Power Deliv. 27(2), 688–698 (2012)

50. Z. Yongli, H. Limin, L. Jinling, Bayesian networks-based approach for power systems fault
diagnosis. IEEE Trans. Power Deliv. 21(2), 634–639 (2006)

51. Y. Sekine, Y. Akimoto, M. Kunugi, C. Fukui, S. Fukui, Fault diagnosis of power systems. Proc.
IEEE 80(5), 673–683 (1992)

52. 1962. Available: http://www2.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm
53. 1962. Available: http://icseg.iti.illinois.edu/ieee-14-bus-system/
54. 2016. Available: http://www2.ee.washington.edu/research/pstca/formats/cdf.txt
55. R. Dugan, OpenDSS Manual. Electrical Power Research Institute, 2016. Available: http://

sourceforge.net/apps/mediawiki/electricdss/index.php
56. S. Padalkar, G. Karsai, C. Biegl, J. Sztipanovits, K. Okuda, N. Miyasaka, Real-time fault

diagnostics. IEEE Expert 6(3), 75–85 (1991)
57. S. Abdelwahed, G. Karsai, Notions of diagnosability for timed failure propagation graphs, in

2006 IEEE Autotestcon, Sept 2006, pp. 643–648
58. A. Dubey, G. Karsai, N. Mahadevan, Model-based software health management for real-time

systems, in 2011 IEEE Aerospace Conference (IEEE, Piscataway, 2011), pp. 1–18
59. P. Krčál, L. Mokrushin, P. Thiagarajan, W. Yi, Timed vs. time-triggered automata, in CONCUR

2004-Concurrency Theory (Springer, Berlin, 2004), pp. 340–354
60. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Diagnosability of

discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–1575 (1995)
61. S. Tripakis, Fault diagnosis for timed automata, in International Symposium on Formal

Techniques in Real-Time and Fault-Tolerant Systems (Springer, Berlin, 2002), pp. 205–221
62. E. Schweitzer, B. Fleming, T.J. Lee, P.M. Anderson et al., Reliability analysis of transmission

protection using fault tree methods, in Proceedings of the 24th Annual Western Protective Relay
Conference (1997), pp. 1–17

http://www2.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm
http://icseg.iti.illinois.edu/ieee-14-bus-system/
http://www2.ee.washington.edu/research/pstca/formats/cdf.txt
http://sourceforge.net/apps/mediawiki/electricdss/index.php
http://sourceforge.net/apps/mediawiki/electricdss/index.php

Chapter 9
Passive Diagnosis of Hidden-Mode
Switched Affine Models with Detection
Guarantees via Model Invalidation

Farshad Harirchi, Sze Zheng Yong, and Necmiye Ozay

9.1 Introduction

Sensor-rich networked cyber-physical systems, which integrate physical processes
and embedded computers, shape the basis of our future smart systems. Such sys-
tems, that include critical infrastructures such as traffic, power and water networks,
as well as autonomous vehicles, aircrafts, home appliances, and manufacturing
processes, are becoming increasingly common and will affect many aspects of our
daily lives. As such, the reliability and security of these cyber-physical systems
is paramount for their successful implementation and operation. However, some
major incidents involving these critical infrastructure systems as a result of cyber-
attacks and system failures have taken place in recent years and are a big source
of concern. Scalable and reliable fault and attack diagnosis monitors play a crucial
role in enhancing the robustness of these systems to failures and adversarial attacks.
In addition, a thorough understanding of the vulnerability of system components
against such events can be incorporated in future design processes to better design
such systems. Hybrid systems provide a convenient means to model many cyber-
physical systems. In this chapter, we consider hidden-mode switched affine models
with parametric uncertainty subject to process and measurement noise and present
a fault/attack detection and isolation framework for such systems.

F. Harirchi (�) · N. Ozay
University of Michigan, Ann Arbor, MI, USA
e-mail: harirchi@umich.edu; necmiye@umich.edu

S. Z. Yong
Arizona State University, Tempe, AZ, USA
e-mail: szyong@asu.edu

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4_9

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74962-4_9&domain=pdf
mailto:harirchi@umich.edu
mailto:necmiye@umich.edu
mailto:szyong@asu.edu
https://doi.org/10.1007/978-3-319-74962-4_9

228 F. Harirchi et al.

9.1.1 Literature Review

The study of fault detection began with the introduction of the first failure detection
filter by Beard in 1971 [1]. Since then, fault diagnosis has attracted a great deal of
attention and has become an integral part of most, if not all system designs. The
problem of fault diagnosis has been approached by researchers from a wide variety
of perspectives including signal processing and control theory. The most popular
methods in the literature employ either data-driven techniques or model-based
approaches. In this paper, we consider a model-based fault diagnosis approach.

Model-based fault detection and isolation schemes in the literature can be
categorized into two classes, i.e., approaches that are based on residual generation
and on set-membership. The former approach is more common in the fault diagnosis
literature, and in this approach, the difference between the measurements and the
estimates is defined as a residual or a symptom [2]. Two major trends in the residual
generation techniques are the observer-based [3–5] and the parameter estimation
based [6, 7] methods. Even though the residual generation based approaches are
efficient and are thus widely used in the industry, their performance is highly
dependent on the preciseness of the observers or the parameter estimates and
also the employed residual evaluation approach. In addition, these methods do not
provide any guarantees for the detection of faults. Residual-based methods are also
employed for fault detection and isolation in non-linear and hybrid models [8–11].
In particular, an observer-based method is proposed for fault diagnosis of hybrid
systems in [12], in which an extended Kalman filter is used to track the continuous
behavior of the system, and a mode estimator to estimate the discrete state.

On the other hand, set-membership based fault detection and isolation techniques
are proposed with the goal of providing guarantees for the detection of some specific
faults. Most of these methods operate by discarding models that are not compatible
with observed data, rather than identifying the most likely model. There is an
extensive literature on set-membership based methods for active fault diagnosis
of linear models [13–15]. These active fault diagnosis methods can only handle
systems with linear models, and even so, they are still computationally demanding.
Recently, we proposed set-membership based guaranteed passive fault diagnosis
approaches for the class of switched affine models with parametric uncertainty and
subject to process and measurement noise [16, 17] and for the class of polynomial
state space models [18]. These approaches are developed by leveraging ideas from
model invalidation [19–21] and taking advantage of recent advances in optimization.

In this chapter, we address three problems related to switched affine models:
(1) model invalidation; (2) fault1 detection, and (3) fault isolation. In the model
invalidation problem, one starts with a family of models (i.e., a priori or admissible

1For convenience, we will use the term “fault” to refer to any fault, attack or anomaly throughout
this chapter. Note that our proposed approach is primarily concerned with the detection and
isolation of changes in dynamical system behavior and is indifferent to the nature of the observed
changes, i.e., whether they are accidental faults or strategic attacks, either cyber or physical.

9 Passive Diagnosis with Detection Guarantees via Model Invalidation 229

model set) and experimental input/output data collected from a system (i.e., a finite
execution trace) and tries to determine whether or not the experimental data can be
generated by one of the models in the initial model family. It was originally proposed
as a way to build trust in models obtained through a system identification step by
discarding/improving these models before using them in robust control design [19],
but we employ it as a tool for detection and isolation of faults.

In addition, we present some conditions under which model invalidation can be
efficiently applied in an online receding horizon manner for the purpose of fault
detection and isolation. In order to check these conditions, we introduce a property
for model pairs—T-distinguishability. When one model is the nominal system
model and the other is one of the fault models, this concept is also known as T-
detectability [16, 17, 22], while when both models are fault models, this corresponds
to I-isolability defined in [17]. If this property holds for a given set of models,
it allows us to detect and isolate faults in a receding horizon manner with time
horizon of size T or I without compromising detection or isolation guarantees. The
concept of T-distinguishability is closely related to the input-distinguishability of
linear systems [23, 24] and mode discernibility in hybrid systems [25]. Even though
some of these conditions may appear rather strong, we show that they are necessary
and sufficient for any guaranteed passive fault detection and isolation scheme that
only uses data from a finite horizon.

9.2 Preliminaries

In this section, the notation used throughout the chapter and the modeling frame-
work we consider are described.

9.2.1 Notation

Let x 2 R
n and M 2 R

n�m denote a vector and a matrix, respectively. The infinity
norm of a vector x is denoted by kxk :D maxi jxij, where xi denotes the ith element
of vector x. The set of positive integers up to n is denoted by Z

C
n , and the set of

non-negative integers up to n is denoted by Z
0
n. Moreover, we denote with x0WN D�

x0 x1 : : : xN

�
the concatenation of vectors xj for all j 2 Z

0
N . We also make use of

integral constraints known as Special Ordered Set of degree 1 (SOS-1) constraints
in our optimization solution, defined as follows:

Definition 1 (SOS-1 Constraints [26]) A special ordered set of degree
1 (SOS-1) constraint is a set of integer and/or real scalar variables for which
at most one variable in the set may take a value other than zero, denoted as
SOS-1: fv1; : : : ; vNg. For instance, if vi ¤ 0, then this constraint imposes that
v1 D : : : D vi�1 D viC1 D : : : D vN D 0.

230 F. Harirchi et al.

9.2.2 Modeling Framework

We consider systems that can be represented by discrete-time switched affine (SWA)
models.

Definition 2 (SWA Model) A switched affine model is a tuple:

G D .X ; E ;U ; fGigmiD1/; (9.1)

where X � R
n is the set of states, E � R

nyCnp is the set of measurement and process
noise signals, U � R

nu is the set of inputs, and fGigmiD1 is a collection of m modes.
Each mode i 2 Z

C
m is an affine model Gi:

Gi D fAi;Bi;Ci;Di; fi; gig; (9.2)

with system matrices Ai;Bi;Ci, and Di, and (affine) vectors fi and gi.
The evolution of G is governed by:

xtC1 D A�t xt C B�t ut C f�t C �t;

yt D C�t xt C D�t ut C g�t C �t;
(9.3)

where � 2 R
np and � 2 R

ny denote the bounded process and measurement noise
signals, and the mode signal �t 2 Z

C
m indicates the active mode at time t.

Remark 1 We assume X ; E ;U are convex and compact sets. In particular, we
consider the following form for the admissible sets:

X D fx j Px � pg; E D fŒ�ᵀ �ᵀ	ᵀ j k�k � "; k�k � "�g;
U D fu j kuk � Ug; (9.4)

where P 2 R
np�n and p 2 R

np . Note that our analysis holds true for any X ; E ;U
that are convex sets, but for the sake of simplicity in notation, we use the above-
mentioned admissible sets.

We define the fault model as follows:

Definition 3 (Fault Model) A fault model for a (nominal) switched affine model
G D .X ; E ;U ; fGigmiD1/ is another switched affine model NG D . NX ; NE ; NU ; f NGig NmiD1/
with the same number of states, inputs, and outputs.

Further, to describe our framework of model invalidation and T-distinguishability
(will be defined in Definition 5) for fault detection and isolation in the next section,
we define system behavior as the following:

Definition 4 (Length-N Behavior) The length-N behavior associated with an
SWA system G is the set of all length-N input–output trajectories compatible with

9 Passive Diagnosis with Detection Guarantees via Model Invalidation 231

G, given by the following set:

BN
swa.G/ WD

˚fut; ytgN�1tD0 j ut 2 U and 9xt 2 X ; �t 2 Z
C
m ; Œ�

ᵀ
t �

ᵀ
t 	

ᵀ 2 E ;
for t 2 Z

0
N�1 s:t: (9.3) holds

�
:

Moreover, with a slight abuse of terminology, we call BN
swa.G/ the behavior of the

system G for conciseness when N is clear from the context.

9.3 Model Invalidation

First, we present the model invalidation problem for switched affine models
and formulate a tractable feasibility problem to (in)validate models. This model
invalidation framework is our main tool for fault detection and isolation in Sect. 9.5.

Given an input–output data sequence and a switched affine model, the model
invalidation problem is to determine whether or not the data is compatible with the
model. More formally, the model invalidation problem is as follows:

Problem 1 (Model Invalidation) Given an SWA model G and an input–output
sequence

˚
ut; yt

�N�1
tD0 , determine whether or not the input–output sequence is

contained in the behavior of G, i.e., whether or not the following is true:

˚
ut; yt

�N�1
tD0 2 BN

swa.G/: (9.5)

With this definition, it is clear that if the model is invalidated by data, i.e., (9.5)
does not hold, and the model is reliable; one can conclude that the data represents
a fault in the system generating it. Hence, model invalidation can be used for fault
detection and isolation.

Using Definition 4, model invalidation problem can be recast as a feasibility
problem as follows:

Find xt;�t; �t; �t;8t 2 Z
0
N�1

s:t: �t 2 Z
C
m ;

xtC1 D A�t xt C B�t ut C f�t C �t;

yt D C�t xt C D�t ut C g�t C �t;

Pxt � p; k�tk � "�; k�tk � ":

(9.6)

This feasibility problem has a solution, if at every time the input–output sequence
satisfies the dynamics of at least one mode. However, the optimization problem (9.6)
is not stated in a form that can be readily solved due to system matrices’ dependence
on the mode signal � , another variable. Next, we show that this dependence can be
eliminated and we pose the model invalidation problem as a Mixed-Integer Linear
Programming (MILP) problem:

232 F. Harirchi et al.

Proposition 1 Given an SWA model G and an input–output sequence
˚
ut; yt

�N�1
tD0 ,

the model is invalidated if and only if the following problem is infeasible.

Find xt;�t; �t; ai;t; si;t; ri;t for 8t 2 Z
0
N�1;8i 2 Z

C
m

s:t:8j 2 Z
C
n ;8k 2 Z

C
ny
;8t 2 Z

0
N�1; we have W

xtC1 D Aixt C Biut C fi C �t C si;t;

yt D Cixt C Diut C gi C �t C ri;t;

Pxt � p; ai;t 2 f0; 1g; P
i2ZC

m
ai;t D 1; k�tk � "�;

k�tk � "; .ai;t; s
j
i;t/ W SOS � 1; .ai;t; rk

i;t/ W SOS � 1;

(PMI)

where si;t and ri;t are slack variables. We refer to this problem as Feas.fut; ytgN�1tD0 ;G/.
Proof In order to prove the result, it suffices to show the equivalence of (9.6)
and (PMI), by illustrating that a feasible point of (9.6) is indeed a feasible point
of (PMI), and vice versa.

A Feasible Point of (9.6) Is Feasible in (PMI) .)/

Let .x�0WN ;��0WN�1; ��0WN�1; ��0WN�1/ be a feasible point of (9.6). As the admissible
set for states and process and measurement noise are identical in (9.6) and (PMI),
we only focus on the rest of the constraints. Suppose that a��

t ;t D 1 for some
t 2 Z

0
N�1, then in order to satisfy

P
i2ZC

m
ai;t D 1, we have: ai;t D 0 for all

i ¤ ��t . Then, because of the SOS-1 constraints, this means that the variables
si;t; ri;t are unconstrained/free for all i ¤ ��t . Since this holds for any t 2
Z
0
N�1, the state and output equation constraints in (PMI) are trivially satisfied for
.x�0WN ;��0WN�1; ��0WN�1; si;t; ri;t/ for all i ¤ ��t and for all t 2 Z

0
N�1. It remains to check

if the state and output constraints in (PMI) are feasible for ��t for all t 2 Z
0
N�1.

Clearly, from the feasibility of .x�0WN ;��0WN�1; ��0WN�1; ��0WN�1/, the state and output
equations in (PMI) are satisfied with s��

t ;t D 0; r��

t ;t D 0, which is enforced by the
SOS-1 constraints for ��t . This proves the forward direction of the equivalence.

A Feasible Point of (PMI) is Feasible in (9.6) .(/

Now, let .x�0WN ;��0WN�1; ��0WN�1; a�1Wm;0WN�1; s�1Wm;0WN�1; r�1Wm;0WN�1/ be a feasible point
of (PMI). As before, since the admissible sets for states and process and measurement
noise are identical, we place our attention on the rest of the constraints. As a result of
the feasibility of a�1Wm;0WN�1, there exists a sequence ��t ; t 2 Z

0
N�1 such that a�

��

t ;t
D 1.

For such a sequence, s�j
��

t ;t
D 0; 8j 2 Z

C
n ; r�k

��

t ;t
D 0; 8k 2 Z

C
ny

, which results in the

satisfaction of state and output constraints in (9.6) for the sequence ��t ; t 2 Z
0
N�1.

Thus, we showed that there is a switching sequence corresponding to the feasible
solution of (PMI) that satisfies the state and output equations in (9.6) and therefore,
the feasibility of (9.6).

Since we have shown that the feasibility of each problem implies the feasibility
of the other, the proof is complete. ut

9 Passive Diagnosis with Detection Guarantees via Model Invalidation 233

Intuitively, the infeasibility of (PMI) indicates that there are no state, input, and
noise values that can generate input–output sequence from the model, and hence
it is impossible that the data is generated by the model. Proposition 1 enables us to
solve the model invalidation problem by checking the feasibility of (PMI), which is a
MILP with SOS-1 constraints that can be efficiently solved with many off-the-shelf
optimization softwares, e.g., [26, 27].

9.4 T-distinguishability

Next, we introduce a property for a pair of models (system and/or fault models)
called T-distinguishability,2 which imposes that the trajectory generated from the
two models cannot be identical for a time horizon of length T for any initial
state and any noise signals. This notion is very similar to the concept of input-
distinguishability, which is defined for linear time-invariant models in [23, 24].
T-distinguishability for a pair switched affine models is formally defined as follows:

Definition 5 (T-distinguishability) A pair of switched affine models G and NG is
called T-distinguishable if BT

swa.G/ \ BT
swa.
NG/ D ;, where T is a positive integer.

Thus, given two SWA models and an integer T , the T-distinguishability problem
is to check whether the two models are T-distinguishable or not. This problem
can be addressed using a Satisfiability Modulo Theory approach[16], or a MILP
feasibility check [17, 22].

Problem 2 (T-distinguishability Problem) Given a pair of SWA models and
an integer T , the T-distinguishability problem checks if the two models are T-
distinguishable or not. More precisely, whether or not the following problem is
feasible:

Find x; Nx;u;�; N�; �; N�
s:t: 8t 2 Z

0
T�1 W 9i 2 Z

C
m ; 9j 2 Z

C
Nm such that

xtC1 D Aixt C Biut C fi C �t;

NxtC1 D NAj Nxt C NBjut C Nfj C N�t;

Pxt � p; NPNxt � Np;
Cixt C Diut C gi C �t D NCj Nxt C NDjut C Ngj C N�t;

k�tk � "; kN�tk � " N; k�tk � "�; kN�tk � "N�; kutk � U:

(9.7)

2When the pair of models consists of the nominal system model and the fault model, this is also
known as T-detectability [16, 17, 22], whereas when both models are fault models, this is also
referred to as I-isolability [17].

234 F. Harirchi et al.

If problem (9.7) is infeasible, the two models are T-distinguishable. Otherwise they
are not T-distinguishable.

As we show next, for a given T , T-distinguishability can be verified by solving
a MILP feasibility problem. Note that in the following T-distinguishability test, we
have added a decision variable ı that will be used later to quantify the level of
distinguishability, which can be computed with little additional computational cost.

Theorem 1 A pair of switched affine models G and NG is T-distinguishable, if and
only if the following problem is infeasible.

Nı D min
x;Nx;u;�;N�;�;N�;s;Ns;r;a;ı ı

s:t: 8t 2 Z
0
T�1;8i 2 Z

C
m ; 8j 2 Z

C
Nm ;8k 2 Z

C
n ;8l 2 Z

C
ny
;

8h 2 Z
C
np
; Nh 2 Z

C
nNp
;

xtC1 D Aixt C Biut C fi C �t C si;t;

NxtC1 D NAj Nxt C NBjut C Nfj C N�t C Nsj;t;

Pxt � p; NPNxt � Np;
Cixt C Diut C gi C �t D NCj Nxt C NDjut C Ngj C N�t C ri;j;t;

ai;j;t 2 f0; 1g; P
i2ZC

m

P
j2ZC

Nm
ai;j;t D 1;

k�tk � "; kN�tk � " N; k�tk � "�; kN�tk � "N�; kutk � U;

.ai;j;t; sk
i;t/ W SOS � 1; .ai;j;t; Nsk

j;t/ W SOS � 1; .ai;j;t; rl
i;j;t/ W SOS � 1;

	
�t

�t

�

	 N�t

N�t

 � ı:

(PT)

We refer to the above-mentioned problem as FeasT.G; NG/.
Proof The proof follows essentially the same reasoning as the proof of Proposi-
tion 1, i.e., by showing the feasibility of Problem (9.7) is equivalent to Problem (PT),
and is omitted for brevity. Note that the last constraint does not appear in (9.7).
However, this constraint clearly does not change the feasible set, therefore the
feasibility of (PT) is necessary and sufficient for T-distinguishability.

The optimization formulation (PT) in Theorem 1 enables us to solve the
T-distinguishability problem, i.e., to determine if the pair of models are suf-
ficiently different based on their length-T behaviors. If the pair of models is
T-distinguishable, then one of the two models is guaranteed to be invalidated by
the model invalidation approach, discussed in the previous section, by using only
data from the most recent T time steps.

9 Passive Diagnosis with Detection Guarantees via Model Invalidation 235

9.5 Fault Detection and Isolation

In this section, we propose a tractable fault detection and isolation scheme for the
diagnosis of faults that satisfy the T-distinguishability property. The proposed fault
diagnosis scheme can handle multiple fault scenarios, and can be implemented in
real-time via model invalidation for a large class of applications.

9.5.1 Fault Detection

We are interested in developing a model-based tool for guaranteed fault detection,
i.e., one that can conclusively decide if a fault has occurred or not, given the nominal
system model and a set of potential fault models of interest for the system. To this
end, we show that the model invalidation framework we introduced in Sect. 9.3 with
the right assumptions can naturally serve this purpose.

Our proposed fault detection approach is based on determining if the measured
input–output data over a horizon is compatible with the behavior of the nominal
model G, i.e., if the nominal model is valid or more precisely, not invalidated.
Thus, our fault detection approach consists simply of checking for the feasibility
of the model invalidation problem with the nominal model G, and equivalently, by
checking the feasibility of (PMI) with the nominal model G (by Proposition 1).

If the nominal model is invalidated, i.e., (PMI) is infeasible, then we know for
certain that a fault has occurred. However, the feasibility of (PMI) for the nominal
system does not imply that a fault did not occur. This is because a fault model NG may
also have a similar behavior of some given length as the nominal model G. Thus, in
order to achieve guaranteed fault detection even in this case, we take advantage of
the assumed knowledge of the set of fault models.

With a given set of fault models, in order to conclusively establish if the fault has
occurred or not, we need to find a long enough time horizon T such that the input–
output trajectory generated from the fault models NG cannot be contained within
the length-T behavior of the nominal system model G. This coincides with the T-
distinguishability property that we defined in the previous section. In other words, if
we have a sufficiently long time horizon that guarantees T-distinguishability for the
system model and all the faults, we can implement model invalidation in a receding
horizon manner with this time horizon of size T with guarantees of fault detection or
that no fault has occurred. This is formalized in the next section, where the multiple
faults scenario is considered.

9.5.1.1 Multiple Faults Scenario

We consider the scenario when there are multiple possible faults, each described by
a different fault model. It is easy to verify that in order to conclusively determine

236 F. Harirchi et al.

if any fault has occurred or not for this scenario, all pairs of nominal system and
fault models need to be T-distinguishable. Thus, for each of the Nf fault models NGj,
j 2 Z

C
Nf

, we assume the following:

Assumption 1 (Detectability Assumption) We assume that for all j 2 Z
C
Nf

, there

exists a finite Tj such that the pair of nominal system G and the fault model NGj is
Tj-distinguishable. In addition, we assume that the faults are persistent, i.e., once
they occur, the system continues to evolve according to the fault dynamics.

Then, for guaranteed detection of all possible fault models, the following
condition is necessary and sufficient:

Proposition 2 (T-detectability for Multiple Faults) Consider Nf fault models that
satisfy Assumption 1. Then, the existence of a fault can be detected in at most T D
maxj Tj steps after the occurrence of a fault. We refer to such a set of faults as T-
detectable.

Proof Under Assumption 1, and since T � Tj, all pairs of nominal system model
and faults for all j 2 Z

C
Nf

are T-distinguishable. This means that if any of the faults
occurs persistently, it will be detected by observing at most T samples from the time
of occurrence.

Now, if all pairs of system and fault models are T-distinguishable, then the
previously discussed model invalidation based fault detection approach guarantees
the determination of the occurrence or non-occurrence of any fault in this set.
In brief, we check for the feasibility of the nominal system model, i.e., if the
problem (PMI) with the nominal model is infeasible, then a fault is detected.
Otherwise, if (PMI) is feasible, then we know for certain that no fault has occurred.
Note, however, that the detection of faults is not sufficient for uniquely determining
which fault has occurred, which is the subject of the next section.

9.5.2 Fault Isolation

In addition to fault detection, i.e., to determine if a fault has occurred, it is also
important and of interest in many applications to uniquely determine which specific
fault has occurred, i.e., to isolate the source of faults. The ability to do this can in
turn save a significant amount of effort in accommodating the isolated fault. Hence,
we develop a model-based fault isolation approach in this section.

In particular, given the nominal system model and a set of potential fault models
of interest for the system, we wish to determine which fault model is validated or
rather, not invalidated, based on the measured input–output data. Thus, similar to
fault detection, our proposed fault isolation approach consists simply of checking
for the feasibility of the model invalidation problem with each fault model NG, and
equivalently, by checking the feasibility of (PMI) with each of the fault models NG (by
Proposition 1).

9 Passive Diagnosis with Detection Guarantees via Model Invalidation 237

If all but one fault model is invalidated (i.e., (PMI) is infeasible for all fault
models except for one), then we definitively know that particular fault has occurred.
Therefore, in order to guarantee the isolation of a fault after it has occurred, we
need to find a sufficiently long time horizon T such that the input–output trajectory
generated from all the fault models cannot be contained within the length-T behavior
of each other. With this sufficiently long time horizon T , we can then implement
model invalidation in a receding horizon manner with this time horizon of size T for
all fault models (can be executed in parallel) with guarantees of fault isolation. Note
that this fault isolation approach is similar to our receding horizon fault detection
approach but with the fault models in place of the nominal system model. Next,
we formalize the notion of sufficiently long time horizon based on the previously
introduced property of T-distinguishability for the multiple faults scenario.

9.5.2.1 Multiple Faults Scenario

Let us consider Nf fault models NGj, j 2 Z
C
Nf

that may occur for system model
G. In order to isolate a fault, e.g., identify which of the faults has occurred, it is
straightforward to verify that all pairs of fault models need to be T-distinguishable,
i.e., the following assumption is necessary:

Assumption 2 (Isolability Assumption) We assume that for all m; n 2 Z
C
Nf

, m ¤
n, there exists a finite Im;n such that NGm and NGn are Im;n-distinguishable.

Remark 2 This isolability assumption and the detectability assumption in Assump-
tion 1 are indeed relatively strong assumptions. However, they are necessary
and sufficient for providing guarantees for passive fault detection and isolation
approaches with a receding horizon. In fact, these “strong” assumptions are the
reason that we have also considered active fault diagnosis methods [28, 29], which,
at the cost of perturbing the desired input to the system, make fault diagnosis
possible for a wider class of faults. Fortunately, as we show with examples in
Sect. 9.7, these assumptions hold for many parametric fault scenarios in real-world
applications.

Next, we provide a necessary and sufficient condition for guaranteed fault
isolation when there are multiple faults:

Proposition 3 (I-isolability for Multiple Faults) Consider Nf fault models that
satisfy Assumption 2. If a fault occurs, it can be isolated in at most I D
maxm;n; m¤n Im;n steps after the occurrence. We refer to such a set of faults as I-
isolable.

Proof Under Assumption 2, and because I � Im;n for all possible pairs of fault
models, all pairs of faults are I-distinguishable. Therefore, if any of the faults occur
persistently, by observing at most I samples, it will be isolated. This is because
the length-I behavior of the occurred fault does not have any intersection with the
length-I behavior of any of the other faults.

238 F. Harirchi et al.

9.5.3 FDI Scheme

In this section, we combine the results from previous subsections to obtain a fault
detection and isolation (FDI) scheme, which consists of two steps:

1. Off-line step: In the off-line step, under Assumptions 1 and 2, we calculate the
following quantities:

Isolability index W I D max
m;n

Im;n; m; n 2 Z
C
Nf
; m ¤ nI

Isolability index for fault i W QIi D max
j2ZC

Nf
; j¤i

Ii;jI

Detectability index W T D max
j2ZC

Nf

TjI

Length of memory W K D maxfT; Ig:

2. On-line step: In this step, we leverage Nf C 1 parallel monitors corresponding
to system and fault models. The monitors are labeled as fM0;M1; : : : ;MNf g,
where M0 corresponds to the system model and Mi corresponds to the i-th fault
model. First, only M0 is active for fault detection. The rest of the monitors
stay “off” until a fault is detected by M0. The inputs to each monitor at time
t are the input–output sequence of length Ki D maxfQIi;Tig, fuk; ykgtkDt�KiC1,
and the corresponding model NGi. For instance, M0 knows G, and at each
time step, it solves the model invalidation problem, Feas.fuk; ykgtkDt�TC1; G/.
If the problem is feasible, the monitor outputs 0, otherwise it outputs 1. In the
latter case, the bank of fault monitors is activated and parallelly solves the
model invalidation problems for all fault models, i.e., to check if Mj solves
Feas.fuk; ykgtkDt�KjC1; NGj/ for each j 2 Z

C
Nf

. By Assumptions 1 and 2, it is
guaranteed that in this case, the problem of at most one monitor is feasible. The
output block receives the signal from all the monitors and shows two elements.
The first element is 1 or 0, which indicates that a fault has occurred or not,
respectively. The second element is kf 2 Z

C
Nf

if the fault matches kf -th fault
model or 0 if the fault does not match any of the fault models.

Such an FDI scheme is illustrated in Fig. 9.1. As we can see, at every time step t,
this FDI scheme acts as a function:

ŒH;F 	 D .fuk; ykgtkDt�KC1; G; f NGjgNf

jD1/; (9.8)

where H is either 0 or 1 to indicate healthy or faulty behaviors, and F either
indicates the fault model that is active or claims that none of the fault models
matches the faulty behavior.

9 Passive Diagnosis with Detection Guarantees via Model Invalidation 239

Fig. 9.1 Flowchart of the proposed FDI scheme

9.5.4 Detection and Isolation Delays

Next, we describe the notion of delays in fault detection and isolation, and provide
theoretical bounds on these delays using the detectability and isolability indices.

Definition 6 (Detection/Isolation Delay) Detection/isolation delay is the number
of time samples it takes from the occurrence of the fault to its detection/isolation.
We denote detection and isolation delays with �T and �I , respectively.

Using the above definition and given a Ti-distinguishable pair of system and fault
model .G; NGi/, the detection delay of the proposed fault detection scheme is then

240 F. Harirchi et al.

bounded by Ti. In addition, the isolation delay of a pair of Ii;j-distinguishable fault
models . NGi; NGj/ is bounded by Ii;j.

Theorem 2 The detection delay for fault NGi using FDI scheme proposed in
Sect. 9.5.3 is upper-bounded by Ti, and the isolation delay is upper-bounded by
Ki D maxfQIi;Tig.
Proof Suppose fault i occurs at time t�. The FDI approach implements model
invalidation with a time horizon size of T � Ti. At the time t� C Ti � 1, the
input–output trajectory that is fed to the model invalidation contains a length Ti

trajectory that is in BTi. NGi/. By Ti-distinguishability of NGi, this trajectory cannot be
generated by G. Therefore, the model is invalidated at most by observing Ti data
points from fault i. This concludes the proof for the upper bound on detection delay.
For isolation, the FDI approach requires detection before the isolation monitors are
activated, and in the worst case detection occurs in Ti steps. On the other hand, if we
observe any trajectory from t� to t� C QIi � 1 that is generated by fault i, it is not in
BQIi. NGj/; j ¤ i. This is because QIi � Ii;j; j ¤ i. Hence, the fault is isolated with at most
QIi observations of the fault. Considering that the fault needs to be detected first, the
isolation delay is upper-bounded by Ki D maxfQIi;Tig. This concludes the proof.

9.6 Practical Considerations

In this section, we propose heuristics that can be leveraged to find T for T-
distinguishability more efficiently, to find a reliable measure for existence or
non-existence of such a T , and to reduce isolation delays.

9.6.1 Finding T for T-distinguishability

The following issues are important in practice: (1) If there is a finite T , how can
one search for the smallest such T? (2) What happens if the systems are not T-
distinguishable? How can the non-existence of a finite T be verified and what can
be done in terms of fault detection in this case?

Consider two switched affine models. If the two models are not T-distinguishable
for a given T , i.e., the solution to (PT) is feasible, the optimization formulation
additionally outputs the value Nı, which we argue is a good indication and measure
for the separability of two models. In essence, Nı can be interpreted as the noise
effort that is required to make the trajectories of the two models identical. A larger
value for Nı indicates a larger separation between the two models that the noise
has to compensate for. Hence, we refer to the normalized version of Nı as the
distinguishability index, given by

9 Passive Diagnosis with Detection Guarantees via Model Invalidation 241

ı� D
Nı

ımax
; (9.9)

where ımax :D minfmaxf" C " N; "� C "N�g;maxf"; "�g C maxf" N; "N�gg is an upper
bound on Nı; hence, 0 � ı� � 1.

First, it is noteworthy that if the pair of models is T-distinguishable, then the pair
is also necessarily TC-distinguishable for any TC � T . So once the problem (PT)
is infeasible for some T , it will remain infeasible for larger values of T . This
suggests that a smallest time horizon T may exist, which is very useful in terms
of computational complexity because the number of variables and constraints for
the formulation in (PMI) increases with the size of the time horizon. Hence, the
complexity of the solutions to the model invalidation problem grows with the length
of the input–output data sequence. To find the smallest T for which we have T-
distinguishability, one could use binary search starting from T D 1 until the smallest
T is obtained that makes the T-distinguishability problem in Theorem 1 infeasible.
The upper increments of the line search can also be guided by the value of the
distinguishability index ı�, to make larger increments in T when the problem is
feasible and ı� is small for the current T .

On the other hand, not all pairs of models are T-distinguishable. Clearly, if the
models are identical, then no finite T exists, hence a finite T for T-distinguishability
can only be obtained for certain pairs of models. System theoretic conditions
under which a T exists are the subject of current research [22]. Nonetheless, we
would like to suggest that the trend of ı� with increasing T can be used as a
heuristic to determine when the iterations with increasing T can be terminated
with some confidence that a finite T does not exist. In particular, we propose to
terminate the iterations when the trend of ı� with increasing T reaches a plateau.
This is demonstrated to be effective in a simulation example in Sect. 9.7.3. In
addition, when this index does reach a (non-zero) plateau and the problem remains
not T-distinguishable, then this ı�plateau is also a useful parameter for the pair of
models, which can be interpreted as the maximum allowed uncertainty beyond
which the behaviors of the pair of models are not distinguishable. This may suggest
possible design remedies involving the choice of sensors with better precision or the
employment of noise isolation platforms to reduce the amount of noise, in order to
facilitate fault detection and isolation.

In some practical examples, detectability and isolability of all faults cannot be
achieved by design, i.e., Assumptions 1 and 2 are not satisfied. In these cases, one
can still pick an arbitrary T for which online computation is tractable and apply the
FDI approach. Any infeasibility of the model invalidation problem for the nominal
model is still a certificate that the system has deviated from the nominal behavior and
a fault occurred, however some of the fault can remain undetected and unisolated
among the given fault models. Moreover, the FDI approach can be simply modified
such that F outputs either the set of faults that matches the data (because some fault
models may not be isolable) along with their corresponding “likelihoods” in terms
of their distinguishability indices or the empty set if none of the models matches

242 F. Harirchi et al.

the data. Another aspect that is worth mentioning is the case of non-persistent, and
in particular, cascading faults. The proposed modeling framework can easily handle
such cascading faults if one defines a switched system model for the fault cascade
with possibly additional constraints on the switching signal as detailed in [22].

9.6.2 Adaptive Fault Isolation

The bound on isolation delays represents the worst case scenario, where the data
created by a fault model falls within the behavior of some other models up until
the very last time step. However, the worst case scenario is rarely encountered in
practice, where the faults can be isolated much prior to this bound. Here, in this
section, we propose an adaptive fault isolation scheme that may reduce isolation
delay, which is based on the idea of validation of only one of the fault models. Since
the data prior to the time of detection is likely to invalidate all the fault models
(in fact, this is guaranteed before the occurrence of a fault), we propose to reduce
isolation delays by using an adaptive receding horizon that considers only the data
starting from the detection time (fixed horizon lower bound) with increasing horizon
until only one fault model matches or validates the data. In practice, we can achieve
this by considering model invalidation for each of the fault models with the adaptive
receding horizon until only one fault model remains that matches the data.

Since we assumed that the fault is among the predefined set of models and is
persistent, it is guaranteed that the fault will be isolated with this approach. Such
an approach has the potential to significantly reduce isolation delays, as we have
observed in simulation in Sect. 9.7.2 (cf. Fig. 9.4 (bottom row)).

9.7 Illustrative Examples

First, we demonstrate in Sect. 9.7.1 that our new formulations for model invalidation
and T-distinguishability in Proposition 1 and Theorem 1, respectively, are com-
putationally superior to the previous formulation in [16, 22]. Then, we illustrate
the performance of the proposed FDI scheme using a numerical model for the
Heating, Ventilating, and Air Conditioning (HVAC) system that is proposed in [30]
in Sect. 9.7.2. Moreover, we provide a numerical example in Sect. 9.7.3 to illustrate
the practical merits of the distinguishability index that was introduced in Sect. 9.4.
All the simulations in this section are implemented on a 3.5 GHz machine with
32 GB of memory that runs Ubuntu. For the implementation of the MILP feasibility
check problems, we utilized YALMIP [31] and Gurobi [26]. All the approaches and
examples are implemented in MATLAB.

9 Passive Diagnosis with Detection Guarantees via Model Invalidation 243

9.7.1 Run-Time Comparison

In this section, we compare the run-time for the formulations proposed in this
paper with the one in [22]. Consider a hidden-mode switched affine model, G,
with admissible sets X D fx j kxk � 11g, U D fu j kuk � 1000g and
E D f� j k�k � 0:1g. We assume there is no process noise. We also assume
B D Œ1 0 1	ᵀ and C D Œ1 1 1	 for all modes. The system matrices of the modes
are:

A1D
2

4
0:5 0:5 0:5

0:1 �0:2 0:5
�0:4 0:6 0:2

3

5; f1D
2

4
1

0

0

3

5; A2D
2

4
0:5 0:5 0:5

�0:3 �0:2 0:3

0:1 �0:3 �0:5

3

5; f2D
2

4
0

1

0

3

5;

A3D
2

4
0:5 0:2 0:6

0:2 �0:2 0:2
�0:9 0:7 0:1

3

5; f3D
2

4
0

0

1

3

5:

In addition, consider a fault model, G f , with:

Af D
2

4
0:8 0:7 0:6

0:1 �0:2 0:3

�0:4 0:3 �0:2

3

5; Bf D
2

4
1

0

0

3

5; ff D
2

4
1

1

1

3

5 :

The implementation of the T-distinguishability approach proves that the system
and fault model pairs is 12-distinguishable. We first randomly generate input–
output trajectories (5 for each time horizon length) from G f . We then compare the
model invalidation approaches that use the proposed formulation in Proposition 1
and the one in [16, 22]. The average run-time for each time horizon length as
well as the standard deviation of run-times for both formulations are illustrated in
Fig. 9.2. Clearly, the results indicate the superiority of the proposed formulation to
the one in [16, 22]. Similar improvements were also observed for the proposed T-
distinguishability formulation in Theorem 1 when compared to [16, 22] (plots are
omitted for brevity).

9.7.2 Fault Diagnosis in HVAC Systems

In [30], a single-zone HVAC system in cooling mode (cf. schematic in Fig. 9.3) is
considered. This HVAC system is represented by a non-linear model as follows:

244 F. Harirchi et al.

Fig. 9.2 Average execution
time (with standard
deviations) for invalidating
data generated by Gf with
various time horizons

0 50 100 150 200

Time Horizon(samples)

T
im

e(
s)

0

20

40

60

80

100
SOS-1

Convex hull

Fig. 9.3 Schematic of a single-zone HVAC system

0

@
PTTS
PWTS
PTSA

1

A D

0

BBB
@

� f
Vs

hfgf
CpVs

f
Vs

0 � f
Vs

0

0:75 f
Vhe
�0:75 fhw

CpVhe
� f

Vhe

1

CCC
A

0

@
TTS

WTS

TSA

1

A

C

0

BB
B
@

� hfgf
CpVs

Ws C 4
CpVs

.Qo � hfgMo/

f
Vs

Ws C Mo
�Vs

f
4Vhe

.To � hw
Cp

Wo/C fhw
CpVhe

Ws � 6000 gpm
�CpVhe

1

CC
C
A
;

(9.10)

9 Passive Diagnosis with Detection Guarantees via Model Invalidation 245

Table 9.1 Parameters of the model

Parameter Description Value

hw Enthalpy of liquid water 180 (Btu/lb)

hfg Enthalpy of water vapor 1078.25 (Btu/lb)

Wo Humidity ratio of outdoor air 0.018 (lb/lb)

Ws Humidity ratio of supply air 0.007 (lb/lb)

WTS Humidity ratio of thermal space State variable

Cp Specific heat of air 0.24 (Btu/lb.ıF)

To Temperature of outdoor air 85 (ıF)

TSA Temperature of supply air State variable (ıF)

TTS Temperature of thermal space State variable (ıF)

Vs Volume of thermal space 58,464 (ft3)

Vhe Volume of heat exchange space 60.75 (ft3)

Mo Moisture load Œ150 180	 (lb/h)

Qo Sensible heat load Œ289; 800 289; 950	 (Btu/h)

� Air mass density 0.074 (lb/ft3)

f Volumetric flow rate of air 17,000 (ft3/min)

gpm Flow rate of chilled water f0; 58g (gal/min)

where f , gpm, Mo and Qo are time varying parameters. The parameters of the model
are defined in Table 9.1.

We leverage an augmented state-space model with additional states Q0 and M0

that is obtained in [30]. To further simplify the model, we assume that the fan is
always turned on and the flow rate is fixed at 17;000 ft3/min and the chiller pump
is either “off” or “on” with a fixed flow rate of 58 gal/min. These assumptions
along with a discretization with a sampling time of 5min convert the nonlinear
system (9.10) to a switched affine model parameterized by

A1 D A2 D

0

BBBBB
@

0:98 229:63 0:001 0 �0:0035
0 0:94 0 0 0

0:74 �360:61 0:0008 0 �0:0030
0 0 0 1 0

0 0 0 0 1

1

CCCCC
A
; f2D

0

BBBBB
@

0:3886

0:0001

�22:576
0

0

1

CCCCC
A
;

C1 D C2 D
�
1 0 0 0 0

0 1 0 0 0

�
; f1 D 0;

where the system evolves according to the following continuous dynamics in
mode i:

xtC1 D Aixt C fi C vt;

yt D Ci.xt C xe/C �t; xe D
�
71 0:0092 55 289; 897:52 166:06

�ᵀ
:

(9.11)

246 F. Harirchi et al.

Table 9.2 Detectability and isolability indices

T1 D 4 T2 D 16 T3 D 8 I1;2 D 4 I1;3 D 4 I2;3 D 16

The states in the SWA model represent the deviation of TTS, WTS, TSA, Q0, and
M0 from their equilibria, xe. In addition, the HVAC model is represented by GH D
.X ; E ;U ; fGig2iD1/, where X D fx j Œ�100 � 0:05 � 50 � 75 � 15	ᵀ � x �
Œ100 0:05 50 75 15	ᵀg, E D f� j j�j � Œ0:2 0:002	ᵀg and U D ;. The last two
bounds on the states are for the augmented states, which are assumed to stay within
a small range of their equilibria. The first mode corresponds to chiller being “on”
and the second mode represents the model when it is “off.” The controller keeps
the temperature in the comfort zone of 65–75ıF by turning the chiller on and off.
Control signals are not observed by the FDI scheme.

We consider three fault models3:

1. Faulty fan: The fan rotates at half of its nominal speed.
2. Faulty chiller water pump: The pump is stuck and spins at half of its nominal

speed.
3. Faulty humidity sensor: The humidity measurements are biased by an amount of

+0.005.

By implementing the proposed approach on these fault models, we can calculate
the T-distinguishability and I-isolability indices, which are given in Table 9.2.

Next, we consider three fault scenarios, where for each scenario i (i 2 f1; 2; 3g),
we generate data from the nominal system for 4 h and from fault i afterwards. The
times at which the faults occur and their detection times, as well as the upper bounds
on isolation delays are indicated in Fig. 9.4 (top and middle rows), which show the
output trajectories for each scenario. Furthermore, we plot in Fig. 9.4 (bottom row)
the detection and isolation signals for all three faults to show that only the occurred
fault is isolated in all scenarios before their upper bounds are exceeded, and that the
proposed adaptive isolation scheme reduces the isolation delay, as desired.

Moreover, to illustrate the practical use of the distinguishability index, ı�, in
Fig. 9.5, we plotted the growth trend of the distinguishability index ı� as the time
horizon increases for T-distinguishability of fault 3 and I-isolability of faults 2 and
3. The plot shows that the distinguishability index we introduced does indeed deliver
a nice measure of how far two models are from detectability or isolability, and at
the same time, it allows us to estimate the size of time horizon, T or I, to achieve
T-distinguishability or I-Isolability.

3These faults can also be consequences of cyber or physical attacks. For instance, the bias in the
humidity sensor can be a result of a false data injection attack (a common form of cyberattack).

9 Passive Diagnosis with Detection Guarantees via Model Invalidation 247

0 2 4 6 8

66

68

Fault 1

Detection

 Guaranteed
 isolation
 for Fault 1

0 2 4 6 8

8

10

10-3

0 2 4 6 8
0

2

4
Detection
Flag1
Flag2
Flag3
Fault1
Fault1 (Adaptive Isolation)

0 2 4 6 8

58
60
62
64
66

Fault 2

Detection

Guaranteed
isolation for
 Fault 2

0 2 4 6 8

8

10

10-3

0 2 4 6 8
0

2

4
Detection
Flag1
Flag2
Flag3
Fault 2
Fault 2 (Adaptive Isolation)

0 2 4 6 8

66

67

68

Fault 3

Detection

Fault 3

Guaranteed
isolation for
 Fault 3

0 2 4 6 8
0.008

0.01

0.012

0.014

0 2 4 6 8
0

2

4
Detection
Flag1
Flag2
Flag3
Fault 3
Fault 3 (Adaptive Isolation)

Fig. 9.4 The outputs (top two rows) of three fault scenarios; Detection, isolation, and adaptive
isolation signals for all faults (bottom row). Flag i is non-zero when the model invalidation problem
associated with fault i using the adaptive horizon length is validated. Adaptive isolation occurs
when only one Flag is non-zero

Fig. 9.5 Increase in the
detectability index for fault 3,
T3, and the isolability index
for faults 2 and 3, I2;3, in the
HVAC example

5 10 15
0

0.5

1

248 F. Harirchi et al.

9.7.3 Distinguishability Index and System Uncertainty

The distinguishability index, ı�, does not always achieve the final value of 1 as in the
previous example, especially when the models are not distinguishable or isolable.
To demonstrate this, we consider two synthetic SWA models G and NG subject to
measurement and process noise, given by

G W

8
ˆ̂̂
ˆ̂̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂:

A1 D

0

BB
@

0:1 0 0:1

0 0:1 0:2

0:2 0:12 0

1

CC
A ; A2 D

0

BB
@

0 0 0:15

0:1 0 0

0:1 0:12 0:1

1

CC
A ;

C1 D C2 D I; f1 D

0

BB
@

0:5

0:2

1

1

CC
A ; f2 D

0

BB
@

1

0

0:5

1

CC
A ;

NG W

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

NA1 D

0

BB
@

0:1 0 0:1

0 0:1 0:2

0:2 0:1 0

1

CC
A ;
NA2 D

0

BB
@

0 0 0:1

0:1 0 0

0:1 0:1 0:1

1

CC
A ;

NC1 D NC2 D I; Nf1 D

0

BB
@

0:3

0

0:9

1

CC
A ;
Nf2 D

0

BB
@

0:8

0:2

0:3

1

CC
A ;

(9.12)

where the rest of the parameters are zero. The bounds on the process and measure-
ment noise are set to be 0:2 and 0:25, respectively. Figure 9.6 depicts the change of
the distinguishability index with increasing T . We observe that the distinguishability
index increases nonlinearly and reaches a plateau at a value of ı�plateau D 0:7581 < 1.
In this case, the distinguishability index ı� provides a practical indication that these
two models are very unlikely to be isolable for any finite I.

In addition, for the process and measurement noise with bounds 0:2 and 0:25, we
can compute ımax D 0:5; hence, we can correspondingly calculate Nıplateau D 0:379

Fig. 9.6 Nonlinear increase
of the distinguishability index
with a plateau at around
T D 5, for the numerical
example described by (9.12)

5 10 15
0

0.5

1

9 Passive Diagnosis with Detection Guarantees via Model Invalidation 249

Fig. 9.7 Distinguishability
index with redesigned
system (9.12) with noise
bounds at 0:18

1 2 3 4 5
T

0

0.5

1

using ı�plateau D 0:7581 and (9.9). Note that Nıplateau represents the uncertainty effort
to make the outputs of the two models identical. If Problem (PT) is feasible with
a minimum of Nıplateau for some given process and measurement noise bounds, then
the distinguishability index plot will have a plateau as shown in Fig. 9.6. In fact, any
bigger noise bounds will yield such as plateau. On the other hand, any smaller noise
bounds will make Problem (PT) infeasible, and the two models are then guaranteed
to be T-distinguishable for some finite T , and the distinguishability index plot will
reach its maximum at time T�1. Therefore, if we can redesign the system such that
with the new noise bounds we have:

Nı < Nıplateau D 0:379;

then we can be sure that these faults are isolable. For instance, if we can reduce
the process and measurement noise bounds to 0:18, the minimum of Problem (PT)
will be obtained at Nı D 0:36. In this case, since Nı < Nıplateau, the two models
in (9.12) are found to be 6-distinguishable. The growth trend of the corresponding
distinguishability index with these new noise bounds is plotted in Fig. 9.7.

Thus, this example illustrates that the distinguishability index can also be
exploited to derive the maximum allowed uncertainty for a system such that certain
faults are guaranteed to be detectable or isolable. In turn, this suggests possible
measures for ensuring fault detection and isolation through the reduction of noise
levels, either with a better choice of sensors or with the use of noise isolation
platforms.

9.8 Conclusion

In this paper, we considered the FDI problem for switched affine models using a
model invalidation approach. First, we proposed new model invalidation and T-
distinguishability formulations using SOS-1 constraints, that are demonstrated to be
computationally more efficient and do not require a complicated change of variables.
Further, we introduced a distinguishability index as a measure of separation between

250 F. Harirchi et al.

models and showed that this index is also a practical tool for finding the smallest
receding time horizon that is needed for fault detection and isolation, as well as for
recommending system design changes for ensuring fault detection and isolation.

Moreover, we introduced a fault detection and isolation scheme for switched
affine models, which guarantees the detection and isolation of faults when certain
conditions are met. The scheme is built upon an optimization-based method,
which formulates the fault-detection and isolation as MILP feasibility check and
optimization problems. The detection and isolation monitors can be implemented
independently on several processing units, hence it can be efficiently implemented
for a large number of faults. Moreover, we introduced adaptive time horizons in
order to isolate faults faster. Finally, we illustrated the efficiency of the proposed
approaches with several examples, including with an HVAC system model that is
equipped with our FDI scheme.

As future work, we are interested to find system theoretic upper bounds on the
time horizon T or I such that the incremental search for the smallest T or I can be
efficiently terminated with some formal guarantees.

Acknowledgements This work is supported in part by DARPA grant N66001-14-1-4045 and an
Early Career Faculty grant from NASA’s Space Technology Research Grants Program.

References

1. R. Beard, Failure accommodation in linear systems through self-reorganization. PhD thesis,
MIT, 1971

2. S. Simani, C. Fantuzzi, R.J. Patton, Model-Based Fault Diagnosis in Dynamic Systems Using
Identification Techniques (Springer, London, 2003)

3. P. Frank, Advances in observer-based fault diagnosis, in International Conference on Fault
Diagnosis: TOOLDIAG (1993)

4. P. Frank, X. Ding, Survey of robust residual generation and evaluation methods in observer-
based fault detection systems. J. Process Control 7(6), 403–424 (1997)

5. H. Sneider, P.M. Frank, Observer-based supervision and fault detection in robots using
nonlinear and fuzzy logic residual evaluation. IEEE Trans. Control Syst. Technol. 4(3), 274–
282 (1996)

6. R. Isermann, Fault diagnosis of machines via parameter estimation and knowledge processing–
tutorial paper. Automatica 29(4), 815–835 (1993)

7. X. Liu, H. Zhang, J. Liu, J. Yang, Fault detection and diagnosis of permanent-magnet DC
motor based on parameter estimation and neural network. IEEE Trans. Ind. Electron. 47(5),
1021–1030 (2000)

8. H. Hammouri, M. Kinnaert, E.H. El Yaagoubi, Observer-based approach to fault detection and
isolation for nonlinear systems. IEEE Trans. Autom. Control 44(10), 1879–1884 (1999)

9. S. Paoletti, A. Garulli, J. Roll, A. Vicino, A necessary and sufficient condition for input-output
realization of switched affine state space models, in 47th IEEE Conference on Decision and
Control, Dec 2008, pp. 935–940

10. A. Abdo, S.X. Ding, J. Saijai, W. Damlakhi, Fault detection for switched systems based on a
deterministic method, in IEEE Conference on Decision and Control (CDC) (2012), pp. 568–
573

9 Passive Diagnosis with Detection Guarantees via Model Invalidation 251

11. W. Pan, Y. Yuan, H. Sandberg, J. Gonçalves, G. Stan, Online fault diagnosis for nonlinear
power systems. Automatica 55, 27–36 (2015)

12. S. Narasimhan, G. Biswas, Model-based diagnosis of hybrid systems. IEEE Trans. Syst. Man
Cybern. Part A 37(3), 348–361 (2007)

13. S. Campbell, R. Nikoukhah, Auxiliary Signal Design for Failure Detection (Princeton Univer-
sity Press, Princeton, 2004)

14. J.K. Scott, R. Findeisen, R.D. Braatz, D.M. Raimondo, Input design for guaranteed fault
diagnosis using zonotopes. Automatica 50(6), 1580–1589 (2014)

15. P. Rosa, C. Silvestre, J.S. Shamma, M. Athans, Fault detection and isolation of LTV systems
using set-valued observers, in IEEE Conference on Decision and Control (CDC) (2010),
pp. 768–773

16. F. Harirchi, N. Ozay, Model invalidation for switched affine systems with applications to fault
and anomaly detection. IFAC ADHS Conf. 48(27), 260–266 (2015)

17. F. Harirchi, S.Z. Yong, N. Ozay, Guaranteed fault detection and isolation for switched affine
models, in IEEE Conference on Decision and Control (2017)

18. F. Harirchi, Z. Luo, N. Ozay, Model (in)validation and fault detection for systems with
polynomial state-space models, in American Control Conference (ACC), July 2016, pp. 1017–
1023

19. R.S. Smith, J.C. Doyle, Model validation: a connection between robust control and identifica-
tion. IEEE Trans. Autom. Control 37(7), 942–952 (1992)

20. J. Anderson, A. Papachristodoulou, On validation and invalidation of biological models. BMC
Bioinf. 10(1), 1 (2009)

21. N. Ozay, M. Sznaier, C. Lagoa, Convex certificates for model (in)validation of switched affine
systems with unknown switches. IEEE Trans. Autom. Control 59(11), 2921–2932 (2014)

22. F. Harirchi, N. Ozay, Guaranteed model-based fault detection in cyber-physical systems: a
model invalidation approach (2016). arXiv:1609.05921 [math.OC]

23. H. Lou, P. Si, The distinguishability of linear control systems. Nonlinear Anal. Hybrid Syst.
3(1), 21–38 (2009)

24. P. Rosa, C. Silvestre, On the distinguishability of discrete linear time-invariant dynamic
systems, in IEEE CDC-ECC (2011), pp. 3356–3361

25. M. Babaali, M. Egerstedt, Observability of switched linear systems, in International Workshop
on Hybrid Systems: Computation and Control (Springer, Berlin, 2004), pp. 48–63

26. Gurobi Optimization, Inc., Gurobi Optimizer Reference Manual (2015)
27. CPLEX, IBM ILOG, V12. 1: User’s manual for CPLEX. Int. Bus. Mach. Corp. 46(53), 157

(2009)
28. F. Harirchi, S.Z. Yong, E. Jacobsen, N. Ozay, Active model discrimination with applications to

fraud detection in smart buildings, in IFAC World Congress, Toulouse (2017)
29. Y. Ding, F. Harirchi, S.Z. Yong, E. Jacobsen, N. Ozay, Optimal input design for affine model

discrimination with applications in intention-aware vehicles, in International Conference on
Cyber-Physical Systems (ICCPS), (Porto, 2018)

30. B. Argüello-Serrano, M. Vélez-Reyes, Nonlinear control of a heating, ventilating, and air
conditioning system with thermal load estimation. IEEE Trans. Control Syst. Technol. 7(1),
56–63 (1999)

31. J. Löfberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in CACSD
Conference, Taipei (2004)

Chapter 10
Diagnosability of Discrete Faults with
Uncertain Observations

Alban Grastien and Marina Zanella

10.1 Introduction

A Hybrid System (HS) [11] is a dynamic system whose behavior can be described
by means of an automaton consisting in a set of states, where state transitions are
triggered by a finite number of discrete events, each of which is either observable
or unobservable. Each state represents an operating mode described by (possibly
abnormal) continuous dynamics. Reasoning about HSs is a difficult task because
it requires handling the discrete aspects (which involve search) as well as the con-
tinuous aspects (which lead to infinite spaces). A popular method to diagnose such
systems is to discretize the model and reason only about the underlying Discrete-
Event System (DES). Traditionally the discretization was performed manually.
Indeed the examples of DESs used in the literature are often relevant to cyber-
physical systems that one would naturally model as HSs: HVAC systems [21], power
networks [1, 2], telecommunication networks [19], water distribution networks [7],
etc. In more recent works [3, 10, 29] this discretization is performed automatically
through the use of analytical redundancy relations [24] or possible conflicts [20].
Diagnosis of DESs is a research field that has developed a number of techniques to
scale to large systems [1, 8, 9, 15, 17, 19, 22, 26]. For this reason, we assume that
the model of the HS is a DES.

A DES [4] is a conceptual model of a dynamical system where the system
behavior is described by transitions over a finite set of states and each transition

A. Grastien (�)
Data61, The Australian National University, Canberra, ACT, Australia
e-mail: alban.grastien@data61.csiro.au

M. Zanella
University of Brescia, Department of Information Engineering, Brescia, Italy
e-mail: marina.zanella@unibs.it

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4_10

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74962-4_10&domain=pdf
mailto:alban.grastien@data61.csiro.au
mailto:marina.zanella@unibs.it
https://doi.org/10.1007/978-3-319-74962-4_10

254 A. Grastien and M. Zanella

is associated with an event out of a finite set of events. Model-based diagnosis of
DESs is a task that takes as input the DES model of a (natural or man-made) system
along with a relevant observation and produces as output a diagnosis, i.e. some
pieces of information explaining whether what has been observed is consistent either
with a normal behavior or an abnormal one. There are several notions of diagnosis
of DESs in the literature featuring different levels of abstraction. According to a
common notion, the diagnosis of a DES is a set of candidates, each candidate
being a set of faults, where a fault is an undesired state transition. The definition
of a candidate requires that the faults included in a candidate are consistent with
both the DES model and the given observation. However, distinct candidates may
bring conflicting information. This is the case, for instance, when according to a
candidate the system is free of faults while according to another it is affected by
faults. A DES that is repeatedly diagnosed while it is being monitored (that is, a
new set of candidates is produced every time a new observable event or a chunk of
observable events is processed) is diagnosable if such ambiguity can be removed
once a bounded sequence of observable events have taken place.

DES diagnosability was introduced by the diagnoser approach [21], where a
necessary and sufficient condition is proposed to check diagnosability based on
the construction of a so-called diagnoser. The problem of deciding diagnosability
was then proved to be polynomial by using the twin plant method [13]. Similar
approaches to diagnosability checking can be found in [5, 28].

Existing works are focused on how to verify the intrinsic diagnosability of a DES
and assume that candidates are computed by an exact diagnostic algorithm that takes
as input a completely certain observation. Exceptions include diagnosability under
imperfect conditions for modular structures [6], decentralized analysis [23], and
approximate diagnosers [25]. As remarked in this latest paper, the diagnosability
property can be exhibited even when some incomplete or approximate diagnostic
algorithms are used, i.e. algorithms that do not perform a complete search of the
behavioral space of the DES. However, this work still relies on a completely certain
observation while in the real world the observation may be uncertain, as remarked
by some contributions on diagnosis of DESs [8, 14, 18]. In a broader perspective,
one can see that the ability to remove ambiguities in candidates depends not only on
the DES and the diagnostic algorithm at hand but also on the available observations.

This chapter, which extends a recent work by the authors [27], investigates
whether the ability to disambiguate DES candidates, i.e. the diagnosability property,
holds for a diagnosable system with uncertain observations. The uncertainty is
measured by a parameter, which allows one to study the level of noise that can affect
the observation without impacting the performance of diagnosis. Several kinds of
uncertainties in the observations can be envisaged and several parameters can be
adopted to measure the same type of uncertainty.

The remaining of this chapter is organized as follows. The next section presents
the relevant background information on diagnosability, including an introduction to
the twin plant approach to check diagnosability. Section 10.3 discusses the notion

10 Diagnosability of Discrete Faults with Uncertain Observations 255

of uncertain observations, and presents three types of uncertainty: temporal, logical,
and combined. Section 10.4 extends the original definition of DES diagnosability
to the case when an uncertain observation is considered, and shows how the twin
plant approach can be applied with uncertain observations. Section 10.5 describes an
HS, and performs its diagnosability analysis. Finally, Sect. 10.6 draws conclusions
and hints at directions for future research, some of which are specific to the
diagnosability analysis of HSs.

10.2 Background

A DES diagnosis problem consists in a DES D and a (finite) observation O, the latter
representing what has been observed while D was running during a time interval of
interest.

10.2.1 Discrete-Event Systems

A (partially observable) DES D is a 4-tuple .†;L; obs; flt/ where † is the finite set
of events that can take place in the system; L � †� is the behavior space, which is
a prefix-closed and live, i.e. deadlock-free, language that models all (and only) the
possible sequences of events, or traces, that can take place in the system. Function
obs associates each trace � with an observation obs.�/ 2 †�o and is defined as the
projection of � on the subset†o � † of observable events, i.e. obs.�/ is a copy of �
where all non-observable events have been removed. The length of the sequence of
events in obs.�/ is denoted jobs.�/j. The prefix-closed and live observable language
relevant to L is denoted as obs.L/.1 The set of unobservable faulty events, or faults,
is denoted as †f where †f � † n †o. Function flt associates each trace � with the
set flt.�/ 2 †�f of faulty events that appear in the trace itself.

Language L of DES D D .†;L; obs; flt/ can be represented by a finite automaton
(FA) G D .X; †; ı; x0/, called the behavioral model, where X is the set of states
and ı � X �† � X is the set of state transitions. Each x 2 X represents a state that
D can be in and each triple .x; �; x0/ 2 ı represents a possible state change. State
x0 2 X is the initial one, i.e. the state of the system at the moment when we have
started to observe its evolution. A path in automaton G is a sequence of transitions

starting from the initial state, concisely represented as x0
�1�! x1

�2�!

 �n�! xn where
n � 1. A trace is a projection of a path on†, e.g. �1:

 : �n. Figure 10.1 displays the
behavioral model G of a DES D that will be used as a running example throughout
this chapter. Such a model encompasses one faulty event f , another unobservable

1Notice that the fact that L is assumed to be live does not imply that obs.L/ is live. However,
following the diagnoser approach [21], we also assume that obs.L/ is live.

256 A. Grastien and M. Zanella

Fig. 10.1 DES used to
illustrate this chapter

012 3 4

5

67 8 9

c c
da b

ud

f
e

g

h h

g

e

event u, and seven observable events (a–e, g, and h). A possible path is 0
h�! 8

g�!
9

e�! 3
f�! 4

c�! 4, corresponding to the trace h: g: e: f : c, where : is the concatenation
operator.

Given a diagnosis problem .D;O/, a diagnosis candidate is a pair .x; '/ 2 X �
2†f where x represents the state that system D has reached by a path generating O
and ' represents the set of faults of this path. The diagnosis is the set of all the
candidates relevant to the diagnosis problem .D;O/. The diagnosis relevant to our
sample system D in Fig. 10.1 and observation O = h: g: e: c is f.4; ff g/g. Such a
diagnosis consists of just one candidate, meaning that, once observation O has been
perceived, the state of D is certainly 4 and fault f has necessarily occurred.

10.2.2 Diagnosability

Following [21], a DES D exhibits the diagnosability property as far as a fault
f 2 †f is concerned if the occurrence of such a fault can always be detected and
isolated without any ambiguity once a finite sequence of observable events has been
recorded. Given an observation, an exact diagnostic algorithm is able to draw all
the sets of faults relevant to all the traces consistent with such an observation. If,
for whichever path that has preceded the occurrence of the fault, and for whichever
sequence of transitions (generating k observable events) that has followed it, all the
traces that are consistent with such an observation include the fault, then such a
fault is certain (and it is said to be diagnosable) as it belongs to the intersection of
all the candidate sets of faults. The system is said to be diagnosable if all its faults
are diagnosable. We denote Lf D .†�f†�/ \ L the set of traces that include fault f
and NLf D .†�f / \ L the set of traces that end with fault f .

Definition 1 (Diagnosability [21]) Given a DES D D .†;L; obs; flt/ whose set of
faults is †f � †, a fault f 2 †f is diagnosable if

8�1 2 NLf ; 9k 2 N;8�2 W �1: �2 2 L; jobs.�2/j � k

) .8� 2 L/; .obs.�/ D obs.�1: �2/) .� 2 Lf //:

System D is diagnosable if all its faults are diagnosable.

10 Diagnosability of Discrete Faults with Uncertain Observations 257

DES D of our example in Fig. 10.1 is diagnosable with k D 1 since the
occurrence of fault f is precisely detected once the occurrence of observable event
c has been perceived immediately after having perceived either b or h: g: e. One can
appreciate that such a notion of diagnosability relies on function obs, which provides
the sequence of observable events that have occurred in the system during its
evolution, where such a sequence reflects the chronological order of the occurrence
of events within a trace. The above definition of diagnosability implicitly assumes
that, if a DES follows a trace u, the observation O processed by the diagnostic engine
equals obs(u). An observation like this is certain.

10.2.3 Twin Plant Method

The most popular approach to DES diagnosability analysis is the so-called twin
plant method [13]. The name refers to the product of a system behavioral model (or
of some FA drawn from it) by itself.

Given a (nondeterministic) FA G, representing the behavioral model of a DES,
the twin plant method draws from G a completely observable (nondeterministic)
FA Go, whose set of events is †o, that is, it consists of all and only the observable
events of G. Each state of Go is a pair .x; �/, where x is either the initial state x0
of G or a state in G that is the target of an observable transition, and � is a set of
faults. If x D x0, then � D ;, that is, it is assumed that G is initially free of faults,
the same as in the diagnoser approach [21]. Each transition from a pair .x; �/ to a
pair .x1; �1/ in Go represents a path in G from state x to state x1, where the only
observable transition in such a path is the last one. Set �1 is the set-theoretic union
of � with all the faults corresponding to the transitions on the path from x to x1 in G.
Thus the constraint holds that �1 �.

Intuitively Go is a (nondeterministic) FA generating the observable language of
G, hence each state .x; �/ in Go includes the set � of all the faults that manifest
themselves along a path (at least) in G that produce the same sequence of observable
events as a path in Go from the initial state .x0;;/ to state .x; �/.

Once Go is available, the product [4] of Go with itself (Go ˝ Go) is computed,
and denoted Gd. Thus each state in Gd is a pair of pairs, ..x1; �1/I .x2; �2//.

Finally, an algorithm checks whether in Gd there exists a cycle that includes
an ambiguous state ..x1; �1/I .x2; �2//, that is, a state such that �1 does not equal
�2: if this condition holds, G is not diagnosable. This check can be performed by
first identifying all the states in Gd for which �1 does not equal �2, then deleting
all the other states and their incoming and exiting transitions, and finally checking
whether the remaining automaton contains a cycle. Notice that, in this last step,
the observable events associated with transitions are irrelevant, therefore Gd can be
considered as a graph.

Now we try and explain the rationale behind this method. Each pair of states of
G contained in the same state of Gd can be reached by producing the same sequence
of observable events. If the sets of faults associated with such states are different,

258 A. Grastien and M. Zanella

for instance �1 D ff1g and �2 D ff1; f2g, then, based on the sequence of events the
observer has received so far, we cannot find out whether only fault f1 has occurred, or
both faults f1 and f2. The system is diagnosable only if we can isolate the occurred
failure within a finite delay following the sequence of events observed up to this
point.

As already remarked, given a transition .x; �/ ! .x1; �1/ in Go, the constraint
holds that �1 �. Hence, in Go the set of failure types is the same for all the
states belonging to the same cycle. Consequently, in Gd, if a cycle includes a state
..x1; �1/I .x2; �2//, all the other states in the same cycle are ..�; �1/I .�; �2//, that
is, they include the same sets of faults. Thus, if in a state in a cycle in Gd such sets
are different from each other, the system is not diagnosable since it may indefinitely
produce the observable events relevant to the cycle, in which case we cannot decide
within a finite delay which faults have occurred.

The number of states in Go is at most jXj2j†f j, where (as before) X is the set of
states in G, and †f is the domain of faults in G (this upper bound is obtained by
assuming that, for each state in G, there is a state in Go including it and each subset
of the set of failure types). The number of transitions in Go is at most jXj222j†f jj†oj,
where, as above, †o is the set of observable events in G (this upper bound is
obtained by assuming that, for each observable event, there is a transition exiting
from each state and directed to each state, where the number of considered states
is the maximum one). The number of states in Gd is at most jXj222j†f j (this upper
bound is obtained by assuming that in Gd there is a state for each distinct pair of
states of Go), and the number of transitions in Gd is at most jXj424j†f jj†oj (this
upper bound is obtained by assuming the complete connectivity of the states in Gd).

The complexity of Go construction is thus O.jXj222j†f jj†oj/, while the com-
plexity of Gd construction is O.jXj424j†f jj†oj/ (in both cases, the complexity is
given by the maximum number of transitions, since the growth of such a number
is asymptotically higher than that of the number of states). The complexity relevant
to detecting the presence of a certain “offending” cycle in an appropriately pruned
subgraph of Gd is linear in the number of states and transitions of the subgraph.

Thus the complexity of the whole method is O.jXj424j†f jj†oj/, which is exponen-
tial in the number of faults. However, it can be reduced to polynomial in the number
of faults by noticing that a system is diagnosable with respect to all the faults if and
only if it is diagnosable with respect to each individual fault. In other words, one can
apply the algorithm iteratively (a number of times that equals the number of distinct
failures), for testing the diagnosability with respect to each singleton set of faults.
In case an individual fault f 2 †f is considered, the set of faults within each pair
.x; �/ of Go is either � D ff g, which can conveniently be denoted as F, or � D ;,
which is denoted as N. Automaton Go can be referred to as the verifier of fault f . A
state of the twin plant Gd is ambiguous if it matches the pattern ..x;N/I .x0;F// or
..x;F/I .x0;N//. As already remarked, if a state in a loop is ambiguous, then all the
states in the same loop are ambiguous.

10 Diagnosability of Discrete Faults with Uncertain Observations 259

Finally the complexity of the test relevant to each individual fault is
O.jXj424j1jj†oj/ = O.jXj4j†oj/. So, the overall complexity of the method for
testing diagnosability is O.jXj4j†ojj†f j/, which is polynomial.

10.3 Temporal and Logical Uncertainty of Observations

In the literature, prior to [27], diagnosability had been confined to certain observa-
tions. However, observations are uncertain in many applications. We present two
types of uncertainties, i.e. temporal and logical, and for each of them, a measure of
how uncertain the observation is. These measures are by no means the only ones
possible, as it will be remarked in Sect. 10.3.2.

10.3.1 Temporally Uncertain Observations

In observation O = h: g: e: c used in Sect. 10.2.1, the occurrence order of the
observable events is known. This observation is depicted in the top graph of
Fig. 10.2, where the order is represented by the arrows between observed events.
Implicit arrows, e.g. from h to e, are not displayed. We say that the observation
is temporally certain. However, the temporal order of the observable events that
have occurred within the DES is not always known, in particular when they occur
in a short time span. The bottom graph of Fig. 10.2 shows a temporally uncertain
observation O0 where the order between observable events g and e is unknown. Since
we do not know which sequence, i.e. either h: g: e: c or h: e: g: c, actually occurred,
an exact diagnostic algorithm has to consider both of them. The pair of observable
events e and g can altogether be considered as a temporally compound event e==g,
which cumulatively represents both sequences e: g and g: e. We can describe the
uncertain observation as a sequence O0 D h: e==g: c.

Definition 2 (Temporally Compound Observable Event) A temporally com-
pound observable event of level ` (with ` � 1) is a multiset of ` reciprocally
temporally unrelated instances of observable events. When ` > 1, not all the
` instances are identical. A temporally compound event of level 1 is a single
observable event.

Fig. 10.2 Certain (top) and
temporally uncertain (bottom)
observations

h g e c

h g

e

c

260 A. Grastien and M. Zanella

We use

��
†o

`

��
and

��
†o

�`
��

to denote the collection of multisets of †o of

cardinality ` and of cardinality ` or less, respectively. Notice that

��
†o

�`
��
D

S
i�`

��
†o

i

��
. Although a temporally compound event is univocally identified by

writing the values of all the instances that it includes, independently of their order,
using == as a separator, we put such values in alphabetical order in this chapter.

Definition 3 (Temporal Uncertainty Level) A temporally uncertain observation
is a sequence of temporally compound observable events. The temporal uncertainty
level of a temporally uncertain observation O is the maximum level of the compound
observable events that O includes.

The lowest temporal uncertainty level of an observation is 1, corresponding to a
certain observation. The temporal uncertainty level of the observation in the bottom
graph of Fig. 10.2 instead is 2, since events e and g are reciprocally temporally
unrelated. Notice that the temporally uncertain observations defined above do not
encompass all the temporally uncertain observations as defined in [14]. However,
the class of temporally uncertain observation we are addressing is meaningful. If an
exact diagnostic algorithm is adopted to diagnose a DES in a monitoring context, the
diagnosis output is monotonic [18] for whichever temporally uncertain observation
that is a sequence of temporally compound events, provided that a new set of
candidates is output only after all the observable events in a temporally compound
event have been processed.

10.3.2 Logically Uncertain Observations

A temporally uncertain observation is a certain observation where some temporal
constraints have been relaxed. Similarly, a logically uncertain observation is a
logical relaxation of a certain one. The so-called logical content [14, 16] of an
observed event is its (discrete) value. If such a value is not known with certainty,
the relevant observation is logically uncertain.

Figure 10.3 shows a logically uncertain observation where the logical uncertainty
comes from the fact that (1) the first observed event is not known with certainty,
i.e. it could be either e or h, and (2) whether the third observed event (e) actually
occurred is not certain, which is represented by ". Since we do not know which
sequence (either h: g: e: c or h: g: c or e: g: e: c or e: g: c) actually occurred, an exact
diagnostic algorithm has to consider all of them.

Fig. 10.3 Logically
uncertain observation e|h g |e cε

10 Diagnosability of Discrete Faults with Uncertain Observations 261

Because logically uncertain observations may include ", we use the notation
†oC D †o [f"g. We define a logically compound observable event as a set of
events belonging to †oC. The degree of this compound event, tantamount to the
level of a temporally compound observable event, is here defined as the maximal
distance according to a specified distance matrix (increased by 1 for normalization)
between any pair of events included in the compound event.

Definition 4 (Distance Matrix and Logically Compound Observable Event)
The distance matrix M is a map that associates any pair in †o � †oC with
a (possibly infinite) non-negative integer while respecting these constraints, i.e.
8.e1; e2/ 2 †o � †oC, M.e1; e2/ D 0 if e1 D e2, M.e1; e2/ > 0, if e1 ¤ e2,
M.e2; e1/ D M.e1; e2/, if e2 ¤ ". A logically compound observable event o of
degree d (with d � 1) is a non-empty subset of elements from †oC, that is not
the singleton f"g, such that d D maxfM.e1; e2/ j fe1; e2g � o/g + 1. A logically
compound event of degree 1 is a single observable event.

Given the system D in Fig. 10.1, we assume that observable events b and d are
hard to distinguish. We also assume that a, e, and h are less difficult to distinguish,
and sometimes it is difficult to find out whether what has been perceived is either
pure noise (that is, no observable event has occurred in the DES) or observable
event e. This can be modeled by M.b; d/ D 1; M.a; e/ D M.a; h/ D M.e; h/ D 2;
M.e; "/ D 3; and M.
/ D1 for any other pair of distinct elements.

We use 2†oC;d and 2†oC;�d to denote the collection of subsets of†oC where each
subset represents a logically compound observable event of degree d, and d or less,
respectively. Notice that 2†oC;�d DS

i�d 2
†oC;i. We use the symbol # as a separator

to represent the logically compound observable event, e.g. e#h. Although a logically
compound event is univocally identified by writing all the values that are included,
independently of their order, we put such values in an order in this chapter so that "
precedes any other event and all the other events are in alphabetical order.

Definition 5 (Logical Uncertainty Degree) A logically uncertain observation is
a sequence of logically compound observable events. The logical uncertainty
degree of a logically uncertain observation is the maximum degree of the logically
compound events that are included.

The logical uncertainty degree of observation e#h: g: "#e: c depicted in Fig. 10.3
is 4 because the distance between " and e is 3.

We have already claimed that several distinct parameters can be adopted to
measure the “noise” in an uncertain observation. Focusing on logically uncertain
observations, here and in the following, we will only use as a parameter the logical
uncertainty degree as defined above. However, in order to provide an instance of
another parameter, we mention also the maximum number of observable events that
can be included in a logically compound observable event.

262 A. Grastien and M. Zanella

Fig. 10.4 Observation that is
both temporally and logically
uncertain

e|h g

|e

c

ε

10.3.3 Observations with Combined Uncertainty

An observation with a combined uncertainty is a temporally uncertain observation
where events are logically uncertain.

Figure 10.4 shows an observation exhibiting a combined uncertainty: the logical
content of two events (e#h and "#e) is uncertain and the relative emission order of a
pair of events (g and "#e) is unknown.

Definition 6 (Combined Compound Observable Event) A combined compound
observable event of level ` (with ` � 1) and degree d (with d � 1) is a multiset
of ` reciprocally temporally unrelated instances of logically compound observable
events whose maximum degree is d. When ` > 1, not all the ` instances are
identical. A combined compound observable event whose level and degree are both
1 is a single observable event.

We use

��
2†oC;�d

`

��
and

��
2†oC;�d

�`
��

to denote the collection of multisets

of 2†oC;�d of cardinality ` and of cardinality ` or less, respectively. Notice that��
2†oC;�d

�`
��
DS

i�`
��
2†oC;�d

i

��
.

Definition 7 (Combined Uncertainty Index) An observation with combined
(temporal and logical) uncertainty is a sequence of combined compound observable
events. The combined uncertainty index of an observation O with combined
uncertainty is the pair given by the maximum level ` and the maximum degree
d of the combined compound observable events included in O. Such an index is
denoted d`.

The lowest combined uncertainty index of an observation is 11, corresponding to
a certain observation. If the combined uncertainty index of an observation is 1`, then
such an observation is affected only by temporal uncertainty (of level `). Conversely,
if the combined index of an observation is d1, then such an observation is affected
only by logical uncertainty (of degree d).

The combined uncertainty index of observation .e#h/: ."#e/==g: c shown in
Fig. 10.4 is 42 since its maximum level is 2 (event g is temporally unrelated with
respect to "#e) and its maximum degree is 4 (since the distance between " and
e is 3).

10 Diagnosability of Discrete Faults with Uncertain Observations 263

10.3.4 Unifying Uncertainty Representations

To make the next definitions independent of the specific type of the considered
uncertainty and of its measure (since several measures can be envisaged for the
same uncertainty type), we introduce the extension of an observation. Such a notion
encapsulates both the specific kind of uncertainty and its value according to a
specific measure.

Definition 8 (Extension of a Certain Observation) Given a type of uncertainty k,
the value m of a specific measure of this uncertainty, and a certain observation O, the
extension jjOjjkm of the observation is the set of certain and uncertain observations
that O could produce according to the given uncertainty type and up to the given
uncertainty measure, where O 2 jjOjjkm.

We now talk about km as the uncertainty that can affect the observation produced
by the system. For instance, we denote the extension up to temporal uncertainty
of level ` as jjOjj==`, the extension up to logical uncertainty of degree d as
jjOjj#d, and the extension up to combined uncertainty of index d` as jjOjjd` . In
our example, given the trace � whose certain observation is obs.�/ D h: g: e: c,
the extension of such an observation to the second temporal uncertainty
level is jjobs.�/jj==2 D fh: g: e: c; h: g: c==e; h: e==g: c; g==h: e: c; g==h: c==eg.
The extension of obs.�/ to the third logical uncertainty degree based on
the distance matrix provided in Sect. 10.3.2 is jjobs.�/jj#3 D fx: g: y: cg,
which is a set including 16 sequences where x 2 fh; a#h; e#h; a#e#hg and
y 2 fe; a#e; e#h; a#e#hg. The extension of obs.�/ to the combined index 32 is
jjobs.�/jj32 D fx: g: y: c; x: g: c==y; x: g==y: c; g==x: y: c; g==x: c==yg, which includes
80 sequences.

Notice that jjobs.�/jj==1 D jjobs.�/jj#1 D jjobs.�/jj11 D fh: g: e: cg, i.e. these
extensions give a certain observation. This is a general property, i.e. for any
trace � , jjobs.�/jj==1 D jjobs.�/jj#1 D jjobs.�/jj11 D fobs.�/g since jj==1; jj#1,
and jj11 comprise no uncertainty. Given an uncertain observation Ou, the fact
Ou 2 jjO1jjkm \ jjO2jjkm for certain observations O1 and O2 means that observable
behavior O1 can be mistaken for observable behavior O2 if the observation is
affected by uncertainty km.

10.4 Diagnosability with Uncertain Observations

This section proposes a definition of diagnosability with an observation affected by a
(generic) uncertainty km. According to this generalized definition, a faulty behavior
should always eventually produce an observation that cannot be mistaken for an
observation produced by a nominal behavior.

264 A. Grastien and M. Zanella

Definition 9 (Diagnosability Under Uncertainty) Given a DES D D
.†;L; obs; flt/ with a set of faults †f � † and an uncertainty km, a fault f 2 †f is
km-diagnosable if

8�1 2 NLf ; 9k 2 N;8�2 W �1: �2 2 L; jobs.�2/j � k

) .8� 2 L/;
�
jjobs.�1: �2/jjkm \ jjobs.�/jjkm ¤ ;) .� 2 Lf /

�
:

System D is km-diagnosable if every fault f 2 †f is km-diagnosable.

Comparing Definition 1 with Definition 9, it is easy to see that the latter one is
a generalization of the former since jjOjjkm is a singleton when km comprises no
uncertainty. System D in Fig. 10.1 is jj==2-diagnosable. Indeed, fault f is identified
by observing either b: c� or e: c�; changing the order of two consecutive observed
events does not eliminate the fact that b will be observed; a temporally uncertain
observation with level ` � 2 will not modify the order between h and e. However,
the system is not jj==3-diagnosable since observation e==g==h: c� cannot be precisely
diagnosed as it is relevant both to a normal and a faulty trace.

Given the distance matrix provided in Sect. 10.3.2, let us now consider the logical
uncertainty degree as 2. Hence, only events whose distance value between them is up
to 1 need to be taken into account, i.e. the only uncertainty lies in event b, which may
be confused with d (and vice versa). If the logically uncertain observation b#d: c�
is perceived, the diagnosis task cannot find out whether fault f has occurred or not,
which proves that D is not jj#2-diagnosable.

Notice how the definition of diagnosability is well-behaved w.r.t. increasing
uncertainty. If uncertainty jj00 is more permissive than jj0, i.e. jjOjj00 jjOjj0
for any certain observation O, then jj00-diagnosability implies jj0-diagnosability.
Given a sequence jj1; jj2; jj3; : : : of increasingly more permissive uncertainties, the
maximum value i such that the system is jji-diagnosable (or 0, if the DES is not
diagnosable even for certain observations, orC1, if there does not exist any upper
bound for i) defines the robustness of the system w.r.t. uncertainty. Since temporal
uncertainty is increasingly more permissive for increasing values of the uncertainty
level and logical uncertainty is increasingly more permissive for increasing values
of the uncertainty degree (for any given distance matrix), we can conclude that the
sample DES D is not jj==`-diagnosable for any ` > 2 and it is not jj#d-diagnosable
for any d > 1. As to the permissiveness of the combined (temporal and logical)

uncertainty, jjOjjOd Ò jjOjjd` holds if and only if Od � d and (at the same time) Ò � `.
DES D, since it is not jj#d-diagnosable for any d > 1, cannot be jjd`-diagnosable for
any d > 1; hence, its jjd` -diagnosability collapses to jj==`-diagnosability.

10 Diagnosability of Discrete Faults with Uncertain Observations 265

10.4.1 Diagnosability and Temporal Uncertainty

We now adapt the twin plant method to DESs with temporally uncertain obser-
vations. First, we present the jj==`-verifier, which is the verifier that incorporates
temporal uncertainty. This is nothing but the classical twin plant verifier where the

alphabet of observable events, instead of being †o, is

��
†o

�`
��

, i.e. the alphabet of

all temporally compound observable events up to a given level `.

Definition 10 (jj==`-Verifier) Let D D .†;L; obs; flt/ be a DES where †o � †

and †f � † are the sets of observable and faulty events, respectively. Let G D
.X; †; ı; x0/ be an FA generating L. The jj==`-verifier relevant to a fault f 2 †f is an

FA G==` D .X==`; †==`; ı==`; x==`0 / defined as follows:

• X==` D X � fN;Fg and x==`0 D .x0;N/;
• †==` D

��
†o

�`
��

; and

• ı==` D f..x; �/;w; .x0; �0// 2 X==` �†==` � X==` j 9 a path in G W x
�1�! : : :

�n�! x0,
n � 1, �n 2 †o, w 2 jjobs.�1:

 : �n/jj==` and �0 D N , .� D N ^ f 62
f�1; : : : ; �ng/g.
Based on the complexity analysis performed in Sect. 10.2.3, the computational

complexity of the construction the jj==`-verifier relevant to a fault is O.jXj2j†==`j/ =
O.jXj2j†oj`/.

Once G==` has been built, it has to be synchronized with itself, which results in
the twin plant. Diagnosability holds if no loop in the twin plant includes ambiguous
states, as stated in Theorem 1.

Theorem 1 Given a DES D whose behavior is represented by FA G D .X; ˙; ı; x0/
and the jj==`-verifier G==` of fault f drawn from it, fault f is jj==`-diagnosable iff
G==` ˝ G==` contains no loop of ambiguous states.

Proof Outline The proof is similar to the corresponding one in the classical twin
plant approach [13]. A loop of ambiguous states proves that there is an infinite
ambiguous path in the twin plant. By construction, an infinite ambiguous path in
the twin plant betrays the existence of two infinite behaviors of the DES, an N one
(which does not include any occurrence of fault f) and an F one (in which fault f
has certainly occurred), that can indefinitely generate the same temporally uncertain
observation. This shows that the finite delay k in Definition 9 after which the fault
can be diagnosed does not exist. ut

The complexity of the whole method to check the jj==`-diagnosability of a fault
(see Sect. 10.2.3) is O.jXj4j†oj`/.

266 A. Grastien and M. Zanella

0,N1,N2,N 3,N 4,F

6,N7,N 8,N 9,N

c

c

da+a c b c

e

g

h+ c h h

g

e

d+a d+ c d

e gg h

g h

b c

e g
c e

Fig. 10.5 jj==2-Verifier for the DES in Fig. 10.1

The jj==2-verifier for our sample DES D in Fig. 10.1 is depicted in Fig. 10.5.
Instead of displaying all the transitions having the same source and target nodes,
just one is shown, which is labeled by all the events triggering these transitions,
where C is a separator.

10.4.2 Diagnosability and Logical Uncertainty

We now present the jj#d-verifier, which incorporates logical uncertainty. This is
nothing but the classical twin plant verifier where the alphabet of observable
events, instead of being †o, is 2†oC;�d, i.e. the alphabet of all logically compound
observable events up to a given degree d (according to the considered distance
matrix M).

Definition 11 (jj#d-Verifier) Let D D .†;L; obs; flt/ be a DES where †o � †

and †f � † are the sets of observable and faulty events, respectively. Let G D
.X; †; ı; x0/ be an FA generating L. Let M be the distance matrix. The jj#d-verifier
relevant to a fault f 2 †f is an FA G#d D .X#d; †#d; ı#d; x#d

0 / defined as follows:

• X#d D X � fN;Fg and x#d
0 D .x0;N/;

• †#d D 2†oC;�d; and
• ı#d D f..x; �/;w; .x0; �0// 2 X#d � †#d � X#d j 9 a path in G W x

�1�! : : :
�n�! x0,

n � 1, obs.�1:

 : �n/ D �n, w 2 jj�njj#d and �0 D N , .� D N ^ f 62
f�1; : : : ; �ng/g.
Basically, each path from a source state to a target state in the behavioral model

of the DES, where such a path terminates with an observable transition (marked
with an event e), this being the only observable transition in the path, is mirrored by
a transition from the same source to the same target for each of the possible logically
compound events relevant to e (including "#e, if proper according to matrix M and
the value of degree d).

The semantics of a transition ..x; �/;w; .x0; �0// of the jj#d-verifier, where w is
a logically compound event that contains " (say, an "-event), such as "#e, is that,

10 Diagnosability of Discrete Faults with Uncertain Observations 267

0,N1,N2,N 3,N 4,F

6,N7,N 8,N 9,N

c

c

d+b#d

a+a#e+a#h
+a#e#h

b+b#d c

e+a#e+ e#h
+a#e#h+ ε#e

+ε#a#e+ ε#e#h
+ε#a#e#h

g

h+a#h+ e#h
+a#e#h

h+a#h+ e#h
+a#e#h

g

e+a#e+ e#h+a#e#h
+ε#e+ ε#a#e

+ε#e#h+ ε#a#e#h

d+b#d

Fig. 10.6 jj#4-Verifier for the DES in Fig. 10.1

when the DES is in state x and event "#e is perceived, this can actually denote the
state change to x0, since such an event is not necessarily noise. If, instead, in the jj#d-
verifier there is no transition exiting from .x; �/ that is marked with "#e, this means
that, if event "#e is perceived when the state of the DES is x, then "#e is necessarily
noise.

The computational complexity of the construction of the jj#d-verifier relevant to
a fault is O.jXj22j†oCj/. This estimate is quite general and very pessimistic: a more
accurate estimate should take into account the value of degree d and the specific
distance matrix M.

Figure 10.6 depicts the jj#4-verifier relevant to the sample DES in Fig. 10.1.
Building this verifier is just an exercise since we already know that the sample DES
is not diagnosable for any degree of logical uncertainty greater than 1.

A transition ..x; �/;w; .x0; �0// of the jj#d-verifier of a fault f marked with a
logically compound event including ", such as "#e, denotes that, if such an event
is perceived when the current candidate diagnosis (as far as fault f is concerned) is
.x; �/, then if we assume that what we have observed is not noise, the next candidate
diagnosis is .x0; �0/. However, the diagnosis task, when processing "#e, considers
also the chance that no observable event has been generated by the system. Since
this is not explicitly represented by any transition in the jj#d-verifier, it has to be
taken into account in the twin plant.

Definition 12 (Logical Product) Let G#d D .X#d; †#d; ı#d; x#d
0 / be a jj#d-verifier.

The logical product of G#d by itself, denoted as G#d ˝L G#d, is a nondeterministic
FA .XL; †L; ıL; xL

0/ defined as follows:

• XL � X#d � X#d;
• xL

0 D .x#d
0 ; x

#d
0 /;

• †L D †#d; and
• ıL D ıL

1 [ıL
2 [ıL

3 where

268 A. Grastien and M. Zanella

– ıL
1 D f..x1; x2/;w; .x01; x02// 2 XL � †L � XL j .x1;w; x01/ 2 ı#d; .x2;w; x02/ 2
ı#dg;

– ıL
2 D f..x1; x2/;w; .x01; x2// 2 XL �†L � XL j .x1;w; x01/ 2 ı#d; " 2 wg;

– ıL
3 D f..x1; x2/;w; .x1; x02// 2 XL �†L � XL j .x2;w; x02/ 2 ı#d; " 2 wg.

If ıL were equal to ıL
1 , the logical product would just be the product of G#d by

itself. However, this would not account for the fact that any perceived "-event may
be pure noise. This is the reason for ıL

2 and ıL
3 are needed. The former encompasses

the cases when, given a state of the twin plant, this representing a pair of candidate
diagnoses .x1; x2/, an "-event is perceived and the diagnosis task assumes (if it is
possible, that is, if in the jj#d-verifier there is a transition exiting from x1 marked
with such an event) that it is not noise for x1 while it is noise for x2. The dual cases
are encompassed by ıL

3 .

Theorem 2 Given a DES D whose behavior is represented by FA G D .X; ˙; ı; x0/,
a distance matrix M, and the jj#d-verifier G#d of fault f , fault f is jj#d-diagnosable
iff G#d ˝L G#d contains no loop of ambiguous states.

Proof Outline The proof amounts to showing that the logical product builds a twin
plant such that (i) each path represents a pair of evolutions of the considered DES
(and, consequently, of the relevant candidate diagnoses) that are compatible with
the same (logically uncertain) observation, and (ii) any pair of distinct evolutions
compatible with the same (logically uncertain) observation is represented by a path
in the twin plant. Point (i) can be understood by observing that (a) the initial state
of the twin plant is a pair of candidate diagnoses according to which the DES is
in its initial state and it is free of faults, and (b) each transition in the twin plant
brings to a new pair of candidate diagnoses, relevant to a pair of evolutions that
are driven by the same perception of a new (logically compound) observable event.
Such an evolution is compliant with the jj#d-verifier, which in turn is compliant with
the behavioral model of the DES.

As to the completeness claimed by point (ii), let us assume that the observation
is a logical relaxation of the sequence of observable events that take place in
the system, possibly intermixed by "-events that are actually pure noise. Let us
consider a state .x1; x2/ of the twin plant. Any new perceived (logically compound)
observable event falls into one of the following categories:

• it is not an "-event, in which case in the twin plant there is a ıL
1 transition exiting

from .x1; x2/ marked with such an event;
• it is an "-event that can actually correspond to an observable event perceivable

both when the DES is in state x1 and when it is in state x2. In this case, there
are three transitions in the twin plant exiting from .x1; x2/ and marked with such
an event: a ıL

1 transition (which corresponds to assuming that the event is noise
neither starting from x1 nor starting from x2), a ıL

2 transition (which corresponds
to assuming that the event is noise starting from x2), and a ıL

3 transition (which
corresponds to assuming that the event is noise starting from x1). Also the case
when the event is noise for both the evolutions is encompassed by the twin plant,
since this is represented by the current state .x1; x2/;

10 Diagnosability of Discrete Faults with Uncertain Observations 269

• it is an "-event that can actually correspond to an observable event perceivable
only when the DES is either in state x1 or in state x2, in which case in the twin
plant there is a transition exiting from .x1; x2/ marked with such an event. Such
a transition is a ıL

2 transition, if the event is observable starting from x1, or a ıL
3

transition, if the event is observable starting from x2. As above, also the case
when the event is noise for both the evolutions is encompassed by the twin plant,
since this is represented by the current state .x1; x2/;

• it is an "-event that cannot correspond to any observable event perceivable when
the DES is in state x1 or in state x2, that is, if such event is perceived when
the system is in state x1 or in state x2, such event necessarily corresponds to
noise. This is correctly registered in the twin plant since there is no transition
marked with such an event exiting from .x1; x2/, which implies that, according
to Theorem 2, an infinite sequence of "-events that are necessarily noise do not
concur to identify a lack of jj#d-diagnosability (as in fact such an infinite sequence
is not represented by any loop in the twin plant).

An infinite ambiguous path in the twin plant betrays the existence of two infinite
behaviors of the DES, an N one (which does not include any occurrence of fault f)
and an F one (in which fault f has certainly occurred), that can indefinitely generate
the same logically uncertain observation, possibly intermixed by "-events that are
actually pure noise. ut

The complexity of the logical product and of whole method to check the jj#d-
diagnosability of a fault is O.jXj42j†oCj/.

10.4.3 Diagnosability and Combined Uncertainty

We now present the jjd` -verifier, which is the verifier that incorporates the combined
(temporal and logical) uncertainty. Its construction basically consists in building the
jj==`-verifier of the jj#d-verifier.

Definition 13 (jjd`-Verifier) Let D D .†;L; obs; flt/ be a DES where †o � †

and †f � † are the sets of observable and faulty events, respectively. Let
G D .X; †; ı; x0/ be an FA generating L. Let M be the distance matrix. Let
G#d D .X#d; †#d; ı#d; x#d

0 / be the jj#d-verifier of a fault f 2 †f . The jjd`-verifier

relevant to the same fault is an FA Gd` D .Xd` ; †d` ; ıd` ; xd`
0 / defined as follows:

• Xd` D X#d and xd`
0 D x#d

0 ;

• †d` D
��
†#d

�`
��

; and

• ıd` D f..x; �/;w; .x0; �0// 2 Xd` � †d` � Xd` j 9 a path in G#d W .x; �/
�1�!

: : :
�n�! .x0; �0/; 1 � n � `;w 2 jj�1:

 : �njj==`}.

270 A. Grastien and M. Zanella

0,N1,N2,N 3,N 4,F

6,N7,N 8,N 9,N

c

c

d+b#da+a c b+b#d c

e

g

h+ c h h

g

e

d+a d+ c d+b#d+a (b#d)+(b#d) c

e gg h

g h

b c+(b#d) c

e g
c e

Fig. 10.7 jj22 -Verifier for the DES in Fig. 10.1

Notice that, in Definition 13, jj�1:

 : �njj==` applies temporal uncertainty to a
sequence of logically compound events.

The complexity of the construction of the jjd`-verifier relevant to a fault is
O.jXd` j2j†d` j/ = O.jX#dj2j†#dj`/ = O.jXj2j2†oC;�dj`/ = O.jXj22`j†oCj/.

Figure 10.7 depicts the jj22-verifier for the sample DES. No "-event can be found
since value 2 of the logical uncertainty degree causes just observable events b and d
to possibly be confused with each other.

The perception of a logically compound event that includes " (that is, an "-
event) corresponds either to an observable event that took place in the DES or
to no observable event at all. While the jjd`-verifier (the same as the jj#d-verifier)
explicitly represents just the former option, the twin plant has to take into account
both of them.

Given a combined compound event w, let us denote as Sub.w/ the set of all the
submultisets of w such that each submultiset is obtained by casually removing from
w one or more instances of "-events.

Definition 14 (Combined Product) Let Gd` D .Xd` ; †d` ; ıd` ; xd`
0 / be a jjd`-

verifier. The combined product of Gd` by itself, denoted as Gd` ˝C Gd` , is a
nondeterministic FA .XC; †C; ıC; xC

0 / defined as follows:

• XC � Xd` � Xd` ;
• xC

0 D .xd`
0 ; x

d`
0 /;

• †C D †d` ; and
• ıC D ıC

1 [ıC
2 [ıC

3 where

– ıC
1 D f..x1; x2/;w; .x01; x02// 2 XC � †C � XC j .x1;w; x01/ 2 ıd` ; .x2;w; x02/ 2
ıd`g;

– ıC
2 D f.x1; x2/;w; .x01; x02/ 2 XC � †C � XC j .x1;w; x01/ 2 ıd` ;w0 2 Sub.w/;

.x2;w0; x02/ 2 ıd` if w0 is not empty, x02 D x2 otherwiseg;
– ıC

3 D f.x1; x2/;w; .x01; x02/ 2 XC � †C � XC j .x2;w; x02/ 2 ıd` ;w0 2 Sub.w/;

.x1;w0; x01/ 2 ıd` if w0 is not empty, x01 D x1 otherwiseg.

10 Diagnosability of Discrete Faults with Uncertain Observations 271

In the combined product definition, ıC
1 includes the transitions that result from

strict synchronization (i.e., the synchronization of two transitions in the jjd`-verifier
that are marked with the same combined compound event). Instead, ıC

2 includes
the transitions that result from the synchronization of a transition (relevant to x1) in
the jjd`-verifier that is marked with a combined compound event w with a transition
(relevant to x2) in the jjd`-verifier that is marked with a (possibly empty) submultiset
of w. In other words, a multiset of logically compound events can be synchronized
with any of its submultisets obtained by removing one or more "-events (which
means that the removed events are assumed to be just noise). Finally, ıC

3 is the dual
of ıC

2 , as w is relevant to x2 while w0 is relevant to x1.

Theorem 3 Given a DES D whose behavior is represented by FA G D .X; ˙; ı; x0/,
a distance matrix M, and the jjd`-verifier Gd` of a fault f , fault f is jjd`-diagnosable
iff Gd` ˝C Gd` contains no loop of ambiguous states.

Proof Outline The proof is similar to that of Theorem 2, but while in the logical
product each transition was marked with a logically compound event, here each
transition is marked with a combined compound event, this being a multiset of
logically compound events. The construction of the twin plant for the combined
uncertainty, i.e. the combined product, is similar to that inherent to the logical
product, where ıC

1 , ıC
2 , and ıC

3 subsume ıL
1 , ıL

2 , and ıL
3 , respectively (as ıC

i equals ıL
i

when the considered combined compound event w is indeed a multiset containing
a single logically compound event). This construction guarantees that (1) each path
in the combined product represents a pair of evolutions of the considered DES
(and, consequently, of the relevant candidate diagnoses) that are compatible with
the same combined uncertain observation, and (2) any pair of distinct evolutions
compatible with the same combined uncertain observation is represented by a path
in the twin plant. An infinite ambiguous path in the twin plant betrays the existence
of two infinite behaviors of the DES, a normal and a faulty one, that can indefinitely
generate the same combined uncertain observation, where any "-event contained in
a combined compound event can actually be pure noise. ut

A very pessimistic estimate of the complexity of the combined product and of
the whole method to check the jjd`-diagnosability of a fault is O.jXj42`j†oCj/.

10.5 Example

We illustrate the results of this chapter, in particular those relevant to diagnosability
of HSs with logically uncertain observations, with an example inspired from the
monitoring of power distribution systems. The example is very much trimmed down
to make it manually manageable.

In a power distribution network, components can be connected in a tree. The
very simple network we consider here contains three components (one root and two

272 A. Grastien and M. Zanella

Fig. 10.8 Network
connectivity

root

child 1

child 2

ClNoE Cl

Op

F T

OpNoE

ele i

de-ele i

open iclose i

fault i trip i

high-current i low-current i

de-ele i

ele i

Fig. 10.9 Component model

children), as depicted in Fig. 10.8. The power comes from a source (on the left of
the root in the figure), and it has to be distributed from the root to its children.

10.5.1 Discrete Model

Each component in the network has six operating modes that can be represented as
the states of a DES (cf. Fig. 10.9): closed with no electricity (ClNoE), closed (Cl),
open with no electricity (OpNoE), open (Op), faulty (F), and tripped (T). In case
the component is not fed, no electricity is circulating, hence the component is either
in its initial mode, ClNoE, or in mode OpNoE. When the component is fed, it lets
the power flow when it is closed (mode Cl), whereas, when it is open (mode Op)
or tripped (mode T), it behaves as an open circuit; finally, when it is faulty (mode
F), the component behaves as a short circuit. We assume that the component cannot
become faulty when not fed or when open. Analogously, the component can trip
only if it is faulty. We also make a single fault assumption, meaning that no two
components can be faulty.

While the DES model is shared by all components, the events in the model
are specific to each component, as underlined by the parametric subscript i. In the
following of this example, as far as events are concerned, subscripts 0, 1, and 2 refer
to the root, child 1, and child 2, respectively.

The set of observable events of the overall network is †o D fele0, de-
ele0, open0, close0, high-current0, low-current0, open1, close1, high-current1, low-
current1, open2, close2, high-current2, low-current2g. The set of faulty events of the
network is †f D ffault0, fault1, fault2g.

10 Diagnosability of Discrete Faults with Uncertain Observations 273

Event ele0 triggers the transition from the initial mode of the root to mode Cl.
Moreover, such an event electrifies the network. In fact, (observable) event ele0
is synchronous with both (unobservable) events ele1 and ele2, which trigger the
analogous transitions in child 1 and child 2, respectively. When all components
are in mode Cl, the power flows from the root to both children. However, when a
component is operating in mode Cl, a command can be sent to it in order to make
it open. Command open0 makes the root switch to mode Op. Such an event (open0)
is synchronous with both events de-ele1 and de-ele2; this means that, if command
open0 is dispatched when all components are closed, the root switches to mode Op
while both children switch back to their initial mode, that is, they are de-electrified.
While the root is open, it can repeatedly be de-electrified, reaching mode OpNoE,
and electrified again, coming back to mode Op. When the root is in mode Open and
the command close0 is issued, the root switches to mode Cl, and the same holds
also for the two children since event close0 is synchronous with both events ele1 and
ele2. If, instead, when all components are closed, either command open1 or open2 is
sent in order to open one of the children, such a child switches to mode Op, without
affecting the modes of the other components. If, while such a component is in mode
Op, the network is repeatedly de-electrified and electrified again, the component at
each iteration reaches mode OpNoE and comes back to mode Op. When a child is
in mode Op and the relevant command to make it close is issued, the child switches
to mode Cl. When a component is in mode Cl, it may get faulty.

When the root is electrified, its input current is sampled. Some observable
discrete events (high-current0, low-current0, high-current1, low-current1, high-
current2, low-current2) model the abnormal values of such a current. After a fault
has occurred in a component, its new mode is F, and an abnormally high value of the
current is observed (possibly several times), which is modeled by a loop transition
relevant to mode F. Finally, some protection mechanism makes the component
reach mode T, starting from which an abnormally low current can be indefinitely
observed.

10.5.2 Continuous Model

The continuous behavior of a component c within each mode where it is electrified
is modeled with some state variables:

• internal resistance: Rc WD ORc if the mode is Cl; Rc WD C1 if the mode is Op or
T; Rc WD 0 (close to zero) if the mode is F.

• subtree resistance: R<c WD Rc if the component has no child; R<c WD Rc C
1

†h2C
1

Rc;hCRh

where C is the list of children of the component (each child is

represented by h) and Rc;h is the resistance of the line between c and h. This
holds for all electrified modes (Cl, Op, F, and T).

• current: I WD V=R<root, where V is the (constant) voltage. Variable I is the input
current of the root, which is affected by the subtree resistance of the root itself.

274 A. Grastien and M. Zanella

Table 10.1 Constants in the
example

Name Value

V 100

ORroot 10

ORchild1 20

ORchild2 25

Rroot; child1 5

Rroot; child2 5

Since the value of such a subtree resistance depends on the modes of all the
components, the values of current I change whenever a component changes its
mode.

The constants of the network in Fig. 10.8 are given in Table 10.1 (no unit of
measurements is provided out of simplicity).

When a fault occurs in a component, its internal resistance drops, which makes
current I peak before the component trips. After it has tripped, the internal resistance
of the component increases and current I decreases.

If the fault takes place in the root, first the internal resistance of the root drops
close to zero (mode F) and then it goes toC1 (mode T). Hence, current I will peak
very high and then decrease down to zero.

Assuming all components are closed, if the fault occurs in child i, when child i
switches to mode F, the subtree resistance relevant to the root will drop to R<root WDORrootC 1

1
Rroot; childi

C 1

Rroot; childjCORchildj

, where child j is the other child. When child i reaches

mode T, the subtree resistance relevant to the root will rise to R0<root WD ORroot C
1
1

Rroot; childjCORchildj

.

If the occurred fault is fault1, the values are R<root D 100=7 ' 14:3, when child1
is in mode F, and R0<root D 40, when child1 is in mode T. The values of current
I corresponding to these subtree resistances are 7 and 2:5, respectively. Hence,
observable event high-current1 takes place whenever the sampled value of I is 7,
while observable event low-current1 takes place whenever the sampled value of I is
2:5.

If, instead, fault2 has occurred, the values are R<root D 85=6 ' 14:17, when
child2 is in mode F, and R0<root D 35, when child1 is in mode T. The values
of current I corresponding to these subtree resistances are 120=17 ' 7:05 and
20=7 ' 2:86, respectively. Hence, observable event high-current2 takes place
whenever the sampled value of I is 7:05, while observable event low-current2 takes
place whenever the sampled value of I is 2:86.

10 Diagnosability of Discrete Faults with Uncertain Observations 275

10.5.3 Diagnosability Analysis

The methods to perform the diagnosability analysis of a DES with uncertain
observations described in the previous sections are centralized, that is, they rely
on a single DES representing the behavior of the whole system. Hence, in order to
analyze the diagnosability of the network considered as an example in the current
section by exploiting the methods described in Sects. 10.4.1–10.4.3, we should,
first of all, carry out the parallel composition of the discrete models of the three
components (see Sect. 10.5.1). The resulting DES corresponds to DES D mentioned
in the various definitions given in those sections. We leave the construction of D and
the subsequent application of the methods to the reader as a useful exercise. Instead,
here we will deal with an intuitive diagnosability analysis in case of logically
uncertain observations.

Observable events high-currenti and low-currenti specifically identify the occur-
rence of faulti, which makes each fault in the network diagnosable (and the DES
diagnosable too) in case there is no uncertainty in the observation.

Let us assume that, according to the distance matrix specific to the network, the
distance between high-current1 and high-current2 is 1, since their corresponding
continuous values of I are very close, while the distance between low-current1 and
low-current2 is 2, since these discrete events correspond to continuous values of
I that are slightly further apart. The interesting scenario is the case where all the
network components are closed and one of the two children experiences a fault. In
such a case, the sequence of observable events high-current1:low-current1, relevant
to fault1, needs to be distinguished from the sequence high-current2:low-current2,
relevant to fault2. If the logical uncertainty degree of the observation is d D 2, then
the second observable event of one sequence can always be distinguished from the
second observable event of the other, and the diagnosis will precisely identify the
fault (and hence the faulty component). Therefore the system is jj#2-diagnosable.
However, it is not jj#3-diagnosable as the observation of the two traces cannot be
distinguished if the logical uncertainty degree increases to 3.

10.6 Conclusions

This chapter investigates how uncertainty in observations can affect the diagnos-
ability of a DES, i.e. the ability of detecting a fault without any ambiguity within
a finite number of observable events after the fault has occurred. The analysis is
carried out in a scenario where the considered DES is diagnosable according to the
original definition of DES diagnosability in the literature (that is, it is diagnosable
given a certain observation) and the diagnostic algorithm is exact. In particular,
the chapter deals with the above topic in the context of event-based approaches
to fault modeling [12] and a relaxation of the temporal constraints and/or the logical
constraints between observed events is considered.

276 A. Grastien and M. Zanella

In the case of temporal uncertainty only, the observation becomes a sequence
of compound temporal events. If the maximum cardinality of the considered
temporally compound events is ` (which is called the temporal uncertainty level
of the observation), this means that, after ` (single) observable events have been
recorded, we may be unable to find out in which temporal order they were produced
by the DES. This is the case, for instance, when the observable events are conveyed
to the observer through distinct channels, having distinct clocks or delays, and the
synchronization error of these clocks (or the—possibly varying—length of these
delays) is such that at most ` events can be received without the observer being able
to disclose their reciprocal temporal order.

In the case of logical uncertainty only, the observation becomes a sequence of
compound logical events. If the logical uncertainty degree is d, each observable
event occurred in the DES may be confused with some other observable event(s) or
even with pure noise, provided that its distance from them is less than d. This is the
case, for instance, when the observable events are conveyed to the observer through
channels affected by noise. Hence, both temporal and logical relaxations are quite
meaningful and representative of real-world situations.

In the case both temporal and logical uncertainty can affect the observation,
this becomes a sequence of compound combined events, having both a temporal
uncertainty level and a logical uncertainty degree.

This chapter provides a definition of DES diagnosability that extends the original
definition [21] in the literature, as well as a method to check whether the newly
defined property holds for a given DES, that extends the original twin plant method
[13] considering temporal and logical uncertainty and their combination. If a DES is
diagnosable even if the observation has a temporal uncertainty level of value ` > 1
and/or a logical uncertainty degree d > 1, the diagnosis task can be performed
without any loss in the ability to disambiguate candidates although the available
measuring equipment cannot get a certain observation. The higher the uncertainty
level/degree that still guarantees diagnosability, the less expensive the needed
measuring equipment and its design.

Future research can follow two orthogonal directions, one focused on the
distribution and the other on the extension of the proposed conceptual framework.
Such a framework is currently based on a global model of the DES at hand
and on its monolithic processing. Instead, the model can be compositional and a
distributed processing method can be adopted. As to the second research direction,
the new definition of DES diagnosability and the proposed method to check it could
be adapted to state-based approaches of fault modeling. In addition, all kinds of
temporal uncertainty should be addressed including the relaxations of temporal
constraints that are not sequences of temporally compound events but bring to
uncertain observations. A further challenge is to define diagnosability in the frame
of (temporal and/or logical) uncertainty of observations and approximate diagnostic
algorithms altogether.

Finally, it is worthwhile underlining that investigating diagnosability with uncer-
tain observations is especially meaningful for HSs. In fact, in an HS some
observable events triggering discrete transitions, instead of being events perceivable

10 Diagnosability of Discrete Faults with Uncertain Observations 277

by an external observer, as it is usually the case with DESs, can indeed be events
whose values are computed based on processing relevant to the dynamics within
states. For instance, let us assume that, given (the model of) a state having two
exiting transitions, the diagnostic engine sometimes is not able to find out with
certainty the transition the system is following when leaving the state. This situation
can be represented as a logically uncertain observation relevant to the underlying
DES, according to which the value of the observed event ranges over the pair of
values marking such transitions. Hence, observable discrete events can be exploited
as an artifice to model the interaction between continuous and discrete dynamics
within HSs, and the diagnosability analysis of the DES accounts also for the
reasoning on continuous processes. Moreover, HSs justify the investigation on
diagnosability with several types of uncertainty in the observations since new types
of uncertainty can be envisaged (besides temporal and logical) if some observable
events of the underlying DES are actually meant to model the outcomes of reasoning
on continuous processes within states.

References

1. P. Baroni, G. Lamperti, P. Pogliano, M. Zanella, Diagnosis of large active systems. Artif. Intell.
110(1), 135–183 (1999)

2. A. Bauer, A. Botea, A. Grastien, P. Haslum, J. Rintanen, Alarm processing with model-
based diagnosis of discrete event systems, in AI for an Intelligent Planet (AIIP-11) (2011),
pp. 2:1–2:8

3. M. Bayoudh, L. Travé-Massuyès, Diagnosability analysis of hybrid systems cast in a discrete-
event framework. J. Discrete Event Dyn. Syst. 24(3), 309–338 (2014)

4. C. Cassandras, S. Lafortune, Introduction to Discrete Event Systems, 2nd edn. (Springer, New
York, 2008)

5. A. Cimatti, C. Pecheur, R. Cavada, Formal verification of diagnosability via symbolic model
checking, in 18th International Joint Conference on Artificial Intelligence (IJCAI-03) (2003),
pp. 363–369

6. O. Contant, S. Lafortune, D. Teneketzis, Diagnosability of discrete event systems with modular
structure. J. Discrete Event Dyn. Syst. 16, 9–37 (2006)

7. A. Grastien, M.O. Cordier, C. Largouët, Extending decentralized discrete-event modelling to
diagnose reconfigurable systems, in 15th International Workshop on Principles of Diagnosis
(DX-04) (2004)

8. A. Grastien, A. Anbulagan, J. Rintanen, E. Kelareva, Diagnosis of discrete-event systems
using satisfiability algorithms, in 22nd Conference on Artificial Intelligence (AAAI-07) (2007),
pp. 305–310

9. A. Grastien, P. Haslum, S. Thiébaux, Conflict-based diagnosis of discrete event systems: theory
and practice, in 13th International Conference on the Principles of Knowledge Representation
and Reasoning (KR-12) (2012)

10. A. Grastien, L. Travé-Massuyès, V. Puig, Solving diagnosability of hybrid systems via abstrac-
tion and discrete event techniques, in 20th World Congress of the International Federation of
Automatic Control (WC-17) (2017), pp. 5174–5179

11. T.A. Henzinger, The theory of hybrid automata, in Verification of Digital and Hybrid Systems,
ed. by M.K. Inan, R.P. Kurshan. NATO ASI Series (Series F: Computer and Systems Sciences),
vol. 170 (Springer, Berlin, 2000), pp. 265–292

278 A. Grastien and M. Zanella

12. T. Jéron, H. Marchand, S. Pinchinat, M.O. Cordier, Supervision patterns in discrete-event
systems diagnosis, in 17th International Workshop on Principles of Diagnosis (DX-06) (2006),
pp. 117–124

13. S. Jiang, Z. Huang, V. Chandra, R. Kumar, A polynomial algorithm for testing diagnosability
of discrete event systems. IEEE Trans. Autom. Control 46(8), 1318–1321 (2001)

14. G. Lamperti, M. Zanella, Diagnosis of discrete-event systems from uncertain temporal
observations. Artif. Intell. 137(1–2), 91–163 (2002)

15. G. Lamperti, M. Zanella, Diagnosis of Active Systems – Principles and Techniques. The
Kluwer International Series in Engineering and Computer Science, vol. 741 (Kluwer Academic
Publishers, Dordrecht, 2003)

16. G. Lamperti, M. Zanella, On processing temporal observations in monitoring of discrete-
event systems, in Enterprise Information Systems VIII, ed. by Y. Manolopoulos, J. Filipe,
P. Constantopoulos, J. Cordeiro. Lecture Notes in Business Information Processing, vol. 3
(Springer, Berlin, 2008), pp. 135–146

17. G. Lamperti, M. Zanella, Diagnosis of active systems by lazy techniques, in 12th Interna-
tional Conference on Enterprise Information Systems (ICEIS-10), Funchal, Madeira (2010),
pp. 171–180

18. G. Lamperti, M. Zanella, Monitoring of active systems with stratified uncertain observations.
IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 41(2), 356–369 (2011)

19. Y. Pencolé, M.O. Cordier, A formal framework for the decentralised diagnosis of large
scale discrete event systems and its application to telecommunication networks. Artif. Intell.
164(1–2), 121–170 (2005)

20. B. Pulido, C. Alonso González, Possible conflicts: a compilation technique for consistency-
based diagnosis. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(5), 2192–2206 (2004)

21. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Diagnosability of
discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–1575 (1995)

22. A. Schumann, Y. Pencolé, S. Thiébaux, A spectrum of symbolic on-line diagnosis approaches,
in 22nd Conference on Artificial Intelligence (AAAI-07) (2007), pp. 335–340

23. R. Sengupta, S. Tripakis, Decentralized diagnosability of regular languages is undecidable, in
43rd IEEE Conference on Decision and Control (2004), pp. 423–428

24. M. Staroswiecki, G. Comtet-Varga, Analytical redundancy relations for fault detection and
isolation in algebraic dynamic systems. Automatica 37(5), 687–699 (2001)

25. X. Su, A. Grastien, Verifying the precision of diagnostic algorithms, in 21st European
Conference on Artificial Intelligence (2014), pp. 861–866

26. R. Su, W. Wonham, Global and local consistencies in distributed fault diagnosis for discrete-
event systems. IEEE Trans. Autom. Control 50(12), 1923–1935 (2005)

27. X. Su, M. Zanella, A. Grastien, Diagnosability of discrete-event systems with uncertain
observations, in 25th International Joint Conference on Artificial Intelligence (IJCAI-16)
(2016), pp. 1265–1271

28. T. Yoo, S. Lafortune, Polynomial-time verification of diagnosability of partially observed
discrete-event systems. IEEE Trans. Autom. Control 47(9), 1491–1495 (2002)

29. H. Zaatiti, L. Ye, P. Dague, J.P. Gallois, Counter example guided abstraction refinement
for hybrid systems diagnosability analysis, in 28th International Workshop on Principles of
Diagnosis (DX-17) (2017)

Chapter 11
Abstractions Refinement for Hybrid
Systems Diagnosability Analysis

Hadi Zaatiti, Lina Ye, Philippe Dague, Jean-Pierre Gallois,
and Louise Travé-Massuyès

11.1 Introduction

The increasing complexity of systems makes it challenging to detect and isolate
faults. Hybrid systems are no exception, combining both discrete and continuous
behaviors. Verifying behavioral or safety properties of such systems, either at design
stage such as state reachability, diagnosability, and predictability or on-line such as
fault detection and isolation is a challenging task. Actually, computing the reachable
set of states of a hybrid system is an undecidable matter due to the infinite state space

H. Zaatiti
CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems,
Gif-sur-Yvette, France

LRI, Univ. Paris-Sud & CNRS, Univ. Paris-Saclay, Gif-sur-Yvette, France
e-mail: hadi.zaatiti@cea.fr; hadi.zaatiti@lri.fr

L. Ye
CentraleSupélec, Univ. Paris-Saclay, Gif-sur-Yvette, France

LRI, Univ. Paris-Sud & CNRS, Univ. Paris-Saclay, Gif-sur-Yvette, France
e-mail: lina.ye@lri.fr

P. Dague (�)
LRI, Univ. Paris-Sud & CNRS, Univ. Paris-Saclay, Gif-sur-Yvette, France
e-mail: philippe.dague@lri.fr

J. -P. Gallois
CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems,
Gif-sur-Yvette, France
e-mail: jean-pierre.gallois@cea.fr

L. Travé-Massuyès
LAAS-CNRS, Univ. de Toulouse, Toulouse, France
e-mail: louise@laas.fr

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4_11

279

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74962-4_11&domain=pdf
mailto:hadi.zaatiti@cea.fr; hadi.zaatiti@lri.fr
mailto:lina.ye@lri.fr
mailto:philippe.dague@lri.fr
mailto:jean-pierre.gallois@cea.fr
mailto:louise@laas.fr
https://doi.org/10.1007/978-3-319-74962-4_11

280 H. Zaatiti et al.

of continuous systems. One way to verify those properties over such systems is by
computing discrete abstractions and inferring them from the abstract system back
to the original system. Methods have been proposed for diagnosability verification
for continuous and discrete systems separately, few of them handle hybrid automata
[21, 35, 62]. Diagnosability is a property describing the system ability to determine
whether a fault has effectively occurred based on the observations, which has
received considerable attention in the literature [16, 32, 48, 52, 53, 60]. However,
most of the existing works are applied on discrete event systems.

In this chapter, we are concerned with abstractions oriented towards hybrid
systems diagnosability checking. Our goal is to create discrete abstractions in
order to verify, at design stage, if a fault that would occur at runtime could be
unambiguously detected in finite time (or within a given finite time bound for
bounded diagnosability) by the diagnoser using only the allowed observations.
This verification can be done on the abstraction by classical methods developed
for discrete event systems, which provides a counterexample in case of non-
diagnosability. The absence of such a counterexample proves the diagnosability of
the original hybrid system. In presence of a counterexample, the first step is to check
if it is not a spurious effect of the abstraction and actually exists for the hybrid
system, witnessing thus non-diagnosability. Otherwise, we show how to refine
the abstraction, guided by the elimination of the counterexample, and continue
the process of looking for another counterexample until either a final result is
obtained or we reach an inconclusive verdict. We make use of qualitative modeling
and reasoning to compute discrete abstractions and we define several refinement
strategies. Abstractions as timed automata are particularly studied as they allow
one to capture qualitative temporal constraints [10, 13]. The chapter is organized as
follows. We first present the hybrid automata formalism and define diagnosability
for hybrid systems. We then introduce a formal framework for constructing hybrid
automata abstractions while defining the refinement relation. Lastly, we detail
the counterexample guided abstraction refinement (CEGAR) scheme adapted for
diagnosability verification and a case study example illustrating this scheme.

11.2 Hybrid Dynamical Systems

In this section, we start with a brief general description of hybrid systems and then
move on to propose a formal representation framework for hybrid automata that is
adopted throughout the chapter. Later on, we provide an example of a practical
system modeled as a hybrid automaton. Lastly, we introduce various classes of
hybrid automata, among which timed automata are our primary interest.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 281

11.2.1 Hybrid Automata Definition

Hybrid systems are dynamical systems that include discrete and continuous
behaviors [38]. Hybrid automaton (HA) is a mean to model such systems; it
is an infinite state machine frequently used for this purpose among the scientific
community. Each state of the hybrid automaton is twofold with a discrete and a
continuous part. The discrete part ranges over a finite domain while the continuous
part ranges over the Euclidean space R

n.

Definition 1 (Hybrid Automaton (HA)) An n-dimensional hybrid automaton
(HA) is a tuple H D .Q;X; S0; †;F; Inv;T/ where:

• Q is a finite set of modes (or locations), that can be possibly defined as the
valuations set of a finite number of finite valued variables, and represents the
discrete part of H. X is a set of n real-valued variables (which are continuously
differentiable functions of time), whose valuations set X � R

n represents the
continuous part of H. S D Q � X is the state space of H, whose elements, called
states, are noted .q; x/ with q and x the respective discrete and continuous parts
of the state.

• S0 � S is the set of initial states. If unique, the initial state is noted .q0; x0/.
• † is a finite set of events.
• F W S ! 2R

n
is a mapping assigning to each state .q; x/ 2 S a set F.q; x/ �

R
n constraining the time derivative Px of the continuous part of the mode q by
Px 2 F.q; x/. If there is no uncertainty on the derivative, then F is a function
S! R

n specifying the flow condition Px D F.q; x/ in each mode q (the dynamics
in each mode is thus given by a set of n first-order ordinary differential equations
(ODEs)).

• Inv W Q ! 2X assigns to each mode q an invariant set Inv.q/ � X, which
constrains the value of the continuous part of the state while the discrete part is
q. We require, for all q 2 Q, that fx j .q; x/ 2 S0g � Inv.q/.

• T � S � † � S is a relation capturing discontinuous state changes, i.e.,
instantaneous discrete transitions from one mode to another one. Precisely,
t D .q; x; �; q0; x0/ 2 T represents a transition whose source and destination
states are .q; x/ with x 2 Inv.q/ and .q0; x0/ with x0 2 Inv.q0/, respectively, and
labeled by the event � . It represents a jump from x in mode q to x0 in mode q0.

We will call (concrete) behavior of H any sequence of continuous solution flows and
discrete jumps, rooted in an initial state, satisfying all the constraints above defining
H. Hybrid systems are typically represented as finite automata with (discrete, i.e.,
modes) states Q, initial states Q0 D fq 2 Q j 9x 2 Inv.q/.q; x/ 2 S0g and
transitions ı defined by ı D f.q; �; q0/ 2 Q � † � Q j 9x; x0.q; x; �; q0; x0/ 2 Tg.
To each state q 2 Q0 is associated an initial (continuous) nonempty set Init.q/ D
fx 2 Inv.q/ j .q; x/ 2 S0g. To each transition � D .q; �; q0/ 2 ı are associated a
nonempty guard set G.�/ D fx j 9x0.q; x; �; q0; x0/ 2 Tg � Inv.q/ and a set-valued

282 H. Zaatiti et al.

reset map R.�/ W G.�/ ! 2Inv.q0/ given by R.�/.x/ D fx0 j .q; x; �; q0; x0/ 2 Tg. It
is actually equivalent in the definition to provide either T or ı, G and R. In the last
case, H is denoted by .Q;X; S0; †;F; ı; Inv;G;R/ and we have:8.q; x/; .q0; x0/ 2 S,
8� 2 †, ..q; x; �; q0; x0/ 2 T , � D .q; �; q0/ 2 ı ^ x 2 G.�/ ^ x0 2 R.�/.x//.

It can be in some cases more convenient to adopt a relational-based represen-
tation than a set-based representation and to use predicates instead of subsets. By
a slight abuse of notation, for each mode q, Init.q/ (for q 2 Q0), F.q/ and Inv.q/
indicate then predicates whose free variables are respectively from X, X � PX and X
and Init.q/.x/, F.q/.x; Px/ and Inv.q/.x/ being true means respectively x 2 Init.q/,
Px 2 F.q; x/ and x 2 Inv.q/. In the same way, for each mode transition � , G.�/ and
R.�/ indicate predicates whose free variables are respectively from X and X�X and
G.�/.x/ and R.�/.x; x0/ being true means respectively x 2 G.�/ and x0 2 R.�/.x/.
We will make use equally of both representations.

Guards in any mode q will be assumed non-intersecting: 8q 2 Q;8�1 D
.q; �1; q1/ 2 ı;8�2 D .q; �2; q2/ 2 ı; .�1 ¤ �2) G.�1/ \ G.�2/ D ;/. Thus,
at any moment of its continuous evolution in a mode q, the system may jump to at
most one another mode and by a unique event. Nevertheless, a HA is generally non-
deterministic: the continuous dynamics in each mode may be non-deterministic,
the moment where a jump occurs is non-deterministic (as long as Inv.q/.x/ and
G.�/.x/ are true, where q is the source mode of the mode transition � , the system
may continue to continuously evolve in q or make the transition �) and the reset
after a jump may be non-deterministic.

11.2.2 Modeling with Hybrid Automata

Hybrid automata represent an intuitive modeling framework. They are used in
various domains to model complex hybrid systems. Here is a practical case where a
hybrid automaton is used for modeling a system.

Example 1 A simple thermostat system maintains the temperature of an object
quasi-constant by turning on and off a heater device. In practice such system
contains at least, a temperature sensor, a heater device and logic control electronic
circuits. The circuitry decides, given the actual measured temperature of the object,
to activate or not the heater. A hybrid automaton H D .Q;X; S0; †;F; ı; Inv;G;R/
models the behavior of such system (see graphical representation on Fig. 11.1):

• Q D fon; off g, X D fxg, S0 D .off ; Œ80; 90	/
• † D fBon;Boff g, F.on/ D fPx D �xC 100g, F.off / D fPx D �xg
• ı D f�1 D .off ;Bon; on/; �2 D .on;Boff ; off /g, Inv.off / D x � 68, Inv.on/ D

x � 82
• G.�1/ D x � 70, G.�2/ D x � 80, R.�1/ D R.�2/ D .x D x0/

The assigned hybrid automaton H is one dimensional, where x represents the sensed
temperature.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 283

o f f

ẋ = −x

x ≥ 68

on

ẋ = −x+100

x ≤ 82

x ∈ [80,90]
x ≤ 70/Bon

80 ≤ x/Bo f f

Fig. 11.1 One-dimensional hybrid automaton modeling a thermostat

11.2.3 Hybrid Automata Semantics

We denote by q0; q1; : : : the modes of Q, and by x1; x2; : : : ; xn the variables of X.

Definition 2 (Hybrid Automaton Semantics) The semantics of a hybrid automa-
ton H, denoted by ŒŒH		, is the set of all executions, which are labeled sequences of

states from S with labels in L D †[RC: .q0; x0/
l0�! .q1; x1/ : : : .qi; xi/

li�! : : : such

that .q0; x0/ 2 S0 and, for any two successive states .qi; xi/
li�! .qiC1; xiC1/ in the

sequence, one of the following is true:

• li D �i 2 † and .qi; xi; �i; qiC1; xiC1/ 2 T;
• li D di 2 RC, qi D qiC1, xi; xiC1 2 Inv.qi/ and 9x W Œ0; di	 ! X continuously

differentiable function, with x.0/ D xi, x.di/ D xiC1 and 8t 2 .0; di/Px.t/ 2
F.qi; x.t// and x.t/ 2 Inv.qi/.

In the first case, the system executes a discrete transition (also called discrete jump)
�i D .qi; �i; qiC1/ from the mode qi to the destination mode qiC1. Such a transition
is possible (enabled) as soon and as long as xi 2 G.�i/. After the jump, the system
may follow the new dynamics given by F.qiC1/, starting from the continuous state
xiC1 2 R.�i/.xi/. Notice that no time elapses during a discrete jump, which is
instantaneous. In the second case, the system performs a continuous transition
(also called continuous flow) of duration di inside the mode qi, constrained by the

dynamics F.qi/ and the invariant set Inv.qi/. The sequence h D .off ; 80/
0:15��!

.off ; 69/
Bon��! .on; 69/

0:5�! .on; 81/
Boff��! .off ; 81/ : : : is valid for the thermostat

example (Fig. 11.1), thus h 2 ŒŒH		. The trace of an execution h, i.e., the sequence of
its labels, is a word from L? (or L! for infinite h), denoted as trace.h/. We denote the
total time duration of h by time.h/ 2 RC [fC1g, which is calculated as the sum
of all time periods in the trace of h: time.h/ DP

di.
Let S D S

q2Q.fqg � Inv.q// � S the (infinite) set of invariant satisfying states

of H, S0 DS
q2Q0

.fqg� Inv.q// � S0 the subset of invariant satisfying initial states

and! � S � L � S the transition relation defined by one or the other condition in
Definition 2. The semantics of H is actually given by the labeled transition system
St

H D .S; S0;L;!/, i.e., ŒŒH		 is the set of all paths of St
H issued from an initial

state. St
H , called the timed transition system of H, is thus a discretization of H

with infinite sets of states and of transition labels. It just abstracts continuous flows

284 H. Zaatiti et al.

by timed transitions retaining only information about the source, the target and the
duration of each flow and constitutes the finest abstraction of H we will consider.

The timeless abstraction of St
H , called the timeless transition system of H, is

obtained by ignoring also the duration of flows and thus defined as SH D .S; S0; †[
f"g;!/, obtained from St

H by replacing any timed transition .qi; xi/
di�! .qiC1; xiC1/

with di 2 RC by the " transition .qi; xi/
"�! .qiC1; xiC1/, that can be considered

as a silent transition. It has infinite set of states but finite set of transition labels. It
constitutes the finest timeless abstraction of H we will consider.

Theorem 1 (Correction and Completeness of the Semantics) Any concrete
behavior of H is timed (resp. timeless) abstracted into an S0 rooted path in St

H (resp.
SH). Conversely, any path in St

H (resp. SH) that alternates continuous and discrete
transitions (in particular any single transition) abstracts a part of a concrete
behavior of H and, if F is a singleton function (i.e., deterministic derivative), any
S0 rooted path in St

H (resp. SH) abstracts a concrete behavior of H. In this latter
case, there is thus no spurious abstract behavior in St

H (resp. SH), which expresses
faithfully the behavior of H.

11.2.4 Hybrid Automata Classes and Particular Cases

Definition 3 (Discrete Automaton (DA)) It is the case where there is no contin-
uous part. Thus, a (finite) discrete automaton (DA) is a tuple D D .Q;Q0; †; ı/

where Q is a finite set of discrete states (modes), Q0 � Q is the set of initial states,
† is a finite set of events, and ı � Q � † � Q is a set of transitions of the form
� D .q; �; q0/.
The semantics ŒŒD		 of D is given by the set of sequences (called paths) made up
of successive states transitions labeled by events and rooted in an initial state. The
trace of such a path is the word in †? whose letters are the successive labels of the
path.

Definition 4 (Continuous System (CS)) It is the case where there is no discrete
part. Thus, an n-dimensional continuous system (CS) is a particular hybrid automa-
ton C with only one mode (jQj D 1) and †;T D ; (and thus ı;G;R too). It can
thus be denoted as C D .X; S0;F; Inv/ with S0 � Inv.

The semantics ŒŒC		 of C is the set of all time labeled sequences of continuous states,
rooted in an initial state, corresponding to the continuous transitions of a hybrid
automaton, constrained by the dynamics F and the invariant set Inv.

The form of the dynamics F determines primarily the class of the hybrid
automaton. The rectangular class, for which the dynamics valuations are a cartesian
product of intervals, lies on the boundary of the decidability over reachability
problem with some restrictions [39]. We will present some classes of hybrid
automata starting from the particular to the more general classes.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 285

Timed Automata We are particularly interested in timed automata, a class of
hybrid automata where the continuous variables xi, 1 � i � n, with values in RC,
called clocks, have all first order derivatives equal to one. So time elapses identically
for all clocks. The set C.X/ of constraints over a set of clocks X is defined as follows:
a constraint is either a primitive constraint of the form xi op ci, where ci 2 RC
(at the theoretical level because, in practice, Q is used instead of R for computer
implementation reasons) and op is one of the operators <;�;D;�; >, or a finite
conjunction of primitive constraints. The satisfiability set of a constraint is thus a
rectangle in R

nC, i.e., the product of n intervals of the half real line RC, and we will
identify C.X/ to the set of rectangles.

Definition 5 (Timed Automaton (TA)) A timed automaton (TA) is a hybrid
automaton T D .Q;X; S0; †;F; ı; Inv;G;R/ such that:

• X D R
nC.

• S0 D Q0 � f0g.
• 8q 2 Q F.q; :/ D 1, which means that the dynamics of clocks evolution in each

mode q is given by Pxi D 1.
• Inv W Q! C.X/ associates to each mode q a rectangle invariant in X. We require

0 2 Inv.q0/.
• G W ı ! C.X/ associates to each discrete transition .q; �; q0/ a rectangle guard in

Inv.q/.
• 8� 2 ı9Y.�/ � X8x 2 G.�/R.�/.x/ D fx0g with x0i D 0 if xi 2 Y.�/ and

x0i D xi otherwise, i.e., clocks in Y.�/ are reset to zero with transition � , the
others keeping their values.

The notation of a timed automaton T is generally simplified as T D
.Q;X;Q0; †; Inv; .ı;G;Y//. The semantics of T as a hybrid automaton, given
by Definition 2, can be simplified by merging together in an execution successive
timed transitions between two discrete transitions and summing up their time period
labels. An execution in ŒŒT		 is thus a sequence h of alternating time steps (possibly

with 0 time period) and discrete steps of the form .q0; x0/
d1�! .q0; x0 C d1/

�1�!
.q1; x1/

d2�! : : : whose trace trace.h/ is the timed word d1�1d2 : : : 2 RC.†RC/�
and duration is time.h/ DP

di.
The class of timed automata is particularly interesting as the reachability and

language emptiness problems are decidable for that class [2]. Actually, decidability
still holds for the larger class of rectangular automata (RA), where the unique flow
condition F.:; :/, the same for all modes, is given by a rectangle in R

n (instead of
the singleton 1), Init.q/ is a bounded rectangle and R.�/.x/ D fx0 j x0i 2 Ii if xi 2 Y
and x0i D xi else}, where the Ii’s are bounded intervals depending only on � [38].
And thus holds for the subclass of singular automata, where the flow rectangle is
reduced to a singleton, whose timed automata are a particular case.

But decidability does not hold any more if the flow condition is allowed to change
from one mode to another one. The simplest example of this is the generalization of
timed automata where we allow the presence of stopwatches. A stopwatch is a clock

286 H. Zaatiti et al.

which can switch from active (turned on) to inactive (turned off), or vice versa, when
transiting between two modes. The generalized flow condition is thus given by:
8q 2 Q 9c 2 f0; 1gn F.q; :/ D c, which means that the dynamics of clocks evolution
in each mode q is given by Pxi D 1 for those clocks active in q and Pxi D 0 for those
clocks inactive in q. Thus, during inactivity, a stopwatch holds its last valuation
when it was active (or 0 in case of reset). It happens that reachability decidability
does not hold for a generalized timed automaton if only one clock is allowed to be
a stopwatch, i.e., when the flow conditions are not independent of the mode (and
thus also for the more general classes of multisingular automata, where the flow
singletons depend on the mode, and of the multirectangular automata, where the
flow rectangles depend on the mode). Notice nevertheless that, allowing changes of
flow conditions with changes of modes may remain manageable if, e.g., we require
a reset of the variables concerned when it occurs. That is how initialized multi-
rectangular automata, i.e., where for each discrete jump, each variable whose flow
interval is changed in this jump has to be reset (reinitialized), can be translated to
rectangular automata. Another case where decidability is lost in general for a hybrid
system (but not for a timed automaton, for which it does not change the expressivity)
is when the set C.X/ of constraints is extended to contain primitive constraints of the
form .xi � xj/ op cij, i.e., if variables are not pairwise independent (and thus also for
the class of triangular automata which generalize rectangular automata by adding
such constraints). Linear automata generalize both multirectangular and triangular
automata by allowing sets F.q/; Init.q/; Inv.q/;G.�/ to be any convex polyhedra in
R

n (instead of just rectangles or triangles) and different flows conditions for different
modes. And polynomial automata generalize linear automata by allowing those
sets to be defined no longer by just linear constraints but by polynomial constraints.

11.3 Diagnosability of Hybrid Dynamical Systems

We will now introduce the model of hybrid systems that is used for diagnosability
analysis and remind some methods from the literature aimed at verifying this
property.

11.3.1 Hybrid System Model for Diagnosability Analysis

Fault diagnosis is a crucial and challenging task in the automatic control of complex
systems, whose efficiency depends on the system property called diagnosability.
This is a property describing the system ability to determine without ambiguity
whether a fault of a given type has effectively occurred based on the observations.
Diagnosability analysis has already received considerable attention in the literature
over latest decades. However, most of the existing works refer to discrete event
systems [16, 32, 34, 48, 52, 53, 60] with stochastic and fuzzy variants [41, 44, 54] or

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 287

continuous systems [5, 15, 47, 57]. Diagnosability was also studied in the framework
of decentralized and distributed architectures [46, 49, 50, 59].

But many modern technological processes exhibit both continuous evolution and
discrete transitions whose combination is at the origin of complex behavior and
important phenomena of such systems. To the best of our knowledge, very few
works handle diagnosability of hybrid systems with satisfactory results.

As a first step, Travé-Massuyès et al. [56] proved that the existing definitions of
diagnosability for discrete event systems and for continuous systems can be stated
as a property of the system fault signatures, and a unified definition of diagnosability
was established. However hybrid system diagnosability was not considered.

Among the contributions concerned with hybrid diagnosability, we can mention
[11] that slightly modified the classical necessary and sufficient condition for
diagnosability of a discrete event system of [52] and expressed it in terms of
reachability. Reference [29] generalized this condition requiring more restrictive
hypotheses. Despite the claim that the two above methods deal with hybrid systems,
these works do not really account for the hybrid nature of the system as they use
only a very high level discrete abstraction and ignore the continuous dynamics. On
the other hand, in [19], diagnosability is expressed in terms of mode discernability
(also called distinguishability by other authors) and is only based on the continuous
dynamics.

Reference [8] was among the early works that coped with actual hybrid systems,
introducing the idea to consider a hybrid model as a twofold mathematical object.
A hybrid system is modeled as a hybrid automaton whose discrete states represent
its operation modes for which the continuous dynamics are specified. The discrete
event part (automaton) constrains the possible transitions among modes and is
referred to as the underlying DES. The restriction of the hybrid system to the
continuously-valued part of the model is defined as the multimode system.

Considering the analytical redundancy approach to define a set of residuals [33]
for every mode, Bayoudh et al. [8] introduced the concept of mode signature
which refines the classical concept of fault signature. Mode signatures determine
mode distinguishability. The key idea of [8] is to abstract the continuous dynamics
by defining a set of “diagnosis-aware” events, called signature-events, associated
to mode signature changes across modes. Signature-events are used to enrich
appropriately the underlying DES. The behavior of the abstract system is then
modeled by a prefix-closed language over the alphabet enriched by these additional
events. The finite state machine generating this language is called the behavior
automaton. Based on the abstract language, the diagnosability analysis of the hybrid
system is cast into a discrete event framework and standard methods of this field can
be used.

The approach of [8] later consolidated in [6] can be compared to the approach
proposed in [22, 23] which uses fault signatures to capture the continuous dynamics.
The fault signatures of [22, 23] are based on fault transients and they directly express
the expected dynamic behavior of measured variables after the fault abstracted in
qualitative terms. The approach of [6, 8] differs in that it uses mode signatures that
are specifically built for diagnosis, based on standard analytical redundancy residual

288 H. Zaatiti et al.

methods of the FDI control field [27]. Its originality relies in that it proposes a way
to integrate these methods with equally standard methods of the DES diagnosis
field [63]. Bayoudh et al. [6, 8] adopt the diagnoser approach [52] because it has
the advantage to also support straightforwardly online diagnosis. Diene et al. [25]
repeats these ideas differing by the fact that the diagnoser is directly built from the
underlying DES and mode distinguishability is used to cluster its state labels. This
method leads to a so-called clustered diagnoser. Let us note that this method only
applies to a restricted class of hybrid systems for which transitions triggered by
continuous dynamics are not allowed.

Checking DES diagnosability with methods based on the construction of diag-
nosers has exponential complexity with the size of the underlying DES automaton.
Hence, approaches based on verifiers, also known as twin plant approaches, are
generally preferred. This is because, although a twin plant cannot be used for online
diagnosis, it can be constructed in polynomial time. Methods integrating a twin
plant approach with mode distinguishability checking for assessing hybrid system
diagnosability are recent. The reader can refer to [26] as a first piece of work
in this direction. Later, Grastien et al. [35] indicated that mode distinguishability
could be complemented by another property of the continuous dynamics named
ephemerality. Ephemerality states when the system cannot stay forever in a given
set of modes. The continuous dynamics are hence abstracted remembering only
these two pieces of information. In addition to this, Grastien et al. [35] checks
diagnosability in an incremental way. It starts by generating the most abstract DES
model of the hybrid system and checking diagnosability of this DES model. A
“counterexample” that negates diagnosability is possibly provided based on the
twin plant. The model is then refined to try to invalidate the counterexample and
the procedure repeats as far as diagnosability is not proved. This approach hence
uses just the necessary information about continuous dynamics, in an “on request”
manner, hence making the best out of computation.

In the most recent literature concerned with hybrid system diagnosability like
[35] and also [24], which characterizes the maximum delay for diagnosing faults
given measurement uncertainty, abstraction is key. Abstraction is also at the core of
other methods to check other properties of hybrid systems.

This is why this chapter reviews different ways of abstracting hybrid automata in
the next section, then elaborates from the diagnosability procedure proposed in [35]
that uses the counterexample guided abstraction refinement (CEGAR) as initially
introduced in [3, 28]. The algorithmic basis refers to CEGAR considering that
the verification problem for even very simple hybrid systems is undecidable [39].
The method abstracts the hybrid automaton and then refines the abstraction while
being guided by a diagnosability counterexample found at this abstract level. A first
discrete abstraction of the hybrid system is computed, diagnosability is then verified
using classical discrete methods. The verification could either yield the abstraction
as diagnosable, which infers the diagnosability property back to the hybrid system,
or non-diagnosable with a generated counterexample that validates this decision.
The produced counterexample is either present in the original system in which case

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 289

the hybrid system is not diagnosable, or it is a spurious effect of the abstraction. In
the latter case, the counterexample is analyzed and the current abstraction is refined
according to this analysis and the diagnosability verification task is iterated.

11.3.2 Observations and Faults

Remind that diagnosability is a system property allowing one to determine with
certainty, at the design stage, a fault occurrence, based on available observations.
Precisely, in a given system model, the existence of two infinite behaviors, with
the same observations but exactly one containing the considered fault, violates
diagnosability. Hence, to be able to analyze such property, it is necessary to define
what can be observed for given systems as well as what are considered as faults.
In practice, the observations are partial, only parts of the system are known and are
usually obtained from sensors. In whole generality we will consider that both some
discrete jumps between modes and some continuous variables inside a mode may
be observable. The sets of observable events and variables are assumed to be time
invariant, the second one being also assumed to be independent of the mode for the
sake of simplicity. Events are observed together with their instantaneous occurrence
time and variables values are assumed to be observed at any moment. E.g., for our
thermostat system in Fig. 11.1, transitions Bon;Boff and temperature x are assumed to
be observable. For what concerns faults, we will suppose that they are modeled, as
for discrete event systems, by some unobservable discrete jumps, between precisely
a normal mode and a faulty mode, translating often in a change of dynamics. This
is well adapted for abrupt faults but progressive faults or degraded modes (as a shift
of parameter) can be also represented in this way, the designer abstracting a slow
evolution in a sudden change when he estimates that the behavior variation induced
(that he will model by means of the invariant and the guard) cannot any more let
consider the given mode as normal. To sum up, we obtain the following definition.

Definition 6 (Partially Observable Hybrid Automaton (POHA)) A partially
observable hybrid automaton (POHA) is a hybrid automaton H according to
Definition 1 where:

• † D †o] †u] †f , i.e., the set of events is the disjoint union of the set †o of
observable (normal) events, the set†u of unobservable normal events and the set
†f of unobservable fault events.

• X D Xo]Xu, i.e., the set of continuous real-valued variables is the disjoint union
of the set Xo of observable variables and the set Xu of unobservable variables.

Definition 7 (Execution (Timed) Observation) Given an execution h 2 ŒŒH		 of a

POHA H, h D .q0; x0/ l0�! .q1; x1/ : : : .qi; xi/
li�! : : :, with li 2 † [RC, the (timed)

observation of h is defined as Obs.h/ D xo
0; l

o
0; x

o
1 : : : x

o
i ; l

o
i ; : : :, where:

• xo
i is obtained by projecting xi on variables in Xo.

• loi D li if li 2 †o [RC. Otherwise, loi D ", which is then removed from Obs.h/.

290 H. Zaatiti et al.

Note that all durations labels li D di in h are present in Obs.h/. Thus, any observable
event li D �i in h is present in Obs.h/ together with its occurrence time, obtained by
adding up all durations dj in Obs.h/ from the origin up to the event �i. In the same
way, any observable variable x has its value known in Obs.h/ at all those instants
t obtained as the sums of consecutive durations in Obs.h/ from the origin. If t is
the occurrence time of an (observable or unobservable) event � and if x is reset
by the discrete transition � , then the value of x changes instantaneously after this
transition and the new value will be noted xC.t/ to distinguish it from the value x.t/
before the transition (a reset observable variable may thus identify the presence of
an unobservable event). Similarly, one can define observation for timed automata.
The difference is that we do not assume any information about continuous clocks,
so there is no xo

i . Then, the observation is obtained from the trace (a timed word)
by erasing all unobservable events and by adding up the periods between any two
successive observable events in the resulting sequence. We have thus defined what is
the observation of a POHA H at the level of its timed transition system St

H . Defining
its observation at the level of its timeless transition system SH is similar, with li 2
† [f"g and loi D li if li 2 †o and removed otherwise. This means that the timeless
observation is obtained from the timed observation Obs.h/ above by removing all
durations di, keeping thus only observable events in †o and values xo

i of observable
variables at each transition step as an ordered sequence without any occurrence time
attached.

11.3.3 System Diagnosability Definition

As we just explained, a fault is modeled as a fault event that alters the system from
a normal mode to an abnormal mode. There may exist different fault events in a
given system. For the sake of reducing complexity (from exponential to linear in the
number of different fault events) and of simplicity, in the following only one fault
type, i.e. fault event, at a time is considered but multiple occurrences of this event
are allowed, and the other types of fault events are thus processed as unobservable
normal events. However, this framework can be extended in a straightforward way
such that a number of different faults can be considered simultaneously. Now we
adapt to hybrid systems the diagnosability definition [52] introduced for discrete
event systems (the bounded one and the unbounded one in terms of executions
lengths). hF denotes a finite execution whose last label is a first occurrence of
the fault event F considered. Given a finite execution h 2 ŒŒH		 such that h D
.q0; x0/

l0�! .q1; x1/ : : : .qi; xi/, the set of post-executions of h in ŒŒH		 is defined as

ŒŒH		=h D fh0 D .qi; xi/
li�! : : : j h:h0 2 ŒŒH		g, where h:h0 is obtained by merging

the final state of h and the first state of h0, both should be the same.

Definition 8 ((�-)Faulty Executions) Given a hybrid automaton H and F a fault
event, a faulty execution is an execution h 2 ŒŒH		 such that F 2 trace.h/. Thus

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 291

h D hFh0 where hF is the prefix of h whose last label is the first occurrence of F. We
denote the period from (the first occurrence of) fault F in h by time.h;F/ D time.h0/.
Given a positive real number 4 2 R

�C, we say that at least � time units pass after
the first occurrence of F in h, or, in short, that h is �-faulty, if time.h;F/ � �.

Definition 9 (Hybrid Automaton (Time Bounded and Unbounded) Diagnos-
ability) Given 4 2 R

�C, a fault F is said 4-diagnosable in a POHA H iff (we
abbreviate F 2 trace.h/ by F 2 h)

8h 2 ŒŒH		.h��faulty

) 8h0 2 ŒŒH		.Obs.h0/ D Obs.h/) F 2 h0//:

i.e.,

8hF 2 ŒŒH		8h 2 ŒŒH		=hF.time.h/ � 4
) 8h0 2 ŒŒH		.Obs.h0/ D Obs.hF:h/) F 2 h0//:

A fault F is said diagnosable in H iff

94 2 R
�C.F4-diagnosable in H/:

This definition states that F is 4-diagnosable (resp., diagnosable) iff, for each
execution hF in ŒŒH		, for each post-execution h0 of hF with time at least 4 (resp.,
with enough long time, depending only on F), then every execution in ŒŒH		 that
is observably equivalent to hF:h0 should contain F. Precisely, the existence of
two indistinguishable behaviors, i.e., executions holding the same observations,
with exactly one containing F and time long enough after F, i.e., whose time
after F is at least 4 (resp., is arbitrarily long), violates the 4-diagnosability
(resp., diagnosability) property for hybrid automata. Inspired from the framework
of discrete event systems, we define critical pairs for partially observable hybrid
automata taking into account both continuous and discrete dynamics.

Definition 10 (4-Critical Pair) A pair of executions h, h0 2 ŒŒH		 is called a
4-critical pair with respect to F iff: F 2 h and F … h0 and Obs.h/ D Obs.h0/
and time.h;F/ � 4.

Theorem 2 A fault F is 4-diagnosable in a POHA H iff there is no 4-critical
pair in ŒŒH		 with respect to F. F is diagnosable in H iff, for some 4, there is no
4-critical pair in ŒŒH		 with respect to F (i.e., there is no arbitrarily long time after
F critical pair).

Note that all above definitions (e.g., observable projection, post-executions, diag-
nosability, critical pairs, etc.) are applicable in a similar way to timed automata,
which can be considered as a special type of hybrid automata. The only difference
is that the set of continuous variables is the set of clock variables whose derivative
is always 1 [7, 9, 20, 21, 35]. And, as for automata the existence of arbitrarily long

292 H. Zaatiti et al.

(in terms of transitions number) after F faulty executions implies the existence of
an infinite faulty execution, in the same way it has been proved [58] that for timed
automata the existence of arbitrarily long time after F faulty executions implies the
existence of a C1-faulty execution (extending the definition above to 4 D C1)
and thus that non-diagnosability is witnessed by the existence of aC1-critical pair
and its checking is PSPACE-complete.

Theorem 3 A fault F is diagnosable in a partially observable timed automaton T
iff there is no C1-critical pair in ŒŒT		 with respect to F. Checking diagnosability
of T is PSPACE-complete.

We will rest on this result as diagnosability checking of a POHA H will be done on
a time automaton T abstracting H.

11.4 Abstracting Hybrid Automata

For continuous systems, verifying the most basic properties such as “Is this state
reachable?” is not decidable, due in particular to the uncountability of continuous
domains [37]. A fortiori, for a hybrid system, a simple computation of the reachable
set of states starting from an initial state is not a decidable matter except for few
unpractical classes [39]. This is why a common practice is to partition infinite
domains into a finite number of subsets, abstracting the system behavior in each
of those subsets. The abstraction of the domain into representative sets is usable in
computations to possibly reason about the infinite domain. In this section, we thus
focus on abstractions that discretize the infinite state space defined by continuous
variables into finite sets. We show the targeted class of properties we wish to
verify. As our study considers abstractions of complex hybrid dynamical systems
for diagnosability analysis, it is therefore crucial to first introduce abstractions for
continuous dynamical systems which are a particular case of hybrid dynamical
systems. Utilizing these abstractions, we aim at verifying temporal properties and
bounding the time for fault detection and isolation. Abstractions retain less but
important information regarding a property that we wish to verify about a complex
system. Due to the uncountability of the continuous state space domain, verifying
simple properties of continuous and more generally hybrid systems via abstraction
becomes challenging. The challenging part about abstractions is the choice made to
select the representative sets and the criterion for choosing them. This choice relies
entirely on the class of the properties one wishes to verify and on the structure of
the hybrid system itself. Here, we are interested in hybrid systems abstraction aimed
towards diagnosability checking. Abstractions that can be refined if necessary are
of our concern, as refinement allows adding more information into the abstracted
system while being always guided by the property to check. In this section, we will
discuss abstractions in general and focus on those that capture time constraints in
particular.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 293

11.4.1 Different Abstraction Strategies

Using Qualitative Principles We first take a look at abstractions using qualitative
concepts. Given a set of ODEs, these concepts classically discretize the infinite state
space of the continuous variables into finite sets. The discretization of Rn is often
achieved by rectangles, i.e., is built by product from a discretization of R. And this
one is obtained by fixing a finite number of (rational) landmarks li, resulting in a
finite partition in terms of open intervals .li; liC1/ (with possibly infinite endpoints)
and singleton intervals Œli	, allowing what is called absolute order of magnitude
reasoning. The coarsest partition (except R itself) is obtained from the single
landmark 0 and corresponds to the sign partition: .�1; 0/, Œ0	, .0;C1/, giving
rise to a partition of size 3n of Rn. It is particularly interesting when applied to the
valuations of the variables derivatives, as it corresponds to discretize according to
the sign of the derivative, which is constant within each set of the partition, and
thus to the change direction of the variable itself (decreasing, constant, increasing) .
The variables being continuously differentiable, it is not possible for the sign of the
derivative to pass from negative to positive without crossing zero. Exploiting this
feature, it is possible to draw a rough scheme of the behavior of the variables called
“qualitative simulation” in the literature and to obtain a loose overview about how
the system will behave [30, 43, 55].

Example 2 Consider this simple linear continuous system:

Px D 3x

Py D y � 1 (11.1)

Adopting the partition of the state space given by the signs of the derivatives, the
abstract state space of size 9 is thus: .Px > 0_Px < 0_Px D 0/^.Py > 0_Py < 0_Py D 0/.
The transitions between the abstract states are computed according to the laws of
evolution given the signs of the derivatives. The abstract state .Px > 0 ^ Py > 0/

corresponds to the region fx; y j x > 0 ^ y > 1g in the state space. From this
state, no transition is possible to another abstract state. Suppose we wish to verify
a basic reachability property: starting from the state .1; 3/ is it possible to reach
the state .�5;�4/? The answer would be no, the proof is given using the previous
abstraction method and inferring the property back to the original system. Such
abstraction is sound: from any initial state .x0; y0/ the solutions of the differential
equation system (11.1) will always satisfy the constraints imposed by the abstract
system rules, i.e., the possible transitions.

Abstractions for the Verification of Temporal Properties The above abstraction
partitions the state space into sets with a constant sign of the derivative. This
abstraction is useful to trace the future evolution of the state given the initial one
to prove a safety property of avoiding an unwanted state. Nonetheless, for proving a
more complex property that involves the notion of time, classically expressed using
temporal logic, the above abstraction is not sufficient. One needs to add time as a
separate state variable and correlate the variables changes to changes in time.

294 H. Zaatiti et al.

Example 3 We consider the same continuous system and suppose the initial set of
states I such that I D f.x; y/ j 1 < x < 2 ^ 1 < y < 2 ^ x < yg and the property
F.x > y/ where F is the “eventually” linear temporal logic (LTL) operator. Fp,
where p is a Boolean proposition, is equivalent to 9t0 2 R

C;8t > t0; p D true. It is
obvious that the rate at which x is increasing with respect to time is much larger than
that of y. Hence, for all the initial states within I the property is true. The previous
abstraction method however does not capture the rate at which the derivative of x
is changing and is thus useless for establishing the proof. Actually, changing the
first equation in (11.1) by Px D 0:5x would keep the abstract system unchanged and
nevertheless change the truth value of the property. In our case, the system can be
written as Px D Ax C b where x D .x; y/T and A is the corresponding matrix. We
then deduce by computing the eigenvalues of A which are 3 and 1 in our example
that the rate at which x increases is larger than the rate at which y increases, which
provides a sufficient proof that the above property holds when the system is initiated
from I.

The previous example illustrates the simple case of a linear dynamics where the
eigenvectors are not rotated by the linear transformation and are thus invariant for
the continuous system. Therefore, taking these two vectors into account during
the abstraction process is an obvious choice. However, in the more general case
of nonlinear dynamics, the invariant takes a more complex form. Some technique
encodes the hybrid system, the property to verify and a specific parametric form
of the invariant into an SMT (Satisfiability Modulo Theories) based solver and
evaluates the unknown parameters of the invariant automatically. Once computed,
the invariant is incorporated to make a finer and more representative abstraction
[36].

11.4.2 Geometric Decomposition of the State Space

We now introduce finite state space decomposition of a hybrid automaton. We will
then present an abstraction based on different decompositions that incorporates
reachability and time constraints. Later on, in the next section, we will discuss the
refinement of the abstraction yielding constraints with better precision than before
refinement.

Definition 11 (Continuous Space Partition) A (finite) partition P of the
Euclidean space R

n is a finite set of nonempty connected subsets of R
n such

that every point x 2 R
n is in one and only one of those subsets. We can write

R
n D U

p2P p. An element p of P will be referred to as a partition element and we
will call it a region. For a subset E of R

n, we will denote by P.E/ the subset of
regions of P that have a nonempty intersection with E.

The only smoothness hypothesis we will impose for the moment over a partition
is that any (finite) continuous path crosses only a finite number of times each

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 295

region, more precisely, 8x W Œ0; 1	 ! R
n a continuous function, 8p 2 P a region,

x�1.p/ is a finite union of intervals. In practice, partitions are chosen enough regular
and smooth, with regions in any dimension from 1 to n such as (from simpler to
more complex) rectangles, zonotopes, polytopes or defined by a set of polynomial
inequalities. The choice among the different partitions is guided by the property
we wish to verify. For example, consider a continuous system with dynamics F.
A coarse but helpful way to obtain a high level reachability mapping would be to
identify regions of the state space that conserve the sign of F. E.g., in one dimension,
for all elements of the same region the derivative signs would be all either negative
or positive or null. Thus, the regions would be the connected components of the
three subsets p1; p2; p3 defined by:

p1 D fx 2 XjPx > 0g; p2 D fx 2 XjPx < 0g; p3 D fx 2 XjPx D 0g (11.2)

For n dimensional systems, the regions would be the connected components of the
3n subsets Es of Rn parametrized by sign vectors s 2 f�1; 0;C1gn: Es D fx 2 X j
8i; 1 � i � n; Pxi < 0 ifsi D �1; Pxi D 0 ifsi D 0; Pxi > 0 ifsi D C1g.
Example 4 (The Brusselator) We now illustrate some of the introduced concepts
on a mathematical model used for representing chemical reactions: the brusselator
whose dynamics is nonlinear. Consider a two-dimensional continuous system C D
.X; S0;F; Inv/ such that X D fx; yg are two continuously differentiable variables
and F given by [4]:

Px D 1 � .bC 1/xC ax2y

Py D bx � ax2y
(11.3)

where a; b 2 R are two real constants. The stationary point for which Px D Py D 0 is
M0.1;

b
a /. If b < aC 1, then M0 is an attractor and all trajectories converge towards

M0; if b > aC1 then it is a repeller and all trajectories close to M0 converge towards
an orbit. We consider two cases where b D 1; a D 2 and b D 3; a D 1 illustrated
respectively in Fig. 11.2a, b. To characterize the dynamic behavior qualitatively as
in Eq. (11.2), consider a partition P yielding nine regions p1; : : : ; p9 illustrated in the
repeller case in Fig. 11.3 [30].

If the considered system is a hybrid automaton, it is practical to allow different
partitions in different modes. In the following, we will assume that the sets Init.q/,
Inv.q/, G.�/ and R.�/.p/ (for p connected subset of G.�/) can be expressed as finite
unions of connected subsets (if this is not the case, we will over-approximate parts
of them). We define thus a decomposition of the hybrid state space as follows.

Definition 12 (Hybrid State Space Decomposition) Given a hybrid automaton
H D .Q;X; S0; †;F; ı; Inv;G;R/ and a set P of partitions of the valuations set
of X, X � R

n, we say that P decomposes H if there is an onto function d W Q! P
which associates to each q 2 Q a partition d.q/ 2 P.

296 H. Zaatiti et al.

Fig. 11.2 Brusselator phase plane: (a) Attractor, (b) Repeller

Fig. 11.3 Qualitative
partitioning of the state space

The initial and invariant sets and the guards satisfiability domains and variables reset
domains are primary elements to take into consideration while abstracting. For q 2
Q and � D .q; �; q0/ 2 ı, we denote the regions families d.q/.Init.q//, d.q/.Inv.q//,
d.q/.G.�// by dInit.q/, dInv.q/, dG.q; �/ � d.q/ and, for a region p 2 dG.q; �/, we
denote d.q0/.R.�/.p\G.�/// by dR.q0; �; p/ � d.q0/. When possible, we will try to
define d such that Init.q/, Inv.q/, G.�/, and R.�/.p/ are exactly the unions of the
regions in those families (if not, those regions families over-approximate them).

11.4.3 Encoding Hybrid Automata Reachability Constraints

We have defined in Sect. 11.2.3, the timeless transition system SH of a hybrid
automaton H as the finest timeless abstraction that can be obtained. However, in
practice SH can only be computed for very restricted classes of hybrid automata. We
will define a less granular time-abstract transition system based on a set of partitions
and define the relations between adjacent regions.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 297

Definition 13 (Adjacent Regions) Two distinct regions p1; p2 of a partition P of
R

n are adjacent if one intersects the boundary of the other: p1\p2 ¤ ; or p1\p2 ¤
;, where p refers to the closure of p.

Definition 14 (Decomposition-Based Timeless Abstract Automaton of a Hybrid
Automaton) Given a hybrid automaton H D .Q;X; S0; †;F; Inv;T/ and a decom-
position .P; d/ of H, we define the timeless abstract (finite) automaton of H with
respect to P as DHP D .QDH;Q0DH ; †DH; ıDH/ with:

• QDH D f.q; p/jq 2 Q; p 2 d.q/g.
• Q0DH D f.q; pInit/jq 2 Q0; pInit 2 dInit.q/g.
• †DH D † [f"g.
• ..qi; pk/; �; .qj; pl// 2 ıDH iff one of both is true:

– qi ¤ qj and � 2 † and pk 2 dG.qi; �/ and pl 2 dR.qj; �; pk/ where � D
.qi; �; qj/ and 9t D .qi; x; �; x0; qj/ 2 T such that x 2 pk and x0 2 pl.

– qi D qj and � D " and pk; pl 2 dInv.qi/ are adjacent regions and 9d 2 R
�C

and 9x W Œ0; d	 ! X continuously differentiable function such that 8t 2
.0; d/ Px.t/ 2 F.qi; x.t//, 8t 2 Œ0; d	 x.t/ 2 Inv.qi/, x.0/ 2 pk, x.d/ 2 pl,
9c 0 � c � d 8t 2 .0; c/ x.t/ 2 pk 8t 2 .c; d/ x.t/ 2 pl and x.c/ 2 pk [pl.

The defined timeless abstract automaton encodes reachability with adjacent regions
of the state space, the events in † witnessing mode changes and " transitions
representing a continuous evolution between adjacent regions in the same mode.

Notice that ..qi; pk/; �; .qj; pl// 2 ıDH) 9xk 2 pk 9xl 2 pl .qi; xk/
��! .qj; xl/ in SH ,

the converse being true for � 2 †. The mapping ˛P defined by ˛P..q; x// D .q; p/
with p 2 d.q/ and x 2 p defines an onto timeless abstraction function ˛P W S !
QDH . If the flow condition F is a singleton, ˛P maps any transition of SH to a unique
path in DHP. The coarsest timeless abstract automaton is obtained when partitions
of P have all a unique region p D X and is thus .Q;Q0; †; ı/, i.e., the discrete part
of H without its continuous part. It corresponds to the coarsest timeless abstraction
function ˛ffXgg..q; x// D q. For our previous thermostat example, this gives
.foff ; ong; foff g; fBon;Boff g; f.off ;Bon; on/; .on;Boff ; off /g/ and the abstraction of

the execution h given previously (11.2.3) is just off
Bon��! on

Boff��! off : : :

Theorem 4 (Timeless Abstraction Completeness) Given a decomposition P of
H, any concrete behavior of H is timeless abstracted into a Q0DH rooted path in
DHP and any transition of DHP abstracts a part of a concrete behavior of H. If the
flow condition F is a singleton function then the timeless abstraction function ˛P
defines a trace preserving mapping (still denoted by ˛P) from S0 rooted paths in SH

(i.e., timeless executions of H) to Q0DH rooted paths in DHP and thus the language
defined by SH is included in the language defined by DHP.

Obviously, a path in DHP does not abstract in general a concrete behavior of H
(as the behaviors parts abstracted by the individual transitions do not connect in
general) which expresses that abstraction creates spurious behaviors.

298 H. Zaatiti et al.

If now H is a POHA, in the same way we defined the observation of a concrete
execution in Definition 7 we define the observation of its timeless abstraction.

Definition 15 (Timeless Abstraction Observation) Given a POHA H and h D
.q0; p0/

�0�! .q1; p1/ : : : .qi; pi/
�i�! : : :, with �i 2 † [f"g, a timeless abstract path in

DHP, the observation of h is defined as Obs.h/ D po
0; �

o
0 ; p

o
1 : : : p

o
i ; �

o
i ; : : :, where

• po
i is obtained by projecting pi on variables in Xo.

• �o
i D �i if �i 2 †o. Otherwise, �o

i D ", which is then removed from Obs.h/.

Consider an execution h 2 ŒŒH		 of the POHA H, h D .q0; x0/
l0�!

.q1; x1/ : : : .qi; xi/
li�! : : :, with li 2 † [RC, its (timed) observation

Obs.h/ D xo
0; l

o
0; x

o
1 : : : x

o
i ; l

o
i ; : : : as in Definition 7, its timeless abstraction

˛P.h/ D .q0; p0/
�0�! .q1; p1/ : : : .qi; pi/

�i�! : : :, with �i 2 † [f"g, as
in Theorem 4 (assuming F a singleton) and the observation of this last one
Obs.˛P.h// D po

0; �
o
0 ; p

o
1 : : : p

o
i ; �

o
i ; : : : as in Definition 15. We could try to

define the timeless abstraction of the observation Obs.h/. A natural definition
would be ˛P.Obs.h// D p00; �o

0 ; p
0
1 : : : p

0
i; �

o
i ; : : :, with �o

i D loi if loi 2 †o (and
D ", which is removed, otherwise), i.e., the same �o

i ’s as in Obs.˛P.h//, and
p0i D

U
fpjxo

i 2pog po the union of the projections on Xo of all regions containing a
value whose projection on Xo is equal to xo

i (assuming to simplify the same partition
for each mode, as the mode may be unknown from observation). So, we notice that
Obs.˛P.h// is more precise than ˛P.Obs.h//, as po

i � p0i, which we denote by
Obs.˛P.h// v ˛P.Obs.h// to mean that both sequences have common events and
there is inclusion of the qualitative space values as subsets of Xo, the valuations set
corresponding to the observable variables.

11.4.4 Encoding Hybrid Automata Time Constraints

We are concerned with verifying temporal properties of hybrid systems and
checking the diagnosability property using time constraints. For this reason, we
define in this subsection, always related to a decomposition of the state space into
partitions, an abstraction of the hybrid automaton as a timed automaton that partly
captures the time constraints at the level of the regions. We will first introduce some
intuitive ideas. Consider a partition P of the R

n state space of a continuous system
with arbitrary dynamics F, the set of trajectories (i.e., the continuous solution flows)
entering a region p 2 P is in one of these two cases: either at least one of the
trajectories ends up trapped inside p for all future times or all of them exit p to an
adjacent region within a bounded time under the continuity assumption. In the first
case, no time constraint can be associated with the region p unless a reshaping of
p is applied; in the latter, it is possible to compute time constraints satisfied by all
trajectories entering and leaving the region p. We will give a formal definition of the
timed automaton constructed from given hybrid automaton and partitions set and
then discuss some cases where a time bound can be practically computed.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 299

Definition 16 (Region Time Interval and Time Bounds) Given a continuous
system CS, a partition P of R

n and p 2 P one of its regions, we say that Ip D
Œtmin; tmax	, with tmin; tmax 2 RC [fC1g, is a region time interval of p for CS if all
trajectories of the CS entering p at time t leave p at time tC tmin at least and tC tmax

at most. tmin and tmax are lower and upper time bounds of p.
For a hybrid automaton, we denote the time interval relative to the region p in

mode q as I.q;p/.

Definition 17 (Decomposition-Based Timed Abstract Automaton of a Hybrid
Automaton) Given a hybrid automaton H D .Q;X; S0; †;F; ı; Inv;G;R/, a
decomposition .P; d/ and the timeless abstract automaton DHP D .QDH;Q0DH ;

†DH; ıDH/ of H with respect to P, we define the timed abstract automaton of H
with respect to P as THP D .QDH; fcg;Q0DH ; †DH; InvTH; .ıDH;GTH;YTH// such
that, 8.q; p/ 2 QDH with a region time interval I.q;p/ D Œtmin; tmax	:

• InvTH..q; p// D Œ0; tmax	.
• 8� D ..q; p/; �; .q1; p1// 2 ıDH , GTH.�/ D Œtmin;C1/ if � D " and p does not

intersect any reset set (i.e., 8� 0 D .q0; � 0; q/ 2 ıDH p … d.q/.R.� 0/.G.� 0///) or
Œ0;C1/ else.

and, 8� 2 ıTH , YTH.�/ D fcg.
The timed abstract automaton adds time constraints to those states .q; p/ of the
timeless abstract automaton for which an interval I.q;p/ is computable as non-trivial
(i.e., I.q;p/ ¤ Œ0;C1/), by using one local clock c (reset at 0 in each state) that
measures the sojourn duration t in each state .q; p/, i.e., in each region p, and coding
these constraints by means of invariant and guard of c in each state. The invariant
codes the maximum sojourn duration as the upper time bound of the region p and
the guard codes the minimum sojourn duration as the lower time bound of the
region p when both entering and leaving the region are not the result of discrete
jumps (controlled here directly for the out-transition and by requiring that p does
not intersect any reset set for all possible in-transitions). In the thermostat example,
consider the partition into two regions associated to the mode off given by the
initial states set .off ; Œ80; 90	/ and by .off ; Œ68; 80//. Then we take as time bounds
for .off ; Œ80; 90	/ tmin D 0 and tmax D 0:12 (the exact upper bound, i.e., the time
for the temperature to decrease from 90 to 80 is Log. 9

8
/). It means that we define

in the timed abstract automaton InvTH..off ; Œ80; 90	// D Œ0; 0:12	. A beginning

of execution of the timed abstract automaton is, for example, .off ; Œ80; 90	/
0:08��!

.off ; Œ68; 80	/.

Theorem 5 (Timed Abstraction Completeness) Given a decomposition P of H,
any concrete behavior of H is timed abstracted into an execution in THP. If the
flow condition F is a singleton function then the abstraction function ˛P defines
a mapping, denoted by ˛t

P, from S0 rooted paths in St
H (i.e., executions of H) to

executions in THP. This mapping is trace preserving once � labels are erased
from executions traces in THP and time period labels are added up between two
consecutive events labels in both executions traces in St

H and in THP. This means

300 H. Zaatiti et al.

that, for any execution .q0; x0/
w�!�.qi; xi/ 2 ŒŒH		, with w 2 L� (where L D ˙[RC),

it exists a unique execution .q0; p0/
w0

�!�.qj; pj/ 2 ŒŒTHP		, with w0 2 L0	 (where
L0 D L [f�g), x0 2 p0, qj D qi, xi 2 pj, w0j˙ D wj˙ (where j˙ is the projection
of timed words on words on ˙�) and, for any two successive events wl D w0l0 and
wm D w0m0 of wj˙ ,

P
l0<k0<m0;w0

k0
¤� w0k0 DP

l<k<m wk.

Forgetting time, i.e., removing the clock, provides a natural abstraction function ˛

from THP to DHP which maps an execution .q0; p0/
l0�! .q1; p1/ : : : .qi; pi/

li�! : : :,

with li 2 †[f"g[RC, in THP into the execution .q0; p0/
�0�! .q1; p1/ : : : .qi; pi/

�i�!
: : :, with �i 2 †[f"g, in DHP, with �i D li if li 2 †[f"g and continuous transitions
labeled by li D di 2 RC are suppressed. We have: ˛P D ˛ ı ˛t

P.

Definition 18 (Timed Abstraction Observation) Given a POHA H and h D
.q0; p0/

l0�! .q1; p1/ : : : .qi; pi/
li�! : : :, with li 2 † [f"g [RC, an execution

in THP, i.e., a timed abstract path, the observation of h is defined as Obs.h/ D
po
0; l

o
0; p

o
1 : : : p

o
i ; l

o
i ; : : :, where

• po
i is obtained by projecting pi on variables in Xo.

• loi D li if li 2 †o [RC. Otherwise, loi D ", which is then removed from Obs.h/.

As for the timeless case, we can define the timed abstraction of an observation (of
an execution h 2 ŒŒH) and we obtain: Obs.˛t

P.h// v ˛t
P.Obs.h//.

From another side, the abstraction function ˛ that forgets time maps a timed
abstract observation po

0; l
o
0; p

o
1 : : : p

o
i ; l

o
i ; : : :, with loi 2 †o [RC, into the timeless

abstract observation po
0; �

o
0 ; p

o
1 : : : p

o
i ; �

o
i ; : : :, with �o

i 2 †o, suppressing duration
labels li D di 2 RC. For any concrete execution h 2 ŒŒH		, we have: Obs.˛P.h// D
˛.Obs.˛t

P.h///, i.e., Obs ı ˛P D ˛ ı Obs ı ˛t
P.

11.4.5 Computing Time Bounds

In this subsection, we present and discuss some situations for which time bounds can
be computed for the continuous evolution of the hybrid system. In the following, CS
is a continuous system, and P is a partition of Rn, p 2 P and Ip D Œtmin; tmax	 the
associated region time interval of p.

Proposition 1 (Sojourn Bounds) A sufficient but not necessary condition for the
region p to have finite time bounds (tmax finite, thus real nonnegative constant) is
that 9i 1 � i � n 8x 2 p Pxi ¤ 0.

If the condition in Proposition 1 is verified over p for a dimension i, then all
trajectories should respect finite time bounds for staying in the region p. On the
other hand, a trajectory making a finite number of orbital spins once inside p then
exiting p does not satisfy this condition while having finite time bounds. One way
to look for a finite time bound is to refine the partition with the objective that the

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 301

regions become small enough for the condition to hold for each of them. This idea
will be developed in Sect. 11.5. If the derivatives along each axis take each a finite
number of null values inside the partition, but never all at the same time, there is no
problem with refining the partition to have each null derivative point alone in one
region. In the other cases, we present now some examples for which a time bound
can be nevertheless obtained.

Finite Number of Equilibrium Points The derivatives along each coordinate are null
in a finite number of points Xeq at the same time, we repartition p such that each new
region pi has exactly one point of Xeq on its boundary. In one dimension, suppose
the null derivative point is at xeq and the initial value of x.t/ is x0. The time, which
we denote by T , taken by the continuous variable x.t/ to cross from x0 to xeq can
in some cases be finite. If Px is of the form xk where k 2 R, then by studying T in a
neighborhood around k D 1 we obtain:

T D
Z teq

0

dt D
Z xeq

x0

1

Px dx D
Z 0

x0

1

xk
dx D

	
x�kC1

.�kC 1/

0

x0

(11.4)

T is convergent if k < 1. Thus a time bound can be computed for all dynamics
of the form Px D xk with k < 1, for example for the square root Px D px. In two
dimensions, let r be the distance from the equilibrium point Meq.xeq; yeq/ to a point
M.x; y/ which is initially in region p. Let X D xeq � x and Y D yeq � y. Since
r2 D X2 C Y2 then 2rPr D 2X PX C 2Y PY and if Pr ¤ 0 the time to reach Meq is :

T D
Z teq

0

dt D
Z 0

r0

1

Pr dr D
Z 0

r0

r

X PX C Y PY dr (11.5)

Example 5 Consider the two dimensional continuous system Px D �x2 and Py D �y
where .x; y/ 2 R

C � R
C. The equilibrium point is Meq.0; 0/. In polar coordinates

x D r cos.�/ and y D r sin.�/, then rPr D xPxCyPy D �x3�y2 D �x2�y2Cx2�x3 D
�r2Cx2.1�x/ D r2.�1Ccos2.�/.1� r cos.�///. In a neighborhood around .0; 0/:

T D
Z 0

r0

1

r.�1C cos2.�/.1 � r cos.�///
dr �

Z 0

r0

�1
r

dr (11.6)

Thus T is infinite, the equilibrium point is never reached. This reasoning can be
extended to dimension n by evaluating rPr and using spherical (or hyperspherical)
coordinates and to polynomial with real exponents. We can take an example of
square root, for instance Px D px and demonstrate the time T is finite, then the
equilibrium is reached.

Infinite Number of Null Derivatives Studying a case where at least one derivative
along an axis takes an infinite number of null values in a connected set can be
done by extending the previous method. For the particular class of continuous
systems where the dynamics are only allowed multi-affine function form, Maler

302 H. Zaatiti et al.

and Batt [45] showed how it is possible to capture time constraints by decomposing
the infinite state space R

n into hypercubes and evaluate the time elapsed between
entering and exiting each cube by bounding the dynamics.

Brusselator Time Bounds For our Example 4 of the brusselator dynamics, consider,
for the repeller case with b D 3; a D 1, a ring set R that excludes M0 such that
R D f.x; y/ j .�1C x/2 C .�3C y/2 > 0:09 ^ .�1C x/2 C .�3C y/2 < 0:5625g.
Let v DpPx2 C Py2 then v2 D .1� 4xC x2y/2 C .3x� x2y/2 and, using a solver, we
compute a lower bound v2low D 0:0051 of v2. It has been proven that all trajectories
initially in S0 D R

2 n fM0g converge towards a fixed orbit of the phase plane
contained within R. Suppose we split the region R into two connected sets R1 and
R2 such that R D R1

U
R2, for each of which the maximal sojourn duration tmax

is a positive real constant. This is possible since v admits a lower bound vlow. This
states that all trajectories initiated from S0 will cross R1 and R2 sequentially infinitely
often. In practice, the presence of the system in either R1 or R2 can correspond to
two different visible colors of the chemical reaction.

11.5 Hybrid Automata Abstraction Refinement

We will now explain and formalize the refinement process of the previously defined
abstraction. For this purpose, we construct a finer couple of discrete and timed
automata by defining a more granular decomposition for regions and give the
necessary assumptions to compute such refinement. By making the partition more
granular in regions of interest, tighter time bounds are also obtained. The refinement
is a necessary step for the CEGAR scheme, it is a required step when a proof for the
verification of a property could not be made at a given abstraction level.

Definition 19 (Partition Refinement) Given two partitions P and P0 of Rn, we say
that P0 is a refining partition of P iff 8p0 2 P0 9p 2 P p0 � p. This implies:
8p 2 P 9P0p � P0 p DU

p02P0

p
p0.

Definition 20 (Hybrid State Space Decomposition Refinement) Given two
decompositions .P; d/ and .P0; d0/ of a hybrid automaton H D .Q;X; S0; †;F;
Inv;T/, we say that P0 refines P, denoted by P0 � P, if 8q 2 Q d0.q/ is a refining
partition of d.q/.

11.5.1 Refined Timeless Model

Definition 21 (Refined Timeless Abstract Automaton) Given a hybrid automa-
ton H and two abstract timeless automata DHP and DHP0 of H with respect to
two decompositions .P; d/ and .P0; d0/ respectively, we say that DHP0 is a timeless
refinement of DHP abstracting H if P0 � P, which we denote by DHP0 � DHP.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 303

Definition 22 (State Split Operation) Given an abstract timeless automaton DHP

of a hybrid automaton H, a split operation of the state .q; p/ 2 QDH is defined by
a partition fp1; p2g of p, p D p1

U
p2, and results in two states .q; p1/ and .q; p2/

and in the refined abstract timeless automaton DHP0 with P0 obtained from P by
replacing d.q/ by d0.q/ D d.q/nfpg [fp1; p2g.
The construction of DHP0 from DHP after a .q; p/ state split is a local operation as
only the transitions of ıDH having as source or as destination the state .q; p/ have to
be recomputed from H. In practice, the refined model is obtained by performing a
finite number of state split operations. After having performed the split operations
and in order for the obtained automaton to satisfy Definition 14, it is only required to
recompute some of its transitions, while inheriting the rest from DHP. Let Qsplit �
QDH be the set of split states and post.Qsplit/ D fq 2 QDH j 9qs 2 Qsplit9.qs; �; q/ 2
ıDHg and pre.Qsplit/ D fq 2 QDH j 9qs 2 Qsplit9.q; �; qs/ 2 ıDHg. Then to obtain
DHP0 it is sufficient to only recompute transitions .q; �; q0/ such that q; q0 2 Qsplit[
post.Qsplit/ [pre.Qsplit/.

The onto abstraction function ˛P0;P W QP0

DH ! QP
DH defined by ˛P0;P..q; p0// D

.q; p/ with p0 � p defines a trace preserving mapping ˛P0;P from DHP0 to DHP

(and thus the language defined by DHP0 is included in the language defined by
DHP) and we have: ˛P D ˛P0;P ı ˛P0 . Defining in a natural way as previously the
P-abstraction ˛P0;P of the observation of a timeless P0-abstract execution h, we
obtain: Obs.˛P0;P.h// v ˛P0;P.Obs.h//.

11.5.2 Refined Timed Model

Definition 23 (Refined Timed Abstract Automaton) Given a hybrid automaton
H and two abstract timed automata THP and THP0 of H with respect to two decom-
positions .P; d/ and .P0; d0/ respectively, we say that THP0 is a timed refinement
of THP abstracting H if P0 � P. We denote it similarly by THP0 � THP.

Concerning the refined abstract timed automaton THP0 resulting from a split of
.q; p/ into .q; p1/ and .q; p2/, if I.q;p/ D Œtmin; tmax	 the region time intervals I.q;p1/ D
I.q;p2/ D Œ0; tmax	 can be adopted in first approximation as they are safe, but in general
new tighter time bounds are recomputed from H for the sojourn duration in the
regions p1 and p2. Thus, the refined timed model is obtained by a finite sequence of
the two operations:

• State split: similar as before, the state split of .q; p/whose time interval is I.q;p/ D
Œtmin; tmax	 yields .q; p1/ and .q; p2/. The time intervals for the new split regions
are set as I.q;p1/ D I.q;p2/ D Œ0; tmax	 (tmax stays a safe upper bound of the sojourn
duration but tmin is reset to 0 since the split induces a distance shrink).

• Time bounds refinement: in this case, more precise time bounds are obtained for
a given region of a discrete state, i.e., if I.q;p/ D Œtmin; tmax	 then I0.q;p/ D Œt0min; t

0
max	

with t0min � tmin and t0max � tmax, at least one of both being a strict inequality.

304 H. Zaatiti et al.

The onto abstraction function ˛P0;P defines a trace preserving mapping ˛t
P0;P from

THP0 to THP, after trace simplification as in Theorem 5 and provided the time
bounds used in THP0 , once added for all regions p0 included in a given region p,
are at least as tight as the time bounds used in THP. And we have: ˛t

P D ˛t
P0;P ı

˛t
P0 . Finally, for any timed P0-abstract execution h, we obtain: Obs.˛t

P0;P.h// v
˛t
P0;P.Obs.h//.

11.5.3 Refinement Guided by Reachability Analysis

We give here some general mathematical properties, in particular about conservation
of the connectivity property of the regions when following the solution flow, that are
useful for the refinement process when guided by the dynamics of the hybrid system
and reachability conditions.

Reachability from a Connected Set Let CS D .X; S0;F; Inv/ be a continuous
system with deterministic flow condition F W X ! R

n and K � R
n a set, such that

the following hypotheses are verified:

• K is a connected and bounded closed (i.e., compact) set and 8x 2 K;F.x/ ¤ 0.
• The flow solution function x.t; x0/ initially starting at t D 0 from x0 2 K is

continuous with respect to x0 2 K and of class C1 with respect to the time t (this
property is true in the case of polynomial dynamics).

With these hypotheses, trajectories issued from x0 are continuous with respect to x0
(proof can be made using the uniform continuity deduced from the continuity as K
is a compact set).

Let y be a reachable element from K and x.t/ the trajectory reaching y at time t0.
We define the successor trajectory post.y/ and the predecessor trajectory pre.y/ by:

post.y/ D fx 2 X j 9t > t0x D x.t/gpre.y/ D fx 2 X j 90 < t < t0x D x.t/g
(11.7)

We extend this definition to the set K:

post.K/ D
[

k2K

post.k/ pre.K/ D
[

k2K

pre.k/ (11.8)

With continuity argument from the hypotheses, we have the following result.

Theorem 6 post.K/ and pre.K/ are connected sets.

This result shows that our connectivity property assumed for all regions is conser-
vative along trajectories (backward and forward) issued from set K.

Reachability from Initial State to Guard Set Let H be a hybrid automaton with
polynomial dynamics and X0 D fx j .q0; x/ 2 S0g the set of its initial states in a
mode q0. We suppose we have built an abstract automaton of H with respect to a

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 305

given partition. By construction of this partition, we consider that for each region
p, all incoming trajectories must exit and become outgoing trajectories after having
passed a bounded time in p. Then we can define in.p/ as the set of all trajectories
restricted to p, which is equal to post.X0/ \ p. We define also the subset pre.p/ of
the incoming points of in.p/ and the subset post.p/ of the outgoing points of in.p/.
It can be demonstrated that pre.p/, in.p/, and post.p/ are unions of a finite number
of connected sets. The proof can be made by induction starting from the initial set
assumed to be defined by convex linear predicates and using the fact the dynamics
is polynomial.

If we consider a guard set G.�/, assumed to be a convex linear predicate set,
the set of outgoing points of the trajectories crossing p and verifying this guard
is post.p/ \ G.�/ and it can be proved that this set is again a union of a finite
number of connected sets. So the time passed by a trajectory inside p with outgoing
points verifying G.�/ can be represented by a union of finite number of intervals,
as internal trajectories form a union of finite number of connected sets (the set
of instants passed in trajectories belonging to a connected set is a time interval if
the trajectories are continuous). Outside this union of time intervals for internal
trajectories in p, the guard G.�/ cannot be verified by outgoing points. This analysis
will provide important results for the diagnosability verification.

Brusselator Example This result applies to the polynomial dynamics of the brusse-
lator, more specifically the two defined regions R1 and R2 corresponding to the color
change of the system. We consider the repeller case of the brusselator as a discrete
hybrid mode. With the previous result, we demonstrate that any inconsistency in
observing the color change within the computed maximal time bound could be
diagnosed with a change of the current repellor mode. If we model the fault as a
discrete jump to the attractor case, the observations in terms of color change are
sufficient to diagnose this fault, since in the attractor case all trajectories converge
asymptotically to M0, thus there is no color change.

11.6 CEGAR Adaptation for Diagnosability Verification

Since hybrid systems have an infinite state space due to continuous dynamics,
verifying formally their properties often rests on using ordinary model checking
together with a finite-state abstraction. Model-checking can be inconclusive, in
which case the abstraction must be refined. In this section, we adapt counterexample
guided abstraction refinement (CEGAR) that was originally proposed to verify
safety properties [3, 28].

Note that to verify safety properties, it is sufficient to check one execution
at a time and verify whether the execution can reach an unsafe state. Verifying
diagnosability reveals a more complex task as one is required to simultaneously
analyze two executions at a time, i.e., to verify whether or not the two executions
have the same observations while only one of them contains the considered fault.

306 H. Zaatiti et al.

In our abstraction method, time constraints are used explicitly. When an abstrac-
tion refinement is required, tighter time bounds are obtained over the new regions
of the refined decomposition. The proposed abstraction method hence differs from
the one proposed in [35]. In [35], the abstraction consists in retaining properties of
the continuous dynamics, namely mode distinguishability and ephemerality, which
are directly checked on the concrete hybrid system when necessary. On the contrary,
in our approach the abstractions refer directly to the continuous state space and the
continuous dynamics are interpreted with increasing levels of granularity, which
results in finer and finer state space decompositions to which time constraints are
associated. These abstractions take the form of timed automata.

The adaptation of CEGAR to verify diagnosability of a hybrid automaton
H consists in three steps described as follows and to be detailed in the next
subsections:

• Diagnosability checking of a timed abstract automaton of H using the twin
plant method, which generates a counterexample C:E when diagnosability is not
verified.

• Validation of the C.E by checking whether the C:E is valid or spurious.
• Refinement of the timed abstract automaton by using a finer hybrid state space

decomposition.

11.6.1 CEGAR Scheme for Hybrid Automata Diagnosability
Verification

Verifying diagnosability of a hybrid automaton by checking it on abstractions of
this automaton is justified because if the diagnosability property is verified for an
abstraction, then it is verified also for the concrete hybrid system. This can be
established by showing that a concrete counterexample of diagnosability lifts up into
an abstract counterexample of diagnosability. Actually, given a hybrid automaton

H D .Q;X; S0; †;F; Inv;T/, two executions h, h0 2 ŒŒH		, h D .q0; x0/
l0�!

.q1; x1/ : : : .qi; xi/
li�! : : :, h0 D .q00; x00/

l00�! .q01; x01/ : : : .q0i; x0i/
l0i�! : : : are called a

counterexample of diagnosability in H with respect to the fault F if they satisfy the
three conditions defined in Definition 10, i.e., if h and h0 constitute a critical pair
of H.

We will denote each state .qi; xi/ by si and .q0i; x0i/ by s0i. We assume that the
flow condition F is a singleton function (deterministic). Then, from Theorem 5,
given a timed abstract automaton THP of H with abstraction function ˛t

P, h and

h0 are mapped by ˛t
P into executions Oh; Oh0 2 ŒŒTHP		, Oh D Os0

Ol0�! Os1 : : : Osi

Oli�! : : :,

Oh0 D Os00
Ol00�! Os01 : : : Os0i

Ol0i�! : : : and, as .h; h0/ is a critical pair in H with respect to F, so is

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 307

Algorithm 1 CEGAR scheme for hybrid automata diagnosability verification
INPUT: hybrid automaton H; considered fault F; constant positive integer precision
OUTPUT: decision WD H is diagnosable .true/ j H is not diagnosable .false/ j precision is
reached .max_reached/

TH Initial Timed Abstract Automaton of H
C:E Diagnosability Check .TH;F/
abstraction_level 0

while C:E ¤ ;^ abstraction_level < precision do
if Validate(C:E;H) then

decision false EXIT
else

TH Refine(TH;C:E;H)
C:E Diagnosability Check(TH;F)
abstraction_level abstraction_levelC 1

end if
end while
if C:E D ; then

decision true EXIT
else

decision max_reached EXIT
end if

.Oh; Oh0/ in THP, which establishes thus a counterexample of diagnosability in THP:
C:E D .Oh; Oh0/. This proves the following result.

Theorem 7 Given a hybrid automaton H with singleton flow condition, a timed
abstract automaton THP of H with abstraction function ˛t

P and a modeled fault F
in H, if F is diagnosable in THP then F is diagnosable in H.

Now, with this result, Algorithm 1 illustrates the CEGAR scheme adaptation for
hybrid automata diagnosability verification.

11.6.2 Twin Plant Based Diagnosability Checking

Diagnosability checking of a discrete event system, modeled as an automaton, based
on the twin plant method [40, 61] is polynomial in the number of states (actually
it has been proved it is NLOGSPACE-complete [51]). The idea is to construct a
non-deterministic automaton, called pre-diagnoser or verifier, that preserves only
all observable information and appends to every state the knowledge about past
fault occurrence. The twin plant is then obtained by synchronizing the pre-diagnoser
with itself based on observable events to get as paths in the twin plant all pairs
of executions with the same observations in the original system. Each state of the
twin plant is a pair of pre-diagnoser states that provide two possible diagnoses. A
twin plant state is called an ambiguous one if the corresponding two pre-diagnoser
states give two different diagnoses (presence for one and absence for the other of a

308 H. Zaatiti et al.

past fault occurrence). A critical path is a path in the twin plant with at least one
ambiguous state cycle. It corresponds to a critical pair and it has thus been proved
that the existence of a critical path is equivalent to non-diagnosability. The twin plant
method has been adapted to be applied to timed automata [58], where a twin plant
is constructed in a similar way except that the time constraints of two executions are
explicitly taken into account using clock variables. The idea is to verify whether the
time constraints can further distinguish two executions by comparing the occurrence
time of observable events. The definition of a critical path in the twin plant is analog,
except that ambiguous state cycle is replaced by infinite time ambiguous path.

Lemma 1 A fault is diagnosable in a timed automaton iff its twin plant contains no
critical path [58].

For timed automata, checking diagnosability is PSPACE-complete.

11.6.3 Counterexample Validation or Refusal

After applying the twin plant method on a timed abstract automaton THP of H as
described in [58], suppose that a critical pair C:E D .Oh; Oh0/ is returned (if not, it
means that THP, and thus H, is diagnosable). Whether we find or not two concrete
executions h; h0 2 ŒŒH		 whose abstractions by ˛t

P are Oh and Oh0 and form a concrete
critical pair decides if C:E is validated or refuted. We detail below both procedures
for validation or refusal and the reasons for which, in the latter case, a critical pair
can be assumed spurious.

Validated Counterexample If it exists h; h0 2 ŒŒH		, whose abstractions by ˛t
P

(according to Theorem 5) are Oh; Oh0 and such that Obs.h/ D Obs.h0/, then .h; h0/
constitutes a concrete counterexample realizing C:E and proves thus the non-
diagnosability of H. If not, the abstract counterexample C:E is said spurious.
In practice, this step involves computing reachable sets of states using safe
over approximations such as ellipsoids and zonotopes for complex dynamics or
hypercubes for simpler ones [1, 12]. Obviously, due to inherent undecidability of
reachability problem at the concrete level of the hybrid automaton, it can happen
that a concrete critical pair realizing C:E does actually exist but this existence will
not be proved and C:E will be declared spurious, with new chance to discover a
concrete critical pair at the next refinement loop.

Refuted Counterexample In case of spurious C:E D .Oh; Oh0/, the idea is to
construct longest finite executions h; h0 2 ŒŒH		, that abstract by ˛t

P into finite

prefixes of Oh; Oh0 and such that Obs.h/ D Obs.h0/. The fact they cannot be extended
means that 8h 2 ŒŒH		=h, h0 2 ŒŒH		=h0 one step executions, either (i) OsjhjC1 ¤
˛t
P.sjhjC1/ (or Os0jh0jC1 ¤ ˛t

P.s
0
jh0jC1/) or (ii) Oljhj ¤ ljhj (or Ol0jhj ¤ l0jhj) or (iii)

Obs.h/ ¤ Obs.h0/. In this case, sreach
jhjC1 and s0reach

jh0jC1 are returned, that represent the two

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 309

sets of reachable concrete states that are the first ones to disagree with the abstract
C:E. We summarize below the reasons resulting in the C:E being spurious.

Spurious State Reachability There is no concrete execution in H whose abstraction
is one of Oh or Oh0, as one of the set of states of H whose abstraction is an abstract
state Osi or Os0i is not reachable in H starting from the initial states of H. Note
that care will have to be taken when refining THP (see next subsection). E.g., a
possible case is that there exist two executions .h; h0/ reaching .s1; s01/ and then
.s2; s02/ but not reaching .s3; s03/ (and none passing by .s1; s01/ and .s2; s02/ reaches
.s3; s03/), and two other executions .u; u0/ reaching .s2; s02/ from .s; s0/ ¤ .s1; s01/,
with ˛t

P.s/ D ˛t
P.s1/ and ˛t

P.s
0/ D ˛t

P.s
0
1/, and then reaching .s3; s03/, all with

time periods compatible to those of the abstract executions. If the refined model
simply eliminated the transition from Os2 to Os3 or from Os02 to Os03 then it could no
longer be considered an abstraction of H, since some concrete execution in H would
have no abstract counterpart. Thus the refinement has to apply the split operation
as previously described, so that preserving the abstraction while eliminating the
spurious counterexample.

Spurious Time Constraints Satisfaction The abstract critical pair, when considered
timeless, owns a concrete critical pair realization in H but none verifying the time
bounds imposed by the abstract timed automaton. In this case it is not a spurious
state reachability problem but a spurious timed state reachability problem. Actually
the time constraints of the abstract critical pair cannot be satisfied by any concrete
critical pair realizing it in H.

Spurious Observation Undistinguishability The two executions of the abstract
critical pair share the same observations (observable events with their occurrence
times and snapshots of the values of observable continuous variables at arrival
times in each abstract state) but actually any two concrete executions realizing this
critical pair in H do distinguish themselves by the observation of some observable
continuous variable.

11.6.4 Refinement of the Abstraction

If it reveals that abstract counterexample C:E D .Oh; Oh0/ is spurious, then one refines
the timed abstract automaton THP to get THP0 , guided by the information from
C:E. The first step is analyzing C:E to identify the reasons why it is spurious (as
classified previously). The idea is to avoid getting relatively close spurious abstract
counterexample when applying twin plant method on the refined timed abstract
automaton THP0 . The refinement procedure is described as follows and will be
illustrated on our example in the next section.

310 H. Zaatiti et al.

1. Suppose that C:E is refuted due to an illegal stay, i.e., the corresponding invariant
is not respected. The consequence could be sreach

jhjC1 D ;, i.e., an illegal transition.
To eliminate such spurious counterexample next time, one can partition the
region containing Osjhj to get a new region representing the legal stay such that
the refinement can be done based on this partition. The idea is to eliminate illegal
(unobservable) transitions between the new region and others by tightening time
constraints. In a similar way, one can handle spurious counterexamples with
illegal transitions due to the unsatisfiability of the corresponding guards by the
evolution of continuous variables, but with a legal stay this time.

2. Suppose that the refutation of C:E is due to different observations from sjhjC1 and
s0jh0jC1 without reachability problem. The idea is to calculate the exact moment,
denoted tspurious, before which it is still possible to get the same observations
while after it the observations will diverge. With tspurious, one can partition OsjhjC1
and Os0jh0jC1 to get a new region whose legal stay is limited by tspurious and transition
to another region gives birth to a new refined observation by means of an
observable continuous variable if any.

11.7 Case Study Example

The CEGAR scheme for diagnosability checking of hybrid automata will be
illustrated by the following case study example.

Example 6 (Fault Tolerant Thermostat Model) The two observable events Bon and
Boff allow one to witness mode changes and the continuous variable x is assumed
to be observable. The system starts from x 2 Œ80; 90	. Two faults are modeled as
unobservable events F1 and F2 2 †f shown in Fig. 11.4. In practice, the fault F1
models a bad calibration of the temperature sensor. As for fault F2, it represents a
defect in the heater impacting its efficiency and is modeled by a parametric change
of a constant in the expression of the first order derivative of x.

11.7.1 CEGAR Scheme for Fault F1

Initial Abstraction We consider an initial decomposition P D fPoff ;Pon;P
F1
off ;P

F1
on

PF2
off , PF2

ong of the hybrid state space. Each partition P 2 P is made up of only one
region representing the reals R. Hence computing tmin and tmax for each region
p yields Ip D Œ0;C1/, in other words the initial abstraction contains no time
constraints.

Diagnosability Check The diagnosability check using the twin plant method
generates a counterexample C:E D .Oh; Oh0/ such that:

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 311

o f f

ẋ = −x

x ≥ 68

on

ẋ =− x+100

x ≤ 82

o f f F1

ẋ = −x

x ≥ 80

onF1

ẋ = −x+100

x ≤ 90

o f f F2

ẋ = −x

x ≥ 68

onF2

ẋ = −x+120

x ≤ 82

x ∈ [80,90]
x ≤ 70/Bon

80 ≤ x/Bo f f

F1

x ≤ 82/Bon

88 ≤ x/Bo f f

F2

x ≤ 70/Bon

80 ≤ x/Bo f f

Fig. 11.4 One-dimensional hybrid automaton modeling a faulty thermostat

Oh D .off ; poff /
0:15��! .off ; poff /

Bon��! .on; pon/
0:3�! .on; pon/

Boff��! .off ; poff / : : :

Oh0 D .off ; poff /
0:1�! .off ; poff /

F1�! .off F1 ; pF1
off /

0:05��! .off F1 ; pF1
off /

Bon��!

.onF1 ; pF1
on/

0:3�! .onF1 ; pF1
on/

Boff��! .off F1 ; pF1
off / : : :

Validation or Refusal The computation of the set of concrete executions fhg (resp.
fh0g) whose abstraction is Oh (resp. Oh0) yields an approximation as follows:

fhg D .off ; Œ80; 90	/
0:15��! .off ; Œ69; 77	/

Bon��! .on; Œ69; 70	/ : : :

fh0g D .off ; Œ80; 90	/
0:1�! .off ; Œ72; 81	/

F1�! .off F1 ; Œ80; 81	/
0:05��!

.off F1 ; Œ76; 77	 W invalid/

The concrete state computations show that it is not possible to stay 0:05 time units
in mode off F1 as the temperature reached would be [76,77] violating the invariant
x � 80. The C:E is thus refuted.

Refinement of the State Space The refinement aims at eliminating the previous
spurious C:E. From this C:E, it is possible to compute the exact time constraint
for staying in mode off F1 and then triggering the transition Bon and refine the hybrid

312 H. Zaatiti et al.

state space accordingly. Once refined, the new abstraction should not contain similar
counterexamples. The validation process reveals that all trajectories entering mode
off F1 with x 2 Œ80; 81	 cannot stay more than tmax D 0:0124 time units but it is
possible for some trajectories to instantaneously change from off to off F1 to onF1

in which case tmin D 0, thus I.off F1 ;Œ80;81	/ D Œ0; 0:0124	. The refined abstraction
would carry this new information by updating the partition of mode off F1 , from
R to .�1; 80/] Œ80; 81] .81;C1/, thus ensuring that all future generated
counterexamples would satisfy this constraint.

11.7.2 CEGAR Scheme for Fault F2

Initial Abstraction The same as for F1.

Diagnosability Check The diagnosability check of the initial abstraction using the
twin plant method generates a C:E D .Oh; Oh0/:

Oh D .off ; poff /
0:5�! .off ; poff /

Bon��! .on; pon/
0:5�! .on; pon/

Boff��! .off ; poff / : : :

Oh0 D .off ; poff /
0:5�! .off ; poff /

Bon��! .on; pon/
0:4�! .on; pon/

F2�! .onF2 ; pF2
on/

0:1�!

.onF2 ; pF2
on/

Boff��! .off F2 ; pF2
off / : : :

Validation or Refusal The computation of the set of concrete executions fhg (resp.
fh0g) whose abstraction is Oh (resp. Oh0) yields an approximation as follows:

fhg D .off ; Œ80; 90	/
0:5�! .off ; Œ48:5; 54:58	 W invalid/

fh0g D .off ; Œ80; 90	/
0:5�! .off ; Œ48:5; 54:58	 W invalid/

This C:E is refuted due to illegal stay in the mode off violating the corresponding
invariant. In other words the trajectories are not feasible: if the system stays in
mode off for 0:5 time units, then the state invariant is no longer true. Thus, if Bon is
observed, then the duration of stay in off should be smaller.

Refinement of the State Space To prevent future similar spurious counterexamples,
a refinement is applied to the initial abstraction. The refined model considers
new regions in mode off : poff 1 D Œ80; 90	 (initial region) and poff 2 D Œ68; 80/

(legal region). The computation of the time intervals relative to each region are:
I.off ;Œ68;80// D Œ0; 0:16	 and I.off ;Œ80;90	/ D Œ0; 0:12	. The refined abstraction will
encode these time constraints and ensure that a set of similar counterexamples
(including this one) are eliminated. Regions that are not reachable will be elimi-
nated, such as Œ0; 68/.

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 313

Second Abstraction

Diagnosability Check The second C:E generated from the refined twin plant is:

Oh D .off ; poff 1 /
0:08��! .off ; poff 1 /

"�! .off ; poff 2 /
0:07��! .off ; poff 2 /

Bon��! .on; pon/

0:5�! .on; pon/
Boff��! .off ; poff / : : :

Oh0 D .off ; poff 1 /
0:08��! .off ; poff 1 /

"�! .off ; poff 2 /
0:07��! .off ; poff 2 /

Bon��! .on; pon/

0:4�! .on; pon/
F2�! .onF2 ; pF2

on/
0:1�! .onF2 ; pF2

on/
Boff��! .off F2 ; pF2

off / : : :

Validation or Refusal Note that the continuous transitions in the second C:E respect
the temporal constraints added during the refinement based on the first C:E. The
corresponding concrete approximate executions of this C:E are:

fhg D .off ; Œ80; 90	/
0:15��! .off ; Œ69; 77	/

Bon��! .on; Œ69; 70	/
0:5�! .on; Œ80:5; 81:8	/ : : :

fh0g D .off ; Œ80; 90	/
0:15��! .off ; Œ69; 77	/

Bon��! .on; Œ69; 70	/
0:4�! .on; Œ79; 79:9	/

F2�! .onF2 ; Œ79; 79:9	/
0:1�! .onF2 ; Œ82:9; 83:7	/ : : :

In this case, this second C:E is also considered as spurious because, given the time
constraints, the two trajectories are different in the observations of x in the hybrid
system since the last regions are disjoint, i.e., Œ80:5; 81:8	 \ Œ82:9; 83:7	 D ;.
Refinement of the State Space The counterexample analysis could identify the time
boundary tspurious, up to which the observations could be the same for at least two
concrete trajectories, and after which the critical pair becomes spurious. In our
example, suppose the fault occurred at tf where x 2 Œa; b	, then tspurious is the time
instant from which faulty and nominal sets of trajectories are disjoint:

tspurious D ln

�
b � aC 20

20

�
C tf (11.9)

For the second spurious C:E, tf D 0:4 and tspurious � tf D 0:044. The two
concrete nominal and faulty executions originating from .on; Œ79; 79:9	/ will be
in the following temperature range after 0.044 time units: x 2 Œ79:90; 80:7	 in
the mode on and x 2 Œ80:7; 81:6	 in the mode onF2 . Hence, at any future time,
the observations are different. By incorporating the time constraint in the refined
abstraction, we ensure that counterexamples that are spurious because of disjoint
observations including the previous one cannot be generated again. For the sake of
simplicity, we analyzed the two faults separately. One more sophisticated strategy is
to analyze the next fault based on the refined abstraction obtained from the analysis
of the precedent fault.

314 H. Zaatiti et al.

11.8 Conclusion

In this chapter, we were interested in verifying a given formal safety property on a
hybrid system, based on discrete abstractions of this system, for which checking
this property is decidable and which guarantee that the property is satisfied at
the concrete hybrid level if it is satisfied at the abstract level. We focused on the
diagnosability property, for its importance in safety analysis at design stage and
the challenge it gives rise to. We presented elements from the literature regarding
hybrid automata abstractions, however few works handle diagnosability verification,
as this property deals with a pair of trajectories and partial observations of the
system and is thus more complex to check than reachability. In order to handle
time constraints at the abstract level, we chose abstractions of the hybrid automaton
as timed automata, related to a decomposition of the state space into geometric
regions, the abstract time constraints coming from the estimation of the sojourn time
of trajectories in each region. Thus the abstractions over-approximate the regions
of interest to which are added time constraints obtained from the dynamics of the
concrete system. We adapted a CEGAR scheme for hybrid systems diagnosability
verification, based on the counterexample provided at the abstract level by the twin
plant based diagnosability checking when diagnosability is proved to be unsatisfied.
We presented situations for which the produced counterexample is spurious and a
refinement in finer regions and tighter time constraints is then required.

This preliminary work draws many perspectives. First of all, we have to develop
refinement strategies by analysis of the counterexample and progress in the (partial)
automation of the whole process and the integration of the algorithms for abstract
diagnosability checking, for validation of the counterexample and for refinement.
We plan in particular to use and extend existing tools for timed automata model
checking and for over-approximation reachability at the continuous level. We want
to investigate also the usage of SMT solvers [17, 18], in particular with theories
including ODEs [31], to deal simultaneously with discrete and continuous variables.
Moreover, we plan to apply this approach to other formal safety properties such
as predictability, which guarantees to predict in advance the future unavoidable
occurrence of a fault given some sequence of observations. With all this, we will
be able to tackle real applications and get deeper experimental results.

Another promising aspect is the potential of this approach to deduce minimal
concrete sets of observations for which the system is diagnosable. These obser-
vations specify a minimal (for set inclusion) needed set of events and continuous
variables for which the system is diagnosable. If one element of this set is not
considered as observable, the system becomes non-diagnosable. Thus, such a
minimal set draws the boundary between the diagnosable and non-diagnosable
systems [14] from the point of view of their observability.

Up to now we assume a continuous domain for both the values and the time
stamps of the observable variables without taking into account sensor capability,
i.e., the minimal interval (of value and of time) that can be captured. This is the
reason why our current algorithm may not terminate, due to an infinite refinement

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 315

process. A fundamental and essential future work perspective is to provide a general
algorithm for diagnosability verification with "-precision [42], for " arbitrary small
(for a given metric to be defined). This will ensure theoretical termination of the
algorithm, as the number of refinement steps to reach the precision will then be
finite. And this is actually justified in practice because both model parameters and
observations cannot be infinitely accurate, thus the value " for the precision would
come from the precision of the model parameters and of the measurements, in space
and time. In the same spirit, one interesting future work would be to demonstrate
a bi-simulation relation between the concrete model and the final refined abstract
model when considering this minimal precision imposed by the model and the
sensors, where the termination of the refinement can thus be guaranteed. In other
words, theoretically, we could always deduce the right verdict, either the system is
diagnosable or it is not diagnosable with respect to a given minimal precision.

Acknowledgements The authors would like to thank Alban Grastien for his valuable comments
and suggestions.

References

1. M. Althoff, O. Stursberg, M. Buss, Computing reachable sets of hybrid systems using a
combination of zonotopes and polytopes. Nonlinear Anal. Hybrid Syst. 4(2), 233–249 (2010)

2. R. Alur, D.L. Dill, A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
3. R. Alur, T. Dang, F. Ivančić, Counterexample-guided predicate abstraction of hybrid systems.

Theor. Comput. Sci. 354(2), 250–271 (2006)
4. S. Ault, E. Holmgreen, Dynamics of the Brusselator. Academia (2009)
5. M. Basseville, M. Kinnaert, M. Nyberg, On fault detectability and isolability. Eur. J. Control.

7(6), 625–641 (2001)
6. M. Bayoudh, L. Travé-Massuyès, Diagnosability analysis of hybrid systems cast in a discrete-

event framework. Discrete Event Dyn. Syst. 24(3), 309–338 (2014)
7. M. Bayoudh, L. Travé-Massuyès, X. Olive, Hybrid systems diagnosability by abstracting

faulty continuous dynamics, in Proceedings of the 17th International Workshop on Principles
of Diagnosis (DX’06) (2006), pp. 9–15

8. M. Bayoudh, L. Travé-Massuyès, X. Olive, Coupling continuous and discrete event system
techniques for hybrid systems diagnosability analysis, in Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI-08), Patras (2008), pp. 219–223

9. M. Bayoudh, L. Travé-Massuyès, X. Olive, Active diagnosis of hybrid systems guided by
diagnosability properties. IFAC Proc. Vol. 42(8), 1498–1503 (2009)

10. G. Behrmann, A. David, K.G. Larsen, A tutorial on Uppaal, in Formal Methods for the Design
of Real-Time Systems (Springer, Berlin, 2004), pp. 200–236

11. S. Biswas, D. Sarkar, S. Mukhopadhyay, A. Patra, Diagnosability analysis of real time
hybrid systems, in Proceedings of the IEEE International Conference on Industrial Technology
(ICIT’06), Mumbai (2006), pp. 104–109

12. O. Botchkarev, S. Tripakis, Verification of hybrid systems with linear differential inclusions
using ellipsoidal approximations, in Proceedings of the 3rd International Workshop on Hybrid
Systems: Computation and Control (HSCC’00). LNCS, vol. 1790 (Springer, Berlin, 2000),
pp. 73–88

316 H. Zaatiti et al.

13. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, S. Yovine, Kronos: a model-checking
tool for real-time systems, in International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems (Springer, Berlin, 1998), pp. 298–302

14. L. Brandán Briones, A. Lazovik, P. Dague, Optimizing the system observability level for
diagnosability, in Proceedings of the 3rd International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA08), Chalkidiki, Kassandra (2008)

15. J. Chen, R. Patton, A re-examination of the relationship between parity space and observer-
based approaches in fault diagnosis, in Proceedings of the IFAC Symposium on Fault Detection,
Supervision and Safety of Technical Systems Safeprocess’94, Helsinki (1994), pp. 590–596

16. A. Cimatti, C. Pecheur, R. Cavada, Formal verification of diagnosability via symbolic model
checking, in Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI-03) (2003), pp. 363–369

17. A. Cimatti, S. Mover, S. Tonetta, SMT-based scenario verification for hybrid systems. Formal
Methods Syst. Des. 42(1), 46–66 (2013)

18. A. Cimatti, A. Griggio, S. Mover, S. Tonetta, HyComp: an SMT-based model checker for
hybrid systems, in Proceedings of the 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS-2015), London (2015), pp. 52–67

19. V. Cocquempot, T.E. Mezyani, M. Staroswiecki, Fault detection and isolation for hybrid
systems using structured parity residuals, in Proceedings of the IEEE/IFAC-ASCC: Asian
Control Conference, vol. 2, Melbourne (2004), pp. 1204–1212

20. M.J. Daigle, A qualitative event-based approach to fault diagnosis of hybrid systems. PhD
thesis, Vanderbilt University, 2008

21. M. Daigle, X. Koutsoukos, G. Biswas, An event-based approach to hybrid systems diagnos-
ability, in Proceedings of the 19th International Workshop on Principles of Diagnosis (DX’08)
(2008), pp. 47–54

22. M.J. Daigle, D. Koutsoukos, G. Biswas, An event-based approach to integrated parametric and
discrete fault diagnosis in hybrid systems. Trans. Inst. Meas. Control. (Special Issue on Hybrid
and Switched Systems) 32(5), 487–510 (2010)

23. M.J. Daigle, I. Roychoudhury, G. Biswas, D. Koutsoukos, A. Patterson-Hine, S. Poll, A
comprehensive diagnosis methodology for complex hybrid systems: a case study on spacecraft
power distribution systems. IEEE Trans. Syst. Man Cybern. Part A (Special Issue on Model-
based Diagnosis: Facing Challenges in Real-world Applications) 4(5), 917–931 (2010)

24. Y. Deng, A. D’Innocenzo, M.D. Di Benedetto, S. Di Gennaro, A.A. Julius, Verification of
hybrid automata diagnosability with measurement uncertainty. IEEE Trans. Autom. Control
61(4), 982–993 (2016)

25. O. Diene, E.R. Silva, M.V. Moreira, Analysis and verification of the diagnosability of hybrid
systems, in Proceedings of the 53rd IEEE Conference on Decision and Control (CDC-14)
(IEEE, New York, 2014), pp. 1–6

26. O. Diene, M.V. Moreira, V.R. Alvarez, E.R. Silva, Computational methods for diagnosability
verification of hybrid systems, in Proceedings of the IEEE Conference on Control Applications
(CCA-15) (IEEE, New York, 2015), pp. 382–387

27. S. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools
(Springer, London, 2008)

28. C. Edmund, F. Ansgar, H. Zhi, K. Bruce, S. Olaf, T. Michael, Verification of hybrid systems
based on counterexample-guided abstraction refinement, in Proceedings of International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS-
2003), ed. by H. Garavel, J. Hatcliff. Lecture Notes in Computer Science, vol. 2619 (Springer,
Cham, 2003), pp. 192–207

29. G. Fourlas, K. Kyriakopoulos, N. Krikelis, Diagnosability of hybrid systems, in Proceedings of
the 10th Mediterranean Conference on Control and Automation (MED-2002), Lisbon (2002),
pp. 3994–3999

30. J.-P. Gallois, J.-Y. Pierron, Qualitative simulation and validation of complex hybrid systems,
in Proceedings of the 8th European Congress on Embedded Real Time Software and Systems
(ERTS-2016), Toulouse (2016)

11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis 317

31. S. Gao, S. Kong, E. Clarke, Satisfiability modulo ODEs, in Formal Methods in Computer-
Aided Design (FMCAD) (2013)

32. V. Germanos, S. Haar, V. Khomenko, S. Schwoon, Diagnosability under weak fairness, in
Proceedings of the 14th International Conference on Application of Concurrency to System
Design (ACSD’14), Tunis (IEEE Computer Society Press, New York, 2014)

33. J. Gertler, Fault Detection and Diagnosis in Engineering Systems (Marcel Dekker, New York,
1998)

34. A. Grastien, Symbolic testing of diagnosability, in Proceedings of the 20th International
Workshop on Principles of Diagnosis (DX-09) (2009), pp. 131–138

35. A. Grastien, L. Travé-Massuyès, V. Puig, Solving diagnosability of hybrid systems via
abstraction and discrete event techniques, in Proceedings of the 27th International Workshop
on Principles of Diagnosis (DX-16) (2016)

36. S. Gulwani, A. Tiwari, Constraint-based approach for analysis of hybrid systems, in
Proceedings of the 20th International Conference on Computer Aided Verification (CAV-2008)
(2008), pp. 190–203

37. E. Hainry, Decidability and undecidability in dynamical systems. Rapport de recherche
(CiteSeer, 2009). http://hal.inria.fr/inria-00429965/en/

38. T.A. Henzinger, The theory of hybrid automata, in Proceedings of the 11th Annual IEEE
Symposium on Logic in Computer Science (IEEE Computer Society Press, Los Alamitos, CA,
1996), pp. 278–292

39. T.A. Henzinger, P.W. Kopke, A. Puri, P. Varaiya, What’s decidable about hybrid automata?, in
Proceedings of the 27th Annual Symposium on Theory of Computing (ACM Press, New York,
1995), pp. 373–382

40. S. Jiang, Z. Huang, V. Chandra, R. Kumar, A polynomial algorithm for testing diagnosability
of discrete-event systems. IEEE Trans. Autom. Control 46(8), 1318–1321 (2001)

41. E. Kilic, Diagnosability of fuzzy discrete event systems. Inf. Sci. 178(3), 858–870 (2008)
42. K.-D. Kim, S. Mitra, P.R. Kumar, Computing bounded epsilon-reach set with finite precision

computations for a class of linear hybrid automata, in Proceedings of the ACM International
Conference on Hybrid Systems: Computation and Control (2011)

43. B. Kuipers, Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge
(MIT Press, Cambridge, MA, 1994)

44. F. Liu, D. Qiu, Safe diagnosability of stochastic discrete-event systems. IEEE Trans. Autom.
Control 53(5), 1291–1296 (2008)

45. O. Maler, G. Batt, Approximating continuous systems by timed automata, in Formal Methods
in Systems Biology (Springer, Berlin, 2008), pp. 77–89

46. T. Melliti, P. Dague, Generalizing diagnosability definition and checking for open systems: a
Game structure approach, in Proceedings of the 21st International Workshop on Principles of
Diagnosis (DX’10), Portland, OR (2010), pp. 103–110

47. M. Nyberg, Criterions for detectability and strong detectability of faults in linear systems. Int.
J. Control. 75(7), 490–501 (2002)

48. Y. Pencolé, Diagnosability analysis of distributed discrete event systems, in Proceedings of the
16th European Conference on Artificial Intelligent (ECAI-04) (2004), pp. 43–47

49. Y. Pencolé, A. Subias, A chronicle-based diagnosability approach for discrete timed-event
systems: application to web-services. J. Universal Comput. Sci. 15(17), 3246–3272 (2009)

50. P. Ribot, Y. Pencolé, Design requirements for the diagnosability of distributed discrete
event systems, in Proceedings of the 19th International Workshop on Principles of Diagnosis
(DX’08), Blue Mountains (2008), pp. 347–354

51. J. Rintanen, Diagnosers and diagnosability of succinct transition systems, in Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad (2007),
pp. 538–544

52. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Diagnosability of
discrete event systems. Trans. Autom. Control 40(9), 1555–1575 (1995)

53. A. Schumann, J. Huang, A scalable jointree algorithm for diagnosability, in Proceedings of the
23rd American National Conference on Artificial Intelligence (AAAI-08) (2008), pp. 535–540

http://hal.inria.fr/inria-00429965/en/

318 H. Zaatiti et al.

54. D. Thorsley, D. Teneketzis, Diagnosability of stochastic discrete-event systems. IEEE Trans.
Autom. Control 50(4), 476–492 (2005)

55. L. Travé-Massuyès, P. Dague, Modèles et raisonnements qualitatifs (Hermès, Paris, 2003)
56. L. Travé-Massuyès, M. Cordier, X. Pucel, Comparing diagnosability criterions in continuous

systems and discrete events systems, in Proceedings of the 6th IFAC Symposium on Fault
Detection, Supervision and Safety of Technical Processes (Safeprocess’06), Beijing (2006),
pp. 55–60

57. L. Travé-Massuyès, T. Escobet, X. Olive, Diagnosability analysis based on component-
supported analytical redundancy relations. IEEE Trans. Syst. Man Cybern. Part A 36(6),
1146–1160 (2006)

58. S. Tripakis, Fault diagnosis for timed automata, in Proceedings of International Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT-2002). Lecture Notes
in Computer Science, vol. 2469 (Springer, Berlin, 2002), pp. 205–221

59. Y. Yan, L. Ye, P. Dague, Diagnosability for patterns in distributed discrete event systems, in
Proceedings of the 21st International Workshop on Principles of Diagnosis (DX’10), Portland,
OR (2010), pp. 345–352

60. L. Ye, P. Dague, Diagnosability analysis of discrete event systems with autonomous
components, in Proceedings of the 19th European Conference on Artificial Intelligence (ECAI-
10) (2010), pp. 105–110

61. T.-S. Yoo, S. Lafortune, Polynomial-time verification of diagnosability of partially observed
discrete-event systems. IEEE Trans. Autom. Control 47(9), 1491–1495 (2002)

62. M. Yu, D. Wang, M. Luo, D. Zhang, Q. Chen, Fault detection, isolation and identification for
hybrid systems with unknown mode changes and fault patterns. Expert Syst. Appl. 39(11),
9955–9965 (2012)

63. J. Zaytoon, S. Lafortune, Overview of fault diagnosis methods for discrete event systems.
Annu. Rev. Control. 37(2), 308–320 (2013)

Index

A
Abductive diagnosis, Modelica system model

automated rule extraction, 60–63
knowledge base, 59, 69–70
PHCAP, 60

Abductive MBD
defined, 19
design process, 31
incorporating diagnosis into practice

abductive MBD process, 23
computational complexity, 22
fault identification, 26–27
FMEA, 23–26
model-based reasoning, 22
model development, 23–26

propositional Horn clause abduction, 20–21
requirements, 30–31
stakeholders, 30
workflow and GUI design

diagnosis and probing interface, 36–37
diagnosis engine, 32
mobile reporting interface, 36, 38
Operations Center, 32–33
preparation and overview interface,

34–35
repair tasks assigning, 32–33
repair task screen, 33–34
root cause of the failure, 36
service center employee, 32
Uptime Engineering’s condition

monitoring software, 32
Abstracting hybrid automata

computing time bounds, 300–302
different abstraction strategies

qualitative principles, 293
temporal properties, verification of,

293–294
encoding hybrid automata reachability

constraints
adjacent regions, 297
decomposition-based timeless abstract

automaton, 297
timeless abstraction completeness,

297–298
timeless abstraction observation,

298
encoding hybrid automata time constraints

decomposition-based timed abstract
automaton, 299

region time interval and time bounds,
299

timed abstraction completeness,
299–300

timed abstraction observation, 300
geometric decomposition of state space

continuous space partition, 294–295
hybrid state space decomposition,

295–296
Abstractions refinement

abstracting hybrid automata
computing time bounds, 300–302
different abstraction strategies, 293–294
encoding hybrid automata reachability

constraints, 296–298
encoding hybrid automata time

constraints, 298–300
geometric decomposition of state space,

294–296

© Springer International Publishing AG 2018
M. Sayed-Mouchaweh (ed.), Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems, https://doi.org/10.1007/978-3-319-74962-4

319

https://doi.org/10.1007/978-3-319-74962-4

320 Index

Abstractions refinement (cont.)
CEGAR adaptation, diagnosability

verification
fault tolerant thermostat model,

310–313
hybrid automaton, verifying

diagnosability of, 306–307
refinement procedure, 309–310
refuted counterexample, 308–309
twin plant based diagnosability

checking, 307–308
validated counterexample, 308

hybrid automaton
continuous system, 284
definition, 281–282
discrete automaton, 284
modeling framework, 282–283
reachability analysis, 304–305
refined timed model, 303–304
refined timeless model, 302–303
semantics, 283–284
timed automatan, 285–286

hybrid dynamical systems
diagnosability analysis, 286–289
observations and faults, 289–290
system diagnosability definition,

290–292
Active fault diagnosis, MM modeling

diagnosability conditions, 154–155
fault classes, example with, 156
fault detection, 156–158
fault isolating sequence, 156–160
3-cells converter, 160–161

experimental setup, 167–168
fault detection and isolation, 170
inductive load, nominal modes, 168,

169
input set, 168
mode commutations, 170, 171
output voltage variations and output set,

168–169
overall platform, 167, 168
state and reference, evolution of, 170,

171
2-cells converter, 160

fault detection, diagnoser, 166
fault evolution, 166
fault isolating, diagnoser and homing

sequences, 164–167
input set, 163–164
mode commutations, 166–167
nominal modes, 162, 163
observable faults with fault classes, 164

output voltage variations and output set,
163, 164

PWM module controls, 162, 163
unobservable faults, 164

Actuators, 207
Akaike’s information criterion (AIC), 85
Anomaly detectors, 207
ANOVA test, 109
Artificial neural networks (ANNs), 204
Assumption-based truth maintenance system

(ATMS), 26, 39, 60
Automated rule extraction, 60–63

B
Bayesian information criterion (BIC), 85
Bayesian networks, 204
Behavioral approach, 125
Behavior automaton, 287
Black-box models, 83
Boolean expression, 210
Bootstrapping method, 84, 87
Breaker observer model, 220, 221
The Brusselator, 295, 296, 305
Brusselator time bounds, 302

C
Cauchy distribution, 96
Causal relation networks (model-based)

causal mappings, 79–81
characteristics engine map, 79
data cleaning, 82
linear/non-linear system identification, 78
micro-fluidic chip production process, 79,

80
model-ability, 84
model assessment, 85–86
model training and evaluation, 84–85
process values, 78
system identification, 82–84
unsupervised approach, 78

Clustered diagnoser, 288
Communication networks, 119–120
Component pruning methods, 101
Computer-Integrated Manufacturing (CIM)

architecture, ICS
communication networks, 119–120
control, 118–119
scheduling and global management, 120
sensors and actuators, 118
supervision (SCADA), 119

Consistency-based diagnosis, 19

Index 321

Continuous system (CS), 284
Counterexample guided abstraction refinement

(CEGAR) scheme
algorithmic basis, 288
diagnosability verification, 280

fault tolerant thermostat model,
310–313

hybrid automaton, verifying
diagnosability of, 306–307

refinement procedure, 309–310
refuted counterexample, 308–309
twin plant based diagnosability

checking, 307–308
validated counterexample, 308

Critical states distance filter based approach,
126, 134–137

Cyberattacks, ICS
DOS/DDOS, 121
false data injection attacks, 121
Maroochy Shire sewage spill, 120
MITM/replay attack, 121
power grid attack, 120
random attacks, 121
sequential attacks, 121
steel mill plant attack, 120
Stuxnet, 120
superposition of, 123

Cyber-physical systems (CPS)
cascading phenomenon, 205–206
consistency-based diagnosis, 203
defined, 1
DES (see Discrete event system)
electric transmission network

breaker behavioral model, 219
diagnosis results, 222–223
diagnosis system, 220
distance relay behavioral model,

218–219
fault propagation graph, 217–218
system under test, 215–217

fault protection mechanism, 202
hybrid and switching systems, 204
model-based fault diagnostics reasoner, 202
observers, 202, 211
power systems, diagnosis in, 204–205
TCD model

combined diagnosis and reasoning
approach, 211–215

fault management controllers, 210–211
non-deterministic semantics, extended

TFPG, 207–209
observable events, 207
TFPG based reasoning schemes, 207

TTA, 207
temporal causal network approach, 203
TFPG, 202

Cybersecurity, ICS
emulator approach, 126
filter approach (see Filter approach)
IDS, 124–125
reference model, 126
safety and security, interdependence, 127
specifications, quantitative/qualitative

methods, 125–126

D
Data-driven fault detection

advanced residual generation and analysis,
86–89

causal relation networks (model-based)
causal mappings, 79–81
characteristics engine map, 79
data cleaning, 82
linear/non-linear system identification,

78
micro-fluidic chip production process,

79, 80
model-ability, 84
model assessment, 85–86
model training and evaluation, 84–85
process values, 78
system identification, 82–84
unsupervised approach, 78

crisp switches/parameter settings, 78
deviation degree, 75
distribution-based reference models, 75
enhanced residual analysis, 89–91
FoF track, 73
instance-based level, 78
intended and non-intended changes,

dynamic systems
discrete events and change isolation,

hybridization of, 106–110
discrete event signals, 105–106
expert-based pattern-like descriptions,

105
fault signatures, 105
model performance, 104

multi-sensor networks, 76, 77
reference models, 77
self-adaptive reference models, handling

system dynamics
causal relation networks, 100–102
distribution-based reference models,

102–104

322 Index

Data-driven fault detection (cont.)
drifts, 98
incremental adaptation of parameters,

98
incremental learning methods, 98–99
original/transformed feature space, 99
predictive performance, 98
single-pass on-line manner, 98

smart/intelligent sensors, 76
unsupervised feature space (distribution-

based)
causal relations, 92
deviation analysis, (global) principal

component space, 92–94
mixture models and (generalized) data

clouds, 95–96
one-class classifiers, non-linear hull

representations, 97
partial local principal component space,

94–95
�-Critical pair, 291–292
Denial of Service (DOS) attack, 121
Deterministic finite automaton (DFA),

150–151
Diagnosability notion, 5
Diagnosis algorithm, MM modeling

fault classes, example with, 156
fault detection, active diagnoser for,

156–158
fault isolating sequence, active diagnoser

for, 156–160
multicellular converter

3-cells converter, 169, 170
2-cells converter, 164–167

Diagnosis inference engine/diagnoser, 5
Diagnosis ranking, 27
Discrepancy–Alarm Association Map, 217
Discrepancy mode change event, 213–215
Discrete automaton (DA), 284
Discrete event system (DES), 152

analytical redundancy relations, 253
behavioral model, 255
combined uncertainty, 262
deterministic finite automaton, 150–151
diagnosability, 256–257

analysis, 148
and combined uncertainty, 269–271
and logical uncertainty, 266–269
and temporal uncertainty, 265–266

diagnoser approach, 254
diagnosis candidate, 256
discretization, 253
distinct candidates, 254
finite state machine, 148, 149

hybrid system, 253
incomplete/approximate diagnostic

algorithms, 254
logically uncertain observations, 260–261
model-based diagnosis of, 254
online diagnosis, 148
power distribution network

continuous model, 273–274
diagnosability analysis, 275
discrete model, 272–273

temporally uncertain observations, 259–260
twin plant method, 254, 257–259
unifying uncertainty representations, 263

Discrete faults, 4
Discretely controlled continuous system

(DCCS), 2–3
Discrete transition, 180, 183–184
Distance matrix, 261, 263, 264, 266–269, 271,

275
Distance observer model, 220–221
Distinguishability, 176
Distinguishability index, 240–242, 246,

248–249
Distributed Denial of Service (DDOS) attack,

121
Distribution-free approach, 82
Dynamical network, 193

E
Emulator approach, 126
Ephemerality, 288
EtherCAT, 120
Evolving participatory learning concept (ePL),

102
Execution (timed) observation, 289–290

F
Factories of the Future (FoF) track, 73
Failure mode effect analysis (FMEA)

components (COMP), 24
defined, 24
modes (MODES), 24–25
propositions (PROPS), 24
shortcoming, 26
yaw drive problem & solution, 24–25

Fast function extraction (FFX), 83
Fault, defined, 4
Fault detection

residual-based methods, 228
SWA models

delays, 239–240
detectability assumption, 236

Index 323

input–output data, 235
multiple faults, T-detectability for, 236
nominal model, 235

Fault detection and isolation (FDI)
delays, 240
flowchart of, 239
MM modeling

fault detection, active diagnoser for,
156–158

fault isolating sequence, active
diagnoser for, 156–160

3-cells converter, 170
2-cells converter, 164–167

observer-based FDI techniques, 148
off-line step, 238
on-line step, 238

Fault detection and localization
Modelica system model (see Modelica

system model)
wind turbine (see Wind turbine fault

localization)
Fault diagnosis

defined, 4
external methods, 6–7
internal methods, 6
Modelica (see Modelica system model)
observer-based method, 228
offline or online, 5
set-membership, 6
switched affine models (see Switched affine

models)
wind turbines (see Wind turbine fault

localization)
Fault-free continuous behavior, 5–6
Fault identification, abductive MBD

ATMS, 26
diagnosis ranking, 27
observation discrimination, 26–27

Fault isolation, SWA models, 236
adaptive, 242
delays, 239–240
isolability assumption, 237
multiple faults, I-isolability for, 237

Fault tolerant thermostat model, 310–313
(�-)Faulty executions, 290–291
FDI, see Fault detection and isolation
Filter approach, 141–142

advantages, 126–127
application example, 138–141
control filter, 126–128, 137, 138
detection mechanisms

critical states distance, 126, 134–137
static rules, immediate blocking,

133–134

ICS architecture, integration in, 128–129
objective, 128
report filter, 126–128, 137, 138
risk assessment, 129–130
system states exploration, 131–133

Finite state machines (FSMs), 148, 149
definitions of diagnosability, 185–187
finite and infinite strings, 185
nondeterministic FSM, 184
state execution, 185

Fipway, 119
Fisher information matrix, 87
Fisher-Snedecor distribution, 94
FMEA, see Failure mode effect analysis
FSMs, see Finite state machines
Fuzzy inference system, 18

G
Gamma Test, 84
Gaussian process model, 88
Gauss-Newton algorithm, 100, 101
Genetic programming (GP), 83
Gustafson-Kessel clustering, 94

H
Heating, ventilating, and air conditioning

(HVAC) system
distinguishability index, 246, 247
fault scenarios, 246, 247
isolability index, 246, 247
parameters, 245
single-zone HVAC system, 243, 244

Hessian matrix, 90, 100
Hidden-mode switched affine models, see

Switched affine models
Homing sequences, 149, 155, 158–160,

164–167
Horn clause, defined, 20
Host Intrusion Detecting System (HIDS), 125
Hybrid automaton (HA)

continuous system, 284
defined, 3–4
definition, 281–282
discrete automaton, 284
modeling framework, 282–283
reachability analysis, 304–305
refined timed model, 303–304
refined timeless model, 302–303
semantics, 283–284
time bounded and unbounded

diagnosability, 291
timed automatan, 285–286

324 Index

Hybrid bond graph, 3
Hybrid dynamical systems

diagnosability analysis, 286–289
LH-system, 180–182
observations and faults, 289–290
secure mode distinguishability, 182–184
system diagnosability definition, 290–292
transition detection, 180

Hybrid dynamic systems (HDS)
classes, 2
DCCS, 2–3
defined, 1
fault diagnosis, 6–7
modeling tools, 3

Hybrid function, 3
Hybrid Petri nets (HPN), 3
Hybrid system (HS), 253

continuous and discrete dynamics
interaction, 175

diagnosability, 175
decentralized and distributed

approaches, 176
decidability and computational

complexity, 176
finite time interval, 176
FSMs (see Finite state machines)
LH-systems (see Linear hybrid

dynamical system)
machine learning algorithms, 177
model-based approach, 177

discrete event system, 176, 177
distinguishability, 176
dynamical systems (see Hybrid dynamical

systems)
internal state, 176
observability, 175, 176, 179
safety critical applications, 175

Hypothesis, defined, 20

I
IFAC Technical Committee SAFEPROCESS,

73–74
Industrial control systems (ICS)

CIM architecture
communication networks, 119–120
control, 118–119
scheduling and global management, 120
sensors and actuators, 118
supervision (SCADA), 119

vs. classical information systems, 122
cyberattacks

DOS/DDOS, 121
false data injection attacks, 121

Maroochy Shire sewage spill, 120
MITM/replay attack, 121
power grid attack, 120
random attacks, 121
sequential attacks, 121
steel mill plant attack, 120
Stuxnet, 120
superposition of, 123

cybersecurity
emulator approach, 126
filter approach (see Filter approach)
IDS, 124–125
reference model, 126
safety and security, interdependence,

127
specifications, quantitative/qualitative

methods, 125–126
failure, sources, causes, and location of,

123, 124
vulnerabilities, 120–122, 141

Information system (IS), 122
Intended and non-intended changes, dynamic

systems
discrete events and change isolation,

hybridization of
delay elicitation, process changes, 107
isolation candidates, 109–110
location of changes, 108–109

discrete event signals, 105–106
expert-based pattern-like descriptions, 105
fault signatures, 105
model performance, 104

Intrusion Detection System (IDS), 124–125
ISA100, 119
Isolating sequence, MM modeling

active diagnoser for, 156–160
3-cells converter, 170
2-cells converter, diagnoser and homing

sequences, 164–167

K
Kalman gain, 90, 100
Knowledge base (KB), 20–22, 59, 69–70

L
Levenberg-Marquardt algorithm, 101
LH-system, see Linear hybrid dynamical

system
Linear automata, 286
Linear hybrid dynamical system (LH-system),

187
abstracting procedure

Index 325

dynamical network, 193
equivalence class of state, 189
example, 193–195
phases, 189–193
quotient space of Q; 189
s-secure indistinguishability, 189

definition
of diagnosability, 188–189
hybrid dynamical system, 180–181

execution, 181–182
secure diagnosability property checking,

196
Linear temporal logic (LTL) operator, 294

M
Machine learning, 142
Mahalanobis distance measure, 94
Man-in-the-middle (MITM) attack, 121
Markov models, 203
MBD, see Model-based diagnosis
Mealy Machine (MM) modeling, 149

active diagnosis
diagnosability conditions, 154–155
fault classes, example with, 156
fault detection, 156–158
fault isolating sequence, 156–160
multicellular converter, application to

(see Multicellular converter)
equivalent DFA, diagnoser automaton, 153,

154
input events, 152–153
output event, 152, 153
output function, 152, 153
transition function, 152, 153

Mean squared error (MSE), 84
Mixed-Integer Linear Programming (MILP),

231–234, 242, 250
Mode change event, 213, 215
Mode detectors, 207
Mode distinguishability, 182–184
Model-based diagnosis (MBD)

abductive diagnosis, 19
consistency-based diagnosis, 19
incorporating diagnosis into practice

abductive MBD process, 23
computational complexity, 22
fault identification, 26–27
FMEA, 23–26
model-based reasoning, 22
model development, 23–26

propositional Horn clause abduction, 20–21
wind turbine diagnosis (see Wind turbine

fault localization)

Model-based reasoning, 19
Modelica system model

abductive diagnosis
automated rule extraction, 60–63
knowledge base, 59, 69–70
PHCAP, 60

equivalence problem, 53
with fault modes

mode assignment, 51, 52
simulation function, 51–52
system model, 50–51

MyComponent model, 49–50
Pearson correlation coefficient, 58–59
switch circuit

correct behavior, 65–66
timing deviations, 67

temporal band sequences, 56–58
tolerance value approach, 54–56
voltage divider circuit

coding for a pin, ground pin and
component with two pins, 47–48

deviation model, 64–65
hypotheses, 64
Modelica source code, 50–51
qualitative model, 64

Model invalidation, switched affine models,
see Switched affine models

Mode signatures, 287
Multicellular converter, 147, 148

active fault diagnosis
3-cells converter, 160–161, 167–171
2-cells converter, 160, 162–167

inductive load, 161–162
Multimode system, 287
Multirectangular automata, 286
Multisingular automata, 286

N
Network Intrusion Detection System (NIDS),

125
Network topology, 194
N-fold cross validation (CV) strategy, 84, 87
North American Reliability Corporation

(NERC), 205

O
Observability, 175, 176, 179
Observer-based FDI techniques, 148
Offline diagnosis, 5
Online diagnosis, 4, 5
On-line filtering techniques, 89
Ordinary differential equations (ODEs), 281,

293

326 Index

P
Parametric faults, 4, 5
Parsimonious Gaussian Mixture Models

(PGMM), 95
Partially observable hybrid automaton

(POHA), 289
Pearson correlation coefficient, 58–59
Petri nets, 204
PHCAP, see Propositional Horn clause

abduction problem
Polynomial automata, 286
Power distribution network

continuous model, 273–274
diagnosability analysis, 275
discrete model, 272–273

Probabilistic principal components (PPCA), 95
Profibus, 119
Profinet, 120
Programmable Logic Controller (PLC), 119
Propositional Horn clause abduction problem

(PHCAP)
Horn clause, defined, 20
hypothesis/assumption, 20
insufficient lubrication solution, 20–22
knowledge base (KB), 20
Modelica system model, 60

Protection system observer models, 220

Q
Qualitative methods, 125, 126
Quantitative methods, 125, 126

R
Reachability analysis, 304–305
Receiver Operating Curves (ROCs), 89
Rectangular automata (RA), 285
Recursive (weighted) least squares (R(W)LS)

approach, 90, 100
Reference model, 126
Refined timed model, 303–304
Refined timeless model, 302–303

S
Satisfiability Modulo Theory (SMT), 179, 294
SCADA, see Supervisory control and data

acquisition
Secure diagnosability, 175

decentralized and distributed approaches,
176

decidability and computational complexity,
176

finite time interval, 176
FSMs (see Finite state machines)
LH-systems (see Linear hybrid dynamical

system)
machine learning algorithms, 177
model-based approach, 177

Secure state estimation problem
control system, conceptual block diagram,

178
corrupted discrete-time linear dynamical

system, 179
deception attacks, 179
Satisfiability Modulo Theory paradigm,

179
sensor measurements

communication network, 178
cyclic s-sparse, 179

Self-adaptive reference models, handling
system dynamics

causal relation networks, 100–102
distribution-based reference models,

102–104
drifts, 98
incremental adaptation of parameters, 98
incremental learning methods, 98–99
original/transformed feature space, 99
predictive performance, 98
single-pass on-line manner, 98

Sequence Event Recorders, 217
Signature approach, 125
Signature-events, 287
Singular automata, 285
Slack variables, 232
Smooth forgetting factor mechanism, 90
Sparse fuzzy inference learning scheme

(SparseFIS), 89
Special ordered set of degree 1 (SOS-1)

constraints, 229, 249
Stopwatch, 285–286
Stuxnet, 120
Supervisory control and data acquisition

(SCADA), 18, 28, 118, 119
Switched affine (SWA) models

detection and isolation delays, 239–240
distinguishability index and system

uncertainty, 248–249
fault detection

detectability assumption, 236
input–output data, 235
multiple faults, T-detectability for, 236
nominal model, 235

fault isolation, 236
adaptive, 242
isolability assumption, 237

Index 327

multiple faults, I-isolability for, 237
FDI scheme, 238–239
HVAC systems, fault diagnosis in

detectability index, 246, 247
fault scenarios, 246, 247
isolability index, 246, 247
parameters, 245
single-zone HVAC system, 243, 244

modeling framework
fault model, 230
length-N behavior, 230–231

model invalidation
feasibility problem, 231, 232
infeasibility, 232, 233
input–output sequence, 231–233

run-time comparison, 243, 244
T-distinguishability

finding T for, 240–242
MILP feasibility, 233, 234
optimization formulation, 234

Switched systems
continuous and discrete dynamics, 147
DES diagnosis, 152

deterministic finite automaton, 150–151
finite state machine, 148, 149
online diagnosis, 148

MM diagnoser (see Mealy Machine
modeling)

power converters, 147
Switching systems, 180
Switching times, 181
System Identification (SysID) models, 74

T
T-distinguishability

definition, 233
finding T for, 240–242
MILP feasibility, 233, 234
optimization formulation, 234

Temporal band sequences (TBS), 56–58
Temporal causal diagrams (TCDs), 202

breaker behavioral model, 219
diagnosis system

circuit breaker observer model, 221
distance relay observer, 220–221

distance relay behavioral model, 218–219
fault propagation graph, 217–218

Testing theory, 149, 155, 167
Timed automaton (TA), 285–286
Timed Fault Propagation Graphs (TFPG), 202,

207–210
Timed transition system, 283
Timeless transition system, 284
Timeout event, 213, 215
Time Triggered Automata (TTAs), 207
Tolerance value approach, 54–56
Triangular automata, 286
Twin plant method, 254, 257–259

U
Unsupervised feature space (distribution-

based)
causal relations, 92
deviation analysis, (global) principal

component space, 92–94
mixture models and (generalized) data

clouds, 95–96
one-class classifiers, non-linear hull

representations, 97
partial local principal component space,

94–95

W
Wind turbine fault localization

abductive model-based diagnosis prototype
design process, 31
requirements, 30–31
stakeholders, 30
workflow and GUI design, 32–38
See also Abductive MBD

MBD (see Model-based diagnosis)
realization of diagnosis engine, 39–40
wind turbine reliability, 28

WirelessHART, 119

Z
Z-observability concept, 148

	Preface
	Contents
	1 Prologue
	1.1 Cyber-Physical Systems as Hybrid Dynamic Systems
	1.2 Diagnosability, Security, and Safety in Cyber-Physical Systems: Problem Formulation, Methods, and Challenges
	1.3 Contents of the Book
	1.3.1 Chapter 2
	1.3.2 Chapter 3
	1.3.3 Chapter 4
	1.3.4 Chapter 5
	1.3.5 Chapter 6
	1.3.6 Chapter 7
	1.3.7 Chapter 8
	1.3.8 Chapter 9
	1.3.9 Chapter 10
	1.3.10 Chapter 11

	References

	2 Wind Turbine Fault Localization: A Practical Application of Model-Based Diagnosis
	2.1 Introduction
	2.2 Model-Based Diagnosis
	2.2.1 Propositional Horn Clause Abduction
	2.2.2 Incorporating Diagnosis into Practice
	2.2.2.1 Model Development
	2.2.2.2 Fault Identification

	2.3 Industrial Wind Turbine Diagnosis
	2.3.1 Abductive Model-Based Diagnosis Prototype
	2.3.1.1 Requirements
	2.3.1.2 Design Process
	2.3.1.3 Workflow and GUI Design

	2.3.2 Realization of the Diagnosis Engine

	2.4 Conclusion
	References

	3 Fault Detection and Localization Using Modelica and Abductive Reasoning
	3.1 Introduction
	3.2 Using Modelica for Describing a System's Behavior
	3.2.1 A Modelica Simulation Model with Fault Modes

	3.3 Comparing Signals for Detecting the Presence of Faults
	3.3.1 Tolerance Values
	3.3.2 Temporal Band Sequences
	3.3.3 Pearson Correlation Coefficient

	3.4 Abductive Diagnosis for Modelica Models
	3.4.1 Abductive Diagnosis
	3.4.2 Automated Rule Extraction

	3.5 Case Studies
	3.6 Related Research and Discussion
	3.7 Summary
	References

	4 Robust Data-Driven Fault Detection in Dynamic Process Environments Using Discrete Event Systems
	4.1 Introduction
	4.2 Problem Statement
	4.3 Residual-Based Fault Detection Based on Causal Relation Networks (Model-Based)
	4.3.1 Establishment of Causal Relation Networks
	4.3.2 Advanced Residual Generation and Analysis
	4.3.3 Enhanced Residual Analysis

	4.4 Recognition of Untypical Occurrences in the Unsupervised Feature Space (Distribution-Based)
	4.4.1 Deviation Analysis in the (Global) Principal Component Space
	4.4.2 Analysis in the Partial Local Principal Component Space
	4.4.3 Advanced Possibilities Based on Mixture Models and (Generalized) Data Clouds
	4.4.4 One-Class Classifiers for Non-linear Hull Representations

	4.5 Self-adaptive Reference Models for Handling System Dynamics
	4.5.1 Self-adaptive Causal Relation Networks
	4.5.2 Self-adaptive Distribution-Based Reference Models

	4.6 Distinction Between Intended and Non-intended Changes in Dynamic Systems
	4.6.1 Discrete Event Signals Indicating (Intended) Process Changes
	4.6.2 Identification of Intended Changes by Hybridization of Discrete Events and Change Isolation
	4.6.2.1 Delay Elicitation for Process Changes
	4.6.2.2 Location of Changes with Change Isolation
	4.6.2.3 Hybridization of Isolation Candidates with Discrete Event Signals to Identify Intended Changes

	References

	5 Critical States Distance Filter Based Approach for Detection and Blockage of Cyberattacks in Industrial Control Systems
	5.1 Introduction
	5.1.1 Industrial Control Systems (ICS)
	5.1.1.1 Level 0: Sensors and Actuators
	5.1.1.2 Level 1: Control
	5.1.1.3 Level 2: Supervision (SCADA)
	5.1.1.4 Communication Networks
	5.1.1.5 Other Levels

	5.1.2 Vulnerabilities and Attacks against ICS
	5.1.3 Problematic

	5.2 State of the Art in Cybersecurity
	5.2.1 From a Security Point of View
	5.2.2 From a Safety Point of View
	5.2.3 Safety and Security: Mutual Reinforcement

	5.3 Our Approach: Filters with Distance Concept for ICS Cybersecurity
	5.3.1 Methodology
	5.3.1.1 Step 0: Integration in the ICS Architecture
	5.3.1.2 Step 1: Risk Assessment
	5.3.1.3 Step 2: System States Exploration
	5.3.1.4 Step 3: Detection Mechanisms

	5.3.2 About Filters for ICS Cybersecurity

	5.4 Application on an Example
	5.5 Conclusions and Perspectives
	5.5.1 Conclusions
	5.5.2 Perspectives

	References

	6 Active Diagnosis for Switched Systems Using Mealy Machine Modeling
	6.1 Introduction
	6.2 Problem Statement and Modeling
	6.2.1 Preliminaries on DES Diagnosis
	6.2.2 Switched System Modeling

	6.3 Active Diagnosis
	6.3.1 Testing Condition
	6.3.2 Algorithm

	6.4 Application to the Multicellular Converter
	6.4.1 Multicellular Converter Modeling
	6.4.2 Active Fault Diagnosis for a 2-Cells Converter
	6.4.2.1 2-Cells Converter Modeling
	6.4.2.2 Algorithm Associated with the 2-Cells Converter
	6.4.2.3 Simulation Results

	6.4.3 Active Fault Diagnosis for a 3-Cells Converter
	6.4.3.1 Experimental Setup
	6.4.3.2 3-Cells Converter Modeling
	6.4.3.3 Experimental Results

	6.5 Conclusion
	References

	7 Secure Diagnosability of Hybrid Dynamical Systems
	7.1 Introduction
	7.2 The Problem of Secure State Estimation
	7.3 Hybrid Dynamical Systems
	7.3.1 Definition of a Hybrid Dynamical System
	7.3.2 Secure Mode Distinguishability

	7.4 Finite State Systems
	7.4.1 Background on FSMs
	7.4.2 Definitions of Diagnosability for FSMs

	7.5 Diagnosability of LH-Systems
	7.5.1 Definitions of Diagnosability
	7.5.2 Abstracting Procedure
	7.5.2.1 Step 0
	7.5.2.2 Step 1
	7.5.2.3 Step 2
	7.5.2.4 Step 3
	7.5.2.5 Abstracting Procedure: An Example

	7.5.3 Checking the Secure Diagnosability Property

	7.6 Conclusions
	Appendix
	From Mealy to Moore

	References

	8 Diagnosis in Cyber-Physical Systems with Fault Protection Assemblies
	8.1 Introduction
	8.2 Background
	8.2.1 Diagnosis in CPS
	8.2.2 Diagnosis in Power Systems
	8.2.3 Cascade Phenomenon: When Fault Management Controllers Misoperate

	8.3 Temporal Causal Diagrams (TCD)
	8.3.1 Extending TFPG with Non-deterministic Semantics
	8.3.2 Modeling the Behavior of Fault Management Controllers
	8.3.3 Observers for Postulating the Failures of Controllers
	8.3.4 Combined Diagnosis and Reasoning Approach

	8.4 Example System: Electric Transmission Network
	8.4.1 System Under Test
	8.4.2 TCD: Fault Propagation Graph
	8.4.3 TCD: Distance Relay Behavioral Model
	8.4.4 TCD: Breaker Behavioral Model
	8.4.5 TCD Diagnosis System: Observers
	8.4.5.1 Observer: Distance Relay
	8.4.5.2 Observer: Circuit Breaker

	8.4.6 Results

	8.5 Conclusion
	References

	9 Passive Diagnosis of Hidden-Mode Switched Affine Models with Detection Guarantees via Model Invalidation
	9.1 Introduction
	9.1.1 Literature Review

	9.2 Preliminaries
	9.2.1 Notation
	9.2.2 Modeling Framework

	9.3 Model Invalidation
	9.4 T-distinguishability
	9.5 Fault Detection and Isolation
	9.5.1 Fault Detection
	9.5.1.1 Multiple Faults Scenario

	9.5.2 Fault Isolation
	9.5.2.1 Multiple Faults Scenario

	9.5.3 FDI Scheme
	9.5.4 Detection and Isolation Delays

	9.6 Practical Considerations
	9.6.1 Finding T for T-distinguishability
	9.6.2 Adaptive Fault Isolation

	9.7 Illustrative Examples
	9.7.1 Run-Time Comparison
	9.7.2 Fault Diagnosis in HVAC Systems
	9.7.3 Distinguishability Index and System Uncertainty

	9.8 Conclusion
	References

	10 Diagnosability of Discrete Faults with Uncertain Observations
	10.1 Introduction
	10.2 Background
	10.2.1 Discrete-Event Systems
	10.2.2 Diagnosability
	10.2.3 Twin Plant Method

	10.3 Temporal and Logical Uncertainty of Observations
	10.3.1 Temporally Uncertain Observations
	10.3.2 Logically Uncertain Observations
	10.3.3 Observations with Combined Uncertainty
	10.3.4 Unifying Uncertainty Representations

	10.4 Diagnosability with Uncertain Observations
	10.4.1 Diagnosability and Temporal Uncertainty
	10.4.2 Diagnosability and Logical Uncertainty
	10.4.3 Diagnosability and Combined Uncertainty

	10.5 Example
	10.5.1 Discrete Model
	10.5.2 Continuous Model
	10.5.3 Diagnosability Analysis

	10.6 Conclusions
	References

	11 Abstractions Refinement for Hybrid Systems Diagnosability Analysis
	11.1 Introduction
	11.2 Hybrid Dynamical Systems
	11.2.1 Hybrid Automata Definition
	11.2.2 Modeling with Hybrid Automata
	11.2.3 Hybrid Automata Semantics
	11.2.4 Hybrid Automata Classes and Particular Cases

	11.3 Diagnosability of Hybrid Dynamical Systems
	11.3.1 Hybrid System Model for Diagnosability Analysis
	11.3.2 Observations and Faults
	11.3.3 System Diagnosability Definition

	11.4 Abstracting Hybrid Automata
	11.4.1 Different Abstraction Strategies
	11.4.2 Geometric Decomposition of the State Space
	11.4.3 Encoding Hybrid Automata Reachability Constraints
	11.4.4 Encoding Hybrid Automata Time Constraints
	11.4.5 Computing Time Bounds

	11.5 Hybrid Automata Abstraction Refinement
	11.5.1 Refined Timeless Model
	11.5.2 Refined Timed Model
	11.5.3 Refinement Guided by Reachability Analysis

	11.6 CEGAR Adaptation for Diagnosability Verification
	11.6.1 CEGAR Scheme for Hybrid Automata Diagnosability Verification
	11.6.2 Twin Plant Based Diagnosability Checking
	11.6.3 Counterexample Validation or Refusal
	11.6.4 Refinement of the Abstraction

	11.7 Case Study Example
	11.7.1 CEGAR Scheme for Fault F1
	11.7.2 CEGAR Scheme for Fault F2

	11.8 Conclusion
	References

	Index

