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Abstract. Model based computation of optimal maintenance strategies
is one of the classical applications of Markov Decision Processes. Unfor-
tunately, a Markov Decision Process often does not capture the behavior
of a component or system of components correctly because the duration
of different operational phases is not exponentially distributed and the
status of component is often only partially observable during operational
times. The paper presents a general model for components with partially
observable states and non-exponential failure, maintenance and repair
times which are modeled by phase type distributions. Optimal mainte-
nance strategies are computed using Markov decision theory. However,
since the internal state of a component is not completely known, only
bounds for the parameters of a Markov decision process can be com-
puted resulting in a bounded parameters Markov decision process. For
this kind of process optimal strategies can be computed assuming best,
worst or average case behavior.
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1 Introduction

Maintenance problems appear in various aspects of human life wherever there
exists a system or component that degrades with time and has to be kept in an
operational condition by means of active maintenance, i. e., a conscious effort
to inspect and revert the effects of degradation. In general one can distinguish
between condition- or event-based maintenance and preventive- or time-based
maintenance [11]. In the former case, which is more often analyzed, maintenance
takes places whenever a specific condition or event is observed in a system which
indicates a degradation of the system. In preventive or time-based maintenance,
the system is inspected at predefined time points and based on the results of
inspection it is decided whether a maintenance operation is performed or not.
Usually this decision is based on incomplete information about the system state
because the degradation of most systems can only be partially observed or tested
[16]. This implies that maintenance decisions have to be made under uncertainty
about the current state and future behavior of the system.

A popular approach to model this kind of problems are Markov decision
processes (MDPs) [6,15,19]. In it, the stages of degradation are modeled as indi-
vidual states of the system, the maintenance options as possible actions of the
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controller, the results of actions as a probabilistic transition mechanism between
the states, and the degradation itself is modeled as a reward function. The opti-
mal policy computed from the MDP describes the optimal maintenance strategy.
Since failures occur at random times, they are usually described by continuous
time models. Fixed inspection times introduce a time-step in the model which
implies that a discrete time model is more appropriate for the computation of
optimal policies. Thus, we consider discrete time MDPs (DTMDPs) [19] resulting
from the embedding of a continuous time MDP (CTMDP) to compute optimal
time-based maintenance strategies.

The basis of Markov models is the memoryless property which implies that
the time to the next event, in our case next degradation of the component or
system state, is independent of the past. This means that failure or degradation
times are exponentially distributed which is usually not the case for real systems.
It is known that Weibull or log-normal distributions are much more realistic mod-
els for the behavior of systems. Consequently, MDPs are only an approximate
model because the future behavior depends on additional non-observable states
of the system. To express this uncertainty in the model, one has to extend the
model class to partially observable MPDs (POMDPs) or MDPs with uncertain
parameters. The price for such an extension is a more complex model and the
need to compute bounds rather than exact results.

In our work, we combine in some sense POMDPs and MDPs with uncertain
parameters in order to provide a framework for maintenance models of systems
with several components. Prior to the introduction of the approach, we give
in Sect. 2 a brief overview of related work. Then, in Sect. 3, we model failure
time distributions by embedded Markov processes to build a realistic model of
component aging. In Sect. 4, we apply knowledge about uncertainty in Markov
decision processes to derive a decision model and reduce the state space and
make computing optimal maintenance policies tractable even for more complex
models. Finally, we present simple examples in Sect. 5 and discuss the results
in Sect. 6. The proofs for the main theorems used in the paper can be found
online [1].

2 Related Work

An enormous number of papers on MDPs and their use in maintenance modeling
exists. Therefore we mention only briefly the main references.

Markov decision processes and, briefly, their application to maintenance and
dependability have been thoroughly analyzed in the textbook by Puterman [19].
A more elaborate discussion of Markov models for maintenance problems can be
found in [11,15]; for specific applications in this context, we refer to [3,6,12,16].
Probability distributions of the phase type and their application to model failure
and repair times have been considered in [5,13]. More complex maintenance
models based on phase-type distributions can be found in [2,7].

The extension of Markov decision processes with interval-type transition
probabilities has been discussed in [14]. Maintenance applications of a related
uncertain model can be found in [18].
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3 Markov Models for Maintenance

We consider dependability models that are described by Markov processes. In
the following first the basic model of a component and then the composition of
components is introduced.

Component Models. The behavior of a component can be described by a
stochastic process with 2N + 1 phases, which are divided in three groups: N
operational phases, N maintenance phases and one failure phase. We use the
term phase rather than state because states will later be used to model non-
exponential durations of phases. Operational phases are numbered 1 through N ,
maintenance phases receive numbers N + 1 through 2N and the failure phase
number 0.

A new component starts in operational phase N and then continuously
degrades by decreasing the operational phase or by a hard failure that imme-
diately brings the component down to the failure phase. Let Ti be the random
variable describing the duration of phase i and pi the probability of entering
from operational phase i immediately failure phase 0. Consequently, pi = 1 − pi

is the probability of entering operational phase i − 1 from i and p1 = 1.
Eventually a component will end in phase 0, the failure phase, if no action is

taken. In the failure phase, the component may be repaired or substituted by a
new component, in both cases the component starts again in operational phase
N . Additionally, maintenance operations may be introduced. Maintenance can
be initiated at inspection times l · Δ (l ∈ N) when the phase of the component
is determined. If a maintenance operation is initiated when the component is
in operational phase i, then the phase changes to N + i. In phase N + i (i ∈
{1, . . . , N}) maintenance is performed, which requires time TN+i. Afterwards
the phase changes with probability hN+i,j to operational phase j ∈ {i, . . . , N},
i.e., we assume that maintenance cannot deteriorate the component.

Figure 1 shows the state transition diagram of a component. Solid arcs
describe transitions that occur if nothing is done and dashed arcs describe tran-
sitions that take place if a maintenance operation is initiated. The above model
is similar to the classical models for maintenance [8,19]. To analyze the behavior
and to determine optimal decisions, quantitative measures in the form of rewards

Fig. 1. Phase transition diagram of a component.
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have to be associated with phases or transitions. We assume that in operational
phase i, the component gains reward ri in phase i and additionally a penalty
r0 < 0 has to be paid whenever the failure phase is entered.

Sojourn times in the phases are characterized by independently distributed
random variables with cumulative distribution function Fi(t) and probability
density fi(t) for phase i. The time-dependent rate out of a phase is then given by

λi(t) =
fi(t)

1 − Fi(t)
. (1)

For the phases 1 through N this quantity describes the rate of deterioration in
the operational phase. For modeling failure times, standard distributions like
Weibull, Gamma or log-normal or phase type distributions are applied [5,13].
For repair or maintenance times less information is available in the literature
but it seems that also in these cases phase type distributions are appropriate for
modeling the durations [2,7]. In this paper, we use acyclic phase type distribu-
tions (APHs), a subclass of phase type distributions, which are described by an
absorbing Markov chain with m transient states, initial vector ν and generator
matrix D that can be reordered to an upper triangular matrix. As shown for
example in [5,9] general phase type distributions as well as standard failure time
distributions like the Weibull distribution can be approximated sufficiently accu-
rate by APHs. One of the advantages of APHs is the availability of a canonical
representation developed in [10]. In the canonical representation matrix D has
the form

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

−μ1 μ1 0 · · · 0
...

. . . . . .
...

... −μm−1 μm−1

0 · · · · · · 0 −μm

⎞
⎟⎟⎟⎟⎟⎟⎠

(2)

with μi ≤ μi+1 for 1 ≤ i < m − 1. This implies that the distribution has only
one exit state, namely the last state. The representation (ν,D) characterizes the
APH and

f(t) = νetD (−DI1) , F (t) = 1 − νetD I1, λ(t) =
νetD (−D I1)

νetD I1
, (3)

where I1 is a column vector of 1 of appropriate length. For a time-dependent rate
λ(t), the bounds λ−

t−,t+ = mint+≥t≥t− λ(t) and λ+
t−,t+ = maxt+≥t≥t− λ(t) with

t− ≤ t+ can be computed. We use the notation λ− = λ−
0,∞ and λ+ = λ+

0,∞.

The average rate is given by λav = −
(
νD−1I1

)−1

. If the APH represents an

exponential distribution, then λav = λ− = λ+.
We assume that the sojourn time in phase i is characterized by an APH

(νi,Di) of order mi and define di = −DiI1 = (0, . . . , 0, μmi
)T , for i ∈

{0, . . . , 2N}. This implies that all times are phase type distributed according
to an APH. Thus, the state of a component is defined by the observable phase of
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the component and the non-observable state of the APH defining the duration
of the phase. The detailed stochastic process describing a component is defined
in Sect. 4.

Composition of Components. If several components are considered, they
run in parallel. As long as they are independent, components can be analyzed
in isolation and rewards are simply added. However, usually components are
dependent. We consider here the case that rewards depend on the joint phase.
E.g., a system with two components is no longer operating if both components
are in maintenance or in the failure phase. Thus, a penalty has to be paid, if this
situation occurs. Additionally, components may interact due to limited capacity
for maintenance. In this case, a maintenance operation can only be started if
capacity for maintenance is available, otherwise the component has to continue
working until the next decision point for maintenance.

We restrict the description and analysis to systems built from two compo-
nents to avoid an extensive and complex notation. However, the general approach
can be extended to more than two components following the presented ideas.

4 Decision Models

The models described above implicitly include decisions to perform a mainte-
nance operation or let the system run. It is now shown that these decisions can
be modeled adequately by a Markov Decision Process (MDP) [19], if only the
average behavior is analyzed. In the general case, it can be modeled as a Bounded
Parameter Markov Decision Process (BMDP) [14]. From these processes optimal
maintenance strategies are computed. We consider in the following first single
components and then models composed of two components.

For notational convenience we define the following abbreviations mi:j =∑j
h=i mh if i ≤ j and 0 otherwise, ei,n (i ≤ n) for the ith unit row vector

of length n, 0m for a zero row vector of length m, 0n,m for a zero matrix of
order n × m and Im for an identity matrix of order m. If the order of vectors or
matrices follows from the context, we avoid the use of prefixes. We assume that
the indices of matrices and vectors start with 0 and end with n − 1 for a vector
or matrix of dimension n.

4.1 Decision Model for a Component

For maintenance the component is observed at discrete time points l · Δ
(l = 0, 1, 2, . . .) for some time step Δ > 0 and maintenance is possibly initiated
at those time points. At time l ·Δ we can observe the phase but not the internal
state which in some sense describes the internal wear of the component. Con-
sequently, decisions have to be based on the phase which implies that we build
a decision process with 2N + 1 states. However, since the behavior of this pro-
cess depends on the unknown internal state at a decision point, we consider the
worst, best and average behavior. The former two define a BMDP [14], the latter
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an MDP. Before the decision process can be generated, the internal behavior of
the component between decision points has to be characterized. Without main-
tenance the component can be described by a Markov chain with m0:2N states
and generator matrix Q.

Matrix Q can be built from the phase type distributions and the different
probabilities of the degradation process. Let F be a m1:N × m1:N matrix with
N × N submatrices F i,j (1 ≤ i, j ≤ N) of size mi × mj .

F i,j =

⎧⎪⎨
⎪⎩

Di if j = i,

pidiνi−1 if j = i − 1,

0 otherwise.

Matrix F includes all transitions between operational phases. Matrix DN+1:2N

is a mN+1:2N × mN+1:2N matrix with diagonal blocks Di (i = N + 1, . . . , 2N),
it contains all transitions between maintenance phases. To describe transi-
tions between maintenance, operational and failure phases define the following
matrices

E0 =
(
0m0,m1:N−1 d0νN

)
, E1 =

⎛
⎜⎜⎜⎝

p1d1ν0

...
pNdNν0

⎞
⎟⎟⎟⎠,

and

E2 =

⎛
⎜⎜⎜⎜⎜⎝

hN+1,1dN+1ν1 · · · · · · hN+1,NdN+1νN

0 hN+2,2dN+2ν2 · · · hN+2,NdN+2νN

...
. . . . . .

...
0 · · · 0 h2N,Nd2NνN

⎞
⎟⎟⎟⎟⎟⎠

.

E0 describes the start of component after a repair, E1 the immediate failure
from one of the operational phases and E2 contains all transitions that transfer
the component from a maintenance phase to an operational phase. Then

Q =

⎛
⎜⎝

D0 E0 0

E1 F 0

0 E2 DN+1:2N

⎞
⎟⎠ (4)

contains all transitions between decision points. Matrix Q is block structured
into (2N + 1) × (2N + 1) blocks of size mi × mj for sub-matrix Qi,j .

Rewards are collected in a column vector r of length
∑2N

i=0 mi. All states
belonging to the phase i with i = 0 ∨ N < i ≤ 2N have reward ri. The state
belonging to phase i (1 ≤ i ≤ N) and state j (1 ≤ j ≤ mi), which corresponds
to entry number

∑i−1
k=0 mk + j − 1 in vector r, equals ri + pidi(j)r0. For most

algorithms to compute optimal policies for MDPs or BMDPs it is advantageous
to have only non-negative rewards. In finite state processes with bounded rewards
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this can be achieved by adding an appropriate constant which is later removed
from the solution [20]. Thus define rpos =

∣∣∣min
(
0,minj(r(j))

)∣∣∣ and substitute r

by r + rposI1 ≥ 0.
Now consider an inspection time and assume that the component is in phase

i ∈ {0, . . . , 2N} at time l · Δ. We want to compute the probability that the
component is in phase j ∈ {0, . . . , 2N} at time (l + 1) · Δ. If the internal state
of phase i is known, this probability can be computed exactly using matrix Q.
However, we only know that for the distribution of states in phase i the relation
ψ = νie

t∗D i/
(
νie

t∗D iI1
)

for some t∗ ≥ 0 holds. To compute bounds for the
probabilities we define the following matrices.

B̂
−
i =

(
−λ+

i λ−
i bi

0 Q

)
, B̂

+

i =

(
−λ−

i λ+
i bi

0 Q

)
, B̂

av

i =

(
−λav

i λav
i bi

0 Q

)
(5)

where i ∈ {0, . . . , 2N} and

bi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
0m1:N−1 ,νN ,0mN+1:2N

)
if i = 0,(

ν0,0m1:2N

)
if i = 1,(

piν0,0m1:i−2 , piνi−1,0mi:2N

)
if 1 < i ≤ N(

0m0:i−N−1 , h−N,i−Nνi−N , . . . , hi−N,NνN ,0mN+1:2N

)
if N < i ≤ 2N.

Matrix B̂
−
i describes the component when it leaves phase i as soon as possible

and the flow into the other phases is minimal. B̂
+

i describes the component when
it leaves phase i as late as possible and the flow into the other phases is maximal.
B̂

av

i describes the average behavior. Observe that only B̂
av

i is a generator matrix.
In the sequel we use ± for one of the elements from {−,+, av}.

Let φ =
(
1,0m0:2N

)
and compute φ±

i = φeΔB̂
±
i . All vectors can be decom-

posed into φ±
i =

(
φ±

i,−1,φ
±
i,0, . . . ,φ

±
i,2N

)
, φ±

i,−1 is a scalar which denotes the

probability that state i has not been left during the whole interval and φ±
i,j is

a vector of length mj which includes (bounds for) the probabilities that the
component is in one of the states of phase j after starting in i. Let

φ̂
±
i =

(
φ±

i,0I1, . . . ,φ±
i,i−1I1,φ±

i,iI1 + φ±
i,−1,φ

±
i,i+1I1, . . . ,φ±

i,2N I1
)T

. (6)

Theorem 1. Vector φ̂
−
i is a lower bound for the conditional probability distri-

bution over the phases of the component at time (l + 1) · Δ under the condition
that the process starts in phase i at time l · Δ.

Vector φ̂
+

i is an upper bound for the conditional probability distribution over
the phases of the component at time (l + 1) · Δ under the condition that the
process starts in phase i at time l · Δ.

The proof for the theorem can be found online [1]. Vector φ̂
−
i contains only non-

negative elements, whereas φ̂
+

i might include elements larger than 1 since the
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matrix B̂
+

i is superstochastic. Then vector elements can be substituted by the
trivial upper bound 1 for probabilities. Now define (2N +1)× (2N +1) matrices

Ŝ
±

=
(
φ̂

±
0 . . . φ̂

±
2N

)�
(7)

Ŝ
−

is substochastic, Ŝ
av

is stochastic and Ŝ
+

is superstochastic1 and Ŝ
− ≤

Ŝ
av ≤ Ŝ

+
. Matrices Ŝ

−
and Ŝ

+
bound the transition probabilities of the com-

ponent between two decision periods.
A maintenance policy can now be described by a vector â ∈ {0, 1}N . â(i) = 1

implies that maintenance is initiated if the component is in phase i ∈ {1, . . . , N}.
Obviously maintenance can only be initiated if the component is in an opera-
tional phase. Matrix T̂ â describes the transitions induced by policy â and is
defined as

T̂ â (i, j) =

{
1 if (1 ≤ i ≤ N ∧ j = N + i ∧ â(i) = 1) ∨ ((i /∈ {1, . . . , N} ∨ â(i) = 0) ∧ i = j)

0 otherwise
(8)

Then P̂
−
â = T̂ â Ŝ

−
and P̂

+

â = T̂ â Ŝ
+

are matrices containing transition proba-
bility bounds of a BMDP. Only for the first state, the reward has to be computed,
for the remaining states reward vector r can be used. Define r±

i = ri+λ±
i r0+rpos

if i ∈ {1, . . . , N} and r±
i = ri+rpos otherwise, where rpos has been defined above.

Furthermore u+ = maxi r+i and u− = mini r−
i . Reward vector ŝ± is defined

element-wise as

ŝ±(i) = e0,m0:2N+2

∫ Δ

0

eτĈ i

⎛
⎜⎜⎝

r̂±
i

r

u±

⎞
⎟⎟⎠ dτ where Ĉ i =

⎛
⎜⎜⎝

−λ+
i λ−

i bi λ+
i − λ−

i

0 Q 0

0 0 0

⎞
⎟⎟⎠ . (9)

It is easy to show that ŝ− ≤ ŝav ≤ ŝ+ holds.

Theorem 2. ŝ−(i) is a lower bound for the reward that is gained in an interval
[l ·Δ(l+1) ·Δ] under the condition that the process starts at time l ·Δ in phase i.

ŝ+(i) is an upper bound for the reward that is gained in an interval [l ·Δ(l +
1) · Δ] under the condition that the process starts at time l · Δ in phase i.

Again, the proof can be found online [1].
(
P̂

−
â , P̂

+

â

)
â∈{0,1}N

and
(
ŝ−, ŝ+

)

define a BMDP to bound the reward of the policies. Furthermore, P̂
av

â = T̂ â Ŝ
av

is the stochastic transition matrix and
(
P̂

av

â

)
â∈{0,1}N

and ŝav define the discrete

time MDP which models the average behavior of the component.
After the optimal policy has been computed from the BMDP, the policy can

be analyzed by building the CTMC described by the policy and then analyzing
the policy on this process. Time complexity analysis can be found in [1].
1 We denote a non-negative matrix A as substochastic, iff a stochastic matrix P with

A ≤ P and A �= P exists. Similarly we denote A as superstochastic, iff a stochastic
matrix P with A ≥ P and A �= P exists.
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4.2 Decision Models for Composed Components

Modeling of composed components is more difficult than the analysis of a single
component. We consider here the case of two components but the approach can
be easily extended to more than two components.

In a two-component system, phases are described by tuples i = (i0, i1) where
ik ∈ {0, . . . , 2N (k)} and k ∈ {0, 1} is the index of the component. We use .(k)

to denote quantities belonging to component k. Matrices and vectors belonging
to the composed system will be shown without postfix. A detailed state of the
composed system is given by (i, j) = (i0, i1, j0, j1), ik ∈ {0, . . . , 2N (k)} and
jk ∈ {1, . . . , m

(k)
ik

}.
At a decision point, the detailed state of both components is unknown. Con-

sequently, we have to analyze all possible starting phases (i0, i1) using matrices
B̄

±
i0,i1 which are an extension of the matrices B̂

±
i defined in (5). However, in

contrast to the case with one component we now have to distinguish four cases;
both components remain in their phase for the whole interval of length Δ, the
first component changes its phase and the second remains in its phase, the first
component remains in its phases and the second changes its phases, and, finally,
both components change their phases. This results in the definition of the matri-
ces B̄

±
i0,i1 by

B̄
−
i0,i1 =

⎛
⎜⎜⎜⎜⎜⎝

−λ
+(0)
i0

− λ
+(1)
i1

λ
−(1)
i1

b
(1)
i1

λ
−(0)
i0

b
(0)
i0

0

0 Q(0) ⊕ −λ
+(1)
i1

0 I ⊗ λ
−(1)
i1

b
(1)
i1

0 0 −λ
+(0)
i0

⊕ Q(1) λ
−(0)
i0

b
(0)
i0

⊗ I

0 0 0 Q(0) ⊕ Q(1)

⎞
⎟⎟⎟⎟⎟⎠

.

The matrices B̄
+
i0,i1 and B̄

av
i0,i1 are defined analogously by swapping + and −

resp. using av in the superscripts.

Then define φ̄ =
(

1,0
(m

(0)

0:2N(0)+1)(m
(1)

0:2N(1)+1)

)
and compute

φ̄
±
(i0,i1) = φ̄eΔB̄ ±

i0,i1 . (10)

Vector φ̄
±
(i0,i1) can be decomposed into sub-vectors. The first element equals

the scalar φ̄±
(i0,i1)(−1,−1) including a bound or the average value for the proba-

bility that the initial phases have not been left. Then follow 2N (1) + 1 vectors
φ̄

±
(i0,i1)(−1,j1) of length m

(1)
j1

, followed by 2N (0)+1 vectors φ̄
±
(i0,i1)(j0,−1) of length

m
(0)
j0

. Finally N (0)N (1) vectors φ̄
±
(i0,i1)(j0,j1) of length m

(0)
j0

m
(1)
j1

follow. From these
sub-vectors the (2N (0) + 1)(2N (1) + 1) × (2N (0) + 1)(2N (1) + 1) matrix S̄ can
be computed as shown in the following equation.
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S̄((i0, i1)(j0, j1))± =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̄
±
(i0,i1)(j0,j1)I1 if i0 �= j0 ∧ i1 �= j1,

φ̄
±
(i0,i1)(j0,j1)I1 + φ̄

±
(i0,i1)(−1,j1)I1 if i0 = j0 ∧ i1 �= j1,

φ̄
±
(i0,i1)(j0,j1)I1 + φ̄

±
(i0,i1)(j0,−1)I1 if i0 �= j0 ∧ i1 = j1,

φ̄
±
(i0,i1)(j0,j1)I1 + φ̄

±
(i0,i1)(−1,j1)I1

+φ̄
±
(i0,i1)(j0,−1)I1 + φ̄±

(i0,i1)(−1,−1) if i0 = j0 ∧ i1 = j1.

(11)
Again the relation S̄

− ≤ S̄
av ≤ S̄

+ holds and S̄
av is a stochastic matrix. In S̄

+

elements larger than 1 can be substituted by the trivial bound 1.
Maintenance decisions now can be made whenever the component is in an

operational phase at a decision point. We define two vectors ā(k) (k = 0, 1)
of length (2N (0) + 1)(2N (1) + 1). ā(k)(ik, ik̄) = 0 if ik /∈ {1, . . . , N (k)} and for
ik ∈ {1, . . . , N (k)} the element can be 1, a maintenance operation for component
k starts, or 0, no maintenance starts. In a state, up to 4 decisions can be made
by combining the two possibilities for each component. Maintenance decisions
are only possible in N (k) operational phases but may depend on the phase of the
other component. Again, if the maintenance capacity is restricted, maintenance
operations can only be started if capacity is available, i.e. the other component
is not in a maintenance phase. For vectors ā(0), ā(1) the binary matrix T̄ ā(0),ā(1)

is defined by

T̄ ā (0),ā (1)(i0, i1)(j0, j1) = 1 ⇔ (i0 = j0 ∧ i1 = j1 ∧ ā(0)(i0, i1) = ā(1)(i0, i1) = 0)

∨(j0 = N(0) + i0 ∧ i1 = j1 ∧ ā(0)(i0, i1) = 1 ∧ ā(1)(i0, i1) = 0)

∨(i0 = j0 ∧ j1 = N(1) + i1 ∧ ā(0)(i0, i1) = 0 ∧ ā(1)(i0, i1) = 1)

∨(j0 = N(0) + i0 ∧ j1 = N(1) + i1 ∧ ā(0)(i0, i1) = ā(1)(i0, i1) = 1)

(12)

otherwise T̄ ā(0),ā(1)(i0, i1)(j0, j1) = 0. Then P̄
−
ā(0),ā(1) = T̄ ā(0),ā(1)S̄

− and
P̄

+
ā(0),ā(1) = T̄ ā(0),ā(1)S̄

+ define transitions probability bounds for a BMDP.
P̄

av
ā(0),ā(1) = T̄ ā(0),ā(1)S̄

av is a stochastic matrix for an MDP describing the aver-
age behavior.

It remains to compute the reward vectors for the BMDP and the MDP.
Reward bounds are computed similarly to the case with one component in (9).

s̄±(i0, i1) = e0
∫ Δ
0 e

τC̄ i0,i1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r±
i0,i1

r̄ ±
i0,∗

r̄ ±
∗,i1
r̃

ũ±

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dτ, where

C̄ i0,i1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ
+(0)
i0

− λ
+(1)
i1

λ
−(1)
i1

b
(1)
i1

λ
−(0)
i0

b
(0)
i0

0 λ
+(0)
i0

+ λ
+(1)
i1

− λ
−(0)
i0

− λ
−(1)
i1

0 Q (0) ⊕ −λ
+(1)
i1

0 I ⊗ λ
−(1)
i1

b
(1)
i1

(λ
+(1)
i1

− λ
−(1)
i1

) I1

0 0 −λ
+(0)
i0

⊕ Q (1)λ
−(0)
i0

b
(0)
i0

⊗ I (λ
+(1)
i0

− λ
−(1)
i0

) I1

0 0 0 Q (0) ⊕ Q (1) 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13)
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r̃ is the reward vector of the system, ũ+ = maxi0,i1 r+i0,i1
, ũ− = mini0,i1 r−

i0,i1
and

r̄±
i0,∗ =

(
r±
i0,0I1

T

m
(1)
0

, . . . , r±
i0,2N(1)+1

I1T

m
(1)
2 N(1)+1

)�

r̄±
∗,i1

=
(

r±
0,i1

I1T

m
(0)
0

, . . . , r±
2N(0)+1,i1

I1T

m
(0)
2 N(0)+1

)� (14)

The values r±
i0,i1

have been defined above.
The generation of the processes requires the solution of (2N (0)+1)(2N (1)+1)

systems of differential Eqs. (10) and (13) of order (m(0)

0:2N(0) + 1)(m(1)

0:2N(1) + 1)
each. The different computations can be parallelized. The resulting MDPs or
BMDPs are usually of a moderate size because the number of phases is usually
small.

For computing the optimal policy and average or discounted reward, standard
methods for MDP analysis can be applied [19]. For BMDPs optimal policies for
the worst case are usually computed. An overview of available numerical methods
is given in [4].

4.3 Improved Bounds

The quality of the bounds depends on the difference between λ+
i and λ−

i . Up to
now we have computed λ− = λ−

0,∞ and λ+ = λ+
0,∞ which defines bounds without

any knowledge how long the component or system is already in the current phase.
However, due to regular inspection of a component, some information is available.
Thus, if the component has been in a different phase at the last inspection,
λ− = λ−

0,Δ and λ+ = λ+
0,Δ. More general, if we know that the component has

been in the same phase for the last i inspections, then λ− = λ−
(i−1)·Δ,i·Δ and λ+ =

λ+
(i−1)·Δ,i·Δ. The average rate can then be computed λav = Δ−1

∫ i·Δ
(i−1)·Δ λ(t).

If the number of intervals the system resides in a phase is considered, then
MDPs/BMDPs have to be generated and analyzed for each combination of state
and residence time which increases the effort. However, for Δ much larger than
the expected residence time in a phase not much changes because it is likely that
the phase has been left at the next inspection.

5 Examples

The following examples have all been analyzed with Matlab/Octave where the
proposed approach has been implemented. Matrices are constructed from the
specification of the APHs and the remaining parameters and the resulting MDP
or BMDP is analyzed using value iteration. Model generation algorithms and
runtime analysis are presented in the online companion [1].

We first consider the computation of maintenance policies for single compo-
nents and consider afterwards the composition of two components.
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Single Components: We start with a single component which has 4 operational
phases and a reward of 1 in all operational phases, 0 in maintenance phases, and
−10 in the failure phase. The duration of the first and the last operational phase
are Weibull distributed. Phase 1 has increasing failure rate and phase 4 decreas-
ing failure rate. The operational phases 2 and 3 are exponentially distributed.
This implies that the failure rate over all operational phases is first decreasing,
then constant and finally increasing which together gives the typical bathtub like
curve. Figure 2a shows the time dependent failure rates of the Weibull distribu-
tions and the failure rates of the APHs that have been used to approximate the
Weibull distributions. For the computation of the parameters of the APHs an
EM algorithm and publicly available software has been applied [21]. It can be
seen that 3 states of the underlying Markov chain in the APH model result in a
reasonable and 5 states in a good approximation of the Weibull distributions.

Fig. 2. Time dependent failure rates of various distributions and the respective APH
approximations

For the duration of maintenance operations, log-normal distributions have
shown to be an adequate model [17]. Usually the variance of the maintenance
time is not too large. We generated a log-normal distribution from standard
normal distribution and scaled afterwards the distribution to meet the required
mean value. APHs of a low order are also suitable to approximate log-normal
distributions. Figure 2b show the time dependent rate of the log-normal distribu-
tion and APHs with 3 and 5 Markov chain states which have been computed for
approximating the log-normal distribution. Again 3 states provide a reasonable
and 5 phases a good approximation.

The failure and replacement time is hyper-exponentially distributed with a
squared coefficient of variation of 2 to indicate the uncertainty of substituting a
component by a new one. We assume that the mean duration of each operational
phase is 10, the mean duration of the failure phase 1 and the mean durations
of the maintenance phases are 0.4, 0.6, 0.8 and 1, for maintenance starting in
the operational phases 4 through 1 (i.e., maintenance becomes more expensive
if started later).

The Markov models resulting from a component have 22 or 34 states depend-
ing whether we use APHs with 3 or 9 states. The MDP and BMDP have 3 states.
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Fig. 3. Optimal gain for different values of the repair costs. (Color figure online)

We consider the configuration with p2 = p3 = p4 = 0.1, perfect maintenance
(i.e., after each maintenance operation the component behaves like a new com-
ponent) and an inspection interval of length Δ = 1. If we optimize the average
model, no maintenance is performed and the gain is linearly increasing with the
costs for a repair. If we analyze the BMDP according to the worst case behavior,
a maintenance operation is performed whenever the component is in the last
operational phase at an inspection interval. In Fig. 3 we compare the gain under
the optimal policy without repair and the robust policy with repair in the last
operational phase. The red line shows the gain from the approximation which is
used to compute the policy. The green line shows the exact result for the policy.
It can be seen that the approximation is for small repair costs good but becomes
worse if an repair becomes more expensive. The blue line shows the exact gain
of the robust policy which is for small repair cost clearly worse but becomes
advantageous if repair cost are high.

Composed Components: For a composed system, we have added a second compo-
nent that is identical to the first. We analyze the behavior for varying inspection
interval Δ ∈ {0.05, 0.15, . . . , 1.95, 2} with a penalty of −10. It is assumed that
penalties are only paid when both components are down.

Furthermore, we consider a system with fixed Δ = 0.5 and varying penalties
in the range from −10 to −50. For varying penalties, we observe in Fig. 4 that
the lower bound for optimal policies in the resulting BMDP model decreases
with increasing penalty value; the upper bound and the average model are not
affected, as the optimal policy in both cases is very close to the upper bound,
which is 2 (one reward unit for each component).

For varying time steps, in Fig. 5 one can see that more often inspection con-
tributes to decreasing level of system uncertainty. For a small time interval Δ,
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Fig. 4. Gain for the time-based composed system with varying penalties, exclusive
maintenance case.

Fig. 5. Time dependent gains and CPU times for the composed system with two com-
ponents, exclusive maintenance case. Computational times have been obtained from a
mean of 30 independent runs.

we obtain tighter bounds of the underlying BMDP which indicates that for small
inspection intervals the captured uncertainty on the internal state of a compo-
nent is also small and results from uncertainty in the reward of the phase. In
Fig. 5a, one can observe that a smaller time step, i. e., a smaller checking interval
allows for better control of the system state and thus, for better performance of
the composed system. This observation is supported by a slightly better behav-
ior of the average MDP model. However, the price for smaller values of Δ are
larger inspection costs which have to be added to the results of the optimization
model.

We furthermore observe higher computation times with larger values of Δ.
This includes the construction of the BMDP and MDP model as well as their
optimization. The main reason for this behavior is the computational complexity
of the transient analysis of reward bounds in (13).
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6 Conclusion

The paper introduces a new approach to model systems of components with gen-
erally distributed failure, maintenance and repair times using Markov chains. By
integrating decision points where a maintenance operation may start, a Markov
decision process or a bounded parameter Markov decision process, which cap-
tures the uncertainty about the internal state of a component, can be generated
and optimal maintenance policies can be computed using well established algo-
rithms from Markov decision theory.

The approach has been described here for the composition of two components.
It is not hard to extend it to more than two components. For a larger number
of components the curse of dimensions resulting in the state space explosion will
come up. However, the decision process which have been constructed are fairly
small because they only consider the observable phase of a component and not
the much larger detailed state space. For the construction of these processes
larger systems of linear equations or differential equations have to be solved
which can be done nowadays efficiently for relatively large state spaces.
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