
A Domain-Specific Language and Toolchain
for Performance Evaluation Based

on Measurements

Freek van den Berg1(B), Jozef Hooman2,3, and Boudewijn R. Haverkort1

1 DACS, University of Twente, Enschede, The Netherlands
{f.g.b.vandenberg,b.r.h.m.haverkort}@utwente.nl

2 ICIS, Radboud University Nijmegen, Nijmegen, The Netherlands
3 Embedded Systems Innovation (ESI) by TNO, Eindhoven, The Netherlands

Abstract. This tool paper presents iDSL, a language and a fully auto-
mated toolchain for evaluating the performance of service-oriented sys-
tems. In this work, we emphasize the use of a high-level domain spe-
cific language that is tailored to be understood by system designers
and domain experts, a transformation into an underlying process alge-
bra which contains latency distribution functions based on real measure-
ments for calibration, and the integration of analysis tools under the
hood. Altogether, the approach delivers intuitive, visual results.

1 Motivation

Embedded systems are computer systems that have a dedicated function within
a larger system, often with real-time constraints [19]. Hence, their performance is
vital. However, good performance is hard to achieve, because embedded systems
come with increasingly heterogeneous, parallel and distributed architectures and
may comprise many product lines and different configurations.

Here, we consider service-oriented systems [10–15], a subclass of embedded
systems, which: (i) provide services to their environment, accessible via so-called
requests; (ii) each service request leads to one response; (iii) service requests are
functionally isolated from each other; but, (iv) may affect each other’s perfor-
mance by competing for the same resource in the service-oriented system.

We propose a performance evaluation framework that can be used to eval-
uate the performance of service-oriented systems based on real measurements
for calibration (Contribution C1). We realize this framework via iDSL, which
comprises the domain-specific, high-level iDSL language (Contribution C2) to
model service-oriented systems and the iDSL toolchain (Contribution C3) to
evaluate the performance of these systems in a fully automatic fashion. This
approach separates the description of the user concerns from the solution app-
roach, in accordance with the Declarative Performance Engineering (DPE, [16])
approach.

c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 295–301, 2018.
https://doi.org/10.1007/978-3-319-74947-1_21



296 F. van den Berg et al.

2 The High-Level iDSL Language

The iDSL language [10–15] has been developed to model service-oriented sys-
tems. It is tailored to be used and understood by system designers and experts
in the service-oriented systems domain, in line with C2. Figure 1 depicts the six
high-level concepts of the iDSL language, as follows. A service system (Fig. 1-C)
provides services to consumers in its environment. A consumer can send a request
for a specific service at a certain time, after which the system responds with some
delay. A service is implemented using a process (A), resources (B) and a map-
ping. A process decomposes high-level service requests into atomic tasks, which
are each assigned to a resource in the mapping. Resources are capable of per-
forming one atomic task at a time, in a certain amount of time. When multiple
services are invoked, their resource needs may overlap, causing contention and
making performance analysis harder. A scenario (D) consists of a number of
invoked service requests over time to observe specific performance behavior of
the system. A study (E) evaluates a selection of systematically chosen scenarios
to derive the system’s underlying characteristics. Finally, measures of interest
(F) define what performance metrics to obtain, given a system in a scenario.

Fig. 1. The meta model of the iDSL language

For illustration, Table 1 provides an example iDSL language instance of
a medical imaging system [14, Sect. 3], as follows. The process contains
a sequence of the processes “image pre processing”, “image processing” and
“image post processing”. In turn, process “image processing” decomposes into
“motion compensation”, “noise reduction” and “contrast”. Each atomic process
has a load, an amount of work. The resource contains a CPU with rate 2, i.e.,
it can process 2 loads per time unit, and a GPU with rate 5. The system com-
bines the process and resource, and has a mapping to connect atomic tasks to
resources. The scenario encompasses two streams of requests for the only service.
Both streams have fixed inter-arrival times of 400.clearpage One stream has an



A Domain-Specific Language and Toolchain for Performance Evaluation 297

Table 1. An example service-oriented system, modeled using the iDSL language



298 F. van den Berg et al.

initial delay of 0. The initial delay of the other is determined by an offset param-
eter, which is a variable that is defined in the so-called design space of the study.
Finally, the measure contains two measures of interest referring to performance
evaluation.

3 The Integrated iDSL Toolchain

In this section, we discuss the iDSL toolchain which ranges from creating an
iDSL language instance to generating performance artifacts, in line with C3.

Creating the performance model involves the conjoint modeling by a mod-
eler and analyzer of a case study in the iDSL language. A modeler determines
how the system behaves and generates a system model, i.e., a process, resource
and system (cf. Fig. 1-A, B and C). The analyzer determines system usage and
creates a study, i.e., scenario, study and measure (cf. Fig. 1-D, E and F).

During the modeling process, the Eclipse Integrated Development Environ-
ment [2] is used to support the user. This environment enables, among others,
syntax highlighting, code completion, and “input validation”, e.g., checking the
code for invalid references, unused objects and ambiguous definitions. Also warn-
ings and information boxes are displayed, e.g., when the design space is too large.

Under the hood, the iDSL grammar has been defined using the Xtext frame-
work [18]. The toolchain functionality is programmed in the Xtend language [17].

In the following, we briefly describe the four main activities that constitute
the performance analysis toolchain of iDSL.

Process Measurements. Measurements are performed on a real system and
injected the into the iDSL model for calibration [15, Sect. 3]. The text-processing
tool AWK [1] is used to facilitate this.

1. Perform measurements on a real system [15, Sect. 3.1].
2. Create Gantts: group measurements into execution times [15, Sect. 3.2].
3. Generate Empirical Distribution Functions (EDFs) [15, Sect. 3.3].
4. Inject the EDFs of step 3 into the IDSL model via a model transformation:

represent EDFs as probabilistic alternatives (PALT, [4]) constructs, in line
with C1. For illustration, we have drawn 100 numbers from a normal distri-
bution (μ = 100, σ = 10) [7] representing measurements. Table 1g then shows
the resulting EDF in iDSL. For instance, “2 atom load 91” means that the
100 drawn numbers contain 2 times value 91.

Model Simplification. iDSL determines whether the model can practically be
evaluated [12, Sect. 4.3]. If not, it is simplified via a transformation, as follows.

1. Cluster similar measurements in each generated EDF [12, Sect. 4.1].
2. Increase the time unit of all time occurrences in the model [12, Sect. 4.2].



A Domain-Specific Language and Toolchain for Performance Evaluation 299

Model evaluation is delegated to Modest [4].

1. Create Modest models: transform iDSL into Modest [11, Sect. 4.3]
2. Evaluate the Modest models for performance using the Modest toolset.

(a) Discrete-event simulation: yields average latencies [14, Sect. 4.2]:
(b) Timed Automata (TA)-model checking: a binary search for absolute

bounds [14, Sect. 4.2].
(c) Probabilistic Timed Automata (PTA)-model checking: an iterative algo-

rithm in which cumulative latency probabilities are computed one at a
time [13, Sect. 4].

(d) Efficient PTA-model checking: a carefully constructed combination of the
aforementioned techniques [12, Sect. 6].

3. Parse results: parse the Modest results into high-level iDSL results.

(a) A latency breakdown chart
(offset=0)

(b) Multi-design latency
CDF

(c) A latency bar graph
(offset=0)

(d) The lower (in purple) and upper bound CDF (in red), the
simulation avg. (in blue), and α = 0.95 CI (in black)

Fig. 2. Four ways of representing latencies, generated from the iDSL code (Color figure
online)



300 F. van den Berg et al.

Create visualizations turns the parsed results into intuitive graphs.

1. Latency breakdown chart (see Fig. 2a): displays the structure of a service,
i.e., the underlying processes and resources, and its dynamics, i.e., process
latencies and resource utilizations.

2. Multi-design latency Cumulative Distribution Function (CDF, see Fig. 2b):
provides latency CDFs for multiple designs in one graph to easily determine
the effect of design decisions.

3. Latency bar chart (see Fig. 2c): shows the subsequent latency times of a ser-
vice which provides insight in jitter, i.e., the variation of latencies.

4. Latency CDF (see Fig. 2d): provides a lower (purple) and upper bound (red)
CDFs whose difference is the result of how nondeterminism is resolved.

Figure 2a–c are based on discrete-event simulations, and Fig. 2d on PTA-
model checking. Figure 2a is made by GraphViz [3], the others by GNUplot [6].

4 Background

iDSL is different from tools such as the Modest toolset [4], Storm [8], UPPAAL
[9] and PRISM [5]. Where the latter deliver relatively generic, widely-applicable
languages, instead, iDSL provides a domain-specific language (C2) which allows
measurements-based calibration (C1), and a fully automated toolchain (C3).

References

1. Andrews, R., Jones, D., Williams, J., Thorson, P., Oliver, G., Costa, D., Le Boeuf,
B.: Heart rates of northern elephant seals diving at sea and resting on the beach.
J. Exp. Biol. 200(15), 2083–2095 (1997)

2. Eclipse desktop & web IDEs. https://www.eclipse.org/ide/
3. Graphviz - Graph Visualization Software. http://www.graphviz.org/
4. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment

for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

5. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

6. Racine, J.: GNUplot 4.0: a portable interactive plotting utility. J. Appl. Econo-
metrics 21(1), 133–141 (2006)

7. RANDOM.ORG. https://www.random.org/gaussian-distributions/
8. Storm Checker. http://www.stormchecker.org
9. Uppsala Aalborg model checker. http://www.uppaal.org/

10. van den Berg, F.: Automated performance evaluation of service-oriented systems.
Ph.D. thesis, University of Twente (2017)

11. van den Berg, F., Haverkort, B.R., Hooman, J.: iDSL: automated performance
evaluation of service-oriented systems. In: Katoen, J.-P., Langerak, R., Rensink,
A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 214–236. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 11

https://www.eclipse.org/ide/
http://www.graphviz.org/
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://www.random.org/gaussian-distributions/
http://www.stormchecker.org
http://www.uppaal.org/
https://doi.org/10.1007/978-3-319-68270-9_11


A Domain-Specific Language and Toolchain for Performance Evaluation 301

12. van den Berg, F., Haverkort, B.R., Hooman, J.: Efficiently computing latency dis-
tributions by combined performance evaluation techniques. In: Proceedings of the
9th EAI International Conference on Performance Evaluation Methodologies and
Tools, VALUETOOLS 2015, pp. 158–163. ICST (2015)

13. van den Berg, F., Hooman, J., Hartmanns, A., Haverkort, B.R., Remke, A.: Com-
puting response time distributions using iterative probabilistic model checking. In:
Beltrán, M., Knottenbelt, W., Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp.
208–224. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23267-6 14

14. van den Berg, F., Remke, A., Haverkort, B.R.: A domain specific language for
performance evaluation of medical imaging systems. In: 5th Workshop on Medical
Cyber-Physical Systems. OpenAccess Series in Informatics, vol. 36, pp. 80–93.
Schloss Dagstuhl (2014)

15. van den Berg, F., Remke, A., Haverkort, B.R.: iDSL: automated performance pre-
diction and analysis of medical imaging systems. In: Beltrán, M., Knottenbelt, W.,
Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 227–242. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23267-6 15

16. Walter, J., van Hoorn, A., Koziolek, H., Okanovic, D., Kounev, S.: Asking what?,
Automating the how?: The vision of declarative performance engineering. In: Pro-
ceedings of the 7th ACM/SPEC on International Conference on Performance Engi-
neering, pp. 91–94. ACM (2016)

17. Xtend. https://www.eclipse.org/xtend/
18. Xtext. https://www.eclipse.org/Xtext/
19. Zurawski, R.: Embedded Systems Handbook. CRC Press, Boca Raton (2005)

https://doi.org/10.1007/978-3-319-23267-6_14
https://doi.org/10.1007/978-3-319-23267-6_15
https://www.eclipse.org/xtend/
https://www.eclipse.org/Xtext/

	A Domain-Specific Language and Toolchain for Performance Evaluation Based on Measurements
	1 Motivation
	2 The High-Level iDSL Language
	3 The Integrated iDSL Toolchain
	4 Background
	References




