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Preface

As conference chairs, it is our pleasure to present this LNCS volume with its contri-
butions on performance and dependability evaluation techniques for computer and
communication systems and their related fields. The papers were presented at the 19th
International GI/ITG Conference on Measurement, Modelling and Evaluation of
Computing Systems (MMB 2018), held during February 26–28, 2018, at
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) in Germany.

The biennial MMB conference started in the early 1980s and has seen a significant
broadening in scope but has also kept its essence: measurements, stochastic modeling,
analysis, and simulation applied to computer and communication systems. From the
methodological perspective, new techniques such a network calculus have been
included and, besides performance, dependability and security have been added. From
an application perspective, the traditional area of networking has been supplemented by
many additional domains such as smart energy systems, smart mobility, social net-
works, and others.

Today we are faced with complex interconnected systems in which information and
communication technology always plays the key role as nerve tissue. This is the case,
for instance, regarding the Internet of Things, cyber-physical systems, future 5G mobile
communication systems, software-defined networking, smart energy systems, con-
nected mobility systems, and countless more examples. MMB provides a means for
assessing important, mostly quantitative system aspects such as the performance,
dependability, and also security of these systems that is ultimately needed for their
proper design.

The technical program was composed by the Program Committee in a thorough review
procedure involving at least three reviewers and after a careful selection process during a
physical meeting. In all, 16 full papers were selected representing very well the broad
spectrum of methodological and applied work. A Special Session on Software-Defined
Networking, organized by Ognjen Dobrijevic, University of Zagreb, Croatia, and Thomas
Zinner, Universität Würzburg, Germany, was included in the program and covered a very
relevant topic in current networking. The program was framed by three distinguished
invited speakers, giving insights into in major application fields:

1. Performance Optimization of 5G Mobile Networks by Prof. Hans van den Berg,
TNO, The Netherlands, who is also affiliated with Twente University and the Centre
for Mathematics and Computer Science in Amsterdam, The Netherlands, and a
recipient of ITC’s Arne Jensen Lifetime Award 2017 for his contributions on
performance modeling and analysis

2. Future Energy Grids – Challenges and Potential for ICT by Prof. Hartmut Schmeck,
Full Professor of Applied Informatics at Karlsruhe Institute of Technology, who is
additionally director of the FZI Research Center for Information Technology, a
shaper of the new discipline “energy informatics,” and a recipient of the Heinrich-
Hertz Prize 2016 from EnBW foundation



3. Autonomous Driving – The “Uncrashable” Car? What It Takes to Make
Self-Driving Vehicles Safe and Reliable Traffic Participants by Dr. Frank Keck,
CEO of ZF Zukunft Mobility GmbH, a company of ZF Friedrichshafen AG, and
former CEO of Automotive Safety Technologies GmbH

All three talks provided insights into the latest technological trends like 5G mobile
communications with new radio, “softwarization,” and network slicing that include
many relevant MMB topics. In particular, the energy transition with smart grids and
smart markets to balance fluctuating supply and demand seems to be made for the
MMB community. Finally, autonomous and connected cars provide a high potential for
simulation as well as analytic performance and dependability evaluation during the
design process.

The technical program additionally offered nine papers about software tools that
were demonstrated during the conference. As a new element, industrial, practical
experience and PhD track papers were included: one industrial paper, one practical
experience report, and two PhD track papers.

As in previous MMB conferences, two satellite workshops were organized covering
highly relevant research topics:

– 4th Workshop on Network Calculus (WoNeCa-4)
– Second International Workshop on Modeling, Analysis, and Management of Social

Networks and Their Applications (SOCNET 2018)

At the beginning of the conference, three tutorials were presented:

– A Modern Perspective on Fault Tree Analysis, by Joost-Pieter Katoen and Matthias
Volk, RWTH Aachen

– IoT — From Praxis to Theory by Florian Metzger and Tobias Hoßfeld, Universität
Duisburg-Essen

– Data Analysis of Measurements with Immanent Dependencies and Heavy-Tailed
Characteristics, by Natalia M. Markovich, Russian Academy of Sciences, and Udo
Krieger, Universität Bamberg

As conference chairs, we express our gratitude to all members of the Program
Committee and all external reviewers for their dedicated service, maintaining the
quality objectives of the conference, and for the timely provision of their valuable
reviews. We express our sincere appreciation to FAU Erlangen-Nürnberg as the
conference host, as well as to all members of the local Organizing Committee of MMB
2018 for their great efforts devoted to the success of the conference. We thank all the
authors for their submitted contributions, all the speakers for their lively presentations,
and all the participants for their contributions to interesting discussions. Finally, it is
our hope that readers will enjoy these MMB 2018 proceedings and use them for their
future research.

February 2018 Reinhard German
Kai-Steffen Hielscher

Udo Krieger
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Performance Optimization
of 5G Mobile Networks

Hans van den Berg

TNO, University of Twente, CWI Amsterdam,
Anna van Buerenplein 1, 2595 DA The Hague, The Netherlands

J.L.vandenBerg@tno.nl

Abstract. Research on 5G in Europe is boosted by the 5G PPP consortium
consisting of network vendors and operators, system integrators and academia
and other research institutes, working closely together with companies from
important vertical industries. 5G aims at bringing new, distinctive network and
service capabilities fulfilling the needs of the future Internet of Things (IoT). As
such it should sustain enormous data volumes and support critical, highly
demanding communication services for e.g. self-driving cars, robotics in smart
industry, and mobile virtual reality applications. Network ‘softwarization’
through emerging technologies as Software Defined Networking (SDN) and
Network Functions Virtualization (NFV) is introduced to provide the flexibility
needed to reach the required performance and scalability targets in an efficient
way. However, to actually achieve the full potential of future 5G networks huge
challenges regarding network management and performance optimization are
faced. Big data techniques exploiting data coming from network devices in
forms of e.g. device logs and usage histories provide a promising direction to
address these challenges. In the talk we will briefly sketch the 5G PPP ambi-
tions, review the aforementioned research challenges and present (ongoing)
work on some specific 5G network performance optimization problems.



Future Energy Grids – Challenges
and Potential for ICT

Hartmut Schmeck

Institute AIFB, Karlsruhe Institute of Technology (KIT),
76128 Karlsruhe, Germany

hartmut.schmeck@kit.edu

Abstract. The energy system is one of the most critical infrastructures of our
world. The reliable supply of energy is essential for the adequate operation of
almost any process in our private and professional life. Society and industry
would suffer enormously, if the steady balance between demand and supply
could not be guaranteed. The current transition towards energy from renewable
sources is having tremendous effects on this well-established infrastructure. In
particular, the restricted capabilities of controlling the supply of electricity from
weather-dependent energy sources leads to the need for an essential change in
one of the basic principles of the electric power system, which means that it will
no longer be feasible to let the power supply follow the demand but there will be
a strong need to let the demand follow the supply. This can only be achieved by
discovering and exploiting the potential of flexibility of demand and supply in
the best possible way. The talk will illustrate how the major challenges of the
ongoing energy transition create the need for an adequately designed energy
information and control network with distributed intelligence. A fundamental
task in the design of this network consists of making the necessary information
available to the locations where operating and control decisions have to be taken
and to provide appropriate methodology for managing tomorrow’s energy
system in the most efficient and most reliable way. In particular, an assessment
of the potential contribution of flexibility in demand and supply to guaranteeing
the necessary stability and resilience needs appropriate modelling and simula-
tion, based on effective strategies for measuring the current status and behaviour
of relevant grid components.



Autonomous Driving – the “Uncrashable”Car?

What It Takes to Make Self-Driving Vehicles Safe
and Reliable Traffic Participants

Frank Keck

ZF Zukunft Mobility GmbH, Ruppertswies 14, 85092 Kösching, Germany

Abstract. Autonomous driving is in the spotlight of both scientific research and
industrial development. With worldwide constantly growing traffic volumes, the
challenging task in putting self-driving vehicles onto the street is to cross the
chasm between high system availability and low to zero malfunction rates, even
in dense traffic and complex situations on the road. Developing software
functions for driver assistance and vehicle safety for autonomously driving cars
requires the traditional developments processes and methods to be revised. In
this talk, a novel and promising development approach is presented. The
combination of use case based requirement specification, algorithm develop-
ment with machine learning techniques and both simulation based and real-life
testing yields an agile yet sound software development framework for autono-
mous driving functions. Additionally, some thought-provoking impulses are
given on how to achieve a high level of system reliability by exploiting the
capabilities of virtualization at early development stages.
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Time-Based Maintenance Models Under
Uncertainty

Peter Buchholz, Iryna Dohndorf(B), and Dimitri Scheftelowitsch

Informatik IV, TU Dortmund, Dortmund, Germany
{peter.buchholz,iryna.dohndorf,dimitri.scheftelowitsch}@cs.tu-dortmund.de

Abstract. Model based computation of optimal maintenance strategies
is one of the classical applications of Markov Decision Processes. Unfor-
tunately, a Markov Decision Process often does not capture the behavior
of a component or system of components correctly because the duration
of different operational phases is not exponentially distributed and the
status of component is often only partially observable during operational
times. The paper presents a general model for components with partially
observable states and non-exponential failure, maintenance and repair
times which are modeled by phase type distributions. Optimal mainte-
nance strategies are computed using Markov decision theory. However,
since the internal state of a component is not completely known, only
bounds for the parameters of a Markov decision process can be com-
puted resulting in a bounded parameters Markov decision process. For
this kind of process optimal strategies can be computed assuming best,
worst or average case behavior.

Keywords: Maintenance models · Markov decision processes
Stochastic dynamic programming · Numerical methods

1 Introduction

Maintenance problems appear in various aspects of human life wherever there
exists a system or component that degrades with time and has to be kept in an
operational condition by means of active maintenance, i. e., a conscious effort
to inspect and revert the effects of degradation. In general one can distinguish
between condition- or event-based maintenance and preventive- or time-based
maintenance [11]. In the former case, which is more often analyzed, maintenance
takes places whenever a specific condition or event is observed in a system which
indicates a degradation of the system. In preventive or time-based maintenance,
the system is inspected at predefined time points and based on the results of
inspection it is decided whether a maintenance operation is performed or not.
Usually this decision is based on incomplete information about the system state
because the degradation of most systems can only be partially observed or tested
[16]. This implies that maintenance decisions have to be made under uncertainty
about the current state and future behavior of the system.

A popular approach to model this kind of problems are Markov decision
processes (MDPs) [6,15,19]. In it, the stages of degradation are modeled as indi-
vidual states of the system, the maintenance options as possible actions of the
c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-319-74947-1_1
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controller, the results of actions as a probabilistic transition mechanism between
the states, and the degradation itself is modeled as a reward function. The opti-
mal policy computed from the MDP describes the optimal maintenance strategy.
Since failures occur at random times, they are usually described by continuous
time models. Fixed inspection times introduce a time-step in the model which
implies that a discrete time model is more appropriate for the computation of
optimal policies. Thus, we consider discrete time MDPs (DTMDPs) [19] resulting
from the embedding of a continuous time MDP (CTMDP) to compute optimal
time-based maintenance strategies.

The basis of Markov models is the memoryless property which implies that
the time to the next event, in our case next degradation of the component or
system state, is independent of the past. This means that failure or degradation
times are exponentially distributed which is usually not the case for real systems.
It is known that Weibull or log-normal distributions are much more realistic mod-
els for the behavior of systems. Consequently, MDPs are only an approximate
model because the future behavior depends on additional non-observable states
of the system. To express this uncertainty in the model, one has to extend the
model class to partially observable MPDs (POMDPs) or MDPs with uncertain
parameters. The price for such an extension is a more complex model and the
need to compute bounds rather than exact results.

In our work, we combine in some sense POMDPs and MDPs with uncertain
parameters in order to provide a framework for maintenance models of systems
with several components. Prior to the introduction of the approach, we give
in Sect. 2 a brief overview of related work. Then, in Sect. 3, we model failure
time distributions by embedded Markov processes to build a realistic model of
component aging. In Sect. 4, we apply knowledge about uncertainty in Markov
decision processes to derive a decision model and reduce the state space and
make computing optimal maintenance policies tractable even for more complex
models. Finally, we present simple examples in Sect. 5 and discuss the results
in Sect. 6. The proofs for the main theorems used in the paper can be found
online [1].

2 Related Work

An enormous number of papers on MDPs and their use in maintenance modeling
exists. Therefore we mention only briefly the main references.

Markov decision processes and, briefly, their application to maintenance and
dependability have been thoroughly analyzed in the textbook by Puterman [19].
A more elaborate discussion of Markov models for maintenance problems can be
found in [11,15]; for specific applications in this context, we refer to [3,6,12,16].
Probability distributions of the phase type and their application to model failure
and repair times have been considered in [5,13]. More complex maintenance
models based on phase-type distributions can be found in [2,7].

The extension of Markov decision processes with interval-type transition
probabilities has been discussed in [14]. Maintenance applications of a related
uncertain model can be found in [18].
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3 Markov Models for Maintenance

We consider dependability models that are described by Markov processes. In
the following first the basic model of a component and then the composition of
components is introduced.

Component Models. The behavior of a component can be described by a
stochastic process with 2N + 1 phases, which are divided in three groups: N
operational phases, N maintenance phases and one failure phase. We use the
term phase rather than state because states will later be used to model non-
exponential durations of phases. Operational phases are numbered 1 through N ,
maintenance phases receive numbers N + 1 through 2N and the failure phase
number 0.

A new component starts in operational phase N and then continuously
degrades by decreasing the operational phase or by a hard failure that imme-
diately brings the component down to the failure phase. Let Ti be the random
variable describing the duration of phase i and pi the probability of entering
from operational phase i immediately failure phase 0. Consequently, pi = 1 − pi

is the probability of entering operational phase i − 1 from i and p1 = 1.
Eventually a component will end in phase 0, the failure phase, if no action is

taken. In the failure phase, the component may be repaired or substituted by a
new component, in both cases the component starts again in operational phase
N . Additionally, maintenance operations may be introduced. Maintenance can
be initiated at inspection times l · Δ (l ∈ N) when the phase of the component
is determined. If a maintenance operation is initiated when the component is
in operational phase i, then the phase changes to N + i. In phase N + i (i ∈
{1, . . . , N}) maintenance is performed, which requires time TN+i. Afterwards
the phase changes with probability hN+i,j to operational phase j ∈ {i, . . . , N},
i.e., we assume that maintenance cannot deteriorate the component.

Figure 1 shows the state transition diagram of a component. Solid arcs
describe transitions that occur if nothing is done and dashed arcs describe tran-
sitions that take place if a maintenance operation is initiated. The above model
is similar to the classical models for maintenance [8,19]. To analyze the behavior
and to determine optimal decisions, quantitative measures in the form of rewards

Fig. 1. Phase transition diagram of a component.
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have to be associated with phases or transitions. We assume that in operational
phase i, the component gains reward ri in phase i and additionally a penalty
r0 < 0 has to be paid whenever the failure phase is entered.

Sojourn times in the phases are characterized by independently distributed
random variables with cumulative distribution function Fi(t) and probability
density fi(t) for phase i. The time-dependent rate out of a phase is then given by

λi(t) =
fi(t)

1 − Fi(t)
. (1)

For the phases 1 through N this quantity describes the rate of deterioration in
the operational phase. For modeling failure times, standard distributions like
Weibull, Gamma or log-normal or phase type distributions are applied [5,13].
For repair or maintenance times less information is available in the literature
but it seems that also in these cases phase type distributions are appropriate for
modeling the durations [2,7]. In this paper, we use acyclic phase type distribu-
tions (APHs), a subclass of phase type distributions, which are described by an
absorbing Markov chain with m transient states, initial vector ν and generator
matrix D that can be reordered to an upper triangular matrix. As shown for
example in [5,9] general phase type distributions as well as standard failure time
distributions like the Weibull distribution can be approximated sufficiently accu-
rate by APHs. One of the advantages of APHs is the availability of a canonical
representation developed in [10]. In the canonical representation matrix D has
the form

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

−μ1 μ1 0 · · · 0
...

. . . . . .
...

... −μm−1 μm−1

0 · · · · · · 0 −μm

⎞
⎟⎟⎟⎟⎟⎟⎠

(2)

with μi ≤ μi+1 for 1 ≤ i < m − 1. This implies that the distribution has only
one exit state, namely the last state. The representation (ν,D) characterizes the
APH and

f(t) = νetD (−DI1) , F (t) = 1 − νetD I1, λ(t) =
νetD (−D I1)

νetD I1
, (3)

where I1 is a column vector of 1 of appropriate length. For a time-dependent rate
λ(t), the bounds λ−

t−,t+ = mint+≥t≥t− λ(t) and λ+
t−,t+ = maxt+≥t≥t− λ(t) with

t− ≤ t+ can be computed. We use the notation λ− = λ−
0,∞ and λ+ = λ+

0,∞.

The average rate is given by λav = −
(
νD−1I1

)−1

. If the APH represents an

exponential distribution, then λav = λ− = λ+.
We assume that the sojourn time in phase i is characterized by an APH

(νi,Di) of order mi and define di = −DiI1 = (0, . . . , 0, μmi
)T , for i ∈

{0, . . . , 2N}. This implies that all times are phase type distributed according
to an APH. Thus, the state of a component is defined by the observable phase of
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the component and the non-observable state of the APH defining the duration
of the phase. The detailed stochastic process describing a component is defined
in Sect. 4.

Composition of Components. If several components are considered, they
run in parallel. As long as they are independent, components can be analyzed
in isolation and rewards are simply added. However, usually components are
dependent. We consider here the case that rewards depend on the joint phase.
E.g., a system with two components is no longer operating if both components
are in maintenance or in the failure phase. Thus, a penalty has to be paid, if this
situation occurs. Additionally, components may interact due to limited capacity
for maintenance. In this case, a maintenance operation can only be started if
capacity for maintenance is available, otherwise the component has to continue
working until the next decision point for maintenance.

We restrict the description and analysis to systems built from two compo-
nents to avoid an extensive and complex notation. However, the general approach
can be extended to more than two components following the presented ideas.

4 Decision Models

The models described above implicitly include decisions to perform a mainte-
nance operation or let the system run. It is now shown that these decisions can
be modeled adequately by a Markov Decision Process (MDP) [19], if only the
average behavior is analyzed. In the general case, it can be modeled as a Bounded
Parameter Markov Decision Process (BMDP) [14]. From these processes optimal
maintenance strategies are computed. We consider in the following first single
components and then models composed of two components.

For notational convenience we define the following abbreviations mi:j =∑j
h=i mh if i ≤ j and 0 otherwise, ei,n (i ≤ n) for the ith unit row vector

of length n, 0m for a zero row vector of length m, 0n,m for a zero matrix of
order n × m and Im for an identity matrix of order m. If the order of vectors or
matrices follows from the context, we avoid the use of prefixes. We assume that
the indices of matrices and vectors start with 0 and end with n − 1 for a vector
or matrix of dimension n.

4.1 Decision Model for a Component

For maintenance the component is observed at discrete time points l · Δ
(l = 0, 1, 2, . . .) for some time step Δ > 0 and maintenance is possibly initiated
at those time points. At time l ·Δ we can observe the phase but not the internal
state which in some sense describes the internal wear of the component. Con-
sequently, decisions have to be based on the phase which implies that we build
a decision process with 2N + 1 states. However, since the behavior of this pro-
cess depends on the unknown internal state at a decision point, we consider the
worst, best and average behavior. The former two define a BMDP [14], the latter
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an MDP. Before the decision process can be generated, the internal behavior of
the component between decision points has to be characterized. Without main-
tenance the component can be described by a Markov chain with m0:2N states
and generator matrix Q.

Matrix Q can be built from the phase type distributions and the different
probabilities of the degradation process. Let F be a m1:N × m1:N matrix with
N × N submatrices F i,j (1 ≤ i, j ≤ N) of size mi × mj .

F i,j =

⎧⎪⎨
⎪⎩

Di if j = i,

pidiνi−1 if j = i − 1,

0 otherwise.

Matrix F includes all transitions between operational phases. Matrix DN+1:2N

is a mN+1:2N × mN+1:2N matrix with diagonal blocks Di (i = N + 1, . . . , 2N),
it contains all transitions between maintenance phases. To describe transi-
tions between maintenance, operational and failure phases define the following
matrices

E0 =
(
0m0,m1:N−1 d0νN

)
, E1 =

⎛
⎜⎜⎜⎝

p1d1ν0

...
pNdNν0

⎞
⎟⎟⎟⎠,

and

E2 =

⎛
⎜⎜⎜⎜⎜⎝

hN+1,1dN+1ν1 · · · · · · hN+1,NdN+1νN

0 hN+2,2dN+2ν2 · · · hN+2,NdN+2νN

...
. . . . . .

...
0 · · · 0 h2N,Nd2NνN

⎞
⎟⎟⎟⎟⎟⎠

.

E0 describes the start of component after a repair, E1 the immediate failure
from one of the operational phases and E2 contains all transitions that transfer
the component from a maintenance phase to an operational phase. Then

Q =

⎛
⎜⎝

D0 E0 0

E1 F 0

0 E2 DN+1:2N

⎞
⎟⎠ (4)

contains all transitions between decision points. Matrix Q is block structured
into (2N + 1) × (2N + 1) blocks of size mi × mj for sub-matrix Qi,j .

Rewards are collected in a column vector r of length
∑2N

i=0 mi. All states
belonging to the phase i with i = 0 ∨ N < i ≤ 2N have reward ri. The state
belonging to phase i (1 ≤ i ≤ N) and state j (1 ≤ j ≤ mi), which corresponds
to entry number

∑i−1
k=0 mk + j − 1 in vector r, equals ri + pidi(j)r0. For most

algorithms to compute optimal policies for MDPs or BMDPs it is advantageous
to have only non-negative rewards. In finite state processes with bounded rewards
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this can be achieved by adding an appropriate constant which is later removed
from the solution [20]. Thus define rpos =

∣∣∣min
(
0,minj(r(j))

)∣∣∣ and substitute r

by r + rposI1 ≥ 0.
Now consider an inspection time and assume that the component is in phase

i ∈ {0, . . . , 2N} at time l · Δ. We want to compute the probability that the
component is in phase j ∈ {0, . . . , 2N} at time (l + 1) · Δ. If the internal state
of phase i is known, this probability can be computed exactly using matrix Q.
However, we only know that for the distribution of states in phase i the relation
ψ = νie

t∗D i/
(
νie

t∗D iI1
)

for some t∗ ≥ 0 holds. To compute bounds for the
probabilities we define the following matrices.

B̂
−
i =

(
−λ+

i λ−
i bi

0 Q

)
, B̂

+

i =

(
−λ−

i λ+
i bi

0 Q

)
, B̂

av

i =

(
−λav

i λav
i bi

0 Q

)
(5)

where i ∈ {0, . . . , 2N} and

bi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
0m1:N−1 ,νN ,0mN+1:2N

)
if i = 0,(

ν0,0m1:2N

)
if i = 1,(

piν0,0m1:i−2 , piνi−1,0mi:2N

)
if 1 < i ≤ N(

0m0:i−N−1 , h−N,i−Nνi−N , . . . , hi−N,NνN ,0mN+1:2N

)
if N < i ≤ 2N.

Matrix B̂
−
i describes the component when it leaves phase i as soon as possible

and the flow into the other phases is minimal. B̂
+

i describes the component when
it leaves phase i as late as possible and the flow into the other phases is maximal.
B̂

av

i describes the average behavior. Observe that only B̂
av

i is a generator matrix.
In the sequel we use ± for one of the elements from {−,+, av}.

Let φ =
(
1,0m0:2N

)
and compute φ±

i = φeΔB̂
±
i . All vectors can be decom-

posed into φ±
i =

(
φ±

i,−1,φ
±
i,0, . . . ,φ

±
i,2N

)
, φ±

i,−1 is a scalar which denotes the

probability that state i has not been left during the whole interval and φ±
i,j is

a vector of length mj which includes (bounds for) the probabilities that the
component is in one of the states of phase j after starting in i. Let

φ̂
±
i =

(
φ±

i,0I1, . . . ,φ±
i,i−1I1,φ±

i,iI1 + φ±
i,−1,φ

±
i,i+1I1, . . . ,φ±

i,2N I1
)T

. (6)

Theorem 1. Vector φ̂
−
i is a lower bound for the conditional probability distri-

bution over the phases of the component at time (l + 1) · Δ under the condition
that the process starts in phase i at time l · Δ.

Vector φ̂
+

i is an upper bound for the conditional probability distribution over
the phases of the component at time (l + 1) · Δ under the condition that the
process starts in phase i at time l · Δ.

The proof for the theorem can be found online [1]. Vector φ̂
−
i contains only non-

negative elements, whereas φ̂
+

i might include elements larger than 1 since the
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matrix B̂
+

i is superstochastic. Then vector elements can be substituted by the
trivial upper bound 1 for probabilities. Now define (2N +1)× (2N +1) matrices

Ŝ
±

=
(
φ̂

±
0 . . . φ̂

±
2N

)�
(7)

Ŝ
−

is substochastic, Ŝ
av

is stochastic and Ŝ
+

is superstochastic1 and Ŝ
− ≤

Ŝ
av ≤ Ŝ

+
. Matrices Ŝ

−
and Ŝ

+
bound the transition probabilities of the com-

ponent between two decision periods.
A maintenance policy can now be described by a vector â ∈ {0, 1}N . â(i) = 1

implies that maintenance is initiated if the component is in phase i ∈ {1, . . . , N}.
Obviously maintenance can only be initiated if the component is in an opera-
tional phase. Matrix T̂ â describes the transitions induced by policy â and is
defined as

T̂ â (i, j) =

{
1 if (1 ≤ i ≤ N ∧ j = N + i ∧ â(i) = 1) ∨ ((i /∈ {1, . . . , N} ∨ â(i) = 0) ∧ i = j)

0 otherwise
(8)

Then P̂
−
â = T̂ â Ŝ

−
and P̂

+

â = T̂ â Ŝ
+

are matrices containing transition proba-
bility bounds of a BMDP. Only for the first state, the reward has to be computed,
for the remaining states reward vector r can be used. Define r±

i = ri+λ±
i r0+rpos

if i ∈ {1, . . . , N} and r±
i = ri+rpos otherwise, where rpos has been defined above.

Furthermore u+ = maxi r+i and u− = mini r−
i . Reward vector ŝ± is defined

element-wise as

ŝ±(i) = e0,m0:2N+2

∫ Δ

0

eτĈ i

⎛
⎜⎜⎝

r̂±
i

r

u±

⎞
⎟⎟⎠ dτ where Ĉ i =

⎛
⎜⎜⎝

−λ+
i λ−

i bi λ+
i − λ−

i

0 Q 0

0 0 0

⎞
⎟⎟⎠ . (9)

It is easy to show that ŝ− ≤ ŝav ≤ ŝ+ holds.

Theorem 2. ŝ−(i) is a lower bound for the reward that is gained in an interval
[l ·Δ(l+1) ·Δ] under the condition that the process starts at time l ·Δ in phase i.

ŝ+(i) is an upper bound for the reward that is gained in an interval [l ·Δ(l +
1) · Δ] under the condition that the process starts at time l · Δ in phase i.

Again, the proof can be found online [1].
(
P̂

−
â , P̂

+

â

)
â∈{0,1}N

and
(
ŝ−, ŝ+

)

define a BMDP to bound the reward of the policies. Furthermore, P̂
av

â = T̂ â Ŝ
av

is the stochastic transition matrix and
(
P̂

av

â

)
â∈{0,1}N

and ŝav define the discrete

time MDP which models the average behavior of the component.
After the optimal policy has been computed from the BMDP, the policy can

be analyzed by building the CTMC described by the policy and then analyzing
the policy on this process. Time complexity analysis can be found in [1].
1 We denote a non-negative matrix A as substochastic, iff a stochastic matrix P with

A ≤ P and A �= P exists. Similarly we denote A as superstochastic, iff a stochastic
matrix P with A ≥ P and A �= P exists.
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4.2 Decision Models for Composed Components

Modeling of composed components is more difficult than the analysis of a single
component. We consider here the case of two components but the approach can
be easily extended to more than two components.

In a two-component system, phases are described by tuples i = (i0, i1) where
ik ∈ {0, . . . , 2N (k)} and k ∈ {0, 1} is the index of the component. We use .(k)

to denote quantities belonging to component k. Matrices and vectors belonging
to the composed system will be shown without postfix. A detailed state of the
composed system is given by (i, j) = (i0, i1, j0, j1), ik ∈ {0, . . . , 2N (k)} and
jk ∈ {1, . . . , m

(k)
ik

}.
At a decision point, the detailed state of both components is unknown. Con-

sequently, we have to analyze all possible starting phases (i0, i1) using matrices
B̄

±
i0,i1 which are an extension of the matrices B̂

±
i defined in (5). However, in

contrast to the case with one component we now have to distinguish four cases;
both components remain in their phase for the whole interval of length Δ, the
first component changes its phase and the second remains in its phase, the first
component remains in its phases and the second changes its phases, and, finally,
both components change their phases. This results in the definition of the matri-
ces B̄

±
i0,i1 by

B̄
−
i0,i1 =

⎛
⎜⎜⎜⎜⎜⎝

−λ
+(0)
i0

− λ
+(1)
i1

λ
−(1)
i1

b
(1)
i1

λ
−(0)
i0

b
(0)
i0

0

0 Q(0) ⊕ −λ
+(1)
i1

0 I ⊗ λ
−(1)
i1

b
(1)
i1

0 0 −λ
+(0)
i0

⊕ Q(1) λ
−(0)
i0

b
(0)
i0

⊗ I

0 0 0 Q(0) ⊕ Q(1)

⎞
⎟⎟⎟⎟⎟⎠

.

The matrices B̄
+
i0,i1 and B̄

av
i0,i1 are defined analogously by swapping + and −

resp. using av in the superscripts.

Then define φ̄ =
(

1,0
(m

(0)

0:2N(0)+1)(m
(1)

0:2N(1)+1)

)
and compute

φ̄
±
(i0,i1) = φ̄eΔB̄ ±

i0,i1 . (10)

Vector φ̄
±
(i0,i1) can be decomposed into sub-vectors. The first element equals

the scalar φ̄±
(i0,i1)(−1,−1) including a bound or the average value for the proba-

bility that the initial phases have not been left. Then follow 2N (1) + 1 vectors
φ̄

±
(i0,i1)(−1,j1) of length m

(1)
j1

, followed by 2N (0)+1 vectors φ̄
±
(i0,i1)(j0,−1) of length

m
(0)
j0

. Finally N (0)N (1) vectors φ̄
±
(i0,i1)(j0,j1) of length m

(0)
j0

m
(1)
j1

follow. From these
sub-vectors the (2N (0) + 1)(2N (1) + 1) × (2N (0) + 1)(2N (1) + 1) matrix S̄ can
be computed as shown in the following equation.
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S̄((i0, i1)(j0, j1))± =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̄
±
(i0,i1)(j0,j1)I1 if i0 �= j0 ∧ i1 �= j1,

φ̄
±
(i0,i1)(j0,j1)I1 + φ̄

±
(i0,i1)(−1,j1)I1 if i0 = j0 ∧ i1 �= j1,

φ̄
±
(i0,i1)(j0,j1)I1 + φ̄

±
(i0,i1)(j0,−1)I1 if i0 �= j0 ∧ i1 = j1,

φ̄
±
(i0,i1)(j0,j1)I1 + φ̄

±
(i0,i1)(−1,j1)I1

+φ̄
±
(i0,i1)(j0,−1)I1 + φ̄±

(i0,i1)(−1,−1) if i0 = j0 ∧ i1 = j1.

(11)
Again the relation S̄

− ≤ S̄
av ≤ S̄

+ holds and S̄
av is a stochastic matrix. In S̄

+

elements larger than 1 can be substituted by the trivial bound 1.
Maintenance decisions now can be made whenever the component is in an

operational phase at a decision point. We define two vectors ā(k) (k = 0, 1)
of length (2N (0) + 1)(2N (1) + 1). ā(k)(ik, ik̄) = 0 if ik /∈ {1, . . . , N (k)} and for
ik ∈ {1, . . . , N (k)} the element can be 1, a maintenance operation for component
k starts, or 0, no maintenance starts. In a state, up to 4 decisions can be made
by combining the two possibilities for each component. Maintenance decisions
are only possible in N (k) operational phases but may depend on the phase of the
other component. Again, if the maintenance capacity is restricted, maintenance
operations can only be started if capacity is available, i.e. the other component
is not in a maintenance phase. For vectors ā(0), ā(1) the binary matrix T̄ ā(0),ā(1)

is defined by

T̄ ā (0),ā (1)(i0, i1)(j0, j1) = 1 ⇔ (i0 = j0 ∧ i1 = j1 ∧ ā(0)(i0, i1) = ā(1)(i0, i1) = 0)

∨(j0 = N(0) + i0 ∧ i1 = j1 ∧ ā(0)(i0, i1) = 1 ∧ ā(1)(i0, i1) = 0)

∨(i0 = j0 ∧ j1 = N(1) + i1 ∧ ā(0)(i0, i1) = 0 ∧ ā(1)(i0, i1) = 1)

∨(j0 = N(0) + i0 ∧ j1 = N(1) + i1 ∧ ā(0)(i0, i1) = ā(1)(i0, i1) = 1)

(12)

otherwise T̄ ā(0),ā(1)(i0, i1)(j0, j1) = 0. Then P̄
−
ā(0),ā(1) = T̄ ā(0),ā(1)S̄

− and
P̄

+
ā(0),ā(1) = T̄ ā(0),ā(1)S̄

+ define transitions probability bounds for a BMDP.
P̄

av
ā(0),ā(1) = T̄ ā(0),ā(1)S̄

av is a stochastic matrix for an MDP describing the aver-
age behavior.

It remains to compute the reward vectors for the BMDP and the MDP.
Reward bounds are computed similarly to the case with one component in (9).

s̄±(i0, i1) = e0
∫ Δ
0 e

τC̄ i0,i1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r±
i0,i1

r̄ ±
i0,∗

r̄ ±
∗,i1
r̃

ũ±

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dτ, where

C̄ i0,i1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ
+(0)
i0

− λ
+(1)
i1

λ
−(1)
i1

b
(1)
i1

λ
−(0)
i0

b
(0)
i0

0 λ
+(0)
i0

+ λ
+(1)
i1

− λ
−(0)
i0

− λ
−(1)
i1

0 Q (0) ⊕ −λ
+(1)
i1

0 I ⊗ λ
−(1)
i1

b
(1)
i1

(λ
+(1)
i1

− λ
−(1)
i1

) I1

0 0 −λ
+(0)
i0

⊕ Q (1)λ
−(0)
i0

b
(0)
i0

⊗ I (λ
+(1)
i0

− λ
−(1)
i0

) I1

0 0 0 Q (0) ⊕ Q (1) 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13)
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r̃ is the reward vector of the system, ũ+ = maxi0,i1 r+i0,i1
, ũ− = mini0,i1 r−

i0,i1
and

r̄±
i0,∗ =

(
r±
i0,0I1

T

m
(1)
0

, . . . , r±
i0,2N(1)+1

I1T

m
(1)
2 N(1)+1

)�

r̄±
∗,i1

=
(

r±
0,i1

I1T

m
(0)
0

, . . . , r±
2N(0)+1,i1

I1T

m
(0)
2 N(0)+1

)� (14)

The values r±
i0,i1

have been defined above.
The generation of the processes requires the solution of (2N (0)+1)(2N (1)+1)

systems of differential Eqs. (10) and (13) of order (m(0)

0:2N(0) + 1)(m(1)

0:2N(1) + 1)
each. The different computations can be parallelized. The resulting MDPs or
BMDPs are usually of a moderate size because the number of phases is usually
small.

For computing the optimal policy and average or discounted reward, standard
methods for MDP analysis can be applied [19]. For BMDPs optimal policies for
the worst case are usually computed. An overview of available numerical methods
is given in [4].

4.3 Improved Bounds

The quality of the bounds depends on the difference between λ+
i and λ−

i . Up to
now we have computed λ− = λ−

0,∞ and λ+ = λ+
0,∞ which defines bounds without

any knowledge how long the component or system is already in the current phase.
However, due to regular inspection of a component, some information is available.
Thus, if the component has been in a different phase at the last inspection,
λ− = λ−

0,Δ and λ+ = λ+
0,Δ. More general, if we know that the component has

been in the same phase for the last i inspections, then λ− = λ−
(i−1)·Δ,i·Δ and λ+ =

λ+
(i−1)·Δ,i·Δ. The average rate can then be computed λav = Δ−1

∫ i·Δ
(i−1)·Δ λ(t).

If the number of intervals the system resides in a phase is considered, then
MDPs/BMDPs have to be generated and analyzed for each combination of state
and residence time which increases the effort. However, for Δ much larger than
the expected residence time in a phase not much changes because it is likely that
the phase has been left at the next inspection.

5 Examples

The following examples have all been analyzed with Matlab/Octave where the
proposed approach has been implemented. Matrices are constructed from the
specification of the APHs and the remaining parameters and the resulting MDP
or BMDP is analyzed using value iteration. Model generation algorithms and
runtime analysis are presented in the online companion [1].

We first consider the computation of maintenance policies for single compo-
nents and consider afterwards the composition of two components.
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Single Components: We start with a single component which has 4 operational
phases and a reward of 1 in all operational phases, 0 in maintenance phases, and
−10 in the failure phase. The duration of the first and the last operational phase
are Weibull distributed. Phase 1 has increasing failure rate and phase 4 decreas-
ing failure rate. The operational phases 2 and 3 are exponentially distributed.
This implies that the failure rate over all operational phases is first decreasing,
then constant and finally increasing which together gives the typical bathtub like
curve. Figure 2a shows the time dependent failure rates of the Weibull distribu-
tions and the failure rates of the APHs that have been used to approximate the
Weibull distributions. For the computation of the parameters of the APHs an
EM algorithm and publicly available software has been applied [21]. It can be
seen that 3 states of the underlying Markov chain in the APH model result in a
reasonable and 5 states in a good approximation of the Weibull distributions.

Fig. 2. Time dependent failure rates of various distributions and the respective APH
approximations

For the duration of maintenance operations, log-normal distributions have
shown to be an adequate model [17]. Usually the variance of the maintenance
time is not too large. We generated a log-normal distribution from standard
normal distribution and scaled afterwards the distribution to meet the required
mean value. APHs of a low order are also suitable to approximate log-normal
distributions. Figure 2b show the time dependent rate of the log-normal distribu-
tion and APHs with 3 and 5 Markov chain states which have been computed for
approximating the log-normal distribution. Again 3 states provide a reasonable
and 5 phases a good approximation.

The failure and replacement time is hyper-exponentially distributed with a
squared coefficient of variation of 2 to indicate the uncertainty of substituting a
component by a new one. We assume that the mean duration of each operational
phase is 10, the mean duration of the failure phase 1 and the mean durations
of the maintenance phases are 0.4, 0.6, 0.8 and 1, for maintenance starting in
the operational phases 4 through 1 (i.e., maintenance becomes more expensive
if started later).

The Markov models resulting from a component have 22 or 34 states depend-
ing whether we use APHs with 3 or 9 states. The MDP and BMDP have 3 states.
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Fig. 3. Optimal gain for different values of the repair costs. (Color figure online)

We consider the configuration with p2 = p3 = p4 = 0.1, perfect maintenance
(i.e., after each maintenance operation the component behaves like a new com-
ponent) and an inspection interval of length Δ = 1. If we optimize the average
model, no maintenance is performed and the gain is linearly increasing with the
costs for a repair. If we analyze the BMDP according to the worst case behavior,
a maintenance operation is performed whenever the component is in the last
operational phase at an inspection interval. In Fig. 3 we compare the gain under
the optimal policy without repair and the robust policy with repair in the last
operational phase. The red line shows the gain from the approximation which is
used to compute the policy. The green line shows the exact result for the policy.
It can be seen that the approximation is for small repair costs good but becomes
worse if an repair becomes more expensive. The blue line shows the exact gain
of the robust policy which is for small repair cost clearly worse but becomes
advantageous if repair cost are high.

Composed Components: For a composed system, we have added a second compo-
nent that is identical to the first. We analyze the behavior for varying inspection
interval Δ ∈ {0.05, 0.15, . . . , 1.95, 2} with a penalty of −10. It is assumed that
penalties are only paid when both components are down.

Furthermore, we consider a system with fixed Δ = 0.5 and varying penalties
in the range from −10 to −50. For varying penalties, we observe in Fig. 4 that
the lower bound for optimal policies in the resulting BMDP model decreases
with increasing penalty value; the upper bound and the average model are not
affected, as the optimal policy in both cases is very close to the upper bound,
which is 2 (one reward unit for each component).

For varying time steps, in Fig. 5 one can see that more often inspection con-
tributes to decreasing level of system uncertainty. For a small time interval Δ,
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Fig. 4. Gain for the time-based composed system with varying penalties, exclusive
maintenance case.

Fig. 5. Time dependent gains and CPU times for the composed system with two com-
ponents, exclusive maintenance case. Computational times have been obtained from a
mean of 30 independent runs.

we obtain tighter bounds of the underlying BMDP which indicates that for small
inspection intervals the captured uncertainty on the internal state of a compo-
nent is also small and results from uncertainty in the reward of the phase. In
Fig. 5a, one can observe that a smaller time step, i. e., a smaller checking interval
allows for better control of the system state and thus, for better performance of
the composed system. This observation is supported by a slightly better behav-
ior of the average MDP model. However, the price for smaller values of Δ are
larger inspection costs which have to be added to the results of the optimization
model.

We furthermore observe higher computation times with larger values of Δ.
This includes the construction of the BMDP and MDP model as well as their
optimization. The main reason for this behavior is the computational complexity
of the transient analysis of reward bounds in (13).
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6 Conclusion

The paper introduces a new approach to model systems of components with gen-
erally distributed failure, maintenance and repair times using Markov chains. By
integrating decision points where a maintenance operation may start, a Markov
decision process or a bounded parameter Markov decision process, which cap-
tures the uncertainty about the internal state of a component, can be generated
and optimal maintenance policies can be computed using well established algo-
rithms from Markov decision theory.

The approach has been described here for the composition of two components.
It is not hard to extend it to more than two components. For a larger number
of components the curse of dimensions resulting in the state space explosion will
come up. However, the decision process which have been constructed are fairly
small because they only consider the observable phase of a component and not
the much larger detailed state space. For the construction of these processes
larger systems of linear equations or differential equations have to be solved
which can be done nowadays efficiently for relatively large state spaces.
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21. Thümmler, A., Buchholz, P., Telek, M.: A novel approach for phase-type fitting
with the EM algorithm. IEEE Trans. Dependable Sec. Comput. 3(3), 245–258
(2006)



Markov Automata on Discount!

Yuliya Butkova1(B), Ralf Wimmer2, and Holger Hermanns1

1 Saarland University, Saarbrücken, Germany
{butkova,hermanns}@cs.uni-saarland.de

2 Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
wimmer@informatik.uni-freiburg.de

Abstract. Markov automata (MA) are a rich modelling formalism for
complex systems combining compositionality with probabilistic choices
and continuous stochastic timing. Model checking algorithms for differ-
ent classes of properties involving probabilities and rewards have been
devised for MA, opening up a spectrum of applications in dependabil-
ity engineering and artificial intelligence, reaching out into economy and
finance. In the latter more general contexts, several quantities of con-
siderable importance are based on the idea of discounting reward expec-
tations, so that the near future is more important than the far future.
This paper introduces the expected discounted reward value for MA and
develops effective iterative algorithms to quantify it, based on value- as
well as policy-iteration. To arrive there, we reduce the problem to the
computation of expected discounted rewards and expected total rewards
in Markov decision processes. This allows us to adapt well-known algo-
rithms to the MA setting. Experimental results clearly show that our
algorithms are efficient and scale to MA with hundred thousands of
states.

1 Introduction

The design and analysis of complex systems operating in uncertain environments
requires a powerful modelling language. It is desirable to support compositional-
ity for constructing large models from individual components; nondeterminism
for abstraction and representing unknown behaviour of the environment; con-
tinuous stochastic timing and probabilistic choices. Markov automata (MA) [9]
combine all these aspects in one formalism. They have been extended to express
costs and rewards, yielding Markov reward automata [12]. Efficient algorithms
for the automatic analysis of Markov (reward) automata are available for a broad
range of properties like time- and cost-bounded reachability probabilities [11,14],
expected rewards [12], long-run averages [6,11] and properties expressed in the
temporal logic CSL [13]. Tool support is available: Both IMCA [10] and Storm [7]
support Markov automata model checking. This makes Markov automata well
suited not only as a modelling formalism by itself, but also as the semantical
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foundation of higher-level formalisms like dynamic fault trees [4] and generalized
stochastic Petri nets [8].

All the measures considered so far for Markov reward automata do not make
a difference between a unit of reward being accumulated early or late along the
evolution of the system. In economics, in artificial intelligence, and in the theory
of optimal control [3], it is a well-understood practice to discount the future, that
is, to give more weight to the near future than to the far away future. This view is
natural in model checking quantitative temporal logic properties of systems [1,2],
including continuous-time Markov decision processes (CTMDPs) [17]. It appears
equally natural for Markov automata, but as yet, there is neither a theory nor
an algorithmic approach for discounting in Markov reward automata.

The present paper investigates discounting on MRA. We first settle the foun-
dational basis of what discounting actually means for Markov automata. Due to
the continuous nature of time in MRA we define discounting analogously to the
way it is defined for CTMDPs.

Our findings are rooted in the observation that we can view any MRA as
a representation encoding a possibly exponentially larger CTMDP, preserving
discounted reward values. This enables one to quantify the discounted reward
in MRA by computing the respective value on its value-preserving CTMDP,
however at the price of possibly exponential time and space requirements.

Overall our approach has similarities in spirit to the one introduced to quan-
tify long-run average rewards on MRA [6], but the constructions needed have to
be entirely different due to the dependency of the discounted reward on time.
Instead of the näıve approach, we show that the exponential blow-up can be
avoided by recognising that the value requiring exponentially many computa-
tional steps as the expected total reward in a specific linear-sized discrete-time
MDP. Using classic dynamic programming for the latter then turns the expo-
nential näıve approach into an effective polynomial characterisation. In this way
we derive the Bellman equation characterising the expected total reward in the
presence of discounting in MRA. The Bellman equation in turn is the basis
for value- and policy-iteration algorithms quantifying the discounted reward on
MRA. The efficiency of the approach is demonstrated with examples of MRAs
with hundreds of thousands of states.

2 Foundations

Given a finite set S, a probability distribution over S is a function μ : S → [0, 1]
with

∑
s∈S μ(s) = 1. We denote the set of all probability distributions over S

by Dist(S). ξs is the Dirac distribution on s, i. e. ξs(s) = 1 and ξs(s′) = 0 for
s′ �= s.

Definition 1. A Markov reward automaton (MRA) M is a tuple M = (S, sinit,
Act, ↪→,�, r, ρ) s. t. S is a finite set of states; sinit ∈ S is the initial state; Act is
a finite set of actions; ↪→ ⊆ S ×Act×Dist(S) is a finite probabilistic transition
relation; � ⊆ S×R>0×S is a finite Markovian transition relation; r : ↪→ → R�0

is a transition reward function; and ρ : S → R�0 is a state reward function.
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Fig. 1. An example MRA (Color figure
online)

We abbreviate (s, α, μ) ∈ ↪→ by s
α
↪→ μ

and write s
λ� s′ instead of (s, λ, s′) ∈ �.

Act(s) = {α ∈ Act | ∃μ ∈ Dist(S) : s
α
↪→

μ} denotes the set of actions that are
enabled in state s ∈ S. A state s is prob-
abilistic (Markovian), if it has at least
one probabilistic (Markovian) transition
s

α
↪→ μ (s λ� s′, resp.). States can be both

probabilistic and Markovian. We denote
the set of probabilistic states by PSM and
the Markovian states by MSM. We assume w. l. o. g. that actions of probabilis-
tic transitions of a state are pairwise different1. Therefore we will write r(s, α)
instead of r(s, α, μ). The successors of a state s ∈ S are given by succ(s) = {s′ ∈
S | ∃α ∈ Act ∃μ ∈ Dist(S) : s

α
↪→ μ ∧ μ(s′) > 0 ∨ ∃λ ∈ R>0 : s

λ� s′} and its
predecessors by pred(s) = {s′ ∈ S | s ∈ succ(s′)}.

For a Markovian state s ∈ MSM, the value R(s, s′) :=
∑

(s,λ,s′)∈� λ is
called the transition rate from s to s′. The exit rate of a Markovian state s is
E(s) :=

∑
s′∈S R(s, s′). We require E(s) < ∞ for all s ∈ MSM.

For s ∈ PSM with s
α
↪→ μ for some α, we set P[s, α, s′] := μ(s′). For s ∈ MSM

with E(s) > 0, the branching probability distribution when leaving the state
through a Markovian transition is denoted by P[s, ·] ∈ Dist(S) and defined by
P[s, s′] := R(s, s′)/E(s).

The evolution of an MRA starts in its initial state. Whenever the system
encounters a Markovian state s ∈ MSM, its sojourn time in s is governed by an
exponential distribution, i. e. the probability of leaving s within t � 0 time units
is given by 1 − e−E(s)·t, after which the next state is chosen according to P[s, ·].

The behaviour of the system in probabilistic states is different. In this paper
we consider closed MRA, which are not subject to further composition opera-
tions that could delay the execution of probabilistic transitions. Therefore we
can make the usual urgency assumption: Probabilistic transitions happen instan-
taneously. The residence time in probabilistic states is therefore always 0. When-
ever the system is in state s with Act(s) �= ∅ and an action α ∈ Act(s) is chosen,
the successor s′ is selected according to the distribution P[s, α, ·] and the system
moves instantaneously from s to s′. As the execution of a probabilistic transi-
tion is instantaneous and because the probability that a Markovian transition is
triggered immediately is 0, we can assume that the probabilistic transitions take
precedence over Markovian transitions. We therefore assume PSM ∩MSM = ∅.
The way Markov automata choose actions will be covered shortly.

During its evolution a Markov reward automaton collects rewards. The
transition reward r(s, α) is granted immediately for taking the (probabilistic)

1 This can be achieved by renaming the actions and does not affect compositionality
properties of MRA due to the fact that only closed MRA are considered in this work.
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transition s
α
↪→ μ, while the state rewards are accumulated over time, i. e. for

staying in a state s for t > 0 time units, a reward of ρ(s) · t is granted.

Example 1. Figure 1 shows an example MRA. Grey and white colouring of states
indicates the sets MSM and PSM, resp.; they are disjoint here. Labels high,
low, and α denote actions. Dashed transitions are probabilistic; solid transitions
are Markovian. We omitted Dirac distributions from probabilistic transitions.
Rewards associated with states and transitions are depicted as numbers in green
rectangular frames.

The MRA models a task processing system aiming at maximising the rev-
enue on the long run. Tasks arrive at rate 11; this is modelled by a Markovian
transition with rate 11. Whenever there is a task to process, the system decides
whether to handle it with high or low reliability. In the former case, the system
receives an immediate reward of 10, modelled by r(has a task, high) = 10. A low
reliability task produces a reward of 2 only. The tasks are sent for processing
to a remote server over lossy channels. The high reliability channel looses tasks
with probability 0.01, while low reliability tasks are lost ten times more often.
Whenever a task is lost, no further reward for it is paid. Processing high reli-
ability tasks takes more time, which is modelled with exit rate 3 of state high,
however, it generates reward proportional to the processing time (modelled by
state reward of 0.3). Low reliability tasks are faster to process but produce less
reward.

An MRA is non-Zeno iff no maximal end component (see [11]) of only prob-
abilistic states is reachable with probability > 0. This excludes models in which
there is a chance to get trapped in an infinite number of transitions occurring
in finite time. In this work, similarly to [11], we restrict ourselves to non-Zeno
models; Zenoness is typically considered a modelling error.

For ease of representation, we additionally assume that all states have at least
one outgoing transition. This can be easily achieved by adding a Markovian self-
loop to the state, with reward 0 and arbitrary non-zero rate.

Paths and Schedulers. A (timed) path in M is a finite or infinite sequence

π = s0
α0,t0−−−→ s1

α1,t1−−−→ · · · αk,tk−−−→ sk+1
αk+1,tk+1−−−−−−→ · · · with s0 = sinit, and for all

i ≥ 0 : si ∈ S, ti ∈ R�0, and αi ∈ Act ∪̇ {⊥}. Here si
αi,0−−→ si+1 s. t. αi ∈ Act(si)

is a probabilistic transition via action αi, and si
⊥,ti−→ si+1, s. t. ti > 0 and there

exists a transition si
λ� si+1, denotes a Markovian transition with sojourn time

ti in state si. We define π[i] := si, α[π, i] := αi and for an infinite path π and
k ≥ 0, the elapsed time τ [π, k] until entering π[k] is defined by τ [π, 0] := 0 and
τ [π, k] := t0 + · · · + tk−1. Whenever it is clear from the context, we omit π and
just use α[i] and τ [k] instead. The set of all finite (infinite) paths of M is denoted
by Paths∗

M (PathsM). The length |π| of a finite path π is the number of its
transitions; its last state is denoted by π↓.

In order to resolve the nondeterminism in probabilistic states of an MRA,
we need the notion of a scheduler. A (measurable) scheduler (or policy) σ :
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Paths∗
M → Dist(↪→) is a measurable function, s. t. σ(π) assigns positive proba-

bility only to transitions (π↓, α, μ) ∈ ↪→, for some α, μ. The set of all measurable
schedulers is denoted by GMM. A (deterministic) stationary scheduler is a func-
tion σ : PSM → ↪→, s. t. σ(s) chooses only from transitions (s, α, μ) ∈ ↪→, for
some α, μ. For the definition of the probability measure on MRA we refer to [15,
Sect. 3.2].

Markov Decision Processes

Definition 2. A continuous-time Markov decision process (CTMDP) is a tuple
C = (S, sinit, Act,R), where S is a finite set of states, sinit ∈ S is an initial state,
Act is a finite set of actions, and R : S × Act × S → R�0 is a rate function.

The set Act(s) = {α ∈ Act | ∃s′ ∈ S : R(s, α, s′) > 0} is the set of
enabled actions in state s. A path in a CTMDP is a finite or infinite sequence
π = s0

α0,t0−−−→ s1
α1,t1−−−→ · · · αk−1,tk−1−−−−−−−→ sk · · · , where s0 = sinit, αi ∈ Act(si) and ti

denotes the residence time of the system in state si. E(s, α) :=
∑

s′∈S R(s, α, s′)
and PC [s, α, s′] := R(s,α,s′)

E(s,α) . The notions of Paths∗
C , PathsC , π↓ and schedulers

are defined analogously to corresponding definitions for an MRA. A reward
structure on a CTMDP C is a tuple (ρC , rC), where ρC : S → R�0 and
rC : S × Act → R�0.

The counterpart of CTMDPs and MRA in discrete time are (discrete-time)
Markov decision processes:

Definition 3. A Markov decision process (MDP) is a tuple D =
(SD, sinit, ActD,PD) where SD is a finite set of states, sinit is the initial state,
ActD is a finite set of actions and PD : SD ×ActD → Dist(SD) is a probabilistic
transition function.

The definitions of paths, schedulers, etc. are discrete analogues of those
definitions for CTMDPs. A reward structure on an MDP is a function rD :
SD × ActD → R�0.

In the following a special subclass of MDPs – acyclic MDPs – will be of
particular importance. A state of an MDP is called terminal if all its outgoing
transitions are self-loops with probability 1 and reward 0. We call an MDP
acyclic if the self-loops of terminal states are the only loops appearing in the
MDP.

3 Discounted Reward for Markov Automata

In this section, we define the discounted reward value for Markov reward
automata and consider its relation to discounted rewards on CTMDPs.
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3.1 Continuous Discounting

Markov automata are a continuous-time model and we therefore define discount-
ing in a classical way via the continuous exponential decay over time. Yet special
care has to be taken when dealing with probabilistic states due to the fact that
time in those states does not pass. Essentially the definition is lifted to the MRA
setting from CTMDPs [19].

Let M = (S, sinit, Act, ↪→,�, r, ρ) be a Markov reward automaton, β > 0,

and π = s0
α0,t0−−−→ s1

α1,t1−−−→ · · · αk,tk−−−→ sk+1
αk+1,tk+1−−−−−−→ · · · an infinite path in

M. Then rewN
M,β(π) is the discounted reward with rate β of the path π within

N ∈ N steps, where rew0
M,β(π) := 0 and

rewN
M,β(π) :=

N−1∑

k=0

⎡

⎢
⎣e−β·τ [k] · r(sk, αk) +

τ [k]+tk∫

τ [k]

e−β·t · ρ(sk) dt

⎤

⎥
⎦ .

Example 2. Consider the MRA from Fig. 1 and its path π = (nt)
⊥,t1−−−→

(ht)
high,0−−−−→ (lost)

α,0−−→ (nt)
⊥,t2−−−→ (ht) −→ · · · , where (nt) stands for (no tasks)

and (ht) for (has a task). Then the discounted reward collected over this path
for N = 4 is:

rew4
M,β(π) =

t1∫

0

ρ(nt) · e−β·τ dτ + e−β·t1(
r(ht, high) + r(lost, α)

)
+

t1+t2∫

t1

ρ(nt) · e−β·τ dτ .

The optimal expected cumulative discounted reward (or just discounted
reward) in M with discount rate β is:

dRopt
M,β := opt

σ∈GM

{
lim

N→∞
Eσ[rewN

M,β ]
}

= opt
σ∈GM

⎧⎪⎨
⎪⎩ lim

N→∞

∫

PathsM

rewN
M,β(π) · PrM,σ[dπ]

⎫⎪⎬
⎪⎭ ,

where opt ∈ {sup, inf}. A scheduler σ is called optimal for dRopt
M,β , if it attains

optimum in this equation. In the following, dRopt
M,β(s) denotes the discounted

reward collected in M assuming that the initial state is s. Whenever it is clear
from the context, we omit the subscripts and use notation dRopt.

Lemma 1. The value dRopt
M,β exists.

3.2 Relation to Discounted Rewards on CTMDP

We now show that for each MRA there exists a (possibly exponentially larger)
CTMDP that preserves the discounted reward property. We first need to intro-
duce uniform and normalised MRA:

Definition 4. An MRA M is uniform if ∃η ∈ R>0, s. t. ∀s ∈ MSM :
E(s) = η.
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Definition 5. An MRA M is called normalised if

1. the initial state of M is probabilistic;
2. every Markovian state s has only probabilistic predecessors: pred(s) ⊆ PSM;
3. probabilistic states of M have either only probabilistic or only Markovian

predecessors: ∀s ∈ PSM : pred(s) ⊆ PSM∨pred(s) ⊆ MSM.

Lemma 2. For any MRA M, η � max
s∈S

E(s) there exists a uniform normalised

MRA Mη, s. t. dRopt

Mη,β
= dRopt

M,β and its size is linear in the size of M.

Informally, Mη is obtained by first uniformising the Markovian states. This is
performed via the well-known approach from [18] by adding self-loop transitions
to them. Then this uniform MRA is normalised by introducing probabilistic
states of zero reward (i) in between each pair of states that violate Properties 2
or 3 of the definition above, or (ii) as a new initial state, as detailed in [5].

In the following, we assume that the MRA at hand is uniform and normalised
and show how to construct a value-preserving CTMDP for it. Before proceeding
we need to introduce some notation:

– Π\B(s, s′) is the set of all untimed paths π = s
α−→ s1

α1−→ · · · sk
αk−→ s′ (paths

of M with abstracted timing information), such that ∀i = 1..k, si �∈ B;
– PS\B(s) is the set of states containing s and all states s′ ∈ PS \ B that are

related to s via the transitive closure of relation ↪→;

– P[π] :=
|π|−1∏
i=1

P
[
π[i], α[i], π[i + 1]

]
, r(π) :=

|π|−1∑
i=0

r
(
π[i], α[i]

)
, ρ(π) :=

|π|−1∑
i=0

ρ
(
π[i]

)
.

Value-Preserving CTMDP. Let M = (S, sinit, Act, ↪→,�, r, ρ) be a uni-
form normalised MRA with exit rate η. We define the CTMDP C(M) :=
(SC , sinit, ActC ,RC) and reward structure (ρC , rC) as follows:

SC The state space of C(M) is the set SC ⊆ PS that contains the initial state
sinit and all probabilistic states of M that are successors of a Markovian state
in M: SC = {s ∈ PS | s = sinit or ∃s′ ∈ MS : s′ λ� s}. We define the set of
marked states as Smrk := SC .

ActC An action of a state s in this CTMDP is a mapping A : PS\Smrk(s) → Act,
such that A(s′) ∈ Act(s′). Then the set of all enabled actions ActC(s) is the
set of all possible functions A, and ActC =

⋃
s∈Smrk

ActC(s).
RC Let s, s′ ∈ Smrk and Π\Smrk(s,A, s′) ⊆ Π\Smrk(s, s

′) be the set of all paths
from Π\Smrk(s, s

′) that select actions according to A, i. e. for each path π :
π[i] ∈ PS ⇒ α[i] = A(π[i]). Then
RC(s,A, s′) := η · ∑π∈Π\Smrk

(s,A,s′) P[π].
ρC The state reward of a state s in C(M) is the expected state reward gathered

in M on paths between s and any other s′ ∈ Smrk that is a successor of s in
C(M): ρC(s) :=

∑

s′∈Smrk

∑

π∈Π\Smrk
(s,s′)

ρ(π) · P[π].
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rC The transition reward of a state s and action A in C(M) is the expected
transition reward gathered in M on paths between s and any other s′ ∈ Smrk

that is a successor of s in C(M): rC(s,A) :=
∑

s′∈Smrk

∑

π∈Π\Smrk
(s,A,s′)

r(π) ·P[π].

The main idea of this construction is to lump together states that are all
entered at the same time point. For example, in a sequence of probabilistic states
followed by a Markovian state all of the states of the sequence will be entered at
the same time due to the fact that probabilistic states are left instantaneously
upon entry. The construction is similar in spirit to the construction of a value-
preserving CTMDP for the long-run average reward problem from [6]. It differs,
however, in the treatment of Markovian and probabilistic states due to the fact
that timing information effects collected rewards and thus has to be preserved.

An example of this transformation is depicted in Fig. 2. One can easily
see that even in small examples the amount of transitions of C(M) can grow
extremely fast. Let s ∈ Smrk and |PS\Smrk(s)| = n. If every probabilistic state
of M has two enabled actions, then the set of enabled actions of s in C(M) is
2n. This growth is therefore exponential in the worst case.

sinit s0

p0

p1

p2

p3

s2

s1

p4

p5

α
η/
2

η/2

η

ηα0

β0

α1

β1

γ2

ω2

γ3

ω3

α

α

sinit

p0

p1

p4

p5

· · ·

· · ·

A

A0

A
7

B0

B
7 A

A

Fig. 2. An example of C(M) (on the right) for an MRA M (on the left). We omitted the
probabilities of the probabilistic transitions of M. Here A0 = [p0 → α0, p2 → γ2, p3 →
γ3] and other actions of C(M) are constructed analogously. If all the probabilistic
distributions are uniform, then RC(p0, A0, p4) = η · [0.5 · 0.5 · 1 + 0.5 · 0.5 · 1] = 0.5 · η.

Theorem 1. For any uniform normalised MRA M we have dRopt
M,β =

dRopt
C(M),β

2, and there is an optimal scheduler for M that is stationary.

4 Bellman Equation

In this section, we introduce the Bellman equation for the discounted reward
problem on MRA.

First of all, due to the results obtained in Sect. 3.2, one could obtain the
Bellman equation for an MRA by constructing the value-preserving CTMDP

2 Here dRopt
C,β denotes discounted reward on a CTMDP C [19].
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and using the Bellman equation for this CTMDP3 [19]. However, since the con-
struction of C(M) is exponential in the size of M, using the thus obtained
Bellman equation for quantifying dRopt is not efficient for general MRA.

First we informally discuss the reasons why using this method would be
inefficient for M. First of all, in order to use this approach one would need to
construct C(M), which may require exponentially many computations. Addi-
tionally, having constructed C(M), the solution of its Bellman equation requires
computing an extremum of an operator FC(M) over all enabled actions: V ∗ :=
optA∈ActC FC(M)(A). The definition of FC(M) is irrelevant for the current dis-
cussion. Since the number of enabled actions in C(M) is in the worst case
exponential in the size of M, this operation is essentially a brute-force check
over exponentially many options. However, we can show that this optimisation
problem on C(M) when mirrored back to M itself reduces to the computa-
tion of the expected total reward tRopt

D(M) on a discrete-time Markov decision

process D(M), whose size is linear in the size of M. Computing tRopt
D(M) is a

well-studied problem on MDPs that admits an efficient solution via dynamic pro-
gramming. Thus instead of näıvely brute-forcing supA∈ActC FC(M)(A), the value
V ∗ can be efficiently computed by well-known dynamic programming techniques
for tRopt

D(M) [3,19]. To formalise this result we need to introduce the expected
total reward tRopt on MDPs, as defined in [19].

Expected Total Reward. Let D be a (discrete-time) MDP and Xs
i , Y s

i be
random variables denoting the state occupied by D and the action chosen at
step i starting from state s. Then the value

tRopt
D,rD (s) := opt

σ∈GMD
Es,σ

[

lim
N→∞

N−1∑

i=0

rD(Xs
i , Y s

i )

]

,

where opt ∈ {sup, inf}, denotes the optimal expected total reward on D with
reward structure rD, starting from state s.

Terminal MDP. We now construct the discrete MDP and the reward struc-
ture on it that enables us to substitute the näıve brute-force approach with the
efficient computation of the expected total reward.

Let M be a uniform normalised MRA. Informally, we keep the structure
of M, but for each marked state s ∈ Smrk, we introduce a copy state scp and
redirect all the transitions leading to s to the new copy state scp. These copy
states have only transitions with probability 1 to a new terminal state t. Formally,
the terminal MDP of M is D(M) := (SD, sinit, Act ∪̇ {⊥},PD), where Scp =
{scp | s ∈ Smrk}, SD = S ∪̇ Scp ∪̇ {t} and

3 For details we refer to [5].
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PD[s, α, s′] =

⎧
⎪⎪⎨

⎪⎪⎩

P[s, α, s′] for s ∈ PS, s′ �∈ Scp,
P[s, p] for s ∈ MS, s′ = pcp ∈ Scp, α = ⊥,
1 for (s ∈ Scp or s = t), s′ = t, α = ⊥,
0 otherwise.

Figure 3(b) depicts the terminal MDP for the MRA from Fig. 1.
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Fig. 3. Figure (a) depicts the uniform normalised MRA from Fig. 1 and (b) shows
the corresponding terminal MDP. All the added/updated transitions and states are
highlighted in green color. The figure omits Dirac distributions and rewards. (Color
figure online)

We can now present an efficient characterisation of the discounted reward on
MRA. Let D(M) = (SD, sinit, ActD,PD) be the terminal MDP of M and h :
Smrk → R. We define a reward structure rewD(M),h for D(M) as follows:

rewD(M),h(s, α) :=

⎧
⎪⎪⎨

⎪⎪⎩

r(s, α) for s ∈ PS, α ∈ ActD(s),
ρ(s)
β+η for s ∈ MS, α = ⊥,

η
β+η h(s) for s ∈ Scp, α = ⊥,

0 for s = t, α = ⊥ .

Theorem 2. Let M be a uniform normalised MRA with exit rate η and D(M)
the corresponding terminal MDP. Then the vector dRopt

M,β := (dRopt
M,β(s)),∀s ∈

Smrk, is the unique solution to the Bellman equation:

∀s ∈ Smrk : v(s) = tRopt
D(M),rewD(M),v

(s) . (1)

The reason for this characterisation being efficient is the right-hand side
of Eq. (1). Quantification of the expected total reward on MDPs is a well-
established problem that admits such algorithms as policy-iteration and linear
programming [19]. Moreover, for a subclass of models it can be solved in time
linear in the size of the MRA. Those are models that have no cycles consisting of
only probabilistic states. Such cycles (even non-Zeno ones) almost never happen
in real-world applications and are usually considered a modelling mistake. In
fact, we are not aware of any practical example where that case occurs.
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5 Numerical Solution

Having a Bellman equation at hand, one can normally derive three types of
algorithms: based on value-iteration, policy-iteration, and linear programming.
Due to scalability issues of the latter we do not consider it and present here only
value- and policy-iteration algorithms.

In the following let sp(v) :=
∣
∣maxs∈Smrk v(s) − mins∈Smrk v(s)

∣
∣. Additionally,

we denote with ExpectedTotalReward(D, rew, σ) the function that computes the
expected total reward on an MDP D for reward structure rew. The last param-
eter σ can be either a stationary deterministic scheduler or one of {sup, inf}. In
the latter case, the optimal expected total reward is computed and in the former
the expected total reward for scheduler σ.

Algorithm 1. ValueIteration
input : MRA M = (S, sinit, Act, ↪→, �, r, ρ), opt ∈ {sup, inf}, β > 0,

approximation error ε > 0
output : v such that ‖v − dRopt

M,β‖ < ε, and the ε-optimal scheduler σ

1 Mη := normalise
(
uniformise(M, rate η := max

s∈S
E(s))

)
;

2 D(Mη) := terminal MDP for Mη;

3 v0 := 0; /∗ vector of zeros ∗/

4 for (n := 0; sp(vn+1 − vn) < ε·β
η
; n++) do

5 (vn+1, σ) := ExpectedTotalReward(D(Mη), rewD(Mη),vn
, opt);

6 return vn+1(sinit), σ;

Algorithms 1 and 2 are value- and modified policy-iteration algorithms that
compute the value dRopt

M,β for an arbitrary MRA M and discounting rate β > 0.
The standard policy-iteration algorithm in which the policy evaluation step is
performed exactly is also possible in the setting of MRA. However, this requires
the exact solution of a linear equation system with one variable per state of
M. Since this is an expensive operation for hundreds of thousands of states, we
choose the modified policy-iteration instead. The latter bypasses this issue by
performing the policy evaluation step numerically. The algorithm depends on
a sequence of natural numbers called order sequence (mn)n∈N�0 ; it converges
however for an arbitrary sequence.

Theorem 3. Algorithms 1 and 2 are sound and complete.

Algorithms 1 and 2 are essentially the respective algorithms on CTMDPs
[19], in which the extremum value over enabled actions is searched through the
solution of the expected total reward problem tRopt

D(M) on the terminal MDP
D(M). Therefore in both algorithms the complexity of an iteration equals the
complexity of computing the value tRopt

D(M) (which is polynomial), and the con-
vergence rate is the same as the convergence rate of the corresponding CTMDP
algorithms.
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Algorithm 2. ModifiedPolicyIteration
input : MRA M = (S, sinit, Act, ↪→, �, r, ρ), opt ∈ {sup, inf}, β > 0, ε > 0,

order sequence (mn)n∈N�0

output : v such that ‖v − dRopt
M,β‖ < ε, and the ε-optimal scheduler σ

1 Mη := normalise
(
uniformise(M, rate η ←− max

s∈S
E(s))

)
;

2 D(Mη) := terminal MDP for Mη;

3 v0 := 0; /∗ vector of zeros ∗/

4 stop := false; n := 0;
5 while (¬stop) do
6 /∗ Policy improvement ∗/

(u0
n, σn+1) := ExpectedTotalReward(D(Mη), rewD(Mη),vn

, opt);

7 /∗ Partial policy evaluation ∗/

8 if sp(u0
n − vn) < ε·β

η
then

9 stop := true; break;
10 for (k := 0; k < mn; k++) do

11 uk+1
n := ExpectedTotalReward(D(Mη), rewD(Mη),vn

, σn+1);

12 vn+1 := umn
n ;

13 n := n + 1

14 return u0
n(sinit), σn+1;

Computation of the Expected Total Reward. Notice that the presented
algorithms are guaranteed to converge whenever the expected total reward of
the terminal MDP is computed precisely. Exact quantification of this value can
be achieved with policy-iteration or linear programming algorithms [19]. More-
over, for models that have no cycles and consist of only probabilistic states, the
expected total reward can be solved efficiently in time O(|�| + |↪→|).

6 Experiments

Here we present the empirical evaluation of the discussed algorithms. Both algo-
rithms were implemented as part of the IMCA/MAMA toolset [10]. All experi-
ments were run on a single core of Intel Core i7-4790 with 8 GB of RAM.

Benchmarks. We have evaluated our approach on a collection of published
benchmark models: the Polling System [10,21], Queuing System [13], and the
Fault Tolerant Workstation Cluster [16]. Discounting for the selected bench-
marks naturally models the decrease of the value of costs over time. In order to
address a case study with a specific set of parameters we use the same notation
as in [6]. We used the tool SCOOP [20] to generate those models and for this rea-
son the degree of variation of some parameters is restricted by its runtime/space
requirements.
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Table 1 shows the parameters of some of the used models. We use the symbols
�M to denote the maximal number of enabled actions in probabilistic states of
M, and E(M) shows the maximal exit rate of Markovian states of M.

Table 1. Parameters of some of the benchmarks.

|S| |PS| |MS| | ↪→ | | � | �M E(M)

FTWC-resp-50-40 92,819 20,806 72,013 72,007 305,613 5 6.35

PS-256-3-4 131,529 87,605 43,924 189,129 72,965 3 14

QS-256-256 465,177 398,096 67,081 530,966 200,208 2 26

Empirical Evaluation. The space complexity of both algorithms is polyno-
mial. Therefore, we have evaluated the effect of varying model size, precision, and
the discounting rate on their runtime only. In plots, whenever the experiment
covers several benchmarks, we use the symbol “X” to denote respective part of
the model name, e. g. PS-2-X. In this section we will refer to the value-iteration
Algorithm 1 as VI and to the modified policy-iteration Algorithm 2 as MPI.

As we have mentioned in Sect. 5, the modified policy-iteration algorithm
depends on a parameter called order sequence. The optimal choice of the order
sequence is an open question [19]. In this section, we present the best results we
could achieve with different order sequences. Let us notice that if every element
of the order sequence is 0 then MPI is the same as VI. When the values grow
infinitely large, the algorithm turns into standard policy-iteration. Almost always
in our experiments we could find an order sequence that led to lower running
times than those of VI. Moreover, relatively small order sequences achieved the
best value, e. g. mn = 100,∀n > 0 was sufficient for most of the models. Select-
ing a sequence with larger values, however, quite often led to running times
significantly worse than those of VI.

Model size. Figure 4 shows the dependency of the running time of both algo-
rithms on the size of the state space. Both algorithms exhibit polynomial
dependency (linear in log-log scale) on the depicted size range. This agrees
with theoretical expectations since the computation of expected total rewards
is polynomial in the size of the state space and the convergence rate does not
depend on the model size.
Precision. Figure 5 shows the dependency of the computation time on the
precision parameter ε. The theoretical convergence rate of both algorithms
resembles that of respective algorithms on CTMDPs. The expected complex-
ity of VI is logarithmic in ε, which is supported by the observed results.
Regarding MPI, we observed that the function of the running time repeats
that of VI, possibly due to the relatively small values used for the order
sequence.
Discounting rate. Figure 6 depicts the dependency of the running time of the
algorithms on the discounting rate β. The observed dependency of VI follows
the theoretical bound of O( 1

1−β ). Similarly to the previous case, the function
of the running time of policy-iteration repeats that of value iteration.
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Fig. 4. Runtime complexity of VI and MPI w. r. t. the increase of the model size in
log-log scale. For these experiments the discount rate β was set to 0.05 and ε = 10−8.
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Fig. 5. Observed dependency of VI and MPI on the precision parameter ε in reversed
logarithmic x-axis. In these experiments β = 0.1.
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7 Conclusion

While discounting is a standard concept on Markov chains and Markov deci-
sion processes, this is the first paper to consider discounting for the more gen-
eral model of Markov reward automata. We have discussed that computing dis-
counted rewards on MRA can be reduced to the same task on a possibly expo-
nentially larger CTMDP. Constructing and optimizing over this large CTMDP
can be avoided by recognising the essential computation as determining the
expected total reward in a linear-sized discrete-time MDP. This in turn is a well-
understood problem enabling an efficient solution. Experiments clearly demon-
strate the efficiency of our approach, being able to handle MRAs with hundred
thousands of states.
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Abstract. Belady’s algorithm defines a strategy for updating cache content in
order to achieve the optimum hit rate, based on full information being available
about future requests. In this work, we design a Markov state model to analyze
and evaluate the hit rate of clairvoyant optimum caching.
We start deriving a new steady state solution for a cache that can store only a

single object when requests are independent with arbitrary distribution. Results
in literature are restricted to uniform request and we have to transfer them from
paging systems to web caches, which refer to slightly different preconditions.
When we follow each specified state transition of the Markov process per

request, this leads to an alternative implementation of Belady’s algorithm.
Therefore the Markov approach can also be applied as an alternative to Belady’s
algorithm for evaluating optimum caching based on request traces, in simula-
tions and other use cases, e.g. for code optimization. Remarkably, the Markov
process decides about optimum caching hits per request based on cache content,
based on knowledge only of the past without look-ahead.

Keywords: Web cache strategies � Optimum caching � Belady’s algorithm
Hit rate � Markov analysis

1 Introduction: Overview of Web Caching Strategies

Today’s broadband Internet infrastructure mainly depends on support by distributed
cache servers in the data centers of content delivery networks and clouds [6, 8]. Caches
shorten the transport paths and therefore save bandwidth and shorten delays as a major
concern of many web services. High availability and high throughput are also primary
goals of distributed architectures for content delivery.

Therefore caching strategies exert substantial influence on the performance of
Internet services. They have been developed and studied for several decades, but under
changing constraints regarding storage, data forwarding technology and transport pro-
tocols. Well known caching methods are based on the least recently used (LRU) and
least frequently used (LFU) principle for replacing cache content [4, 11, 16]. LRU is
widely used because of its simple implementation with low update effort, whereas LFU
includes statistics about past requests to increase the hit rate. When requests are inde-
pendent (IRM: Independent Request Model), LFU achieves maximum hit rate by col-
lecting the objects with highest popularity in the cache. Many variants of caching
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R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 35–52, 2018.
https://doi.org/10.1007/978-3-319-74947-1_3



strategies have been studied [14–16], which finally can combine simple LRU processing
with flexible score rating for selecting most relevant cache content [11].

Another work stream of caching research considers optimum caching, presuming
that the future request sequence is known. Then Belady’s algorithm [2] is applicable to
maximize the cache hit rate, which again follows a simple cache replacement principle
of farthest next request first. While Belady’s algorithm is also used in related fields like
code optimization [7], it provides an upper bound of caching performance, indicating
gaps in the hit rate, which may partly be overcome by prediction or when partial
information is available about the future. In Sect. 6, we show how a limited look-ahead
can be exploited by combining Belady’s with other caching algorithms. Further
approaches involving optimum caching are addressed in [1, 5, 12].

The main focus of this work is on Markov analysis of the optimum cache hit rate.
As to the author’s knowledge there have been only two analysis approaches in liter-
ature on optimum caching derived by Smith [18] and Knuth [13] already 30 years ago.
Both refer to paging systems, assuming that requested data is always put into the cache,
whereas web caches can select which data is worth to be cached. It turns out that results
of [13, 18] can be straightforwardly transferred to web caches, whereas the analysis of
optimum caching is more complex than for LRU or LFU policies.

In Sect. 2, we start deriving a simple but new optimum cache hit rate result for web
caches of size M = 1 with arbitrary independent requests (IRM), which extends a
corresponding result in [13] for uniform requests. Then we specify a general Markov
model for arbitrary size N of the object catalogue and cache size M in Sect. 3. Com-
pared to the approach in [18], our Markov model has smaller state space, but a steady
state analysis is limited to systems with small N,M. Moreover, a transient evaluation of
the Markov process per request turns out to be an equivalent alternative for evaluating
Belady’s algorithm. In contrast to [2, 18], the Markov approach avoids any look-ahead.
Efficient implementations for Belady’s algorithm and for the Markov approach are
compared in Sect. 4. Section 5 shows evaluation results for the gap in the hit rates
between optimum caching, LRU and LFU strategies. Section 6 is discussing how to
improve caching efficiency for limited look-ahead options by combining Belady’s
algorithm with a non-clairvoyant caching strategy, followed by the conclusions.

2 Markov Analysis for a Single Object in the Cache

In the first part, we analyze the hit rate for a cache with a single object (M = 1) and for
the independent request model (IRM). Then a Markov chain with N states suffices for
an object catalogue O of size |O| = N, when we inspect the system only at cache hit
events. The state k refers to the object ok 2 O in the cache after the hit. We derive the
transition probabilities from combinatorial relationships which finally lead to a simple
steady state solution of the Markov model. Finally, the solution is compared to results
in literature [13, 18], which are restricted to uniform requests.

The intervals between hits and the decisions which object to be put into the cache
follow Belady’s optimum caching principle [2]. Belady’s algorithm has to decide for
each cache miss, i.e. when an object has to be retrieved from a server. The object is
loaded into the cache, if its next request comes prior to the next request to a cached
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object, on account of the object with the longest time until its next request, which is
replaced. This also means a state transition in the Markov chain, while the cache
remains unchanged in case of a hit. We first determine the transition probabilities qkj
that a hit on ok is followed by a next hit on oj for optimum caching, from which the
steady state probabilities rj of the Markov chain are derived.

Intervals without hits refer to request sequences for m pairwise different objects
excluding the object in the cache, because a request to a cached object or two new
requests to the same object always lead to an option for a next cache hit by loading the
external object into the cache at its first request for getting a hit at the second.

Let pm Oð Þ denote the probability that a sequence of m requests is addressing
m different objects of a set O. We assume independent requests (IRM) with proba-
bilities p1, …, pN to the objects o1, …, oN reflecting their popularity. Then pm Oð Þ can
be computed recursively starting from subsets On = {o1, …, on} � O = ON, n = 1,
2, …, N according to Eq. (1) or via the usual combinatorial formula Eq. (2) for
addressing m different objects in the next m requests:

pmðOnÞ ¼ pmðOn�1Þþ pm�1ðOn�1Þmpn; ð1Þ

where p0ðOnÞ ¼ 1; p1ðOnÞ ¼
Pn

k¼1 pk; 8m[ n : pmðOnÞ ¼ 0;

pmðOnÞ ¼ m !
X

k1¼;...;km � nj 6¼l)kj 6¼kl

pk1pk2 . . .pkm : ð2Þ

The recursive evaluation of pm Oð Þ via Eq. (1) has complexity O(mn) and therefore
is preferable to computation of Eq. (2) with exponential complexity O(nm).

Let qmkj denote the probability that a hit on object ok is followed by a next hit on oj
after m intermediate requests without a hit. In case j = k, requests without hit are
addressing m different objects which also differ from the object ok in the cache. We first
obtain the probabilities qmkk(m = 0, …, N – 1) and finally the transition probability qkk:

qmkk ¼ pkpmðOnfokgÞ; qkk ¼ pk
XN�1

m¼0
pmðOnfokgÞ: ð3Þ

When the next hit goes to a different object oj 6¼ ok, this object is the first appearing
twice in the request sequence after the previous hit on ok. Then oj is loaded into the
cache at its first request, which can be encountered before, or at any position within the
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other m requests to mutually different objects in the set O \{ok, oj}, until the (m + 2)th

request is the next hit on oj. We obtain for k 6¼ j:

qmkj ¼ ðmþ 1Þp2j pmðOnfok; ojgÞ; qkj ¼
XN�2

m¼0
qmkj: ð4Þ

Based on the transition probabilities of Eqs. (3–4), the steady state probabilities qj
of the Markov chain are determined from the equilibrium equations

qj ¼
XN

k¼1
qkqkj for j ¼ 1; . . .;N: ð5Þ

The computation of the optimum cache hit rate according to Eqs. (1–5) is subject to
a computational complexity of the order OðN4Þ, mainly for calculating all terms of
Eq. (4). However, we can drastically facilitate the analysis by observing the following
simple relationship

qj ¼ p2j =
XN

k¼1
p2k ; for j ¼ 1; . . .;N; ð6Þ

i.e. the rate qj of hits on object oj is proportional to the square of its request probability
p2j . Thus the analytic evaluation can skip Eqs. (3–4) and instead start with Eq. (6).

2.1 Proof of the Steady State Solution qj � p2j for the Probability of a Hit
on Object oj

We prove Eq. (6) by checking that this approach meets the equilibrium equations (5).
We can restrict the verification to the last equilibrium equation for qN, because then the
proof is valid for i = 1, …, N – 1 as well, since the indices of the objects can be
permutated, i.e. N may be replaced by i and summations excluding i instead over
1, …, N – 1:

qN ¼
XN
k¼1

qkqkN , ð1� qNNÞqN ¼
XN�1

k¼1

qkqkN ,Eq: ð6Þ 1� qNN ¼
XN�1

k¼1

p2k
p2N

qkN :

The proof proceeds with the latter relationship on the right. Next, we insert the
transition probabilities qkN of Eq. (4), yielding the following representation:

1� qNN ¼ð?Þ
XN�1

k¼1

p2k
p2N

qkN ¼
XN�1

k¼1

p2k
XN�2

m¼0

ðmþ 1ÞpmðOnfoN ; okgÞ

¼
XN�2

m¼0

ðmþ 1Þ
XN�1

k¼1

p2kpmðOnfoN ; okgÞ:
ð7Þ
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In order to proof Eq. (7), we evaluate each term of the sum on the right separately:

XN�1

k¼1

p2kpmðOnfoN ; okgÞ ¼
XN�1

k¼1

pkpmðOnfoN ; okgÞð1�
XN

j¼1;j 6¼k

pjÞ

¼
XN�1

k¼1

pkð
XN�1

l1; . . .; lm ¼ 1
8g6¼h :lg 6¼lh
8g�m :lg 6¼k

pl1 . . .plmÞð1� pN � ðpl1 þ . . .þ plmÞ �
XN�1

j¼1;j 6¼k
8g� m:j 6¼lg

pjÞ

¼ pmþ 1ðOnfoNgÞð1� pNÞ �
Xm
g¼1

XN�1

lg¼1

p2lgpmðOnfoN ; olggÞ � pmþ 2ðOnfoNgÞ

¼ ð1� pNÞpmþ 1ðOnfoNgÞ � m
XN�1

k¼1

p2kpmðOnfoN ; okgÞ � pmþ 2ðOnfoNgÞ ,

ðmþ 1Þ
XN�1

k¼1

p2kpmðOnfoN ; okgÞ ¼ ð1� pNÞpmþ 1ðOnfoNgÞ � pmþ 2ðOnfoNgÞ ,

PN�2

m¼0
ðmþ 1Þ PN�1

k¼1
p2kpmðOnfoN ; okgÞ ¼

PN�2

m¼0
½ð1� pNÞpmþ 1ðOnfoNgÞ � pmþ 2ðOnfoNgÞ�

The left side of the latter equation equals the right side of Eq. (7) and we can
conclude:

XN�1

k¼1

p2k
p2N

qkN ¼
XN�2

m¼0

½ð1� pNÞpmþ 1ðOnfoNgÞ � pmþ 2ðOnfoNgÞ�

¼ p1ðOnfoNgÞ � pNðOnfoNgÞ � pN
XN�1

m¼1

pmðOnfoNgÞ

¼ 1� pN
XN�1

m¼0

pmðOnfoNgÞ ¼Eq: ð3Þ
1� qNN ;

ð8Þ

where p1(O\{oN}) = 1 – pN, pN(O\{oN}) = 0 and p0(O\{oN}) = 1.
Finally, we have confirmed steady state probabilities qk ¼ p2k=

PN
j¼1 p

2
j and we

already have computed the probabilities pm(O\{ok}) that a hit on ok is followed by a
sequence of m requests without hit. We can combine both results to determine the mean
number E(Rk) of requests until the next request per state k. The hit rate hOPT is
reciprocal to the entire mean number EðRÞ ¼PN

k¼1 qkEðRkÞ of requests until the next
hit. We obtain:
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Pr Rk [mð Þ ¼ pm Onfokgð Þ )

EðRkÞ ¼
XN
m¼1

mPrðRk ¼ mÞ ¼
XN
m¼1

PrðRk �mÞ ¼ 1þ
XN�1

m¼1

PrðRk [mÞ

¼ 1þ
XN�1

m¼1

pmðOnfokgÞ

) hOPT ¼ 1
EðRÞ ¼

PN
k¼1 p

2
kPN

k¼1 p
2
kEðRkÞ

¼
PN

k¼1 p
2
kPN

k¼1 p
2
kð1þ

PN�1
m¼1 pmðOnfokgÞÞ

:

ð9Þ

The entire computational complexity for the mean inter hit intervals E(R1), …,
E(RN) and for the hit rate hOPT is still O(N2). We first determine the series
p1(O), …, pN(O) using Eq. (2), from which we obtain p1(O\{ok}), …, pN–1(O\{ok})
for each state k in linear effort O(N) via backward computation using the reverted form
of Eq. (1):

pmðOnfokgÞ ¼ pmðOÞ � pm�1ðOnfokgÞmpk: ð10Þ

We consider a simple example with four objects and request probabilities p1 = 0.1,
p2 = 0.2, p3 = 0.3 and p4 = 0.4. Then the probabilities for hits per object are 1/30, 4/30,
9/30 and 16/30. The mean number of requests until the next hit in each state are E
(R1) = 2.564, E(R2) = 2.252, E(R3) = 2.028 and E(R4) = 1.856. Finally, the hit rate is
hOPT = 3000/5952 = 125/248 	 0.504. For comparison, we have a gap of 20.4%
between the optimum caching and the LRU hit rate hLRU ¼Pk p

2
k ¼ 0:3, while LFU

stays in the middle hLFU = maxk(pk) = 0.4. Such differences are usual also for larger
caches.

0,0

0,2

0,4

0,6

0,8

.

Number N of Objects
Hit Rate for a Cache of Size M = 1 for Independent Zipf Distributed Requests

Zipf Distribution: ß = -1.0
Zipf Distribution: ß = -0.8
Zipf Distribution: ß = -0.5
Uniform Distribution: ß = 0

Fig. 1. Hit rate analysis for optimum caching
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Figure 1 shows analysis results for Zipf distributed requests, see also Sect. 5. This
includes uniform requests, i.e. pk = 1/N to all objects in the case b = 0, yielding
Eq. (11):

pmðOnfokgÞ ¼ ðN � 1ÞðN � 2Þ � � � ðN � mÞN�m )
hOpt ¼ 1=

XN�2

k¼0
N�kðN � 1Þ!=ðN � k � 1Þ!

ð11Þ

2.2 Comparison to Analysis Results for Optimum Caching
in the Literature

Analytical approaches for optimum caching have been derived by Smith [18] and
Knuth [13] over 30 years ago whereas the author is not aware of newer results.

A hit rate formula is derived by [13] for cache size M = 2 in the special case of
uniform requests, whereas the case M = 1 seems to be ignored. However, a closer look
reveals that [13, 18] assume that each requested object is always put into the cache,
which is natural for local paging/caching systems. Then only a decision remains about
which object should be replaced (cache “replacement” strategy [16]), whereas web
caching strategies also can select the objects to be put into the cache.

Fortunately, it turns out that our hit rate results hWebCache(N, M) for web caches of
size M and catalogue size N are directly transferrable to the hit rate of a local
paging/cache system hPagingCache(N + 1, M + 1) [13, 18] for independent requests via
the relationship:

hPagingCache N þ 1;Mþ 1ð Þ ¼ ð1þNhWebCache N;Mð ÞÞ= N þ 1ð Þ: ð12Þ

A paging system reserves one of M + 1 cache positions for the most recently
requested page and has cache size M left for unrestricted usage. Assuming independent
requests, a hit on the most recently requested page is encountered with probability 1/
(N + 1) or otherwise, with probability N/(N + 1), the hit rate hWebCache(N, M) of a web
cache of size M for N objects applies, excluding the recently requested object.

The resulting transformation of Eq. (12) yields a perfect match of results in [13, 18]
with our results in the special case of uniform requests. In particular, Eq. (11) trans-
forms into a main result for f(2, d) derived by Knuth [13, p. 187] with d denoting the
number of objects (d ≅ N).

3 Markov Model for Optimum Caching Without
Look-Ahead

When we consider a Markov model for arbitrary cache size, the state model has to
include objects in the cache as well as all recently requested objects that would lead to a
hit when addressed again in the next request. We design a model which collects all
information from the past which is relevant for optimum caching decisions, but without
look-ahead. State transitions are triggered per request.
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3.1 Defining a General Markov Model for Optimum Caching

We assume that the cache has M positions and is fully occupied. A request to an object
in the cache means a hit. Otherwise, a requested external object that is not in the cache
may replace an object and thus acquires its cache position according to the optimum
caching strategy, i.e. it will replace the object with the longest time until its next
request, if the next request to the external object comes earlier.

The state ST of the proposed Markov model after the Tth request rT (T 2N) is
composed of a sequence I and M sets L1, …, LM of objects ST = (I, L1, L2, …, LM):

1. The sequence I ¼ ðok1 ; ok2 ; . . .; okM Þ includes M internal objects, each of which
caused the most recent hit in one of the M cache positions. Let rT1 ; . . .; rTM denote
the requests for those hits. Then the internal objects ok1 ; ok2 ; . . .; okM are ordered due
to the request times T � T1 > T2 > … > TM. Each internal object okj has been in
the cache at its most recent hit at request rTj , but may be replaced later already
before rT.

2. Each set Lj(j = 1, …,M) consists of all objects, which have been requested between
rTj�1 and rTj without a hit, where rT0 ¼ rT . We refer to those objects as loading
options because they may be loaded into the cache at their recent request and then
would cause a hit if they would be requested again at rT+1.

3.2 Properties of the State ST

We presume and finally confirm two properties for the objects involved in the current
state ST:

(1) All loading options, i.e. objects in the sets L1, …, LM have been requested only
once in the relevant time frame after rTM .

(2) ST includes exactly those objects in I, L1, …, LM, which lead to a hit due to the
optimum caching principle, if one of the objects is requested again at rT+1.

Next, we show that property (2) follows from property (1) and that vice versa
property (1) can be confirmed for ST+1 from property (2) for ST, i.e. when property
(1) holds at the start for S1 then both properties remain valid in the course of the
Markov process.

Considering the next request rT+1, we can distinguish three cases that rT+1 is
addressing

1. an external object which is not included in ST,
2. an internal object included in I, or
3. a loading option, i.e. an object in one of the sets L1, …, LM.

1. If an external object (o*) is requested at rT+1 then the most recent request to o* was
before rTM . After the request rTM there has been a hit in each cache position by an
internal object. Consequently, o* is not in the cache and rT+1 is a cache miss,
because o* has been replaced by an internal object and is not requested afterwards.
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2. If an internal object o* of the sequence I is requested at rT+1 then Belady’s algo-
rithm has not replaced o* with a loading option. The assumption (1) that a loading
option is requested only once after rTM means that the next request to the same
loading option comes after rT+1. Therefore Belady’s algorithm gives o* priority in
the cache before all loading options. A loading option can replace another internal
object (oi), when the next request to oi comes after rT+1, but then oi again cannot
replace o*, because of an earlier next request to o* at rT+1. Concluding, neither a
loading option nor an internal object can replace an internal object with next request
at rT+1. Thus a request to an internal object at rT+1 leads to a new hit.

3. If a loading option o* is requested at rT+1 then Belady’s algorithm has put o* into
the cache at its previous request (rT*) in the considered time frame T � T* > TM,
because at that time no more thanM – 1 other objects can have a next request before
rT+1. In particular, no external objects are requested between rTM and rT and no
loading option is requested again before rT+1. Moreover, the internal object okM is
not requested between the time of its last hit at rTM and rT, because a new request to
okM would lead to a new hit which would reset rTM . Therefore Belady’s algorithm
puts o* into the cache, replacing okM or another object with the longest interval until
its next request. In the time span from rT* until rT, o* stays among the M objects
with shortest interval until the next request and is kept in the cache due to Belady’s
criterion. Concluding, a request to a loading option at rT+1 leads to a hit.

Then a second request to a loading option always converts the loading option into
an internal object, which received the most recent hit. In this way, property (1) is
preserved over state transitions per request to the following state ST+1.

3.3 Specification of Markov State Transitions per Request for Optimum
Caching

Starting from ST ¼ ðI; L1; . . .; LMÞ ¼ ok1 ; ok2 ; . . .; okMð Þ; L1; . . .; LMð Þ we specify the
state transitions, i.e. the following state ST+1 after the next request rT+1. The transitions
are performed according to the definitions of the sequence I, and the sets L1, …, LM in
continuation for the next request rT+1.

1. In case of a cache miss, the requested external object o* becomes a new loading
option of ST+1 and is added to the set L1.

ðMissÞ o
 62 fok1 ; . . .; okMg ^ o
 62 L1 [ . . .[ LM : ST þ 1

¼ I; L1 [fo
g; L2; . . .; LMð Þ

2. If an internal object o
 ¼ okj 2 ok1 ; ok2 ; . . .; okMf g is requested then it is put in front
of the sequence I as the internal object with the most recent hit. A new empty set is
added to ST+1 for collecting loading options in upcoming requests after rT+1 until the
next hit. Finally, the sets Lj and Lj+1 are joined because the previous hit on okj which
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separated them is no longer relevant, i.e. okj can no longer be replaced by a loading
option in Lj after its new hit at rT+1. The set LM is removed if j = M:

Hit1ð Þ o
 ¼ okj 2 I; j 6¼ M :

ST þ 1 ¼ ððokj ; ok1 ; . . .; okj�1 ; okjþ 1 ; . . .; okM Þ; fg; L1; . . .; Lj�1; Lj [ Ljþ 1; Ljþ 2; . . .; LMÞ
Hit2ð Þ o
 ¼ okM 2 I : ST þ 1 ¼ ððokM ; ok1 ; . . .; okM�1Þ; fg; L1; L2; . . .; LM�1Þ

3. If rT+1 is addressing a loading option (o*) then rT+1 is a hit on o* and o* becomes an
internal object, which is again put at the head of the sequence I.

Belady’s algorithm will replace the object with the longest time until its next
request, but information beyond the request rT+1 is not yet available for the Markov
process. If o* 2 Lj then o* cannot replace the internal objects ok1 ; . . .; okj�1 because
their last hit came after the previous request for o*, when o* was put into the cache.
Therefore the object to be replaced is from the subset R ¼ okj ; . . .; okM

� �
.

As a transition rule for the Markov process, we preliminary choose the first internal
object okj in R to be replaced by o*, but we still hold okj as a loading option in ST+1. In
this way, the decision is kept open about which object to be replaced in R. If okj is
addressed at a later request rT+t as a loading option this means that okj is kept in the
cache from rT until a hit at rT+t on account of another object in R, i.e. the replacement is
then handed over to another object in R whose next request comes after rT+t. If o* 2 LM
then okM is the only choice for replacement in favour of o*.

Hit3ð Þ o
 2 Lj; j 6¼ M :

ST þ 1 ¼ ððo
; ok1 ; . . .; okj�1 ; okjþ 1 ; . . .; okM Þ; f g; L1; . . .; Lj�1; Lj [ okj
� �[ Ljþ 1; Ljþ 2; . . .; LMÞ

Hit4ð Þ o
 2 LM : ST þ 1 ¼ ððo
; ok1 ; . . .; okM�1Þ; f g; L1; L2; . . .; LM�1Þ

Table 1 illustrates an example of the Markov process for optimum caching for size
M = 3, where objects are identified by their index 1, …, 7. Each row of the table shows

• the object requested at rT and the transition type (Miss, Hit1, …, Hit4),
• a representation of ST with the objects ok1 ; . . .; okM of the sequence I marked in

boldface, and with each set Lj( j = 1, …, M) being inserted between the objects okj�1

and okj , where empty sets are omitted,
• the cache content at rT for Belady’s optimum caching algorithm, which can be

uniquely determined from “future requests” of the provided request sequence.

We start in the state ST = (o1, o2, o3), which is entered e.g. after the request
sequence o1, o2, o3, o3, o2, o1.
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3.4 State Space of the Markov Model

The considered Markov model comprises N(N – 1) ��� (N – M + 1) states for the
ordered sequence I of M internal objects, which is combined with all distributions of
N – M remaining objects over the sets L1, …, LM and the set of external objects. The
number of combinations for distributing N – M different objects over M + 1 multi sets
is (M + 1)N – M. We conclude that the state space of the Markov model is of the size

ST
�� �� ¼ NðN � 1Þ � � � ðN �Mþ 1Þ � ðMþ 1ÞN�M :

For independent request (IRM) with non-zero request probabilities, each state can
be entered with non-zero probability. Therefore we note that I ¼ ok1 ; . . .; okMð Þ is
achieved e.g. after the sequence ok1 ; . . .; okM , okM ; . . .; ok1 of 2M requests. In this case,
there are no loading options included such that property (1) is obviously fulfilled.
Moreover, if the previous request sequence is continued by okM ; LM ; . . .; ok1 ; L1, with
arbitrary sets of pairwise different objects being interspersed as loading options
between requests to the internal objects, then any arbitrary state ST ¼ ðI; L1; . . .; LMÞ ¼
ok1 ; ok2 ; . . .; okMð ÞL1; . . .; LMð Þ will be entered. This confirms that the Markov model is

irreducible and ergodic when requests are independent with non-zero probabilities, i.e.
the full state space of the size |ST| is exploited.

The analysis approaches for optimum caching in [13] is focusing on uniform
requests. Therefore the approach by Smith [18, pp. 745–747] seems to be the only

Table 1. Example of the Markov process with state transitions ST ! ST+1 per request
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comparable general optimum caching model. It differs by including future references,
whereas the previously presented Markov model is based only on past requests without
look-ahead. The size of Smith’s model is much larger for small caches [18]:

SSmith
�� �� ¼ N!

N
M

� �
¼ NðN � 1Þ � � � ðN �Mþ 1Þ � N � � � ðMþ 1Þ

¼ NðN � 1Þ � � � ðMþ 1Þ
ðMþ 1ÞN�M STj j:

Table 2 shows analysis examples for small caching systems. Independent requests
are assumed with probabilities p1 = 0.1, p2 = 0.2, p3 = 0.3 and p4 = 0.4 for N = 4 and
with p1 = 0.1, p2 = 0.15, p3 = 0.2, p4 = 0.25 and p5 = 0.3 for N = 5, respectively.

3.5 The Case of Uniform Requests

For uniform requests, the Markov model can be simplified. Actually there is no need to
distinguish objects because the next request addresses each object with probability 1/
N. The simplified Markov model still refers to M internal objects and a variable number
of up to N – M loading options. Let r
T1

; . . .; r
TM denote the requests of the most recent
hits to all internal objects and let n
1; . . .; n



M denote the numbers of requests to pairwise

different objects, which are encountered between r
Tk�1
and r
Tk

ðr
T0
¼ rTÞ. Then ST ¼

ðn
1; . . .; n
MÞ is sufficient to characterize the current state for uniform requests. This

special case leads to
N

M

 !
states. We applied a steady state Markov analysis in the

simplified state space to several examples for uniform requests given in [13, 18],
yielding the same results when transformed via Eq. (12).

3.6 The Case M = N – 1

The Markov analysis of optimum caching for a fixed number of objects with IRM
requests can also be simplified when almost all objects fit into the cache. For M =
N – 1, cache misses are rare. When a cache miss happens, optimum caching can select
one out of N objects to be removed from the cache, i.e. the one with the longest time
until its next request. Then the next cache miss is encountered at the first instant when
all N objects have been requested again and the cache miss rate is the reciprocal of the

Table 2. Analysis examples: hit rate results and model size |ST |, |SSmith|
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mean time until that instant. Knuth [13] solved the mean inter cache miss time �TMiss and
the hit rate as a coupon collection problem for uniform requests:

�TMiss ¼ Nð 1þ 1=2þ 1=3þ � � � þ 1=N Þ; h ¼ 1� 1=�TMiss:

The solution can be generalized for independent requests with arbitrary probabil-
ities pj for each object. Therefore we compute the probabilities pðfoj1 ; oj2 ; . . .; ojKgÞ
that a subset of K objects gets the next requests after a cache miss and the mean time
�Tðfoj1 ; oj2 ; . . .; ojKgÞ until all K objects of the subset have been requested. The values
for subsets of size K are iteratively computed from subsets of size K – 1:

pð oj1 ; oj2 ; . . .; ojK
� �Þ ¼XK

h¼1
pðfoj1 ; oj2 ; . . .; ojKg=fojhgÞpjh ; pðfgÞ ¼ 1; pðfojgÞ ¼ pj;

�Tð oj1 ; oj2 ; . . .; ojK
� �Þ ¼ 1

pðfoj1 ; oj2 ; ...;ojK gÞ
PK

h¼1 pðfoj1 ; oj2 ; . . .; ojKg=fojhgÞpjh �

ð�Tðfoj1 ; oj2 ; . . .; ojKg=fojhgÞþ 1=ð1�PK
l¼1
l 6¼h

pjlÞÞ

In this way, we can compute the mean time between cache misses via 2N subsets.

4 Comparing Belady’s Algorithm with the Markov Approach

The steady state Markov analysis for optimum caching is feasible only for small size
systems assuming independent requests, but we can follow the Markov process by one
state transition per request to evaluate the cache hit rate as an alternative to Belady’s
algorithm [2]. Therefore we take a closer look at efficient implementation options for
Belady’s algorithm and for the Markov approach.

4.1 Implementation of Optimum Caching Based on Belady’s Algorithm

Belady’s principle for optimum caching decides about the cache content based on the
time until the next request to each object. In case of a cache miss, the requested object
is pushed into the cache, if its next request comes earlier than the next request to a
cached object, replacing the object with longest time until its next request.

Therefore Belady’s principle requires a sorted list of the objects in the cache
according to the time index of their next request in the future request sequence rT. We
assume that rT is available for 1 � T � Tmax as a list or an array, provided from a
request trace that has been monitored on a web platform or by a random generator, e.g.,
according to an independent request model [9].

Together with the currently requested object (ok), we also store the index T+(ok) of
the next request to the same object ok, where T+(ok) = Tmax + 1 if ok isn’t requested
anymore. T+(ok) is required to decide whether to push an external object into the cache
and to insert it into the sorted list of cached objects. In case of a hit, the time of the next
request to the object is updated and the object is reinserted into the sorted list. T+(ok) is
determined for in a scan through all requests with effort proportional to Tmax.
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Figure 2 illustrates the data sets for performing Belady’s algorithm. Most of the
effort in Belady’s algorithm is then required for inserting objects into the sorted list of
cached objects e.g. with heapsort [7, 14] at O(log(M)) complexity per request.

4.2 Implementation of Optimum Caching Based on the Markov Process

In order to follow the Markov process, a state transition has to be performed per request
according to the cases (Miss, Hit1, …, Hit4) of the specified transition rules. We
represent the state ST as a double linked list, which includes all loading options and
internal objects in the sequence of their most recent requests, corresponding to the
middle column L1; ok1 ; L2; ok2 ; . . .; LM ; okM of Table 1, with a binary marker for internal
objects. Then updates per request are handled similar as in a stack for LRU caching
[11], with requested objects being put on top and objects being replaced at the bottom.

• In particular, for a cache miss, i.e. a request to an external object, the only update is
to add the external object as a loading option on top to the set L1.

• In case of a hit on an internal object okj , the object is removed from its current
position in the double chained list and also put on top. In this way, Lj is merged with
Lj+1 except for the case j = M, where LM is discarded.

• In case of a hit on a loading option o* 2 Lj, the object o
* is removed from its current

position and pushed on top as an internal object. Vice versa, okj is now marked as a
loading object, where Lj is merged with Lj+1 including okj . In case j ¼ M; okM and
LM are discarded.

The effort per request is constant for moving an object to the top. Discarding of
objects in LM also has constant effort in the mean, because no more than one object is
added per request and therefore the mean number of discards is also less than one.
More effort is needed for searching the next internal object after a requested loading
option o* 2 Lj. We support the search by redirecting “next” pointers in the double
linked list from the loading options o* to the following internal object. Then the next
internal object is found in a few steps following those pointers. In total, we experience
similar update effort for efficient implementations of Belady’s algorithm and the
Markov approach. LRU/LFU updates are faster at constant effort per request [17].

rT+8rT+7rT+6rT+5rT+4rT+3rT+2rT+1rT

T+3

o2

T+7

o5

T+4

o3

…

o2

…

o3

T+6

o1

T+9

o1

…

o5

…

o4Future requests ok

Next request T+(ok )

o5 o3 o2 o1 o4 …
List of cached objects sorted by T+(ok ) after request rT :

rT+9

…

o1

…

T+1 T+2 T+3 T+5 T+8 …Next request T+(ok ) …

Fig. 2. Data structures for efficient support of Belady’s algorithm
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As the main advantage and new insight from the Markov state model, no
look-ahead is required to decide about optimum caching hits, in contrast to Belady’s
approach [2] “The optimal solution can be found by storing the program’s entire
sequence of references and then working backward to reconstruct a minimum
replacement sequence”.

The Markov process indicates in each request, whether the currently requested
object is a hit and thus has been loaded previously for optimum caching. What remains
open is an uncertainty about which current loading options already have replaced other
objects in the cache to enable the next hits. In usual applications with unknown future
request sequence, the Markov approach evaluates optimum caching on the fly, without
having to wait until the complete request sequence is available for preprocessing.

5 Evaluation of Optimum Caching for Zipf Requests

We evaluate hit rates of optimum caching in comparison to least recently used
(LRU) and least frequently used (LFU) caching strategies. LRU is a basic method with
simple implementation, whereas LFU is known to maximize the hit rate for indepen-
dent requests. We assume independent Zipf distributed requests as confirmed in many
studies for web platforms [3, 10, 11] with Zipf parameter b = –0.5. For a Zipf dis-
tribution, the object in rank r in the order of highest popularity has request probability

zðrÞ ¼ arb for r ¼ 1; . . .;N;with normalization a ¼ z(1) ¼ 1=
XN

r¼1
rb:

We evaluate systems with catalogue size N in the range 103,…, 106 and cache sizes
M, which are varied from 0.1%–50% of the number N of objects in Fig. 3.
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Fig. 3. Cache hit rates for Zipf law requests with b = –0.5
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Each simulation runs over at least 108 requests, where a cache filling phase at the
start is ignored. Results of the Markov approach are always exactly matching those of
Belady’s algorithm. For N � 1000, the hit rate mainly depends on the fraction M/N of
objects in the cache. LRU, LFU and optimum caching hit rates show clearly separated
curves extending results in [9, 11], where clairvoyant optimum caching can improve
LFU up to 15–20% and LRU even up to 30%.

6 Limited Look-Ahead Options for Caching

The previous results show a significant gain of optimum caching hit rates over other
methods with regard to future requests. Partial knowledge about upcoming requests is
often available and useful for prediction and prefetching [1, 5].

Within this scope, limited look-ahead options can be exploited when a fixed
number of upcoming requests rT+1, …, rT+K are known. Decisions about new cache
content are taken at cache miss events. There is some transfer delay until new data is
retrieved from a server or higher layer cache. Therefore the decision whether to put it
into the cache or to forward it to the user without being cached, can wait until the
arrival of the retrieved data, which enables for a look-ahead of at least a few hundred
milliseconds.

The limited look-ahead can be exploited by combining an arbitrary “usual” caching
strategy with Belady’s algorithm or alternatively, with the proposed Markov analysis.
Objects which are foreseen to have a cache hit within the look-ahead period are
handled as a preferred class according to Belady’s algorithm while all other objects are
handled by the “usual” strategy without replacing objects of the preferred class.

Such a combined method may improve caching efficiency in large CDNs facing
huge request workloads. Wikipedia has to handle peaks of over 50 000 requests per
second [10, 19] and a peak load above 30 million requests per second is reported for
Akamai’s CDN [6]. A much longer look-ahead is relevant for caching of video
streaming, when it takes minutes until requested data is cached in parallel to viewing
the video. Then an initial decision to replace a cached video by a new one can still be
changed as soon as new requests to the cached video become visible e.g. after 10–20 s,
while only a small portion, e.g. 10%–20%, of the data chunks have been overwritten at
that time.

7 Conclusions

The steady state Markov analysis for optimum caching requires a larger state space
than for LRU and LFU caching methods. For independent requests (IRM), a simple
new optimum caching hit rate solution is derived for the cache size M ¼ 1. Then the hit
rate per object is proven to be proportional to the square of the object’s request
probability. We introduce a general Markov model for optimum caching with arbitrary
cache size, but feasible steady state IRM solutions beyond M ¼ 1 seem to be restricted
to a small number N of cachable objects and to the case M ¼ N � 1.
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However, the transient Markov analysis provides an alternative to Belady’s algo-
rithm for optimum caching hit rates with comparable computational effort per request.
While Belady’s method presumes the complete reference sequence to be available, the
Markov states indicate each hit or miss per request without look-ahead or
preprocessing.
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Abstract. Securing control networks (e.g. for power and gas distribu-
tion) requires dedicated approaches. Sequence-aware intrusion detection
models the network traffic under normal operation to identify malicious
behavior. Unfortunately, such models are often large and difficult to han-
dle. This paper proposes a method that generates smaller traffic models
and discusses the accuracy of those reduced models in the context of a
real control infrastructure employing the IEC 60870-5-104 protocol.

1 Introduction

Supervisory Control and Data Acquisition (SCADA) systems are used to monitor
critical infrastructures [1], by automating communication and control of, e.g.,
power distribution. As shown by the US grid hack [2] and the Ukrainian grid hack
[3], both causing power outages that lasted for several hours, SCADA systems
are vulnerable and can cause serious damage if not properly secured.

Stuxnet [4] has demonstrated that hackers can strike critical infrastructures
by directly hitting the physical process misusing internal process-knowledge.
Attacks of this kind are commonly known as semantic attacks and are usually
of higher complexity compared to standard cyber-attacks. Among all semantic
attacks, sequence attacks can strike the infrastructure by just misplacing per-
fectly legal messages within a communication stream [5].

Traditional Intrusion Detection Systems (IDS) identify malicious traffic in
different ways: whitelisting [6], stateful approaches [7,8], and specification-based
approaches [9] exist. In contrast, we focus on the detection of so-called sequence
attacks, which employ perfectly legal messages arranged in an unforeseen order
and make it difficult for an IDS to detect the malicious activity.

Sequence-based intrusion detection relies on the regularity of traffic that is
present in SCADA traffic and does not fit networks with large traffic variety, e.g.
the Internet. However, industrial control systems show regular and consistent
communication patterns [10], which can be used e.g. for anomaly detection [11].
Hence, analyzing the communication using a probabilistic state-based approach,

c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 53–67, 2018.
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which keeps track of message ordering, is a solution to identify sequence attacks
in control networks [12].

Sequence-based and state-based approaches close to the presented work can
be found in [5] and [13], respectively. However, such analysis may be time-
consuming, depending on the complexity of the communication within the net-
work and hence, the size of the resulting models. This paper aims to reduce
this complexity, while keeping the detection accuracy for most types of sequence
attacks. The approach shown in [5] may result in large Discrete-time Markov
Chains (DTMCs), which however contain states which represent almost identi-
cal system states. We change the generation algorithm, such that the resulting
models are considerably smaller, leading to lower computation times, as well.
This is done by combining states with overlapping information or by abstracting
from specific packet information. We investigate the accuracy of the resulting
models by performing 9 different experiments on real traffic from a Dutch gas
facility which uses the protocol IEC 60870-5-104, also known as IEC-104 [14].
IEC-104 is widely used in industrial system control, especially in the context of
energy grids [15].

The protocol supports the use of Information Objects (IOs) to classify data.
Individual packets may transfer several Information Objects, addressed using
Information Object Addresses (IOAs). This possibly results in ranges of IOAs
per packet. This paper shows that combing states that represent (almost) similar
packets with overlapping IOAs and abstracting from the IOAs altogether results
in much smaller traffic models. Clearly, when comparing real traffic with the
previously developed traffic models, smaller models will result in smaller com-
putation times. Our case study shows that reduced models may also decrease
the number of false positive alerts.

The paper is organized as follows. Section 2 explains the basics of SCADA
and IEC-104. Section 3 explains the reduction methods for DTMCs and our
approach is validated in Sect. 4. Section 5 concludes the paper.

2 SCADA Systems

This section briefly introduces SCADA systems and the IEC-104 protocol.

2.1 SCADA

SCADA systems connect field stations, which directly control the physical pro-
cess and the control room, that monitors the state of the system, as shown in
Fig. 1. The field station hosts sensors, actuators and Programmable Logic Con-
trollers (PLCs). Sensors measure and transmit data of the monitored process
over serial wires to PLCs. Actuators influence the systems behavior, by, e.g.,
opening or closing a switch connecting a power line. PLCs collect the field data
and send it to the data acquisition server via the communication system. They
also receive commands from the control network, which are then executed on



Intrusion Detection for Sequence-Based Attacks 55

the appropriate actuator. In the control room, data of the field network is evalu-
ated and appropriate actions are triggered. The data acquisition server collects,
stores and distributes process data.

Fig. 1. SCADA in power distribution Fig. 2. Rail switching system

2.2 IEC-104 Protocol

The IEC-104 protocol is used for communication between field stations and con-
trol room [15]. It operates on top of TCP/IP. An IEC-104 packet consists of
the application protocol control information (APCI) and the application ser-
vice data units (ASDU) which together are called the application protocol data
unit (APDU). APCI determines whether the packet has U-, S- or I-format. U-
format initiates and terminates sessions between two devices, while the S-format
acknowledges the received data. We focus on the I-format, which contains rele-
vant information in the ASDU fields. The most important fields for our work are:

– Type identification (TypeId) identifies a function that the device should exe-
cute, e.g., 103 → clock synchronization command or 102 → read command.

– Number of objects defines the number of information objects found in the
ASDU. This can be more than one. The TypeId is assigned to all these infor-
mation objects inside of that packet.

– ASDU address fields (ASDU-Address) contains the address which all objects
of the ASDU refer to.

– Information object address fields (IOA) refers to a specific information object,
such as a reading from an element (voltage, current), a state of an element
(on/off), or threshold setting. A packet may have up to 127 information
objects. Multiple IOAs may come within the same response, e.g., IOAs from
1–5, and IOAs from 11–13.

While each vendor has its own implementation, the general structure follows
the specification in [16] and [17].
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2.3 SCADA Sequence Attacks

This section explains the concept of sequence attacks and provides an example
inspired by the large power outage in North Holland on March 27th 2015 [18].
Sequence attacks are specific to industrial control systems and potentially harm
a system by sending valid messages or commands, which are misplaced or out-
of-order [5]. To take control of the process, an attacker can either reprogram
a PLC or directly control the process from the network, e.g., by taking control
over the communication channel. When controlling the process, an attacker sends
commands in an order or timing not intended by the process. This potentially
harmful sequence of commands is then called sequence attack [5].

The concept of Interlocks describes constraints on the execution of com-
mands. In power distribution, this applies e.g. to the order in which power
switches and disconnectors are used. According to IEC 60947-3, whenever a
power line has to be disconnected, first, the power switch disconnects, which
turns off the current on the power line. Only then, the disconnector is used to
physically isolate the power line. Otherwise, a potentially dangerous electric arc
is created. In order to connect a power line, first, the disconnector has to be
connected, before the switch is closed.

Figure 2 shows rails A and B, which are used interchangeably depending on
the switches’ configuration. The disconnector on rail A and the switch are closed,
while the disconnector on rail B is open. Hence, the power line at the bottom is
connected to rail A. To switch from rail A to B, first the switch opens, then the
disconnector on rail A opens. Next, the disconnector on rail B closes and then
the switch closes.

In case of the outage that happened in the North Holland, the disconnector
did not entirely connect before the power switch was turned on. This caused a
short circuit, which resulted in a power outage of several hours for more than a
million households and disruptions on one of the major European airports [19].
Although the incident was caused by a technical and human error, a similar
situation would arise by sending legitimate commands in the wrong order to the
PLC controlling the switches and disconnector. Although most of the PLCs do
check said interlock internally, some operators perform this check at the central
control room. Hence, if an attacker gains control over the communication channel
to the remote PLC directly, the constraint check will not be performed. Even if
interlocks are properly configured, any attempt to switch in a wrong order should
be reported to the operator and a sequence-based IDS would fit the purpose.

3 Message Sequences

We explain the IEC-104 traffic model, sequence attacks and the performed reduc-
tions.

3.1 Representing Traffic Sequences as DTMCs

Following the approach presented in [5] traffic is represented as a sequence of
exchanges in terms of a Discrete Time Markov Chain (DTMC). In the following
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Data: Sequence of Events
Result: DTMC representing the sequence of events

1 for all etn ε sequence do
2 StateDTMC ← extractAttributes(etn);
3 if StateDTMC ε DTMC then
4 update(StateDTMC , DTMC);
5 else
6 add(StateDTMC , DTMC);
7 end
8 if TransitionpreviousState,StateDTMC ε DTMC then
9 update(TransitionpreviousState,StateDTMC );

10 else
11 add(TransitionpreviousState,StateDTMC , DTMC);
12 end
13 previousState ← StateDTMC

14 end

Algorithm 1: DTMC modeling of sequences as in [5]

we use DTMC that can be defined as a tuple M = (S, T ), where S is a finite
set of states and T is a transition relation, that assigns probabilities to states
(s1, s2) ∈ T , i.e. if there exists a transition between the states s1 and s2. Note
that the sum of the outgoing transition probabilities per state always equals one.

States in the DTMC reflect the kind of communication that takes place.
Hence an event in the sequence, i.e., the transmission of a packet, is associated
with a state. Transitions model the choice between successor packets together
with the respective probability of this event taking place. We transform the
network traffic traces into time-ordered list of events. This paper only considers
the communication between two devices and therefore an event etn , which takes
place at time point tn ∈ R

+ is defined as a triple <Direction, Address, Service>,
which takes values from the IEC-104 specification, as follows:

– Direction either takes the value ‘request’ or ‘response’,
– Address contains the ‘ASDU-address’ and the ‘IOAs’,
– and Service is the ‘Type-Id’ that identifies a function.

A sequence (l) sorts events according to their time of occurrence from old
to new. It is defined as a time ordered list of events etn , such that tn < tn+1

for n ∈ N. Algorithm 1 then builds a Discrete Time Markov Chain traffic model
from a sequence of events, abstracting from possibly different inter-event times,
in the following five steps:

S1 loops over all events in the sequence (c.f. Algorithm 1 l.1–14), processing its
events.

S2 extracts the attributes of an event and stores them in variable ‘StateDTMC ’
(c.f. l. 2). The state to which an event leads is defined by: Request, Response,
ASDU-Address, IOAs, TypeId and the ‘control field format’.
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S3 checks whether that state is already present in the DTMC. Then the counter
indicating how often that state has been visited is increased in the correspond-
ing state. Otherwise, a new state is added to the DTMC in line 6.

S4 updates the transitions. If the transition to ‘StateDTMC ’ is part of the
DTMC the transition probabilities and the transition counter are updated
(line 9). If the transition is new, line 11 adds a transition from ‘previousState’
to ‘StateDTMC ’ to the DTMC.

S5 updates the variable ‘previousState’ in line 13 with the value created in
line 2.

3.2 Sequence Attacks

This section describes sequence attacks detected by comparison with a DTMC
built on benign traffic. For example, reconsider the combination of switch and
disconnector (c.f. Section 2.3), as presented in Fig. 3. Legal commands for the
switches are ‘open’ and ‘close’. Let the initial state of the system be an open
switch and a closed disconnector.

Fig. 3. Scenario with single switch and disconnector

The DTMC traffic model has four states: S = {s1, s2, s3, s4}, where

– s1 models that a command to open the switch is sent,
– s2 opens the disconnector,
– s3 commands to close the disconnector, and
– s4 requires to close the switch.

Those states and the corresponding transition probabilities are shown in
Fig. 3. As discussed before, a command to open the disconnector should always
be preceded by the corresponding command to open the switch. Vice-versa,
the disconnector should always be closed before the switch is closed. The only
bidirectional transitions between states are between open and close disconnector
and open and close switch. While it may occur that a switch is, e.g., immediately
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closed after being opened, this will not occur often and hence has a low transition
probability. Furthermore, each state is equipped with a self-loop that happens
with a relatively low probability. This corresponds to the same command being
sent multiple times, which can legally happen, e.g., due to packet retransmission.
Recall that IEC-104 runs on top of TCP, which can cause retransmissions due
to preliminary timeouts or the loss of acknowledgements. In the following we
distinguish between three types of violations:

1. New transition violation stems from a valid packet that is however not
expected in the sequence of commands [5]. Consider the DTMC is in state s4
of the switch example, i.e., the last packet contained the command to close the
switch. If the next command would request to open the disconnector a new
transition violation is encountered, as the DTMC model does not contain a
transition that corresponds to this sequence of commands, namely close switch
succeeded by open disconnector. An alert would be issued to the operator in
this case to warn about a potential intrusion. Figure 4 shows the violation as
a red dashed line.

2. New state violation occurs when an unexpected command is sent to the
controller. In our example, the switch could receive the command to change
some threshold value. This is a legitimate command, which however does not
occur often and has not been part of the traffic used to train the DTMC.
Hence, there is no state that corresponds to this command. Figure 5 shows
the violation as a red dashed line and state.

3. Anomalous transition frequency, a so-called timing-violation occurs
when a single transition is used too often. The commands arrive in an
expected order, however they occur with a probability that deviates from the
transition probability more than a certain predefined threshold. To achieve
this, a parallel DTMC model is trained with the current sequence and com-
pared to the previously trained model after each event. For example if the
switch is opened and closed repeatedly, the transition probability between
open switch and close switch will grow to exceed the transition probability
of 0.1 in the originally trained DTMC. Hence, an anomaly is observed, and
an alarm is issued, which could prevent the hardware from being harmed.
Figure 6 shows the DTMC trained from the current sequence. The transition
probabilities that differ from the original DTMC are indicated as red dashed
lines.

3.3 DTMC Reduction

The traffic models that result from applying Algorithm 1 to realistic scenarios
can be very large, as shown in [17]. However, many states of the model differ
for just a state parameter [5]. In the case of IEC-104 traffic we can leverage this
by combining states with overlapping IOAs and by completely abstracting from
the information contained in IOAs. Consider a traffic capture where the first
message is a server request asking for reading IOs with addresses 1–10, in the
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Fig. 4. DTMC with a transition violation

Fig. 5. DTMC with a state violation Fig. 6. DTMC with a probability violation

second message it requests readings from addresses 6–10, in the third message
it asks for addresses 1–5, and in the last message it reads from address 125. The
original approach explained in [5] would create four different states for these
four different read requests. Using the original implementation, we noticed that
many new states appear because a request is sent to a different subset of IOAs.

We therefore compare DTMCs built according to Sect. 3.1 without reduction
with two types of reduced DTMCs, namely, (i) where states with overlapping
IOAs are merged and (ii) where information contained in IOAs is not taken into
account for differentiating states. While the reference case corresponds to the
approach in [5], the first reduction case relies on the observation that the SCADA
server asks for various IOAs, although the function (TypeId, c.f. Section 2.2)
remains the same. In the example above, the first reduction approach corre-
sponds to creating two states instead of four: one for IOAs 1–10, and a second
for IOA 125. The second reduction case presents a more radical reduction app-
roach, which completely abstracts from the IOAs and only takes the information
‘Direction’, ‘Service’ and ‘ASDU address’ into account.

For some functions like the read command, the process does not suffer if the
reading is performed at a different place in the sequence, and merging all IOAs
would greatly reduce the sizes of the DTMCs. In the mentioned example, this
would mean that all reading commands refer to a single state.
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We have generated traffic models from a SCADA trace obtained at a Dutch
gas facility, and in the following we show the resulting DTMCs for the two
private IP addresses 172.31.1.100 and 172.31.8.170. The trace consists of 10 days
of traffic captured in 2011. All traffic models presented in this section have been
generated using the entire available traffic capture using Algorithm 1, which
has been changed slightly to implement also the reductions overlapping and all.
Figure 7 shows the traffic models for the approach that takes into account IOAs
in full detail and Fig. 8 shows the traffic model that does not take into account
information about IOAs. The model that results from combining states with
overlapping IOAs is shown in Fig. 9. Figure 7 shows a large number of transitions
and states representing events in which various subsets of the same IOAs have
been requested within the same function. We chose to present this graph in a
small scale just to give an idea of the size and structure of this model. For better
readability, Fig. 9 has been enlarged1. Each state is marked with some color, and
contains information on the Direction, TypeID, ASDU address, IOAs which it
includes and the count of how many packets of this type have been observed.
Each transition is labeled with its probability. Reduction all then merges all
states with the same color as shown in Fig. 82.

Fig. 7. Original DTMC

Figures 7, 8 and 9, show that the number of states and transitions reduces
considerably, when (partly) abstracting from the IOAs. The number of states
in the DTMC reduces from 117 to 17 when merging the overlapping IOAs.
Further reduction decreases the number of states to 10. We tested all 148 com-
municating pairs present in the traffic captures and calculated their respective
state reduction gain. This is defined as the number of states of the reference
1 See also: https://github.com/jjchromik/intravis/blob/master/example/over.pdf.
2 See also: https://github.com/jjchromik/intravis/blob/master/example/all.pdf.

https://github.com/jjchromik/intravis/blob/master/example/over.pdf
https://github.com/jjchromik/intravis/blob/master/example/all.pdf
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Fig. 8. Not taking into account IOAs

Table 1. Reduction gain for three different cases.
DTMC divided by the
number of states of
the reduced DTMC.
The transitions reduc-
tion gain is defined
analogously.

Table 1 provides the
number of states and
transitions for the orig-
inal and the reduced
traffic models for (i) the example shown in Figs. 7, 8 and 9, (ii) the DTMC
with largest reduction gain (best case), and (iii) the DTMC with smallest reduc-
tion gain (worst case). We can see that while in the best case, the reduction
overlapping decreases the number of states almost by a factor 10, and the reduc-
tion all almost by a factor 19. The worst case shows almost no reduction. We
also provide the average state and transition gain that we observed for all 148
communicating pairs.

4 Validation

To compare the detection rates of the reduced traffic models with respect the
original one, we introduce anomalies (e.g., out-of-order packets) into the traces.3

3 The code used to modify the traces is available on github https://github.com/
penc4ke/manipulateTraces.git.

https://github.com/penc4ke/manipulateTraces.git
https://github.com/penc4ke/manipulateTraces.git
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Fig. 9. DTMCs representing legit activities between devices 172.31.1.100 and
172.31.8.170 over the period of 10 days. States with overlapping IOAs are combined.

For validation we use the same traffic capture mentioned in Sect. 3.3. This
data was split into two parts of 5 days each. One half is used for training a
reference DTMC using either no reduction or one of the two approaches listed in
Sect. 3.3. The other half is used for detecting anomalies by comparing the model
obtained from the remaining (testing) trace with the training traffic model. Due
to the regularity of SCADA traffic the amount of data should be enough to
capture all relevant events. The following anomalies have been introduced: (i)
copying a random packet from the used trace and adding it at a random position,
(ii) removing a random packet from the trace, and (iii) swapping packets, i.e.,
interchanging the position of two random packets. We investigate applying the
above changes to (i) 0.1%, (ii) 1%, and (iii) 10% of the packets from the testing
trace. Note that while the added anomalies are not necessarily attacks, the results
allow valuable insight into the accuracy of the reduced models.
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4.1 Detection

We use the same algorithm and thresholds as explained in [12]. The thresholds
for both a state violation and transition violation equal 0.1. To detect sequence
violations we compare the differences between the trained DTMCs and testing
DTMCs. In case the difference exceeds the above thresholds, an alert is raised.
The detection mechanism checks the violations mentioned in Sect. 3.2:

New transitions violation - a transition exists in the testing DTMC, but
not in the training phase. New state violations - a state created in the testing
phase, which does not exist in the training phase. Transition anomalies - the
transition probability in the testing DTMC differs more than the predefined
threshold from the corresponding probability in the training phase.

Additionally, we provide the number of state anomalies, that is the number
of states affected by transition anomalies.

4.2 Results and Discussion

We modify the second part of the trace 10 times and compute the median and
variance of the number of detected anomalies for copying, removing and swap-
ping respectively 0.1%, 1% and 10% of all 6079 packets. Furthermore, we com-
pare the results of the original model without reduction to the results of the two
proposed reductions.

Table 2. State anomalies: overall (new)

Table 2 shows the number of state anomalies, including the new states (given
in brackets). The row providing the results for the original approach and the
column showing the results without any changes in the trace are marked grey
as they indicate the reference cases. For the non-modified trace, the original
model detects 11 state anomalies, out of which 1 state was new. The new state
corresponds, e.g., to a packet that occurs in the real traffic but was never seen
in the training phase. The remaining 10 anomalous states are considered false
positives, as they do not result from a modification of the original trace, but from
an irregularity in the trace itself. Comparing with the two proposed reduction
types, we notice that the number of false positives drops, hence, the detection
accuracy of the reduced model improves, due to abstracting from the specific
IOA numbers. In the reduction all, there are 6 anomalous states out of which
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none are new. This suggests that the mentioned packet uses a TypeID that
appears in the training capture, but the IOA number did not.

After introducing anomalies in the traffic sequence, we can see that only
copying/removing/swapping 10% of the packets increased the number of detec-
tions. The introduced anomalies are not detected as new state anomalies, since
they do not introduce any new command in the trace. For anomalies that do
change the number of detections, the question remains, whether the detected
state anomalies are harmless or whether they indeed can harm the system.

Table 3. Transition anomalies: overall (new)

Table 3 shows the number of transition anomalies and the number of new
transition violations (provided in brackets). Again, the reference case is marked
gray (reduction none). The original approach detects 24 transition irregularities
in the original trace, out of which 10 are new. All those need to be considered as
false positives. Possibly the training sequence was too short, as the dataset did
not contain messages in this order. The gray column, representing the original
trace shows that the reductions decrease the number of false positives w.r.t. the
reference case.

Modifying the traces introduces additional transition anomalies. Even mod-
ifying 0.1% of all packets increases the number of new anomalous transitions
considerably. When reducing the traffic models, the number of detected anoma-
lies decreases. E.g., when copying 10% of the packets, without reduction 115
new transitions are observed, while overlapping results in 81.5 anomalies, and
all in 41 anomalies. An operator may prefer fewer alerts, as too many notifi-
cations may be ignored. However, the question remains, how to distinguish an
attack from a false positive alert. Note that the reduced number of detections
when applying reductions stems from two sources. Fist, we lose false positives
as in the reference case, which increases the accuracy of detection. Second, not
every change is detected in the reduced model, which decreases the sensitivity.
The current detection algorithm is not performed after each event, hence we are
unable to distinguish between losing false positive or true positive.
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Reconsidering the disconnector and switch attack from Sect. 2.3 shows that
the reduction method should be chosen keeping the application in mind. If a
single PLC would control the actuators, the same function (TypeId) referring
to opening or closing respective IOs could appear in a specific order. Therefore,
implementing reduction all could abstract away too much information. This
could be preserved with the overlapping reduction, still reducing the size of the
traffic model. In contrast, when dealing with simple reading commands, such as
a General Interrogation, merging all IOAs would not result in a loss of accuracy,
still reducing the size of the traffic model.

5 Conclusions

Commonly, SCADA traffic behaves quite regularly and results in packets sent in
a predefined order. Hence, learning traffic models and comparing sequences of
traffic to such models is a promising research direction. However, the developed
models can easily become very large and it might not be feasible to maintain
large models for each pair of communicating devices.

With this paper, we show that some cases exist where these models can
be substantially reduced. In our use cases, states differing just for the range
of Information Object Addresses, used in IEC-104, could be easily and conve-
niently combined in the DTMCs. We observe that completely abstracting from
IOAs reduces the model size considerably while loosing accuracy. Despite low-
ering down the number of false positives this may cause the IDS to overlook
specific attacks, like the disconnector and switch attack. For this reason a more
conservative approach combining states with overlapping IOAs has the high-
est chance to succeed because of the higher model accuracy while still reducing
model size. We conclude that when choosing reduction methods the actual pur-
pose of the exchanged functions of the IEC-104 protocol should be taken into
account. By understanding the goal of the actual functions (TypeIds), one can
use specifically tailored reduction techniques for different functions. However, in
most cases, the knowledge needed to the reduction function can come only from
the operator side. Future work will focus on detecting actual attacks using a
hybrid approach: either combining states with overlapping IOAs or abstracting
from IOAs completely, depending on the TypeId. Moreover, the detection has
to be performed in real-time, e.g., by using conformance testing techniques.
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Abstract. Data centers are one of the biggest energy consumers in the
ICT sector. Their cooling system accounts for almost half of the over-
all data center energy demand. Thus, the flexibility in shifting energy
demand of the cooling systems in data centers could be a great asset for
data center operators. The amount of flexibility and how it can be max-
imized are important yet open problems, due to the several stochastic
processes involved. In this paper, we propose a novel methodology that
allows data center operators to compute the flexibility of the cooling sys-
tem by modeling it as an Energy Storage System (ESS). To enable such
a mapping, the temperature set-points of the cooling systems must be
expressed by a recursive formulation. To this end, based on thermody-
namic concepts, in this paper we derive a recursive formulation for the
temperature of the cooling systems and verify it empirically through a
real-world data set. We then sketch (as our future work) how this map-
ping can be used to compute the flexibility of the cooling systems which
can be efficiently leveraged during demand-response periods.

Keywords: Demand-response · Data center · Cooling system

1 Introduction

The enormous growth in the digitization of information has led to the rising
need for the provision of extremely large data centers like the ones of Google,
Microsoft, Amazon that consume power in the order of Mega Watts [9]. Conse-
quently, an undesired side-effect of this extensive computing and communication
activities is that data centers devour substantial amount of energy. To this end,
it was shown that the energy consumption of data centers has a non-negligible
share of the total energy consumption of the society: In 2007 the energy con-
sumed by data centers in Western Europe was 56 TWh and is projected to
increase to over 100 TWh per year by 2020 [8], whereas in 2014, data centers in

c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 68–82, 2018.
https://doi.org/10.1007/978-3-319-74947-1_5
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the U.S. consumed an estimated 70 TWh, representing about 1.8% of total U.S.
electricity consumption [20]. Due to this significant energy demand on one hand
and increased energy costs on the other, the operational expenditure (Opex)
is becoming a dominant fraction of the total data center’s cost of ownership
(TCO) [10]. It is being recognized that the cooling infrastructure in a data cen-
ter can account for up to 50% of the total energy demand with the remaining
50% attributable to the ICT resources [11].

Being bulk energy consumers in the energy grid, data centers can contribute
to grid stability, should they present “flexibility” in shifting their energy con-
sumption, when grid is under-supplied. Flexibility in this context is defined as
the ability of a data center to provide reliably changes in power at a desired
magnitude over a certain duration in response to changes in residual load. Fur-
thermore, flexibility is indeed an integral characterization of the future energy
grid, given large scale unpredictable renewable energy integration, which includes
important concepts such as demand-side and supply-side management. For this
purpose, demand-response (DR) [12] schemes have become the ultimate stan-
dard (e.g. OpenADR) that exploit the flexibility offered by consumers. In short,
those schemes define a list of actions that need to be taken by the consumers
to reduce drastically the electrical load during power shortage/outage periods.
Flexibility of the data centers (in the sense of demand-response) needs to be
quantified and optimally managed to benefit both stakeholders involved: data
center operators (to minimize their energy cost) and energy grid (to stabilize the
grid). In this context, it was shown that data centers are excellent candidates to
participate in DR schemes due to their fully automated infrastructure providing
inherent flexibilities (e.g. workload shifting, cooling set points alteration) on the
one hand and significant power/energy demand on the other [13,14,19].

Among the several flexibility mechanisms that data centers provide, in this
paper we study the one of offered by the cooling systems. We believe that energy
optimization of data centers starts not only at the energy management level
of internal operations (e.g. workload shifting/shedding) but also understanding
the flexibility that cooling system provides, as the latter amounts to almost
half of the overall energy demand. With ASHRAE’s (American Society of Heat-
ing, Refrigerating and Air-Conditioning Engineers1) new recommendation about
temperature set-points for data centers, it is now possible to operate a data cen-
ter at higher temperature (until 35 oC) levels. To this end, recently Google
increased the temperature set-points of its data centers which led to reduced
energy consumption2. It was argued that data center operators can save up to
4% of energy costs by increasing the temperature set-point by 0.5 oC. Conse-
quently, in this paper we exploit the temperature set-point flexibility that the
cooling system of a data center provides and tend to model and quantify that
flexibility, by mapping it to a virtual Energy Storage System (ESS) and further,
using a novel methodology based on network calculus. Evaluating the flexibility

1 https://www.ashrae.org/.
2 http://www.datacenterknowledge.com/archives/2008/10/14/google-raise-your-

data-center-temperature/.

https://www.ashrae.org/
http://www.datacenterknowledge.com/archives/2008/10/14/google-raise-your-data-center-temperature/
http://www.datacenterknowledge.com/archives/2008/10/14/google-raise-your-data-center-temperature/


70 R. Basmadjian et al.

of the cooling systems and deriving dynamic cooling strategies for data centers
have not yet been studied (see Sect. 2) using known methodologies (e.g. network
calculus). On the other hand, flexibility of energy storage systems (ESS) are
well-studied and understood. In particular, optimal charging/discharging opera-
tion and ESS sizes have been theoretically obtained in [5,6], using the theory of
network calculus. This theory provides tight bounds over the ESS overflow and
ESS depletion probabilities, which can be linked, respectively, to the waste of
power probability and loss of power probability. Thus, in this paper, we model
the cooling system as a virtual ESS and pave the road to quantify the flexi-
bility that the cooling systems in data centers can provide during DR periods.
It is important to note that the proposed approach does not enforce turning
on-off the cooling system, instead control the hot air injected to the system to
maintain the system within temperature boundaries. Hence, the lifespan of the
cooling system is not degraded any further beyond its regular cycle of operation.

The rest of this paper is organized as follows. We define the problem, concep-
tually explain the underline mapping between the cooling systems and energy
storage systems (ESS), and sketch our proposed approach to solve the prob-
lem in Sect. 3. We provide a recursive temperature formulation and demonstrate
its accuracy in Sect. 4. Using that model, the counterpart elements in mapping
the cooling system to a virtual ESS are quantified in Sects. 5 and 6 concludes
the paper.

2 Related Work

Demand-response (DR) deals with the interaction between a utility (or a dif-
ferent stakeholder) on the energy supply side and several consumers on the
demand-side, especially regarding the question of how to incentivize them for
their provided flexibilities. Consequently, in [17] demand-response was defined
by the energy consumers’ changes of demand-side patterns/behaviors as a reac-
tion to dynamic prices or other incentives.

The terminology demand-side management started back in the late 1980s by
Gellings and Chamberlin [16]. It is the basis for the demand-response concept
where the main idea consists of making flexible the power demand as part of
an integrated resource planning comprising of both supply and demand. Hence,
demand-side management is aimed at the power management of facilities (e.g.
in our case data centers) influencing the load shape by changing their power
usage pattern (e.g. time of performing the required activity) and/or magnitude.
However, in order to achieve this, the facilities need to be by themselves able
to provide flexible mechanisms. Data centers are an excellent candidate to par-
ticipate in demand-side management due to (1) fully automated infrastructure
and (2) numerous flexibility providing mechanisms such as cooling system, work-
load shifting/shedding, Uninterrupted Power Supply (e.g. battery storage), and
flexible contracts.
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There have been several works in the literature studying the cooling impact
and effect of altering temperature set points in data centers. In [15,19] the
authors carried out field experiments to improve the understanding of the DR
opportunities in DCs. The study evaluated an initial set of control and load
migration strategies and economic feasibility. The findings show that with min-
imal or no impact to DC operations, a demand savings of 25% at the DC level
or 10–12% at the whole building level can be achieved with strategies for cool-
ing and IT equipment, and load migration. In [21], the authors carried out a
multi-faceted study of temperature management in data centers, where a large
collection of field data from different production environment was used in order
to analyze the impact of temperature on hardware reliability. Based on these
studies, the authors make recommendations for temperature management in
data centers, that create the potential for saving energy, while limiting negative
effects on system reliability and performance. In [22], it was shown the high
potential of adaptive cooling in data centers using traditional computer room
air conditioning (CRAC) units, where it was shown that the cooling-related
energy savings enabled to avoid a multi-million dollar power build out to the
data center. In [23], the author highlighted the inadequacy of traditional com-
putational fluid dynamics (CFD) analysis of the cooling design for data centers,
where the equipment population and layout changes over time, and where the
heat signature changes constantly in response to workload. Furthermore, the
author proposed as a viable solution adaptive cooling system by taking into
account the ambient temperature, IT rack heat load, etc. In [24], opportunities
for improving thermal management and energy performance of data centers with
automatic control were studied. It was shown that by implementing simple and
modular control strategies could significantly improve the energy performance
of the data center while maintaining proper thermal management conditions.
Unlike the above mentioned contributions, in this paper the main contribution
is to model the cooling system using network calculus in order to analyze math-
ematically the flexibility extends provided by such type of a mechanism through
dynamic cooling. The derived mathematical model will serve to find out the
optimal cooling strategies for data centers. To the best of our knowledge, this
is the first effort in the literature to achieve this goal. Similar to some of the
approaches in the literature, our model takes into account important parame-
ters such as the ambient temperature, the IT workload, power consumption of
the data center as well as of the cooling system.

3 Problem Definition and Methodology

In this section, we sketch our trajectory to evaluate the maximum flexibility
achieved in a data center by optimally adjusting the operation of the cooling
system. In short, we map this problem into a well-studied one: energy storage
evaluation. Then, borrowing the techniques from storage analysis, we enable the
flexibility evaluation of the cooling system along with its optimal operation. To
see the similarity of a cooling system and an energy storage system (ESS), we
briefly discuss ESS technologies, operations, and constraints in the following.



72 R. Basmadjian et al.

Fig. 1. The road map to evaluate the flexibility of a cooling system.

3.1 Taxonomy of Energy Storage Devices

Energy Storage Systems (ESS) have shown their potential to revolutionize the
electricity grid by smoothing the variable energy generation of intermittent
renewable energy sources (RES) such as photovoltaic and wind mills. In this
respect, the impact of ESS to the grid has been extensively studied by consid-
ering the optimal operating strategies of when to charge and discharge the ESS.
Note that an ESS can be defined as a system composed of battery modules and
a commercial example can be found at [25].

There are several energy storage systems (ESS) currently in use, each of
which has its own characteristics which might fit a certain application. From the
technology point of view and how electricity is stored in the device, ESSs can
be categorized into mechanical, thermodynamic, electrochemical, and electro-
magnetic [2,5].

There are certain inherent physical constraints attributed to each of these
storage technologies, which could be limiting in certain applications [5]. For
example, the round-trip efficiency of storing and withdrawing electricity in each
of these devices is different. Some of these technologies convert electricity to
other forms of energy to store it and convert it back to electricity when needed.
For example, flywheels convert electricity into mechanical inertia and batteries
convert electricity into chemical energy. Energy conversion is not ideal and leads
to inefficiency. Some other storage technologies such as Supercapacitors have no
energy conversion and hence, have high round-trip efficiency. Another important
physical constraint is the leakage rate of the stored energy. In some storage
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devices the stored energy such as Supercapacitors the stored energy vanishes
by time due to self-discharge, whereas other devices such as batteries can keep
energy for a long time without losing it considerably. Finally, the maximum
charging/discharging rate is a limiting factor for some devices such as batteries,
but is not for some others such as Supercapacitors or flywheels.

Fig. 2. Energy and power densities of storage technologies.

Many of these physical constraints are represented well by two important
metrics: energy density and power density. Energy (resp. power) density is the
maximum amount of energy (resp. power) that can be stored in (resp. drawn
in or out of) a given storage device per unit volume. Typically, energy density
and power density are contradictory and there is no technology with reason-
able price that is both energy and power efficient (see Fig. 2). Each application
requires a certain level of energy and power efficiency and hence, there is one or
a combination of multiple storage technologies that fits each application [7].

Suppose that we have an ESS which has high power efficiency, low energy
efficiency, and almost ideal round-trip efficiency. Supercapacitors are examples
of this sort. In a discrete-time setting with the time unit Δ, the SCap’s state of
charge b(k) at any time k can be, recursively, presented by [1]:

b(k) = κb(k − 1) + Pin(k)Δ − Pout(k)Δ (1)

where κ is the self-discharge of the ESS, Pin(k) and Pout(k) are, respectively, the
power input and the power output of the ESS at time k. Note that Δ must be
small enough to be a good representative of the continuous time events, but also
constrained to the time resolution of the dataset at hand. The state of charge
of the ESS must be kept between the minimum and maximum allowable range,
which is

0 ≤ b(k) <≤ B . (2)
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where B is the size of the ESS. However, for some other ESSs (such as batteries)
the lower bounds and upper bounds could be a fraction of the capacity of the
ESS to enhance their lifetime (instead of 0 and B).

Two performance metrics are essential to keep track of for energy systems
with ESS: loss of load probability (LOLP) and waste of energy probability
(WOEP). The loss of load probability (LOLP) in storage devices is defined as
the likelihood that at a certain time instant the energy system needs to withdraw
energy from the ESS but ESS does not have enough stored energy. Mathemati-
cally speaking,

LOLP = Pr{b(k) < 0} (3)

Similarly, waste of energy probability (WOEP) is defined as the likelihood that
at any time instant the energy that needs to be stored in the ESS cannot be
stored, because the ESS is full; i.e.,

WOEP = Pr{b(k) > B} (4)

Recently, LOLP and WOEP have been formulated, using a mapping to data
buffered queues and borrowing the techniques from Network Calculus, originally
developed for data networks [1,5,6], we show how the flexibility in data center
cooling system can be mapped to the operation of a SCap and hence, allowing
us to model and analyze them.

3.2 Heating/Cooling System in Data Centers

The cooling system at data centers can be used efficiently to achieve flexibility
in terms of demand response. The temperature of the data center increases as
soon as cooling systems are off duty and that extensively decreases the energy
demand of the data center during those times, given that the cooling system by
itself accounts for 40% of the entire data center energy demand.

To prevent premature failures of the servers and enhance their lifetime in a
data center, the operating temperature of the data center must be kept between a
minimum and maximum temperature Tl and Tu, respectively. Operating servers
heat up the data center and increase the temperature beyond Tu, if not controlled
by the cooling system. The cooling system in the data center automatically sets
its duty-cycles to keep the operating temperature point of the data center T (k)
at any time k in the allowable range [Tl, Tu]; i.e.;

Pr{T (k) < Tl} ≤ εl; Pr{T (k) > Tu} ≤ εu (5)

For a target lower temperature violation probability (LTVP) and an upper tem-
perature violation probability (UTVP), Eq. (5) can be re written as

LTV P = Pr{T ′(k) < 0}; UTV P = Pr{T ′(k) > Tmax} (6)

where
T ′(k) = T (k) − Tl; Tmax = Tu − Tl (7)
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Comparing Eq. (6) with Eqs. (3) and (4), we find that the performance metrics
in the cooling systems are similar to those of an ESS. However, to complete the
mapping elements we should also show that T ′(k) can be presented in a recursive
format, similar to that of an ESS as stated in Eq. (1).

Conceptually, the DR obtained through the cooling system resembles the
one obtained through an ESS in the sense that the whole cooling system can
be operated as an energy renting entity : The energy use can be reduced by
turning off the cooling system and this subsequently increases the temperature
beyond the set point up to the maximum of Tu. This amount of discarded energy
demand from the cooling system must be added to the energy demand of the
cooling system at a later time to turn the set point back to its regular value.
Thus, one can think about it as a system from which we can “borrow” energy
at a point but should “return” it at a later time. This is exactly what an ESS
does: Energy can be borrowed from an ESS but it must be returned at a later
time to attain its original state of charge (SoC).

According to the above reasoning, we propose to map the cooling system
operation as a virtual ESS and then employ network calculus results to study
the potential of the flexibility and the optimal operation of the cooling system
(see Fig. 1). In this paper, we focus on the mapping part (the first block of
modeling the flexibility of data centers) and will proceed with applying the
network calculus approach to the resulting virtual ESS in our future work to
enable flexibility evaluation of the cooling systems.

The LOLP and WOEP constraints mentioned in Eqs. (3) and (4) can be used
in our mapping to quantify the flexibility subject to keeping the temperature
within the allowable range with a small given violation probability (see Eq. 6).
Since finding the optimal temperature set-points is a generic concept, thus the
proposed methodology is independent of the cooling system type.

4 Modeling Cooling System

4.1 Setup Environment

In this section, we describe the setup environment of the carried out experimental
analysis on cooling systems. The field tests were conducted at a data center
(peak power demand of 200 kW) in Passau, Germany. During these test runs,
the operating temperature set-points were set to be always in the range of [10
oC, 35 oC] in order to avoid any hardware failure and conform to the standards
of ASHRAE. The cooling system consists of outdoor and indoor units. The 2
indoor units (see Fig. 3) are installed directly at the data center and work in
parallel, which are connected to two outdoor units. The outdoor units consist of
two cold water generators on the housetop. The temperature set-point of both
indoor units is set to approximately 22.5 oC. The temperature set-point can be
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Fig. 3. Cooling system configuration.

adjusted between 12.5 oC and 25.0 oC. The corresponding data center is com-
posed of the following servers:

– 6 HP ProLiant DL460
– 5 HP ProLiant DL360
– 2 HP ProLiant DL585
– 1 HP ProLiant DL380
– 1 HP ProLiant DL320

For the purpose of measuring temperature set-point values while testing the
cooling system, we used an ALLNET IP Sensoric Appliance (ALL4500) and
ALLNET temperature sensors (ALL3006).

4.2 Testing Conditions and Methodology

The test was carried out in April 24th from 8:53 AM to 3:15 PM where the
weather condition was densely clouded with an ambient temperature of 19 oC.
The following data were read for the corresponding experiment:

– Cold aisle temperature: Every 10 s the temperature value was recorded.
– Power consumption of cooling system: Every 5 min the energy (kWh) spent

by the system was recorded. These values were converted into kW.
– Power consumption of rack servers: Every 10 s the current Watt value was

recorded for each server. To get the values for a 5 min interval the mean value
for this time span was calculated and converted into kW.

– Power consumption of blades: Every 5 min the current Watt value of the five
blade servers in total was recorded and converted into kW.
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During the carried out experiment, we investigated cooling-down, heating-up
and then back to normal operation temperature set-point process and adopted
the following methodology:

– Step 1: Power consumption of the two air conditioners is metered separately
from the other devices in the data center. Consequently, the consumption
required to keep the temperature at 21.0 oC level during a fixed period of
time (Phase 1) can be determined. The power consumption of the servers for
the same time span is identified as well.

– Step 2: At the end of Phase 1 the air conditioners are adjusted to maximum
cooling. The time (Phase 2) it takes to reach the minimum temperature pos-
sible (12.5 oC) is measured as well as the corresponding power consumption
of air conditioners and servers during this time span.

– Step 3: When the sensors indicate reaching the minimum temperature limit,
the indoor units of the cooling system are turned off (end of Phase 2). Now
the time (Phase 3) it takes to reach the maximum permissible temperature
(30.0 oC) is measured as well as the corresponding power consumption of
servers during this time span.

– Step 4: When the sensors indicate reaching the maximum temperature limit,
the indoor units are turned on again and the set-point temperature of both
units is set to 22.5 oC again (end of Phase 3). Now the time (Phase 4) it takes
to reach the default temperature (21.0 oC) in the cold aisle is measured as
well as the corresponding power consumption of air conditioners and servers
during this time span.

4.3 Modeling

We model the temperature evolution inside the data center using a ‘gray box’
methodology, similar to the one described in [26]. This model is inspired the first
law of thermodynamics, which relates temperature changes at any time to the
properties of the environment, the ambient temperature, and the input/output
heat power. In short, the changes in the temperature at any time is linearly
proportional to the temperature difference between the temperature inside that
environment and the ambient temperature, the input power and the output
power. Mathematically, in a continuous-time system, the model at any time t
can be represented as follows3:

Cz
dT (t)

dt
= α (Ta(t) − T (t)) + βPs(t) − γPc(t), (8)

where Cz is the thermal capacitance of the zone housing the data center and
Ta is the ambient temperature. Thermal capacity is the resistance of that envi-
ronment to temperature changes and is a characteristic of that environment.
Moreover, there are efficiency factors (α, β, γ) attributed to how ambient temper-
ature difference, the input power, and the output power impact the temperature
3 Please note that we use t as the time notation in a continuous-time model and k in

a discrete-time model.
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variations. The coefficient α is the effective heat transfer coefficient between the
ambient and the zone, β is the coefficient that denotes the internal heat gain due
to the servers and γ is the coefficient that maps the rate of heat efflux attributed
to the cooling provided by the air-conditioning system.

By disctretizing the continuous time with unit steps Δ, the continuous-time
differential equation in Eq. (8) can be approximated by the following discrete-
time difference equation:

Cz
T (k) − T (k − 1)

Δ
= α (Ta(k) − T (k)) + βPs(k) − γPc(k) (9)

Our gray box model is based on Eq. (9) and optimally finding the values of α, β,
and γ which make the model the best fit for the given dataset. We also move the
estimation of the heat capacity Cz from the theoretical modelling to data-fitting,
by removing Cz from Eq. (9) and assuming that the modified versions of α, β,
and γ, when fitted to the data according to

T (k) − T (k − 1)
Δ

= α (Ta(k) − T (k)) + βPs(k) − γPc(k) (10)

will account for Cz numerically. Overall, our gray box model takes as inputs a
dataset that includes server room temperature, the input and the output power
and finds the optimum values of the three model coefficients α, β and γ according
to the MMSE approach; i.e., the coefficients minimize the following:

e =

√
√
√
√

N∑

k=1

(T (k) − Tmeas(k))2 (11)

where, e is the root mean square error for a look-ahead prediction time window of
N time samples, T (k) is the predicted zone temperature at discrete time instant
k given by the solution of Eq. (10) for any choice of α, β and γ. Tmeas(k) is the
measured zone temperature that is obtained from the experiments described in
the previous subsection. We have assumed, without loss of generality, that the
thermal capacitance of the zone housing the data center, i.e. Cz is unity as this
suffices our modeling objective.

In Fig. 4, we compare the internal temperature predicted by the gray model
with the actual temperature recorded following the experiment described earlier.
We can observe from the figure that the gray box model is able to predict the
temperature evolution across the different phases reasonably well. The root mean
square error (RMSE) is 1.33 oC. Note that in order to assess the results obtained
from RMSE methodology, another test was conducted in a different day with
an ambient temperature of 3 oC (see Fig. 5). The obtained results confirm that
the mean square error of 1.33 oC can be further reduced by considering moving
window based regression however we keep this for our future work.

5 Mapping a Cooling Systems to an ESS

In this section, we identify the mapping elements of the virtual ESS representing
the cooling system. To do so, we rephrase our temperature model from Eq. (10)
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Fig. 4. Comparison between measured and modeled internal temperature in the data
center.

as the following:

T (k) =
1

1 + αΔ
T (k − 1) +

αTa(k) + βPs(k)
1 + αΔ

Δ − γPc(k)
1 + αΔ

Δ (12)

or equivalently

T ′(k) =
1

1 + αΔ
T ′(k − 1) +

α(Ta(k) + Tl) + βPs(k)
1 + αΔ

Δ − γPc(k)
1 + αΔ

Δ (13)

which resembles the recursive statement of the state of charge of an ESS in
Eq. (1). Moreover, the temperature at any point must be kept between its lower
and upper bound; i.e.,

0 ≤ T ′(k) ≤ Tmax (14)

Comparing Eqs. (1) and (2) with Eqs. (13) and (14), we find out that the
operation of the cooling system can be mapped to the operation of an ESS if we
treat the elements of an ESS mentioned in Table 1 as counterparts of a cooling
system.

This result analytically validates our observation in Sect. 3 that a cooling
system could be interpreted as a virtual ESS. This allows us to adopt the ESS
analytical results, in particular the theory of network calculus, to model and
evaluate the flexibility of the data center in our future work. It is worthwhile to
note that unlike ESS, the self-discharge property of the cooling system is related
to the intrinsic physical properties of the housing of the data center.
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Fig. 5. Comparison between measured and modeled internal temperature in the data
center.

Table 1. Mapping elements.

Cooling system ESS

T ′(k) b(k)

Tu − Tl B
1

1+αΔ
κ

α(Ta(k)+Tl)+βPs(k)
1+αΔ

Pin(k)
γPc(k)
1+αΔ

Pout(k)

6 Conclusion

To facilitate the integration of large scale renewable energy sources in the
energy mix, flexibility has drawn much attention lately. As one of the important
forms of flexibility, “demand-side management” has been recently introduced
and demand-response (DR) schemes became the ultimate solution for “demand-
side management” where those schemes exploit the flexibility provided by the
consumers. To this end, data centers were investigated and have shown their
excellent potential in participating in DR schemes due to (1) their fully auto-
mated infrastructure with negligible human intervention, (2) numerous flexibility
mechanisms that they provide and (3) their significant power demand (order of
Mega Watts).

In this paper, we modeled the temperature of a data center and sketched
the path how this model can be used to analytically quantify the amount of
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flexibility that the cooling system mechanism of a data center can provide during
DR events (e.g. peak power shaving). To achieve this, we first carried out an
experimental analysis by studying the effect of (1) cooling-down, (2) heating-up
and (3) normal operation temperature set-point process. We model this behavior
using gray-box methodology, where we showed that the root mean square error
is about 1.33 oC. Based on the provided temperature model, we proposed a
novel methodology of calculating cooling system flexibility using the analogy of
energy storage systems (ESS) and adopting the network calculus theory. In our
future work, we will use the established model to quantify the flexibility of the
cooling system in a data center, subject to the temperature constraints of the
data center and using network calculus.
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Abstract. The Network Function Virtualization (NFV) paradigm
enables new flexibility and possibilities in the deployment and operation
of network services. Finding the best arrangement of such service chains
poses new optimization problems, comprising a combination of place-
ment and routing decisions. While there are many algorithms on this
topic proposed in literature, this work is focused on their evaluation and
on the choice of reference for meaningful assessments. Our contribution
comprises two problem generation strategies with predefined optima for
benchmarking purposes, supplemented by an integer program to obtain
optimal solutions in arbitrary graphs, as well as a general overview of con-
cepts and methodology for solving and evaluating problems. In addition,
a short evaluation demonstrates their applicability and shows possible
directions for future work in this area.

Keywords: NFV · VNF Chain Placement · Optimization
Performance evaluation · Problem generation

1 Introduction

In modern networks, operators apply various network functions to their traffic
flows, either due to their specific requirements or due to the network’s policy
in general. Packets are monitored, modified, or even dropped to perform these
functions, such as firewalls, deep packet inspection, load balancers, and core
gateways in LTE networks. Traditionally, they are implemented by special hard-
ware middleboxes with high performance guarantees, but they also suffer from
high costs, low flexibility, low scalability, and vendor dependence. These prob-
lems are addressed by the Network Function Virtualization (NFV) paradigm [1].
Hardware middleboxes are replaced by software instances, running in virtualized
environments on cheap, vendor independent commercial-off-the-shelf (COTS)
machines.

With the newly attained flexibility, new optimization problems arise in the
context. In particular, the Virtual Network Function Chain Placement (VNFCP)
problem deals with the orchestration of Virtual Network Functions (VNFs) in the
network: (a) how many VNF instances are needed, (b) where are they located,
c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 83–98, 2018.
https://doi.org/10.1007/978-3-319-74947-1_6
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and (c) which traffic flow is using which instance. Thereby, various constraints
are considered, such as bandwidth and resource limitations. The optimization
objective usually involves the maximization of profit or the minimization of costs,
for example by reducing the number of instances.

As the VNFCP problem is NP-hard [2], most publications rely on heuristics
and approximations for productive use, featuring varying objectives, constraints,
and levels of detail. However, assessing the quality of attained solutions is no triv-
ial task in itself. For example, comparing the performance of two heuristics with-
out knowing an optimal reference placement only yields limited expressiveness.
In order to overcome these problems, this work investigates different approaches
towards the performance evaluation of VNFCP algorithms. In particular, it dis-
cusses the generation of parameterized artificial problem instances with known
optimal solutions, providing an independent reference for comparison.

The remainder of this work is structured as follows. Section 2 formally intro-
duces a common variant of the VNFCP problem. In Sect. 3, different approaches
for its solution are reflected with special regard to their respective evaluation
techniques. In addition, Sect. 3.1 includes an Integer Linear Program (ILP) that
obtains optimal solutions for small problem instances. Section 4 proposes artifi-
cial problem generation by means of two concrete strategies, whose results are
demonstrated in Sect. 5. Related work on the evaluation of network optimiza-
tion heuristics is addressed in Sect. 6. Finally, in Sect. 7, we discuss remaining
challenges and conclude the paper.

An exemplary implementation of the presented ideas, such as the ILP and
the problem generation strategies, is also available on GitHub1.

2 Virtual Network Function Chain Placement

This section presents a brief overview of the VNFCP problem. Note that, as
different approaches consider different details of the problem, this work only
provides a generic definition of the most commonly used models. For further
details, please refer to the corresponding publications in Sect. 6.1, and in partic-
ular to [3] for a more detailed version of this specific model.

2.1 Input and Output Models

The input model usually comprises three components. The network is repre-
sented by an undirected graph G = (V,E). Nodes v ∈ V may have computa-
tional resources vcpu ∈ R, while links e ∈ E have bandwidth and delay properties
ebw, ed ∈ R. The available network function types t ∈ T require a certain amount
of resources tcpu ∈ R and possess similar attributes as links: tbw, td ∈ R. Finally,
each traffic request r ∈ R consists of source and destination nodes rsrc, rdst ∈ V ,
bandwidth and maximum latency requirements rbw, rd ∈ R, and a sequence of
network functions rc ∈ T |rc| which represent the requested function chain.

1 https://github.com/lsinfo3/vnfcp-benchmarking.

https://github.com/lsinfo3/vnfcp-benchmarking
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The output model contains the set of placed VNF instances z ∈ I which
possess a type ztype ∈ T and location znode ∈ V . In addition, for every traffic
demand r ∈ R, the assigned route rpath ∈ V |rpath| and the used instances rinst ∈
(I∪{∅})|rpath| are given. Hereby, rinst has the same length as rpath, and ∅ indicates
that no VNF is applied at the respective location of the route.

2.2 Constraints

The considered constraints can be split into two categories. On the one hand,
consistency between different variables must be ensured. For example, the loca-
tion of the i-th instance in rinst must equal the i-th node in rpath, or more
fundamentally, for each subsequence (vi, vi+1) in rpath, there must be an edge in
the network graph, i.e., {vi, vi+1} ∈ E. On the other hand, resource and delay
requirements must be met. This includes CPU capacities vcpu on nodes, band-
widths ebw on links, capacities tbw of the instances z ∈ I, and maximum flow
latencies as defined by rd. Further details are omitted in this work, as they differ
between different approaches.

2.3 Objectives

The range of considered objectives varies greatly among existing work in litera-
ture. Typical atomic objective functions include the number of placed instances,
the amount of consumed computational resources, the number of active nodes,
cumulative delay and number of hops for all requests, and the number of violated
service level agreements. These may either be considered individually, consoli-
dated by applying weights, or be treated by a multi-objective optimizer.

Note that the choice of objective functions determines the optimal solutions.
In order to assess the quality of placements, they need to be specified beforehand.

3 Approaches for Solutions and their Assessment

This section outlines different strategies to solve the VNFCP and common ways
to evaluate their performance.

3.1 Exhaustive Optimization

The most evident approach is to compute an exact solution to a given optimiza-
tion problem, or the exhaustive Pareto frontier in a multi-objective context. This
strategy is sometimes implemented in a simple brute force manner, but more fre-
quently realized by Integer Linear Programs (ILPs) for performance reasons.

Given their exact results, a qualitative evaluation is not necessary for exhaus-
tive approaches. They always provide the best results with regard to their respec-
tive optimization objective. However, since the VNFCP problem is NP-hard,
these methods are usually limited in applicability. Hence, they can be evaluated



86 A. Grigorjew et al.

with respect to the supported details of their model, their required computa-
tional resources, and the runtime of an optimization, while also considering the
supported scale of problem input. More importantly, the results of these exhaus-
tive solvers can be used as a reference for the evaluation of faster, empirical
approaches, as explained in Sect. 3.3.

Example ILP. In the following, an example ILP is presented that primar-
ily minimizes CPU utilization. It can be adjusted and used on small problem
instances for the evaluation of heuristics with similar problem models.

Variables. The program is based on three types of decision variables: cr,f,n

and zr,f,i indicate the location and number of an instance, and ar,f,e indicates
the path of a request r, with f being the number of the corresponding function in
the request’s chain, n being a node in the network graph, e being an edge, and i
the number of the instance on the respective node. In addition, several auxiliary
variables are used to ease the definition of constraints and objectives: mr,f,n,i

indicates whether the i-th instance of its type on node n is used for function f
of request r. Similarly, mt,n,i indicates whether any request with a function of
type t uses this instance. Finally, mt,n contains the number of instances of type t
on node n. All used variables and indices are summarized in Table 1.

Table 1. Variables and indices used in the ILP formulation.

Index Description

r ∈ {1, ..., |R|} Traffic request

f ∈ {1, ..., |rc| + 1} Function in the chain of a request

n ∈ {1, ..., |V |} Node in the network graph

e ∈ {1, ..., |E|} Edge in the network graph

t ∈ {1, ..., |T |} Type of the respective network function

i ∈ {1, ..., |R|} Instance of the respective type on the respective node

Variable Description

cr,f,n ∈ {0, 1} Indicates whether function f of request r is served in node n

zr,f,i ∈ {0, 1} Indicates whether function f of request r is served on the i-th
instance of its type

ar,f,e ∈ {0, 1} Indicates whether edge e is used by function f of request r

mr,f,n,i ∈ {0, 1} cr,f,n ∧ zr,f,i

mt,n,i ∈ {0, 1} max(r,f)∈{(r,f) | funct. f of req. r is of type t}{mr,f,n,i}
mt,n ∈ N

∑|R|
i=1 mt,n,i

Note that each subpath from function f − 1 to function f is modeled sepa-
rately, with f = |rc| being the last function, and f = |rc| + 1 representing the
destination of the traffic request. The latter is only used by the variables ar,f,e

for the last subpath.
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Objective. The primary objective is to minimize the CPU utilization, but on
a second priority, the number of hops was included, e.g., to avoid loops in the
paths. Using the variables above, the objective is expressed as follows.

Minimize 0.99
|T |∑

t=1

|V |∑

n=1

mt,n · tcpu + 0.01
|R|∑

r=1

|rc|+1∑

f=1

|E|∑

e=1

ar,f,e (1)

Thereby, the weights are chosen such that the amount of hops does not impair the
minimization of the primary objective, i.e., the number of used CPU resources.

Constraints. The following constraints are used by the ILP to ensure path
consistency and to respect resource and capacity utilization. Given an edge e ∈
{1, ..., |E|}, let e1 and e2 be the respective nodes that it connects. Further, let
L(n) be the set of incident edges of node n, F (t) be the set of all functions (r, f)
with type t, and τ(r, f) be the type t of the f -th function of the request r. Note
that special cases, such as the subpath towards the final destination of a request,
are omitted to retain clarity. For possible values for the indices r, f, n, e, t, and
i, see Table 1.

∀r, f :
|V |∑

n=1

cr,f,n = 1 and
|R|∑

i=1

zr,f,i = 1 (2)

∀r, f, e : ar,f,e ≤
∑

x∈L(e1)\e

ar,f,x + cr,f,e1 + cr,f−1,e1

and ar,f,e ≤
∑

x∈L(e2)\e

ar,f,x + cr,f,e2 + cr,f−1,e2 (3)

∀r, f, n : cr,f,n ≤
∑

x∈L(n)

ar,f,x + cr,f−1,n

and cr,f−1,n ≤
∑

x∈L(n)

ar,f,x + cr,f,n (4)

∀n :
|T |∑

t=1

mt,n · tcpu ≤ ncpu (5)

∀e :
|R|∑

r=1

|E|∑

e=1

ar,f,e · rbw ≤ ebw (6)

∀t, n, i :
∑

(r,f)∈F (t)

mr,f,n,i · rbw ≤ tbw (7)

∀r :
|rc|+1∑

f=1

|E|∑

e=1

ed · ar,f,e +
|rc|∑

f=1

τ(r, f)d ≤ rd (8)

Hereby, Eq. 2 ensures that, for every requested function, there is exactly one
location and one instance assigned. Equation 3 ensures that the paths are con-
nected: for every incident node of a link e, there is at least one other link x in use,
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or the node is an endpoint of this subpath. With Eq. 4, all used instance locations
enforce the usage of an incident link, ultimately leading to another instance loca-
tion (or the request’s destination) with the above constraints. The set of Eqs. 5, 6,
and 7 respect the available CPU resources on nodes, the available bandwidth on
links, and the available computational power of instances, respectively. Finally,
Eq. 8 maintains the service level agreements with respect to the flows’ delays.

3.2 Approximation Algorithms

Approximation algorithms provide solutions with guaranteed quality bounds.
They are designed such that their results are provably within a multiplicative
(or sometimes additive) distance from the optimal solution. However, the approx-
imability of the VNFCP problem varies greatly with its details and assumptions,
such as the actual objective of the optimization and considered constraints. There
are only few publications in literature that propose an approximation algorithm
for the VNFCP problem in polynomial time (cf. Sect. 6).

Given their provable bounds, the evaluation of approximation algorithms
is primarily of analytical kind and deals with their worst case performance.
Assessing their expected, average performance by analytical means is difficult
as the definition of an expected problem scenario itself is unclear. However, they
can be evaluated by empirical means with respect to selected representative
problem characteristics from real world scenarios. Therefore, similar approaches
as described in Sect. 3.3 can be applied here as well.

3.3 Heuristics

Heuristic algorithms attempt to find sufficiently good solutions within feasible
computational efforts and time limits. These approaches vary greatly in applied
strategy, requirements, and runtime, and therefore, also in their results’ qual-
ity. Their underlying ideas include simple greedy heuristics, pre-calculation of
desired parameters, iterative improvements, relaxation of ILPs, fixing and opti-
mizing only parts of the whole problem, and finally meta-heuristics such as
simulated annealing and evolutionary algorithms. A selection of related work in
this category is presented in Sect. 6.

An empiric evaluation of heuristic algorithms is based on a comparison of
the resulting objective values with chosen reference solutions. The selection of
these references affects the expressiveness of the evaluation.

Comparison with other heuristics. When comparing two or more heuristic
algorithms, the main statement is which algorithm performs better than the
other with respect to the selected problem scenarios and objectives. However,
there is no meaningful quantitative estimation of the overall performance of
both algorithms without an independent reference point. Even with statements
such as “algorithm A performs x% better than algorithm B”, they could still
both be significantly worse than the optimal attainable value, which should be
reflected by the evaluation. In many cases, simple baseline algorithms are used for
the comparison, which further reduces its expressiveness. Nevertheless, as only
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heuristics are used, the scale of the evaluation is only limited by the algorithms’
capabilities, as opposed to the limitations of acquiring optimal references.

Ideal reference points. The ideal solution (or true Pareto frontier for multi-
objective problems) can be used to overcome the above issues. As it is not tied
to the used algorithm but only to the problem itself, it serves as an indepen-
dent representative for the investigated heuristics. However, obtaining these ideal
points is not trivial in itself. Exhaustive solvers as described in Sect. 3.1 are only
applicable for small problems due to their runtime, but the investigation of more
complex scenarios is usually more interesting. Hence, the generation of synthetic
problem instances with predefined optimal solutions is proposed in this work.
This enables an empirical evaluation of larger scaled problems with parameter-
ized characteristics. At the same time, the generation of such problems is tied
to predefined strategies and objectives. Two simple generation strategies are
presented in Sect. 4.

4 Synthetic Problem Generation

In general, there are two conceivable techniques for the generation of problems
with known solutions. On the one hand, the problem structure could be restricted
in such a way that, for an aware algorithm, the computation of solutions is facil-
itated significantly. An example for such a strategy is given by the grid graphs in
Sect. 4.1. On the other hand, the problem could be created in conjunction with,
or even based on, the actual solution instead of dealing with its acquisition sub-
sequently. This type of strategy is applied for the dynamic resource distribution
in Sect. 4.2.

In any case, the presence of solutions for a problem instance requires that
the objective is fixed beforehand. Consequently, most generation strategies are
tied to a specific objective. On the contrary, other characteristics of the problem
can be defined more flexibly. Having more parameters for the generation process
provides more control of the scale and difficulty of the problem, which helps to
reveal properties of the investigated algorithms.

However, in every meaningful performance evaluation, the results should be
reviewed with respect to the synthetic problem’s structure and its influence
on them. General statements are difficult to obtain from empirical evaluations,
but the observed behavior shall not only be caused by the choice of evaluation
scenario. Therefore, it can be supplemented by an independent evaluation with
different, smaller problem instances and optimal references obtained by an ILP,
such as in Sect. 3.

4.1 Grid Graph Problem

The grid graph problem (GGP) is designed to be a simple multi-objective place-
ment problem, minimizing both CPU utilization and number of hops simulta-
neously. Due to its simple structure, these measures are directly proportional to



90 A. Grigorjew et al.

the number of instances and the overall delay, respectively. Therefore, they may
be minimized here as well.

An overview of the graph’s layout is presented in Fig. 1. The positions of the
nodes are based on a grid layout. There are m source and destination nodes in
the network, located at the first and last stage of the graph, respectively. In each
of the the n intermediate stages, there are k nodes with computational resources.
Each node is only connected to its direct neighbors in the grid.

Fig. 1. Grid graph problem scenario.

The idea of this scenario is to define very similar traffic requests, with equal
properties except for their source and destination, and all traffic flowing into the
same direction. The requests include n different VNF types, one for each of the
inner stages. Each of them has the same properties, and a single instance of each
type is sufficient to satisfy all traffic requests. Each node in the n intermediate
stages can host exactly one instance. Each link in the network has the same delay
and sufficient bandwidth to support every request n+1 times. Finally, each traffic
demand requests all of the n VNFs in the same order and its maximum tolerated
delay allows it to visit all of them, regardless of their position.

In addition to the above parameters k, m and n, the load parameter ρ ∈
[0, 1] controls the amount of requests in the scenario, i.e., there will be ρ · m2

traffic demands generated with random choices from the m available source and
destination nodes. The dimensions of other measures, such as bandwidths and
CPU resources, may be tweaked as well if necessary.

Optimal Solutions. In this example, the optimal placement is computed after
the problem generation. The k horizontal rows of length n in the intermediate
stages are referred to as lanes. All Pareto optimal solutions place all of the n
functions in a straight lane, exactly in the order they are requested, from left
to right. This avoids the introduction of unnecessary hops. As this is a multi-
objective scenario, the CPU utilization is minimized as well, hence, all possible
numbers k′ ∈ {1, ..., k} of occupied lanes are tested. For each such k′, there are(

k
k′

)
possibilities for chosen lanes, thus, a total of 2k − 1 tests must be done.

The optimality of these solutions can be proved by contradiction: assuming
the use of an incomplete row of VNFs at some point, there must be additional
hops to reach the remainder of the requested service chain, which could have
been avoided otherwise. Due to the limited space, only the idea is outlined here
though.
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4.2 Dynamic Resource Distribution

The idea of the dynamic resource distribution is to decouple the generation of
the network graph from the traffic demands in order to enable a more versa-
tile evaluation. In particular, any graph can be used without restrictions on its
structure, including real topologies and randomly generated ones, however, the
available resources and link bandwidths are altered in the process.

The intended objective is to minimize the number of placed instances on the
graph. In its current implementation, the strategy is limited to a single VNF of
the same type for each request, however, improvements are planned for future
work. The generation process is comprised of the following steps.

1. Generate or choose an existing network topology.
2. Distribute a predefined number of instances on a predefined number of nodes

in the network.
3. Generate traffic demands with random source-destination-pairs until all

instances are fully used.
(a) Pick a random source-destination-pair from all node pairs.
(b) Pick one of the VNFs with remaining capacity that implies the smallest

detour from the shortest source-destination-path.
(c) Select the requested bandwidth for this traffic demand from a predefined

range. Ensure optimality by filling instances up: If the remaining capac-
ity of the instance would be too small to allow another traffic demand,
increase the bandwidth such that it is fully utilized.

(d) Define the maximum tolerated delay within a factor of the selected path’s
latency, e.g., the twofold.

4. Distribute sufficient CPU resources in the network such that all intended
instances can be placed. Add further resources to allow more variation from
the evaluated algorithms. This includes increasing existing resources as well
as adding new resources to previously unused nodes.

5. Define the link bandwidths such that all selected paths are supported. Mul-
tiply the required amount by a predefined factor to enable more versatile
results from the evaluated algorithms.

As evident from this process, the optimal solution is constructed in conjunction
with the problem. More accurately, it is defined in steps (2) and (3b). Optimality
of this problem-solution-pair is achieved by (3c), which ensures that all intended
instances are fully utilized, and therefore, this is the minimum required number.

Despite its flexible definition, the generated problems are currently limited in
variation with regard to requested VNF chains. The generation of longer chains
and the possibility to support more objectives will be investigated in future work.

5 Evaluation

In order to show the benefits of synthetic problem generation, the strategies from
Sect. 4 are demonstrated by means of a few examples. Therefore, the algorithms
from [2,3] are applied.
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Multi-Objective Quality Indicators. For the evaluation of multi-objective
problem scenarios such as the grid graph problem, all n obtained solutions
s1..n ∈ R

n are aggregated into a single quality indicator value q ∈ R and
compared directly. As this accompanies a loss of information, multiple types
of indicators that represent different performance aspects are usually used. In
this work, the hypervolume IH and epsilon indicator Iε are applied [4–6]. Hereby,
the hypervolume indicator measures the volume in the solution space enclosed by
the returned set and a reference point, while the epsilon indicator measures how
much a reference solution set (e.g., the real Pareto frontier) must be stretched
so it becomes worse than the evaluated set.

For a direct comparison with the optimal values, their ratio is computed.
Note that for the hypervolume, bigger values indicate a better performance,
while the opposite applies to the epsilon indicator. Hence, the indicator quotients
for heuristic solutions S and optimal solutions O are defined as follows.

QH(S,O) :=
IH(S)
IH(O)

; Qε(S,O) :=
Iε(O)
Iε(S)

(9)

Thereby, all values are within the range [0, 1], where 1 represents the optimal
performance with respect to this indicator.

5.1 Grid Graph Problem

With the GGP scenario, the effects of different parameters on the performance
of the MO-VNFCP algorithm [3] are investigated. Firstly, Fig. 2 contains the
resulting indicator ratios.

Fig. 2. Influence of GGP’s parameters on the placement quality of MO-VNFCP.

Note that, without the optima available for comparison, displaying the pure
indicator values in a similar way would be significantly less expressive. By
increasing the parameters of the scenario, the optimized problem instances differ
between two runs, and so does their difficulty. As the optima change in a similar
way, they are used to provide a relative view on the performance and a consistent
overall representation of attained quality.
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Figure 2a displays the influence of the number of traffic requests on the indi-
cator quotient. The load parameter ρ is increased from 0.2 to 0.8 with m = 20
source and destination nodes, resulting in ρ · m2 = 80 to 320 requests. The
parameters for the intermediate stages are k = 4 and n = 3. Both indicators
show a decreasing trend in quality values, however, the hypervolume is affected
stronger than the epsilon indicator, which implies that they indeed represent
different aspects of performance.

In Fig. 2b, the number of nodes in the intermediate stages is varied instead,
with k ∈ [3, 7] and n ∈ [4, 8]. This leads to an increased number of locations with
CPU resources available for the algorithm to choose from, but also increases the
length of the embedded VNF chains. The figure displays box plots which enclose
the first and third quartile of attained indicator values. The whiskers extend to
the furthest point, but at most to the 1.5-fold of their boxes’ height. Similarly to
before, increasing the scale of the problem leads to a decrease in solution quality
shown by both indicator types. However, increasing the intermediate nodes from
12 to 56 has a greater impact on both indicators compared to raising the num-
ber of requests from 80 to 320. This analysis helps to identify the algorithm’s
capabilities and shows opportunities for improvement.

5.2 Dynamic Resource Distribution

With the dynamic resource distribution scenario, the behavior of the algorithms
MO-VNFCP [3] and MSH (Multi-Stage Heuristic) [2] are compared. Note that,
while this scenario only considers the number of instances, both algorithms still
try to optimize other measures simultaneously, such as the number of hops. All
measurements were conducted on a real topology, namely the Germany graph [7].

Fig. 3. Feasibility ratios with different bandwidth multipliers.

As an initial quality measure, Fig. 3 displays the influence of the number
of traffic demands on the feasibility ratio (i.e., the relative amount of feasible
solutions within all optimization runs) for two different bandwidth parameters
with 95% confidence intervals. In Fig. 3a, the available link bandwidths were set
to the 1.5-fold of what the optimal solution required. Here, MSH did not return
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a feasible solution in most cases as it tends to congest links. For MO-VNFCP,
increasing the scale of the problem improved its solvability as with more traffic
requests there are also more available resources in the graph, allowing more
variation in the selected paths. In Fig. 3b, MO-VNFCP is always able to return
a feasible solution, while there is no significant dependency observable for MSH.
Its 95% confidence intervals range from 0.6 to 1.0 for multiplier 5.0. The following
measurements were also conducted with this configuration.

Fig. 4. Influence of problem parameters on the number of instances.

Figure 4 shows the number of used VNF instances in relation to the optimal
value. In Fig. 4a, the influence of the number of requests is shown. Interestingly,
the relative performance of the MSH improves significantly with larger problems.
This is caused by a broad distribution of instances by the heuristic, and its rela-
tive quality improves when the optimal placement also requires more instances.
On the other hand, Fig. 4b shows the dependency on the number of nodes with
available CPU resources. The more choices exist, the more difficult the problem
becomes, but the optimal number of instances stays the same. Hence, the relative
performance of the MSH deteriorates in this example. Figure 4 also shows that in
both cases, the performance of the MO-VNFCP heuristic was very close to the
optimal solution with no significant dependency on the investigated scale. Taking
its longer runtime into account, it presumably requires larger or more complex
scenarios to reveal its behavior, e.g., by adding more VNFs to the requested
chains.

6 Related Work

This section provides an overview of publications that deal with different aspects
of the VNFCP problem and focuses on the problem instances that are used
for the quality assessment of the proposed algorithms. Furthermore, we present
works that discuss methodologies for generating synthetic problem instances
whose optimal solutions are known beforehand.
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6.1 VNF Chain Placement

In [8], the authors provide one of the first formal problem statements for the
VNFCP. Their evaluation is performed on a network comprised of four core
routers, five switches, and 10 edge nodes. Since an ILP-based approach is utilized,
optimal results are obtained. Unfortunately, such approaches can not be applied
to large problem instances due to the fact that the solution space of the VNFCP
grows exponentially.

For this reason, the authors of [9,10] propose heuristics in addition to ILP-
based algorithms. As they analyze only a subset of all possible placements, these
heuristics are capable of handling large problem instances. As a downside, they
provide no guarantees with regard to the optimality of returned solutions. In
order to evaluate the heuristics, the authors generate synthetic topologies using
the Barabási Albert (BA) model [11] with up to 1,000 nodes and randomly
generated demands. In a similar fashion, both an ILP-based approach as well as
a heuristic are proposed in [12]. However, only a small network of 12 nodes and 3
function chains is considered. In [3], a multi-objective approach is used to handle
conflicting objectives. A set of solutions is continuously improved similarly to
the simulated annealing approach. The results are evaluated by comparing them
with those of another heuristic from literature, by means of three real-world
topologies and artificial demands.

In contrast to optimizing the placement of all demands simultaneously, Bari
et al. [2] propose an algorithm that adds newly arriving demands to the current
placement and instantiates new instances on demand. The evaluation is per-
formed on real world networks whose size ranges from 12 to 79 nodes. Similarly,
Sahhaf et al. [13] consider the dynamic scenario and evaluate their algorithm
using two network graphs from the Internet Topology Zoo [14].

Rather than addressing the entire VNFCP, [15,16] address subtasks like rout-
ing of demands or mapping and scheduling them to existing VNF instances,
respectively. Both approaches work in the dynamic scenario. While the former
uses different graph generation models like BA or Waxman [17], the latter does
not require a topology due to the assumption that delays between nodes are
negligible. Furthermore, demand arrivals follow a uniform distribution and are
composed of random permutations of available VNF types.

In summary, most works in literature use either synthetic or real world graphs
in conjunction with artificial demand sets in order to evaluate their proposed
VNFCP heuristics. However, in the context of large problem instances, optimal
solutions can not be determined and thus, a quantitative statement regarding
the performance of heuristics is not possible.

Approximation Algorithms. A special case is provided by the few approxi-
mation algorithms in this context [18,19]. They prove deterministic bounds for
their results and may therefore omit the empirical evaluation of their algorithms.

6.2 Synthetic Problem Generation

In many areas of optimization, synthetic problem instances are used in order
to perform algorithm benchmarks and tweak their performance [20–22]. To the
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best of our knowledge, there are no corresponding frameworks for the VNFCP,
yet. However, Virtual Network Embedding (VNE) problems [23,24] overlap with
the VNFCP in terms of the chaining and placement aspects, and algorithms
for problem generation are researched in a recent publication [25]. Its authors
develop mechanisms for both static and dynamic scenarios whose solution is
known beforehand. Since it is possible to change the number of network nodes,
requests, and resources, algorithms can be analyzed in terms of aspects like
scalability and behavior under different load levels.

7 Conclusion

In order to fully benefit from the flexibility of Network Function Virtualization,
algorithms that tackle the arising optimization problems, in particular the Vir-
tual Network Function Chain Placement problem, are required. Despite the large
number of recent publications in this area, there is no commonly accepted stan-
dard approach yet. Therefore, an unbiased methodology for the evaluation and
comparison of VNFCP algorithms is necessary to obtain meaningful statements
on their performance.

This work presents an overview of the VNFCP problem, followed by possible
strategies for its solution. Different concepts towards their evaluation are dis-
cussed, and the importance of optimal solutions for their comparison is empha-
sized. In particular, an Integer Linear Program is proposed to obtain optimal
reference solutions for small problems, along with artificial problem generation
strategies with known optima for the assessment of larger topologies.

Two strategies are implemented to demonstrate the applicability of the con-
cept. Their evaluation shows the influence of problem parameters on the algo-
rithms’ performance and provides valuable insights for their improvement. How-
ever, it also reveals current limitations. Hence, future work will include the
extension of existing strategies to use more complex function chains, and the
support for more objective functions. Nevertheless, by using artificial problems,
the expressiveness of performance assessments can be raised significantly with
regard to parameterization and absolute solution quality.
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Abstract. The increasing penetration of software-defined communica-
tion networks with centralized control has made network management
a highly demanding task. Common monitoring approaches in the con-
text of such convoluted high-speed networks have become a serious chal-
lenge in terms of complexity and resource management. Management
functions rely on monitoring information such as the flow size distri-
bution (FSD), to perform crucial activities such as load balancing and
resource provisioning. In this paper, we propose a solution as to how one
can utilize limited monitoring resources to estimate the FSD for distinct
flows characterized by origin-destination pairs. We provide a method to
dynamically adapt placement of monitoring units with some extracted
knowledge about the change in FSD’s with time.

1 Introduction

With the rise of software-defined networking (SDN), logically centralized net-
work management and control have become a de facto standard architecture in
communication networks. SDN enables segregation of the data plane from the
control plane by separating switching and forwarding tasks from the higher con-
text control decisions, such as routing and processing monitoring information.
This results in a higher network flexibility and performance as well as a more
efficient network management.

Network monitoring is an important component that feeds information into
the SDN controller for decision-making. This is presented in Fig. 1, which depicts
a logically centralized controller collecting monitoring information from different
switches across an SDN network. The collected data may include packet counts,
loss rates, packet timestamps among other information. Traffic monitoring can
provide valuable insights on the timing and size of data flows, i.e., estimates of
the flow size distribution (FSD) across the network. Before we elaborate upon
usefulness of FSD estimation, it should be noted that there exist alternative
definitions of FSD. Flow size can be characterized in terms of bytes, packets,
or time-length. For our experiments, we have used the time-length definition
of FSD.

c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 99–112, 2018.
https://doi.org/10.1007/978-3-319-74947-1_7
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The estimation of flow size distributions does not only play a role in Software-
defined networks but also in the context of automated embedding of virtualized
service function chains. Network function virtualization promises an embedding
of virtual service functions that basically replace middleboxes and other tradi-
tional network functions in a softwarized way. Virtual network functions (VNF)
are hence embedded on top of commodity hardware and may be connected
through SDN slices such that network resources, now also in terms of func-
tions, can be pooled, scaled, and migrated. The continuous optimization of this
embedding, i.e., the mapping of network functions to physical resources, and
hence including function migrations and scaling depends largely on the knowl-
edge of the network state. This enables central entities, denoted as orchestrator,
to control such networks of virtual function chains. Here, monitoring the flow
size distribution as well as further VNF metrics is essential for network resource
optimization algorithms.

In addition to the above, FSD estimation enables adaptive traffic engineering,
DDoS attack detection as well as developing billing models. However, monitoring
can introduce considerable overhead on the data plane switches, and on the
concerned SDN controllers too. As evident from Fig. 1, collecting monitoring
information from all switches all the time leads to accumulation of both valuable
and redundant information. The problem of handling this monitoring overhead
is aggravated not only by the size of the network but also by the dynamics of
the traffic flows.

In this work, we study extraction of the FSD from network traffic given a lim-
ited amount of monitoring resources, i.e., a limited number of vantage points. We
consider a restricted number of monitoring points to capture the impact of the
overhead that arises with monitoring an increasing number of SDN switches.
Here, we make use of the information on flow routing on top of the network
graph to place a limited amount of monitors on the available SDN switches.
These “monitors” can either be logically persistent tasks that are devolved to
some SDN switches or simply the SDN switches that are polled continuously by
the controller. These monitors are placed to minimize the estimation error of the
FSD. In addition, given that network flows are known to possess dynamics on
different time scales, we investigate the problem of adapting the placement of
monitoring points in an SDN network with time. Here we probe/learn from the
observations made by the placed monitors about the “importance”/contribution
of the monitoring units to the estimates. Based on that we rearrange the moni-
toring units to maximize the precision of the estimation, which is measured by
the Bhattacharyya Distance, a metric of divergence between the estimated and
actual FSD.

The remainder of the paper is structured as follows: In Sect. 2 we discuss
related work on the estimation of the FSD in communication networks before
introducing the problem of static and dynamic monitor placement to obtain
the FSD estimates in Sect. 3. Subsequently, simulation results are presented in
Sect. 4 and our contribution has been summarized in Sect. 5.
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Fig. 1. Sketch of acquiring monitoring information in SDN.

2 Related Work

In this section we discuss related work on monitoring in centrally controlled
networks such as SDN and orchestrated virtualized service function chains. We
particular discuss the estimation of the flow size distribution in communication
networks. The architecture of SDN provides the possibility for traffic engineer-
ing and DDoS detection based on monitoring tasks that are devolved to network
switches. In this work we are concerned with so called passive probing tech-
niques [1–3] which, in essence, do not inject probing traffic into the network
to infer about its characteristics. Here, we rather passively observe the network
state through polling the state on the SDN switches, which can be achieved
through polling packet counters [4–6]. Extracting the monitoring information
from SDN switches can also be based on offloading tasks to switches as in [7,8].
In contrast to previous works we are not particularly investigating how the SDN
switches can be polled to extract information but rather which SDN switches
need to be polled to obtain an accurate monitoring result - in this case - an
estimate of the flow size distribution. In addition to its value for SDNs, moni-
toring is essential for orchestrated virtual service function chains. Here, network
Function Virtualization (NFV) promises the deployment of network functions
on platforms usually built of commodity hardware [9–11]. Here, auto-embedding
frameworks [12,13] for virtual network slices take monitored network informa-
tion to automatically assign resources to deployed network functions. Here too,
estimates of the FSD can play an important role in optimizing the placement of
such network functions on different physical network substrates.

It is well known that estimation of the FSD is a data intensive procedure.
Most of the literature is consequently oriented towards estimating the FSD by
sampling. Flow sampling was shown to be more effective than packet sampling
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in the seminal work in [14]. Later, a more refined approach called dual sampling
described in [15] was shown to outperform previous approaches. However, the
temporal aspect of FSD estimation has not been well studied. Recently, while
discussing network traffic characteristics of data centers in [16,17], authors briefly
mention that the FSD can reasonably vary depending upon when and where we
monitor the flows in the network. In this paper, we focus on addressing this
aspect of FSD in the context of flow monitoring in an SDN enabled network.
Note that positioning of monitoring units is a crucial part of this process, as
increased presence of monitors entails undesirable load on the controller and
additional cost. On monitor positioning, our static approach is similar to that of
[18] as described in Sect. 3. However, we adapt our monitor positioning at certain
intervals as described in Sect. 3. In addition, we focus on the FSD in terms of
flow length and observe the entire flow until it finishes.

3 From Monitor Placement to Estimates
of the Flow Size Distribution

In this section, we formally describe the problem of placing monitors in a com-
munication network topology for the estimation of the FSD before elaborating
on our resource positioning and the temporal placement adaptation strategy.

3.1 Problem Formalization

A snapshot at time t of a given network topology can be described as a collec-
tion G(V,E, Ft), where the set of vertices V = {1, 2, 3, .., N} denotes the set of
nodes existing within the network, E denotes the edge set, a subset of the set of
unordered pairs from V , and set of flows is defined as: Ft = {f t

1, f
t
2, ..., f

t
nt

}, where
nt is the number of flows present in the network at time t. A typical element of
Ft can be expressed as f t

j = {a1, a2, ..., ak;T t
j } with {a1, a2, .., ak} ⊆ {1, 2, .., N}

and T t
j ≤ t. That is at time t, we have a directed flow f t

j that originated from
a1 at time T t

j with destination ak and it passes through the path a2, a3, ...; in
that order. In Fig. 2 we provide an example of such a snapshot and list out
corresponding flows.

Since we consider controllers tasked with placing monitors on network nodes,
we further assume the routing protocol is known and there are M available mon-
itoring units to be placed at certain nodes in the network. In an SDN setting
this corresponds to controllers devolving monitoring tasks on switches while in
an Network Function Virtualization setting this corresponds to an orchestra-
tor placing monitors on virtual function chains. In this work we consider that
these monitoring units examine flows passing through them and are capable of
discerning between flows with different origin-destination labels and/or origina-
tion time. Through these monitoring units, we try to infer about the flow size
distribution for specific sender-receiver pairs of nodes, which we express as dis-
tribution of flow lengths in time. To emphasize, flows are defined in this work in
a generic fashion, i.e., given header information flows can be identified using the
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Fig. 2. Snapshot of a network topology at a particular time t with 9 nodes {A,B, ..., I}
and 9 active flows. A dark solid edge denotes connectivity between two nodes whereas
colored dashed arrows represent the 9 flows. {G,H,A; tl} is one such flow with origina-
tion time tl ≤ t. Note that flows {A, I,E; tm} and {A, I,E; to} with the same sequence
of incident nodes {A, I,E} are distinguishable by their origination times tm and to,
respectively.

standard 5-tuple. The framework also applies (with less computational complex-
ity) to aggregated form identified only using sender/destination addresses. Our
objective is to minimize the divergence between our estimate of the FSD and
the actual FSD for all active flows. We aim to achieve this through the following
heuristic algorithm:

– Identify active flows within the network and allocate resources to ensure max-
imum monitoring coverage.

– Adapt to changing flows as fast as possible. A specific resource placement
remains in force only for a necessary time required to obtain a good estimate
for the corresponding FSD.

We describe this algorithm in detail in the following subsections. We empha-
size that the second step is more crucial due to the fact that the flow size distri-
bution naturally changes over time.

3.2 Static Placement at a Fixed Time

Placing monitoring units in a network can be shown to be equivalent to the
set-cover problem where the flows represent elements and the nodes can be
thought as relevant subsets. This is known to be NP-complete. We adapt a
greedy algorithm for finding the maximal cover, to our context. To this end, we
define following quantities: number of flows passing through a node at time t
and the corresponding set of flows.
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Definition 1. Given network topology G(V, Ft) at time t, number of flows
passing through the node i, is defined as f(i | Ft) =

∑
ft
j∈Ft

1(i ∈ f t
j ) for

i ∈ V, Ft = {f t
1, f

t
2, ..., f

t
nt

}.
Definition 2. Given network topology G(V, Ft) at time t, the set of flows passing
through node i, is defined as C(i | Ft) = {f t

j ∈ Ft : i ∈ f t
j}; i ∈ V, Ft =

{f t
1, f

t
2, ..., f

t
nt

}.
We note that the direction of a flow only helps us distinguish it from the rest
and barely has any implication when it comes to monitoring. Thus, with the
objective of maximizing the number of flows covered, we should sequentially
place the monitors at ‘busy’ nodes, as described in the following algorithm.

Algorithm 1. Placement algorithm (Greedy) at a fixed time t

Input : Network topology G(V, Ft), number of monitoring units M
Output: Set of monitoring nodes P ∗ ⊂ V such that |P ∗| ≤ M

P ∗ = ∅, A = ∅, k = 1;
while A �= Ft and k ≤ M do

a = arg maxj∈V \P∗ f(j|Ft \ A);
P ∗ = P ∗ ∪ {a};
A = A ∪ C(a|Ft \ A);
k = k + 1;

end

In essence, Algorithm 1 seeks to maximize coverage with resources at its
disposal sequentially. At the outset, it identifies the node incident with maximum
number of active flows and places the first monitor there, ensuring all the flows
passing through it (and originating from/ending at it) are covered. In the next
step, the algorithm focuses on the residual flows and finds the node incident with
the maximum number of residual flows, thereby maximizing the total number
of flows covered so far. The same operation is carried out iteratively until we
exhaust all our monitoring units or the flows in the network. At any step, if we
have more than one candidate node to place our monitor, we pick one uniformly
at random. We also provide an illustration of Algorithm 1 in Fig. 3.

Under the usual assumption of shortest path routing with edge weights repre-
senting the capacities of the links, the overlay network is defined as the collection
of shortest path trees (SPT). It is noteworthy that in absence of multiple flows
between the same sender-receiver pair, the performance guarantee of the first
monitoring unit is closely related to highest betweenness centrality of the over-
lay network.

3.3 Adapting Monitor Placement with Time

As flow composition changes over time, ideal placement of monitoring units
changes as well. This demands a rearrangement of the placed monitoring units.
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Fig. 3. We start with the snapshot mentioned in Fig. 2 and with 2 monitors to place. We
see that I is incident with maximum number of flows (5) and by placing a monitor at I
we are left with 3 residual flows. Thereafter, A and G both have 2 flows passing through
them and we randomly pick A. Since we have exhausted our monitoring resources, we
can’t monitor {G,D}.

Again, to estimate the FSD with a certain level of precision, we need to keep
these units stalled for a certain period of time to gather requisite amount of flow
size samples. In this work, we measure the precision of the estimation using the
Bhattacharyya distance between the estimated and the actual distribution as
defined in the Appendix. The distance assumes zero value when the estimated
distribution coincides with ground truth and higher value indicates greater dis-
similarity.

Further, even with the same set of flows through the network, we need to
update our estimate of the FSD owing to its temporal shifts. Hence, we move
through a cycle of probing and estimation phases as sketched in Fig. 4. In the
probing phase, we discover flows present in the network and accordingly decide
on the placement of monitors using Algorithm 1. Note that with M monitors,
it takes 	N/M
 phases to probe all nodes in the network. At the end of each
estimation phase, we estimate the FSD of all incident flows through the monitors,
where the time-length required for the estimation is defined in Definition 3.
Note that, in one estimation phase, we do not take observations from previous
estimation phases into consideration as they might already be stale. However,
information gathered over the estimation phase is utilized for probing as well,
as highlighted through the decreased number of probing slots in Fig. 4.

Definition 3. Given prior knowledge of m possible candidates for FSD,
{F1, F2, ..., Fl},Xj ∼ Fj; essential time to estimate FSD is defined as time
required to observe pth quantile of Xj , j ∈ {1, 2, ..., l} in the worst case, i.e.,
T ({F1, F2, ..., Fl}, p) = maxi∈{1,2,...,l} E(Xi)/(1 − p),
where the last expression follows from Wald’s Identity mentioned as Lemma 1
in the Appendix.

The definition above is based on the idea that until the time we observe a value
beyond a large quantile, it is expected that we observe lower quantiles meanwhile.
Hence, the sample observed would be representative of the population. The less
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we observe, the more prone the method becomes to losing out higher quantiles.
It is, of course, more useful to observe longer. However, in the context of flow
changes and temporal variation in the FSD’s, we need to keep updating the
gathered estimates. Hence we wait for a defined essential time before making
rearrangements, to come up with a relevant estimate. Note that the observation
obtained until this essential time leads to an unbiased estimate only when the
actual FSD does not change within the observation window. To deal with this,
one may discard undesired samples within this window by using change detection
principles [19], discussed further in Sect. 4.3.

Fig. 4. Successive phases of probing and estimation. Initially, �N/M� probing rounds
are required to probe the whole network. In later phases, we can use data from esti-
mation phase to reduce required number of rounds by 1. Length of estimation phase is
determined by Definition 3.

4 Numerical Evaluation

In this section, we discuss the used evaluation setup before presenting numerical
results that show the strength of our FSD estimation algorithm. We measured
the performance of our approach first in terms of coverage and then by showing
the divergence of the estimated FSD from the ground truth.

4.1 Evaluation Setup

We simulate the underlying network topology as an Erdös-Rényi graph G(n, p),
with parameters n = 20, 50, 100 and p = 0.4, 0.8. Recall that p > log(n)/n
asymptotically guarantees connectedness. After ensuring connectedness, we sim-
ulate edge-weights independently as uniform distributed U(0, 1). We subse-
quently find the shortest-path tree corresponding to each source node using
Dijkstra’s algorithm and form the overlay routing trees, denoted as G∪SPT (n).

Given the topology, we simulate flows within the network for a discretized
time interval of 1−200 s. At each time point, we uniformly choose a certain
fraction of the 2

(
n
2

)
sender-receiver pairs to be active and initiate a flow in

the corresponding routing path in G∪SPT (n). The length of the flow (in time)
is simulated using a shifted Poisson distribution (P), where the parameter of
the distribution varies over time according a Markov Chain with a diagonally
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dominated transition matrix. This is done to reflect the change in FSD over
time with a reasonable amount of stickiness. In our case, E(P ) ∈ {1, 2, 3} and
thus expectation of actual flow length L = 1 + P , belongs to the set {2, 3, 4}.
This is to ensure that we do not include zero as a valid flow length. Thus, we
have the simulated flows in the network at each time point. For computational
simplicity, we assume that at a given point in time, all the sender nodes use the
same Poisson parameter to generate a flow. Note that a flow generated at time t
with length k persists till time t+k− 1 and we assume our monitoring units are
capable of distinguishing this from other flows between the same sender-receiver
pair initiated in the meantime using the standard 5-tuple of sender/receiver IP
address and ports as well as the protocol identifier.

4.2 Performance of Adaptive Flow Size Distribution Estimation

We present in Fig. 5 sample illustrations that compare our strategy (denoted in
the following figures as greedy) to (i) a random placement algorithm and (ii)
to the policy where we place monitors at the nodes with highest betweenness
centrality. We again highlight that for greedy strategy, available monitoring units
are placed according to Algorithm 1 and incident flows are observed for a time
period determined using Definition 3. At the end of estimation phase, we again
probe and accordingly rearrange the monitors as highlighted in Fig. 4. Note
that the rearrangement of monitoring units takes place at the same interval
for the random placement scheme as well. This is because the third strategy is
agnostic of the flows in the network and hence the placement remains static.
Strategies are compared in terms of the fraction of flows covered over time.
Note that Fig. 5 compares strategies only in terms of flow coverage over time
and thus focuses more on the efficacy of monitor placement. Effectiveness of
the ‘greedy’ strategy becomes more conspicuous as we have greater number
of monitoring units in place. The accuracy of FSD estimation for the greedy
strategy is further presented in Fig. 6. For our simulations, we have explored the
effect on performance for following factors:

– The number of nodes n in the network. We take n ∈ {20, 50, 100}.
– Connectivity of the underlying network characterized by the edge probability
p of G(n, p). For our simulations, p ∈ {0.4, 0.8}.

– Flow probability q between a given sender-receiver pair. We choose q ∈
{0.2, 0.4, 0.7} to denote moderate, high and very high regimes of traffic.

– Number of available monitoring units. We have simulated for {1, 2, ..., 10}.

Next we illustrate the divergence from the ground truth FSD for a ran-
domly chosen sender-receiver pair that has an active flow. This is dependent on
the flow probability as it dictates the number of flows we observe before one
(re)arrangement. Further, it is also influenced by the assumptions of flow struc-
ture and hence, the amount of time we wait before rearranging. Note that while
calculating the distance, we use the distribution used to simulate flows at the
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Fig. 5. Performance comparison of positioning strategies in very high flow regime.
Simulation setting: n = 100, p = 0.4, q = 0.7. Our strategy is marked as ‘greedy’ in
the legend. Advantage of ‘greedy’ strategy becomes noticeable as we tend to increase
number of monitoring units.

beginning of a phase as ground truth. The corresponding Bhattacharyya distance
has been plotted in Fig. 6. As mentioned in Sect. 3.3, the smaller the value of the
distance, the closer the estimated FSD is to the actual FSD. Instances of higher
distance may be due to distribution shifts occurring in the middle of an estima-
tion phase, which does not let resulting sample remain a true representative of
actual FSD anymore.

We further investigate the incremental benefit with an increasing number
of monitoring units under different parameter conditions. Figure 7 shows the
incremental benefit of placing an additional monitor through box plots where
the underlying variable of interest is the fraction of flows in the network covered
over time.
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Fig. 6. Bhattacharyya distance vs. the estimation phase number m. Simulation settings
n = 100, p = 0.4, q = 0.4. Higher distance corresponds to less proximity between the
estimated flow size distribution and the ground truth. Increasing Battacharyya distance
can be attributed to distribution shifts within an estimation phase.

Fig. 7. Incremental benefit in terms of coverage by placing r−th monitor with r ∈
{1, 2, ..., 10}. Simulation setting: n = 100, p = 0.4, q = 0.4. Benefit accrual rate starts
to diminish beyond a certain point as the next ‘busiest’ node tends to get considerably
less ‘busy’.

4.3 Discussion

As apparent in Fig. 6, the divergence of the estimated FSD from the actual FSD
is high for some estimation phases. This is due to the fact that the actual FSD
changes in between causing inclusion of samples from different distributions.
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We are aware that our estimation algorithm is precise only when distribution
shifts do not occur in between rearrangements. A good way to get around this
problem would be to detect regime shift as described in [19] and discard the
samples beyond the detected change point. In general, this approach has the
possibility of ending up with too little samples. A further open question is find-
ing a performance guarantee for Algorithm 1, especially in presence of multiple
monitors.

5 Conclusion

In this work, we explored a method for time adaptive monitor placement in
centrally controlled communication networks such as SDN, for estimation of the
FSD. In centralized networks, network control relies on monitoring information
like the FSD to perform certain activities, such as traffic engineering and resource
provisioning. However, an increased amount of monitoring for information accu-
mulation inevitably entails significant overhead, especially when monitoring data
is gathered from all switches in the network. In this work, we proposed a method
for utilizing a limited number of monitoring resources to estimate the FSD for
distinct flows in SDNs. Further, we provided a method to dynamically adapt the
placement of monitors with time using extracted knowledge about the change in
FSD’s with time. Our results show that adapting the monitoring placement with
time yields better performance than static centrality based monitoring placement
when the number of monitors increases. In case of small number of monitors,
static centrality based methods yield comparable results, which we contribute
to the structure of the shortest path routing. Finally, we show decreasing incre-
mental benefit of placing additional monitoring units in the network.
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Appendix

Lemma 1. Wald’s Identity [20]: Suppose for a sequence of real-valued ran-
dom variables {Xn} and nonnegative integer-valued random variable N following
conditions hold,

1. E[| Xn |] < ∞,
2. E[Xn1(N ≥ n)] = E[Xn] · P (N ≥ n),∀n and
3.

∑∞
n=1 E[Xn1(N ≥ n)] < ∞.

Then, the random sums SN :=
∑N

n=1 Xn and TN :=
∑N

n=1 E[Xn] are integrable
and E[SN ] = E[TN ]. Additionally, if
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4. E[Xn] = E[X1] ∀n and
5. E[N ] < ∞
E[SN ] = E[N ] · E[X1].

In our case, X ′
is are i.i.d according to a distribution F with finite mean and

N is the time to observe p−th percentile of F . Hence, E[Xn ·1(N ≥ n)] = E[Xn ·
1(X1 < F−1(p), ...,Xn−1 < F−1(p))] = E[Xn] · E[1(X1 < F−1(p), ...,Xn−1 <
F−1(p))] = E[Xn] · P (N ≥ n), owing to independence of X ′

is. Condition (3)
is satisfied as the summands form a geometric series with n−th term being
E[X1] · pn. Thus, E[SN ] = E[X1] · E[N ] = E[X1]/(1 − p).

Definition 4. Bhattacharyya Distance: Bhattacharyya distance between two
probability mass functions (pmf) p and q over same domain X, is defined as
D(p, q) = − log (

∑
x∈X

√
px · qx).

Compared to the popular metric Kullback-Leibler divergence, this distance is
defined even when empirical pmf assigns zero mass to a point that belongs to
the support of actual or hypothesized distribution.
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Abstract. The software defined networking (SDN) paradigm has
numerous benefits for network operators, including cost aspects, flex-
ibility, and programmability. Using the SDN approach of a separated
control and data plane, the controller can order the installation of flow
rules in the switches it manages, e.g., via FlowMod messages in case of
the OpenFlow protocol. Since the processing time of these messages has
a direct impact on the reaction time of the network, it is a key perfor-
mance indicator for switches and quantifying it in a reliable manner is
required for ensuring state consistency between the control and the data
plane. Furthermore, real world deployments not only consist of different
data plane hardware, but may feature varying control plane delays.

Hence, in this work, we investigate the impact of such a delay on the
FlowMod processing time of OpenFlow switches. Firstly, we identify a
significant heterogeneity between data plane hardware in terms of pro-
cessing times as well as the underlying TCP-level behavior. Secondly, we
show that despite this heterogeneity, combining switch specific informa-
tion with delay measurements at the controller can be used to reliably
infer FlowMod processing times.

We confirm our results with measurements in a dedicated testbed
that is comprised of three different hardware switches, three different
SDN controllers, and several high precision measurement devices.

Keywords: OpenFlow · FlowMod · Transmission delay · SDN

1 Introduction

Background. Several aspects of today’s networks are affected when the
paradigm of software defined networking (SDN) is employed. In addition to
the separation of control and data plane, the SDN architecture is character-
ized by a logically centralized control plane. The latter is achieved by migrating
control plane functionality from the network devices to a dedicated controller,

c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 113–126, 2018.
https://doi.org/10.1007/978-3-319-74947-1_8
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i.e., software that runs on commercial off-the-shelf (COTS) hardware. The two
planes communicate via protocols like OpenFlow [1], which implement the open
southbound API [2].

Goal. Prior to migrating their network to an SDN-based deployment, operators
need to assert that the resulting network meets the performance requirements
for the particular use case. On the one hand, such requirements include data
plane aspects like packet forwarding speed. On the other hand, control plane
performance characteristics such as the processing time of FlowMod messages in
OpenFlow switches play an important role. In our previous work [3], we investi-
gate different approaches for assessing these processing times during the network
run time. These include measurements within the SDN controller module, packet
dumps on the controller host, as well as measurements from dedicated wiretaps
that are placed in the network. However, even a dedicated control plane chan-
nel might be subject to latency in a real world deployment. Consequently, the
goal of this work consists of analyzing the impact of control plane delay on the
FlowMod processing times and the estimation accuracy of proposed methods.

Key insights. Firstly, our experiments show that given knowledge regarding
the current control plane delay and switch hardware, it is possible to accurately
infer the time until FlowMods are active in the data plane of the switch. Sec-
ondly, we observe that the limited buffer size of many hardware switches leads
to TCP flow control behavior that significantly reduces the throughput of Flow-
Mod messages and thus, the time until flow rules are installed. Finally, we show
that the controller implementation can also have a significant impact on the per-
formance w.r.t. the flow setup time due to different sending and packetization
behavior.

Testbed. We obtain our results in a dedicated testbed with three different
hardware switches and three different SDN controller implementations. In these
measurements, we use wiretaps as well as the Spirent C1 testing platform and
traffic generator to ensure a reliable ground truth with high precision.

The remainder of this work is structured as follows. We discuss related work in
Sect. 2. In Sect. 3, the possible communication schemes for exchanging OpenFlow
FlowMod messages are presented alongside the testbed setup and the resulting
measurement options. Measurement results are covered in Sect. 4 and 5 concludes
the paper.

2 Related Work

This section covers two main areas of related work. On the one hand, approaches
for evaluating the performance of different aspects and components of an SDN
architecture are presented. On the other hand, an overview of mechanisms for
identifying and addressing the heterogeneity of SDN switches is provided.

Techniques for testing SDN-based networks in a holistic fashion are discussed
in [4]. Before addressing the long term goal of integrated tests, it is necessary to
understand the behavior of the individual network elements, i.e., controllers and
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switches. In an effort to provide means to test switch behavior with respect to
compliance with the OpenFlow protocol specification, the authors of [5] present
the OFTest suite. In contrast to this work, they focus on functional testing rather
than performance tests.

The study conducted in [6] features a dedicated hardware traffic generator
in order to test the data plane performance of Linux-based OpenFlow switch-
ing. In a similar setup, the authors of [7] investigate the characteristics of virtual
switches and underlying virtualization techniques. In both works, the main inter-
est lies in the data plane performance of the different switch implementations.
This work, on the other hand, investigates the control plane performance of
OpenFlow-enabled switches under varying network conditions.

OFLOPS [8] is a software framework for testing OpenFlow switch perfor-
mance in the data plane as well as in the control plane. Its extension, OFLOPS-
Turbo [9] is capable of 10 GbE traffic generation and utilizes the open-source
NetFPGA-based OSNT [10] traffic generator and capture system. In contrast,
we focus on the processing time of FlowMod messages in order to assess the
effects of control plane delays on the resulting performance.

Analytical approaches like [11,12] investigate the influence of different net-
work parameters on the performance of an OpenFlow architecture. Since such
models are often based on measurements, the accuracy of these measurements
also positively affects the quality of the resulting models. Therefore, one key
aspect of our analyses is the accuracy of the available measurement mecha-
nisms. A methodology for assessing the accuracy of measurements in the SDN
context is presented in [13]. In addition to measurements performed by an SDN
controller module, wiretaps installed at both ends of a communication channel
serve as a means of providing the ground truth. This technique is also applied
in the experiments that are conducted during the course of this work.

Several previous works highlight the heterogeneity of SDN switch hardware in
terms of functionality, performance, and OpenFlow protocol compliance [14,15].
Unexpected or unreliable behavior such as additional delays and inconsistency
between control and data plane pose several risks with respect to security as well
as correct forwarding behavior. Hence, this heterogeneity needs to be taken into
account for proper planning and design of real world deployments.

Some aspects of the heterogeneity, e.g., OpenFlow protocol compliance, are
addressed by approaches such as TableVisor [16] and FlowConvertor [17] that
introduce abstraction layers to translate given OpenFlow messages to device
specific directives that take into account the behavior of individual switch hard-
ware. While their focus is on maintaining functional homogeneity, we address
the performance aspect. Finally, methods for data plane verification and con-
sistency checks between data and control plane are proposed in [18]. However,
rather than focusing on the identification of faulty switches, we are interested in
performance prediction.
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3 Methodology

In this section, two mechanisms for sending FlowMod messages from an SDN
controller to OpenFlow switches are presented. Furthermore, we provide an
overview of the experimental setup alongside measurement parameters and the
configuration of the hardware that is used.

3.1 Mechanisms for Sending FlowMod Messages

There are two types of methods that are used for installing OpenFlow rules in a
switch: asynchronous and synchronous or addFlowAsync and addFlow, respec-
tively. In the first case, every FlowMod is followed by a BarrierRequest, and the
next FlowMod is sent to the switch if and only if the corresponding BarrierReply
has already been received and thus, the controller is informed that the previous
FlowMod is successfully installed. On the other hand, the addFlowAsync mech-
anism generates a set of FlowMod messages and sends only one BarrierRequest
afterwards. The difference between the two mechanisms is illustrated in Fig. 1,
together with the measurement parameters that are considered in this work.

Fig. 1. Asynchronous and synchronous methods for adding flows to an Openflow
switch.

On the left side of Fig. 1, tg represents the time that the controller needs to
generate n FlowMod messages in case of addFlowAsync and tb is the duration
between BarrierRequest and BarrierReply. The time between the first FlowMod
and the last BarrierReply indicates how long it takes the switch to finish setting
up n rules and is denoted as ts in both cases. Finally, tfP denotes the time
difference between the first FlowMod message and the first data plane packet
that is forwarded by the switch according to the last FlowMod it received. This
verifies that the corresponding flow entry is actually installed in the data plane
of the switch.
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Note that ts > tfP can occur in real systems due to two reasons. On the one
hand, the BarrierReply message is subject to the delay between the switch and
the controller. On the other hand, switches may already have installed flow rules
in their data path prior to actually sending the corresponding BarrierReply. Both
of these scenarios may lead to the BarrierReply arriving after the first packet is
already forwarded in the data plane.

3.2 Testbed Setup

In order to investigate the impact of transmission delay on the estimation of
FlowMod message processing times, experiments are performed in a testbed
that is set up according to Fig. 2. In addition to a computer1 which runs the
SDN controller that is connected to an OpenFlow switch, two dedicated hosts2

act as traffic source and traffic sink.
Furthermore, a computer with two 1 Gbps network interface cards (NICs)

runs Ubuntu 16.04 and emulates the transmission delay in both directions, i.e.,
from the switch to the controller and vice versa. The red lines indicate links
with delay, which is set via the tc command3. A Net Optics tap device4 is
inserted between the controller and Netem PC with the purpose of mirroring all
traffic that passes through the corresponding link to the monitoring machine, an
HP Proliant DL32 server. This server is equipped with an Endace DAG (Data
Acquisition and Generation) 7.5G2 card, which has 2 Gigabit Ethernet ports, to
capture every incoming packet.

Fig. 2. Logical testbed setup.

1 Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz/16 GB RAM.
2 Intel(R) Core(TM)2 Duo CPU E8500/4G RAM.
3 sudo tc qdisc add dev [interface] root netem delay [delayValue].
4 http://www.ixiacom.com/products/ixia-gig-zero-delay-tap/.

http://www.ixiacom.com/products/ixia-gig-zero-delay-tap/
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Three different controllers are utilized in this work. Firstly, the latest version
of the Python-based Ryu controller5 is used in conjunction with an additional
module that allows the generation of FlowMod messages according to the two
aforementioned methods. Secondly, a module with similar function is built for
the Java-based OpenDaylight controller6. Finally, the Spirent C1 testing plat-
form7 with the OpenFlow Testing Package allows emulating an SDN controller.
Furthermore, the Spirent C1 is capable of emulating the traffic source and sink,
simplifying the testbed setup.

In this work, a total of three OpenFlow switches are used. Their specifications
are displayed in Table 1. Previous work [14] has already demonstrated that in
addition to pure hardware specifications, the fill level of the TCAM also has
an impact on FlowMod processing times. During our measurements, we were
able to confirm this behavior. However, we omit the detailed results since in this
paper, we focus on the network delay between switch and controller.

Table 1. Switches used in this work.

Switch CPU Memory Flow table size Software

Pronto 3290 MPC8541
825MHz

512MB 3840 PicOs 2.0.14 (Open vSwitch
v1.10.0)

Quanta T1048 MPC8541
825MHz

1024MB 2046 PicOs 2.6 (Open vSwitch
v2.3.0)

NEC Pf5240 PowerPC
667MHz

1024MB 2816 OS-f3PA v5.0.0.1

3.3 Experiment Procedure

At the beginning of each measurement, the OpenFlow table in the switch is
guaranteed to be empty. This is achieved by sending corresponding FlowMod
messages to the switch before starting an experiment. Then, the controller sets
up basic rules for exchanging ARP packets between the traffic source and sink.
Later, these rules allow the traffic to be forwarded correctly to the destination
without additional interaction with the controller. After that, another rule for
dropping all packets that do not match any entry in the OpenFlow table of the
switch is installed. Doing this prevents interference with the controller’s perfor-
mance due to an enormous number of PACKET IN messages being forwarded
to it. Meanwhile, the traffic source sends UDP traffic to the specific UDP port of

5 http://osrg.github.io/ryu/, v4.18.
6 https://www.opendaylight.org/software/downloads/hydrogen-base-10, Hydrogen

release.
7 http://www.spirent.com/Test-solutions datasheets/Broadband/PAB/

Spirent TestCenter/STC C1-Appliance Datasheet, Spirent TestCenter Application
v4.69.986.

http://osrg.github.io/ryu/
https://www.opendaylight.org/software/downloads/hydrogen-base-10
http://www.spirent.com/Test-solutions_datasheets/Broadband/PAB/Spirent_TestCenter/STC_C1-Appliance_Datasheet
http://www.spirent.com/Test-solutions_datasheets/Broadband/PAB/Spirent_TestCenter/STC_C1-Appliance_Datasheet
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the traffic sink using the Iperf8 software. However, the packets can not reach the
traffic sink due to the lack of a matching entry in the switch and are dropped.
Afterwards, the controller generates either a batch of FlowMods followed by a
BarrierRequest message or a series of alternating FlowMod and BarrierRequest
messages. In both cases, the last FlowMod matches the aforementioned UDP
traffic.

The results are collected by means of several approaches. Firstly, capture files
are obtained by running a packet analyzer in the controller during the experi-
ment, such as tcpdump or the Spirent C1’s capture tool. The second approach
relies on reports that are generated by the controller modules. Finally, the com-
bination of wiretap devices and the DAG card offers the capability to capture
and analyze packet timestamps at nanosecond precision.

4 Results and Discussion

In this section, we present the results of the experiments that are described in
Sect. 3. First, we demonstrate the heterogeneous of different hardware switches.
This is achieved by comparing the FlowMod processing times of different
switches when installing different numbers of flows and applying different
amounts of control plane delay. Afterwards, we show that using prior infor-
mation on the hardware specific characteristics and controller-based delay mea-
surements, it is possible to achieve a high degree of correlation between the flow
setup time, ts, and the time until flow rules are active in the data plane, tfP .
This outcome highlights that reliable estimations of tfP are possible at run time.
Finally, we present results regarding the impact of the controller implementation
on the FlowMod processing time.

Note that we omit results regarding the synchronous addFlow mechanism
due to the fact that each flow rule is affected by the delay between switch and
controller, resulting in non viable total delays even for small round trip times.

4.1 Impact of Switch Hardware

The two graphs of Fig. 3 highlight the individual behavior of the three switches
that are used in this work with respect to their sensitivity to parameters such
as the amount of control plane delay and the number of flows that are installed.
Their x-axes represent the control plane delay that is set in each direction
between switch and controller, i.e., a value of 10 ms corresponds to a round
trip time of 20 ms. The y-axes denote the flow setup times ts and tfP that
are recorded by means of the wiretap devices and are represented by dashed and
solid lines, respectively. Finally, differently colored curves correspond to different
switches. For each parameter combination, five experiment runs are performed in
order to construct 95% confidence intervals that are indicated with error bars.
The results in the figures are based on measurements with the OpenDaylight
controller. Experiments with the other two controllers yield qualitatively similar
results and are discussed in Sect. 4.2.
8 https://iperf.fr/.

https://iperf.fr/
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Fig. 3. Influence of the control plane delay on the FlowMod processing time when
using different switches and different numbers of flows. Scenario details: OpenDaylight
controller and addFlowAsync mechanism.

Figure 3a displays results from experiments in which a total of 100 Flow-
Mod messages are sent to the switch via the addFlowAsync mechanism, i.e.,
100 FlowMods are followed by one pair of BarrierRequest and BarrierReply
messages. Three observations can be made. First, the three switches operate at
different time scales. With processing times that are lower than 500 ms for all
delay values, the Pronto switch consistently outperforms the other two switches
in this scenario. Second, the sensitivity of the switches towards the control plane
delay varies significantly, as indicated by the different slopes of the individual
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curves. Consequently, the NEC switch achieves lower values of tfP than Quanta
in scenarios with a low delay, whereas the Quanta switch is least affected by the
increasing delay and gives better results for delays that are larger than 40 ms.
Third, while the NEC and Pronto switch send their barrier reply after having
installed all flow rules into the data plane, i.e., ts > tfP , the Quanta switch sends
out the confirmation before the rules are active. Hence, a window of inconsistency
of up to half a second can occur if the controller is unaware of this behavior.

Increasing the number of installed flows to 1800 exposes additional differ-
ences between the switches. The corresponding results are shown in Fig. 3b. For
all switches, the increased number of FlowMod messages that need to be pro-
cessed results in larger setup times. Furthermore, the high delay sensitivity of the
NEC switch is even more pronounced in this scenario, with setup times ranging
from 5 to over 20 s. In the case of the Quanta switch, a significant increase of
the installation time is observed for delay values larger than 60 ms. Combined
with the premature barrier reply message, this can be a major threat to state
consistency. Only the Pronto switch is able to maintain nearly constant ts and
tfP values for all delay settings. The differences in terms of performance between
the three switches could stem in part from the heterogeneity of the hardware (cf.
Table 1) as well as from vendor specific implementations of various features in
the used firmware. Consequently, these differences in combination with inter-
nal queues of varying size inside the switches also affect the sending behavior
of the controller which adheres to TCP. Therefore, the corresponding rate con-
trol mechanisms can lead to lower transmission rates, which ultimately leads to
higher flow setup times.

While the wiretap-based measurements that are presented in the previous
figures demonstrate the differences between the hardware switches, there is a
high pairwise similarity between ts and tfP values. We use this relationship to
derive a mechanism that can be used to infer tfP from information regarding
the particular switch model that is in use and measurements at the controller.
These measurements include tcpdump on the controller machine to obtain ts
and a simple round trip time measurement like ping to determine the control
plane delay.

For each of the three switches, the graphs in Fig. 4 show the measurement of
the flow setup time ts at the controller on the x-axis and the actual time until
the first data plane packet tfP at the wiretap on the y-axis. Differently colored
dots denote different control plane delays.

In Fig. 4a, results that are obtained when installing 100 flow rules are dis-
played. Although the times that are recorded for the three switches have sig-
nificantly different ranges, a high linear correlation between ts and tfP can
be observed. Hence, using switch-specific information regarding its sensitivity
towards control plane delay in conjunction with round trip time and ts measure-
ments is sufficient for an accurate estimation of the flow installation time in the
data plane.
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Fig. 4. Flow setup time ts recorded at the controller and time to first data plane
packet tfP recorded via the wiretap for the three different switches. Scenario details:
OpenDaylight controller and addFlowAsync mechanism.

Similar results are obtained in case of the installation of 1800 flow rules, as
presented in Fig. 4b. While the NEC switch has the highest setup and processing
times, it also has the most consistent behavior and an almost perfect linear
correlation. Except for few outliers, the Pronto switch also shows a high degree
of correlation, even with the increased number of flows. Finally, the Quanta
switch produces outliers for high control plane delays. Nevertheless, this behavior
is observed consistently - qualitatively as well as quantitatively - in multiple
repetitions of our experiments, as indicated by clusters of dots in the scatter
plot. Therefore, this switch-specific characteristic can also be taken into account
by the controller when making predictions regarding the data plane state.

Summarizing, our findings show that using simple controller-based measure-
ments in combination with switch properties that can be determined prior to
deployment can be used for performing accurate prediction of the FlowMod
installation time in the data plane of OpenFlow switches.
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Fig. 5. Impact of the controller choice on flow setup times for different numbers of
installed flows. Configuration details: NEC switch and addFlowAsync mechanism.

4.2 Impact of Controller Choice

While the previously shown results focus on the peculiarities of different data
plane hardware, this section is devoted to the influence of the controller imple-
mentation on the performance. To this end, experiments with the NEC switch are
conducted with three different controllers. The NEC switch has been selected
due to the stability of observed setup times in the results above. The three
controllers include the Java-based OpenDaylight controller, the Python-based
Ryu controller, as well as the controller implementation that is provided by the
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OpenFlow Testing Package of the Spirent C1. In case of the OpenDaylight and
Ryu controller, the same host machine is used to ensure that the results are not
affected by a heterogeneity of the underlying hardware. The graphics in Fig. 5
show ts and tfP values for different numbers of flows on the y-axis and the con-
trol plane delay on the x-axis. Differently colored lines correspond to the three
controllers.

When 100 flows are installed, the majority of confidence intervals in Fig. 5a
overlap. This indicates that for control plane delays that are larger than 10 ms,
no statistically significant difference between the three controllers can be iden-
tified. In the case of control plane delays that are lower than 20 ms, using the
OpenDaylight controller leads to setup times of roughly 0.23 s as opposed to
setup times of roughly 0.34 s that are observed for Ryu and the Spirent-based
controller.

These phenomena are even more pronounced in the case of 1800 flows.
Figure 5b shows that using the OpenDaylight controller leads to consistently
faster flow setup times than Ryu and Spirent. Differences between 1 and 2 s are
observed for setup times that range between 4.7 and 21.6 s.

The aforementioned results indicate that the controller is not merely a gener-
ator of FlowMod messages but can also affect the performance. In-depth analyses
of the corresponding packet dumps show that the sending behavior of the Open-
Daylight controller and the corresponding packetization of OpenFlow messages
differs from the other two controllers. Hence, controller developers should be
aware of such mechanisms in order to adapt to switch capabilities and opportu-
nities to improve the overall performance.

5 Conclusion

In this work, we investigate the influence of control plane delay on the perfor-
mance of OpenFlow switches in terms of their FlowMod processing time. Our
testbed setup features hardware from NEC, Quanta, and Pronto as well as three
different SDN controller implementations. These include the Java-based Open-
Daylight controller, the Python-based Ryu controller, and the controller imple-
mentation that is available in the OpenFlow Testing Package of the Spirent C1
platform. Additionally, we use wiretap devices in order to obtain highly precise
measurements.

The contribution of this work is threefold. Firstly, we confirm the heterogene-
ity of OpenFlow switching hardware. This includes not only varying processing
times but also different degrees of sensitivity towards the control plane delay
between controller and switch. In particular, the latter is not only affected by
common hardware specifications such as the CPU rate and amount of RAM,
but also by details like queue sizes that can lead to TCP rate control phenom-
ena. Secondly, we demonstrate that switch-specific characteristics that can be
extracted prior to deployment can be used in conjunction with simple measure-
ments at the controller in order to accurately predict the data plane state and
performance of switches. Such a prediction mechanism can significantly reduce
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the window of inconsistency between an SDN controller and the switches it
manages. Finally, we show that implementation details of the SDN controller
can also have an impact on the overall FlowMod processing performance due to
sender-side behavior. This leads to optimization potential that can be taken into
account by both, controller developers who want to improve the general perfor-
mance of their controller as well as network operators who want to maximize
compatibility and reliability of the components in their particular network.

Several directions for future work are available. On the one hand, the impact
of dynamically fluctuating control plane delays can be analyzed. Depending on
the amount and frequency of the fluctuation, the measurement frequency at the
controller needs to be adapted. On the other hand, more in-depth analyses of
the packet dumps might reveal different classes of switch-side behavior that can
be used to infer more generic and robust models.
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Abstract. Motivated by a data center setting, we study the problem
of joint dispatching and server sleep state control in a system consisting
of two queues in parallel. Using the theory of Markov decision processes
and a novel lookahead approach, we explicitly determine near-optimal
control policies that minimize a combination of QoE costs, energy costs,
and wear and tear costs due to switching. Guidelines are provided as to
when these combined policies are most effective.
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Markov decision processes · Lookahead techniques

1 Introduction

Server clusters comprise the core of modern data centers and cloud computing
systems. Stochastic queueing models, such as multiserver systems with a central
queue or distributed systems consisting of multiple parallel servers with their own
queues, are suitable for the performance analysis of such systems [11]. Traditional
mechanisms for their control include job scheduling and dispatching (a.k.a. task
assignment). In a distributed system, the dispatcher decides to which server an
arriving job is routed, and the local scheduler decides on how the service capacity
of the server is dynamically shared among its jobs.

When optimizing the control of such queueing systems, an important measure
is the response time, i.e., the total delay of a job. Typical objectives related
to the delay performance are minimization of the mean response time or its
tail probability. However, in current computing systems, a significant additional
factor is energy efficiency [1]. It is not enough to optimize the delay performance,
but one should also take into account the energy aspect. Both dispatching and
scheduling decisions affect not only the delay performance but also the energy
efficiency. An additional dimension in this joint control problem is related to the
sleep states of servers. One should decide on when to put a server into a sleep
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mode and when to wake it up again. While sleeping tends to reduces energy
costs, it has a negative effect on the delay performance, since, after the wake-up,
there is typically a relatively long setup time before the server is back in full
operation. In addition, the more often a server is switched on and off, the more
vulnerable to failures it becomes.

In this paper, we consider distributed systems consisting of multiple parallel
servers with their own queues. The servers are assumed to apply the First Come
First Served (FCFS) scheduling policy. Our goal is to develop near-optimal joint
control policies for dispatching and sleep state control of servers when the trade-
off between delay performance and energy efficiency is described by a composite
objective function. Our approach is based on the theory of Markov decision
processes (MDPs) [25]. More precisely said, we apply the policy improvement
method and combine it to a lookahead technique [13]. We demonstrate that
the combination of these control mechanisms can yield significant savings, in
particular when the system is under moderate load.

2 Related Work

While queueing theory has been applied for decades to evaluate the performance
of computing systems, Chen et al. [2] and Sledgers et al. [26] were the first to
use queueing models to study the problem of energy-aware control of server
clusters. Since then, energy-aware multiserver systems with a central queue have
been analyzed in many papers [4–6,18–20,23,24]. However, the optimal control
problem in such energy-aware multiserver systems has proved difficult. Exact
solutions have been found for the single server case [5,8–10,16], but with multiple
servers only structural properties of the optimal policy are obtained [17].

For static dispatching policies (such as Random Routing), the analysis of
energy-aware distributed systems consisting of multiple parallel servers with
their own queues is straightforward, since the parallel queues can be analyzed
separately. However, dynamic policies (such as Join the Shortest Queue) are
mathematically tractable only under restrictive assumptions. Moreover, exact
optimality results are scarce, being available only for some specific setups. Near-
optimal solutions for dispatching problems have been developed by applying
the policy iteration approach from the theory of Markov decision processes
[12,25,28]. Such an approach has been utilized for composite objective functions
that take into account the performance-energy trade-off [14,15,22].

With respect to sleep state control in a multiserver setting, it has been
observed in [5,7] that putting servers to sleep aggressively can be harmful. If
a server is turned off e.g., immediately when it becomes idle, energy costs may
be saved in the short term, but significant response time degradation may result,
in particular when setup times are significant. They suggest that an idle server
waits a period of time before being put to sleep. They choose a state-independent
timer for this wait and design a dispatching policy that takes this sleep state con-
trol mechanism into account. In [21], it is shown that dispatching and sleep state
control of this form is optimal (simultaneously minimizes mean response time
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and energy costs) in a many-servers asymptotic regime. In contrast, we allow the
sleep state control to be state dependent, considering the joint control problem
in an MDP framework. Consistent with [5,7,21], we see that gains can be made
by conscious turn off decisions, but for the small system that we consider, we
further identify system parameters under which such gains are significant.

3 Joint Control Problem

Consider a distributed computing system consisting of two parallel FCFS servers
with their own queues. The servers are assumed to be homogeneous, i.e., they
have the same service rate. Service times of jobs, denoted by X, are assumed
to be independent and generally distributed with finite first two moments. Jobs
arrive according to a Poisson process with rate Λ. The load per server is denoted
by ρ = ΛE [X] /2. For stability, we assume that ρ < 1. Each job is dispatched to
one of the two servers upon its arrival. The dispatching decisions are assumed
to be dynamically controllable, i.e., they may depend on the state of the system.

The servers are assumed to be energy-aware, and there are four different
operational states for the servers: (i) busy, (ii) idle, (iii) off, and (iv) set up. A
server is busy when it is processing jobs. As soon as the service of all available
jobs is completed, the server becomes idle. The server remains idle as long as
one of the following events takes place. Either a new job is dispatched to it, in
which case the server becomes again busy and starts serving the new job, or the
switch-off timer (associated with the idle server) expires, in which case the server
is immediately switched off. The length of the switch-off timer, denoted by τ ,
is assumed to be dynamically controllable. If the switch-off timer expires, the
server remains off until a new job is dispatched to it, at which time the server
is switched on (set up). After a setup time, the server becomes again busy and
starts serving the jobs waiting in its queue. Setup times of servers, denoted by
D, are assumed to be independent and generally distributed with finite first two
moments. In particular, we are, however, interested in the case where the setup
times are deterministic, D = d. When busy or set up, the power consumption of
a server is e [watts], but when idle, its power consumption is ε [watts], which is
assumed to be less than e, i.e., ε = γe, where γ < 1. In the sequel, we will use e
as our power unit. When off, a server does not consume any power. In line with
[5], such an energy-aware server is called DelayedOff. Special cases are NeverOff
(τ → ∞) and InstantOff (τ = 0).

The cost structure comprises both QoE and system specific cost components
including both energy and switching costs. The QoE metric in our model is the
mean response time E [T ]. Note that, due to the well-known Little’s formula,
minimizing the mean response time is equivalent to minimizing the mean total
number of jobs in the system, E [N ] = ΛE [T ]. Energy costs are related to the
mean total power consumption E [P ], and switching costs take into account wear
and tear costs of switching a server off and on. More precisely, we assume that
the mean cost rate of the whole system is given by

r = rT + rP + rS = E [N ] · cT + E [P ] · cP + ΛS · cS , (1)
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where ΛS denotes the aggregate switch-on (and off) rate of the two servers. The
constants (cT , cP , cS) map each component to a common unit.

Now the problem is to find a joint dispatching and sleep state control that
minimizes the mean cost rate (1). Dispatching decisions are made when new
jobs arrive, and the sleep states are controlled when a server becomes idle or a
new job arrives. We allow dynamic control that is based on the current state of
the system, together with the service time of the arriving job if we are about to
make a dispatching decision. We assume that the state of a server is described by
its virtual backlog, switch-off timer value, and energy state. The virtual backlog
u refers to the time needed to complete the service of all jobs currently in the
system (without any new arrivals). If the server is busy, the virtual backlog is
just the ordinary backlog, i.e., the sum of remaining service times, but if the
server is in set up, it also includes the remaining setup time. For an off or idle
server, the virtual backlog equals 0. The current value of the switch-off timer,
t, refers to the time that the server has been (continuously) idle, 0 ≤ t ≤ τ .
In the following section, we tackle this optimal control problem by the policy
improvement method combined with the lookahead technique.

4 Policy Improvement and Lookahead

For the policy improvement method, we need a basic control policy that can
be analyzed explicitly. Such a policy is attained if we apply random routing
to dispatching and deterministic switch-off timers for the sleep state control.
In this paper, we choose uniform routing probabilities (1/2 for each server) so
that the load is balanced, which is a reasonable basic dispatching policy. As a
result, there are two independent single-server queues with Poisson arrivals at
rate λ = Λ/2. We need to derive (for each queue i) the so-called relative value
function vi(ui, ti) − vi(0, 0), which gives the difference in the mean accumulated
costs if the system starts from states (ui, ti) and (0, 0), respectively, where ui

refers to the virtual backlog and ti the switch-off timer value of server i. Formally,
the value function is defined as

vi(ui, ti) := lim
t→∞E [Ci(ui, ti, t) − rit] , (2)

where Ci(ui, ti, t) denotes the costs queue u incurs during time (0, t) when ini-
tially in state (ui, ti), and ri is the mean cost rate of queue i. The relative
value function for the DelayedOff M/G/1-FCFS queue is derived in Sect. 5. In
addition, we assume that the sleep state control of the basic policy is such that
server 1 is an ordinary NeverOff server (τ1 → ∞) and server 2 is an energy-aware
InstantOff server (τ2 = 0), which is a reasonable compromise for all traffic load
situations.

Below we show how to improve this static (i.e., state-independent) basic pol-
icy by developing a dynamic control policy that utilizes the state information.
We start from the dispatching decisions. For the sleep state control, we con-
sider separately two different cases: first the case when a server becomes idle,
and thereafter the case when a server is already off and a new job arrives. For
simplicity, the results in this section are given for deterministic setup times d.
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4.1 Improving Dispatching Decisions

Recall first that the basic policy assumes that server 1 is NeverOff (τ1 → ∞) and
server 2 InstantOff (τ2 = 0). Thus, the state of server 1 is completely described by
the virtual backlog u1 (which, in this case, is the same as the ordinary backlog).
From Proposition 1 (presented and justified in Sect. 5), we get its relative value
function:

v1(u1) − v1(0) =
λu2

1

2(1 − ρ)
cT + u1(1 − γ)cP . (3)

On the other hand, to describe the state of server 2, it is enough to specify the
virtual backlog u2 and indicate whether the server is switched off (s) or running
(r), i.e., in set up or busy. From Proposition 1, we again get the corresponding
relative value function:

v
(r)
2 (u2) − v

(s)
2 (0) =

λu2
2

2(1 − ρ)
cT +

u2

1 + λd

[
cP − λcS − λd(2 + λd)

2(1 − ρ)
cT

]
. (4)

The dispatching decisions of the static basic policy can be improved by choos-
ing the server i for which the expected admission costs ai(ui, x) are minimized,
where x denotes the service time of the arriving job. The expected admission
costs can be calculated as follows. For server 1, we have

a1(u1, x) = (u1 + x)cT + v1(u1 + x) − v1(u1)

=
(

u1 + x +
λx(2u1 + x)

2(1 − ρ)

)
cT + x(1 − γ)cP ,

and, for server 2, we have

a
(r)
2 (u2, x) = (u2 + x)cT + v

(r)
2 (u2 + x) − v

(r)
2 (u2)

=

(
u2 + x +

λx(2u2 + x)

2(1 − ρ)

)
cT +

x

1 + λd

(
cP − λcS − λd(2 + λd)

2(1 − ρ)
cT

)
,

and a
(s)
2 (0, x) = cS + a

(r)
2 (0, d + x), obviously, as one switching cost is saved. In

each case, it is easy to identify the immediate cost consisting of the response
time of the new job and the possible switching cost cS .

4.2 Lookahead for Server Switch-Off

The static decision to switch server 2 off whenever it becomes idle is obviously
suboptimal. Next we apply the lookahead technique to tackle this [13].

Suppose that server 1 has backlog u1 when server 2 becomes idle. By default,
we would switch server 2 off at this point. However, we can consider the following
two alternative actions:

A: Switch server 2 off immediately and route the next job, given it arrives
before time τ , to server 1.
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B: Keep server 2 running idle for time τ hoping that a new job arrives soon,
which would then be routed to server 2.

In both cases, after time τ , we return back to the default routing and switch-off
policies. In general, τ is a free parameter less than u1.

With these, one can compute in closed-form the expected cost of the alter-
native actions, denoted by dA and dB , respectively,

dA =

∫ τ

0

Λe−Λt

[
(cP − r)t + (u1 − t + E [X])cT + E [v1(u1 − t + X)] + v

(s)
2 (0)

]
dt

+ e−Λτ ((cP − r)τ + v1(u1 − τ) + v
(s)
2 (0)),

dB =

∫ τ

0

Λe−Λt

[
((1 + γ)cP − r)t + E [X] cT + v1(u1 − t) + E

[
v
(r)
2 (X)

]]
dt

+ e−Λτ (((1 + γ)cP − r)τ + v1(u1 − τ) + v
(s)
2 (0)).

Then we choose to keep server 2 idle if that action yields a smaller expected
cost, dA − dB > 0.

As time passes without an arrival, u1 gets smaller, and the benefits from
keeping server 2 running idle become smaller. This suggests that we can consider
a differential time step. In particular, we find that

f(u1) := lim
τ→0

dB − dA

τ

=
λ

1 − ρ

(
(ρd(2 + λd))

1 + λd
+ 2u1

)
cT +

2λρ(d cP + cS)
1 + λd

− (1 + 2ρ)γ cP ,

and then solving f(u1) = 0 yields the critical backlog above which server 2 can
be kept idle instead of being switched off,

u∗
1 =

1 + ρ − 2ρ2

2λcT
γ cP − ρ(2(1 − ρ)(d cP + cS) + d(2 + λd)cT )

2cT (1 + λd)
.

Note that u∗
1 depends only on the first moment of the service time distribution.

Moreover, the second term is always negative, and therefore if ε = 0, i.e., γ = 0,
then u∗

1 < 0, which suggests that it is preferable to keep server 2 on, which of
course makes sense if idling incurs no energy costs.

Alternatively, one can determine the critical energy cost denoted by c∗
P above

which server 2 should be switched off.

c∗
P =

λ

γ(1 + 2ρ)(1 + λd) − 2ρλd

(
2ρcS +

2u1(1 + λd) + dρ(2 + λd)
1 − ρ

cT

)
,

and in the special case of ε = e, i.e., γ = 1, we have

c∗
P =

λ

1 + λd + 2ρ

(
2ρcS +

2u1(1 + λd) + dρ(2 + λd)
1 − ρ

cT

)
.
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Numerical Example. Let us next assume unit service time, E [X] = 1, unit
response time cost, cT = 1, unit setup delay, d = 1, and no switching costs,
cS = 0. Moreover, the energy cost in busy/setup states is cP = 1, and in the idle
state γcP , where γ ∈ {0.5, 1}. Server 1 has backlog u1, and server 2 becomes
empty. Then we vary the offered load ρ and evaluate when one should keep
server 2 running. The results are depicted in Fig. 1(a). We can see that as the
load increases, the critical backlog decreases eventually becoming zero, i.e., if
the system is heavily loaded, then the response time costs starts to dominate
(cf. the knee in the response time curve).

Fig. 1. Dynamic switch-off policies when cP = 1, cT = 1, cS = 0 and γ ∈ {0.5, 1}
(left). Dynamic switch-on policy resulting from the lookahead analysis (right).

4.3 Proactive Switch-On of Servers

A similar lookahead analysis can be performed for a system in state (u1, 0),
where server 2 has been switched off. As u increases, at some point it may be
beneficial to switch server 2 back on, as the next job most likely ends up there.
Perhaps the most elementary lookahead action to consider in this case is the
action that switches server 2 on and routes the next job there unconditionally.
This is a simple decision, and, e.g., server 1 may empty meanwhile and we keep
then both servers running idle until the next job arrives. Carrying out a similar
analysis and solving for the critical energy cost rate, we get

c∗
P =

λ
(
e−2λd − (2 − ρ)

)
(γ − (1 − γ)λd)

(
e−2λd + ρ

)
+ 2λd

cS

+
(1 + λd)

(
λd

(
e−2λd + ρ

)
+ e−2λu1 − 1 + 2λu1

)
− λd (1 − ρ) + 1 − e−2λd

2(1 − ρ)
(
(γ − (1 − γ)λd)

(
e−2λd + ρ

)
+ 2λd

) cT .

Numerical Example. Figure 1(b) shows the keep running and proactive switching
on decisions for with E [X] = 1, ε = 1, cS = 0, d = 1, cT = 1 and u1 = 5.
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5 Value Function for an Energy-Aware Single
Server Queue

In this section, we consider a generic DelayedOff M/G/1-FCFS queue with
arrival rate λ, generally distributed service times X, deterministic switch-off
timer τ , and generally distributed setup times D. We assume a stable system,
i.e., ρ = λE [X] < 1.

Our purpose is to derive the relative value function v(u, t) − v(0, 0), where
u refers to the current virtual backlog and t the current value of the switch-off
timer, 0 ≤ t ≤ τ . Thus, either u, t, or both are zero. The reference state is the
renewal point when the server becomes idle and the switch-off timer starts to
count towards τ .

We start by giving the mean number of jobs E [N ] , the mean power consump-
tion E [P ] , and the mean switch-off rate λS for this DelayedOff M/G/1-FCFS
queue, which are derived, e.g., in [8]:

E [N ] = ρ +
λ2

E
[
X2

]
2(1 − ρ)

+
λ(2E [D] + λE

[
D2

]
)

2 (λE [D] + eλτ )
, (5)

E [P ] =

(
λE [D] + ρeλτ

)
+ γ(1 − ρ)

(
eλτ − 1

)
λE [D] + eλτ

, (6)

λS =
λ(1 − ρ)

λE [D] + eλτ
. (7)

Similarly as for the whole system in (1), the mean cost rate for the single server
queue consists of three terms,

r = rT + rP + rS = E [N ] · cT + E [P ] · cP + λS · cS . (8)

The value function v(u, t) is also a composite function consisting of three
corresponding terms,

v(u, t) = vT (u, t) + vP (u, t) + vS(u, t). (9)

Proposition 1. For a DelayedOff M/G/1-FCFS queue, the components of the
relative value function v(u, t) − v(0, 0) are as follows:

vT (u, t) − vT (0, 0) =
1

2(1 − ρ)

(
λu2 − (2E [D] + λE

[
D2

]
)
(
λu + 1 − eλt

)
λE [D] + eλτ

)
cT ,

vP (u, t) − vP (0, 0) =

(
(1 − γ)eλτ + γ

)
λu − (γ − λE [D] (1 − γ))

(
eλt − 1

)
λ (λE [D] + eλτ )

cP ,

vS(u, t) − vS(0, 0) = − λu + 1 − eλt

λE [D] + eλτ
cS .

Proof. 1◦ Let us start with the response time related costs. By (5) and (8), we
get

rT = E [N ] · cT =

(
ρ +

λ2
E

[
X2

]
2(1 − ρ)

+
λ(2E [D] + λE

[
D2

]
)

2 (λE [D] + eλτ )

)
cT . (10)
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1.1◦ Assume first u > 0 and t = 0 so that the server is busy or in set up.
Let Bu denote the length of the resulting “busy period”, i.e., the time needed
to decrease the virtual backlog from u to 0. In addition, let Nu denote the total
number of jobs that arrived during that time, and E [T1 + . . . + TNu

] the sum
of their expected response times. By considering a separate M/G/1 queue with
arrival rate λ where the service time of the first customer of each busy period
equals u but for the other customers the service time follows the distribution of
X, we get easily (see, e.g., [27])

E [Bu] =
u

1 − ρ
, (11)

E [T1 + . . . + TNu
] =

1
2(1 − ρ)

(
λu2 + 2ρu +

λ2
E

[
X2

]
u

2(1 − ρ)

)
.

Now, for the value function at state (u, 0), from (2), we have

vT (u, 0) = E [T1 + . . . + TNu
] cT − E [Bu] rT + vT (0, 0),

which implies, by (10) and the previous expressions, that

vT (u, 0) − vT (0, 0) =
1

2(1 − ρ)

(
λu2 − (2E [D] + λE

[
D2

]
)λu

λE [D] + eλτ

)
cT .

1.2◦ Assume now that u = 0 and 0 ≤ t ≤ τ so that the server is idle or off.
For the value function at state (0, 0), we clearly have

vT (0, 0) = E

[∫ t

0

λe−λs (−srT + XcT + vT (X, 0)) ds

]
+ e−λt(−trT + vT (0, t))

= −1 − e−λt

λ
rT + (1 − e−λt)(E [X] cT + E [vT (X, 0)]) + e−λtvT (0, t).

By (10) and the result of 1.1◦, we get, after some manipulations,

vT (0, t) − vT (0, 0) =
(2E [D] + λE

[
D2

]
)
(
eλt − 1

)
2(1 − ρ)(λE [D] + eλτ )

cT .

2◦ Let us now consider the energy related costs. By (6) and (8), we get

rP = E [P ] · cP =

(
λE [D] + ρeλτ

)
+ γ(1 − ρ)

(
eλτ − 1

)
λE [D] + eλτ

cP . (12)

2.1◦ Assume again first that u > 0 and t = 0. Let Bu denote the same “busy
period” as in 1.1◦ so that (11) holds. For the value function at state (u, 0), we
have

vP (u, 0) = E [Bu] (cP − rP ) + vP (0, 0),

which implies, by (12) and the previous expression, that

vP (u, 0) − vP (0, 0) =

(
(1 − γ)eλτ + γ

)
u

λE [D] + eλτ
cP .
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2.2◦ Assume now that u = 0 and 0 ≤ t ≤ τ . For the value function at state
(0, 0), we clearly have

vP (0, 0) = E

[∫ t

0

λe−λs (s(γcP − rP ) + vP (X, 0)) ds

]
+ e−λt(t(γcP − rP ) + vP (0, t))

=
1 − e−λt

λ
(γcP − rP ) + (1 − e−λt)E [vP (X, 0)] + e−λtvP (0, t).

By (12) and the result of 2.1◦, we get, after some manipulations,

vP (0, t) − vP (0, 0) = − (γ − λE [D] (1 − γ))
(
eλt − 1

)
λ (λE [D] + eλτ )

cP .

3◦ Consider finally the switching costs. By (7) and (8), we get

rS = λS · cS =
λ(1 − ρ)

λE [D] + eλτ
cS . (13)

3.1◦ As before, assume first that u > 0 and t = 0. Let Bu denote the same
“busy period” as in 1.1◦ and 2.1◦ so that (11) holds. For the value function at
state (u, 0), we have

vS(u, 0) = −E [Bu] rS + vS(0, 0),

which implies, by (13) and the previous expression, that

vS(u, 0) − vS(0, 0) = − λu

λE [D] + eλτ
cS .

3.2◦ Assume now that u = 0 and 0 ≤ t ≤ τ . For the value function at state
(0, 0), we clearly have

vS(0, 0) = E

[∫ t

0

λe−λs (−srS + vS(X, 0)) ds

]
+ e−λt(−trS + vS(0, t))

= −1 − e−λt

λ
rS + (1 − e−λt)E [vS(X, 0)] + e−λtvS(0, t).

By (13) and the result of 3.1◦, we get, after some manipulations,

vS(0, t) − vS(0, 0) =
eλt − 1

λE [D] + eλτ
cS ,

which completes the proof. �

6 Experiments

In this section, we present the results of a series of simulation experiments
designed to evaluate the gains of combining dispatching control (Sect. 4.1) with
the lookahead policies for switching off and turning on servers (Sects. 4.2 and
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4.3, respectively). We compare this combined control approach with performing
dispatching control only, to quantify the value of the lookahead policies. In addi-
tion to investigating the potential gains, we also explore the relative benefits of
the two lookahead approaches.

The first experiment (Table 1), serving as a baseline for the remaining exper-
iments, was performed under the following parameter settings: d = 10, X expo-
nentially distributed with rate 1, and Λ was chosen such that the resulting loads
ρ = Λ/(2μ) in Table 1 were achieved. The cost parameters were e = 10, γ = 0.6,
cS = 100, cT = 10, and cP = 1. The average cost rate with dispatching control
and both lookahead policies is denoted by rLA, while the average cost rate with
dispatching control only is denoted by rD. Simulations were run for 1000000 sim-
ulated time units. At the lowest load (ρ = 0.2), adding the lookahead resulted in
a higher average cost rate. At first glance, this is counter intuitive, as additional
control possibilities should decrease the cost. The issue here is that the lookahead
for server turnoffs is too aggressive in keeping the server on – the dispatching
control and this lookahead are designed separately and at low loads they appear
to actually counteract each other. This effect was seen in varying degrees in all
of the experiments. The best gain is 30.6% at ρ = 0.5.

Table 1. Average cost rates for the first experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 14.50 22.83 34.46 46.24 55.89 65.98 84.99 140.47

rLA 18.47 22.78 28.31 35.41 45.11 58.78 82.07 137.05

The second experiment (Table 2) was the same as Experiment 1, but cT was
reduced to 1. Here, the problematic behavior at lower loads seen in the first
experiment is more pronounced. This is due to energy costs being the dominant
part of the average cost rate. The fact that the lookahead policy often keeps
the server on is even more disadvantageous, as leaving the server on can only
negatively impact the average energy cost rate.

Table 2. Average cost rates for the second experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 8.48 10.39 14.58 19.00 21.80 23.66 26.11 32.13

rLA 8.50 15.71 17.34 19.22 21.19 23.19 25.81 31.95

The third experiment (Table 3) was the same as the first, but cT was increased
to 20. The key observation for this experiment is that the most significant gains
are seen at moderate loads (a maximum gain of 41.5% at ρ = 0.5). This can be
explained by the fact that at moderate loads, when the server that is always on
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Table 3. Average cost rates for the third experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 21.13 35.96 56.04 75.61 92.20 111.80 151.48 258.47

rLA 23.02 30.48 40.35 53.43 71.72 98.90 143.63 261.10

is the only server operating, long queue lengths develop so that the other server
is required. However, the server that can be switched off is then idle at a high
frequency. Thus, it appears that both lookahead policies would be of value. The
reality is that the lookahead to turn the server off was the only mechanism that
was used – the lookahead to turn the server on was used at most once in each
run. This was true of all experiments in this section.

The fourth experiment (Table 4) was the same as the first, but cT was
increased to 1000. Here, the gain of including lookahead is amplified, as the
average cost rate is almost completely determined by the average holding cost
rate. The maximum gain is 71.1% at ρ = 0.4.

Table 4. Average cost rates for the fourth experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 663.03 1290.46 2088.64 2854.21 3559.25 4611.84 6624.41 11992.76

rLA 469.35 787.80 1220.39 1828.96 2683.30 4006.41 6268.40 11946.07

The fifth experiment (Table 5) was the same as the first, but X was chosen
to follow a hyperexponential distribution with two phases with means 0.01 and
100 (the overall mean was 1). Here, the maximum gain is 15.7% at ρ = 0.5. The
presence of very large jobs (high variance of service times) appears to mitigate
the gains. The mechanism for this is not obvious, but one possibility is that as
large jobs can be sent to both servers, the fact that we are using the Random
Routing policy as our base policy for dispatching is problematic – size-aware
routing may be a better choice.

Table 5. Average cost rates for the fifth experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 38.12 84.52 185.51 372.18 710.54 1483.53 2899.18 6835.29

rLA 34.34 76.79 171.93 321.70 699.95 1343.16 2797.43 6647.91

The sixth experiment (Table 6) was the same as the first, but X was chosen
to be constant. Here, the maximum gain is 15.2% at ρ = 0.5. The reduced vari-
ance leads to less opportunity for improvement, potentially due to the decreased
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Table 6. Average cost rates for the sixth experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 12.94 18.94 31.01 47.30 59.55 70.98 86.71 118.52

rLA 12.94 23.63 30.84 41.06 54.01 68.65 86.03 119.54

Table 7. Average cost rates for the seventh experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 14.32 21.17 29.03 36.74 44.46 54.36 71.29 119.26

rLA 14.31 22.12 26.75 32.31 39.29 49.34 66.74 118.88

variability of the workload at the server that is always on – there are no large
fluctuations that require the additional control. Combining the observations from
the sixth and seventh experiments, we see that the opportunities for improve-
ment diminish as the service time variance approaches very small or very large
values.

The seventh experiment (Table 7) was the same as the first, but d was reduced
to 1. The maximum improvement is 13.7% at ρ = 0.5. The fact that the maxi-
mum improvement has decreased is not surprising, as the short setup times mean
that the penalty paid for poor turnoff decisions is not as severe.

The eighth experiment (Table 8) was the same as the first, but d was increased
to 100. The maximum gain is 22.2%, at ρ = 0.5. The gains are generally lower
as the routing control tends to keep the server that can be switched off busy at
all times (thus avoiding the long setup times), so there are less opportunities for
the lookahead to be used.

Table 8. Average cost rates for the eighth experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 14.50 23.53 49.18 111.34 169.28 212.47 249.52 325.44

rLA 19.81 27.39 44.28 91.15 168.31 212.01 249.41 324.69

In summary, the simulation results suggest that:

1. The lookahead for server turnoffs is the mechanism for reducing the cost.
2. The most gain from dynamic switch-off control is made at “moderate” values

of load, service time variability, and setup times. Outside of these values,
dispatching control alone appears to be sufficient.

3. When energy costs are dominant, dispatching control also appears to be suf-
ficient.

Note that dispatching decisions indirectly control also the energy consumption
due to the assumed default configuration where Server 1 was NeverOff and Server
2 InstantOff, explaining the latter two observations.
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7 Conclusions

We considered the joint problem of combining dispatching control and server
sleep state control, computing near optimal policies using one step of policy
iteration for dispatching and lookahead techniques for server sleep state control.
In addition to providing these policies explicitly, we identified when this joint
control approach is most effective. Some issues for future work:

1. Is it possible to quantify the gap between state-dependent and state-
independent sleep state control? This would give insight into the value of
state information in making these control decisions. The work in [21] sug-
gests that this value goes to zero in a many server asymptotic regime, but
the answer to this question for finite systems is of interest. Answering this
question would involve characterizing (near) optimal state-independent sleep
state control.

2. How does the approach scale? One important related question is determining
which servers are always on.

3. If the servers are not FCFS can similar gains be expected?
4. For high variance service time distributions, it may be useful to consider a

different initial policy for the dispatching control problem. One possibility is
a SITA-like policy [3].
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Abstract. In the context of performance models, service demands are
key model parameters capturing the average time individual requests
of different workload classes are actively processed. In a system under
load, due to measurement interference, service demands normally cannot
be measured directly, however, a number of estimation approaches exist
based on high-level performance metrics. In this paper, we show that
service demands provide significant benefits for implementing modern
auto-scalers. Auto-scaling describes the process of dynamically adjust-
ing the number of allocated virtual resources (e.g., virtual machines)
in a data center according to the incoming workload. We demonstrate
that even a simple auto-scaler that leverages information about service
demands significantly outperforms auto-scalers solely based on CPU uti-
lization measurements. This is shown by testing two approaches in three
different scenarios. Our results show that the service demand-based auto-
scaler outperforms the CPU utilization-based one in all scenarios. Our
results encourage further research on the application of service demand
estimates for resource management in data centers.

Keywords: Service demand estimation · Auto-scaling
Online estimation · Elastic cloud computing

1 Introduction

The cloud computing paradigm has a high impact in the ICT domain as it
allows on-demand access to data center resources (e.g., networks, servers, storage
and applications). In order to guarantee a reliably operating service, mission-
critical applications usually run with a fixed amount of resources. This has some
drawbacks: On the one hand, if the application is not fully used, the resource
consumption becomes inefficient; on the other hand, if an unexpected event
occurs, the performance and availability is not ensured.

The domain of auto-scaling is concerned with automatically and precisely
allocating the required amount of resources (e.g., number of VMs) for a given
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R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 142–156, 2018.
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time period and changing this allocation as the demand changes. Existing auto-
scaling mechanisms either assume as input an estimate on the processing speed
of the resources or rely on measured resource utilization averages (r.t., Sect. 5).

In this work, we compare two auto-scaling approaches with identical under-
lying decision logic under changing workloads. The first approach uses the CPU
utilization to scale the system, while the second one uses online service demand
estimation. Both approaches scale three different application types: (i) a scalable
application limited in performance mainly by hardware contention, (ii) a second
application that has software bottlenecks leading to software contention, and
(iii) a third application that exhibits both hardware and software contention.
Given these three application types and the two different approaches to realize
auto-scaling, we pose ourselves the following research questions:
RQ1: How can CPU utilization-based and service demand-based auto-scaling
mechanisms be compared in a fair manner?
RQ2: In which scenarios does service demand-based auto-scaling outperform a
CPU utilization-based mechanism?
RQ3: What are benefits of using service demand estimates instead of utilization
measurements for automatic scaling decisions?

We structure the three main contributions of this paper as follows: We address
RQ1 by discussing the competing auto-scaling approaches in Sect. 2. Then, the
experiment setup is introduced. Afterwards, RQ2 and RQ3 are answered by
comparing and quantifying the two approaches in three different scenarios. In
Sect. 5, we summarize related work before concluding the paper.

2 Service Demand Estimation for Auto-scaling

In this section, the foundations of the service demand estimation are explained.
Afterwards, the competing auto-scaling approaches are introduced.

2.1 Service Demand Estimation

Service demands are a key parameter of stochastic performance models. A ser-
vice demand is the average time a unit of work (e.g., request or transaction)
spends obtaining service from a resource (e.g., CPU or hard disk) in a sys-
tem, over all visits at the resource, excluding any waiting times [1,2]. Different
requests can be grouped into different workload classes. Service demands are
normally considered on a per workload class basis.

In most realistic systems, the direct measurement of service demands is not
feasible during operation [3] due to instrumentation overheads and possibly
measurement interference. Willneker et al. [4] show that statistical estimation
approaches can provide a comparable accuracy to direct measurements. Thus,
we focus on statistical approaches for estimating the service demands.

The advantage of statistical estimation approaches compared to direct mea-
surement techniques is their general applicability and low overheads. Estimation



144 A. Bauer et al.

approaches typically rely only on coarse-grained measurements from the sys-
tem (e.g., CPU utilization and end-to-end average response times) that can be
obtained easily with monitoring tools without the need for fine-grained code
instrumentation. These measurements are routinely collected for many applica-
tions (e.g., in data centers) and therefore estimation approaches are also appli-
cable on systems serving production workloads.

Over the years, a number of approaches to service demand estimation have
been proposed based on different statistical estimation techniques (e.g., linear
regression [5,6] or Kalman filters [7,8]) and combined with laws from queueing
theory. We refer to Spinner et al. [3] for an overview as well as a classifica-
tion and experimental evaluation of the different approaches for service demand
estimation.
LibReDE: For estimating the service demands in an online setting, our
approach uses the Library for Resource Demand Estimation (LibReDE) [9].
LibReDE1 is a library of ready-to-use implementations of state-of-the-art
approaches to service demand estimation that can be used for online and offline
analysis. It supports several different approaches to service demand estimation.

For the sake of simplicity, here we restrict ourselves to using only one app-
roach, based on the Service Demand Law [6]:

The service demand law [2] states that the the service demand Di,c of c at
resource i can be obtained by dividing the utilization Ui,c of a resource i due to
workload class c by the system throughput X0,c of workload class c:

Di,c =
Ui,c

X0,c
. (1)

However, usually Ui,c is not measurable, since we can only measure the total
utilization of resource i caused by all workload classes running on i. Therefore, we
have to partition the utilization among the different workload classes. Menascé
et al. [2] and Lazowska et al. [1] solve this by collecting additional per-class data,
while Brosig et al. [6] estimate it based on the response times of the different
classes. Therefore, we only need to measure the average CPU utilization and the
throughput of each workload class in order to estimate the service demands.

2.2 Competing Methods

In order to investigate the value of service demand estimation for auto-scaling,
we compare the same threshold-based auto-scaling algorithm, as implemented
for example on Amazon Web Services (AWS) EC2, but feed it with two different
input parameters: (i) the measured average CPU utilization and (ii) the average
system utilization based on queueing theory (see Eq. 1). The main advantage of
using the CPU utilization is that it is easy to measure, however, the thresholds
for the scaling have to be tuned for each application individually and measur-
able load levels are limited at 100%. In contrast, the average system utilization

1 LibReDE: https://descartes.tools/librede/.

https://descartes.tools/librede/
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based on queueing theory has no limitation and the thresholds can be defined
independent of the application. However, the determination of the average sys-
tem utilization requires application level metrics like response times and trough
put per request class. The thresholds can be either learned leveraging machine
learning approaches or as in our case determined based on experience.

Taking AWS as example, per default they provide metrics such as CPU
utilization, disk IO (disk read operations or disk write operation), and network
IO for the auto-scaling decision. The reasons for choosing CPU utilization as
scaling indicator are threefold: (i) in many cases the bottleneck resource may
not known at configuration time, (ii) our software contention scenario is limited
by the number of unlocked files and not by an IO rate, and finally, (iii) when
using IO metrics, a deep knowledge of the IO characteristics of the machine is
required, which appears unfeasible for cloud deployments.

The auto-scaling mechanism communicates with the cloud every minute and
gathers VM specific information, such as the amount of running VMs and the
average CPU utilization, and application specific information, such as request
arrival rates. Algorithm 1 illustrates the simplified decision logic that forms
the basis for both approaches. Important parameters for decision making are
up threshold and down threshold. Input parameters are the current average
system utilization ρ and the number of currently running VMs vms. In con-
trast to the CPU utilization-based approach where ρ is equal to the measured
CPU load, the service demand-based approach uses the average system utiliza-
tion based on the service demand law from queueing theory that offers a good
trade-off between estimation time and accuracy [10]. The system utilization ρ is
derived from the the arrival rate multiplied with the estimated service demand
respectively the highest service demand if multi-class systems are scaled [11].
The service demand estimate is updated online every 10 min, as service demand
estimated are expected to not change significantly in a short period of time.

In the second line, Algorithm 1 checks if the average system utilization ρ
per VM is greater than a predefined threshold. While this condition is true, the
new average system utilization per VM is calculated after iteratively increasing
the number of VMs. Otherwise, if the average system utilization per VM is less
than a predefined threshold, the number of VMs is decreased iteratively until ρ
is greater than the threshold. Finally, the algorithm returns the number of VMs
that are required (amount > 0) or that can be released (amount < 0).

3 Experiment Description

In order to obtain a authentic workload with a time-varying behavior, we use the
Retailrocket2 trace. This trace represents HTTP requests to servers of an anony-
mous real-world e-commerce website during June 2015. For our experiments, we
sample the arrival rates every 15 min, i.e., each day consists of 96 data points.
Furthermore, we crop out two days and speed-up the trace by the factor 15 so
that each data point represents one minute.
2 Retailrocket Source: https://www.kaggle.com/retailrocket/ecommerce-dataset.

https://www.kaggle.com/retailrocket/ecommerce-dataset
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ALGORITHM 1. Decision logic.
Compute-Optimal-VMs (double ρ, int vms)

amount = 0;
if ρ > up threshold then // is ρ > a predefined threshold

while ρ > up threshold do
amount++;
ρ = ρ * (vms / (vms + amount)); // calculates the new average utilization

else if ρ <= down threshold then // is ρ ≤ a predefined threshold

while ρ <= down threshold do
amount−−;
ρ = ρ * (vms / (vms + amount)); // calculates the new average utilization

if ρ > up threshold then
amount++; // undo

return amount;

The auto-scaling mechanisms are configured to monitor and auto-scale three
different applications: (i) an application with its performance limited by hard-
ware contention (CPU), (ii) an application exhibits software contention, and
(iii) an application that exhibits both hardware and software contention. The
first application is a CPU-intensive Java Enterprise application that is a re-
implementation of the LU worklet from SPEC’s Server Efficiency Rating Tool
SERTTM2. The application calculates the LU Decomposition [12] of a random
generated n × n matrix, where n is the GET parameter of each HTTP request.

The second application is also a Java Enterprise application. This application
is used by a content-delivery service provider with limited capacities. Here, the
incoming HTTP requests try to read a file out of a limited pool of randomly
generated files. While a file is being read by an HTTP request, it is locked and
cannot be accessed by other requests, i.e., an incoming HTTP-request either
successfully reads a file or waits until a file is unlocked.

The third scenario contains the constraints of both scenarios. At first the
application calculates the LU decomposition. Afterwards, it tries to read a file
out of the limited pool.

All applications are deployed on WildFly application servers in our private
cloud infrastructure. Here, we use an Apache CloudStack3 cloud that manages
virtualized Xen-Server hosts. This cloud environment is running in a cluster of
11 homogeneous HP servers. Eight of them are managed by CloudStack. The
last three servers are not part of the cloud and are used for hosting the software
for the cloud management as well as the benchmark framework: (i) the load-
balancer (Citrix Netscaler4) and the cloud management for CloudStack, (ii) the
auto-scaling mechanisms, and (iii) the load driver and the experiment controller.
The specification of each physical machine can be found in Table 1.

3 Apache CloudStack: https://cloudstack.apache.org/.
4 Citrix Netscaler: https://www.citrix.de/products/netscaler-adc/.

https://cloudstack.apache.org/
https://www.citrix.de/products/netscaler-adc/
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Elasticity Benchmarking Framework: In order to evaluate the two
approaches, we use the BUNGEE Cloud Elasticity Benchmark controller [13].
First, the controller constructs for the SuT (System under Test) a discrete map-
ping function that determines for each load intensity the associated minimum
amount of resources required to meet the SLOs. Based on this mapping and a
predefined workload profile, the SuT is stressed while BUNGEE monitors the
supplied VMs. After the experiment, the elasticity and user-oriented metrics
based on the collected monitoring data are calculated.

Table 1. Specification of the servers.

Criteria Server Worker VMs

Model HP DL160 Gen9 –

Operating system Xen-Server Centos 6.5

CPU 8 cores 2 vcores

Memory 32 GB 4GB

4 Results

This section presents the experiments and the respective findings. First, the
specific metrics used to evaluate and compare the two approaches are defined.
Then, the hardware contention scenario is discussed. In Sect. 4.3, the software
contention scenario is examined. Afterwards, the mixed scenario is discussed.
Finally, the results are discussed with their associated threats to validity.

4.1 Quantifying the Auto-scaler Performance

In order to evaluate the two competing approaches, on the one hand, we use user-
oriented metrics such as SLO (service level objective) violations in combination
with the average response time. On the other hand, we use system-oriented
elasticity metrics endorsed by the Research Group of the Standard Performance
Evaluation Corporation (SPEC) [14]. In particular, we use the provisioning accu-
racy and the wrong provision time share. Using only single metrics, it is hard to
gain insight into the performance differences between the two approaches. Hence,
we use multiple metrics and summarize the gain of using each approach using an
aggregate metric called elasticity speedup. Each elasticity metric is described in
the remainder of this section. For the following equations, we define: (i) T as the
experiment duration and time t ∈ [0, T ], (ii) st as the resource supply at time t,
and (iii) dt as the demanded resource units at time t. The demanded resource
units dt is the minimal amount of VMs required to meet the SLOs under the
load intensity at time t. Δt denotes the time interval between the last and the
current change either in demand d or supply s. The curve of demanded resource
units d over time T is derived by BUNGEE, see Sect. 3. The resource supply st
is the monitored number of running VMs at time t.
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Provisioning accuracy θU and θO: The provisioning accuracy describes
the relative amount of resources that are under-provisioned, respectively,
over-provisioned during the measurement interval. In order words, the
under-provisioning accuracy θU is the amount of missing resources normalized
by the current demanded resource units that are required to meet the SLOs nor-
malized by the experiment time. Similarly, the over-provisioning accuracy θO is
the amount of resources that the auto-scaler supplies in excess. The range of
this metric is the interval [0,∞), where 0 is the best value and indicates that
the supply curve follows lays on demand curve during the entire measurement
interval.

θU [%] :=
100
T

·
T∑

t=1

max(dt − st, 0)
dt

Δt (2)

θO[%] :=
100
T

·
T∑

t=1

max(st − dt, 0)
dt

Δt (3)

Wrong provisioning time share τU and τO: The wrong provision-
ing time share captures the time in which the system is an under-
provisioned, respectively over-provisioned, state during the experiment inter-
val, i.e., the under-provisioning time share τU is the time relative to the mea-
surement duration, in which the system is under-provisioned. Similarly, the
over-provisioning time share τO is the time relative to the measurement dura-
tion in which the system is over-provisioned. The range of this metric is the
interval [0, 100]. The best value 0 is achieved, when the system has during the
measurement no over- or under-provisioning.

τU [%] :=
100
T

·
T∑

t=1

max(sgn(dt − st), 0)Δt (4)

τO[%] :=
100
T

·
T∑

t=1

max(sgn(st − dt), 0)Δt (5)

Elastic Speedup ε: This comparing method calculates for each approach its
gain based on its scaling behavior compared to the no auto-scaling scenario. This
approach allows to compare our two approach by taking only the system-oriented
metrics into account. In other words, the elasticity metrics x = (θU , θO, τU , τO) of
each approach a is compared to the metrics of the no-auto scaling scenario n. To
this end, the geometrical mean of the ratio between each metric pair is calculated.
If the value is greater than 1, the proposed method is better than having no auto-
scaler and the value reflects the gain. If the values is less than 1, the approach is
worse than having no auto-scaler. Mathematically, the elastic speedup ε for an
auto-scaler a based on the no auto-scaling scenario n can be formulated as:

εn :=
(

θU,n

θU,a
· θO,n

θO,a
· τU,n

τU,a
· τO,n

τO,a

) 1
4

(6)



On the Value of Service Demand Estimation for Auto-scaling 149

4.2 Hardware Contention Scenario

The results for the hardware contention scenario are depicted in Fig. 1. This
diagram is divided into three parts: The first part shows the scaling behavior,
the second one the average system utilization for each approach, and the last
one the estimated service demand. In the first part, the black line describes the
curve of demanded resource units (determined by BUNGEE, see Sect. 3), the
red line the scaling behavior for the CPU utilization-based approach, and the
blue line the scaling behavior for the service demand-based approach. Here, both
approaches tend to over-provision the system during the decreasing tail of each
day. However, the auto-scaler based on CPU utilization has more instances over-
provisioned during this period compared to the service demand-based approach.
Furthermore, the service demand-based auto-scaler can handle the increasing
load during each day more efficiently than the CPU utilization-based one.

0 30 60 90 120 150 180
0

5

10

15

20

A
m

ou
nt

 o
f V

M
s

Scaling Behavior in the Hardware Contention Scenario

Demanded VMs
Supplied VMs based on Service Demand 
Supplied VMs based on CPU load

0 30 60 90 120 150 180
0

100

200

Lo
ad

 in
 P

er
ce

nt

Average Utiliuation per VM
Average load per VM
Average CPU load per VM
Upper Threshold
Lower Threshold

0 30 60 90 120 150 180
Time in minutes

0.08

0.09

0.1

0.11

S
er

vi
ce

 D
em

an
d 

in
 1

/s

Estimated Service Demand
Estimated Service Demand

Fig. 1. Scaling behavior in the hardware contention scenario. (Color figure online)

These observations can be explained by looking at the middle part of the
figure where the blue line shows the average system utilization and the red line
the average CPU utilization. The black dashed line represents the threshold for
up-scaling (90%) and the cyan dashed line the threshold for down-scaling (70%).
While the CPU utilization is limited by 100%, the system utilization can have
values higher than this limit, for instance, at minute 115 where the system is in
under-provisioned state for both approaches, the CPU utilization is 100% and
the system utilization is 160%. The service demand-based approach assigns 3
VMs to handle this utilization and the CPU utilization-based one only 1 VM.

The estimated service demand (see Sect. 2.2) for calculating the system uti-
lization, depicted in the bottom part of the figure, has the average value of
0.099 ± 0.016 1

s .
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Table 2. Results for the hardware contention scenario.

Metric No scaling Service demand-based CPU utilization-based

θU (accuracyU ) 3.20% 7.54% 7.46%

θO (accuracyO) 203.28% 14.60% 23.57%

τU (timeshareU ) 22.89% 19.10% 22.20%

τO (timeshareO) 67.38% 62.56% 62.65%

ε (Elastic Speedup) 1.00 1.66 1.42

ψ (SLO violations) 45.72% 8.40% 12.67%

Avg. #VMs 15.00 8.58 7.93

Avg. response time 2.62 s 0.70 s 0.94 s

Med. response time 2.86 s 0.22 s 0.24 s

To enable quantitative comparison, we calculated the elasticity metrics (see
Sect. 4.1) as well as some user-oriented metrics listed in Table 2. Here, each row
shows a metric and each column an auto-scaler. The best values are printed in
bold. As a baseline scenario (“no auto-scaling”), we run 15 VMs (75% of the
available VMs) throughout the experiment duration. When comparing only the
individual elasticity metrics, the service demand-based approach exhibits the
best results for 3 out of 4 metrics. Thus, it also achieves the highest elastic
speedup (1.66). The CPU utilization-based approach also has an elastic speedup
greater than 1, i.e., both approaches are more efficient than the baseline (no
auto-scaling) scenario. Furthermore, both approaches use less VMs, achieve sig-
nificantly higher SLO conformance, and have a lower response time than the
no auto-scaling scenario. However, the service demand-based auto-scaler has the
lowest amount of SLO violations (8.40%) and the lowest response time (0.70 s).

4.3 Software Contention Scenario

Similar to Sect. 4.2, the results for the software contention scenario are depicted
in Fig. 2. The scaling behavior of both approaches is shown in the upper dia-
gram, where the black line describes the curve of demanded resource units, the
red line the scaling behavior for the CPU utilization-based approach, and the
blue line the scaling behavior for the service demand-based approach. In con-
trast to the hardware contention scenario, this scenario marginally stresses the
CPU. Although the thresholds for up-scaling (30%) and down-scaling (5%) are
adjusted, the CPU utilization-based approach is not able to meet the required
VMs during the two days. The supply curve of the service demand-based app-
roach is close to the demand curve. There are only few intervals in which the
system is in an under-provisioned state for a short time. In analogy to the hard-
ware contention scenario, the system utilization is more suitable to describe the
required amount of VMs. In both scenarios the service demand-based approach
uses the same thresholds in contrast to the CPU utilization-based one.
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Fig. 2. Scaling behavior in the software contention scenario. (Color figure online)

Table 3. Results for the software contention scenario.

Metric No scaling Service demand-based CPU utilization-based

θU (accuracyU ) 3.20% 7.64% 60.45%

θO (accuracyO) 203.28% 8.36% 24.67%

τU (timeshareU ) 22.89% 27.02% 86.83%

τO (timeshareO) 67.38% 43.37% 9.29%

ε (Elastic Speedup) 1.00 1.91 0.96

ψ (SLO violations) 8.64% 6.27% 97.25%

Avg. #VMs 15.00 8.21 6.69

Avg. response time 1.07 s 1.04 s 1.97 s

Med. response time 0.98 s 0.98 s 2.00 s

The estimated service demand (see Sect. 2.2) for calculating the system
utilization, depicted in the last row of the figure, has the average value of
0.153 ± 0.025 1

s .
In order to compare the two approaches, we calculate the elasticity metrics,

collect user information, and compare the scaling behavior with the baseline no
(auto-scaling scenario) in which 15 VMs are permanently running during the
experiment. The results are summarized in Table 3. Here, each row represents
a metric and each column an auto-scaler. The best values are highlighted in
bold. The service demand-based auto-scaler exhibits the best elastic speedup,
the lowest amount of SLO violations, and the lowest response time. In contrast,
the CPU utilization-based approach has an elastic speedup lower than 1, i.e., the
performance judged by the elasticity metrics is worse than the no auto-scaling
scenario. This can also be seen by the high amount of SLO violations (97.25%).
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4.4 Mixed Contention Scenario

The results for the mixed contention scenario are depicted in Fig. 3. Here, the
scaling behavior of the service demand-based approach (blue curve), the scaling
behavior of the CPU utilization-based approach (red curve), and the demanded
resource units (black curve) are shown in the upper part of the figure. As
this application has both software and hardware contention, we determined
and calibrated the upper-threshold (55%) and lower-threshold (40%) for the
CPU utilization-based approach. While this approach has problems to meet the
required VMs at pitch of the first day, the remaining days are covered better than
in the software contention scenario. Furthermore, there is less over-provisioning
than in the hardware contention scenario. Similar to the previous scenarios, the
service demand-based approach has almost no under-provisioning and tends to
over-provision slightly.

The estimated service demand (see Sect. 2.2) for calculating the system uti-
lization, depicted in the bottom row of the figure, has the average value of
0.238 ± 0.043 1

s .
The observed scaling behavior is quantified by the metrics shown in Table 4.

Here, each row represents a metric and each column an auto-scaler. While, the
service demand-based approach has the best under-provision timeshare metric,
it also has the highest elastic speedup (1.71) and the lowest SLO violations
(4.77%). Also the CPU utilization-based approach has a value higher than 1 and
thus, both approaches are more efficient than the no auto-scaling scenario, in
which 15 VMs are running throughout the experiment.
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Fig. 3. Scaling behavior in the mixed contention scenario. (Color figure online)
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Table 4. Results for the mixed contention scenario.

Metric No scaling Service demand-based CPU utilization-based

θU (accuracyU ) 3.20% 7.13% 14.61%

θO (accuracyO) 203.28% 14.12% 7.05%

τU (timeshareU ) 22.89% 19.28% 42.86%

τO (timeshareO) 67.38% 59.90% 35.03%

ε (Elastic Speedup) 1.00 1.71 1.60

ψ (SLO violations) 6.40% 4.77% 11.96%

Avg. #VMs 15.00 8.96 9.51

Avg. response time 1.95 s 1.94 s 1.95 s

Med. response time 1.95 s 1.95 s 1.95 s

4.5 Summary

When comparing the different scenarios, the service demand-based auto-scaler
behaves in a similar manner in each scenario and per day. In contrast, the CPU
utilization-based approach behaves differently depending on the scenario. Fur-
thermore, the service demand-based auto-scaler achieves the best values of the
elasticity and user-oriented metrics. While the CPU utilization-based approach
has problems in the software contention scenario, it is still more efficient than
using no auto-scaling in the hardware contention and mixed contention scenarios.
Note that the elasticity metrics of the no auto-scaling are identical per definition
throughout all experiments.

Considering the applicability of both approaches, the CPU utilization-based
auto-scaler is easy to setup and needs no further instrumentation. The CPU
utilization can be gathered through standard tools or services such as SNMP
(Simple Network Management Protocol). In contrast, the service demand-based
approach requires a more complex, yet still not intrusive, instrumentation. Either
the service demand has to be determined ahead of time assuming it is static or
the service demand has to be estimated online as done in this paper. For this,
the resource estimator needs structural application knowledge and information
that may require a basic instrumentation of the application to monitor high-level
metrics such as like request completion rates and response times.

To avoid the performance variability of public cloud infrastructures due to
overbooking of resources and background-traffic, which also renders CPU utiliza-
tion measures both unstable and unreliable [15], we ran the experiments in our
private cloud environment under controlled conditions. Based on our experience
with experiments in public clouds, CPU utilization based auto-scaling is sup-
posed to perform worse than under controlled conditions while having a minor
impact on the service demand-based approach.

We chose two similar days of the Retailrocket trace and conduct long exper-
iments in order to validate the measurements internally respectively to have the
second day as repetition of the first one. As the scaling behavior is influenced by
the defined thresholds, we cannot prove that we have chosen the optimal ones.
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5 Related Work

We studied two surveys on existing auto-scalers from Jennings and Stadler [16],
and Lorido-Botran et al. [17]. Besides a broad overview of existing auto-scalers,
the survey in [17] proposes a classification of auto-scalers into five groups: (i)
threshold-based rules [18,19], (ii) queueing theory [20,21], (iii) control theory
[22,23], (iv) reinforcement learning [24,25], and (v) time series analysis [26,27].
While analyzing the auto-scalers in these survey, we can conclude that service
demands - on a higher abstraction level the server’s processing speed - is esti-
mated indirectly and in an application-specific way for threshold-based rule
approaches, assumed to be provided or calibrated as input for queueing and
control theory auto-scaler, or learned over a training phase for reinforcement
learning approaches. As examples for approaches leveraging time-series analysis,
the auto-scaler called CloudScale, which is designed by Shen et al. [28], predicts
the demand for resources with fast Fourier transformation (FFT) algorithms. A
similar approach, called AGILE, is proposed by Nguyen et al. [29] who leverages
wavelets instead. However, the demand for resources in the context of both of
the above papers is understood as the CPU utilization. They sample the CPU
utilization as time series and predict the future CPU load, instead of estimating
the current processing speed of servers in terms of resource consumption per
request.

To the best of our knowledge, there is only one auto-scaler proposed by
Spinner et al. [30] that uses online service demand estimation to scale-out one
web-server by adding virtual CPU cores. In contrast to this work, here we focus
on horizontal scaling by adding virtual machine instances to a load-balancer.
However, the results of Spinner et al. [30] support our message, as the results
demonstrate an increased controller stability for an service-demand based app-
roach compared a classical one based on CPU utilization threshold.

6 Conclusion and Discussion

In this paper, we compare two different approaches for auto-scaling: (i) based
on measurements of the CPU utilization and (ii) based on service demand esti-
mation as input values for an identical decision logic. To answer RQ1 “How
can CPU utilization-based and service demand-based auto-scaling mechanisms
be compared in a fair manner?”, the two approaches scale three different types
of applications: (i) a scalable application limited in performance mainly by
hardware contention, (ii) a second application that has software bottlenecks,
and (iii) a third application that exhibits both hardware and software con-
tention. We use an established set of elasticity metrics to evaluate and com-
pare the two auto-scaling approaches on a level playing field. We summarize our
research findings as follows: The service demand-based approach is independent
of the scenario, i.e., the service demand estimation does not rely on knowing
the bottleneck resource and can be configured independently of the application.
Furthermore, it achieves the best values of the various metrics in all scenar-
ios and exhibits a similar scaling behaviour. These findings answer both RQ2



On the Value of Service Demand Estimation for Auto-scaling 155

“In which scenarios does service demand-based auto-scaling outperform a CPU
utilization-based mechanism?” and RQ3 “What are benefits of using service
demand estimates instead of utilization measurements for automatic scaling
decisions?”.

We are confident that our results can encourage further research activity in
the application of service demand estimation from the performance modeling
domain for resource management in cloud data centers. For future work, we
plan to extend the set scope of our analysis by conducting experiments in other
cloud environments and investigating further types of applications. Additionally,
a workload containing multiple workload classes will be considered. Finally, more
research on different approaches to service demand estimation is planned, since
the quality of the service demand estimates has direct influence on the auto-
scaler decisions.
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Abstract. We introduce an approach to energy efficiency policies eval-
uation in various application fields, based on widely available technical
and software tools. The approach is based on a simple client-server-type
application run on a single linux-operated laptop, equipped with stan-
dard frequency scaling tools. We validate the approach by analyzing two
energy efficiency policies: the celebrated hysteretic control and the ran-
domized switching (introduced recently) in a single-server queue. Explicit
analytical results are obtained by means of Matrix-Analytic method,
and a simulation model based on discrete event stochastic simulation (a
particular case of the generalized Kiefer–Wolfowitz stochastic recursion
introduced recently) allows to obtain performance and energy estimates,
when analytical results are inappropriate. The results of real-world exper-
iments are introduced, and applicability of the approach is discussed.
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1 Introduction

Due to an increasing demand for energy saving, researchers and developers
are interested in energy-aware computer and communication networks, sys-
tems of high-performance, distributed and fog computing. However, basically
energy consumption should be considered along with performance costs. Vari-
ous possibilities to control energy efficiency of the system have been analyzed
in recent research. The widely-used state-dependent switching policy allows to
reduce power consumption [1]. In [12], a single-server system with two sojourn
time dependent service rates is considered. The optimal sleep-state control of
a single energy-aware server is designed in [6]. To analyze energy-efficiency of
server clusters the performance and energy consumption of two load balanc-
ing policies (Round-Robin and Join the Shortest Queue) are compared in [5].
The main results of applying traffic-oblivious policy for optimality analysis of
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energy-performance trade-off for a server farm are presented in [4]. Basically the
optimization problems are solved, which are either unconstrained with a single
(e.g. product-form) criterion, or a constrained optimization (e.g. with limited
QoS degradation).

For some classes of policies analytical results can be obtained. E.g. for a
single-server queue with state-dependent service rate based on the amount of
work right after customer arrivals, the steady-state workload distribution at
arbitrary epochs was obtained for the two-threshold policy [1]. In [14] for a
single-server queue with two service rates and randomized switching discipline,
the analytical results were obtained by means of Matrix-Analytic method.

At that, when it is difficult (or even impossible) to construct an analytical
model, the control policy can be evaluated with the help of simulation model
(see, e.g. [5,6,10]). One of the well-known ways to construct such a model is by
using Lindley-type recursion [1,12] and modified Kiefer–Wolfowitz-type stochas-
tic recursion [13].

It is even more reasonable to evaluate the control policy with the help of
technical model. It is useful to design this model e.g. for energy efficiency evalu-
ation based on measuring the power consumption of a laptop (the battery level)
or the CPU frequency (see, e.g. [7]), Apache web server performance evalua-
tion [2], or linux-based high-performance server energy efficiency study [3]. It is
important to be able to compare the numerical results that can we get using
simulation model to the values that can be calculated with the help of technical
model, like it is done in the recent work [11], where authors predict the power
consumption of workloads for different load levels in virtualized environments
and evaluate their approach comparing predicted results against measurements
of power consumption for various configurations on a target server.

The purpose of this paper is to introduce a common unified framework for
performing experiments with various energy efficiency policies. Motivated by an
idea to combine all the types of models mentioned below (analytical, simula-
tion and technical) for control policies performance evaluation, we introduce an
approach that does not require specific technical and software tools. It is based
on a simple client-server-type application, a Linux-operated laptop and stan-
dard frequency scaling tools. We illustrate our approach by considering the two
energy efficiency policies: the widely used hysteretic control and the randomized
switching (described in details below). For the latter policy we use the explicit
analytical results presented in [14]. In case when these results are inappropriate,
our approach provides a simulation model (based on discrete event stochastic
simulation) that allows to get the estimates for energy and performance charac-
teristics.

To validate this framework, we consider a single-server queueing system fed
with a Poisson input (with input rate λ > 0) of customers, each having an
(exponentially distributed) iid amount of work to be processed. The server can
process work at two speeds, rL < rH units of work per unit time (referred
as low and high below, respectively). Motivated by practical applications, we
assume that the server has four distinct values of energy consumption e0,L �
e0,H < eL < eH , related to being idle (at low/high speed), working at low and
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high speed, respectively. In the sequel we assume, that the server is capable of
switching the speed asynchronously, only at customer arrival/departure epochs,
implementing one of the following energy efficiency policies:

– two level hysteretic control based on the queue size at switching time instant
(referred below as hysteretic control, HC ): if the queue size at arrival (depar-
ture) epoch exceeds (falls below) some fixed level kH � 0 (kL + 1 � 0), the
server switches to the speed rH (rL, respectively);

– blind randomized switching introduced in [14] (referred below as randomized
switching, RS ): switching at arrival (departure) epoch to rH (rL) is governed
by an independent Bernoulli trial with success probability pH (pL, respec-
tively).

Note that in particular cases the HC policy represents a system with single
threshold control (if H = L), as well as the system working at a single fixed speed
(if H = L = 0, or H = L = ∞). At that, the RS policy does not induce queue size
control, which allows to implement the policy in various practical applications,
including small IoT nodes (in which the battery restrictions and simplified logic
significantly complicate tracking of the queue size), and web services under high
load conditions (when queue size tracking significantly reduces the performance
of the system).

Below we consider the described system in stationary mode, and discuss
the stability conditions for HC and RS policies separately. Note that whereas
the theoretical results are valid for the whole stability region of the system, in
practical experiments we primarily discuss the most interesting case when the
system at speed rL becomes unstable (and cannot cope with the given load).

This paper is organized as follows. In Sect. 2 the analytical models related to
HC and RS policies of a single-server queue are introduced, and the performance
measures are derived explicitly. In Sect. 3 the appropriate simulation model for
stochastic simulation is presented, that allows to cover more general cases, where
analytical results are not available. In Sect. 4 we introduce the technical model
that implements the HC and RS policies, which is based on the client-server-
type system on a linux-operated laptop. We discuss the results of experiments in
Sect. 5. The conclusions and discussion of the framework, as well as limitations
of the approach are given in Sect. 6.

2 Stochastic Models

In this section we discuss the available analytical results which, in turn, allow to
validate the introduced framework. First we give some common notation used
in the sequel.

We consider a single-server queue with a renewal input of customers arriving
at epochs ti, i = 1, 2, . . . into a FCFS-type unbounded queue, with iid interarrival
times Ti := ti+1 − ti, i � 1. Customer i requires to attain Si units of service,
which, however, is unknown before the service starting epoch. For simplicity we
assume T, S to be exponentially distributed (where the r.v. without subindex is
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a generic r.v. of a sequence). Recall that λ = 1/ET is the input rate, whereas
w.l.o.g. we assume ES = 1. Then the server load equals ρL := λ/rL (ρH := λ/rH)
for a system working at higher (lower) speed with a degenerate switching policy.
We also denote by V (t) � 0 the number of customers in the system at time t−,
and by R(t) ∈ {rL, rH} we denote the frequency at t−. The continuous-time
Markov process

{X(t) := (V (t), R(t)), t � 0} (1)

is the so-called Quasi-Birth-Death process (for details on this process see [8]),
where the level component V (t) is increased/decreased by at most one at a time,
and there are two possible values for phase component R(t) at each level. The
infinitesimal generator Q of the process (with instantaneous transition rates) has
the following block-tridiagonal form

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A0,0 A0,1 0 0 . . .
A1,0 A1,1 A0 0 . . .

0 A2 A1 A0
. . .

0 0 A2 A1
. . .

0 0
. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where the (not necessarily square) matrices Ak,l, k, l = 0, 1 correspond to bound-
ary states, and square matrices Ai of order 2 correspond to non-boundary states,
i = 0, 1, 2.

The matrix Q defines a stable process if the celebrated Neuts ergodicity
condition holds [8,15]:

αA01 < αA21, (3)

where the vector α (describing the phase distribution at high levels [8]) is the
solution of the following system

{
α(A0 + A1 + A2) = 0,
α1 = 1,

(4)

and 1 is the vector of ones. Given the stability condition (3) holds, the sta-
tionary probability vector π (such that πQ = 0 and π1 = 1) partitioned as
π = (π0, π1, . . . ) may be found as the following matrix-geometric solution:

πi = π1R
i−1, i � 2, (5)

where the matrix R is the minimal nonnegative solution of the matrix polynomial
equation

R2A2 + RA1 + A0 = 0, (6)

the matrix 0 is a square matrix of order 2, and vectors π0, π1 are the solution of
boundary conditions system (see e.g. [8])

(π0, π1)
(

A0,0 A0,1

A1,0 A1,1 + RA2

)
= 0, (7)

π01 + π1(I − R)−11 = 1. (8)
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Then it is easy to define the following key performance measures of the system:
the mean stationary number of customers in the system [8]

V = π1(I − R)−21, (9)

and the average stationary energy consumption

E = π0

(
e0,L
e0,H

)
+ π1(I − R)−1

(
eL
eH

)
. (10)

The server aims to minimize the average energy consumption by switching the
speed according to the control policy.

It is well known, that the performance measures for system working at a
constant speed rj may be found as follows:

Vj = ρj(1 − ρj)−1, Ej = ρjej + (1 − ρj)e0, j = {L,H}. (11)

If possible, one has to optimize the values kH , kL (pH , pL) to obtain the energy
consumption less than EH , provided a controlled decrease of quality of service
(mean stationary number of customers) above VH .

2.1 Hysteretic Control

In case of HC policy, the matrices in Q are defined as follows:

A0 =
(

0 0
0 λ

)
, A1 =

(
0 0
0 −λ − rH

)
, A2 =

(
0 0
0 rH

)
, (12)

which means, that the system is working at speed rH when the number of cus-
tomers exceeds kH . The matrix A0,0 is itself a block-tridiagonal square matrix
of order 2(kH + 1) with a special structure

A0,0 =
(
A0

i,j

)
, i = 0, . . . , kH , j ∈ {max(i − 1, 0), i,min(i + 1, kH)}, (13)

filled with zeroes outside the blocks.
The square 2 × 2 matrices A0

i,j are defined as follows:

A0
i,i+1 =

(
λ1i<kH

λ1i=kH

0 λ1i�kL+1

)
, A0

i+1,i =
(

rL 0
rH1i=kL

rH1i>kL

)
, (14)

A0
i,i =

(−λ − rL1i>0 0
0 −(λ + rH)1i�kL+1

)
, i = 0, . . . , kH , (15)

where 1A equals 1 if A holds. It remains to note, that the matrix A0,1 is a
2(kH + 1) × 2 matrix, and A1,0 is a 2 × 2(kH + 1) matrix, and A1,1 is a square
matrix of order 2 with the following structure

A1,0 = (0 A2), A1,1 = A1, A0,1 = (0 A0
kH ,kH+1

)′, (16)
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where (·)′ is the transpose operation. Note that the matrix A0,1 defines the
switching to speed rH , whereas A0

kL+1,kL
defines switching to speed rL.

Note that stability condition (3) reduces to stability at the higher speed, that
is ρH < 1. Moreover, it is easy to check, that the solution of (6) is as follows

R =
(

0 0
0 ρ2

)
. (17)

Provided stability holds, the stationary probabilities can be obtained. Moreover,
the special structure of matrix A0,0 allows to transform the system (8) and
solve it iteratively to derive πt, t � 0 by the following algorithm (which may be
obtained by sequential substitution). (Note that for ease of interpretation, we
enumerate the components of 2kH +2-component vector π0 as πj

0,i, i = 0, . . . , kH
and j ∈ {L,H}.)

Step 1. πH
0,i =

(
1 − ρi−kL

2

) (
1 − ρkH−kL+1

2

)−1

, kL < i � kH .

Step 2. πL
0,i = πH

0,kL+1(ρ
i−kH
1 − ρ1)/(ρ2 − ρ1ρ2), kL < i � kH .

Step 3. πL
0,i = ρi−kL−1

1

(
πL
0,kL+1 + ρ1(1 − ρ2)

[
ρ2 − ρkH−kL+2

2

]−1
)

, i � kL.

Step 4. From the balance equation, obtain

πH
0,kH+1 =

[
1 +

kH∑
i=0

πL
0,i +

kH∑
i=kL+1

πH
0,i + ρ2(1 − ρ2)−1

]−1

.

Step 5. Recalculate πj
0,i := πj

0,iπ
H
0,kH+1 for j ∈ {L,H} and i �= kH + 1.

Step 6. Obtain πH
t = ρt2π

H
0,kH+1, t � 1, and recall πL

t = 0.

For notational convenience, below we fill the vector π0 with zeroes, if the
corresponding position was not defined in the algorithm. Then we obtain the
following performance measures of interest (denoting them by superscript HC)

VHC =
kH∑
i=1

i(πL
0,i + πH

0,i) + πH
0,kH+1

∑
i�0

(i + kH)ρ2i (18)

EHC = e0π
L
0,0 +

kH∑
i=1

(eLπL
0,i + eHπH

0,i) + eHπH
0,kH+1

ρ2
1 − ρ2

. (19)

Note that the Eqs. (9) and (10) need to be appropriately modified due to special
structure of matrix A0,0 and vector π0. Namely, the modified Eq. (9) uses the fact,
that only the component πL

0,0 corresponds to the idle system, whereas πj
0,i is the

stationary probability of having i customers in the system and processing them
at the speed rj , j = {L,H}, which gives (18). At that, the values e0,L and e0,H
from (10) are the vectors of corresponding dimension, with e0,L = (e0, eL, . . . , eL)
and e0,H = (eH , . . . , eH).
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2.2 Randomized Switching

In this section we discuss the RS policy and, due to space limitation, we briefly
recall the results presented in [14], where the necessary details can be found.
The matrices constituting the generator Q are defined as follows:

A0 =
(

(1 − pH)λ pHλ
0 λ

)
, (20)

A1 =
(−λ − rL 0

0 −λ − rH

)
, (21)

A2 =
(

rL 0
pLrH (1 − pL)rH

)
, (22)

A0,0 = −λI, A0,1 = A0, (23)

A1,1 = A1, A1,0 = A2. (24)

Thus, the stability condition is

λpH(λ − rH) + rHpL(λ − rL) < 0. (25)

Intuitively, the condition (25) indicates a negative drift of the service process of
the system under heavy load, with respect to the mode switching intensity.

Despite the fact, that A0 and A2 are in general full rank matrices, the matrix
R can be found explicitly by the following algorithm (see [14]).

1. Define a determinantal polynomial det(A(ξ)) := det(A0 + ξA1 + ξ2A2).
2. Using trigonometric solution, obtain the greatest root ξ3 of the third degree

polynomial det(A(ξ))/(ξ − 1) = a3ξ
3 + a2ξ

2 + a1ξ + a0, with roots known to
be real.

3. Find b0 = −a0/(a3ξ3), b1 = a2/a3 + ξ3.
4. Find R as follows:

R = [b0A2 − A0][A1 − b1A2]−1.

Using the boundary conditions (8), it is easy to obtain π1 as follows [14]:
{

π1

(
λ−1A2 − R−1

)
A01 = 0,

π1

(
λ−1A2 + (I − R)−1

)
1 = 1.

(26)

Then the value π0 is obtained as follows [14]:

π0 = λ−1π1A2. (27)

Then the performance measures VRS , ERS may be obtained from (9) and (10).
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3 Simulation Model

To obtain the simulation model, we use the components of a stochastic recursion
at arrival/departure time epochs, introduced recently in [18], which is a gener-
alization of the celebrated Kiefer–Wolfowitz recursion. First, we define the key
time epochs Ti, which are the arrival and departure epochs. At each such time
epoch Ti we define the system state as a tuple (Mi; IAi ; IDi ;Bi(j), j ∈ Mi;Ri),
that is, the consecutive numbers of customers present in the system, indica-
tors that the time epoch is an arrival (departure), the remaining work of each
customer in the system, and the service speed, respectively.

The epoch Ti+1 is recursively defined as follows

Ti+1 = min
{
tA(Ti)+1, Ti + Bi(j)/Ri

}
, j = min Mi, (28)

where the counting process A(t) = k, tk � t < tk+1, k � 1 is the number of
arrivals up to time t; and Ti + Bi(j)/Ri, j = min Mi is the potential departure
time of the task being served (if any) at instant Ti. Recurrent relations Bi(j), Ri

are defined below, and (if necessary), we add a superscript to indicate the control
policy.

The set of numbers of customers present in the system at Ti+1 is changed at
key epochs as follows

Mi+1 = Mi ∪ {A(Ti+1) : IAi+1 = 1}\{min Mi : IDi+1 = 1}, (29)

with obvious conventions min ∅ = ∅. The remaining work at Ti+1 is defined as
follows

Bi+1(j) =
{

Bi(j) − (Ti+1 − Ti)Ri, j = min Mi ∩ Mi+1,
Sj , j ∈ Mi+1\min Mi,

(30)

where Bi+1(j) is nothing, if i + 1 is the departure epoch of task j. For the HC
policy, the speed RHC

i+1 at time Ti+1 is given by recurrent relation

RHC
i+1 = IDi+1(rL1|Mi|=kL+1+RHC

i 1|Mi|�=kL+1)+IAi+1(rH1|Mi|=kH
+RHC

i 1|Mi|�=kH
).

For the RS policy, the speed RRS
i+1 is given as follows

RRS
i+1 = IDi+1(rLβpL

+ RRS
i (1 − βpL

)) + IAi+1(rHβpH
+ RRS

i (1 − βpH
)),

where βx is an independent Bernoulli trial with success probability x. It remains
to define the recursion base. Since at T1 = 0 an arrival of the first customer
occurs, then

M1 = {1}, B1 = {S1}, R1 = rL.

Now the performance of the model may be obtained as

V =
1
T

∑
i:Ti�T

(Ti+1−Ti)|Mi|, E =
1
T

∑
i:Ti�T

(Ti+1−Ti)(e0,Ri
1|Mi|=0+eRi

1|Mi|>0).

For simulation purpose, the recurrent relations were implemented in R
language [17].



Evaluating a Single-Server Queue with Asynchronous Speed Scaling 165

4 Technical Model

In this section we present a technical model, that implements the control policies
discussed in Sect. 2. We use the simulation model described in Sect. 3 together
with analytical results given in Sect. 2 to validate the model. We note, that both
the technical model and the simulation model allow to evaluate the performance
of control policy when the analytical results are not available. For technical
clarification, in the sequel we will use the term frequency as a synonym of the
speed, and client as a synonym of customer used in previous sections.

We give an overview of the technical model. A prepared Linux-operated
battery-powered laptop is used to evaluate the client-server web application (web
service) that provides a simple, but CPU-intensive workload (generating and/or
compressing a pseudo random sequence). The client initiates the service by send-
ing a request to the server, with a random file (generated on the server side) of
exponentially-distributed random size, that is to be compressed. The iid. interar-
rival times have exponential distribution. The Apache-based server has specific
settings that allow to serve only one client at a time. Thus, other clients have
to wait in a queue (indeed, it is the so-called TCP backlog, where the waiting
clients are the TCP connections in unacknowledged state). Based on the queue
size (in case of HC policy), or on an independent Bernoulli trial with a given
success probability (in case of RS policy), the server switches one of the frequen-
cies, performing CPU frequency scaling by means of the cpufreq subsystem [9].
The server is able to monitor the queue size at arrival and departure epochs. At
each such a key time epoch, the server records the battery level (mAh/mWh),
queue size (number of unacknowledged TCP connections) and current time (with
nanosecond precision). The asynchronous switching mode is performed by means
of file synchronization with the incron subsystem.

4.1 General Linux Settings

The Linux operation system is enhanced with a frequency scaling cpufreq sub-
system [9,16] operated by various user- and system-level tools. This tools allow
to set various frequency scaling policies using the so-called governors and a corre-
sponding daemon process. The dynamic governors allow to adopt the frequency
based on the value of the current load to save the power and/or increase per-
formance. Moreover, these governors allow to customize the policy of frequency
scaling. There are several in-kernel governors available for use with the cpufreq
subsystem:

performance statically switches to the highest frequency available;
powersave statically switches to the lowest available frequency;
userspace allows the user (with appropriate privileges) to switch the frequency

manually;
ondemand dynamically changes the frequency based on processor utilization;
conservative dynamically adjusts frequencies based on processor utilization,

with a gradual frequency increase.
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To use the userspace governor, it is necessary to switch to the acpi-cpufreq
driver, which requires to disable the intel pstate in the kernel. This may be
done e.g. by adding the optional kernel parameter into the GRUB bootloader
commandline between the splash and quiet parameters, e.g.

GRUB CMDLINE LINUX DEFAULT= "resume=/dev/sda1 splash=silent \
intel_pstate=disable quiet showopts"

It is necessary to update the bootloader afterwards, e.g. by update-bootloader
command. Note that the userspace governor is able to interact with many
daemons (such as cpudyn, cpufreqd, powernowd) to control, set or change the
CPU frequencies. We selected the widely available across Linux distribution
cpupower tools package to perform the frequency scaling.

The following additional software packages should be installed (we do not
give the exact names, since they are distribution specific): the Apache webserver
with apache-mod php5, the cpupower tools, the inotify-tools package with
incron daemon, and ss socket investigation utility. Specific settings for these
tools will be discussed below.

To perform experiments with high load, it may be necessary to increase the
system backlog size (e.g. to 10000) which may be done by including the following
lines in/etc/sysctl.conf file:

net.ipv4.tcp_max_syn_backlog=10000
net.core.netdev_max_backlog=10000

Note however, that it may be required to perform other distribution specific
settings that limit the backlog size.

It is recommended also either to use a singlemode regime, or to disable the X
Window system, e.g. by executing the init 3 command in the root shell. Note
that the incron daemon should be started manually at init level 3.

4.2 Apache Configuration

To perform as a single-server queue, the Apache webserver needs to be specif-
ically set up. First, it is necessary to enable the mpm-prefork Apache mod-
ule (e.g. by the a2enmod command) and disable the worker module. Then, it
may be required to disable the KeepAlive TCP connection setting, so as to
instantly close the connection after service completion epoch, and correct the
backlog value. The location of Apache configuration is distribution specific (e.g.
/etc/apache2/), and the following line needs to be added into configuration (e.g.
in the file server-tuning.conf):

KeepAlive Off
ListenBackLog 10000

Additinally, the following parameters should be added in the configuration
of prefork module (in a conditional section <IfModule prefork.c>...
</IfModule>:
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ServerLimit 1
MaxClients 1
MaxRequestWorkers 1
MaxConnectionsPerChild 0

These parameters make Apache serve the requests as a single-server FIFO queue.

4.3 Incron Configuration

To use the asynchronous switching at arrival/departure times, the incron sub-
system is used. The incron daemon allows to monitor the file system events and
trigger the shell script execution. Each time a client generates a request (a server
completes the service), it creates an empty file, and, as a result, the appropri-
ate shell script executes the control policy. To create the triggers, the following
lines should be added into incrontab of the root user e.g. by incrontab -e
command

<directory_location> IN_CREATE /bin/bash <shell_script_location>

The templates <directory location and shell script location should be
changed to the location of a directory where the client (server) writes the empty
file at request initiation (service completion) event, and to the appropriate script
executing the control policy at arrival (departure). Note that the incron uses the
inode rather than the directory name to monitor the events, and it is necessary
to recreate the triggers in case of directory deletion/creation. Recall also that
incron should be started manually at init level 3.

4.4 Frequency Management

To perform the frequency scaling, we use the cpupower command with appro-
priate parameter <desired frequency>, i.e.

cpupower frequency-set -f <desired_frequency>

This command is executed in the shell script triggered by incron at
arrival/departure instants.

4.5 Measurements and Trace

Due to the asynchronous management mode, the most convenient way of tracing
the system state is to perform instant measurements in the script triggered at
arrival/departure instants by incron daemon. The appropriate system param-
eters, including the queue size, battery level, frequency and current time (with
nanosecond precision) is performed at the management instants.
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Queue Size. To implement the control policy, the shell script triggered by
incron is to be aware of the queue size (for HC policy). The queue size is mea-
sured as the number of unacknowledged TCP connections persisting in backlog.
The appropriate tool for measurements is the ss -lti command, the output of
which is afterwards parsed as follows

q=$(ss -lti ‘( sport= :http)’ | grep unacked)
q=$(expr "$q" : ‘.*unacked:\([0-9]*\)’)

Frequency. The current CPU frequency may be obtained by cpupower com-
mand as follows

cpu-power frequency-info -f | tail -n 1

Note that the output may be distribution specific and may require additional
effort to extract the number e.g. by means of

Energy Consumption. A laptop is in general equipped with a battery, and
the information on the remaining capacity may be extracted directly from the
system device. Note that the location of the data, as well as the units of mea-
surement, are distribution- and laptop-specific. E.g. the command for battery
level extraction is as follows:

cat /sys/class/power_supply/BAT0/charge_now

Time. The time measurements with nanosecond precision are performed by the
following standard shell routine

date +%s%N

4.6 Client Application

A simple client application is the shell script, that receives a specifically struc-
tured input file with two-column table defining the exponentially-distributed
interarrival times and the sizes of random files to generate (compress). The
HTTP request to the Apache server at localhost is performed by a curl com-
mand, by the following command

curl http://localhost/index.php?count=$var &

where $var is the random request size (amount of work). Note that the request is
done in asynchronous mode, so as to allow to perform another request without
waiting for the current request completion. Afterwards, a sleep command is
initiated, to wait for the interarrival time before sending the next request. Note
that the same application creates an empty file in a specific location to trigger
the control policy.
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4.7 Server Load

For the experiment we need to emulate a web service that provides CPU-intensive
application. As a model we assume the random file generation (compression)
service. The following command

dd if=/dev/urandom iflag=fullblock bs=<random_size> count=1 \
| gzip > /dev/null

allows to compress a pseudo randomly generated file of size <random size>. Note
that it is not necessary to compress the file, since generating a pseudorandom
sequence itself is a CPU-frequency-dependent operation. However, a higher load
may be performed when the gzip command is used. Moreover, due to the change
of sequence generation algorithm for the /dev/urandom device in Linux kernel
� 4.8, the usage of gzip may be necessary. However, in the numerical experi-
ment we used a laptop with an older kernel, which allowed to directly read the
dev/urandom device from a PHP5 application as follows:

$fp=@fopen(‘/dev/urandom’,‘rb’);
if($fp !== FALSE){

$result=@fread($fp,$_GET[‘count’]);
@fclose($fp);}

Note, that to avoid access restrictions, it is recommended to use PHP7 with
random bytes command.

4.8 Calibration of the Model

The technical model calibration should include measuring the time of random
file generation, e.g. by time command, measurements of energy consumption at
idle, maximum and minimum available frequencies. Some additional measure-
ments may be required to estimates the latency of client, server, and monitoring
applications.

5 Numerical Experiments

An HP EliteBook 2760p laptop with SSD drive was used for experiments,
equipped with OpenSUSE Leap linux with kernel 4.1.36-44-default x86 64.
The following calibration results were obtained:

– Minimum frequency (used for experiments): 1.2 GHz;
– Maximum frequency (used for experiments): 2.6 GHz;
– Energy consumption: 165, 330, 550 mAh;
– Service speed: generating a 100MB random sequence in 14.4 (6.67) s at min-

imum (maximum) frequency.
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Additional validation experiments were performed by Dell Vostro laptop
equipped with Ubuntu linux with kernel 4.8. However, the results of experi-
ments agree with the ones performed by HP, and we do not discuss them below.

First, we performed a generation and validation of the framework for the
HC policy with kL = 5, kH = 10, rL = 0.46, rH = 1, λ = 0.6 clients per second
(where the service speeds are adopted from calibration results for notational con-
venience). We used 10000 client requests to validate the framework. The average
number of customers in the system obtained is relatively close, which is also
illustrated by the proximity of the (theoretical, simulated and measured) dis-
crete distributions of mean number of customers (client requests) in the system,
see Fig. 1. Note that various input conditions were evaluated, which in general
give the same qualitative results, and thus we give the figures for illustration
purpose only.
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Fig. 1. Control policy evaluation: discrete distribution of the number of clients in the
system for analytical, simulation and numerical results. Left: HC policy, kL = 5, kH =
10, rL = 0.46, rH = 1, λ = 0.6, 10000 clients. Right: RS policy, pH = 0.7, pL = 0.4, λ =
6, rL = 4.62, rH = 10, 50000 clients.

Next, we evaluated the RS policy with the following settings: pH = 0.7, pL =
0.4, λ = 6, rL = 4.62, rH = 10 clients per second, with 50000 client requests.
The obtained proximity is shown on Fig. 1. Note however, that the distribution
given by technical model is relatively shifted to lower values. This effect may be
considerably reduced by allowing the mean service time to be higher, however,
resulting in a longer simulation runs.

Note that in general the energy consumption obtained by experiments agreed
with the one provided by simulation model and analytical results. However, we
recommend to perform additional tuning by running several calibration experi-
ments with random data and performing parameter fitting.
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6 Conclusion and Discussion

We presented a framework that allows to validate the three components of
energy efficiency/performance evaluation of various control policies. The results
of experiments illustrated the applicability of the approach. However, we stress
that it may be desirable to use specific devices for various fields of application,
e.g. a Raspberry Pi platform may be used as a technical model of the Internet-
of-Things device. Also extensive parameter tuning may be desirable, including
usage of special devices for energy consumption management (since the accu-
racy of battery capacity level may be not enough), and reducing the system
noise (e.g. switching to singlemode etc.). Note also, that the calibration phase is
kernel dependent.

The experiments presented in the paper were designed to validate that the
analytical, simulation and technical models agree, and thus were performed in
the region, where analytical results were obtained. Namely, the exponentially dis-
tributed service times, and Poisson arrivals were used to generate the sequences
both for simulation, and for technical model. However, these assumptions seem
to be restrictive and hardly comply with the real workload data. Nevertheless,
the good agreement of the three models allows to extend the region of model
evaluation (by means of simulation), which might give some new insights. Note
also, that the structure of the framework allows to modify the configuration in
order to get a multiserver system model, as well as consider confidence intervals
for the key measures of interest. We leave this possibilities for future research.
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Abstract. Buffers in switches or routers are used to achieve sufficiently
high utilization of transmission resources but permanently filled buffers
add excessive queuing delay to communication. Active queue manage-
ment (AQM) accommodates infrequent traffic bursts but avoids a stand-
ing queue. Currently, many new AQM mechanisms are discussed in the
IETF. In this work, we propose a new AQM mechanism based on the
idea of congestion policing. We evaluate its performance for various net-
working scenarios and transport protocols, and illustrate the impact of
its parameters.
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1 Introduction

Bufferbloat [14] is the phenomenon that end-to-end delay in the Internet can
be very high due to large buffers in switching nodes on the paths. The delay
occurs if large buffers get filled as this increases the queueing delay of packets.
This observation has fueled the discussion of new active queue management
(AQM) mechanisms for the Internet. Random Early Detection (RED) has been
proposed as AQM for the Internet [6] already in 1998, but so far there is only
little deployment which is also due to its rather difficult configuration. Therefore,
the IETF has started a new working group on “Active Queue Management and
Packet Scheduling” (AQM) [18] where novel AQM algorithms are investigated
and standardized.

Congestion policing (CP) is the idea that traffic gets policed if a certain
amount of congestion is exceeded. The idea was first introduced in [10] to improve
the fairness among competing users on a remote link under congestion conditions.
Packets of a user get dropped when he causes more CE-marked packets than
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his congestion allowance in form of a configured rate plus some tolerance. A
quantitative evaluation was missing. In this work, we take a step back and apply
this principle to the traffic entering a local queue: if more congestion occurs than
a predefined amount, some packets are dropped. We propose an appropriate
definition of congestion and design a congestion policer. The congestion policer
is based on a token bucket and controls all traffic entering the queue. This yields
the CP-AQM mechanism. We propose suitable token bucket parameters and
investigate CP-AQM by means of simulation in different networking scenarios,
for different transport protocols, and for different traffic types on a 10 Mb/s link.
We recommend congestion parameters for which low average queue lengths and
high link utilization are observed in all considered experiments.

In Sect. 2, we revisit related work and in Sect. 3 we present the design of CP-
AQM. In Sect. 4 we explain our simulation setup and methodology and present
comprehensive results that give insight into the performance of CP-AQM and the
impact of its parameters. Section 5 summarizes the results and gives an outlook
on future work.

2 Related Work

Buffers are deployed in almost all devices of the Internet as they are needed
for efficient packet multiplexing. Some of them are oversized which may cause
persistent excessive delay if a standing queue occurs. This phenomenon is called
bufferbloat [14]. It is due to the fact that TCP cannot recognize an increas-
ing queue unless there is packet loss or significant delay. While some authors
are rather doubtful about the prevalence of bufferbloat and its impact [2,17],
bufferbloat has been demonstrated in cellular networks [21]. The authors of [9]
pointed out many sources contributing to Internet latency and countermeasures.

AQM mechanisms generally reduce queue lengths and fight against
bufferbloat. Random Early Detection (RED) [13] was among the first AQM
mechanisms for the Internet and has been proposed as a standard [6]. The sur-
vey in [1] nicely categorizes a multitude of other AQMs, many of them using the
same principle as RED. The “Adaptive Virtual Queue (AVQ) is a rate-based
AQM that attempts to maintain input (arrival) rate at a desired utilization”
[1]. “Stabilized Virtual Buffer (SVB) uses both packet arrival rate and queue-
length as part of its congestion indicator and attempts to keep the the packet
arrival rate and the queue-length around their individual target values” [1]. These
mechanisms are most similar to the proposed CP-AQM scheme, but differ in a
significant detail: their virtual queue monitors traffic instead of congestion.

Since low delay has become more important in the recent years and since
RED has not been vastly deployed, the IETF working group AQM [18] has
been established. Its objective is to produce new recommendations for AQM
in the Internet [4]. Three novel AQM mechanisms have been presented in that
course: CoDel, PIE, and GSP. CoDel [27,28] stands for “Controlled Delay”. It is
mostly considered in combination with stochastic fair queuing (SFQ) to isolate
flows against each other [16]. However, this combination is basically applicable
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to any AQM mechanism as buffer management and scheduling are orthogonal
to each other [5]. One advantage of CoDel over RED is that it copes with vari-
able capacity links which is relevant in wireless networks. The authors of [23]
provide a comparison between CoDel and RED. Interactions between CoDel
and LEDBAT, a transmission protocol for background traffic, have been studied
in [15]. The authors of [32] have presented a software-defined implementation
in an FPGA for RED and CoDel to support 10 Gb/s. PIE [29,30] stands for
“Proportional Integral controller Enhanced”. PIE was designed to yield more
efficient implementations than CoDel as it does not require timestamps. It has
already been tested for DOCSIS systems [12,36,37]. A comparison between PIE
and CoDel for DOCSIS is provided in [26]. Another comparison between PIE,
CoDel, and ARED is presented in [22]. GSP is short for “Global Synchroniza-
tion Protection for Packet Queues” [25]. The basic operation of GSP relies on
fixed bandwidth. There is an adaptation of GSP for scenarios with higher loads
and for queues with variable capacity. WQM [31] is a novel queue management
system designed for IEEE 802.11n networks to fight against bufferbloat resulting
from variable server rates.

CP-AQM leverages CP. CP limits the maximum congestion a user or traffic
aggregate can cause by packet drops that are enforced by a policer. The idea
of CP was first introduced in [10] and later in [20] and [8]. As it was originally
intended for distributed systems, information about congestion caused by a flow
and observed by the receiver is returned back to the sender that inserts infor-
mation about this observed congestion into the IP header. This information is
known as re-feedback [10] or congestion exposure (ConEx). An IETF working
group [19] was established to standardize this protocol as experimental standard.
ConEx information is intended to perform congestion management through CP
[11]. Use cases are data centers [7] or backhaul networks for mobile access net-
works [24]. A modified version of ConEx-based CP has been presented in [3]. So
far, there is no local application of the CP principle and there is no quantitative
evaluation of CP. This work suggests such a local application and investigates
its performance by means of packet-based simulation.

3 Design of CP-AQM

In this section we introduce CP-AQM. We first give an appropriate definition of
congestion, then explain the design and operation of CP-AQM, and eventually
derive configuration parameters.

3.1 Congestion Function

Congestion is a rather informal term denoting some form of overload on a link.
However, we need a quantitative definition to measure it. Briscoe quantified it
as a rate of lost and CE-marked packets on a link [8]. As packet loss occurs only
under extreme load, and CE-marking of packets depends on the configuration
of the marking algorithm, this definition is not appropriate for our purpose.
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Instead we provide the following congestion function that depends on the current
queue occupancy x in bytes:

c(x) =

{
0 x < Tc

1 + x−Tc

Qmax−Tc
· (cmax − 1) x ≥ Tc.

(1)

Thereby Qmax is the capacity of the queue in bytes and Tc is the congestion
threshold: queue sizes below that threshold are considered uncongested and
queue sizes equal or larger are considered congested. Congestion starts with
c(Tc) = 1, the severity of congestion linearly increases with the queue length,
and reaches cmax for a full queue. Therefore, cmax should be larger than 1.

3.2 Congestion Policer

The congestion policer drops packets if the congestion on the link exceeds a
configured congestion allowance or if the packet does not fit into the queue. The
congestion allowance consists of token bucket parameters: rate RCA (bit/s) and
bucket size BCA (bytes). That means, the policer has a bucket of size BCA that
is continuously refilled with tokens at a rate of RCA. Let B be the size of a
packet on the link including all overheads. If a packet arrives at the queue and
the queue currently holds x bytes, then the packet contributes B ·c(x) congestion
(bytes). If the fill state of the bucket is at least B · c(x), the packet is accepted
for sending and the fill state of the queue is reduced by B · c(x); otherwise, the
packet is dropped by the policer without changing the bucket fill state. If the
packet must be dropped because the queue is full, the fill state is not reduced.

There is an important difference between CP-AQM and conventional token
bucket (or virtual queue) based policers. Conventional token bucket policers
meter traffic and drop packets if the traffic stream exceeds a configured rate
by some configured tolerance. CP-AQM meters congestion and drops packets if
the congestion stream exceeds the configured congestion allowance. Congestion
exists only if the fill state of the queue is sufficiently high, but then the congestion
rate of a traffic stream may exceed its traffic rate.

3.3 Parametrization

Obvious configuration parameters of CP-AQM are the congestion threshold Tc,
the maximum congestion cmax, and the congestion allowance parameters rate
RCA and bucket size BCA. Let C be the link bandwidth.

If the queue is full and traffic is sent at link speed C, then a maximum con-
gestion rate of C ·cmax can be generated. Thus, for the policer to be effective, the
congestion allowance rate RCA must be smaller than that value. To enable the
policer to avoid permanent queue occupancies of size Tc or larger, the conges-
tion allowance rate RCA should be at most C. If the bucket becomes empty, the
queue is above the congestion threshold Tc. If the sender sends with at least link
bandwidth C in this situation and its congestion allowance rate RCA is set to a
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value smaller than C, then the policer drops at least a fraction of C−RCA

C pack-
ets. To make the loss rate in that situation only dependent on the arrival rate
and the fill state of the queue, but independent of RCA, we choose RCA = C.

The policer should allow the traffic to fill the entire queue, but only for
short time. In particular, filling the queue with a single burst should be possi-
ble without causing the policer to drop any packets. The resulting amount of
congestion can be approximated by (Qmax − Tc) · 1+cmax

2 , which is a reason-
able lower bound on the bucket size. This value is maximized for Tc = 0 and
cmax = 2 in our experiments, which leads to 3

2 · Qmax. If the physical queue
has room for Qmax = 45 KB and IP packets are 1.5 KB large, a bucket size of
BCA = 45 KB · 1.507 KB/pkt

1.5 KB/pkt · 1.5 = 67.815 KB is needed after taking the PPP
overhead in our simulation into account which is also respected for the conges-
tion calculation. In the special case of Tc = 0 the bucket needs to be even one
packet larger because then all packets cause congestion, even in the presence of
an empty queue. We use this rule to configure BCA for all experiments because
additional runs showed that this bucket size is sufficient to produce high uti-
lization and that larger bucket sizes cannot increase the utilization significantly.
Thus, from a certain bucket size on, CP-AQM is rather insensitive to the conges-
tion allowance bucket size BCA. After all, the congestion threshold Tc and the
maximum congestion cmax remain as configuration parameters for CP-AQM.

4 Queueing Behavior with CP-AQM

We investigate the impact of the configuration parameters of CP-AQM on average
queue length and utilization on a 10 Mb/s link. To that end, we consider various
networking scenarios, transport protocols, and traffic types. We first describe the
simulation methodology and experiment setup. We illustrate the queuing behavior
of both TCP New Reno and TCP Cubic connections in various networking condi-
tions using tail-drop buffer management as baseline. Then, we show how CP-AQM
performs under various conditions for non-reactive traffic generating persistent
severe congestion. Eventually, we investigate the impact of CP-AQM’s configura-
tion parameters for different networking scenarios and give recommendations.

4.1 Simulation Methodology and Setup

We used the INET framework [33] of OMNeT++ [34] for simulations. As we do
not trust INET’s TCP implementation, we use the Network Simulation Cradle
[35] based on which INET allows to integrate Linux networking stacks including
TCP New Reno and Cubic.

We briefly describe the simulation setup. Users are connected to a server via a
private, fast access link and a shared, slow bottleneck link. The access links have
capacity Ca = 1 Gb/s and one-way propagation delay Da = 0.1 ms while the
shared bottleneck link has capacity of Cb = 10 Mb/s and a one-way propagation
delay Db. The access links do not cause any packet loss. The queue length on
the bottleneck link is Qmax = 45 KB which corresponds to 30 maximum-size IP
packets.
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For non-reactive traffic with a given average rate, we consider periodic traffic
and traffic with exponential inter-arrival times. TCP performance significantly
depends on round-trip time (RTT) and packet loss. Especially the latter strongly
depends on the number of flows on the bottleneck link. Therefore, we look at
different networking scenarios with n ∈ {1, 16} TCP flows and Db =∈ {5, 50} ms.
These values cause round trip times of at least 10.1 ms or 100.1 ms propagation
delay plus transmission and queueing delay which may be significant.

Our simulation features a bottleneck link with Cb = 10 Mb/s over which
PPP frames are transmitted. Thus, packets come with 7 bytes overhead for PPP
header, 20 bytes overhead for IP header, and 8 or 20 bytes overhead for UDP or
TCP header. The maximum transfer unit for an IP packet is 1500 bytes. UDP
traffic is constant bit rate with 1472 bytes UDP payload per packet.

Each data point in the figure is an average gained from at least 100 simu-
lation runs, each of them pertains to a simulation time of at least 100 s with
a preceding 10 s warmup phase. Flows were randomly started within the first
5 s of the simulation. In the case of a single flow, we conducted at least 1000
simulation runs with a duration of at least 1000 s.

4.2 Tail-Drop Buffer Management

We illustrate the impact of tail-drop buffer management on the queueing behav-
ior to provide a baseline for CP-AQM. We perform experiment series for different
traffic types. Figures 1(a) and (b) show the average queue length and the uti-
lization of the bottleneck link for different one-way delays.

We first consider constant-bit rate UDP traffic with 15 Mb/s on PPP layer.
As the offered traffic is significantly larger than the available bandwidth, the
link utilization is 100% and the queue is always fully occupied regardless of the
one-way delay.

A single TCP New Reno connection also achieves full utilization, but only
up to a one-way delay of about Db = 20 ms while for Db = 50 ms the link
utilization degrades to 92.7%. TCP Cubic is more aggressive and fills the pipe
up to Db = 25 ms and reaches a utilization of about 98% even for Db = 50
ms. With increasing one-way delay, the average queue length decreases from 20
packets to 10 packets for a single TCP New Reno connection. TCP Cubic leads
to larger average queue length than TCP New Reno as its congestion control
algorithm increases its sending rate more quickly after packet loss.

More TCP connections lead to more congestion. As a result, the link capacity
can be fully used by 16 TCP flows even for a Db = 50 ms, regardless of the TCP
variant. The average queue length increases to values between 26 and 30 packets
for TCP Cubic and 22.5 and 25.5 packets for TCP New Reno. Also packet loss
becomes significant under these conditions and varies between 4% and 12% for
TCP Cubic and between 2.5% and 9% for TCP New Reno (not shown in the
figures).

The fact that TCP can lead to a full queue over long time, which is the case
for average queue lengths above 15 packets, can be considered as bufferbloat.
In particular for Db = 5 ms, TCP Cubic keeps the buffer almost constantly full



Active Queue Management Based on Congestion Policing (CP-AQM) 179

which is not necessary for efficient packet multiplexing, but adds delay which
is especially annoying when additional real-time traffic is also carried over the
bottleneck link.

Fig. 1. Impact of networking parameters on the performance of TCP traffic with tail-
drop buffer management.

4.3 Non-Responsive Traffic with CP-AQM

We study how configuration parameters of CP-AQM influence the queueing
behavior of non-responsive traffic that causes significant overload. The link uti-
lization was 100% for all experiment series and all investigated configuration
parameters.

Figure 2(a) illustrates the average queue length for 15 Mb/s constant bit rate
UDP traffic on PPP layer with constant packet inter-arrival times. For cmax > 1
the average queue length increases linearly with the congestion threshold Tc but
the exact value of cmax has no impact. We analyze the system behavior. Since
the traffic rate exceeds the link bandwidth, the queue initially increases so that
the congestion function yields values larger than 1. As a result, the bucket is
drained faster than it is refilled so that it eventually holds too few tokens to
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accept a packet. From this point on, less traffic than link bandwidth can be
accepted due to c(x) > 1 for x > Tc so that the physical queue shrinks to Tc for
which c(Tc) = 1 holds. At this stage, a traffic rate of exactly Cb can be accepted
so that excess traffic is dropped. If the queue size falls below Tc due to a packet
drop, the fill state of the bucket slightly increases, which allows a packet train of
consecutive packets to be accepted so that the queue exceeds Tc by a very few
packets. Thus, the queue length oscillates with a very low amplitude around Tc.

Fig. 2. Impact of CP-AQM configuration parameters on the average queue length on
the bottleneck link for non-responsive UDP traffic with a rate of 15 Mb/s.

Figure 2(b) shows that average queue lengths for non-responsive traffic with
exponential packet inter-arrival times are larger than for periodic traffic. This is
due to the fact that the bucket can refill significantly during inter-arrival times
that are larger than average, which allows the queue to grow larger afterwards.
We provide a simple model for this phenomenon. We assume that the queue size
falls below Tc for tbelow time which increases the bucket size by Cb · tbelow tokens.
If the queue size above Tc is on average Qavg

above, the duration tabove of the queue
size above Tc can be calculated by
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tabove =
Cb · tbelow

Cb · Qavg
above−Tc

Qmax−Tc
· (cmax − 1)

. (2)

Example values tbelow = 2.4 ms, cmax = 1.2, Tc = 10 and Qavg
above = 15 yield a

bucket increase by 3000 bytes (2 packets) after which the queue size can stay
tabove = 48 ms at Qavg

above = 15 packets on average. Thus, a very short time (2.4
ms) of the queue size below Tc can allow the queue to stay for long time (48 ms)
above Tc. If we assume an average queue length of 9 packets during tbelow, this
leads to an overall average queue length of 14.7 packets.

The observed deviations increase with smaller maximum congestion cmax.
Thus, with exponential packet inter-arrival times the queue length oscillates more
strongly around Tc, and cmax influences the size of the amplitudes. Experiments
with 12 Mb/s lead to larger average queue sizes because this makes larger packet
inter-arrival times more likely. Conversely, 20 Mb/s lead to smaller average queue
sizes.

For a maximum congestion of cmax = 1 we observe in both figures a straight
line on the level of the average queue length obtained for tail-drop. This param-
eter value does not cause the policer to drop any packets so that the queuing
behavior is independent of the congestion threshold Tc and equal to the one
for drop-tail. This parameter value effects that the congestion contributed by a
packet is exactly its size on the channel (PPP frame size in our simulation). As
the congestion allowance rate RCA equals the link bandwidth Cb, the number
of tokens missing in the token bucket of the policer can be at most the current
queue length (minus the congestion threshold Tc, plus the PPP header overhead
of the stored IP packets, to be accurate). As we have chosen the token bucket
size sufficiently larger than the queue size, the token bucket cannot run empty
so that the policer cannot drop packets. In the following, we use the curve for
cmax = 1 as reference for tail-drop.

4.4 TCP Traffic with CP-AQM

An AQM should be configured such that it performs well for all relevant traffic
patterns. As we observed in the preceding section a significant impact of the
number of TCP flows, the one-way delay, and the TCP version on average queue
length, we investigate the impact of CP-AQM’s configuration parameters on
queuing behavior for 8 combinations consisting of n ∈ {1, 16} flows, Db ∈ {5, 50}
ms, and TCP version ∈ {New Reno, Cubic}.

Experiments with TCP New Reno. Figure 3(a) shows the average queue
length on the bottleneck link for n = 1 TCP New Reno connection and
Db = 5 ms. It clearly increases with an increasing congestion threshold Tc and
with a decreasing maximum congestion cmax. We briefly discuss these findings.

The fact that the average queue length increases with the congestion thresh-
old is rather intuitive. A packet contributes to congestion only if the queue
occupation is at least the congestion threshold Tc at its arrival. Only then the
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Fig. 3. Average queue lengths on the bottleneck link for TCP New Reno.

packet can be policed; otherwise it does not contribute any congestion. Thus, for
larger values of Tc, the queue can grow larger without consuming tokens from
the bucket, which effects policer drops only at larger queue sizes. The average
queue length is shorter for larger maximum congestions cmax than for small ones.
This is because large values of cmax generate a similar congestion rate already
at lower queue sizes compared to small values of cmax so that CP starts drop-
ping at lower queue sizes. The link utilization reaches mostly 100% except for
Tc ∈ {0, 1} packets and large cmax values where utilization is between 86% and
99% (not shown by figures). Thus, CP-AQM can limit the average queue length
for Db = 5 ms without sacrificing hardly any utilization.

Figures 3(b)–(d) show the results for more TCP New Reno connections, or
longer one-way delays, or both. They are qualitatively the same, but differ in
detail. For short one-way delays Db = 5 ms or for only a single n = 1 TCP flow,
the contention for queue space is low enough so that a low congestion threshold
Tc ≤ 5 can enforce small average queue lengths. However, for Db = 50 ms and
n = 16 TCP New Reno connections, a sufficiently large maximum congestion of
cmax ≥ 1.05 is needed in addition to keep the average queue length low.

The link utilization is exactly or close to 100% for almost all experiments
with a Db = 5 ms. This is different for Db = 50 ms. Figures 4(a) and (b)
provide the link utilization for Db = 50 ms and n ∈ {1, 16} TCP Reno flows.
For n = 1 flow, the link utilization was only 92.5% with tail-drop (cmax = 1),
but the values for CP-AQM fall below that level (80%–90%), in particular for
small congestion thresholds Tc and large maximum congestion cmax. Under these
challenging conditions low average queue lengths come at the expense of reduced
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link utilization. For n = 16 flows, significantly reduced link utilization can be
avoided by choosing the maximum congestion as cmax ≤ 1.05.

Fig. 4. Link utilization on the bottleneck link for a one-way delay of Db = 50 ms.

Experiments with TCP Cubic. Figures 5(a)–(d) show that the more aggres-
sive TCP Cubic variant leads to very similar results regarding average queue
length as TCP New Reno. For most configurations of Tc and cmax, the average
queue length is slightly larger than for TCP New Reno. For Db = 50 ms and
n = 1 TCP Cubic flow, CP-AQM may even lead to longer average queue lengths
for large Tc and small cmax than for tail-drop (cmax = 1). This looks coun-
terintuitive at first sight, but may be due to implementation specifics of TCP
Cubic and the fact that tail-drop regularly fills the entire queue before packet
loss occurs.

We do not show figures for the link utilization with TCP Cubic and Db = 50
ms, but report results. For n = 1 flow, the link utilization is about 98% like for
tail-drop. For small congestion thresholds of Tc ≤ 5 packets and large maximum
congestions of cmax ≥ 1.2, the utilization may range between 94% and 98%.
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Fig. 5. Average queue lengths on the bottleneck link for TCP Cubic.

4.5 Recommendations for Configuration

We recommend to set the congestion allowance parameters RCA and BCA like
proposed in Sect. 3.

Looking at all investigated networking scenarios, we propose to set Tc = 5
and cmax = 1.2 because that limits the average queue length to at most 12
packets. The price to pay is a reduced link utilization of 95% for Db = 50 ms
and n = 16 TCP New Reno connections and even lower for n = 1 TCP New
Reno flow. When choosing a lower maximum congestion of cmax = 1.05, New
Reno achieves almost full link utilization for Db = 50 ms and n = 16 flows, but
average queue lengths may reach 15 packets in that case. A larger maximum
congestion of cmax = 1.5 may limit the average queue length to 9 packets with
some more decrease in utilization for Db = 50 ms (82% for n = 1 flows TCP
New Reno, 94% for n = 16 flows TCP New Reno, 96% for n = 1 flow and TCP
Cubic, 99% for n = 16 flows TCP Cubic), which is moderate for TCP Cubic.
Thus, there is a tradeoff between low average queue length and high utilization
where a decision needs to be taken depending on preference.

5 Conclusion

We have presented CP-AQM as a new AQM mechanism based on the idea of
congestion policing (CP). Two configuration parameters define congestion based
on the state of the queue and two more configuration parameters define the
behavior of the congestion policer which is based on a token bucket. We derived
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appropriate token bucket parameters and performed experiments to find suitable
values for the remaining two parameters that define the congestion function.

To that end, we simulated average queue length and utilization in the pres-
ence of tail-drop and CP-AQM for various configurations, networking scenarios
and transport protocols on a 10 Mb/s link. CP-AQM keeps the average queue
length very short in case of persistent overload through non-responsive traffic.
With reasonable configuration it achieves also short average queue lengths for
TCP traffic (New Reno and Cubic) and 100% utilization if multiple flows are
transmitted. The reduction is significant: CP-AQM (Tc = 5 packets) leads to
an average queue length of only 7 packets for 16 TCP Cubic flows and a one-
way delay of 5 ms instead of 30 packets for tail-drop. If only a single flow is
transmitted, CP-AQM causes slightly decreased link utilization for large one-
way delays in the range of 50 ms. The most intriguing feature of CP-AQM is
that it keeps queue lengths very short for persistent non-responsive traffic while
allowing mostly full utilization for TCP traffic. Moreover, our proposed config-
uration of CP-AQM assures that the entire buffer can be utilized by a single
burst.

While this first study of CP-AQM is promising, it is unclear whether CP-
AQM can be extended to cope with varying bandwidth to make it applicable also
for wireless networks. CP-AQM should be compared to other AQM mechanisms
such as RED [13], CoDel [28], PIE [30], and GSP [25]. A comparison is needed
also for bandwidths other than 10 Mb/s, for more complex traffic patterns, and
for other objectives like keeping the queue length very short even at the expense
of significantly reduced utilization.
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Abstract. Deficit Round Robin (DRR) is a simple and computationally
efficient approximation of the Weighted Fair Queueing (WFQ) schedul-
ing discipline. Its intention is to share resources among several queues,
e.g., flows or users, according to given weights. However, when users
hold different numbers of TCP connections with saturated sources, the
throughput among these users may differ significantly.

In this work, we quantify the difference in throughput for heavy and
light users with saturated TCP flows for equal weights and for two differ-
ent buffer management strategies. The difference is large if low queueing
delay for packets is enforced through shallow buffers on the bottleneck
link. To address this shortcoming, we propose limited deficit savings
(LDS), a modification of the DRR scheduler, which can be combined
with different buffer management schemes. We show that LDS reduces
unequal throughput for heavy and light users with saturated TCP flows.
Moreover, we illustrate that LDS clearly decreases download times for
data chunks of moderate size in the presence of high background load.
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1 Introduction

Deficit Round Robin (DRR) [28] is a computationally efficient approximation
of the Weighted Fair Queuing (WFQ) scheduler. It serves several packet queues
and allocates to them the capacity of a single server, e.g., the bandwidth of
a communication link, according to configurable weights. In particular, DRR
respects packet sizes so that queues cannot obtain larger capacity shares by
sending larger packets.
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While fair allocation of transmission bandwidth has been the focus for many
years, low delay has recently become more important. Drivers for low-delay
transmission in the Internet and communication networks in general are real-
time applications like voice over IP, video conferencing, financial applications,
and gaming. Several specialized working groups in the Internet Engineering Task
Force (IETF) work on mechanisms to reduce delay and congestion in the Inter-
net: ConEx [16], RMCAT [17], and AQM [15]. The FP7 project RITE pursues
that objective [1] and the Internet Society organized two workshops in this area
[18,19]. An overview to reduce Internet latency is given in [5].

If low packet delay is desired with WFQ or DRR, some packets are dropped
if the buffer holds too many of them. Such a drop decision is part of the buffer
management schemes. We basically consider two strategies: drop-on-enqueue and
drop-on-dequeue. As TCP is still the predominant transport protocol in the
Internet, we investigate the transmission of saturated TCP sources. Heavy users
may have more TCP connections than light users. We show that both considered
buffer management methods do not lead to equal bandwidth allocation among
heavy and light users if low delay is enforced.

A major reason for that phenomenon is the fact that in the DRR algorithm a
queue does not benefit in the resource allocation process while it is empty. This
problem increases with tighter delay requirements. To mitigate that problem, we
propose limited deficit savings (LDS) as an extension to DRR so that queues can
collect credits during short periods of inactivity between the last packet sent and
the next packet arrived. We evaluated this mechanism under various conditions.
To that end, we implemented variants of DRR in the INET simulation framework
of OMNeT++ [30] and performed multiple experiments.

The paper is structured as follows. Section 2 explains the DRR algorithm,
reviews existing work about DRR and WFQ, active queue management (AQM),
and distinguishes our approach from other activities. Section 3 introduces the
LDS extensions for DRR. Section 4 explains the experimental setup and discusses
simulation results. Section 5 summarizes this work and draws conclusions.

2 Related Work

In this section, we briefly introduce WFQ and some of its variants and explain
the DRR algorithm. We introduce the notion of bufferbloat, point out several
AQM methods, and distinguish these efforts from our approach.

2.1 Weighted Fair Queueing and Variants

In 1985, John Nagle discussed the benefits of a round robin scheduling system
[23] which was later called fair queueing (FQ). The approach was enhanced by
Demers et al. [6] and by Zhang [36] towards a logical bit-by-bit fair scheduler
which became known as Weighted Fair Queueing (WFQ). The introduction of
weights allows for unequal resource allocation of capacity to different queues.
In 1995, Shreedhar and Varghese proposed the Deficit Round Robin (DRR)
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scheduler [28], which approximates WFQ but is computationally less demand-
ing. Other improved approximations followed like the Worst-case Fair Weighted
Fair Queueing (WF2Q) which utilizes the start time of packets additionally to
the finish time to enhance accuracy, or WF2Q+ which improved accuracy and
reduced complexity [4].

2.2 DRR Algorithm

We now describe DRR in more detail as it is the base for our study. With
DRR, queues are associated with weights and the objective of the DRR is to
assign the capacity of a server or bandwidth of a link to the active queues in
the system according to these weights. A queue is active if it stores a packet,
otherwise it is inactive. The queues are administered in an active list and a set of
inactive queues. If a packet arrives for an inactive queue, the queue is removed
from the set of inactive queues and appended to the end of the active list. The
active queues are served in the following manner. Every queue is associated
with a deficit counter. The deficit counter of the first queue from the active list
is incremented by a quantum, which is an amount of bytes, multiplied by the
weight associated with that queue. If the deficit counter is at least as large as
the size of the first packet in the queue, the deficit counter is decreased by the
size of that packet, and that packet will be sent next. This process continues
until the deficit counter is not large enough to send the next packet or until the
queue is empty. The queue is then removed from the active list. If it still holds
packets, it is appended again to the end of the active list, otherwise it is added
to the inactive set and the deficit counter is reset to zero. Then the process of
assigning a quantum to the first queue in the active list and sending packets
continues. DRR uses a shared buffer for all queues. If there is no space left in
the buffer upon arrival of a new packet, a packet of the longest queue is dropped.
This buffer management is called McKenney’s buffer stealing algorithm [22]. In
the following we refer to it as drop-on-enqueue.

2.3 Bufferbloat

Sufficiently large buffers are needed under certain conditions to achieve good
bandwidth utilization on networking hardware [7,8], but if they are filled for
relatively long time, packets experience excessive and unnecessary delay. This
phenomenon is called bufferbloat [10], i.e., excessive packet delay due to large
and unmanaged buffers. The general problem behind bufferbloat was already
described in 1985 by John Nagle [23]. Quantitative evaluations showed that
bufferbloat is not ubiquitous and its impact may be limited [3,14]. Bufferbloat
in cellular networks has been studied in [20].

2.4 Active Queue Management

Active queue management (AQM) is a class of buffer management schemes that
counteract incipient congestion by dropping or marking packets before the queue
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is fully occupied. A classic scheme is Random Early Detection (RED) [9] that
drops packets with a probability rising with the recent average queue occupation.
With explicit congestion notification (ECN), packets are rather marked instead
of dropped, but ECN is applicable only if TCP sources indicate to reduce their
traffic rate in response to appropriate congestion signals from TCP receivers
[27]. The PIE controller is an enhanced AQM whose packet drop probability
depends on growing and shrinking average queue sizes [26]. It is already applied
for DOCSIS systems [33,35], [34, Annex M]. The Controlled Delay (CoDel) AQM
[24,25] is currently proposed as a countermeasure against bufferbloat and already
integrated in many stacks. It is extended towards FQ-CoDel [13] by combining
it with DRR and Stochastic Fair Queueing (SFQ) [22] so that low-rate flows
within a traffic aggregate do not suffer excessive delay due to competing high-
rate flows. Various new AQMs have been compared in [21], and [2] reviews a
multitude of AQMs that have been discussed in the past. Interactions between
AQMs and low-priority congestion control have been investigated in [11,12]. The
authors of [29] have considered various buffer management strategies together
with per-flow queueing strategies in Gigabit routers.

2.5 Our Approach

In our work we consider a scheduler with multiple queues, one for a specific
aggregate that we call a user in the following. Each user may have multiple flows
and the objective of the scheduler is to enforce a resource allocation to queues
according to configured weights. This is typically achieved by WFQ. However,
another goal is to keep packet delay low which is the objective of AQM or
buffer management mechanisms. We try to achieve low delay with DRR with
simple buffer management strategies and to understand their impact. FQ-CoDel
is close to our approach in the sense that it keeps delays low and uses DRR, but
it uses SFQ to isolate flows of a single user in different queues. Of course, CoDel
could be easily modified for per-user queueing. The objective of our work is
the enhancement of DRR by LDS from which other mechanisms like FQ-CoDel
could also profit.

3 Limited Deficit Savings for DRR

With DRR, the deficit counters of queues are increased only if they hold at least
a single packet; otherwise they are not respected for the resource allocation pro-
cess. However, when low latency is enforced in the presence of multiple queues,
queues are likely to hold no packet most of the time even though the system
is fully utilized. As a consequence, queues with less frequent packet arrivals are
disadvantaged in competing for the capacity share given by the weights. This
problem arises for TCP traffic.

Our idea is to allow an empty queue to increase its deficit counter up to a
deficit saving limit Dmax. At the next packet arrival, the queue does not need to
wait for a deficit increase but can be served preferentially within a set of queues
that have enough deficit to send packets. We describe this DDR-LDS algorithm
in the following.
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3.1 State Classification of Queues

A queue is fresh if it is empty and if its deficit counter D equals Dmax. All
fresh queues are kept in the “fresh list” F . A queue is eligible if it holds at
least one packet and if its deficit counter D is at least as large as the size B
of its first packet so that this packet could be sent. All eligible queues are kept
in the “eligible list” E . An empty queue is collecting if its deficit counter D is
smaller than Dmax. A non-empty queue is collecting if its deficit counter D is
smaller than the size of its first packet B so that this packet cannot be sent. All
collecting queues are kept in the “collecting list” C. Figure 1 depicts how queues
move from one list to another if their state changes. The states of the queues in
the respective lists are indicated in the circles. The algorithms in the following
describe how these state changes are triggered and when the queues are moved.

Fig. 1. A queue belongs to the fresh, eligible, or collecting list depending on its state.
Queues are moved from one list to another during the execution of DRR-LDS.

3.2 Packet Enqueue

If a packet arrives, it is appended to its queue. If the queue was fresh before
packet arrival, it is removed from F and appended to E . If the queue was empty
and in C before, it may need to be removed from C and appended to E , depending
on its new state. If the link is idle after a packet arrival, a packet may be
immediately dequeued for transmission as described in the next paragraph.

3.3 Packet Dequeue

If a packet is needed for transmission and E is not empty, the algorithm removes
the first packet of the first queue in E . If that packet will be dropped for some
reason and if the queue is empty afterwards, the queue is removed from E and
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appended to C or F depending on the queue classification criteria. If the packet
will be transmitted, the queue is removed from E , its deficit counter is decreased
by the packet size, and the queue is appended to E or C, depending on its new
state. This procedure repeats until a packet for transmission is found or until E
is empty. In the latter case the deficit will be increased as described in the next
paragraph.

3.4 Deficit Increase

If E is empty, the deficit counters of queues in C are increased until E is no longer
empty or until C itself is empty. To that end, the deficit counter of the first queue
in C is increased by the quantum multiplied by the queue’s weight, but the deficit
counter cannot exceed Dmax if the queue is empty. Then, the queue is removed
from C and then appended to F , E , or C. This procedure repeats until C is empty
or until E becomes non-empty. In the latter case, packet dequeue is resumed.

3.5 Some Observations

Queues can collect deficit only if no queue is eligible. If the buffer runs empty,
all queues become fresh again. FQ-CoDel implements a similar mechanism that
is described in [13]. However, with FQ-CoDel the time empty queues take to
become fresh again is independent of Dmax. With DRR-LDS the time an empty
queue needs to become fresh again does depend on Dmax.

4 Performance Evaluation

We first describe the simulation setup. Then we show that DRR cannot enforce
equal bandwidth allocation in the presence of heavy and light users with TCP
traffic and low latency requirements. We demonstrate that DRR-LDS reduces
this unequal bandwidth allocation and leads to fast downloads of short transac-
tions for certain buffer management schemes.

4.1 Experiment Setup

We implemented DRR and DRR-LDS in combination with two buffer manage-
ment strategies based on the INET framework [30] for the discrete-event simu-
lator OMNeT++ [31]. As we do not trust INET’s TCP implementation, we use
the Network Simulation Cradle [32] based on which INET allows to integrate
Linux networking stacks for TCP New Reno and Cubic.

Figure 2 illustrates our simulation setup. A set of “users” is connected to one
router over a fast link with a bandwidth of Ca = 1 Gb/s and a one-way propaga-
tion delay of Da = 1 µs. This router connects to a server over a slow bottleneck
link with a bandwidth of Cb = 10 Mb/s and a one-way propagation delay of
Db = 5 ms or Db = 50 ms, respectively. Thus, the transmission time of a packet
with an average size of 1500 bytes takes 1.2 ms. We apply DRR or DRR-LCS
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Fig. 2. Simulation setup.

for this bottleneck link and assign equal weights to all users. We configured the
DRR with a quantum of 1500 bytes. The experiments use saturated TCP con-
nections, i.e., there is always data to send. The TCP connections start randomly
within the first second of a simulation run and statistic collection starts only
after 5 s to avoid transient effects. If not mentioned differently, each simulation
run is repeated 100 times.

4.2 Buffer Management Schemes

We consider two buffer management schemes for a shared buffer: drop-on-
enqueue and drop-on-dequeue.

Drop-on-enqueue is the strategy originally proposed with DRR: if a packet
arrives and the buffer is fully occupied, the oldest packet of the longest queue is
dropped. Thereby, the packet delay can be controlled by the buffer size SB.

Drop-on-dequeue is inspired by new AQMs like CoDel, but we pursue a very
simple approach. A packet is dropped if it is older than a configurable delay
threshold TD. This method limits the packet delay to TD and removes packets
from the queue in case of congestion. Nevertheless, the buffer can overflow under
certain conditions. To avoid that, we postulated a sufficiently large buffer and
assumed infinite for the sake of simplicity.

4.3 Resource Allocation with DRR

The objective of this experiment is to test whether DRR can enforce an intended
resource allocation in the presence of many users so that DRR queues run empty.
We consider n = 40 active users, 5 heavy users holding 10 TCP connections
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Fig. 3. Throughput and packet queueing delay for heavy users (HU) and light users
(LU). Results are shown for TCP New Reno and Db = 5 ms.

with the server and 35 light users holding only a single TCP connection with the
server. With FIFO scheduling, we expect ratios of 10:1 for achieved transmission
rates of heavy and light users assuming TCP’s per-flow fairness is perfect. With
DRR scheduling we expect equal transmission rates of 0.25 Mb/s for heavy and
light users.

Figure 3(a) shows the throughput and packet queueing delay of heavy and
light users with TCP New Reno connections for drop-on-enqueue buffer manage-
ment and with Db = 5 ms on the bottleneck link. The x-axis shows the buffer size
and the y-axes the throughput and packet queueing delay of each user type. For
buffer sizes between 15 and 40 packets, heavy users achieve significantly larger
transmission rates than light users. This is undesired insofar as both heavy and
light users have saturated sources an should share the link equally. The queueing
delay for packets rises about linearly with the buffer size and its mean reveals
that about 5

6 of the queue is occupied on average. Thus, the queue is often filled
which is due to the relatively high load. For very large queue capacity, we observe
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shorter delays for heavy users than for light users. As DRR with drop-on-enqueue
requires 50 packets to achieve equal bandwidth allocation for competing TCP
users in our setting, it cannot enforce both fairness and low or moderate delay
under heavy load.

Figure 3(b) presents similar results for drop-on-dequeue. The x-axis shows
the delay threshold TD instead of the buffer size SB; the range [6;120] ms is
chosen because that corresponds to the transmission times of a packet range
[5;100] which was used for drop-on-enqueue in Fig. 3(a). For drop-on-dequeue
we observe even larger differences in throughput for heavy and light users, in
particular for small delay thresholds. A delay threshold of TD = 90 ms is needed
to achieve equal bandwidth allocation for heavy and light users which results in
almost 40 ms average packet delay for both user types. With drop-on-dequeue,
packet queueing delay rises about linearly with the delay threshold TD and is
similar for heavy and for light users due to the absence of buffer stealing. It is
about half the delay threshold TD in our experiments. With drop-on-enqueue, the
queue length cannot exceed SB but the buffer was mostly fully occupied, which
is not shown in the figures. For drop-on-dequeue the buffer size was not limited.
Nevertheless, the measured average queueing delay linearly increased from zero
(for TD = 0 ms) to 50 ms (for TD = 120 ms). Thus, the average queueing delay for
drop-on-dequeue is significantly lower than the corresponding average queueing
delay for drop-on-enqueue.

We performed the same experiments with Db = 50 ms and obtained almost
the same results. For TCP Cubic we received different results but the same
conclusion: large queue capacity is needed for fair bandwidth sharing.

4.4 Resource Allocation with DRR-LDS

We evaluate the effect of limited deficit savings (LDS) on the throughput of
heavy and light users. We first consider drop-on-enqueue for a buffer size of
SB = 20 packets to keep queueing delay short. The x-axis in Fig. 4(a) shows
the deficit saving limit Dmax and the y-axes show again the throughput and
packet queueing delay of heavy and light users with TCP New Reno connections
on a bottleneck link with a Db = 5 ms. We observe that the throughput for
heavy and light users significantly deviates for very small values of Dmax but
the difference vanishes for values Dmax ≥ 10. We explain this phenomenon by
the fact that at the beginning of a congestion phase when the buffer is filled,
the heavy users quickly consume their deficit. This gives priority to packets of
light users when they arrive. Also during congestion periods, light users can save
deficit whenever heavy users receive deficit to send further packets although they
do not have packets to send. When traffic is shared about equally, the queueing
delay is about 20 ms and for heavy users slightly larger than for light users.

Figure 4(b) shows similar data for drop-on-dequeue for which a delay thresh-
old of TD = 24 ms is chosen that corresponds to the transmission time of 20
packets. The difference in throughput between heavy and light users is even
larger than for drop-on-enqueue. It is again decreased by an increasing value
for the deficit saving limit Dmax. A deficit saving limit of Dmax = 6 is already
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Fig. 4. Throughput and packet queueing delay for heavy users (HU) and light users
(LU) with LDS. Results are shown for TCP New Reno and Db = 5 ms.

enough to achieve perfect fairness. Packet queueing delay is about 10 ms and for
heavy users slightly larger than for light users.

We also performed these experiments with Db = 50 ms and obtained almost
the same results. For TCP Cubic we received different results. In particular, with
drop-on-enqueue, light users achieved significantly larger throughput than heavy
users, but light users experienced also clearly more packet delay. In contrast,
drop-on-dequeue leads to a very similar queueing behavior as in Fig. 4(b) for
TCP New Reno.

Thus, drop-on-dequeue with DRR-LDS seems an interesting approach to
maximize fairness between heavy and light users with TCP flows when low
latency is required.

4.5 Download Times with DDR-LDS

We consider the download time of an infrequent user sending small data bursts
of 100 kB in the presence of a heavy load situation. The infrequent user holds a
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Fig. 5. Download time of a data chunk of 100 kB for an infrequent user in the presence
of heavy background traffic. The 20 other users have 5, 10, or 20 saturated TCP
connections. Results are shown for TCP New Reno and Db = 5 ms.

single TCP New Reno connection to download a data chunk of 100 kB for which
the duration is measured. The 20 other users hold 5, 10, and 20 connections
in different experiments. The TCP connections of the 20 other users are satu-
rated, constitute the background load, and start within the first second of the
experiment. The infrequent user starts its download after 5 s. Each experiment is
repeated 100 times. With perfect fairness the download time for 100 kB is 1.68 s
under the assumption that TCP can initially send already sufficiently fast.

We first consider the download time for drop-on-enqueue configured with a
buffer size of SB = 20 packets. Figure 5(a) shows the download time for the
infrequent user depending on the deficit saving limit Dmax. The download time
is almost independent of the background traffic. Small deficit saving limits Dmax

lead to a slight increase in download time, but larger Dmax clearly decreases the
download time below 1.68 s. Thus, a reduction of download time through LDS
is visible but rather modest. The same results are obtained for Db = 50 ms and
for TCP Cubic.
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To study drop-on-dequeue, we use a delay threshold of TD = 24 ms.
Figure 5(b) shows that without LDS (Dmax = 0) the infrequent user’s download
time is significantly larger than for drop-on-enqueue. Larger background loads
lead to longer download times without LDS, i.e., 4.8 s when the other users hold
5 connections each, 5.5 s when they hold 10 connections each, and 5.9 s when
they hold 20 connections each. With very little deficit saving limit Dmax, the
difference in download time already vanishes. With even larger deficit saving
limit Dmax the download time decreases to less than 0.4 s. This is a significant
speedup even compared to the fair download time of 1.68 s. Very similar results
are obtained for Db = 50 ms and for TCP Cubic.

Thus, LDS in combination with DRR can expedite transactional traffic in the
presence of heavy background load, with both the drop-on-enqueue or the drop-
on-dequeue buffer management strategy. For drop-on-dequeue the reduction of
download time is very high.

5 Conclusion

In this work we have shown that DRR cannot achieve equal bandwidth allocation
to heavy and light users that have different numbers of saturated TCP flows,
in particular if low delay is enforced through shallow buffers. A reason for this
phenomenon is that empty queues do not profit in DRR’s bandwidth allocation
process. If low delay is enforced, even queues with active TCP flows are empty
for quite some time so that it is hard for them to get their full bandwidth share.
Therefore, we modified the DRR algorithm such that empty queues are respected
for the bandwidth allocation process in DDR and can save deficit to a limited
extent. We called this mechanism limited deficit savings (LDS) and refer to the
modified DDR algorithm as DDR-LDS. Our simulation results demonstrated
the throughput differences between heavy and light users and revealed that they
are larger for drop-on-dequeue than for drop-on-enqueue and for TCP New Reno
than for TCP Cubic. We showed that LDS significantly reduces these differences.
Moreover, LDS clearly decreases download times of light users for both buffer
management strategies whereby the effect for drop-on-dequeue is larger than for
drop-on-enqueue.

The study points at potential unfairness with DRR under low-delay con-
straints for TCP users. More research is needed to understand how DRR-LDS
affects other traffic types, traffic mixes, and how the performance depends on
networking parameters that typically influence TCP throughput. Moreover, mea-
surements are needed to evaluate whether the investigated scenario is rather a
corner case or whether the DRR-LDS scheduler is able to solve practical prob-
lems. Nevertheless, a variant of LDS can be identified in FQ-CoDel so that the
presented mechanism has practical relevance and should be understood.
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Abstract. We consider the transmission of protocol data units in an
LTE eNodeB in downlink direction and focus on the radio link control
(RLC) and hybrid Automatic-Repeat-Request functionality at layer 2 of
the transmission system. We model the associated window flow control
of RLC frames in terms of an open queueing network with two stations
and describe RLC frames waiting for acceptance by the flow control win-
dow by repeated objects collected in an orbit in front of this multi-server
queueing network. We describe the correlated arrivals of frames by a gen-
eral Markovian arrival process and the transfer of data transport blocks
along the orthogonal frequency-division multiplexing channels by state-
dependent service processes and varying channel capacities. We derive a
versatile finite Markovian queueing model and show that its steady-state
distribution can be computed in terms of a level-independent QBD pro-
cess. Then we determine the basic performance metrics of the system in
terms of the latter steady-state distribution.

Keywords: LTE performance analysis · Window flow control
Hybrid ARQ · MAP · Level-independent QBD

1 Introduction

At present mobile cloud services and multimedia applications generate the
majority of current traffic load in the Internet and demand a fast evolution
of the underlying mobile networks from Long Term Evolution (LTE) and LTE-
Advanced to dynamically evolving 5G technologies. Considering the protocol
stack of LTE transport systems, many improvements established in recent years
have concerned layer 1 and 2 functionalities. They are related to improved trans-
mission techniques such as hybrid Automatic-Repeat-Request (ARQ), advanced
adaptive space-time coding methods that are dependent on channel states as
well as multiple-input/multiple-output (MIMO) and beamforming techniques.

The paper is devoted to the transmission of radio link control (RLC) protocol
data units (PDUs) in an LTE base station called eNodeB in downlink direction.
c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 202–217, 2018.
https://doi.org/10.1007/978-3-319-74947-1_14
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It focuses on the RLC error control and hybrid ARQ functionality as basic con-
trol method at layer 2 (cf. [3,15]). We model the flow control scheme of radio
link control frames that is governed by an ARQ selective repeat (SR) policy
in terms of an open queueing network (QNW) with two multi-server stations.
We describe those frames waiting for acceptance by the flow control window by
retrying objects that are collected in an orbit in front of this multi-server queue-
ing network. The correlated arrivals of RLC frames are modelled by a general
Markovian arrival process (MAP) which can be mapped easily to real data (cf.
[2,7]). The transport of radio data blocks along the orthogonal frequency-division
multiplexing (OFDM) channels is described by state-dependent service processes
with varying channel capacities. In this regard the sketched model extends our
past modeling approaches that either did not map the correlated arrival process
to an adequate point process or considered a simpler closed queueing network of
the flow control process (cf. [12]). In this regard our open queueing network and
its underlying continuous-time Markov chain (CTMC) also differ substantially
from the discrete-time models of ARQ and hybrid ARQ systems developed in
recent years by Zorzi et al. and others (cf. [1,14] and references therein). There
the main focus was given by the performance of control algorithms in lower lay-
ers of a wireless network whereas our approach studies the intertwining between
the RLC error control scheme at layer 2 of an LTE transmission system and a
correlated packet arrival process, e.g. a TCP flow arising from advanced cloud
and multimedia applications. It allows us to understand the impact of the layer
2 functionality on the quality-of-service (QoS) and quality-of-experience (QoE)
performance of mobile cloud applications in a better way (cf. [5]).

We derive a versatile finite Markovian queueing model and show that its
steady-state distribution can be computed in terms of a quasi birth-and-death
(QBD) process. Then we determine the basic performance metrics of the system
in terms of the latter steady-state distribution taking into account its matrix-
geometric closed form.

Looking at the requirements of tactile Internet based on software-defined 5G
wireless networks in the near future, we may argue that gaining insight on the
performance of basic layer 2 techniques such as ARQ selective repeat (ARQ-SR)
and hybrid ARQ error control of RLC frames is a fundamental step towards
a self-optimizing resource assignment and an adaptive orchestration methodol-
ogy. Analytic models constitute a first simple step in that direction to optimize
delay-throughput and QoE performance of such challenging architectures. In this
regard the presented modeling approach may provide a first analytic guideline
how to reach these challenging goals.

The paper is organized as follows. First we present a brief description of
the RLC error control and hybrid ARQ scheme and its modeling by a queueing
network. Regarding the error control in the considered LTE transmission system,
we derive a Markovian model on a finite state space and compute its steady-state
vector in Sect. 3. In Sect. 4 we determine the basic performance metrics of the
model. Finally we discuss some conclusions of our modeling approach.
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2 Modeling ARQ Error Control of RLC Frames
on Logical Channels in an LTE eNodeB

In the following we regard the protocol stack of an LTE network at layers 1 to
3 and the transmission of the corresponding protocol data units that are arising
from some advanced application on top of the IP network layer, see Fig. 1 (cf.
[3]). The latter are associated with an LTE bearer service, first segmented and
encapsulated into PDUs of the protocol data convergence protocol (PDCP) by
some compression and encryption transformations and then disassembled and
converted into radio link layer control PDUs. The objects of these RLC streams
are multiplexed into MAC PDUs. In our paper we focus on the transmission of
RLC frames as part of MAC PDUs in an LTE base station called eNodeB in
downlink direction. We study the logical protection of transported RLC frames
at layer 2 of the transmission system at the LTE air interface (cf. [3,15]).

2.1 Error Control of RLC Frames in an LTE Transmission System

In an LTE eNodeB IP packets are transformed during the complex downlink
processing steps such that MAC PDUs are formed from this payload (SDU)
as shown in Fig. 1 (cf. [3]). The latter comprise the potentially segmented IP
payload in terms of RLC frames that are transferred along a logical channel,
namely a data traffic channel (DTCH). These RLC PDUs are then mapped
to transport channels on the MAC layer, namely the downlink shared channels
(DL-SCHs) and to one or multiple physical downlink shared channels (PDSCHs)
at the physical layer in terms of transport blocks, see Figs. 1 and 2 (cf. [3]).
Thereafter, the generated physical layer PDUs are transmitted along the latter
channels by digital signal streams towards a mobile client.

In an LTE eNodeB hybrid ARQ schemes such as a parallel version of the
simple stop-and-wait policy (ARQ-SW) combined with smart adaptive chan-
nel coding are applied at the LTE air interface to the MAC PDUs (cf. [3], [10,
Chap. 3.4.4], [11]). During the preparation of those transport blocks on physical
channels further coding elements such as forward error correction (FEC) code
words are attached to the original PDUs at layers 2 and 1 and appropriately
encoded by space-time coding techniques.

Following Zorzi’s line of research [1,14], we study here the effective ARQ
selective repeat policy that can be used at the RLC sublayer to retransmit RLC
PDUs. It is applied in the acknowledged mode to a data flow traversing a log-
ical channel. It complements the hybrid ARQ functionality with its advanced
adaptive FEC techniques that is used at the physical and MAC layers for the
associated PDUs (see Fig. 2, cf. [3]). We investigate the latter ARQ window flow
control protocol at the sender side by analytical means based on an open queue-
ing network. More precisely, we model the associated transformations from the
logical RLC channels to the transport and physical channels and the associated
transport process of RLC PDUs by a queueing network with three stations. This
derived LTE transmission model describing the flow controlled transport of RLC
frames consists of two building blocks, namely, an inner block comprising a multi-
server queueing network with two substations and an outer substation with K
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Fig. 1. Data processing in a protocol stack of an LTE eNodeB.

places and a single server with exponentially distributed service times. This is,
of course, a first rough abstraction of many complicated processing steps applied
to RLC PDUs by the LTE eNodeB stack that cannot be captured in full detail
by any queueing model. We assume that the flow control window of the selective
repeat scheme which is applied to aggregated streams of RLC frames comprises a
finite number M of PDUs. They are served by J1 parallel servers with exponen-
tially distributed service rates μ1 that describe a set of corresponding downlink
shared transport channels (DL-SCHs) at the MAC layer. Completed frames are
forwarded to the second substation consisting of a queue served by J2 service
stations. The latter describe the mapping of the RLC frames embedded into
MAC frames from transport channels onto the physical downlink shared OFDM
channels assigned by the radio resource control (RRC) protocol (cf. [3]). The
employed hybrid ARQ scheme induces a variable FEC part on each MAC PDU
which is encoded by symbol sequences corresponding to the associated transport
blocks on the multiple-input multiple-output (MIMO) channels of the LTE air
interface based on spatial multiplexing techniques. Thus, we model these com-
plex structures by random service times with state-dependent rates μ2,s. The
physical channel capacity is described in this simplistic abstraction by a modu-
lating Markovian channel environment JC with S ∈ N states and an irreducible
generator matrix QC ∈ R

S×S , e.g. by means of a Gilbert-Elliott error model or
its various extensions, in accordance with previous studies (cf. [1,11,14,16,19]).
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Fig. 2. RLC frame processing along downlink channels of an LTE eNodeB.

2.2 Derivation of a Queueing Model for ARQ-SR Error Control

We consider a stream of certain application packets arriving at a considered LTE
eNodeB. They are entering its protocol stack at layer 2 after some processing
steps as discussed previously. As these RLC PDUs of a tagged stream may be
multiplexed into a single MAC PDU during the mapping of a logical downlink
traffic channel onto a transport channel in the LTE transport system, we may
model the transfer of the corresponding transport blocks of this tagged and other
RLC streams included in the MAC PDU on the associated physical channels
by a service period of related mean length 1/μ̄2. We assume that the service
distribution of the PDU transmission follows an exponential distribution and
that the service times of all frames are independent.

As the radio channel is subject to signal impairments, a transmission may
fail with certain probabilities qi that depend on the state i ∈ {1, . . . , S} of
the channel environment JC (cf. [8,11]). We further adopt this dependency on
the channel states i for the service periods of a PDU. Thus, we assume that
the exponential service rates are also state-dependent objects and described in
state i by the service rate μ2,i > 0. We suppose that a failed transport of a
tagged PDU occurs with probability qi > 0. It models the aggregated negative
acknowledgments of all those erroneous transport blocks associated with the
transferred PDUs that are received by the multiple stop-and-wait mechanisms
of the hybrid ARQ scheme in the MAC layer. A successful service completion
occurs with probability 1 − qi. It means that the rate of a successful transport
service in state i is given by μ2,i(1 − qi) > 0. Then the frame forever leaves
the inner subsystem of the QNW describing the successful frame transmission
along the LTE air interface. Hence, a PDU slot becomes available in the flow
control window. Furthermore, the overall mean service rate is given by μ̄2 =∑S

i=1 ηi · μ2,i where η denotes the unique steady-state distribution of JC , i.e.
ηt · QC = 0, ηt · e = 1. The incoming RLC frames of a specific stream of packets
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and their correlated interarrival times are modelled by an ordinary Markovian
arrival process (MAP) controlled by a finite Markovian environment JA with
E ∈ N states d ∈ {1, . . . , E} and a generator matrix QA ∈ R

E×E (cf. [2,7]).
It is independent of the modulating environment JC of the channel. We can
assume that this arrival process is the result of the superposition of independent
MAP arrival streams of those processes that describe the integration of packets
into a single MAC PDU. Further, we assume that only single arrivals occur
with the nonnegative rate matrix 0 ≤ D1 ∈ R

E×E . Here and in the following
we apply the ordering relations 0 ≤ v, 0 < v to vectors or matrices v with an
element-by-element meaning. It is paraphrasing the nonnegativity or positivity
of all individual elements. Internal phase shifts on E without any arrivals are
described by the regular Metzler-Leontief matrix D0 ∈ R

E×E , i.e. −D0 is an
invertible M-matrix with positive diagonal elements −D0 · e = D1 · e > 0 where
e ∈ R

E is the vector of all ones. Then the generator of the random environment
JA is determined by QA = D0 +D1 ∈ R

E×E . We assume that QA is irreducible.
The mean number of arrivals is determined by λ = ξ · D1 · e where 0 < ξ ∈ R

E

denotes the steady-state vector of the modulating environment JA, i.e. ξt ·QA =
0, ξt · e = 1 (cf. [7]).

Fig. 3. Queueing network model of the error control for RLC PDUs that is based on
an ARQ-SR controlled frame transport along a logical downlink traffic channel at an
LTE eNodeB.
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If an arriving RLC frame comes in and there is an idle slot in the flow control
window of size M it can enter the queueing network of the RLC transport system.
If all slots are occupied it is entering an orbit queue and waits for an empty
slot in the ARQ flow control window. The status is periodically inspected. This
process is modelled by an orbit with K ∈ N places including a single server with
exponentially distributed independent service times with common mean 1/ν.
The service time is modelled as a multiple of the basic transmission slot, i.e.
the length of the transmission time interval (TTI) of the LTE transport system
corresponding to one millisecond, and approximates the feedback delay of the
hybrid ARQ status reports along the transport channels (cf. [3,15]).

The capacity of the overall queueing network with its two inner stations and
the outer orbit covers τ = M + K ∈ N RLC PDUs. If all slots are occupied
incoming frames are lost in our model. The overall queueing system of the RLC
error control is depicted in Fig. 3.

3 A Markovian Model of the ARQ-SR Error Control
in an LTE Transmission System

3.1 Structure of the Markov Chain

Following the investigation of a related multi-server queueing network with retri-
als by Kumar et al. [9], we can describe the state X(t) of the derived queueing
model of ARQ-SR error control in LTE at time t ≥ 0 by a vector process

X(t) = (O(t), R(t), P (t), J(t)) ∈ Σ, t ≥ 0,

on the finite state space Σ ⊂ N
5
0. Here O(t) = n ∈ {0, 1, . . . ,K} denotes the RLC

frames waiting in the orbit station for admittance to the flow control window
W (t) = R(t) + P (t) of size M > 0. Without loss of generality we assume M ≥
J1+J2 ≥ 3. R(t) = l ∈ {0, 1, . . . ,M} represents the number of frames in the first
substation of the inner model with J1 servers that describes the PDU processing
on the transport channels of the LTE transmission system. P (t) = k = m − l ∈
{0, 1, . . . ,M} denotes the number of frames in the second substation of the LTE
transmission system that describes the RLC PDU transport along the physical
LTE channels. We impose here the condition 0 ≤ R(t) = l ≤ m ≤ M . Then
W (t) = R(t) + P (t) = m ∈ {0, 1, . . . ,M} frames are in the queueing network
modeling the RLC PDU transport along the air interface at each time t. It is
limited by the maximal number of frames M ∈ N in the flow control window,
i.e. W (t) = m represents the state of the flow control window at time t > 0.

In the following let IS , IE , ISE , IM+1−l denote identity matrices of sizes
S,E, SE, and M + 1 − l, respectively.

J(t) = (JC(t), JA(t)) denotes the overall state of the modulating environment
comprising the state JC(t) of the channel impairment model and the modulator
JA(t) of the arrival process. It is governed by the common generator matrix
QJ = QC ⊕ QA = QC ⊗ IE + IS ⊗ QA where ⊕ denotes the Kronecker sum
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defined in terms of the Kronecker product ⊗ of the individual generator matrices
of JC and JA, respectively.

The five-dimensional vector process X(t) = (O(t), R(t), P (t), J(t)) = x ∈
Σ, t ≥ 0, is a continuous-time Markov chain on a finite state space Σ ⊂
{0, . . . , K} × {0, . . . , M}2 × {1, . . . , S} × {1, . . . , E} since all components are
determined by a state-dependent set of independent memoryless distributions of
sojourn times in the states x ∈ Σ.

As the restriction 0 ≤ W (t) = R(t) + P (t) = m ≤ M holds, we realize
that for given R(t) = l ∈ {0, 1, . . . ,M} we get state-dependent subsets Sl =
{0, 1, . . . , nl − 1} of size nl = M − l + 1 ∈ [1,M + 1] ⊂ N as realizations of
P (t). These varying dimensions govern the structure of the underlying generator
matrix Q of the CTMC X(t). Then we realize that W (t) = (R(t), P (t)) =
(l,m − l) varies in a set of w =

∑M
l=0 nl = (M+1)(M+2)

2 states and, hence, the
state space Σ has the finite size κ = 1

2 (M + 1)(M + 2)(K + 1)SE.
The associated generator matrix Q ∈ R

κ×κ of the CTMC X(t) has a block
tridiagonal structure:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q0,0 Q0,1 O O . . . . . . O
Q1,0 Q1,1 Q1,2 O . . . . . .

...

O Q2,1 Q2,2 Q2,3
. . . . . .

...

O O Q3,2 Q3,3
. . . . . .

...
...

. . . . . . . . . . . . . . . O
...

. . . . . . . . . . . . . . . QK−1,K

O . . . . . . . . . O QK,K−1 QK,K

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1)

All blocks Qi,j , 0 ≤ i, j ≤ K, have the same size κ′ = 1
2 (M + 1)(M + 2)SE

and state-dependent internal structures. Here and subsequently, O denotes block
matrices with all zeros whose dimension is determined by those block matrices of
the surrounding context. X(t) represents a quasi-birth-and-death (QBD) process
where O(t) = n ∈ {0, . . . ,K}, is the level. (R(t), P (t), J(t)) ∈ Σn is the phase
process where Σn stems from the projection of Σ for fixed n.

The diagonal block matrices Qi,i, 0 ≤ i ≤ K, represent again block tridiago-
nal matrices of size κ′. We first consider

Q0,0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C(0)
0,0 A(0)

0,1 O O . . . O
B(0)

1,0 C(0)
1,1 A(0)

1,2 O . . .
...

O B(0)
2,1 C(0)

2,2 A(0)
2,3

. . .
...

...
. . . . . . . . . . . . O

...
. . . . . . . . . . . . A(0)

M−1,M

O . . . . . . O B(0)
M,M−1 C(0)

M,M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2)

with n = 0 elements in the orbit. Then R(t) = l ∈ {0, . . . , M} varies the number
l of frames in the first substation of the LTE transmission system.
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The upper diagonal blocks A(0)
l,l+1, 0 ≤ l ≤ M − 1, are nlSE × nl+1SE =

(M − l + 1)SE × (M − l)SE matrices and correspond to RLC PDU arrivals
according the internal MAP structure JA with rate matrix 0 < D1 ∈ R

E×E , i.e.

A(0)
l,l+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M (0)
0,0 O O . . . O

M (0)
1,0 M (0)

1,1 O . . .
...

O . . . . . . . . .
...

...
. . . . . . . . . O

O . . . O M (0)
M−l−1,M−l−2 M (0)

M−l−1,M−l−1

O . . . O O M (0)
M−l,M−l−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3)

where we get for k ∈ {0, . . . , M − l − 1}:

M (0)
k,k = IS ⊗ D1 ∈ R

SE×SE (4)

The lower diagonal blocks are given for sk = min(k, J2), k ∈ {0, . . . , M − l}, by
matrices

M (0)
k,k−1 = sk · ZS(q, μ2) ⊗ IE ∈ R

SE×SE (5)

with the diagonal matrix

ZS(q, μ2) =

⎛

⎜
⎜
⎜
⎜
⎝

q1μ2,1 0 . . . 0

0 q2μ2,2
. . .

...
...

. . . qS−1μ2,S−1 0
0 . . . 0 qSμ2,S

⎞

⎟
⎟
⎟
⎟
⎠

∈ R
S×S . (6)

It represents the departure rates μt
2 = (μ2,1, . . . , μ2,S) of the second substation

of the LTE transmission system that are modulated by the state s of the channel
environment JC and its state-dependent feedback probabilities qt = (q1, . . . , qS)
of an unsuccessful frame transmission.

The lower diagonal blocks B(0)
l,l−1, l ∈ {1, . . . , M}, describe the departure

events R(t) = l to R(t) = l − 1. They correspond to the occurrence of a service
completion of the first station among the rl = min(l, J1) active servers with rates
rlμ1. Then these rates are taken into account by the upper diagonal blocks of
this block matrix

B(0)
l,l−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

O rlμ1 ⊗ J0,1 O . . . O
O O rlμ1 ⊗ J1,2

. . .
...

...
. . . . . . . . .

...
...

...
. . . . . . O

O O . . . O rlμ1 ⊗ JM−l,M−l+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(O, rlμ1IM+1−l ⊗ IS ⊗ IE

) ∈ R
nlSE×nl−1SE (7)

where Jk,k+1 = ISE = IS ⊗ IE , 0 ≤ k ≤ M − l.
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The diagonal block matrices C(0)
l,l ∈ R

nlSE×nlSE , 0 ≤ l ≤ M, describe the
changes within the state variable P (t) = k ∈ {0, . . . , M − l} given R(t) = l and
reflect a tridiagonal structure of the local QBD behavior

C(0)
l,l =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G(0,l)
0,0 O O . . . O

F (l)
1,0 G(0,l)

1,1 O . . .
...

O F (l)
2,1 G(0,l)

2,2
. . .

...
...

. . . . . . . . . O
O . . . O F (l)

M−l,M−l−1 G(0,l)
M−l,M−l

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8)

The lower diagonal blocks F (l)
k,k−1, k = 1, . . . ,M − l, correspond to departures

P (t) = k to P (t) = k − 1 from the second LTE station after a successful frame
transmission with probability 1 − qs which is modulated by the state s of the
channel environment JC . Thus, it is given by

F (l)
k,k−1 =

⎛

⎜
⎜
⎜
⎜
⎝

(1 − q1)skμ2,1 0 . . . 0

0 (1 − q2)skμ2,2
. . .

...
...

. . . (1 − qS−1)skμ2,S−1 0
0 . . . 0 (1 − qS)skμ2,S

⎞

⎟
⎟
⎟
⎟
⎠

⊗IE

= sk · Z(e − q, μ2) ⊗ IE ∈ R
SE×SE (9)

with sk = min(k, J2) active servers in the second substation. Here e ∈ R
S is the

vector of all ones.
The diagonal block matrices G(0,l)

k,k, 0 ≤ k ≤ M − l − 1 = nl − 2, of
an idle orbit with n = 0 comprise the rates S0 = QC ∈ R

S×S of the channel
environment JC(t), the rates D0 ∈ R

E×E of the modulating MAP arrival process
JA(t) among those states of JA without incoming frames, and a compensating
diagonal vector Δn,l,k. The latter is such that Qe = 0 is satisfied where we
disregard the diagonal elements −D1e = D0e of D0 and S0. Then we may
represent G(0,l)

k,k, 0 ≤ k ≤ M − l − 1, in the form

G(0,l)
k,k = S0 ⊕ D0 + diag(Δ0,l,k). (10)

There is no arrival for P (t) = k = M − l since an incoming frame is blocked
and sent to the orbit if O(t) = n < K holds. Incrementing O(t) it is taken into
accounted in terms of Qn,n+1.

Apart of the variability of the diagonal compensation (Δn,l,k) all matrices
Qn,n, 0 ≤ n < K, have the same structure. Only if the orbit is full in the last
state O(t) = K and the flow control window is also fully occupied, i.e. W (t) =
R(t) + P (t) = M , in the blocking states B = {χ = (l,M − l) | 0 ≤ l ≤ M}, an
incoming frame is blocked from the system and lost. This event is reflected by
the modified structure

G(K,l)
M−l,M−l = S0 ⊕ (D0 + D1) + diag(ΔK,l,M−l) (11)
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of the diagonal blocks in those states χ with a corresponding compensating
diagonal vector (ΔK,l,M−l).

The upper diagonal block matrices Qi,i+1, 0 ≤ i ≤ K − 1, of Q cover the
arrivals of the MAP process to the orbit. It is accounted for by the state variable
O(t) = n < K which is incremented to O(t) = n + 1. It is starting with the
idle orbit n = 0 and ends with the last empty slot n = K − 1 of the orbit. It is
driven by a full flow control window with the state W (t) = R(t) + P (t) = M of
the inner queueing system in the overall network. Only in this state the MAP
arrival is redirected to the orbit and the residual states generate no increment
of O(t) = n < K. These events are represented by the block matrix

Qn,n+1 =

⎛

⎜
⎜
⎜
⎜
⎝

H0 O . . . O
O H1

. . .
...

...
. . . . . . O

O . . . O HM

⎞

⎟
⎟
⎟
⎟
⎠

, 0 ≤ n ≤ K − 1. (12)

It is described by a set of block diagonal matrices Hl along the diagonal

Hl =
(

0 ⊗ IM−l ⊗ IS ⊗ IE O
O IS ⊗ D1

)

∈ R
nlSE×nlSE , 0 ≤ l ≤ M − 1 (13)

HM =
(
IS ⊗ D1

) ∈ R
SE×SE . (14)

If R(t) = l ∈ {0, . . . , M} holds then only in the last state 0 ≤ P (t) = M −l ≤ M ,
i.e. the last state W (t) = R(t) + P (t) = M of the flow control window, this
redirection to the orbit occurs.

The lower diagonal block matrices Qn,n−1, 1 ≤ n ≤ K, represent departures
from the orbit in state O(t) = n and arrivals to the first inner station of the
LTE transmission system. They are accounted by state variable R(t) = l < M
which is incremented by one arrival to R(t) = l + 1 ≤ M with rates ν of the
exponentially distributed flow-control inspection interval. If there are W (t) =
R(t) + P (t) = l + k = m < M frames in the inner system in the case O(t) =
n ≤ K, such an arrival is possible, otherwise we get again a redirection to the
orbit in state W (t) = R(t) + P (t) = M . Then the lower diagonal block matrix
Qn,n−1, 1 ≤ n ≤ K is characterized by an upper block tridiagonal matrix

Qn,n−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

O I0,1 O . . . . . . O
O O I1,2

. . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . O
...

. . . . . . . . . O IM−1,M

O . . . . . . . . . O 0 ⊗ IS ⊗ IE

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15)
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which is identical for all n ∈ {1, . . . ,K}. The matrices Il,l+1, 0 ≤ l ≤ M − 1,
represent the arrival to the flow control window W (t) = R(t)+P (t) = l+k with
the exception of the final state R(t) = l, P (t) = M − l. They are given by

Il,l+1 =
(

ν · Inl+1

ζt

)

⊗ IS ⊗ IE ∈ R
nlSE×nl+1SE (16)

with identity matrices Inl+1 , IS , IE of size nl+1 = M − l, S, E, respectively, and
a row vector ζt = (0, . . . , 0) with M − l zeros.

3.2 Computation of the Steady-State Distribution

The Markovian queueing network {X(t), t ≥ 0} modeling the ARQ-SR error
control scheme in the LTE transmission system with a MAP arrival process has
a QBD structure on a finite state space Σ. Imposing the condition on the irre-
ducibility of the generator matrix QJ = QC ⊕QA of the modulating environment
J(t) = (JC(t), J(A(t)), we may conclude that the CTMC X(t) has an irreducible
generator matrix Q with a block tridiagonal structure and a single, zero eigen-
value ρ(Q) = 0. Thus, the corresponding steady-state vector Π ∈ R

κ×κ is the
unique solution of the following balance equations with the zero vector 0 ∈ R

κ

as right hand side and the additional normalization condition:

Πt · Q = 0 et · Π = 1 (17)

The QBD structure of Q on the finite state space implies that there exists a
superposition of two matrix-geometric terms that constitute the steady-state
vector Π (cf. [7,9,13,17,18]). To describe its structure, we partition the steady-
state vector according to the levels O(t) = n of the CTMC X(t) as

Πt = (πt
0, π

t
1, . . . , π

t
K).

According to the phase process (R(t), P (t), J(t)) = (R(t), P (t), JC(t), JA(t)) =
(l, k, s, d) and a given fixed n ∈ {0, . . . , K} each component vector πn on a level
O(t) = n is further decomposed into πt

n = (π(n,l,k,s,t) | ∀(l, k, s, t) ∈ Σn).
Let us define the block matrices A2 = Qn,n−1, n ∈ {1, . . . , K}, A1 =

Qn,n, n ∈ {1, . . . , K − 1}, and A0 = Qn,n+1, n ∈ {1, . . . , K − 1} which are
independent of the level n. We define the matrix polynomial

A(z) = z2 · A2 + z · A1 + A0, z ∈ C

A(1) = A2 + A1 + A0 (18)

and assume that z ∈ C exists such that det(A(z)) 	= 0.
Then we conclude that the steady-state vector Π can be represented by a

sum of two scaled marix-geometric solutions in the following way (cf. [7]):

πt
n =

{
πt
0 , n = 0

πt
1 · Rn−1 + πt

K · ΦK−n , 1 ≤ n ≤ K
(19)
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The basic matrices R,Φ are determined as minimal nonnegative solutions of the
fundamental matrix-geometric equations:

O = R2 · A2 + R · A1 + A0 (20)
O = A2 + Φ · A1 + Φ2 · A0 (21)

Then a normalized variant of the steady-state vector Π = (πn)n that satisfies

πt
0 · e +

(

πt
1 ·

K−1∑

n=0

Rn + πt
K ·

K−1∑

n=0

Φn

)

· e = 1 (22)

fulfills the balance equations and normalization condition (17).
Hajek [4] has shown that there exists a related nonnegative matrix G(R)

satisfying the relation 0 = A2+A1 ·G(R)+A0 ·G2(R) as its minimal nonnegative
solution. The nonnegative solution matrices R,G(R) are related in terms of the
following relations which are used to compute the final solution Π (cf. [7]):

W (R) = A1 + A0 · G(R) = A1 + R · A2

R = A0 · [−W (R)]−1, G(R) = [−W (R)]−1 · A2

The missing initial terms xt = (πt
0, π

t
1, π

t
K) of the matrix-geometric representa-

tion (19) of the steady-state vector Π can be computed as normalized solution
x 	= 0, xt · Â = 0, xt · e = 1, of the boundary system:

Â =

⎛

⎜
⎝

Â0,0 Â0,1 O
Â1,0 Â1,1 Â1,K

ÂK,0 ÂK,1 ÂK,K

⎞

⎟
⎠ (23)

Â0,0 = Q0,0, Â1,0 = Q1,0, ÂK,0 = ΦK−1 · Q1,0

Â0,1 = Q0,1, Â1,1 = W (R), ÂK,1 = ΦK · Q1,2

Â1,K = RK−2 · [Q1,2 + R · QK,K ], ÂK,K = Φ · Q1,2 + QK,K

4 Performance Metrics of the ARQ-SR Error
Control Model

The basic performance parameters of the ARQ-SR error control system in steady
state can be computed in terms of the matric-geometric solution vector Π =
(πn)n. They comprise the following probabilistic metrics and basic mean values:

– the probability that there are O = n ∈ {0, . . . , K} frames waiting for trans-
mission in the orbit queue: pn = πt

n · e
– the probability that the orbit is idle: p0 = πt

0 · e
– the utilization probability that at least one RLC frame is waiting in the orbit:

pU = 1 − p0 = 1 − πt
0 · e
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– the blocking probability of the overall system when there are O = K frames
in the orbit and W = R + P = M in the flow control window:

pLoss =
M∑

l=0

S∑

s=1

E∑

d=1

π(K,l,M−l,s,d)

– the probability that there are W = R + P = M in the flow control window
and an arriving frame is either going to the orbit or rejected:

pW =
K∑

n=0

M∑

k=0

S∑

s=1

E∑

d=1

π(n,k,M−k,s,d)

– the throughput of the overall flow control model based on the MAP input:

T = (1 − pLoss) · λ = ξ · D1 · e · (1 − pLoss)

– the mean number of frames waiting for flow control admittance in the orbit:

E(O) =
K∑

n=0

n · πt
n · e =

K∑

n=1

(
n · πt

1 · Rn−1 · e + n · πt
K · ΦK−n · e

)

– the mean number of frames in the LTE MAC processing queue:

E(R) =
M∑

l=1

l ·
(

K∑

n=0

M−l∑

k=0

S∑

s=1

E∑

d=1

π(n,l,k,s,d)

)

– the mean number of frames in the LTE transmission queue:

E(P ) =
M∑

k=1

k ·
(

K∑

n=0

M−k∑

l=0

S∑

s=1

E∑

d=1

π(n,l,k,s,d)

)

– the mean number of frames in both the LTE MAC processing and transmis-
sion queues of the flow control window when there are W = R + P = m ∈
{0, . . . , M} frames processed:

E(WFCW ) =
M∑

m=1

m ·
(

m∑

l=0

K∑

n=0

S∑

s=1

E∑

d=1

π(n,l,m−l,s,d)

)

– the mean sojourn time of a random frame in the flow control window until a
successful transmission:

E(SFCW ) =
E(WFCW )

(1 − pLoss) · λ
=

E(WFCW )
(1 − pLoss) · ξ · D1 · e

– the mean sojourn time of a random frame in the orbit:

E(SO) =
E(O)

(1 − pLoss) · λ
=

E(O)
(1 − pLoss) · ξ · D1 · e
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5 Conclusion

The paper is devoted to the transmission of RLC PDUs in downlink direction at
an LTE eNodeB. It focuses on the modeling of the ARQ error control functional-
ity at layer 2 of the LTE protocol stack, namely the ARQ selective repeat policy
complimented by a hybrid ARQ scheme (cf. [3,15]). We have modelled the flow
control of radio link control frames on an LTE air interface in terms of a sim-
ple queueing network with three stations. Regarding the error control, we have
described those RLC frames encapsulated by MAC PDUs that are waiting for
the acceptance by the flow control window in terms of repeated objects. The lat-
ter are collected in an orbit in front of a queueing network with two multi-server
stations that models the transport and physical channels of an LTE eNodeB.
We have described the correlated arrivals of RLC frames by a general Marko-
vian arrival process and the transfer of these PDUs by transport blocks along
the OFDM channels by state-dependent service processes and varying channel
capacities.

We have derived a basic finite Markovian queueing model as major outcome
of our LTE modeling approach and stated the associated generator matrix with
its block tridiagonal structure. It is shown that its steady-state distribution can
be computed in terms of a level-independent QBD process. The latter is realized
as a superposition of two matrix-geometric terms. Then we have determined the
basic performance metrics of the ARQ error control model in terms of the latter
steady-state distribution.

Our future investigations will concern further theoretical studies regarding
the accuracy of the ARQ error control model of an LTE air interface and the
derivation of optimal design parameters with respect to the flow control system.
It will also be necessary to estimate the important parameters of our queueing
model and to compare its plausibility based on channel simulations or emula-
tions of the LTE air interface. (cf. [6]). Furthermore, extensive comparisons with
existing hybrid ARQ models, e.g. by Zorzi et al. [1,14], will be required to assess
the quality and benefits of the new modeling approach.

Acknowledgment. The authors appreciate the anonymous reviewers for their valu-
able comments which helped them to improve their presentation.
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Abstract. Worst-case bounds on flow delays are essential for safety-
critical systems. Deterministic network calculus is a methodology to
compute such bounds. It is actively researched regarding its modeling
capabilities as well as analysis accuracy and performance. We provide a
contribution to the major part of the analysis: bounding the arrivals of
cross flows. In particular, it has been believed that an aggregate view on
cross flows outperforms deriving a bound for each cross flow individu-
ally. In contrast, we show that the so-called cross-flow segregation, can
outperform the aggregation approach under certain conditions. We give
a proof of concept, combine the alternative approaches into an analysis
computing best bounds, and evaluate accuracy improvements as well as
computational effort increases. To that end, we show that flows known
to suffer from overly pessimistic delay bounds can see this pessimism
reduced by double-digit percentages.

1 Introduction

In safety-critical, distributed systems that operate in public spaces, formal ver-
ification of performance guarantees is often a prerequisite for certification. For
example, bounding the end-to-end delay of data transmissions is an integral
demand of x-by-wire applications such as steer-by-wire or brake-by-wire. Thus,
even small gains in its accuracy can be of importance for the outcome of a
certification process. Deterministic Network Calculus (DNC) provides an ana-
lytical framework to compute worst-case delay bounds on data transmissions.
For instance, it has found application in the avionics industry to demonstrate
fulfillment of strict aircraft network requirements. To be precise, DNC’s (min,+)-
algebraic branch is often applied to analyze these avionics networks. A model
bounding supply and demand of the network’s forwarding resources is trans-
formed to a (min,+)-equation that bounds a specific flow’s end-to-end delay.

The step deriving an equation from the model has been steadily evolved
in order to improve the accuracy of the resulting delay bound. The first such
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improvement was to virtually separate the analyzed flow from all other flows
in the network and to establish the worst-case scenario exclusively for this flow
of interest (foi). This principle, separation of the foi, was shown to result in
better bounds than the previous approach to anaylse the totality of the flows.
However, subsequent work shows that only the analyzed flow of interest can be
entirely removed while constructing a worst-case scenario. Efforts to implement
this principle for the remainder of the network analysis were shown to result in
an issue called segregation. In arbitrary multiplexing, i.e., no knowledge about
the multiplexing of flows is assumed, attempting to separate multiple flows can
result in situations where these simultaneously assume worst-case scenarios that
are mutually exclusive in the real system. While resulting bounds remain valid,
they are overly pessimistic. Therefore, the predominating objective of analyses
is to aggregate all flows except the flow of interest. The literature provides a
generic analysis procedure that maximizes aggregation and minimizes segrega-
tion when bounding the arrivals of the foi’s cross flows. This procedure, known
as Aggregate Arrival Bounding (AggrAB) [5], was extended by various analysis
enhancements that can further increase aggregation of flows and improve delay
bounds [1,6]. Based on the objective to maximize aggregation, an accurate and
fast analysis was eventually presented [2]. The delay bounds it derives are shown
to only deviate slightly from those bounds derived with the optimization branch
of DNC [9]. However, while the optimization becomes computationally infeasi-
ble, the algebraic analysis scales well with increasing network size. Its execution
time stays several orders of magnitude below the optimization’s one [2].

In this paper, we focus on further closing the gap between algebraic and
optimization-based DNC delay bounds. To be precise, we identify a peculiar
corner case that is defined by a very specific combination of flow entanglements,
resource demand, (left-over) resource supply and implemented DNC principle.
Against the trend to prevent segregation of flows by aggregating them as much
as possible, we prove that the reverse can actually result in better delay bounds.
The mutually exclusive worst-case assumptions of two flows add less pessimism
than the AggrAB does. We use this knowledge to contribute an arrival bound-
ing method that catches these corner cases. It is modeled after [8] but as it
relies solely on the PMOO principle, we call it SegrPMOO. Moreover, we com-
bine it with AggrAB’s latest evolutionary step, the Tandem Matching Analysis
(TMA) [2], to an exhaustive search for best arrival bounds, TMA+SegrPMOO.

We evaluate our contribution by extending the numerical results providing
insight on the gap between TMA and optimization. We show that the precondi-
tions for these corner cases can be fulfilled fairly often during a network analy-
sis, yet, in most cases it only helps to close the accuracy gap by less than 10%.
A noteworthy exception to this observation can be found when investigating out-
liers. E.g., in the TMA evaluation’s network of 20 devices, outliers are common
and we show that the largest gaps to optimization can be reduced by over 30%.

The remainder of the paper is structured as follows: Sect. 2 provides the
necessary background on DNC. In Sect. 3, we present the trend to improve
bounds by aggregating flows. To that end, we provide the DNC analysis prin-
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ciples implemented in TMA. Based on these insights, Sect. 4 contributes and
proves the potential benefit of SegrPMOO. We extend the previously applied
cross-traffic arrival bounding with it and evaluate our contribution in Sect. 5.
We provide results on accuracy improvement as well as computational effort
increase. Section 6 concludes the paper.

2 Deterministic Network Calculus Background

DNC is based on a simple network model [12] consisting of functions from the
set

F0 :=
{
f : R → R

+
∞ | f (0) = 0, ∀s ≤ t : f (s) ≤ f (t)

}
,

R
+
∞ := [0,+∞) ∪ {+∞} .

Cumulative data arrivals are upper bounded in interval time:

Definition 1. Given a flow producing data according to function A in the time
domain, a function α ∈ F0 is an arrival curve for the flow iff

∀t ∀d 0 ≤ d ≤ t : A(t) − A (t − d) ≤ α(d).

I.e., arrival curves bound the maximum data arrivals of a flow during any
duration of length d. FTB ⊆ F0 is a commonly used set of curve shapes to bound
flow arrivals. It bounds flows shaped to comply with token bucket regulation:

FTB := {γr,b | γr,b (0) = 0, γr,b(d) = b + r · d ∀d > 0} .

A server’s forwarding of arriving data is lower bounded in interval time:

Definition 2. If the service provided by a server S for a given input function
A results in an output function A′, then S offers a service curve β ∈ F0 iff

∀t : A′(t) ≥ inf
0≤d≤t

{A (t − d) + β(d)} .

A common set of curves FRL ⊆ F0 bounds service with a rate and a latency:

FRL := {βR,T | βR,T (d) = max {0, R · (d − T )}} .

A number of servers fulfill a stricter definition of service curves. They guar-
antee a higher output during periods of queued data, the so-called backlogged
periods of a server.

Definition 3. Let β ∈ F0. Server S offers a strict service curve β iff, during
any backlogged period of duration d, its output is at least equal to β(d).
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Basic operations to manipulate curves while conserving the model’s deter-
ministic worst case were cast in a (min,+)-algebraic framework [11,15]:

Definition 4. The main (min,+)-algebraic DNC operations for f, g ∈ F0 are

aggregation : (f + g) (t) := f (t) + g (t) ,

convolution : (f ⊗ g) (t) := inf
0≤s≤t

{f (t − s) + g(s)} ,

deconvolution : (f � g) (t) := sup
u≥0

{f (t + u) − g(u)} .

With these operations, we can bound performance characteristics of flows:

Theorem 1. Consider a server S offering a service curve β. Assume flow f
with arrival curve α crosses S. We obtain these two performance bounds for f :

Delay : ∀t ∈ R
+ : D (t) ≤ inf {d ≥ 0 | (α � β) (−d) ≤ 0} ,

where it is assumed that the order of data in f is not altered.

Output : ∀d ∈ R
+ : α′ (d) = (α � β) (d) ,

where α′ is an arrival curve for A′.

Theorem 2. Consider a single flow f crossing a tandem of servers S1, . . . , Sn

where each Si offers a service curve βSi
. The overall service curve for f is the

concatenation of servers, achieved by convolution

βS1 ⊗ · · · ⊗ βSn
=

⊗n

i=1
βSi

.

Theorem 3. Consider a server S offering a strict service curve βS. Let S be
crossed by two flows f0 and f1 with arrival curves αf0 and αf1 , respectively. Then
f1’s worst-case residual resource share without knowledge about multiplexing (so-
called arbitrary multiplexing) at S, i.e., its left-over service curve at S, is

βl.o.f1
S = βS � αf0 ,

where (β � α) (d) := sup0≤u≤d {(β − α) (u)} denotes the non-decreasing upper
closure of (β − α) (d).

The above left-over service curve operation is applicable to single sys-
tems only. Multiple DNC left-over service curve computations for tandems
〈S1, . . . , Sn〉 have been proposed in the literature. We include a common notation
for these in Table 1 and discuss them as required in the next section.

Lastly, note that the optimization analyses LP and ULP [9] do not derive
a left-over service curve. Instead, they each derive optimization formulations,
linear programs, whose result bounds the foi’s end-to-end delay.
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Table 1. Deterministic network calculus notation.

Notation Definition

foi Flow of interest

{fn, ..., fm} Flow aggregate containing flows fn, ..., fm

〈Sx, . . . , Sy〉 Tandem of consecutive servers Sx to Sy

αf , α{fn,...,fm} Arrival curve (flow, aggregate)

αf
S , α

{fn,...,fm}
S Arrival bound at server S (flow, aggregate)

βS Service curve of server S

βl.o.f , βl.o.{fn,...,fm} Left-over service curve (flow, aggregate)

βl.o.f
S , β

l.o.{fn,...,fm}
S Left-over service curve of server S

βl.o.f

〈Sx,...,Sy〉, β
l.o.{fn,...,fm}
〈Sx,...,Sy〉 Left-over service curve of tandem Sx to Sy

3 Aggregation as the Objective of DNC Analyses

Basic DNC (min,+)-operations have been composed to analyses that achieve
varying degrees of accuracy as they implement different sets of principles. Yet,
not all principles can be fully attained at the same time. Some are even mutually
exclusive under current DNC analyses. The most impactful principles and thus
the best choice of analysis depends on the network scenario and the flow of
interest to be bounded. Moreover, algebraic DNC analysis is compositional. It
requires to combine tandem analyses to a network analysis. This paper focuses on
the search for the best composition. In this section, we give detailed background
on DNC weaknesses and previous attempts to mitigate or solve them by different
analysis principles.

3.1 DNC Analyses and Principles

The ultimate goal of a DNC analysis is to give an upper bound on the delay for
the foi. This flow is thus the starting point of an analysis, its path defines the
first tandem of servers whose left-over service curve has to be derived. This com-
putation requires bounds on data arrivals of interfering flows. Therefore, these
cross flows are backtracked, their respective left-over service curve is derived,
and the output from their path – another tandem of servers – is bounded. This
procedure repeats recursively in order to consider all flows that impact the foi
directly or indirectly [4]. Thus, a compositional network analysis is composed of
many tandem analyses, each computing a left-over service curve βl.o.

〈S1,...,Sn〉. To
allow for selecting the best analysis per tandem, we present common principles.

Aggregation of Flows (Agg) [12,13]. Aggregation of flows crossing a server
(Definition 4) is the earliest principle of DNC. Total Flow Analysis (TFA), the
first DNC analysis, proposes to aggregate the totality of flows at each server.
This is generally beneficial for output bounding, yet, an aggregate’s delay bound
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depends on the multiplexing discipline. In FIFO multiplexing, the horizontal
deviation between aggregate arrival curve and service curve gives a valid bound
(Theorem 1). For arbitrary multiplexing as considered in this paper, the inter-
section does. Separating the foi with a left-over service operation (Theorem 3)
allows for horizontal deviation and results in better delay bounds.

Pay Bursts Only Once (PBOO) [15]. Computing the foi’s left-over service
curve enables a key principle of algebraic DNC analysis: convolving all left-over
service curves of servers crossed by the foi (Theorem 2). Then, the tandem
analysis does not compute the foi’s arrivals at every server, but its burst term
is only considered once and the principle is known as pay bursts only once.
Separation of the foi and convolution of left-over service curves are key to the
Separate Flow Analysis (SFA). Thus, the SFA implements the PBOO principle.
Its delay bounds invariably outperform TFA delay bounds.

Pay Multiplexing Only Once (PMOO) [17]. In case cross flows share mul-
tiple consecutive servers with the foi, their burst terms appear in each server’s
left-over computation. I.e., multiplexing with cross-traffic bursts is paid for mul-
tiple times and the principle to counteract this issue is known as pay multiplex-
ing only once. The eponymic analysis, PMOO Analysis (PMOOA), suggests to
reverse SFA’s order of operations. Servers are convolved before cross traffic is
subtracted. [17] provides a tandem left-over service curve computation achieving
PMOO. Note, that PMOO implies PBOO due to foi separation and convolution.

Order of Servers (Order) [16]. (min,+)-convolution is a commutative opera-
tion. Thus, the order of crossed servers is lost when applying it. This impacts the
PMOOA as the slowest server defines the tandem service. For that reason, SFA’s
per-hop cross-traffic considerations can arbitrarily outperform PMOOA [16].
Therefore, in [16] the first optimization-based analysis (OBA) is proposed that
derives a tandem left-over service curve implementing PBOO, PMOO and
accounting for the order of servers.

Output Burstiness Cap (OBC) [6]. While separation of flows is beneficial for
delay bounding, it was shown in [6] that the output bound computation suffers.
A subset of flows’ output burstiness after a server can supersede the maximum
amount of backlogged data by the totality of flows – a cap for a server’s output
burstiness that also holds for any subset of flows crossing the respective server.

Pay Segregation Only Once (PSOO) [7]. Applying the left-over service
computation implicitly assumes higher priority for the subtracted flow. If, at a
single server, two flows applying the left-over thus assume incompatible priorities,
segregation is paid for more than once. Counteracting this issue results in better
performance bounds.
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Flow Prolongation (FP) [1]. A strategy to benefit from aggregation, similar
to OBC, is to prolong flows over servers they do not cross in reality. The analysis
has to work with increased load assumptions at these servers, however, if pro-
longed flows then share a path with other flows, aggregation is possible and its
benefits can supersede the pessimism added to the model. FP was shown to be
inherently infeasible [1] and is thus not included as a viable principle in Table 2.

3.2 Compositional Approaches for Arrival Bounding

As stated above, DNC composes tandem left-over service computations to a
feed-forward network analysis. The literature proposes two alternatives. Both
start with the foi but differ beyond its path, in the so-called cross-traffic arrival
bounding. It analyzes the network between locations of interference with the foi
and sources of relevant cross flows. It is usually the largest part of the analysis,
as exemplified in Fig. 1.

Fig. 1. Decomposition of a network (a) for cross-traffic arrival bounding: (b) depicts
the alternative to aggregate cross-flows [8] that restricts to PBOO, (c) shows the seg-
regation approach that can benefit from the PMOO principle.
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Segregated Arrival Bounding (SegrAB) [8]. A straightforward extension
of the SFA was proposed for cross-traffic arrival bounding [8]. Each flow interfer-
ing with the foi is analyzed using SFA’s approach: compute per-server left-over
service curves from source to the server before meeting the foi, convolve these
service curves, compute an output bound. Then, all flows’ arrival bounds are
summed up. However, it was shown that, for α ∈ FTB and β ∈ FRL , the PSOO
violations explicitly enforced by this approach cannot be set off by the imple-
mented PBOO principle [5]. In Fig. 1c, the PSOO violation takes place at S0.
Due to the SFA-based extension, only PBOO is implemented in the two left-over
service curves required to bound arrivals of cross flows, βl.o.xf1

〈S01,S0〉 and βl.o.xf2
〈S02,S0〉.

Aggregate Arrival Bounding (AggrAB) [5]. The approach immediately
resulting from the insights on segregated PBOO arrival bounding is to strongly
prefer aggregation. To maximize aggregation benefits, the length of tandems is
reduced such that all analyzed flows take the same path over it and can thus
be considered forming a single flow aggregate. Figure 1b depicts this approach:
Instead of a PSOO violation, a single left-over service curve for xf1 and xf2
suffices at S0. To achieve this, the flows’ arrivals to S0 need to be computed,
PBOO is enforced. In total, the arrival bounding will thus consist of three left-
over operations on shorter tandems instead of two on longer tandems.

3.3 Network Analyses

The above compositions of tandem analyses mostly take static, tandem-local
information such as flow entanglement into account. In contrast, network anal-
yses take a more network-wide view and break with the strict composition rules
of SegrAB and AggrAB.

Tandem Matching Analysis (TMA) [2]. We abbreviate the algebraic search
for best bounds presented in [2] as Tandem Matching Analysis (TMA). From a
conceptual point of view, it matches differently sized tandems onto the entire
feed-forward network to define an order of tandems to be analyzed. This is done
in an exhaustive fashion, yet, based on PBOO-applying segregation’s inferiority,
paths of flow aggregates are a restricting factor. Thus, AggrAB becomes one
of the alternatives TMA considers – in Fig. 1, no (sub)tandem has length >1
and thus TMA behaves exactly like AggrAB. TMA also leverages information
about the order of subtandems and employs the output burstiness cap. This
added flexibility in the tandem decomposition proved key for the most accu-
rate algebraically derived DNC delay bounds to date. TMA also mitigates the
combinatorial explosion of effort and shows good scaling of the analysis.

Linear Program/Unique Linear Program (LP/ULP) [9]. Instead of
searching for the best combination of algebraic operations and analyses to
apply, LP and ULP analysis directly search for the best delay bound. I.e., these
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optimization-based analyses do not derive a left-over service curve (unlike OBA).
They convert the entire network into an optimization formulation, a (set of) lin-
ear program(s), that relates backlogged periods of servers. Yet, the ultimately
tight LP analysis suffers from unmitigated combinatorial explosion. In evalu-
ations, the proposed heuristic ULP has been shown to only contribute little
accuracy over TMA but at significantly longer analysis execution times [2].

4 Accuracy Improvements by SegrPMOO Cross-Traffic
Arrival Bounding

We investigate the only not yet investigated principle in the TMA column in
Table 2. In Fig. 1c, it enforces a segregation at S1 but it allows for the PMOO
principle for xf1 and xf2. In case these suffer from cross-traffic themselves, xf3
interfering with xf1 in our example, we can benefit from PMOO where aggregate
arrival bounding (Fig. 1b) is only capable of implementing the PBOO principle.
In this section, we show that the segregation/PMOO-tradeoff in SegrPMOO can
outperform the aggregation/PBOO-tradeoff provided by current AggrAB.

4.1 Introducing SegrPMOO

We call the SegrAB strategy that exclusively applies the PMOO analysis for
each left-over service curve derivation SegrPMOO. Next we give a proof that
SegrPMOO can indeed outperform AggrAB.

Proposition 1. Cross-flow segregation paired with a PMOO analysis is able to
obtain lower bounds on flow arrivals than its aggregating counterpart. That is,
none of these arrival bounding alternatives is a dominating approach.

Table 2. Feature matrix of all current, mutually exclusive DNC analyses. Principle
implementation: ✓ full, (✓) partial/selective, ✗ none, NA not applicable. 1SFA requires
arrival bounding for servers on the analyzed tandem.

Principle Tandem Analysis Network Analysis

TFA SFA PMOOA OBA TMA ULP LP

Agg ✓ (✓) (✓) (✓) (✓) ✓ ✓

PBOO ✗ ✓ ✓ ✓ ✓ ✓ ✓

PMOO ✗ ✗ ✓ ✓ (✓) ✓ ✓

Order ✗ ✓ ✗ ✓ (✓) ✓ ✓

OBC ✓ ✗ NA ✓ NA

PSOO NA ✗1 NA (✓) (✓)[7] ✓

SegrAB NA ✗ NA

AggrAB NA ✓ NA

Good scaling ✓ ✓ ✓ ✗ [14] ✓ ✗ ✗
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Proof. The superiority of AggrAB employing PBOO over the segregated version
has been discussed in [5]. For the case that AggrAB implements either PBOO
or PMOO and SegrAB implements PMOO, we give an example where cross-
flow segregation yields a better result. Let us therefore consider the setting as
in Fig. 1 with token-bucket arrivals (FTB) and rate-latency service (FRL). First,
we derive the arrival bound when aggregating cross flows:

α
Aggr{xf1,xf2}
S1

= α
{xf1,xf2}
S0

� β
l.o.{xf1,xf2}
S0

=
((

αxf1 � βl.o.xf1
S01

)
+

(
αxf2 � βl.o.xf2

S02

))
�

(
βS0 � αxxf1

S0

)

=
((

αxf1 � (
βS01 � αxf3

))
+

(
αxf2 � βS02

)) �
(
βS0 �

(
αxf3 � βl.o.xf3

S01

))

=
((

αxf1 � (
βS01 � αxf3

))
+

(
αxf2 � βS02

)) � (
βS0 � (

αxf3 � βS01

))

= (γr1,b1 � (βR01,T01 � γr3,b3))
+ ((γr2,b2 � βR02,T02) � (βR0,T0 � (γr3,b3 � βR01,T01))) .

We continue with

α
Aggr{xf1,xf2}
S1

=
((

γr1,b1 � β
R01−r3,

R01·T01+b3
R01−r3

)
+ γr2,b2+r2·T02

)
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=
(

γ
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)
� β
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� β
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+ (r1 + r2) · R0 · T0 + b3 + r3 · T01

R0 − r3
.

At this point, please note that the PBOO property is preserved as b1 and
b2 occur only once. The PMOO property, on the other hand, does not hold
anymore, as b3 is included twice. The segregated version yields
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.
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Using

T l.o.xf1
〈S01,S0〉 = T01 + T0 +

b2 + b3 + r3 · T01 + (r2 + r3) · T0

(R01 − r3) ∧ (R0 − r2 − r3)
,

T l.o.xf2
〈S02,S0〉 = T02 + T0 +

b1 + b3 + (r1 + r3) · T0

R02 ∧ (R0 − r1 − r3)

computed with [17] gives us

α
Segr{xf1,xf2}
S1

= γ
r1+r2,b1+b2+r1·

(
T01+T0+

b2+b3+r3·T01+(r2+r3)·T0
(R01−r3)∧(R0−r2−r3)

)

+r2·
(
T02+T0+
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)

= γr1+r2,b1+b2+r1·T01+r1·T0+r1· b2+b3+r3·T01+(r2+r3)·T0
(R01−r3)∧(R0−r2−r3)

+r2·T02+r2·T0+r2· b1+b3+(r1+r3)·T0
R02∧(R0−r1−r3)

where the PMOO principle is implemented per flow xf1 and xf2. Yet, over-
all, b3 appears twice. We bound all arrivals with equal token buckets and con-
tinue by comparing burst terms. As we are free to choose parameters, we set
T0 = T01 = T02 = b1 = b2 = 0 and the arrival rates to be homogeneous
(r1 = r2 = r3 =: r > 0). We further assume the burst term b3 to be >0. Assume
now that the claim does not hold true yielding for the burst term

b
Aggr{xf1,xf2}
S1

< b
Segr{xf1,xf2}
S1

(1)

⇔ r · b3
R01 − r

+ r · b3
R0 − r

+ r · b3
R0 − r

< r · b3
(R01 − r) ∧ (R0 − 2r)

+ r · b3
R02 ∧ (R0 − 2r)

⇔ 1
R01 − r

+
2

R0 − r
<

1
(R01 − r) ∧ (R0 − 2r)

+
1

R02 ∧ (R0 − 2r)
.

In order to contradict the claim and prove the proposition, it is sufficient to
give an example where Eq. (1) cannot hold. For this, see Example 1 below.

Example 1. Choosing r = 1, R0 = 4, and R01 = R02 = 2 in Eq. (1) results in
5
3

�
< 3

2 .

5 Numerical Evaluation

Previous evaluations of the TMA [2] showed that its delay bounds are close to
those computed with the ULP optimization. Yet, there is still a gap that can be
significant for some outliers. In this section, we extend the previous evaluation
by SegrPMOO to check if it can mitigate the cause for this gap and the outliers;
either by being independently executed as a stand-alone arrival bounding or by
deeply integrating it into to the search executed by TMA.
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Analyzed Networks. [2] provides Internet-like topologies, generated according
to the general linear preference GLP model [10] (m0 = 20, m = 1, p = 0.4695,
βGLP = 0.6447). We extend the analysis of these homogeneous networks of sizes
20 and 40 devices (Table 3) with arrival curves set to γ5Mbps,5Mb ∈ FTB and
service curves set to β10Gbps,0 ∈ FRL.

Accuracy Metric. We are interested in the gap that algebraic DNC analyses
have to close to achieve the ULP optimization’s accuracy. Our metric of choice
is therefore

Gap Closing[%] =
|DelayTMA − DelayNewAnalysis|

|DelayTMA − DelayULP| . (2)

Execution Time Metric. To allow for meaningful extension and comparison of
execution time measurements, computations were executed with the same tools
(DiscoDNC [3] v2.2.3 and IBM CPLEX version 12.6.2) on the same hardware
platform (2x Intel Xeon E5420 CPU, 12 GB main memory) as in [2]. We measure
the time it takes to analyze all flows in a given network.

5.1 Accuracy

SegrPMOO Arrival Bounding vs. Optimization Analysis. We first evalu-
ate SegrPMOO in isolation. That is, we analyze the foi with TMA and compute
the required cross-traffic arrival bounds with SegrPMOO only. This strategy
defines the first NewAnalysis in Eq. (2). Table 3a provides the results for net-
works of size 20 and 40 devices, translating to 152 and 472 flows to be analyzed
respectively. While the share of improved delay bounds in the smaller network
exceeds 50%, it already decreases to 10% in the larger network. Table 3 also gives
the max and mean gap closing whereas Fig. 2a shows the gap closing distribu-
tions for the flows that showed improved delay bounds.

Table 3. Closing the gap between TMA and ULP.

Devices Servers Flows Gap closing [%]

Total Improved Max Mean [improved]

(a) TMA foi Analysis, only SegrPMOO Arrival Bounding

0 38 152 88 42.36299 14.514300

40 118 472 39 10.03384 4.594554

(b) TMA foi Analysis, TMA+SegrPMOO Arrival Bounding

20 38 152 119 42.92102 15.50147

40 118 472 342 12.00559 1.877968
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Fig. 2. Closing the gap to ULP delay bounds.

Combined AggrAB and SegrPMOO vs. Optimization Analysis. Sec-
ond, we integrate SegrPMOO into AggrAB-based TMA arrival bounding. At
every recursion level of TMA, i.e., when flows split up, a new arrival bounding is
started (see Fig. 1b, above server S0). Here, we additionally execute SegrPMOO.
For these SegrPMOO arrival boundings, the same holds vice versa. When they
need to recursively bound arrivals of cross traffic, bounds are additionally derived
with TMA. In both cases only the smaller of the derived bounds is considered.

Results are depicted in Table 3b: a rather steady share of all flows, 78.3%
(20 devices) and 72.5% (40 devices), respectively, sees improvements. I.e., in
these cases, applying at least one cross-flow segregation during the entire arrival
bounding process was beneficial over TMA only. Also, the shares are considerably
larger than with SegrPMOO only. This result reveals a rather large amount of
situations leading to segrPMOO superiority, although it depends on specific
flow entanglements and parameter combinations. Note, that the latter solely
occurs due to curve transformations as we evaluate homogeneous networks. The
improvements themselves, however, are in proximity of the SegrPMOO results
and considerably less pronounced in the larger network. The maximum reduction
of the gap to the ULP shrinks from 42.9% to 12% and the mean from 15.5% to
1.88%. Figure 2b shows the gap closing distribution. Compared to SegrPMOO,
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Fig. 3. Gap closing with TMA+SegrPMOO for outliers, 20 devices network.

mostly flows with small improvements are added. Yet, the 20 devices network
sees a noticeable growth of the flows having their gap closed by >40%.

Catching Outliers. We also evaluated where TMA+SegrPMOO’s impact is
concentrated. Figure 3 depicts old and new deviation as well as gap closing for
the 10 outlier flows that previously suffered from the largest gap to ULP. 8 out
of 10 see their gap closed by more than 20% and the largest outlier even benefits
from an improvement narrowing its gap from 4.26% to 3.21%. Our results show
that the peculiar corner cases where segregation helps concentrate at the outliers.

5.2 Computational Effort

The enhanced delay bound computation of TMA+SegrPMOO comes at the price
of additional computational cost, as more arrival bounds are computed at each
recursion level of the TMA analysis. We measured the execution time of each
full analysis, i.e., for all flows in each network. The results are shown in Fig. 4,

Fig. 4. Execution time comparison.
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ordered by the previously known TMA execution times. We observe that for
cases with a very fast TMA computation, the added SegrPMOO overhead is
negligible. In these cases, the recursion is not deep as little flows are involved
and paths of relevant cross flows are rather short. Yet, the ULP analysis does not
seem to be accelerated for these flows and their smaller optimization problem.

However, the amount of flows not requiring much arrival bounding is very
small. Thus, we observe a sharp increase of computation times for the majority
of flow analyses. TMA+SegrPMOO even takes considerably more time than the
ULP analysis. Analyzing the 20 and 40 devices network only seems manageable
due to their small sizes. In fact, we also observed that the 60 devices network
presented in [2] becomes infeasible to fully analyze in acceptable time. This
means design space exploration with TMA+SegrPMOO is out of scope although
this network only consists of 164 servers and 656 flows. Nonetheless, if only a
small number of flow delay bounds exceed their predefined deadlines, a selective,
additional analysis of these flows comes at an acceptable execution overhead.

A TMA+SegrPMOO Heuristic. Last, let us remark the potential for a
heuristic that trades accuracy for faster computation. The later SegrPMOO is
applied in the recursive arrival bounding, the shorter the tandem it analyzes.
Thus, it becomes less likely that AggrAB enforces PBOO where the analysis
could benefit from PMOO. This is reflected in Table 3 where the improvement
from SegrPMOO to TMA+SegrPMOO seems small but might still be decisive.
We leave heuristics selectively removing SegrPMOO from TMA for future work.

6 Conclusion

In this paper, we demonstrate that cross-flow segregation combined with the
PMOO principle can outperform the predominating objective to aggregate flows.
We contribute an analysis that incorporates this SegrPMOO approach into the
existing TMA. Our numerical evaluations show that this new analysis outper-
forms others for the majority of analyzed flows. However, the improvement’s
amplitude can be small and comes at a considerably increased analysis cost. Our
new TMA+SegrPMOO is thus most suitable for small networks or a follow-up
analysis for selected flows, for instance to ensure strict certification requirements.
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Abstract. Queueing systems following a first-in-first-out (FIFO) strat-
egy are well understood and various results are known for the response
time of the system. However, the question arises how the results look
like when taking into account a user-centric point of view. To this end,
an M/M/1-FIFO system is investigated for the setup of different Inter-
net services. In this tutorial paper, the impact of the system’s delay on
Quality of Experience (QoE) is considered for (1) YouTube video (ini-
tial playout delay), (2) authentication in social networks, (3) wireless 3G
Internet connection setup. Existing QoE models are used to map the
response time in the system, corresponding to the waiting time for users
until the service is setup, to Mean Opinion Scores (MOS) as a measure
of QoE. The system is then evaluated in terms of overall QoE and QoE
fairness for the three services considered, under different load scenarios.
The results show how different such systems and response times are per-
ceived by users of different services. Further, the dimensioning of FIFO
systems with respect to QoE only requires us to consider the overall QoE.

1 Introduction

Quality of Experience is the “degree of delight or annoyance of the user of an
application or service” [2]. Furthermore, “it results from the fulfillment of his or
her expectations with respect to the utility and/or enjoyment of the application
or service in the light of the user’s personality and current state”. In real services,
the quality perceived by the user is heavily affected by the performance of the
underlying system, and in particular, of the network. In general, the factors
influencing QoE can be classified into Human, System and Context influence
factors (IFs) [2]. In practical applications, the Human IFs are hard (if even
c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 234–248, 2018.
https://doi.org/10.1007/978-3-319-74947-1_16
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possible) to measure and affect, and often times, the Context factors are similarly
intractable (though some Context-related factors can be measured and taken into
account e.g., in QoE models).

System IFs, in contrast, are both better understood and somewhat possible
to control. We can further refine System IFs into Application and Resource IFs,
as described in [17]. Application factors can relate to e.g., choice of encoding,
use of error concealment/correction mechanisms. Resource factors relate to, for
example, device capabilities, network resources and state, etc.

In this tutorial paper we focus on the analysis of systems from a QoE perspec-
tive, and in particular, on the network performance. We illustrate the approach
through the use of simple FIFO queues. This type of approach has been used
with good results for instance for analysing the effects of Forward Error Cor-
rection (FEC) on VoIP streams [1,16]. Of course, there are more realistic and
complex models, but the core message of the paper can be best explained with
an analytically simple queuing system, without loss of generality.

Based on existing studies [6], QoE models for the following Internet services
are utilized by mapping response times to Mean Opinion Score (MOS) values,
(1) YouTube until the video playout starts, (2) authentication in social networks,
(3) wireless 3G Internet connection setup. Once again, the use of the MOS
provides the simplest possible way to perform a QoE analysis, despite it being
sub-optimal for e.g., control or business purposes [7].

The remainder of the paper is structured as follows. Section 2 revisits exist-
ing results on the performance of the M/M/1-FIFO queue. In particular, the
response time distribution is available. Section 3 provides a background on exist-
ing QoE models for waiting times and introduces the mapping functions used
in the study of the FIFO system. In addition, the QoE fairness metric and its
computation is discussed. Section 4 shows the methodology to analytically and
numerically derive the QoE results. The numerical results for the different ser-
vices are analyzed in Sect. 5. Section 6 concludes this work with an outlook on
future work.

2 Performance of the M/M/1-FIFO Queue

The setup of the different Internet services is modeled as M/M/1-FIFO queue.
The different user requests arrive in the system and are served in a first-in-first-
out manner, i.e. in the order of user arrival. Since there is only one server, users
may have to wait until they are served. The total response time of the system
(also called sojourn time) includes the waiting time and the processing time of
a user request (also called a job in queueing theory). The M/M/1 system is
well investigated, see [10] or e.g., [5,11] for more recent textbooks, but the main
results are briefly revisited to give the reader a tutorial-like overview on the QoE
analysis of M/M/1-FIFO systems. Please note that the full Kendall notation of
the system is M/M/1/∞/FIFO, as the waiting room is not limited.
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2.1 Concepts and Notation

The concepts and notation frequently used in the paper are summarized below in
Table 1. Random variables (RV) are typically denoted by upper case letters. We
first describe general concepts, before the system and QoE relevant parameters
are introduced.

Table 1. Notation and variables

Notation Meaning

General E[X] Expected value of a random variable X with probability
density function x(t), E[X] =

∫ ∞
−∞ tx(t)dt

Var[X] Variance of a random variable X, Var[X] = E[X2] − E[X]2

Std[X] Standard deviation of a random variable X,
Std[X] =

√
Var[X]

FX(t) Cumulative distribution function (CDF) of the RV X,
FX(t) = P (X ≤ t)

fX(t) Probability density function (PDF) of the RV X,
fX(t) = d

dt
Fx(t)

M/M/1 − FIFO λ Arrival rate of user requests in the system (1/s)

μ Service rate of user requests (1/s) with mean service time
E[X] = 1/μ

X Service time (RV) of requests (s)

ρ Load in the system corresponding to the system utilization
ρ = λ/μ

W Waiting time (RV) of a user in the system (s)

R Response time (RV) of the system (s)

QoE Mapping f(t) Generic mapping function f(t) = −a log10(t + b) + H between
waiting times and QoE, see Eq. (9), with service-dependent
parameters a, b and upper QoE bound H

Qm Maximum possible QoE, i.e. Qm = min(H, f(0))

tm Largest waiting time for which QoE still reaches its maximal
value, i.e. Qm = f(tm) = f(t) for t ≤ tm

tL Minimum QoE is L for any t ≥ tL

fC(t) Initial delays for YouTube obtained via crowdsourcing, see
Eq. (10)

fL(t) Initial delays for YouTube tested in a laboratory setting, see
Eq. (11)

fS(t) Authentication in social networks, see Eq. (12)

f3(t) Wireless 3G Internet connection setup, see Eq. (13)

QoE Values Y QoE values (RV) obtained by mapping response times to
QoE, Y = f(R), thus Y is a continuous random variable

L Lower bound of the QoE domain, i.e. L ≤ Y

H Upper bound of the QoE domain, i.e. L ≤ Y ≤ H, e.g. L = 1
and H = 5 for a 5-point scale

E[Y ] Overall QoE reflecting the expected QoE Y

F QoE fairness of QoE values Y
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2.2 First Moments of the Response Time

In an M/M/1 system, let the expected service time be denoted E[X] = 1/μ,
where X is the random variable for the service time. The expected sojourn time
in the system is then

E(R) =
1

1 − ρ

1
μ

=
1

μ − λ
, λ < μ . (1)

The expected queueing, or waiting, time E[W ] is then the expected sojourn
time in the system minus the expected service time.

E(W ) = E(R) − E(X) =
λ

μ(μ − λ)
, λ < μ . (2)

The expected waiting time given that the customer has to wait (delayed
customer) E(W | W > 0) is found using the law of total expectation.

E(W | W > 0) =
1

μ − λ
= E(R), λ < μ . (3)

2.3 Response Time Distribution

In contrast to the expected times in the system, the time distributions depend
on the queueing discipline. In this paper, we consider the simplest case of FIFO
queueing for three cases of waiting (queuing) time distribution, (i) waiting time
for a “tagged” customer who sees q customers ahead on arrival, (ii) waiting time
for customers who have to wait, and (iii) response time for all customers.

Specific (tagged) Delayed Customer. First, we consider the conditional
waiting time distribution for customers who are delayed due to queuing. Assume
that the system is in state i = q + 1, where q ∈ N is the number of customers
in queue immediately before a customer enters the system. This customer has
to wait q + 1 service completions before being served. When the server is busy,
the system completes customers with a constant rate μ (negatively exponentially
distributed service times). Therefore, the waiting time for a customer that has to
wait (delayed customer) given that there are q customers ahead in the queue is
Erlang-(q + 1) distributed. The cumulative distribution function (CDF) is then

FW |W>0(t | q) =
∞∑

j=q+1

(μt)j

j!
e−μt, q ∈ N, t > 0 . (4)

Conditional for Customers Who Have to Wait. The unconditional wait-
ing time distribution for delayed customers is derived using the law of total
probability.

FW |W>0(t) =
∞∑

q=0

FW |W>0(t | q)pW>0q (5)
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where pW>0q is the probability that there are q customers in the queue, i.e., q+1
customers in the system, immediately before a new customer enters the system
given that the server is busy, i.e., given that this new customer has to wait.

Hence, in an M/M/1/∞/FIFO system the waiting time distribution for
delayed customers is negatively exponentially distributed with parameter (1 −
ρ)μ = (μ − λ), λ < μ, thus

FW |W>0(t) = 1 − e−(μ−λ)t . (6)

This implies that if a customer counts the number q of customers in the queue
when entering the system the waiting time is Erlang-(q + 1) distributed with
parameter μ, while if not the waiting time is negatively exponentially distributed
with parameter (μ − λ).

Response Time Distribution. Following a similar approach as for the wait-
ing time distribution, if an M/M/1 system with FIFO queueing is in state i
immediately before a customer enters the system, the response time for this
customer is Erlang-(i + 1) distributed, and the response time, or sojourn time,
for an arbitrary customer is negatively exponentially distributed with parameter
(μ − λ), λ < μ.

Due to the PASTA1 property [20] for a stationary system with Poisson
arrivals, the probability that an arrival finds the system in state q is equal to the
probability that an outside observer finds the system in state q at an arbitrary
point of time. The arrival- and the time-stationary distributions are identical.

Fig. 1. Cumulative distribution function (CDF) of the response times of an M/M/1-
FIFO queue with different load ρ. The response time (also referred to as sojourn time)
is the waiting time in the FIFO queue and the processing time of a job at the server.

1 “Poisson Arrivals See Time Averages”.
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The response time distribution in an M/M/1/∞/FIFO system is negatively
exponentially distributed with parameter (μ − λ), λ < μ. For the sake of sim-
plicity, the CDF of the response time is also written as R(t) in this paper.

R(t) = FR(t) = 1 − e−(μ−λ)t (7)

Figure 1 provides the CDF of the response time depending on the utilization
ρ. With an increasing system load, the response times are increasing, but also
the variance of the response time is increasing. Next, we will use the response
time and map it to QoE values to investigate the system in a user-centric way.

3 QoE Models and QoE Fairness

In order to map the system response times to the user-perceived quality, we use
existing QoE mapping functions. These are based on subjective studies [6]. The
QoE mapping allows to objectively estimate QoE values in the M/M/1 system.
The users are not differentiated, and therefore a response time r is mapped to a
QoE value y for any given user. This objective view on the user-perceived quality
allows a system provider to, e.g., do QoE management in a meaningful way. In the
literature, there are several measures to quantify QoE [7]. The most commonly
used QoE measure is the Mean Opinion Score (MOS), which represents the
quality experienced by a hypothetical “average user”. For a service provider
allocating resources to users, it may however be more important to consider
other measures of quality, such as the 10% most annoyed users, which may be
expressed by the 10%-quantile. Service providers may also want to consider the
percentages of users judging a service as “poor or worse” (%PoW) or “good or
better” (%GoB). Those users who are experiencing lower quality than the MOS
(mean) would suggest, are the ones who might be more susceptible to churn, or
open help-desk tickets, etc., all of which has direct business consequences.

In this paper, we use MOS as our QoE measure, simply because there are
good mappings available between response times and it in the literature [6], but
in actual usage by, say, a service provider, other measures might be better suited.

For the user-centric analysis of the M/M/1 system, the response times are
mapped to QoE values Y = f(R) and the overall QoE as well as QoE fairness
are investigated. The definition of both notions is introduced in Sect. 3.2.

3.1 Existing Mapping Functions Between Waiting Times and QoE

The QoE of Internet applications and services is often shaped by waiting times
before — or during — service consumption. Those waiting times may be a result
of insufficient resources (e.g., limited transmission capacity, limited cloud com-
puting resources), network impairments (e.g., packet loss or high latency), or sim-
ply time-consuming operations. In [6], subjective user studies were conducted to
analyze the differences in the user perception of initial delays for different inter-
active services. In the studies, the users evaluated the QoE on a so-called 5-point
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absolute category rating (ACR) scale with the following meaning: 5 - excellent,
4 - good, 3 - fair, 2 - poor, 1 - bad quality. Then for each waiting time and Inter-
net service under test, the average rating score was computed reflecting the MOS
value for that test condition. Based on those subjective results, the relationship
between QoE and the waiting times were derived. In [3,4], a hypothesis was
formulated that the relationship between waiting time and its QoE evaluation
on a linear ACR scale is logarithmic, motivated by the logarithmic form of the
well-known Weber-Fechner law [19]. In [6], the mapping function is formulated
as follows:

f∗(t) = −a log10(t + b) + H, (8)

where the constant H = 5 reflects the upper bound of the ACR scale and a and
b are service specific parameters obtained from subjective studies.

Please note that the mapping function maps a continuous response time
t ∈ R

+ to a continous MOS score f(t) ∈ R
+. Thus, a response time distribution

R can be mapped to a continous QoE distribution Y . Since Eq. (8) does not
respect the limits of the rating scale (higher bound H = 5 and lower bound
L = 1), the mapping functions needs to be refined by considering the related
bounds tm = max (0, 1 − b) and tL = 10(H−L)/a − b.

f(t) =

⎧
⎪⎨

⎪⎩

L for t ≥ tL = 10(H−L)/a − b

−a log10(t + b) + H, for tL ≤ t ≤ tm

Qm, for t ≤ tm = max (0, 1 − b)
(9)

The maximum QoE being observed is Qm = f∗(tm) = −a log10(tm + b) + H,
while the minimum QoE is L for any t ≥ tL. In the following, we simplify the
notation and only provide the logarithmic function and the bounds.

Initial Delays in YouTube Video Streaming. In general, HTTP streaming
utilizes a video buffer to both decrease the impact of network jitter and to
decrease the probability of interruptions during the video playout. For YouTube
video streaming, a certain buffer level is to be reached [18] before the video
starts playing. For the evaluation of the encountered initial delays, a laboratory
study as well as a crowdsourcing study were conducted. The two different test
methodologies are not of importance for this paper, but the small deviations
in the mapping functions are of interest if they are relevant for different load
scenarios in the M/M/1 system. As a result, the following mapping functions
were found for the crowdsourcing and the laboratory setting, respectively [6].

fC(t) = −0.963 log10(t + 5.381) + 5, Qm = 4.2962, tm = 0, tL = 14240.40 (10)
fL(t) = −0.862 log10(t + 6.718) + 5, Qm = 4.2869, tm = 0, tL = 43682.19 (11)

Authentication in Social Networks. The second Internet service addresses
the user authentication in social networks. In [12,13], users evaluated the per-
ceived quality of web-based login operations using a laptop. In the subjective
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experiments, a remote OpenID server was run for authenticating the users as
backend of the web page of the social network. The waiting times of the users
were changed with a traffic shaper. To be more precise, the shaper induced pre-
determined response times for the authentication procedure when the user logged
in. After the delayed login, the users were asked to rate how they experienced
the login with regards to the response time resulting in the following mapping
function [6].

fS(t) = −2.816 log10(t + 1.378) + 5, Qm = 4.6079, tm = 0, tL = 24.95 (12)

Wireless 3G Internet Connection Setup. The next use case considers the
perception of waiting times for wireless 3G Internet connection setup. In [15],
subjective experiments were conducted where test users were sitting in front of
a laptop for the 3G connection. For simulating different waiting times, a net-
work emulator was customized in such a way, that the time span from pressing
a “Connect” button to successful connection establishment was delayed for a
defined time period. After the successful connection setup, the users evaluated
again the QoE on a 5-point ACR scale how satisfied they were with the perfor-
mance of the connection setup. The corresponding QoE mapping function is as
follows.

f3(t) = −1.577 log10(t + 0.742) + 5, Qm = 5, tm = 0.2580, tL = 343.18 (13)

Figure 2 illustrates the different QoE mapping functions for the different
Internet services. It can be seen that the waiting time perception across different
services strongly diverges. As a concrete example, let us consider an initial delay
of 10s. In case of YouTube, this leads to good QoE (3.86 crowdsourcing, 3.95
laboratory), whereas for the 3G setup users perceive this somewhere between
fair and good (3.37). In case of the social network authentication, the quality
is perceived as bad (2.03). Hence, considerable differences are observed for the
same waiting times across services. Please note that these are all very simple
examples of QoE mappings, as they are all univariate, and consider only one
single aspect of quality. The same type of approach can be used to build more
complex QoE models, taking more quality-influencing factors into account.

3.2 Definition of Overall QoE and QoE Fairness

Overall QoE. For a user-centric analysis of the system, the overall QoE and
the QoE fairness of the system are investigated. We can define the overall QoE
as the expected QoE for an arbitrary user in the system. Please note that due
to the nonlinear mapping function, the overall QoE does not follow by mapping
the mean response time to QoE. In the paper, the overall QoE will be derived
numerically from the CDF of QoE values. Due to Jensen’s inequality [9] it is
known that

E[Y ] = E[f(R)] ≥ f(E[R]) (14)

for a convex function f which is the case for the considered mapping functions.
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Fig. 2. QoS-QoE mapping function provided in [6] for the different Internet services.
The QoS parameter is the response time of the system until the service starts. YouTube
considers the initial delay until the video playout starts for two different subjective
studies conducted in a laboratory and via crowdsourcing. The authentication in social
networks maps response times for the authentication procedure when the user logged
in to MOS values. The wireless 3G Internet connection setup considers the time for a
successful connection establishment and how user perceive this delay.

QoE Fairness. The QoE fairness index is defined in [8] and computed over
the observed QoE values Y in a system. In particular, the standard deviation
σ = Std[Y ] is linearly transformed. When the QoE values are given on a QoE
scale with lower bound L and higher bound H, then the fairness index is

F = 1 − 2
σ

H − L
(15)

which is on the 5-point scale with L = 1 and H = 5 as used in the paper

F = 1 − σ/2 . (16)

The QoE fairness metric has some nice properties and has an intuitive meaning.
F is a continuous value bounded in the interval [0; 1], see [8] for a formal proof. A
high value of F if the system is QoE-fair, low values if the system is unfair. F = 1
means perfect fairness and all users experience the same QoE. In contrast, F = 0 is
a totally unfair system. This is observed for example if one user obtains best QoE
H = 5 and the other gets L = 1 in a system of two users. Please note that the QoE
fairness metric is scale- and metric-independent. Thus, it does not matter if the
QoE mapping function is provided on a 5-point scale or linearly transformed to
any other scale, e.g., normalized values in the interval [0; 1]. Due to its definition,
the fairness index is also independent of the actual QoE level, i.e., whether the
system achieves good or bad QoE. A system can be evaluated in terms of QoE by
providing the overall QoE E[Y ] as well as the QoE fairness F .
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4 Derivation of QoE Results

For the M/M/1-FIFO system, the response time distribution R(t) of a system
with given λ and μ is mapped to QoE using the corresponding QoE mapping
function f(t) = y. Hence, the QoE distribution is Y = f(R) being a continuous
random variable. In order to derive the CDF FY (x) = P (Y ≤ y) of the QoE
values, the inverse QoE mapping function f−1(y) = t is required, cf. Eq. (9),

f−1(y) = 10(H−y)/a − b = e(H−y)/a′ − b with a′ = a/ log 10 . (17)

Then, the QoE distribution is as follows.

FY (y) = P (Y ≤ y) = P (f(R) ≤ y)

= P
(
R ≤ f−1(y)

)
= FR

(
f−1(y)

)

= 1 − e
−(μ−λ)·

(
e(H−y)/a′−b

)
(18)

Although the analytical solution of the QoE distribution is specified, the
expression for the overall QoE (first moment), as well as for the QoE fairness
requiring the second moment leads to rather complex equations. Therefore, the
results are derived numerically. The PDF p(y) = dFy

dy is numerically derived
based on the complex-step derivative approximation [14].

The overall QoE is then numerically derived by taking into account the
bounds of the QoE scale, see for example the PDF in Fig. 3,

E[Y ] =
∫ ∞

−∞
y · p(y)dy =

∫ Qm

1

y · p(y)dy + L · PL + Qm · Pm (19)

with the probability for the lower bound PL = P (Y = L) = P (R ≥ tL) and the
probability of the upper bound Pm = P (Y = Qm) = P (R ≤ tm). Please note
that the upper bound may be a value Qm < 5, see Eq. (9). In a similar way, the
second moment E[Y 2] is derived which allows to compute the variance Var[Y ] =
E

[
Y 2

] − E[Y ]2, standard deviation Std[Y ] =
√

Var[Y ], and QoE fairness F =
1−Std[Y ] /2. Please note that the symbolic math toolbox from MATLAB R©was
used to exactly compute the (lengthy and complex) expressions for the first and
second moments of the QoE values which are omitted here. Instead, only the
numerical results are provided in the following section.

5 Numerical Results

In this section we briefly discuss the results of joining the performance analysis
of the M/M/1 − FIFO system with the QoE models described in Sect. 3.

Previously, on Fig. 1, we saw how the response time distribution for the
M/M/1 system varies with the load ρ. We can also see, in Fig. 2, how the QoE
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mappings approximate the quality perceived by the users, for the three Internet
services, as a function of the response time.

In Fig. 3, we can see the CDF and PDF of the QoE estimates (MOS val-
ues, in this case) in a case where the system is highly loaded (ρ = 0.9). These
results were obtained by composing the QoE mappings with the response time
distribution observed for in the M/M/1 − FIFO system with the given load.
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Fig. 3. CDF and probability density function (PDF) of the QoE quantified as MOS
values for different applications with a system load ρ = 0.9. The QoE mapping functions
(see Fig. 2) were applied to the distribution response time R observed in an M/M/1–
FIFO queue with ρ = 0.9.
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In Figs. 4 and 5, we can see the overall QoE and QoE fairness, respectively,
for the M/M/1−FIFO system, as a function of the system load. As the reader
probably noticed in the previous figures, there are clear differences between ser-
vices in how the users perceive the impact of response time on the quality. In
particular we note that the social network login case shows the worst quality of
the lot. When looking at the fairness of this service, we can see that it goes up at
the end of the load scale (after ∼0.9). This indicates that a large proportion of
users is already experiencing the lowest possible quality at that stage, and hence
the fairness goes up once more (remember that QoE fairness is independent of
the overall QoE; it only reflects the variation in quality observed among users).

Fig. 4. The overall QoE of the system is expressed as average QoE E[Y ] over all users
who experience QoE Y . The QoE Y is a random variable which is a function of the
response time R, i.e., Y = f(R) with the corresponding mapping functions f(r) for
the different services. The average response time E[R] is plotted on the right y-axis
depending on the various system utilizations ρ.

Finally, Fig. 6 plots the overall QoE against QoE fairness. We can observe,
once again, very different behavior between the social media login case, and the
others, as well as an overall lower fairness of both the 3G setup and the social
media login cases when compared to the video streaming ones (which is to be
intuitively expected, as some initial delay in video streaming is common and thus
expected by the users). The variation in the shape of the QoE fairness curves
can also be related to the distribution of the QoE scores, as observed in the PDF
plots in Fig. 3, where both the social media login and 3G connection setup show
a larger variability in the scores, as well as a higher skew towards the lower end
of the quality scale.



246 T. Hoßfeld et al.

Fig. 5. The QoE fairness F of the system is investigated for different services.
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Fig. 6. Scatter plot of the average QoE E[Y ] and the QoE fairness values F .

6 Conclusions and Outlook

This tutorial paper introduces a framework for the user-centric analysis of queue-
ing systems in which response times are mapped to QoE values. For the end user,
those response times manifest as waiting times before service consumption. As a
simple example, an M/M/1–FIFO system is investigated for the setup of different
Internet services: (1) YouTube until the video playout starts, (2) authentication
in social networks, (3) wireless 3G Internet connection setup. For the analysis
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of the system, the overall QoE as well as the QoE fairness are used. These two
measures allow for example to properly dimension a system such that the users
obtain a good QoE while achieving fairness in terms of QoE among users. The
numerical results suggest that the interpretation of the system behavior in terms
of QoE significantly differs for certain services. But it can also be seen that for
the dimensioning of the service rates it is sufficient to consider the overall QoE
only. A lower overall QoE reduces also the QoE fairness up to a certain point.
This arises from the fact that higher system load in FIFO queues also leads to
higher variances in the response time. If the load in the system exceeds a certain
threshold, then the overall QoE is poor or even worse. When all users are suf-
fering, the fairness increases due to decreased variances in QoE, but the system
is not working in an acceptable way for the end users.

Future work will address different scheduling strategies to evaluate them
in terms of overall QoE and QoE fairness. To this end, it is also interesting to
investigate more sophisticated QoE metrics like 10%-quantiles or ratio of satisfied
users which may be more appropriate for QoE dimensioning. Nevertheless, the
same framework may be followed to analyze such systems with different metrics.
This type of analysis can also be extended to consider other types of systems,
as well as other types of services. For example, bounding the system capacity
(i.e., an M/M/1/K system) allows us to consider other performance aspects
beyond time, such as the loss process in the network (e.g., deriving loss rates
and average loss burst sizes from the system’s load), which in turn allow us
to consider other QoE models for e.g., real-time media applications, for which
losses are a very important influencing factor. In the case of interactive media
services, both delays and losses are important, and this type of approach allows
us to attack this problem.
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Abstract. VirtuWind proposes the application of Software Defined Net-
working (SDN) and Network Functions Virtualization (NFV) in critical
infrastructure networks. We aim at introducing network programmabil-
ity, reconfigurability and multi-tenant capability both inside isolated and
inter-connected industrial networks. Henceforth, we present the design of
the VirtuWind architecture that addresses the requirements of industrial
communications: granular Quality of Service (QoS) guarantees, system
modularity and secure and isolated per-tenant network access. We present
the functional components of our architecture and provide an overview of
the appropriate realization mechanisms. Finally, we map two exemplary
industrial system use-cases to the designed architecture to showcase its
applicability in an exemplary industrial wind park network.

1 Introduction and Background

SDN and NFV promise the programmable connectivity and rapid service pro-
visioning [1]. However, in their current state, a number of modifications to the
state-of-art SDN-/NFV-architectures are required to accommodate the require-
ments of critical infrastructure providers. VirtuWind aims to fill this gap by
defining a unified SDN- and NFV-architecture that provides for QoS-constrained
end-to-end (E2E) connectivity in intra- and inter-domain connectivity scenarios.

A typical power control system comprises a collection of various monitoring
and control components connected to a remote operator’s grid control system.
For example, in wind parks Supervisory Control and Data Acquisition (SCADA)
is the main monitoring and management component deployed locally on-site. It
is utilized for data collection and analytics, as well as for the remote configu-
ration of setpoints of the turbine-internal controllers. The SCADA server is a
sub-component responsible for controlling the power output of multiple different
wind turbines, and adaptation of the total power output to the requirements
received from the grid operator. Based on our traces from an operational wind
park, a full cycle of a correct SCADA control loop execution (i.e. the collection of
sensor measurements and SCADA’s response) has a periodicity of 100 − 200ms,
c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 251–261, 2018.
https://doi.org/10.1007/978-3-319-74947-1_17
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from which we derive the uni-directional E2E delay requirement of <∼30ms.
Network availability requirements of a wind park correlate with the applica-
tion availability requirement. The fail-over time of ∼50ms [2], as well as the
requirement of 99, 99% availability (equaling 50 min downtime p.a. [3]) impose
an important failure resilience task for both SDN control-and data-planes.

The VirtuWind architecture aims to fulfill the four key objectives depicted in
Fig. 1, using a combination of SDN- and NFV-technologies in a multi-operator
ecosystem. We define three deployment steps necessary to enable the appropriate
solution. The corresponding architecture is then derived in Sect. 2.

Wind Park Network
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Communication

Local Control Center 
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turbine
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Fig. 1. VirtuWind architecture objectives

Step 1 - System Bootstrapping: The deployed wind turbines are often dislo-
cated from the centralized SCADA, thus deployment of an in-band (shared)
control network represents a strict requirement, opposite to the out-of-band
(exclusive) SDN controller-switch links often encountered in the data-center SDN
deployments. Second, static appliances such as the data historians that collect
and store large amounts of wind turbine monitoring data, should be placed so
to optimize the resource sharing (i.e. the storage and compute resources). In the
current non-virtualized deployments, the data historian components are deployed
on dedicated industrial PCs inside the wind turbines. Thus, large cost savings
are achievable by the centralization (and appropriate high-availability mecha-
nisms in place) of such software appliances on dedicated “micro-cloud” nodes.
Third, security components, such as firewalls, must be deployed for securing the
external access to the industrial intra-domain network.

Step 2 - Enabling Intra-Domain Connectivity: Traditionally, during sys-
tem updates/upgrades the risk of impacting the SCADA control process is high,
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but for the regulatory reasons updates need to be performed regularly within a
given time-frame, e.g. adapting the SCADA process services invoked by appli-
cation or new service updates. The specific requirements in an industrial archi-
tecture come from e.g. an exemplary device upgrade workflow: (1) Maintenance
tenant initializes a firmware update process using the SCADA interface; (2)
The request is handled by the authentication entity in SCADA and the user is
allowed or denied the service access. (3) If the user’s request is accepted, the
part of SCADA responsible for interactions with the SDN Controller triggers an
event and request network “slice” with fixed time schedule and QoS support.

Step 3 - Enabling Inter-Domain Connectivity: The third deployment step
enables the management of multiple wind park sites from remote locations, e.g.
by a third party grid operator. To ensure a successful remote management, an
inter-domain QoS enabled E2E connectivity is required. We foresee a centralized
QoS approach, where an inter-domain coupling of SDN controllers and a central-
ized QoS orchestrator enables the E2E connectivity. Our approach involves four
phases: 1. Domain Registration; 2. Announcement of network path segments ;
3. Centralized E2E path computation and 4. Path establishment.

2 The VirtuWind Architecture

VirtuWind envisions a layered architecture leveraging the control and pro-
grammability offered by the SDN paradigm and exploiting the flexibility of
NFV. Each authorized application or tenant that needs connectivity requests
an appropriate Virtual Tenant Network (VTN), and later issues communication
service flow requests to the system. The flow requests are a combination of dif-
ferent connectivity and QoS service requirements, ranging from E2E-delay and
bandwidth requirements, to different path protection schemes (e.g. duplication
or fast-failover). The isolation of tenants is administered using the VTN north-
bound interface of the SDN Controller, while the service requirements define a
communication service interface as per tenant’s intent specification. Each appli-
cation service is mapped to a unique VTN and a network tenant.

Figure 2 depicts the key architecture blocks of the VirtuWind architecture:
(1) Business Applications that interact with the underlying network and impose
new service requirements at the centralized controller; (2) SDN Controller and
QoS Orchestrator, which receive application requests, execute the centralized
decision-making and configure the infrastructure; (3) NFV Management and
Orchestration (MANO) which orchestrates virtual network functions and ser-
vice function chains of the industrial network; (4) Edge Devices that allow for
stretching of VTNs down to the last hop, as well as intent monitoring.

In the remainder of this section, we give an overview of the components
depicted in Fig. 2 and discuss their internal-workings. In Sect. 3 we then outline
the mapping of two exemplary processes on top of the introduced components.
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Fig. 2. The combined VirtuWind intra- and inter-domain system architecture.

2.1 Bootstrapping Manager

Industrial SDN networks require a highly-available, in-band control plane [4].
By means of an automated network bootstrapping procedure, VirtuWind guar-
antees a robust and resilient control plane configuration during the network run-
time. The robustness to controller failures is ensured by bootstrapping a multi-
controller state replication design. To handle the data plane failure effects on the
control plane flows, we leverage redundant control flow embedding. While recent
works propose slower, restoration-based techniques in industrial scenarios [4],
we use 1+1 protection [5] by duplicating controller-to-controller and controller-
to-switch TCP-based flows on maximally disjoint paths, thereby ensuring zero
packet loss for control flows, at the expense of doubled bandwidth requirements
per control flow connection. Since these typically have low bandwidth require-
ments, we do not consider it a crucial drawback in our approach.

2.2 Reference Monitor (RFM)

RFM [6] is a component that interacts with the northbound applications via
the North-bound Interface (NBI). NBI is designed in line with the principles of
Intent APIs [7], hiding complexity of the underlying infrastructure.

Intra- and Inter-domain: RFM is involved in authentication of the applica-
tions and authorization of their service requests. During application authen-
tication phase, RFM acts as a proxy between the application and Security
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Manager (SM). It receives initial credentials from the application and passes
them to the SM. In case of a successful authentication, all subsequent applica-
tion requests are evaluated against the authentication credentials approved by
the SM. For authorization purposes all communication requirements contained in
the service request are checked against pre-configured application access profiles.

Inter-domain: In inter-domain service setups, RFM additionally parses inter-
domain requests and, if communication endpoints are located in different
domains, splits application requests into intra- and inter-domain parts. The
intra-domain part of an initial application request is forwarded to VTN Man-
ager (VTNM) in which RFM specifies the VTNs gateway as the endpoint in
the intra-domain part. The inter-domain part of the request is forwarded to QoS
Negotiator and contains information about endpoint domains and service request
requirements including QoS metrics. If QoS Negotiator receives a reply by the
QoS Orchestrator that the inter-domain part requirements cannot be met, based
on announced resources of all registered NSP domains, the request is declined.

2.3 VTN Manager (VTNM)

Intra-domain: VTNM represents an extension of an existing framework1 that
realizes network slicing and exposes a set of corresponding APIs. By means of
the VTN APIs one can create isolated virtualized network slices (VTNs) and
provide L2/L3/L4 network forwarding functionality for such slices via virtual
API primitives. VTNM maps these virtualized slices into physical infrastructure
and enables forwarding via flow rules, at the same time ensuring slice isolation.
The VTNM interacts with the Path Manager (PMG) to request for path com-
putation of best-effort and mission-critical paths. Additionally, VTNM provides
a VTN specification interface for the IIoT Gateway (ref. Sect. 2.12).

Inter-domain: A specific virtual “gateway” interface is defined in every VTN,
that is mapped to a physical interface of the domains border gateway, which
serves as an exit point of the particular VTN in inter-domain.

2.4 Path Manager (PMG)

Intra-domain: For the guaranteed industrial QoS, i.e. the bandwidth provision-
ing, flow isolation and worst-case delay estimation, VirtuWind proposes using
network calculus, a deterministic mathematical modeling framework for com-
munication networks. Instead of basing its routing decision on a reactive control
loop of network observations, VirtuWind’s PMG provides mechanisms for admis-
sion control of new flows. By maintaining an accurate model of the network state
and service embeddings in the control plane [8], PMG ensures per-flow isolation
and worst-case guarantees at all times.

Inter-domain: PMG handles all path configurations that need to take place
on the network service provider’s (NSP) network slice that is available to the
1 OpenDaylight’s VTN project: https://wiki.opendaylight.org/view/VTN:Main.

https://wiki.opendaylight.org/view/VTN:Main
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VirtuWind architecture. In cross-NSP domains, traffic can flow through transit
domains, for which QoS characteristics fluctuate over time in an unpredicted
fashion. Thus, it is necessary for the NSP to continuously monitor the network
performance and to be capable of applying corresponding actions once abnormal
deviations are diagnosed. To this end, PMG maintains a detailed internal view
of the network resources, and each NSP exposes to the QoS Orchestrator an
aggregated view of the available path segments available within its domain.

2.5 Resource Manager (RMG) and Resource Monitor (RMT)

Intra-domain RMG: RMG is responsible for configuration management and
network control tasks, i.e. embedding of L2/L3 OpenFlow flow rules into the
network. RMG provides for embedding of: (i) real-time flows which require ded-
icated per-queue flow assignments; (ii) best effort flows, without queue consider-
ations; and (iii) the meter structures for policing purposes. The generated flow
rules and meter structures are persisted in the distributed data-store.

Intra-domain RMT: RMT is a utility component that monitors and exposes
the network state information. It provides for functionality to fetch the topology,
as well as the features of the forwarding devices, providing input for PMG’s
routing and flow-queue mapping decisions. Furthermore, it allows for real-time
monitoring of KPIs related to served intents.

Inter-domain RMG: The main difference compared to the intra-domain RMG
functionality is in the use of match filters (e.g. MPLS labeling and VTN tagging),
in order to enhance the scalability over large infrastructures.

Inter-domain RMT: For operator networks, due to scalability concerns, RMT
performs real-time monitoring using probing and OpenFlow statistics.

2.6 Security Manager (SM)

Intra-domain: SM realizes the authentication and accounting services to the
rest of the SDN Controller as well as the users and applications that interact with
the controller. With respect to authentication, the SM exposes interfaces for the
administration of local SDN Controller accounts. Additional APIs are exposed
for applications to present their credentials. If these credentials prove valid, the
SM can issue an authentication token to the requesting party. The token can then
be presented to the RFM when attempting to interact with the SDN Controller.
The RFM is responsible for transferring these tokens to the SM internally for
validation, so the former can then proceed to evaluate the request (i.e. if it is
allowed based on the active policies). In the case of distributed authentication,
the SM is responsible for presenting the tokens to the server for validation.

Inter-domain: To authenticate all entities in an inter-domain scenario, two dif-
ferent approaches can be applied: the direct authentication on the controllers and
the federated authentication via a trusted third party, which acts as an identity
provider. In the former case, QoS Orchestrator that requests path segment offers,
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must have credentials on each controller to be authenticated locally. This creates
the complexity of cross controllers entity credential data synchronization, so the
SM module is extended to add the latter approach. In the case of distributed
authentication setups, whereby the QoS Orchestrator has an account created
at another server, the Token Bearer [9] authentication is used. QoS Orchestra-
tor can be authenticated by requesting an authentication token by the OpenID
Connect server. When a request arrives by the QoS Orchestrator to the QoS
Negotiator of the controller, it passes the authentication token to the SM to
verify it. The SM then validates the provided token at the identity provider.

2.7 Clustering Manager (CMG)

The issue of the controller’s single point of failure is resolved by means of state
replication and fail-over to a pre-configured backup controller on failure.

Centralized controller state registry : The CMG handles the controller rela-
tionships per-data state in the VirtuWind’s distributed data-store. VirtuWind’s
controller state as well as the up-to-date network information is collected in a
single registry shard that is replicated across the multiple controller instances.

Strong (SC) and adaptive consistency (AC) primitives for update ordering :
Components that have stringent requirements on the data state staleness, such
as the Path Manager which makes critical routing and resource reservation deci-
sions, may require serialized updates. Serialization ensures no data-store updates
are applied without having first observed the previous history of the updates
made to that state. Such components make use of the controller state distri-
bution based on SC primitives (e.g. on RAFT [10] consensus). Components
that tolerate a certain degree of inconsistency may rely on AC primitives. Our
AC framework enables eventually consistent state synchronization with stale-
ness bounds [11]. The staleness bounds are realized by limiting the amount of
de-synchronization in between controller replicas.

2.8 Service Function Chaining Manager (SFCM)

In industrial networks, Virtual Network Functions (VNFs) such as Firewall,
IDS, DPI, and honeypot are pertinent to ensuring secure multi-tenant operation.
SFCM is able to handle VNF chaining. It invokes the VTNM in order to register
external ports of the SDN transport network and to declare and associate service
instances to those external ports. It exposes an interface to fetch information on
and modify the existing service chains, the VTN-to-SFC mappings, as well as
the service instances of the VNFs. Having the SFCM as a separate from MANO
offers the advantages of having one interface to business applications, and the
application does not need to be aware of the underlying SFC.

2.9 NFV Management and Orchestration (MANO)

VirtuWind does not require an implementation of a fully-fledged NFVO in the
broad sense, as an inter-domain orchestration of Virtual Network Functions
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(VNFs) still lacks an appropriate use-case in the industrial domain. Neverthe-
less, we assume an implementation of an NFVO element (i.e. the OpenStack’s
HEAT-API) to stay compatible to the industry standard when VNF and SFC
request specification is concerned. The VNFs deployed in industrial networks
typically require static, long-lived configurations, but may need appropriate pre-
configurations for correct security service function chaining. Provisioning of VNF
requests is initiated by the user at the NFVO component and the requests are
forwarded to VIM in order to request the deployment of the VNFs. When a new
VNF instantiation request is received at the HEAT components, it interacts with
the VIM to configure the infrastructure in order to provision the VNF. VIM guar-
antees the management and the allocation of the necessary virtual resources for
the VNF deployment. Similar to data-center networks, the VIM is responsible
for allocating the necessary resources in an industrial “private cloud”.

2.10 QoS Orchestrator (QOR)

QoS Orchestrator (QOR) is responsible for setting up a QoS-enabled end-to-
end connectivity service via multiple network operator domains. There are four
phases in the lifecycle of a QoS-enabled end-to-end connectivity service: (1) Reg-
istration: An NSP registers its domain to the QOR. (2) Path Segment Announce-
ment : The registered NSP advertises its available resources. (3) Path Segment
Instantiation: The QOR instructs the NSP to assign resources for a path. (4)
Monitoring : The NSP periodically sends performance statistics to QOR to verify
that agreed constraints are met for allocated flows.

Orchestration Manager: Coordinator of all QOR activities, handling all com-
munication with the SDN Controllers via encrypted REST APIs.

Path Manager: Implements all path calculation logic for the establishment of
inter-domain paths. Using end-point addresses as input, as well as the advertised
path segment offers and corresponding QoS values, Path Manager finds zero or
more “best” end-to-end paths (consisting of multiple NSP path segment offers)
that satisfy specified QoS properties.

Security Manager: Implements the authentication and authorization to secure
the communication between the QOR and the SDN Controller.

Portal: Front-end for the QOR administrator to trigger QOR functions manu-
ally and to visualize status information at runtime.

2.11 QoS Negotiator (QON)

QoS Negotiator (QON) is responsible for the communication between the
SDN Controller and the QOR and the translation of QOR’s requests to
domain-specific actions. After registration, the QON receives path segment offer
announcement and instantiation requests from the QOR and upon authentica-
tion and authorization via Security Manager, it replies to the QOR and prop-
agates its requests into network actions. The information revealed to the QOR
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is high level enough so as not to expose sensitive internal details about the
intra-domain configuration and characteristics. In this respect, path segment
announcements only expose information about available path IDs, their ingress
and egress border devices and their expected QoS characteristics. In addition,
the QON periodically receives monitoring messages and notification events from
the Path Manager, processes and filters them and sends to the QOR relevant
information. This information comprises critical updates about the topology,
e.g., path segments becoming unavailable or potential threats to maintaining
the advertised QoS.

2.12 Industrial IoT Gateway (IIoTG)

IIoTGs are physical devices that seamlessly integrate sensor devices to the Vir-
tuWind network. Each IIoTG maps the sensors to VTNs and takes care of the
isolation of the tenants when interacting with the sensors. An IIoTG is con-
nected on one both to the industrial SDN network and at least one sensor net-
work. It is then able to distinguish data flows from sensors and to forward them
appropriately to assigned tenant networks. This design enables integrating sensor
networks to the VirtuWind architecture that are not SDN-programmable and
cannot implement any isolation (e.g., LoRa devices). A software SDN switch
operating on the IIoTGs hypervisor seamlessly integrates VNFs into the Vir-
tuWind network. A VNF is instantiated for each sensor(s)–tenant pair and rep-
resents a set or a single sensor within a tenant. NFV is approached by exploiting
the idea of unikernels, the purpose-built operating systems that run a single
targeted application. Unikernels utilize remove unnecessary kernel components
in order to reduce the required resource usage [12]. This enables running a high
number of virtual instances on a single resource-constrained IIoTG [12].

3 Exemplary System Workflows

This section portrays the suitability of VirtuWind architecture to common use
cases of isolated virtual tenant network addition, as well as the QoS-constrained
network service embedding that spans multiple VirtuWind domains.

Figure 3 depicts the scenario in which a new critical infrastructure service
addition, that considers a set of QoS requirements specific to the User A’s appli-
cations, is embedded into the SDN network. In addition to User A, an NBI-aware
application (e.g. the depicted Network Management Station), may schedule and
enforce a QoS-constrained intent at any point at network runtime.

Figure 4 shows the inter-domain end-to-end path establishment scenario. It
requires the interaction between the QoS Orchestrator and all the SDN Con-
trollers of the NSP domains involved (we depict only one of those SDN Con-
trollers) and it consists of the relevant service flow establishment for each
involved NSP domain, combined with the path embedding for the endpoint
industrial domain.
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Fig. 3. An exemplary intra-domain VirtuWind system workflow.

Fig. 4. An exemplary inter-domain VirtuWind system workflow.

4 Conclusion

This paper presents the VirtuWind architecture, that addresses the complex real-
world requirements of an industrial network. The representative wind park con-
trol use case is briefly described and the design of an SDN- and NFV-architecture
which considers industrial intra- and inter-domain requirements is illustrated in
detail. We elaborate the mechanisms of individual components of the architec-
ture and present their mapping to the architecture components.
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Abstract. Supervisory Control and Data Acquisition (SCADA) sys-
tems monitor and control industrial processes, like power generation and
distribution. Research on e.g. SCADA security and the implementation of
new approaches is made difficult through the lack of accessible test beds.
We investigate running a dedicated SCADA test bed on a Raspberry Pi
cluster and report the experiences made during installation, configura-
tion and administration. Build with production readiness in mind, we
describe how a large level of automation contributes to both, ease of use
and a reliable set-up. In the future this testbed will be used to imple-
ment new approaches for (i) process monitoring, (ii) intrusion-detection
and the combination of different (iii) information and communication
technologies for SCADA systems.
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1 Introduction

Power distribution and (renewable) power generation, e.g. through solar pan-
els and wind turbines is usually controlled through Supervisory Control And
Data Acquisition (SCADA) systems. A highly reliable communication network is
needed to ensure the secure and dependable operation of those systems. SCADA
systems allow to maintain an overview of the physical system and execute com-
mands in remote locations. Such SCADA systems consist of Remote Terminal
Units (RTUs), that connect physical devices to read sensor data and to control
actuators. Each RTU is connected to a SCADA master unit and the operator can
view collected data and overrule control decisions via the Human Machine Inter-
face (HMI). A communication infrastructure and dedicated protocols connect all
components of the SCADA system.

The development of secure and reliable SCADA systems is a very broad
and active research area. For example intrusion detection mechanisms [6] and
machine learning [4,10] technologies are used in SCADA systems to develop reli-
able and secure control mechanisms. While Security vulnerabilities of SCADA
networks have long been known [9], they have become more important since
an increasing level of automation and has brought SCADA systems and corpo-
rate networks [5] closer together. Especially new Fast Data technologies, which
c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 262–272, 2018.
https://doi.org/10.1007/978-3-319-74947-1_18
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allow forecasts by processing real-time data [2] lead to interaction between those
networks. However, the feasibility and potential of all those research directions
need to be tested. While Simulation environments [1,13] can be adapted, build-
ing a simulation that closely resembles the real system and includes the control
network can be cumbersome. Accessing and working with real systems is often
impossible. Hence, a test bed might be an alternative for research and education
in a self-controlled environment that allows working in a system that employs
the same communication set-up, as the real system.

We report on experiences made during the installation, configuration and
administration of a SCADA test bed dedicated to wind parks. Furthermore, we
discuss possible tests that will be conducted in the test bed in the future. By
using a high level of automation in the set-up and installation of the proposed
SCADA test bed, we are building an environment that can readily be deployed.

Many SCADA test beds have been presented in the past. National gov-
ernments replicate existing SCADA systems with identical devices, as e.g., the
National SCADA Test bed (NSTB) implemented by the United States depart-
ment of energy [3], the national SCADA test bed implementation in Idaho [12]
and the European SCADA security test bed [9]. They provide high quality real-
world SCADA systems, however access is restricted and reconstructing such a
test bed, e.g. for local research or education is very costly.

As shown in [7], several implementations of smaller scale test beds exist. They
primarily focus on testing system security and are often focused on a very specific
application area. Instead, our test bed provides a highly reliable infrastructure
to test different improvements of SCADA systems. We believe that a high level
of automation eases extending the current implementation in a reliable manner.
The proposed test bed is currently used in graduate-level education and allows
master students to understand the ins and outs of SCADA systems.

The current implementation uses data from a wind park that is operated by a
large German energy supplier to emulate wind engines, which currently prevents
an open source publication. However, we plan to open source a limited version,
based on simulation in the near future.

The report is organized as follows. Section 2 presents the system architec-
ture and its functionality. Section 3 describes the implementation of the Remote
Terminal Unit and Sect. 4 discusses the SCADA architecture. We outline the
measures taken w.r.t. automation, testing and monitoring in Sect. 5. Section 7
concludes the paper and and gives an outlook into future work.

2 System Architecture

Supervisory Control And Data Acquisition (SCADA) systems, which control
distributed industrial processes often use a layered architecture. We propose a
two-layer architecture, where the second layer locally controls individual wind
turbines and the first controls the wind park. Per wind turbine 70 data items are
collected and can be controlled, individually. For example, the temperature is
controlled locally such that it stays below a certain threshold to prevent damage
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in the motor. Additionally, some variables like the total amount of produced
power require control on an aggregated level, i.e., the first level of the presented
architecture, which is also used to detect so-called outliers, i.e., wind turbines
that behave differently from the others in the same wind park.

Fig. 1. Reference architecture of a SCADA
wind park system.

Fig. 2. Assignment of SCADA com-
ponents to Raspberry Pies.

Figure 1 illustrates the two level architecture used in our test bed. Every
wind turbine is controlled by a local SCADA Master (2). This SCADA System
controls the local wind engine (5) data and the second level SCADA Master is
able to use several protocols to communicate with the RTU of the wind engine.
The test bed currently runs on Modbus/TCP [15], while we are implementing
other protocols like IEC60870-5 [11] and MQTT-S [8]. The first level SCADA
master (1) aggregates and controls data on a global level.

The separation of the two SCADA levels by a wide area network indicates
their connection through other communication channels, potentially with higher
latency and lower bandwidth. Human machine interfaces (HMI) on each level
display state information and allow to regulate the wind turbines. We imple-
mented a dedicated HMI using JavaFX which connects to the Java APIs of
our SCADA implementation. The second level HMI (4) displays sensor infor-
mation of the local wind engine. Furthermore it offers a graphical interface to
control actuator states. The first level HMI (3) provides remote access to each
second level SCADA master. It also displays the state of the whole wind park.
Figures 3 and 4 show the GUI implemented for the second level SCADA System.
Figure 3 shows the most important sensor data on an engine dashboard, giving
the user clear information on the current system status. A detailed overview of
all provided sensor data is also available, as shown in Fig. 4. Actuator control
information can immediately be set in the user interfaces. To allow the user to
remotely access a wind engine an additional GUI is provided for the first level.
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Fig. 3. The HMI Dashboard showing
most import sensor data information.

Fig. 4. Detailed overview of all sensor
data provided by a wind turbine.

The test bed is implemented using a cluster of twelve Raspberry Pis,
Model 31. As such, it is large enough to implement a layered architecture, but
can also serve as a portable showcase. Figure 2 illustrates the mapping between
SCADA components and computing units. Each wind engine and each Level 2
SCADA master is implemented on a dedicated Raspberry Pi. To present a Level
2 HMI, one of the masters is connected to a seven inch touch screen. Likewise,
the first level SCADA masters run on a Raspberry Pi connected to a touch
screen. The overall monitoring node runs on a dedicated Raspberry Pi and uses
a touchscreen to show the state of the test bed. The server acts as build pipeline,
configuration manager and database and hence is implemented on a dedicated
external computing node as it requires more computation power. To facilitate
access to the test bed, we are currently developing a Docker compose, where test
bed components are translated into multi-container Docker applications2 which
can run independently of the environment.

3 Implementation of Remote Terminal Units

Fig. 5. Components of a
remote terminal unit imple-
mentation.

The developed SCADA systems controls wind park
data that is represented as a structured string
Rx -Cx -Sx -Px -Tx -Mx . Each data field is separated
using a dash. x is a placeholder for x ∈ N>0. The
meaning of each data field is summarized in Table 1.
The tags R, C, S, P and T together uniquely iden-
tify each controlled wind turbine. The meta Tag M
refers to the different sensor data fields provided by
the turbine.

Each Remote Terminal Unit (RTU) represents a wind turbine providing sen-
sor data and the possibility to change the actuator states. It uses a layered

1 Raspberry Pi 3 Model B having 1,2 GHz QuadCore 64Bit CPU. https://www.
raspberrypi.org/.

2 https://docs.docker.com/compose/.

https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://docs.docker.com/compose/
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Table 1. Wind park data: Fields and their meaning.

Rx Cx Sx Px Tx Mx

Region Country Site Park Turbine M-Tag

architecture as illustrated in Fig. 5. A communication layer currently implements
Modbus/TCP. It abstracts from the specific communication channel to simplify
extensions. The data layer ensures that all data gathered from the content layer
contains at least the information shown in Table 1. Control information may
be added to data that is sent or received, however this is transparent to the
underlying content layer, which distinguishes between emulation and simulation
mode. The former one reads data from the time series database InfluxDB3. The
latter uses a wind engine simulator. A park in general consists of multiple wind
engines. Once emulation is started, more engines can be added to the emulated
park on the fly. However, note that they need to synchronize with the time of
the SCADA system and the time stamps used in the database.

Fig. 6. Components of the Jenkins automation pipeline.

As emulation mode only works with prerecorded data it does not include
adaptive behavior. Simulation mode implements a standalone test bed which
incorporates true adaptive behavior and control. For example, the simulator
may change the blade pitch angle with leads to slower rotation. We are both
implementing a wind turbine simulator using Python as well as making use of
existing wind engine models built using MathLab [14].

4 SCADA System Implementation

The implementation is based on the Java-based project Eclipse NeoSCADA4

for both SCADA levels. NeoSCADA, while being open-source, is used in sev-
eral productive 24/7 installations. It provides many out-of-the-box features but
also offers well documented Java-APIs. Each level 2 SCADA node consists of
a master instance which aggregates and controls data. Communication uses so
called device driver. They read sensor data using Modbus/TCP or IEC 80870
by default and forward them to the master instance. Instead of drivers, Eclipse
NeoSCADA also allows to connect multiple SCADA systems using an inter-
nal non-standardized communication channel, which we use to implement the
3 InfluxDB - An open-source distributed time series database. http://influxdb.com.
4 Eclipse NeoSCADA. https://www.eclipse.org/eclipsescada/.

http://influxdb.com
https://www.eclipse.org/eclipsescada/
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proposed two level architecture. Configuring the test bed is a crucial step. We
require a highly reliable set up, hence manual configuration is not an option.
By default Eclipse NeoSCADA is configured using the Eclipse GUI. The global
system configuration is organized as an Eclipse5 project determining all the phys-
ical devices of the system as well as the hierarchy of the sensor data items. Once a
configuration is build, a *.deb package is created and ready to be deployed to the
corresponding SCADA master instance. All these manual steps are automated
by extending Eclipse NeoSCADA with a custom OSGI6 instance, which auto-
mates configuration based on configuration files or reading from configuration
databases.

5 Automation for Reliability and Reproducibility

Since we aim to construct a productive environment, automation of system
installation and configuration as well as monitoring the running SCADA sys-
tem are important. Crucial steps are (i) the reproducible installation and con-
figuration of new master instances and RTUs, (ii) zero downtime updates of
existing nodes and (iii) ensuring a 24/7 operation. Furthermore, a high level of
automation should ease changing and extending the system.

Installation and configuration of each Raspberry Pi is done automatically
using Ansible7. Ansible allows creating so called Playbooks to install, config-
ure and administrate software components. In contrast to manual steps being
executed repeatedly, Ansible keeps infrastructure descriptions in a text-based
format saved in version control systems. Hence, an audit of every change is pos-
sible and long lasting manual steps can be executed repeatedly in a reproducible
way. Each of these Playbooks implicitly defines one layer of the complete configu-
ration. Several layers and therefore Playbooks may be used to configure different
infrastructure components.

Extended automation is implemented using Jenkins8. For the custom soft-
ware implementations, like the HMI, that need to be build and deployed auto-
matically. The Jenkins server automatically detects any change in the version
control system and runs a specific build pipeline as presented in Fig. 6. Changes
are pushed to the version control systems observed by Jenkins and automati-
cally checked out if change is detected. Jenkins builds the artifacts and runs unit
tests. If successful, again Ansible Playbooks are used to deploy these artifacts
to the dedicated Raspberry Pis. It is crucial to ensure a so-called zero-downtime
deployment, which ensures that service can continuously be provided also during
updates. Finally, integration tests are used to ensure that the system still acts
as expected. This high level of automation and testing enables the construc-
tion of a production-ready SCADA test bed based on state of the art software
development and infrastructure configuration paradigms.
5 Eclipse IDE. http://www.eclipse.org/.
6 OSGI. A dynamic module system for Java. https://www.osgi.org/.
7 Ansible. Automation of your IT Infrastructure. https://www.ansible.com/.
8 Jenkins. Build and automation server. https://jenkins.io/.

http://www.eclipse.org/
https://www.osgi.org/
https://www.ansible.com/
https://jenkins.io/
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The 24/7 operation of a SCADA system is very important. Even though our
system is a test bed, we want to continuously observe its performance. Therefore
the monitoring tool Icinga29 is used to both check system and service status. The
monitoring master runs on a Raspberry Pi and is equipped with a touch display.
Every other Raspberry Pi runs a monitoring agent to gather status information.
Currently, system status like used memory, swap, cpu-load and ping as well as
Java process information are gathered and displayed on the monitoring master.
It provides a dashboard like GUI that displays the state of the complete SCADA
test bed at a glance.

6 Measurements

In the following, we present some basic metrics that describe the performance
of three different parts of the testbed: (i) the installation and configuration, (ii)
SCADA-specific node metrics and (iii) network specific metrics.

Installation and Configuration. The installation and configuration phase is cru-
cial and as we focus on a high degree of automation in this process, we translate
several steps into Ansible playbooks. The steps needed to configure and install a
SCADA node on a Raspberry Pi and their durations are summarized in Table 2.

Most configuration tasks have a comparable length between 100 ms and
300 ms, Tasks 3, 7 and 11 take about one order of magnitude longer and Task
4 even takes about 280 s to complete. It takes 295,8 s in total to configure a
SCADA node using Ansible playbooks. The installation of a SCADA system
takes another 170 s, with Tasks 23, 24 and 31 forming the bottlenecks of the
installation. Long tasks are critical to the performance of a highly automated
environment. Identifying such bottlenecks allows to split them into smaller tasks,
which improves the overall performance especially in the presence of failures.

SCADA Node Metrics. To investigate the system under varying loads, Modbus
messages are sent with different frequency to the Raspberry node hosting the
SCADA component. The systems CPU share of the SCADA system and of
the Modbus device have been measured and are plotted for inter-arrival times
of 10 ms, 50 ms, 100 ms, 200 ms and 500 ms in Figs. 7 and 8, respectively. The
relatively low CPU usage in the beginning and end of the plots is due to manually
handling the measurements. Measuring the memory share under different loads
has shown that memory usage is independent of the number of write requests
sent.

Network. To obtain insight into network traffic, the system was monitored for
12 h using Bro. We observed three different categories of network traffic. First
of all, we have counted the number of network packets sent or arrived on the
different test bed nodes as presented in Fig. 9. The numbers are obtained every

9 Icinga2. Monitoring platform. https://www.icinga.com/products/icinga-2/.

https://www.icinga.com/products/icinga-2/
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Table 2. Duration of steps to configure and install SCADA nodes.

# Description - Configuration Time # Description - Installation Time

1 Change the access rights 0.16 s 21 Copy sources.list 3.11 s

2 Unmounting SD Card 0.15 s 22 Delete old sources.list.d 0.63 s

3 Unmounting SD Card 4.81 s 23 Install monitoring software 41.99 s

4 Writing Image to SD Card 280.29 s 24 Install Nagios-plugins 78.18 s

5 Flush Cache 0.17 s 25 Copy the new ntp.conf file 1.64 s

6 Renew Dev 0.16 s 26 Copying autostart-file 1.44 s

7 Sleep 5 s 5.37 s 27 Copying rc.local 1.52 s

8 Mount Partition 2 of SD-Card 0.32 s 28 Install gdebi 2.54 s

9 Mount Partition 1 of SD-Card 0.17 s 29 Delete OpenJDK 5.34 s

10 Activate ssh 0.31 s 30 Install oracle Java8 2.55 s

11 Create new hostname 1.68 s 31 Install JavaFX 29.91 s

12 Delete old hostname 0.17 s 32 Update Password 1.14 s

13 Delete hosts file 0.16 s

14 Update IP address 0.31 s

15 Create .ssh directory 0.17 s

16 Change rights on .ssh directory 0.16 s

17 Copy new authorized keys 0.54 s

18 Copy id rsa 0.28 s

19 Deploy components 0.24 s

20 Unmounting SD Card 0.18 s

Fig. 7. CPU usage share of the SCADA
master node under different loads.

Fig. 8. CPU usage share of the modbus
device under different loads.

15 min. Secondly, SCADA specific traffic was monitored. The wind turbine emu-
lators send data using the Modbus protocol. Hence the number of Modbus spe-
cific packets is presented in Fig. 10. The Level 1 and Level 2 SCADA systems
communicate using NGP, a NeoSCADA specific protocol using TCP/IP. Their
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Fig. 9. The complete network traffic. Fig. 10. Number of Modbus packets.

number of occurrence is presented in Fig. 11. It can be observed that the network
traffic of the Level 1 SCADA node (label PI 1-1) consists only of NGP packets,
as it does not communicate directly with a wind turbine. The Level 2 SCADA
nodes (PI 2-1, PI 2-2 and PI 2-3) communicate both, via NGP with said Level
1 node and via Modbus with the connected wind turbines. As can bee seen in
Figs. 9 and 11 the connection between PI 1-1 and PI 2-1 suffers around time
100 min, while the connection between PI 2-1 and its connected wind turbines
is not impacted.

Fig. 11. Number of NGP packets.

Every SCADA node requests new
Modbus data in fixed time intervals.
This explains the low variation in
these measurements. The graphs fur-
thermore show that Level 2 nodes have
about 50 % of SCADA specific traf-
fic. The remainder of the traffic can
be attributed e.g. to TCP handshakes,
responses, DNS requests, NTP and
SSH traffic, necessary to organize the
communication infrastructure.

7 Conclusions and Future Work

The implemented test bed mimicks a full stack real-world SCADA system used
to control wind parks. The automation of installation, configuration and admin-
istration enables to research and educate in an environment that can readily be
deployed. The test bed runs on a Raspberry Pi cluster and its emulation mode
allows to replay real-world system data. Simulation mode implements adaptive
behavior and allows to remotely control an RTU and its wind turbine. Every
component is implemented in an extensible way, such that e.g. other protocols
or SCADA nodes can easily be included.

Configuring and running the Eclipse NeoSCADA system has turned out to
be a very complex task. The system is highly extensible and configurable, which
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makes it difficult to reliably configure every node manually. Especially the auto-
mated generation of configuration packages, as well as the extension with a cus-
tom OSGI instance was helpful. For the automated configuration scripts have
been created that contain all necessary specifications.

Future work will focus on extending the test beds components and implement
a variety of communication protocols. The Level 1 SCADA system should be
able to display aggregated wind park data. Hence, future work may focus on
implementing replication techniques. Zero-downtime strategies, unit as well as
integration tests need to be extended to increase the reliability of the test bed.
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Abstract. Car2X communication based on WLAN 802.11p is described
in the communication protocols IEEE WAVE for the USA and ETSI
ITS-G5 for Europe. In this paper we looked into the single-hop beacon-
ing mechanisms and congestion controls of both standards. Each stan-
dard includes an own definition of beaconing and congestion control.
By implementing both parts of the standards within the OMNeT++
framework VEINS different single-hop scenarios were looked into and an
achievement assessment was provided concerning the congestion control
mechanisms and the beaconing.

Keywords: Car2X · IEEE WLAN 802.11p · IEEE WAVE
ETSI ITS-G5 · Beaconing · DCC · BSM · CAM · VEINS

1 Introduction

The standards IEEE WAVE and ETSI ITS-G5 both base on the standard avail-
able for Car2X communication IEEE WLAN 802.11p [5]. In this standard the
lower network layers (PHY and MAC) are described, which is the reason why
IEEE WAVE and ETSI ITS-G5 have common characteristics on the lower lay-
ers. In the following we describe the individual characteristics of the generation
process of beacons and the congestion control of both IEEE WAVE and ETSI
ITS-G5.

IEEE WAVE. On the part of IEEE WAVE the generation of single-hop beacons
occurs in the form of Basic Safety Messages (BSM, [6]) on the application layer.
The congestion control is integrated in the generation process [9]. In Fig. 1 it is
shown how the algorithm works in detail.

All parameters to be calculated and the respective intervals are indicated in
the upper area of Fig. 1. There are three different intervals used for the calcu-
lation (100 ms, 1 s and 5 s). In the lower part of Fig. 1 the algorithm for BSM
generation is shown. The dotted arrows originating from few parameters should
make clear that only few of all calculated parameters are directly involved in the
actual BSM generation algorithm.
c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 273–282, 2018.
https://doi.org/10.1007/978-3-319-74947-1_19



274 T. Deinlein et al.

Fig. 1. Generation of BSM in IEEE WAVE [9]

ETSI ITS-G5. On the part of ETSI ITS-G5 the generation of single-hop bea-
cons occurs the in form of so-called Cooperative Awareness Messages (CAM, [2])
on the facility layer which is located between the application layer and the trans-
port layer. A Decentralized Congestion Control (DCC) is in this case intended
on the MAC layer [3].

TheDCConMAClayer is a statemachinewhichconfiguresdifferentparameters
dependingontherespectivestate.Thestatewill change if themeasuredminimumor
maximum channel load of the last 1 s or 5 s exceeds 15% and 40%, respectively. The
current channel load ismeasured every 100 ms. InFig. 2 the states are indicated and
the standard parameters are shown in Table 1. The parameterT GenCam DCC is
important for the generation process of CAMs. It has to be provided by the DCC
and needs to be at least 100 ms. The value for this parameter is the current packet
rate (see Table 1), which depends on the current state of the DCC. For the CAM
generation algorithm it is the minimum time between generating two CAMs on the
facility layer. The packet rate handles the packet flow on MAC layer, too. It is the
minimum time between sending two packets on the MAC layer.

Table 1. Standard parameters of the DCC [3]

EDCA AC State

Relaxed Active Restrictive

AC VO AC VI AC BE AC BK

TxPower 33 dBm ref 25 dBm 20dBm 15 dBm −10 dBm

Packet rate 0.04 s ref ref ref ref 1 s

Datarate 3Mbit/s ref ref ref ref 12 Mbit/s

Sensitivity −95 dBm ref ref ref ref −65 dBm
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RELAXED ACTIVE

minChannelLoad (1 s) >= 15% minChannelLoad(1 s) >= 40%

maxChannelLoad (5 s) < 15% maxChannelLoad (5 s) < 40%

RESTRICTIVE

Fig. 2. DCC statemachine [3]

The generation of one CAM is a highly dynamic process and is carried out
depending on the change of the current vehicle state in comparison to the state
values contained in the last sent CAM (see [2], Chap. 6.1.3). The check occurs
every 100 ms. Shorter time periods can also be set for this. Besides, it is checked
whether at least the time T GenCam DCC (mentioned above) has elapsed since
the last CAM generation, and:

– the difference of the current speed and the speed which is included in the last
sent CAM is greater than 0.5 m/s, or

– the distance of the current position and the position which is included in the
last sent CAM is greater than 4 m, or

– the amount of the difference of the current heading and the heading which is
included in the last sent CAM is greater than 4◦.

A CAM will be sent if one of the state changes above occurred and the time
of at least T GenCam DCC has exceeded since the last generation of a CAM.
T GenCam represents the current CAM generation interval and is used to reset
the generation interval to 1 s if no dynamic state changes occur. T GenCam is set
to the time which is passed by since the last generation of a CAM. If two further
CAMs are sent within T GenCam without a change of the state parameters
above, T GenCam will be set to 1 s.

Beside the standard parameters, two further variations have been considered
for DCC in this study. In [4] the DCC profiles are described, which shorten
the packet rate to 0.095 s in relaxed state, 0.190 s in active state and 0.250 s in
restrictive state.

In [1] another variation is described how values of the packet rate can be
dynamically determined. The calculation algorithm is based on the so-called
LIMERIC algorithm [15]. It is a dynamic calculation of another individual
parameter every 100 ms, which represents the interval that has to be expired
before the next CAM can be generated.

Because of the great differences between the standards IEEE WAVE and
ETSI ITS-G5 it was interesting to examine their performance in real traffic
scenarios.
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2 Related Work

There are several comprehensive studies about the European standard ETSI
ITS-G5. In [12] the beaconing was compared between ETSI ITS-G5 and IEEE
WAVE in 2013. However, the generation rate had a constant rate of 10 Hz in this
study. This appears only in particular situations. In that study only the standard
parameters of the DCC were considered. In spite of an oscillatory behaviour of
the channel load on the part of ETSI ITS-G5 caused by the state change of the
DCC it was found out that this approach leads to a better performance than
IEEE WAVE.

The oscillation of the channel load in combination with the generation of
CAMs was examined in [17]. It was ascertained that the combination of the gen-
eration rate of a CAM with other parameters like transmission power influences
stability of the DCC.

The reactive behaviour dependent on the state of the DCC was compared
in [11]. Oscillations of the DCC and unstable behaviour could be observed, too.

Other investigations in [10,16] came to similar results. In addition, [20] found
out that the DCC can lead to instability and a low number of transferred CAMs.

With IEEE WAVE the need of a congestion control mechanism for generating
BSMs was ascertained in [14] already in 2011. With introduction of [9] this was
published in 2016.

In contrast to the mentioned papers before this paper looks into the current
definition of both standards. In particular the IEEE WAVE mechanism described
in [9] was not included in former studies.

3 Implementation in VEINS

The algorithms of both standards IEEE WAVE and ETSI ITS-G5 were inte-
grated within the simulation framework VEINS. It is an often used open source
framework for Car2X scenarios (see [18,19]). VEINS is a framework which bidi-
rectionally couples the well-known network simulation tool OMNeT++ [8] and
the traffic simulator SUMO [7]. SUMO uses open street map files to run traffic
scenarios. With the help of this tool chain it is possible to run different traffic
scenarios with our implemented code of both standards. In this study we used
Version 4.4 of VEINS.

VEINS includes the protocol stack defined in IEEE WLAN 802.11p [5]. By
default there are the physical, the MAC and the application layer implemented.
For this study we changed the VEINS code of these layers. We did not implement
further network layers such as the Geonetworking protocol. Our focus was the
process of generating the beacons on application layer (both standards) and the
behaviour of the DCC on the MAC layer on part of ETSI ITS-G5.

We have chosen three different scenarios to compare both standards. The
scenarios are:

– Motorway junction: Typical for this scenario are high speeds (100 km/h up to
200 km/h) and rare changes of heading. The plane size is 2000 m× 2000 m.
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– Urban: Low speed (5 km/h up to 50 km/h), stops and frequent heading
changes characterise this scenario. The plane size is 800 m× 800 m.

– Traffic jam: In this scenario there is no movement of the cars and all cars are
in radio range of each other. The plane size is 200 m× 200 m.

Table 2 shows an overview of all parameters which are set for this study.

Table 2. Simulation parameters

Parameter Value

Simulation time 6 parallel runs for 10 s each, 1 run for 200 s and 500 s

Scenarios Motorway junction, urban, traffic jam

Number of cars 100, 200

Loss modell Simple path loss model (k = 2)

EDCA-Priority AC VO (BSM), AC BE (CAM)

Beacon-Size 300 Bytes, 600Bytes

Frequency 5.86 GHz (BSM), 5.9 GHz (CAM)

To evaluate the performance of both standards we determined several statis-
tic values, which were saved in every run of a simulation scenario:

– Generation rate: This means the time between two generated beacons.
– Number of sent beacons: The number of all sent beacons in a scenario saved

during simulation time.
– Number of received beacons: The number of all received beacons in a scenario

saved during simulation time.
– Channel load: In both standards the channel load is calculated every 100 ms.

It is the result of the time at which the channel was busy during the last
100 ms divided by 100 ms.

– Lost packets: The number of lost packets in a scenario saved during simulation
time.

4 Comparison and Outcomes

After the implementation in VEINS we were able to compare both standards
by the theoretical facts. The focus was on the parameters which are set by the
DCC. In Table 3 the compared parameters are shown. Two facts are remarkable.
First, the generation rate of beacons differs enormously. In IEEE WAVE the
rate is up to 600 ms and in ETSI ITS-G5 it is up to 100 ms. Second, the default
generation rate is contrary. In both standards the minimum rate is 100 ms. IEEE
WAVE sets this value for default, in ETSI ITS-G5 the rate is 1000 ms by default
and it will change only if there are dynamic state changes as described in Sect. 1.
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Table 3. General comparison [3,9]

Parameter IEEE WAVE ETSI ITS-G5

TxPower 10 dBm up to 20 dBm −10 dBm, 20 dBm or 23 dBm

Datarate 6 Mbit/s 3 Mbit/s or 12Mbit/s

Sensitivity −92 dBm −65 dBm, −85 dBm or −95 dBm

Generation rate 100ms up to 600 ms 100 ms up to 1000ms

Default generation rate 100ms 1000 ms

After running all three scenarios with different parameter values we came
to the conclusion that the statistics of all three scenarios point into the same
direction. Therefore, we chose values for Fig. 3 such that the differences between
IEEE WAVE and ETIS ITS-G5 were most significant. The traffic jam scenario
shows the greatest differences. Figure 3a and b show the generation rate and
the channel load, respectively. Although all cars don’t move, in IEEE WAVE
the generation rate differs between about 100 ms and 600 ms. In ETSI ITS-G5
there is no change of the rate. This leads to more sent and received beacons
in IEEE WAVE (see Fig. 3c and d). Especially the channel load shows that the
congestion control in IEEE WAVE doesn’t work well because the channel load
has a constant value of about 75% during the whole simulation time of 200 s.
In ETSI ITS-G5 the channel load is about 10% in all three variations. The
differences between the three ETSI ITS-G5 variants are insignificant and will
not be further discussed in this paper.

The behaviour of the IEEE WAVE mechanism was very surprising. Even
when high channel load is measured, the mechanism doesn’t change the param-
eters in such a way to reduce the channel load effectively. We looked into that
behaviour deeper and found out that it depends on the parameter vPERRange,
which is set to 100 m by default (see [9], Table 21). vPERRange is involved in
the calculation of the parameter vVehicleDensityInRange, which is necessary for
calculating the maximum generation rate. If there are at least 150 cars within
this range, the generation rate will be set to the maximum value of 600 ms, which
would lead to less sent beacons and therefore to smaller channel congestion. The
problem is that one car can receive beacons from cars which are in a wider range.
These cars, which are out of the vPERRange, aren’t included in the calculation
of the maximum generation rate. The result is a shorter generation rate although
there are more cars in the real radio range from which beacons were received.

We compared the behaviour of the channel load if vPERRange is 100 m and
200 m in the scenario traffic jam. This scenario has a plane size of 200 m× 200 m.
In Fig. 4 the results are shown. We also compared if there are differences in the
behaviour when the beacon size is 300 bytes and 600 bytes, respectively. The
value of 100 m for vPERRange leads to a shorter generation rate and thus to a
higher channel load, even if the cars don’t move all the time. This effect depends
on the calculation of the maximum generation rate as mentioned above. In the
range of 100 m less than 150 cars have been measured, although there are 200
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cars receiving beacons from each other. If the vPERRange is set to 200 m, the
channel load decreases because of the higher number of counted cars within
range and so the generation rate increases. That leads to less sent beacons and
thus to a smaller channel load.

Fig. 3. Simulation results of the traffic jam scenario with 600 bytes beacon size and a
simulation time of 200 s and 200 cars
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Fig. 4. Impact of changing vPERRange on the channel load in the traffic jam scenario

5 Conclusion and Future Work

Within the scope of this study we compared the single-hop beaconing in combi-
nation with congestion control of the standards IEEE WAVE and ETSI ITS-G5.
By implementing the algorithms within the VEINS framework we compared the
performance based on three traffic scenarios.

IEEE WAVE shows similar results in all three scenarios. Due to a short
generation rate (almost exclusively 100 ms) there will be sent many more beacons
than with ETSI ITS-G5. This leads to many more received beacons. However,
this mechanism doesn’t control the channel load effectively and tends to congest
the radio channel. Furthermore, we found out that the generation rate, which is
freshly calculated after sending a beacon, only depends on the number of cars
counted in the range of 100 m, although the cars also receive beacons from cars
which are further away. Setting the value of the parameter vPERRange to 200 m
showed a reduction of the channel load.

On the part of ETSI ITS-G5 we looked into the generation of CAMs in com-
bination with the DCC. We considered three variations of the DCC parameters:
standard, DCC profile and a dynamic approach with LIMERIC. All three vari-
ations behave contrarily to IEEE WAVE. Because the generation of CAMs is
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depending on the current driving state, ETSI ITS-G5 sends less and receives
less beacons. This leads to much less channel load and less packet loss. The
differences between all three ETSI ITS-G5 variations are insignificant.

For future studies it may be beneficial to look into mobile communications
within the Car2X-context and VEINS, respectively. In [13] an adaption of VEINS
with LTE has already been developed. The forthcoming 5th generation of mobile
communication (5G) is going to fulfill lower latency and it is supposed to support
many more connections between devices as with LTE. Extending VEINS by 5G-
Features is necessary to compare the performance with IEEE 802.11p WLAN
standards, IEEE WAVE and ETSI ITS-G5, which were part of this study, and
LTE, respectively.
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Abstract. Video streaming is an increasingly popular service on the
Internet. In HTTP adaptive video streaming (HAS), the video is played
while being downloaded, and the quality is selected according to the
available bandwidth. Due to this, variations in the transmission affect
the playback. The quality of the playback can be rated by technical
parameters, which can be grouped by the term ‘Quality of Service’ (QoS),
like the video quality, the number and duration of stallings or the time
until the video starts playing. These metrics differently influence the user
experience.

Up to now, no widely accepted model for the Quality of Experience
(QoE) for HAS exists. Therefore, we use two conceptually different mod-
els and investigate their impact on the resulting QoE. To do so, we use
a typical video player, namely the Shaka Player, that can be embedded
into websites, and change its buffer configuration. The observed data
is then used to evaluate the quality of experience (QoE), combining it
into a single ‘Mean opinion score’ (MOS). It can be shown, that, with
limitations, these methods can be suited for QoE evaluation.

Keywords: Adaptive video streaming · Quality of Experience

1 Introduction

Video streaming has gained a lot of popularity in the Internet during the last two
decades. Not only has the consumed video traffic grown on the Internet, but also
have the user expectations for high video quality. In order to be able to stream
videos in high resolutions even in overloaded mobile networks, video service
providers have started to implement methods, that adapt the video bit rate
to the available goodput. In HTTP adaptive streaming (HAS), the video player
downloads video segments into his buffer, until enough content is available. If the
amount of content stored in the buffer is decreasing and drops below a certain
threshold, the video is requested in a lower bit rate by the player [16]. If the
amount of content in the buffer reaches a high level, the video may be requested
in higher quality again. Since many videos are abandoned by users during replay
[3], the buffer capacity is limited to avoid downloading too much video content
c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 283–292, 2018.
https://doi.org/10.1007/978-3-319-74947-1_20
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that is discarded in an abandonment event. This way video service providers
are able to avoid wasting resources, i.e. avoid transmission of unwatched video
content. This paper is an extension of our previous experimental study [15]
in which we investigated the influence of different buffer configurations on the
playback behavior of two different HAS players in real commuting scenarios.
This led to important results regarding the impact on the duration and number
of stalling events, as well as wasted traffic. In this paper, we want to go one
step beyond our previous analysis of QoS and also investigate the Quality of
Experience (QoE). While the QoS includes objective metrics, the QoE is defined
as the subjective ‘degree of delight or annoyance’ experienced by a user [1].
In video streaming, the impact of a quality degradation on the QoE if usually
determined with the help of user studies from which QoE models can be deducted.
We investigate synthetic QoE models were several factors are combined into an
additive or multiplicative QoE model [8]. We developed a testbed which allows
us to run HAS video players, which can be embedded in websites, a popular
example is the YouTube player. The bandwidth available for video transmission
can be limited according to real bandwidth scenarios. Using this setup, we tested
the Shaka player with different buffer configurations to investigate in how far
typical, simple QoE metrics can be used to evaluate video playback. To do so,
we compared the QoE results with a detailed analysis of the playback of the
video.

The remainder of this paper is structured as follows. In Sect. 2 background
and related work on HTTP adaptive video streaming is discussed. Section 3
presents the QoE models that are used in the experiments investigated in this
paper. Section 4 outlines the methodology and discusses the results of our exper-
iments. In Sect. 5, the paper is concluded and an outlook on future work is
provided.

2 Background and Related Work

In contrary to traditional video transmission, apart of the video encoding, also
the adaptation strategy, has a massive influence on the quality of the video,
that the user receives. The adaptation strategy decides, which parts of the video
are downloaded in which quality at which time. Especially in mobile scenarios,
where the bandwidth changes over time, the adaptation logic therefore has a
large influence on the video quality [11].

When designing an adaptation strategy, a compromise between different
objectives has to be found. For example, a short initial waiting time, this means
the time until the video actually starts playing, can result in stalling events,
because the buffer is insufficiently filled, and the player runs out of video to be
played. At the same time, the played quality should be maximized, which then
might lead to frequent quality switches, because of variances in the bandwidth.

Traditionally, technical parameters, summarized as ‘Quality of Service’ (QoS)
are used to monitor and describe service quality. The focus of this evaluation
is the user’s experience. User studies lead to the development of models for
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the Quality of Experience (QoE), where users rate typically impairments of
the service by their perceived level of annoyance. A broad overview about QoE
modeling in HAS is given in [13]. The QoE models that we used in this work are
explained in detail in Sect. 3.

Realistic QoE models allow an automated evaluation, which then can be
used in practice to improve service levels according to the perception of the
users. Especially the upcoming of so-called cloud services, where more and more
functionalities and applications are moved into data centers, shows the possibil-
ities for QoE-management [5]. An understanding of QoE does not only allow to
improve the perceived service quality, but also saving money by adapting the
service level to the actual users’ needs, e.g. response or loading times.

3 QoE Model

The QoE does not describe technical properties of a service, but solely the delight
or annoyance experienced by a user when using a service. However, technical
aspects of a service may have an impact on the user’s QoE. QoE models allow a
holistic view on services, and help to understand the users’ perception. This user-
centric approach is adopted in order to allow optimization of the aspects that
really count for the users instead just of technical QoS parameters, for example
in cloud computing. This is especially challenging because with QoE the overall
user perception is the key metric for managing collaboration between different
providers [5].

There are different metrics how to measure and quantify the user experience
which are often applied in user studies. A popular method to express the QoE
is a Mean Opinion Score (MOS) with ratings from 1 (‘Bad’) to 5 (‘Excellent’).
In detail, these numbers are related as follows: 5 – ‘Excellent’, 4 – ‘Good’, ‘3’
– Fair, ‘2’ – Poor, and ‘1’ – Bad [10]. Another method is to let users rate the
‘acceptability’, this means in the case of video streaming, if the video quality is
acceptable or if they do not accept it [14]. There are many more interesting QoE
metrics beyond the MOS like QoE quantiles or ratio of users accepting good or
better quality, see [6] for a discussion on relevant QoE metrics. However, in this
paper we are using the MOS value, as we can rely on subjective studies reporting
the MOS.

This work’s goal is to determine QoS parameters on application layer via
experiments, while varying the QoS on network layer. In contrast to analytic
models and simulations, the experimental approach returns the most sophisti-
cated results, but it is also very time consuming. After that, the obtained QoS
parameters have to be evaluated with the use of user-study-based models that
map them to QoE values. Generally, it is difficult to correctly interpret and
weigh these QoS values accordingly, especially considering the users perception.
Therefore, we focus on the MOS, as it allows to directly quantify the QoE.

For the determination of the QoE, we consider the following two key perfor-
mance indicators, as these are the main influence factors [5]:
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– stalling events, as stalling has a high impact on the overall QoE [5] and
– initial waiting time, because this directly correlates with the buffer size, which

is in the focus of this work. Depending on the usage scenario, e.g. when the
user is browsing for a video, this parameter gets a higher importance for the
user [2].

3.1 Basic QoE Models for Adaptive Video Streaming

We use the following two functions, which return the MOS depending on stalling
events and initial waiting time. The first function returns the QoE depending
on the number and duration of stalling events:

QStalling(N,L) = a · e−(b·L+c)·N + d (1)

where L is the average length of the stalling events in seconds, and N is the
frequency of stalling events normalized according to [7]. For evaluation, we used
the parameters a = 3.5, b = 0.15, c = 0.19 and d = 1.5 as proposed in [4].

The second function, which determines the MOS solely depending on the
initial waiting time:

QWaiting(D) = −a log10(D + b) + c (2)

where D is the initial waiting time in seconds and a = 0.963, b = 5.381, c = 5 as
suggested by [7]. This leads to a MOS of 4.3 in case of an initial waiting of one
seconds, 4.0 with two seconds, and 3.6 in case of five seconds, respectively.

3.2 Combining QoE Models

It is still under discussion how multiple QoE values can be combined. The two
most simple approaches are the additive and the multiplicative QoE model [8].
Both models are conceptually different, the multiplicative model is suited, when
there is a dominating factor, while the additive model averages the factors. For
comparison, we will apply both and compare the results.

For general purpose weighted additive models have been suggested in [8]. An
additive model generally sums up the input values. The result can be adapted
with weighting values wi ≥ 0 and

∑
i wi = 1. A general formula therefore is

given as

Qadd =
n∑

i=1

wiQi(xi)

In our case this leads to the following function:

Qadd(D,L,N) = 0.5 · QStalling(N,L) + 0.5 · QWaiting(D) (3)

The multiplicative model for Qi ∈ [0, 1] is given as:

Qmul =
n∏

i=1

Qi(xi)
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Since QStalling(L,N) and QWaiting(T0) are MOS values on a [1, 5] scale, we
use the equation

Qmul(T0, L,N) =
(QStalling(N,L) − 1) · (QWaiting(D) − 1)

4
+ 1 (4)

for the multiplicative model, where both MOS values QStalling and QWaiting are
previously reduced to values ≤ 1 and the result then transformed to comparable
MOS values ∈ [1, 5]. Although both models allow to introduce weighting factors
for the components, we treat them even, as there are no general concrete recom-
mendations for them. Please note that we are not evaluating video quality and
switches. But the approach can be extended to cover these aspects.

4 Results

As stated before, this work is an extension of a previous paper [15], where the
bandwidth wastage was in focus. There, a detailed analysis of the players’ play-
back behavior, e.g. quality switches (adaptations), stalling events and their dura-
tions and initial waiting times can be found. The focus of this work is on the
evaluation of the QoE, that was introduced in Sect. 3. Before we present the
results, we outline the methodology.

4.1 Methodology

In [15], we developed a setup that allows us to test HTML video players under
predefined bandwidth conditions, while monitoring their behavior. The band-
width is controlled by bandwidth traces, which reflect real-world scenarios (Bus,
car, ferry, metro, train, and tram). These were provided by [12] using a notebook
and a 3G modem for measuring download speed, and a GPS module for local-
ization. We used a test video with a length of about 10 min. In every bandwidth
scenario, the video was repeated between 19 and 133 times. Using the players’
API, we collected the following information, which then was used to determine
the quality of the playback of the video.

– Initial waiting time
– Number and duration of stalling events
– Resolution of the video and adaptation events
– Buffer level

From these Quality of Service (QoS) parameters, we calculated the MOS values
using the models presented in Sect. 3, considering the initial waiting time and
the number and duration of the stalling events. The results of the experiments
are evaluated in the following, thereby it is distinguished between the different
bandwidth scenarios and buffer configurations. A buffer configuration determines
the buffer size and the rebuffering goal. The buffer size is the maximum length
of the video, that can be stored in the buffer. The rebuffering goal defines the
minimum buffer level, which needs to be reached, before the player starts playing
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Fig. 1. Shaka player: QoE resulting from initial waiting time.

the video. The bandwidth scenario identifies the bandwidth trace, that was used
to limit the bandwidth between video player and -source. As all experiments are
run in real-time, we considered four different configurations:

– Buffer size 10 s, rebuffering goal of 2 s (Shaka players’ default configuration)
– Buffer size 90 s, rebuffering goal of 10 s
– Buffer size 180 s, rebuffering goal of 10 s
– Buffer size 180 s, rebuffering goal of 20 s

This way, we can compare the effect of different buffer sizes and rebuffering goals.
The boxplot in Fig. 1 shows the QoE resulting from the initial waiting time.

On the x-axis, the different buffer configurations can be found, grouped by the
bandwidth scenario. The first number denotes the rebuffering goal, the second,
larger number is the buffer size. The QoE, represented by the MOS, can be found
on the y-axis. As it can be expected, a smaller rebuffering goal leads to a shorter
initial waiting time, resulting in a better QoE.

But this lower buffer level, when the player starts to play makes the playback
more volatile regarding bandwidth changes, which can result in stalling, when
the buffer runs empty and the player has to stop. In Fig. 2 the QoE resulting from
stalling is plotted. Therefore, the number and their average duration during one
playback of the video is evaluated. Like in the figure before, on the horizontal
axis the different bandwidth scenarios and buffer configurations, while on the
vertical axis the MOS are given. It can clearly be seen that the smallest buffer
size has the worst QoE, the larger buffer leads to a significantly better rating.
For comparison, the case with unlimited bandwidth has no stalls and therefore
gets a perfect rating with a MOS of 5.

For an overall evaluation, where both the initial waiting and the stalling
are considered, these two models have to be combined. To do so, there are
different methods, which were presented in Sect. 3.2, namely the additive and
the multiplicative model. In Fig. 3 the MOS of the different scenarios and buffer
configurations ratings are combined using the additive model. The multiplicative
model is used in Fig. 4. For simplicity, we weigh initial waiting and stalling evenly.
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Fig. 2. Shaka player: QoE resulting from number of stalling events and their average
duration.

Fig. 3. Shaka player: combined QoE using the additive model.

In practice, this has to be adapted to the use case. If users tend to browse more,
skip large parts in the videos and abandon the playback, the initial waiting time
is more important, while when users select a video and watch it for a longer
time, the effect of stalling becomes more important.

In most bandwidth scenarios, the buffer configuration with a 10 s rebuffering
goal and a buffer size of 180 s has the best MOS rating. Only in the ‘bus’ scenario,
which has the highest average bandwidth, the configuration with the smallest
buffer size (10 s) has a slightly better rating, because in this specific scenario the
initial waiting time lowers the high rating of the stalling events, because in this
scenario only little stalling occurs.

This evaluation using the QoE also matches the results of previous evalu-
ations in [15], where the playback statistics were manually interpreted. This
shows, that the QoE model can be used in practice for evaluation of adaptive
video streaming. The automatic interpretation and reduction of complex statis-
tics to a single MOS value allows it to include QoE evaluation and monitoring
into practical scenarios.
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Fig. 4. Shaka player: combined QoE using the multiplicative model.

Fig. 5. Shaka player: This figure shows the QoE for the additive (x-axis) and multi-
plicative model (y-axis). In this evaluation, there is a linear relationship between both
models (mean squared error: 0.0043741). In general, the rating of the multiplicative
model is lower than the additive model.

In general, the multiplicative model tends to have lower ratings, and the
variance is higher compared to the additive model. But, the result is strongly
correlated, as can be seen in the scatter plot in Fig. 5, where the mean MOS
rating using both models are compared. The x-axis shows the average MOS
using the additive model, the y-axis the average MOS with the multiplicative
model. Each dot represents a combination of bandwidth scenario and buffer
configuration. As the dots lie on a straight line, this means there is a linear
relationship between both models.

We can conclude, that both models are equally suited for QoE evaluation,
although both models are conventionally different. In the practically relevant sce-
narios, the correlation between both models is linear. Since the weighing factors
to differentiate stalling and initial waiting considering real usage still have to be
determined, the different level of MOS ratings are negligible. Also, the rating of
stalling in videos longer than 60 s has to be investigated, to compare videos of
different length. With this linear model, long videos have a clear advantage over
short videos, because a single stalling in a short video is much worse than in a
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longer video. Additionally, if a video is longer, the buffer has a higher average
fill level [15], so that a longer bandwidth degradation can be compensated.

5 Conclusion and Outlook

In this paper, we used a QoE model to rate the playback of HAS video players.
We compared these to extensive manual interpretation. This shows, that the
QoE metric is suited in practice to evaluate and rate the video playback by its
Quality of Service (QoS), thus technical playback properties. So, this can replace
the extensive analysis of different QoS metrics, for example stallings, quality or
initial waiting. QoE is a holistic approach to rate the overall user experience.
Apart of typical QoS metrics, it could also include the users’ device type, as this
also has significant impact [9].

The testbed that was presented in this paper can be used to test video play-
ers, that can be embedded into websites and provide a JavaScript API. So, also
other video players can be tested, which may come with different adaptation
or buffering strategies. Future work could also consider the video quality and
switches. These methods can be extended to allow QoE management in real-
time and thus monitoring of customers of video streaming services or website
visitors. This can lead to a higher service quality by distributing load, adapting
the playback to the users, and improve adaptation algorithms and real-time mon-
itoring. Providers of video streaming platforms could include QoE monitoring
into existing monitoring solutions, for early detection of quality impairments.

An open issue is how to treat longer videos. The QoE model used in this
paper has been developed using videos with a duration of 30 s, and is it not
validated for longer videos. We normalized the results of the stalling to a video
of 30 s, but without limitation this method can only be used to compare videos
of about the same length. It favors longer videos compared to short video clips.
Investigating this poses a challenge as long-term user-studies are difficult to
implement, as longer experiments take much more time to be performed and are
too long for typical lab tests. Additionally, during these tests, there are much
more influencing factors than during shorter tests, which make it difficult to
distinguish them.
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Abstract. This tool paper presents iDSL, a language and a fully auto-
mated toolchain for evaluating the performance of service-oriented sys-
tems. In this work, we emphasize the use of a high-level domain spe-
cific language that is tailored to be understood by system designers
and domain experts, a transformation into an underlying process alge-
bra which contains latency distribution functions based on real measure-
ments for calibration, and the integration of analysis tools under the
hood. Altogether, the approach delivers intuitive, visual results.

1 Motivation

Embedded systems are computer systems that have a dedicated function within
a larger system, often with real-time constraints [19]. Hence, their performance is
vital. However, good performance is hard to achieve, because embedded systems
come with increasingly heterogeneous, parallel and distributed architectures and
may comprise many product lines and different configurations.

Here, we consider service-oriented systems [10–15], a subclass of embedded
systems, which: (i) provide services to their environment, accessible via so-called
requests; (ii) each service request leads to one response; (iii) service requests are
functionally isolated from each other; but, (iv) may affect each other’s perfor-
mance by competing for the same resource in the service-oriented system.

We propose a performance evaluation framework that can be used to eval-
uate the performance of service-oriented systems based on real measurements
for calibration (Contribution C1). We realize this framework via iDSL, which
comprises the domain-specific, high-level iDSL language (Contribution C2) to
model service-oriented systems and the iDSL toolchain (Contribution C3) to
evaluate the performance of these systems in a fully automatic fashion. This
approach separates the description of the user concerns from the solution app-
roach, in accordance with the Declarative Performance Engineering (DPE, [16])
approach.

c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 295–301, 2018.
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2 The High-Level iDSL Language

The iDSL language [10–15] has been developed to model service-oriented sys-
tems. It is tailored to be used and understood by system designers and experts
in the service-oriented systems domain, in line with C2. Figure 1 depicts the six
high-level concepts of the iDSL language, as follows. A service system (Fig. 1-C)
provides services to consumers in its environment. A consumer can send a request
for a specific service at a certain time, after which the system responds with some
delay. A service is implemented using a process (A), resources (B) and a map-
ping. A process decomposes high-level service requests into atomic tasks, which
are each assigned to a resource in the mapping. Resources are capable of per-
forming one atomic task at a time, in a certain amount of time. When multiple
services are invoked, their resource needs may overlap, causing contention and
making performance analysis harder. A scenario (D) consists of a number of
invoked service requests over time to observe specific performance behavior of
the system. A study (E) evaluates a selection of systematically chosen scenarios
to derive the system’s underlying characteristics. Finally, measures of interest
(F) define what performance metrics to obtain, given a system in a scenario.

Fig. 1. The meta model of the iDSL language

For illustration, Table 1 provides an example iDSL language instance of
a medical imaging system [14, Sect. 3], as follows. The process contains
a sequence of the processes “image pre processing”, “image processing” and
“image post processing”. In turn, process “image processing” decomposes into
“motion compensation”, “noise reduction” and “contrast”. Each atomic process
has a load, an amount of work. The resource contains a CPU with rate 2, i.e.,
it can process 2 loads per time unit, and a GPU with rate 5. The system com-
bines the process and resource, and has a mapping to connect atomic tasks to
resources. The scenario encompasses two streams of requests for the only service.
Both streams have fixed inter-arrival times of 400.clearpage One stream has an
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Table 1. An example service-oriented system, modeled using the iDSL language



298 F. van den Berg et al.

initial delay of 0. The initial delay of the other is determined by an offset param-
eter, which is a variable that is defined in the so-called design space of the study.
Finally, the measure contains two measures of interest referring to performance
evaluation.

3 The Integrated iDSL Toolchain

In this section, we discuss the iDSL toolchain which ranges from creating an
iDSL language instance to generating performance artifacts, in line with C3.

Creating the performance model involves the conjoint modeling by a mod-
eler and analyzer of a case study in the iDSL language. A modeler determines
how the system behaves and generates a system model, i.e., a process, resource
and system (cf. Fig. 1-A, B and C). The analyzer determines system usage and
creates a study, i.e., scenario, study and measure (cf. Fig. 1-D, E and F).

During the modeling process, the Eclipse Integrated Development Environ-
ment [2] is used to support the user. This environment enables, among others,
syntax highlighting, code completion, and “input validation”, e.g., checking the
code for invalid references, unused objects and ambiguous definitions. Also warn-
ings and information boxes are displayed, e.g., when the design space is too large.

Under the hood, the iDSL grammar has been defined using the Xtext frame-
work [18]. The toolchain functionality is programmed in the Xtend language [17].

In the following, we briefly describe the four main activities that constitute
the performance analysis toolchain of iDSL.

Process Measurements. Measurements are performed on a real system and
injected the into the iDSL model for calibration [15, Sect. 3]. The text-processing
tool AWK [1] is used to facilitate this.

1. Perform measurements on a real system [15, Sect. 3.1].
2. Create Gantts: group measurements into execution times [15, Sect. 3.2].
3. Generate Empirical Distribution Functions (EDFs) [15, Sect. 3.3].
4. Inject the EDFs of step 3 into the IDSL model via a model transformation:

represent EDFs as probabilistic alternatives (PALT, [4]) constructs, in line
with C1. For illustration, we have drawn 100 numbers from a normal distri-
bution (μ = 100, σ = 10) [7] representing measurements. Table 1g then shows
the resulting EDF in iDSL. For instance, “2 atom load 91” means that the
100 drawn numbers contain 2 times value 91.

Model Simplification. iDSL determines whether the model can practically be
evaluated [12, Sect. 4.3]. If not, it is simplified via a transformation, as follows.

1. Cluster similar measurements in each generated EDF [12, Sect. 4.1].
2. Increase the time unit of all time occurrences in the model [12, Sect. 4.2].
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Model evaluation is delegated to Modest [4].

1. Create Modest models: transform iDSL into Modest [11, Sect. 4.3]
2. Evaluate the Modest models for performance using the Modest toolset.

(a) Discrete-event simulation: yields average latencies [14, Sect. 4.2]:
(b) Timed Automata (TA)-model checking: a binary search for absolute

bounds [14, Sect. 4.2].
(c) Probabilistic Timed Automata (PTA)-model checking: an iterative algo-

rithm in which cumulative latency probabilities are computed one at a
time [13, Sect. 4].

(d) Efficient PTA-model checking: a carefully constructed combination of the
aforementioned techniques [12, Sect. 6].

3. Parse results: parse the Modest results into high-level iDSL results.

(a) A latency breakdown chart
(offset=0)

(b) Multi-design latency
CDF

(c) A latency bar graph
(offset=0)

(d) The lower (in purple) and upper bound CDF (in red), the
simulation avg. (in blue), and α = 0.95 CI (in black)

Fig. 2. Four ways of representing latencies, generated from the iDSL code (Color figure
online)
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Create visualizations turns the parsed results into intuitive graphs.

1. Latency breakdown chart (see Fig. 2a): displays the structure of a service,
i.e., the underlying processes and resources, and its dynamics, i.e., process
latencies and resource utilizations.

2. Multi-design latency Cumulative Distribution Function (CDF, see Fig. 2b):
provides latency CDFs for multiple designs in one graph to easily determine
the effect of design decisions.

3. Latency bar chart (see Fig. 2c): shows the subsequent latency times of a ser-
vice which provides insight in jitter, i.e., the variation of latencies.

4. Latency CDF (see Fig. 2d): provides a lower (purple) and upper bound (red)
CDFs whose difference is the result of how nondeterminism is resolved.

Figure 2a–c are based on discrete-event simulations, and Fig. 2d on PTA-
model checking. Figure 2a is made by GraphViz [3], the others by GNUplot [6].

4 Background

iDSL is different from tools such as the Modest toolset [4], Storm [8], UPPAAL
[9] and PRISM [5]. Where the latter deliver relatively generic, widely-applicable
languages, instead, iDSL provides a domain-specific language (C2) which allows
measurements-based calibration (C1), and a fully automated toolchain (C3).
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Abstract. Service level agreements (SLAs) specify commitments
between providers and users of services. Concerning quantitative aspects
it is common to guarantee response times under a maximal load. Often
simulation models are used to validate those guarantees. The SLA cal-
culus offers an efficient technique to establish and validate quantitative
aspects of service level agreements. Based on bounds for the load and
response times of single services, bounds for the response times of com-
posed services can be calculated. Additionally, the SLA calculus deter-
mines bounds for the service capacities which the provider needs in order
to fulfill the service level agreements.

This paper describes the SLA Tool which supports the calculation of
such bounds using results from min/+-algebra. The tool consists of two
parts: Octave functions, that implement the operators of the SLA calcu-
lus, and a graphical user interface (GUI) which facilitates their use also
for users not familiar with the theory. In the following we concentrate on
the user interface.

1 Introduction

Service-oriented architectures (SOAs) are normally described with a user-
oriented and provider-oriented perspective in mind. With respect to quantitative
measures users ask for acceptable response times, which can only be guaranteed
by a provider, if the number and the size of arriving jobs is limited. Correspond-
ing specifications are typically part of Service Level Agreements (SLAs) and can
be described by bounds, e.g. for loads, service capacities, and response times.
Violation of these bounds is often only allowed in a few exceptional cases. For
validation it is common to simulate an adequate model of the system which is
usually a complex and time-consuming task requiring detailed input data.

An analytical approach for a fast validation which is based on the network
calculus [3], is provided by the SLA calculus [2,4,8,10]. The SLA calculus sup-
ports the calculation of response time bounds for composed services based on
bounds for delays of the individual components and thus allows for the deter-
mination of SLAs when orchestrating services. In contrast to other analytical
approaches used for SOA analysis as e.g. queueing network analysis [5,6], the
SLA calculus does not determine mean values but sharp bounds which is often
more interesting in a SOA context. Furthermore, other analysis techniques often
require descriptions of arrival and service characteristics as input and derive

c© Springer International Publishing AG, part of Springer Nature 2018
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response times as output. In contrast, providers and orchestrators of SOAs are
generally more interested in the calculation of necessary service capacities given
customer related figures.

The SLA calculus aims at answering this kind of analysis problems. A draw-
back of the calculus is that the mathematical basis is far from being intuitive
for software engineers, so that appropriate tool support is required. SLA Tool
consists of two main parts: A set of Octave functions and a GUI. The Octave
functions implement the operators of the SLA calculus and are based on oper-
ators from min/+-algebra. The Octave functions use (sequences of) piecewise
linear functions as input and output piecewise linear functions as results.

In the following we sketch the GUI of the SLA Tool [1] which hides math-
ematical details of the approach for people not familiar with the theory and
makes the approach operational.

2 The SLA Tool

Figure 1 shows the GUI of the SLA Tool which offers features to define services
and to connect them resulting in a workflow specifying an orchestrated service.

Fig. 1. Hierarchical model description

As common, also SLA Tool offers connectors to describe sequential and par-
allel compositions of services. Additionally, hierarchical model descriptions are
supported by refining service descriptions. A composition of services with a sin-
gle entry and exit point can be defined as a sub-service as e.g. service supplier in
Fig. 1. Overall a composed service is described by an acyclic graph. For analysis,
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bounds for arrivals and delay/response times need to be specified. Any bound
is a non-decreasing function B which in SLA Tool is specified by a sequence of
piecewise linear functions of the form

{[x1, y1, s1], . . . , [xi, yi, si], . . . , [xn, yn, sn]}, xi < xi+1

where B(xi) = yi. si specifies the slope of function B in the interval [xi, xi+1]. For
example, {[0, 1, 3], [1, 4, 2]} specifies a continuous function B where B(x) = 3x+1
for 0 ≤ x < 1 and B(x) = 2(x − 1) + 4 for x ≥ 1. Function B might be
discontinuous at xi which is represented by a vertical line (cf. Fig. 2).

SLA Tool allows the specification of lower and upper bounds. In the following
we will restrict our description mostly to upper bounds.

2.1 Input Specification of Bounds

In the world view of SLA Tool arrivals are service calls which deliver a portion
of load to the service. The size of an arriving service call is measured in some
application specific unit like e.g. the number of transactions or the number of
bytes to be stored. These arriving load units are limited by arrival bounds.

An upper arrival bound BA specifies that in an interval of length x ∈ IR
time units at most BA(x) load units will arrive in order to be compliant with
the SLA specification. The service provider then guarantees an upper response
time or delay bound BD specifying that service calls of size x will be processed
after at most BD(x) time units. Given upper bounds for arrivals and response
times SLA Tool automatically calculates a corresponding lower service bound
BS which specifies that in an interval of x time units the service must be able
to handle at least BS(x) load units.

Fig. 2. Bounds for arrival, delay and service
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Figure 2 shows the input specification of a service of the workflow shown in
Fig. 1. Vastag [9,10] presents an “onion bucket algorithm” for the computation
of arrival and response time bounds from traces, so that the input of the tool
can be determined from measurements.

2.2 Analysis Results

At the push of a button SLA Tool analyses the complete workflow by calling
Octave functions which implement the operators of the SLA calculus [2,8,10].
The result is shown in Fig. 3.

Fig. 3. Analysis results

The delay or response time bound respectively determines the SLA assertion
the provider of the orchestrated service is able to guarantee to customers. The
upper bound BD of the delay curve shown in Fig. 3 states that customer calls of
size x will be served after at most BD(x) time units. Similarly, the lower service
bound shown in the right part of Fig. 3 specifies that the composed service has
at least a capacity of BS load units, or precisely that in an interval of x time
units at least BS(x) load units can be served.
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3 Conclusions

We presented the SLA Tool emphasizing its GUI and the necessary user input.
The tool helps to obtain sharp bounds for essential performance figures of com-
posed services and in this way supports the specification of SLAs for providers of
complex services. In the future we plan to support the execution and evaluation
of series of experiments to support optimization (cf. [1]).

SLA Tool is free software, licensed under the Apache License and can be
obtained from [7].
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Abstract. Power distribution networks are often controlled using the
communication protocol IEC 60870-5-104 (IEC-104). While a specifica-
tion exists, not every device implementing this protocol, actually follows
this specification. We present mealy104, a tool that infers finite-state
automata from IEC-104 implementations and use it on a real device
implementing IEC-104, comparing it to the protocol standard. We use
the tool to show that implementations do deviate from the specification.

Keywords: ICS · Power grid · SCADA · Mealy machine · IEC-104

1 Introduction

Implementations of communication protocols should closely follow their speci-
fication, as differences or ambiguities might lead to security issues, as recently
shown by the vulnerability that was found in the popular Wi-Fi protocol WPA2
[7]. Similar problems might occur with any protocol, if the specification contains
ambiguity or if implementations do not follow the standard. Vulnerabilities in
industrial control protocols like IEC-104 pose a serious threat to critical infras-
tructures, such as the power distribution grid. The implementations of industrial
control protocols are often not checked against protocol specifications.

To verify whether an implementation follows a specification, both can be
represented as finite state machine and then compared. The automaton repre-
senting the specification should be part of the standard. The other automaton
can be learned from the implementation, e.g., using the tool presented in this
paper. It implements a variant of Angluin’s L� algorithm [1], which produces
Mealy machines that can represent more complex behaviour of input/output
systems [5]. This algorithm has been applied before, e.g., for determining the
correct operation of the ABN Amro e.dentifier2 [2], or implementations of the
Transport Layer Security protocol [3]. To the best of our knowledge, we present
the first tool to check communication protocols in SCADA networks that is made
available under the Gnu General Public License. The source code of this tool
can be found on GitHub1.
1 https://github.com/mkerkers/mealy104.

c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 307–311, 2018.
https://doi.org/10.1007/978-3-319-74947-1_23
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We propose a tool developed for the automated generation of Mealy machines
for implementations of IEC-104 [4], which is crucial for the communication
between control and field stations in power distribution in Europe. The tool
we developed generates a formal representation from an IEC-104 implementa-
tion. We tested three IEC-104 simulators and two real-life devices with our tool
[4, Chap. 5]. While none of the simulators implemented the protocol according
to its specification, the investigated hardware, i.e., Sprecher Sprecon-E-C-92 and
Datawatt D05-Lite, only partially matched the specification.

This paper describes the most relevant information about the IEC-104 pro-
tocol in Sect. 2 and the tool setup and most significant components in Sect. 3.
Finally, Sect. 4 presents a case study on a real-life IEC-104 implementation.

2 SCADA Protocol IEC-104

IEC-104 [6] describes two different layers: the Application Protocol Control Infor-
mation (APCI) layer and the Application Service Data Unit (ASDU) layer. The
first runs on top of the TCP layer and has three message formats: (i) unnumbered
control functions (U-format), (ii) numbered Supervisory functions (S-format),
and (iii) the Information transfer format (I-format). U-format messages either
(de)activate a connection using STARTDT (start data transfer) and STOPDT
(stop data transfer) or test whether a connection is still active using TESTFR
(test frame). I-format messages transfer data. They use TypeIDs to define what
kind of message is sent, using, e.g., General Interrogation (C IC NA 1) or Single
Command (C SC NA 1) numbers that range from 0 to 255. S-format messages
acknowledge previously received I-format messages.

3 Description of mealy104 : Components and Set-up

We first describe the main components of the tool before discussing its general
setup. As shown in Fig. 1, the learner builds the automaton based on input
queries from the alphabet that are translated by the mapper to actual IEC-104
messages. The teacher, i.e., the queried device, answers these request. Once an
automaton is constructed, the checker tests it against the protocol specification.

The Alphabet implements all IEC-104 message format types: three U-
format types, the S-format type, and one for each I-format category. The com-
plete alphabet is available in [4, Appendix A]. The Learner is built using the
framework LearnLib2. For each run, a suitable sub-alphabet is chosen to create
automata implementing the L�

M algorithm [5]. The Mapper translates between
abstract (human-readable) messages on the learner side and actual messages
on the teacher side. For every abstract message in the alphabet, the mapper
contains an implementation of a concrete message, structured according to the
format as defined in the IEC-104 specification. To implement these concrete
messages, OpenMUC j608703 is used.
2 http://learnlib.de.
3 https://www.openmuc.org/iec-60870-5-104/.

http://learnlib.de
https://www.openmuc.org/iec-60870-5-104/
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1 Learn / Refine Hypothesis 12 Abstract Equivalence Query
2, 3 Abstract Membership Query 13, 14 Concrete Equivalence Query
4, 5 Concrete Membership Query 15, 16 Concrete Equivalence Answer
6, 7 Concrete Membership Answer 17 Abstract Equivalence Answer
8, 9 Abstract Membership Answer 18 Confirmation / Counterexample

sisehtopyHlaniF91sisehtopyH11,01

Fig. 1. Block diagram of the Mealy104 finite-state automata learner

The Teacher is implemented as master using OpenMUC j60870 such that
all fields in APDUs are adjustable, and sending and receiving of STOPDT and
TESTFR messages is included. The Checker tests if the automaton of the
implementation matches the automaton deduced from the standard [6], as shown
in Fig. 2; it has been built using AutomataLib4, and traverses both automata
using the same inputs, and comparing the outputs.

In more detail, the learner consists of: (i) the experiment, (ii) the mem-
bership oracle and cache, and (iii) the equivalence oracle. The experiment uses
the membership oracle (Step 1 in Fig. 1) to learn a hypothesis, structured as
an Observation Table. During learning, the membership and equivalence oracles
send abstract queries to the mapper (Steps 2, 3 and 12), from which they receive
abstract answers (Steps 8, 9 and 17). A cache between the membership oracle
and the mapper stores each query and its corresponding answer. The mapper
translates each abstract query it receives (Steps 3 and 12), into a concrete IEC-
104 message which is forwarded to the IEC-104 Master (Steps 4 and 13), and
from there to the IEC-104 Client (Subject Under Test). The SUT replies with a
concrete answer (Steps 15 and 16), which the Mapper translates into an abstract
answer and sends to the oracles (Steps 8 and 17). The membership oracle con-
tinues sending queries until the hypothesis is closed and consistent. Then, this
learned hypothesis is returned (Step 10) and passed to the equivalence oracle
(Step 11), which attempts to find a counterexample (Step 18). A counterexam-
ple is added to the Observation Table and the learning is restarted. Without a
counterexample, the final hypothesis is transformed into a Mealy machine and
passed to the checker (Step 19).

The equivalence oracle first checks for inconsistencies with the cache, then
it sends random queries to the mapper, checking if the responses match the
hypothesis. The tool is configured to send 1000 random queries to the SUT,
and it resets the SUT and the hypothesis to the initial starting position with

4 https://github.com/LearnLib/automatalib.

https://github.com/LearnLib/automatalib


310 M. Kerkers et al.

probability 1%. These settings provide a traversal that is both extensive and time
bound. If a random query contradicts the hypothesis, a counterexample has been
found. If none is found after 1000 random queries, the hypothesis is assumed to
be confirmed. To compare the hypothesis to the standard specification, the tool
contains the standard automaton (cf. Fig. 2) [4, Sect. 3.5].

4 Case Study and Outlook

We tested several simulators of the IEC-104 protocol and two real devices used
in the Dutch power distribution system [4, Chap. 5]. The Axon Test Simulator
and the Siemens IEC-Test Simulator generated only one state, where all inputs
were accepted; the Mitra Software IEC 870-5-104 Simulator generated two states:
one required to initiate the connection by sending U[STARTDT] message, and
then it accepted any input. Furthermore, the Sprecher Sprecon-E-C-92 did not
match the specification. For example in the UNCONFIRMED STOPPED state,
according to the specification the connection should be terminated upon receiv-
ing an I-format message. Instead, the device keeps accepting incoming I-format
messages.

In the following, we present one result of a DataWatt D05-Lite device used
as an IEC-104 RTU in a field station. We run the tool for different subsets
of the alphabet. For most of the cases, the obtained Mealy machine matches
the one provided by the standard. However, one automaton was learned that
does not comply to the standard when sending the I-format message for File
Select. Figure 2 shows the automaton from the standard, whereas Fig. 3 shows the
learned automaton. We used the same name and color for corresponding states in
both automata. While they largely overlap, an additional state, indicated by ‘X’
(colored orange) can be observed in Fig. 3. As the File Select message does not

Fig. 2. Automaton derived from the IEC-104 standard for any I-frame (Color figure
online)
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Fig. 3. Automaton learned using alphabet containing File Select I-frame. (Color figure
online)

contain a valid address, the RTU is stricter than the standard. It terminates the
connection on the next received I-format message, while the standard expects
a negative confirmation I-format message. Hence, the behavior specified by the
standard is not fully implemented by the investigated device.

Outlook. This tool can be used by vendors or users of devices implementing the
IEC-104 protocol. The variety in the implementations of the IEC-104 protocol
is alarming for both parties. The deviation in the presented implementation was
found in a rarely used File Select function. However, such rare scenarios are often
exploited [7]. Note that the presented tool can be adjusted to other protocols by
adapting its components.
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Abstract. The problem of computing the transient probability distri-
bution of countably infinite multidimensional continuous-time Markov
chains (CTMCs) arising in systems of stochastic chemical kinetics is
addressed by a software tool. Starting from an initial probability distri-
bution, time evolution of the probability distribution associated with the
CTMC is described by a system of linear first-order ordinary differential
equations, known as the chemical master equation (CME). The solver
for the CME uses the time stepping implicit backward differentiation
formulae (BDF). Solution vectors in BDF can be stored compactly dur-
ing transient analysis in one of the Hierarchical Tucker Decomposition,
Quantized Tensor Train, or Transposed Quantized Tensor Train formats.
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1 The Problem

Letting the initial probability distribution vector of the infinitesimal generator
matrix Q underlying a multidimensional continuous-time Markov chain (CTMC)
be denoted by π0, the transient probability distribution vector πt ∈ R

1×|R|
�0 of

Q at time t ∈ R�0 satisfies [12]

dπt

dt
= πtQ, πte = 1. (1)

Here, R is the reachable state space of the CTMC and e is a vector of 1’s.
When the CTMC arises in the area of systems of stochastic chemical kinetics,

(1) is referred to as the chemical master equation (CME) [4]. In this case, there
are a finite number of dimensions and transitions, but R is almost always count-
ably infinite. Therefore, a CTMC {S(t), t � 0} having H dimensions such that
S(t) = (S1(t), . . . , SH(t)) and Pr(S(t) = i) = Pr(S1(t) = i1, . . . , SH(t) = iH)

c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 312–316, 2018.
https://doi.org/10.1007/978-3-319-74947-1_24
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can be used with the state vector i = (i1, . . . , iH). The state space of dimension
h is given by S(h) = Z�0 for h = 1, . . . , H, and when there are no unreachable
states, we have R =

ŚH
h=1 S(h) and K transition classes in which transition class

k is represented by the pair (αk(i),v(k)) for k = 1, . . . ,K. Here, αk(i) ∈ R�0 is
the transition rate function specifying the transition rate from state i ∈ R to
state (i + v(k)) ∈ R and v(k) ∈ Z

1×H is the state change vector specifying the
successor state of the transition, with v

(k)
h denoting the change in state variable

ih ∈ S(h) due to a class k transition [3]. That R is equal to the product state
space is a property of the models under consideration; but, this can be relaxed
with the help of a well known hierarchical state space structuring approach [1].

A Kronecker representation for models in this area, which has separable state
dependent transition rate functions in the form

αk(i) = φk

H∏

h=1

α
(h)
k (ih) ,

can be obtained by letting the transition matrix of dimension h with state space
S(h) for h = 1, . . . , H and transition class k = 1, . . . ,K be denoted by Q

(h)
k ∈

R
|S(h)|×|S(h)|
�0 and given entrywise as

Q
(h)
k (ih, jh) =

{
α
(h)
k (ih) if jh = ih + v

(k)
h

0 otherwise
for ih, jh ∈ S(h) .

Then

Q = QO + QD, QO =
K∑

k=1

φk

H⊗

h=1

Q
(h)
k , QD = −

K∑

k=1

φk

H⊗

h=1

diag(Q(h)
k e).

Next, we introduce a tool to solve the initial value problem associated with
the system of linear first-order ordinary differential equations (ODEs) in (1) [12].

2 A Software Tool

We present a software tool [2] for the transient analysis of countably infinite
multidimensional CTMCs introduced in the previous section in a sequential set-
ting. Details regarding the tool may be obtained from its user manual. Time
is discretized into smaller time steps and the solver for the CME [10] uses the
implicit backward differentiation formulae (BDF). BDF methods are a class of
implicit multistep methods to solve stiff ODEs [12]. Stiffness generally manifests
itself when reaction rates occur at different time scales, and this is the case for
many realistic systems. The o-step BDF method, denoted BDFo, keeps approx-
imations of solutions at o previous time steps and computes the solution at the
current time step by solving a linear system. BDFo methods have local trunca-
tion error proportional to the oth power of the step size, and therefore, are said
to be of order o. The particular solver initializes the first o backward differences
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with the embedded Runge–Kutta method due to Fehlberg, written RKFk−1(k),
which is an order k method without the error estimate [12].

At each time step, n, the reachable state space, R, is truncated by using a
well defined aggregation operator on the prediction vector of BDFo [11] to obtain
Rn [10]. Solution vectors can be stored compactly during transient analysis using
one of the Hierarchical Tucker Decomposition (HTD) [5], Quantized Tensor Train
(QTT) [8], or Transposed Quantized Tensor Train (QT3) [7] formats. Compact
vectors in HTD format can work with a truncated generator matrix represented
as a sum of Kronecker products of small molecule matrices, whereas those in
QTT/QT3 format can work with a low-rank approximation of the truncated
generator matrix in the same format [10].

The solution of the linear system at each time step in BDF is performed by the
Jacobi iteration [12] using the Newton-Schulz method [9] to compute reciprocals
of diagonal elements of the coefficient matrix for HTD and the density matrix
renormalization group (DMRG) method for QTT/QT3 [7]. It is possible to use
fixed and adaptive rank control strategies with compact vectors in HTD format.
There are HTDA, HTDM, and HTDF variants of the BDFo solver in which
(adaptive, adaptive), (fixed, adaptive), and (fixed, fixed) rank bounds are used
in (Jacobi, Newton-Schulz) methods [10].

Next we show examples of results that can be obtained with the tool.

3 An Example

We consider a cascade model [6] that has five molecules each corresponding
to a different dimension with the transition classes in Table 1. Here, H = 5,
i = (i1, i2, i3, i4, i5), K = 10, a, b, c, μ ∈ R>0, and eh is the hth principal axis
vector. We let a = 0.7, b = 1, c = 5, and μ = 0.07 as in [6].

The cascade model is analyzed using BDF5 with an accuracy tolerance of
10−9 and the indicated compact vector formats starting from the initial distri-
bution π0(10, 10, 10, 10, 10) = 1 for final time values t ∈ {1, . . . , 10}. A maximum
run time of 1,000 seconds is imposed on the experiments performed on an Intel

Table 1. Transition classes of the cascade model

k φk α
(1)
k (i1) α

(2)
k (i2) α

(3)
k (i3) α

(4)
k (i4) α

(5)
k (i5) v (k)

1 a 1 1 1 1 1 eT
1

2 μ i1 1 1 1 1 −eT
1

3 b i1
bi1+c

1 1 1 1 eT
2

4 μ 1 i2 1 1 1 −eT
2

5 b 1 i2
bi2+c

1 1 1 eT
3

6 μ 1 1 i3 1 1 −eT
3

7 b 1 1 i3
bi3+c

1 1 eT
4

8 μ 1 1 1 i4 1 −eT
4

9 b 1 1 1 i4
bi4+c

1 eT
5

10 μ 1 1 1 1 i5 −eT
5
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Fig. 1. Various measures associated with BDF5 for the cascade model

Core i7 2.6 GHz processor with 16 Gigabytes main memory under Linux. We let
pn denote the transient probability distribution vector computed at time step n,
max(|Rn|) denote the maximum truncated state space size, max(r(pn)) denote
the maximum rank associated with compact solution vectors, Ne denote the
total number of time steps taken up to t (if t is reached within 1,000 seconds),
and

∑Ne

n=1 |pne − pn−1e| express the total state space truncation error, which
has been shown to be in the same order as the relative error in the solution.
We do not report the results with QT3 since they did not fare well. The results
in Fig. 1 indicate that relative errors of at most 10−7 and 10−5 are obtained
respectively with QTT and adaptive rank controlled HTD formats within 1,000
seconds in all problems. Furthermore, memory and time requirements of HTDA
are at least an order of magnitude better than those with QTT.

We depict in Fig. 2 the mean number of molecules when BDF5 with HTDA
is used to analyze the cascade model starting from the initial distribution
π0(0, 0, 0, 0, 0) = 1. We remark that all results are obtained in at most 3,783
seconds with relative errors in [5×10−7, 10−3] using a maximum truncated state
space size of 58, 786, 560 and a maximum of 2, 301, 678 nonzeros.
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Fig. 2. Mean values with BDF5 using HTDA for the cascade model
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Abstract. This paper introduces a new tool to design digital circuits
with Petri nets. It describes the functionality of the tool Logical PetriNet
(LPN). It discusses the modeling of Digital Circuit Petri Nets (DCPN).
In addition, the possibilities of layout optimization of the DCPN are
shown and export opportunities are described. The implemented analysis
methods are described in a separate section.

1 Introduction

Nowadays, associated with the continuous increase of the complexity of digital
circuits, new approaches and tools supporting their design must be introduced.
In this paper we offer a tool to generate digital circuits from Petri net descrip-
tions. These behavioral descriptions of digital circuits with Petri nets can be
transformed into a hardware description language like VHDL. To reach this goal
we extend the standard Petri nets with additional elements.

The motivation is to design a digital system using a graphical description.
Petri nets provide many methods to analyze the modeled nets and which can be
used to create safety relevant circuits. The modeled Petri nets can be transformed
into combinatorial and sequential circuits. Sequential circuits will be split into
synchronous and asynchronous circuits. The resulting circuit will be determined
through the analysis in the transformation process. The modeled DCPN will be
transformed entirely by using the reachability graphs and other strategies [1].

First, the Petri net model of Logical PetriNet is presented. The regular places
are extended with two new types: To represent digital circuits with Petri nets,
inputs and outputs must be defined, to get access to the circuit from outside.
These are, firstly, the input places, which are represented as black circles with
a green filling. On the other hand, these are the output places presented also
as black circles, but with a yellow filling. DCPN uses immediate and timed
transitions, where the timed transitions are deterministic. This transition type
is implemented, because we want to describe switching times in digital circuits
and to use these transitions to create synchronous circuits.

For readability a division of Petri nets into subnets is desirable to obtain
hierarchical modeling. Regarding a connection of multiple items within a net,
c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 317–321, 2018.
https://doi.org/10.1007/978-3-319-74947-1_25
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it is a necessary that subnets provide multiple input and output arcs. For our
approach, the existing subnet types are not sufficient because multiple inputs
and outputs to and from the subnet are needed, so two separate types have been
introduced. The subnets are divided in subplaces and subtransitions. In order to
prepare the components of a subnet to be available to the outside a new element
is introduced. It is called netconnector. For each input and output arc from or
to the subnet a netconnector within the subnet is created. This element is given
the name of the element, from which the arc leads into or out of the subnet.

Subplaces are used to represent a subnet whose arcs lead from or to tran-
sitions and subtransitions. Subplaces replace places in case that this part of
the net should be more detailed. The symbol in the Petri net corresponds to a
double-lined circle. As a further kind of subnet, Petri nets have been expanded
with subtransitions. The presentation is a double-lined rectangle. Subtransitions
have an additional property in DCPN. They can be used to save Petri nets or
parts and to reuse them in newly modeled nets. For this purpose, we created a
library to add created nets in a simple way to new nets. For a detailed description
of the new Petri net type, the interested reader is referred to [1] and [2].

2 Implementation

The tool Logical PetriNet (LPN) is written in Java. The graphical user interface
(GUI) shown in Fig. 1 is based on Java Swing components. The GUI and the
functionality are separated, so the GUI can be adapted to a wide range of target
domains, like other Petri net definitions.

The Digital Circuit Petri Net (DCPN) descriptions are saved in PNML [3]
files. PNML uses XML to describe the elements of a Petri net. The generation or
editing of Petri nets can be done easily by scripts or manually besides using the
GUI. Logical PetriNet has a fully defined PNML schema. This allows consistency
checks to loaded DCPN and the user can be pointed to wrongly modeled nets.

Figure 1 shows the graphical user interface from Logical PetriNet. The tool-
bar is placed on the right side and can be filled individually with the required
elements. In the default setting all elements for modeling a DCPN are deposited.
The Petri net elements placement can be optimized by using several algorithms
from the KIELER framework [4], which we have modified to get better results.

At the bottom of the GUI a panel is located which displays notifications.
These are used to display errors in modeling or when a loaded file does not
exist. The menu is integrated as a ribbon and can be minimized if more space
is required for modeling purposes.

In the left panel of the tool, an additional area can be displayed, which
contains pre-assembled Petri nets. They can be added to the Petri net design in
work when needed. Here also newly created nets can be saved in order to use
them again in other DCPNs. It serves as a library for further designs.

The main area of the GUI includes the area for modeling a DCPN. Here, the
area is divided into the current area for modeling on the left side. Elements can
be placed, moved or deleted and can be connected with each other using arcs.
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Fig. 1. GUI of the tool “Logical PetriNet” to create, simulate and analyze DCPNs

Newly modeled arcs will be checked regarding their validity, since the same types
of items must not be connected. Furthermore, it is not allowed to connect places
with subplaces or transitions with subtransitions.Aminimap is placed in the upper
right which can be used to navigate quickly and easily through the DCPN. Below
the minimap a tree view with the elements of the current DCPN is displayed. The
subdivision is done by element type. There is also a search field for locating ele-
ments faster in large DCPN. A zoom functionality and a minimap is implemented
to deal comfortably with larger DCPN.

The DCPN can be exported as vector graphic (SVG), portable network
graphic (PNG) or JPEG. Furthermore, an export to Latex is also implemented
by using the package Tikz. In addition, reachability graphs and the results of the
simulation can be exported. For this purpose all of the aforementioned image
formats are available. The markings of the reachability graph and the results of
the simulation can be further exported to Latex and comma-separated values
(CSV).

3 Functionality

This tool can be used to design DCPN in graphical description. A zoom function-
ality and a minimap is implemented to deal comfortably with larger DCPN. In
addition, the DCPN can be automatically rearranged graphically wherein input
places are located on the left and output places are located on the right.

As a further component, the so-called token game is implemented to test the
behavior of a modeled DCPN. This simulates the behavior of the net by firing
enabled transitions. The token game can be started from the current marking
given by the user. This game can be executed manually or automatically. In man-
ual simulation, all enabled transitions flash and can be double clicked. The new
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marking will be calculated and then the newly enabled transitions will be identi-
fied. Then, the user can fire one of the next enabled transitions. The automated
token game is separated into full and partial automation. Partial automation
fires transitions automatically until more than one transition is simultaneously
enabled. Then the user has to select which transition fires. In fully automatic
mode the firing of the transitions is carried out automatically. When multiple
transitions are enabled, a firing transition is chosen with the built-in random
function from Java. The probability of every single firing transition depends on
the random function. The random function can be changed simply by editing
one line in the source code. The token game will be used for testing the modeled
DCPN by the designer. In the transformation process, a detailed analysis takes
place if the net has more than one active transition. This case will be dealt with
in the general structure analysis step (see below).

Furthermore, a reachability graph for the current DCPN can be determined.
This graph is the main ingredient for the transformation. The graph describes
all reachable markings from an initial marking. This graph will be created by
firing all enabled transitions individually. Then, the new marking is put in the
reachability graph, if this marking does not yet exist in the graph. An arc between
the old and the new marking will be created. This routine is running until
all enabled transitions from every marking in the graph are fired. The created
reachability graph can now be used for further analysis or it can be used for the
transformation into a digital circuit.

The transformation process from a DCPN to a digital circuit can take place
in two different ways. First, the transformation of the entire DCPN can be per-
formed by transforming each subnet of the DCPN by starting with the innermost
subnets. This is because the above lying nets in the hierarchy use the circuits of
the internal nets. On the other hand, a breakup of the hierarchy can be performed
to produce an overall circuit from the entire DCPN. To resolve the subnets, they
will be reintegrated into the main net.

The modeling of the proposed system takes place as a DCPN. Here, the
properties from [1] are used. This is followed by the verification of the model
to detect erroneous or contradictory characteristics of the DCPN and to iden-
tify these faults in the net. Further strategies will be used to identify potential
improvements in the net. Elements without an impact to the behavior of the
circuit will be removed in this optimization step. Furthermore, this step also
applies to the detection and grouping of redundant elements.

The next step is a general structural analysis, in which the breakdown by cir-
cuit type must be carried out. These types are combinational logic and sequential
logic. Faulty modeling can also be detected in this step, because a comprehensive
analysis of the system takes place. An incorrect modeled net can be a net with
two conflicting transitions for example if the conflict leads to different states in
the DCPN. This step is the central step in this chain, because the transformation
starts and will be finished within the next step. The analysis consists of strate-
gies to create reachability graphs, input driven reachability graphs [1], finding
cycles in the net and the graphs, checking for termination and defined states.
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More detailed information to the strategies can be found in [1]. The transforma-
tion of DCPN to the hardware description VHDL follows in which the interface
of the complete net is created. The interface from a DCPN is represented by all
input and output places. They will be used as inputs and outputs of the result-
ing circuit. Furthermore, the description of the behavior or structure is created
depending on the detected circuit type. This will be followed by the adaptation
of the target architecture. Examples for the resulting digital circuits are shown
in [1]. After the transformation is completed, a validation of the circuit can be
started. It will be achieved by a comparison of the simulation results between
the DCPN model and the resulting digital circuit. The simulation of the DCPN
is carried out by an event-based simulation because every firing transition is a
single event.

4 Conclusion

This paper presented Logical PetriNet, a Digital Circuit Petri Net modeling
and simulation tool. Places, transitions, subplaces, and subtransitions can be
modeled with LPN. These components can be linked with arcs to create working
systems.

Our current research is aimed at extending the tool to establish more strate-
gies in the tool. We want to implement a method to transform existing digital
circuits into DCPN to analyze them with the known methods. The target is to
validate all methods implemented in the LPN. For this, we transform the digital
circuit into a DCPN and use the given strategies to rebuild a digital circuit. The
behavior of the previous circuit will be compared to the transformed circuit.

The tool is tested with nets up to 500 elements in total (places, transitions)
and with up to 750 arcs. For bigger nets, there is the possibility to split the
net into subnets. These subnets are analyzed separately, so larger nets can be
analyzed. To the best of the authors’ knowledge, Logical PetriNet is the first
tool that can handle Digital Circuit Petri Nets with a convenient graphical user
interface.
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Abstract. We present ClassCast, a tool for class-based forecasting. It
partitions an input time series into class-specific time series. It uses con-
ventional prediction methods for each of these time series and maps class-
specific values to classified future time indices. It is a simple means to
account for non-linear factors in time-series for the purpose of prediction.
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1 Introduction

Various approaches have been discussed for load forecasting in the domain of
electrical energy [1,2]. Especially methods based on machine learning, such as
artificial neural networks [3] or support vector machines [4], have attracted inter-
est. However, when looking at time series yj of energy consumption of admin-
istrative buildings, a clear dependency on working and non-working days and
on the weather can be observed. Therefore, a simple forecast method account-
ing for these influencing factors can outperform sophisticated forecast methods
neglecting that influence. This basic forecasting concept is known as similar-
days method [5]. A very simple forecast is the average energy consumption spe-
cific for working and non-working days. The average prediction may be further
adapted to cold and warm working and non-working days. We propose class-
based forecasting as a generalization of the similar-days method. Cold/warm
and working/non-working are an example for a classification cj of the time
index j. Besides basic calendar information, additional data in the time series
that is known for both the past and the future can be used for classification,
e.g., scheduled operating times of specific devices. Essentially, we compute class-
specific means Y (c) with c ∈ C and C being the class range. These class-specific
means may be used for prediction yj = Y (cj) of future time indices j which are
classified as cj .

This class-based forecast method can be adapted to more complex forecasting
methods. We exemplify this for linear regression. It predicts future values yj
with a dependence on a regressor xj : yj = β0 + β1 · xj . Class-specific forecast
implies that linear regression is applied to a class-specific subsets of the time
series with (yc

j) = (yj)j:cj=c for c ∈ C. Based on those time series, class-specific
c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 322–326, 2018.
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forecast models {(βc
0, β

c
1) : c ∈ C} are derived for each class c ∈ C which predict

yj = β
cj
0 + β

cj
1 · xj for j : cj = c.

We have developed ClassCast [6], a tool for class-based forecast supporting
prediction based on mean values and linear regression.

This work is structured as follows. Section 2 provides a high-level description
of ClassCast. Section 3 explains the concept of the tool and describes the classifi-
cation and forecasting mechanism. In Sect. 4, we present implementation details
and the user interface of ClassCast. Section 6 concludes the paper.

2 Tool Description

The input of ClassCast is an annotated time series yj . The data series consists
of past values of the dependent variable, i.e., the variable to be forecasted. Anno-
tations are values of one or multiple independent variables xi

j , 0 ≤ i ≤ n that
are supposed to influence the values of the dependent variables. An example for
a dependent variable is the total energy consumption while independent vari-
ables could be day of week, time of day, outside temperature, or the state of a
monitored device.

The second part of the input is the future time series. The future time series
consists of values for the independent variables but does not contain values for
the dependent variable. The independent variables of the future time series are
used to forecast values of the dependent variables using the approaches presented
in Sect. 3.

Figure 1 depicts the operation of ClassCast. Past time series yjx
i
j and future

time series xi
j are supplied to the tool. For each independent variable of the

input time series, the user selects whether it is discarded, used as classifier, or (if
applicable) as regressor. This selection determines the forecasting method. If one
or multiple independent variables are selected as regressors, linear regression is
used for forecasting. Otherwise, class-specific averages are used for forecasting.

The future values for the dependent variables yj are computed based on the
combination of values for the independent variables xi

j of the future time series.
The forecast can be saved to a file or visualized for further analysis.

Fig. 1. Operation of ClassCast.
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3 Concept

The past data set for the forecast consists of the time series (yj)j=s,...,−1 where
yj are the dependent variables and j are the time series indices. The index s < 0
denotes the start index of the time series and is negative as it relates to the
past. Additionally, the input data set contains n series of independent variables(
xi
j

)i=0,...,n−1

j=s,...,−1
. The future data set starts at the index 0 and contains values

for the independent variables
(
xi
j

)i=0,...,n−1

j=0,...,m
where m denotes the forecasting

horizon. ClassCast uses information from the past and future data set to compute
the forecast time series (yj)j=0,...,m.

The basic concept of ClassCast is classifying time series entries according to
the values of the independent variables. The independent variables are elements
of an n-dimensional annotation space X = X0×. . .×Xn−1. A function f : X �→ C
maps the annotations to a q-dimensional class space C = C0×. . .×Cq−1. The map-
ping function f of our tool is limited in the way that any annotation dimension
is mapped to at most one class dimension or not used for the mapping. Further-
more, any class dimension is determined by exactly one annotation dimension
so that q ≤ n holds. We use the mapping function f to calculate class-specific
model parameters and to determine the class of future independent variables xj

as a base for class-based forecasting. Class-specific means are calculated by

Y (c) =
1

|Jc| ·
∑

j∈Jc

yj , for c ∈ C,Jc = {j : f(xj) = c}

If at least one independent variable is selected as regressor, the past time
series is partitioned into class-specific subsets (yc

j) = (yj)j:f(xj)=c. Linear regres-
sion can be used to compute regression parameters β0, β1 for each class-specific
partition.

Independent variables can be given as symbolic or numeric values. The scale
of measure [7] for the independent variables is derived from the input data type.
Symbolic values (e.g., “Monday”, “Tuesday”,. . . ) are interpreted as nominal
scale, integers as ordinal scale, and real numbers as interval scale. By default,
ClassCast uses independent variables on nominal and ordinal scale as classifiers
and independent variables on interval scale as regressors. If an independent vari-
able containing real numbers is manually selected as classifier, classes need to
be defined based on intervals.

4 Implementation

ClassCast is implemented in Java and features a graphical user interface (GUI)
based on the JavaFX [8] framework. Input data series are processed in comma-
separated values (CSV) format. The tool automatically detects separators
(comma, semicolon, tab), line break encoding, and input data types.

Values for independent variables can be given as strings, integer numbers,
or floating point numbers. Strings are interpreted as nominal scale, integers as
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ordinal scale, and floating point numbers as interval scale. The first line of the
input data file is interpreted as heading and is used for visualization only.

If the past data set is insufficient for forecasting, ClassCast presents a dia-
logue to the user for selecting an independent variable to discard. E.g., if the
past data series is a time series recorded in winter, a forecast for summer can-
not be computed using class-specific means without discarding the independent
variables representing the weather.

ClassCast can be used both as an interactive tool with a GUI and as a
non-interactive command line tool. In non-interactive mode, a CSV file is given
as command line argument. Configuration like interval size for floating point
classifiers can be given as option. The forecast data series is written to standard
output in the same CSV format as used for the input data series.

5 Forecast Validation

ClassCast implements a very generic forecast approach. The forecast quality
depends on the availability of sufficient data for the input time series, the exis-
tence of a strong dependence of dependent variables yj on independent variables
xi
j , and the selection of appropriate classifiers. Therefore, ClassCast includes an

interactive validation feature. For validation, the input data series is split in two
parts. The first part is used to forecast the second part of the data series. The
forecast can be visually compared to the actual measurement values and the
mean square error can be computed to quantify the forecast quality.

Figure 2 shows a screenshot of the interactive validation, with an electrical
load time series sampled from a school building in Germany. The forecast is
computed as class-specific means with day of week and time of day as classifiers.

Fig. 2. Validation of an electrical load forecast. (Color figure online)
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The measured loads are plotted in blue, the forecast for the second part of the
time series is plotted in green.

6 Conclusion

In this paper, we presented ClassCast, a simple tool for class-based forecasting.
ClassCast classifies entries of time series according to the values of the inde-
pendent variables and predicts future values for dependent variables using class-
specific means or linear regression. The conception of ClassCast was motivated
by energy load forecasting. However, ClassCast is agnostic to input data seman-
tics. Therefore, it can be applied for forecasting time series in other domains
under the following two conditions. First, time indices can be classified based on
annotated information (independent variables). Second, this annotated informa-
tion has a major impact on the values of interest (dependent variables).
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Abstract. Large-scale software experiments are a ubiquitous feature
of research. For example, performance evaluation of algorithms implies
testing said algorithms on a large number of test cases. We provide a
software framework which helps performing experiments on large param-
eter spaces, benefits from multi-core architectures, and saves generated
results in a machine-readable format for future post-processing.
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1 Introduction

Modern research relies on large amounts of computing power in order to perform
experiments on and with software. The SETI@home project [2] is a famous exam-
ple for parallelizing computational tasks, but also algorithmic research requires
to test practical performance of algorithm design ideas by benchmarking said
algorithms on a set of instances. Another example are software simulations [6],
where several different runs of a model have to be evaluated. In most cases this
is done via a loop over the space of inputs, application of several successive
processing stages, and, finally, aggregation of the produced data.

The increasing availability of multi-core computers (and increasing parallel
processing power in hardware installations) motivates parallelizing the experi-
ments in order to utilize the available hardware efficiently and perform more
experiments in less time, as the different experiments can be run independently
from each other. However, even if the programming language allows to parallelize
loops in a machine-independent way, writing ultimately the same infrastructure
code which implements loops and saving partial results for every experiment
setup makes the experiment code “write-only” with the obvious downsides.

Here, we propose a tool that allows one to define the individual stages of a
software experiment, run it, utilizing all available cores, and save intermediate
and final results for future post-processing, decoupling the experiment from the
software which is being experimented on. In detail, the user provides a parameter
space of values, i.e., objects that are to be processed, a set of individual stages
which describe the units of computation such as instance generation, application
of a specific data analysis method etc., and, optionally, a post-processing routine
which analyzes the resulting data set.

c© Springer International Publishing AG, part of Springer Nature 2018
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The tool itself is written in Python [5] with the help of the Pandas [1] library.
The main purpose behind collider is to provide a maintainable infrastructure
framework that takes care of the experimental process.

1.1 Previous Work

There exist several tools and frameworks which serve similar purposes.

– jug [3] is a Python tool and framework that allows one to parallelize tasks for
a large number of inputs. Similar to collider, jug has the ability to re-run
sub-sequences of tasks on a given subset of the parameter space. In contrast
to collider, jug is Python-native and does not natively provide means to
call other executables (which, however, can be implemented by the user).

– BOINC [2] is a general-purpose framework for distributed computing in
large-scale networks. Its most known application is the SETI@home project
in which any volunteer can provide her computing power for the search of
extraterrestrial life in astronomic observation data. BOINC schedules and
distributes computational tasks over a variety of client platforms, however,
it requires a dedicated server installation and allows one to use a global-
scale infrastructure of computers with limited access rights. collider is a
lightweight alternative for less computation-intensive tasks which can be per-
formed on one, or, in future, on a limited number of computers which the
experiment owner can access at least with user-grade privileges.

– For large-scale computing systems, grid schedulers [4] such as Open Grid
Scheduler which manage computing tasks exist. They provide multi-user fea-
tures at the expense of, again, more infrastructure and system administrator-
grade access rights.

2 Architecture

collider provides an infrastructure to perform software experiments, or, in
general, apply several successive stages, i.e. atomic units of computation on a
space of parameters C, while additionally saving intermediate results in order to
be able to rerun (or restart from) a specified stage. In order to run collider,
the user must specify a parameter space by providing its individual components
and a list of stages f1, . . . , fm. For example, if she wants to apply the experiment
on the Cartesian product space C = {1, . . . , 20} × {red, green,blue}, then it is
sufficient to specify the individual components, {1, . . . , 20} and {red, green,blue}
along with functions f1, . . . , fm which operate on C. collider then converts the
given sets into the desired parameter space and initializes the computation.

collider uses n available CPU cores for the following classes of sub-
processes.

– n − 2 workers which execute the stages,
– 1 queue manager which schedules tasks,
– 1 result manager which stores the results of the individual stages.
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The multiprocessing architecture is centered around three queue mechanisms
that govern the execution of the individual stages on values. The first queue, Qv,
contains the jobs that have to be done. A job is a tuple (v, i, s) containing a
value v ∈ C, output from previous stages for this value s, and the index of
the next stage i. The second queue, Qr, contains the job results, that is, tuples
(v, i, r) that contain a value v ∈ C, a stage i, and the results r = fi(v) of the
computation. The purpose of Qr is to inform the queue manager that a task is
done. The third queue, Qs, contains results (in the same format as in Qr) that
have to be stored into a table-like Pandas [1] data frame.

Fig. 1. Schematic view of the queues and the processes involved in the computation
(Color figure online)

The detailed function of the queues is explained as follows. In the beginning,
the main process pushes all tasks (v, 1, ∅) for the first stage into Qv. The workers
compete for the next task (v, i, s) in Qv and execute the computation or, if a
result already exists and a re-computation is not required, look up the precom-
puted result; when the computation is complete, the worker writes the results
(v, i, s′ = s � r) to Qr. The queue manager takes the next tuple (v, i, s′) from
Qr, pushes the job for the next stage (v, i+1, s′) onto Qv and the results (v, i, r)
onto Qs. In parallel to that, the result manager reads items (v, i, r) from Qs and
stores them into a Pandas data frame.

The complete process is visualized in Fig. 1. Individual processes are displayed
as circles. Workers are designated by W1, . . . ,Wk (where k = n − 2), the queue
and the result managers are designated by Mq resp. Mr.

2.1 API

The collider library provides an API that enables the user to specify the
individual stages of experiment, and therefore, the individual measurements.
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In order to use the API, the user must import the collider Python module
and instantiate subclasses of the Stage class. The list of these instances can
then be passed on to the run experiments function which takes the following
arguments and runs then the experiments in the provided order.

– A dictionary that describes and names the dimensions of the parameter space,
– a list of stages, i. e., instances that implement the Stage interface,
– a history of previous results (possibly empty),
– a predicate that tells for which stages and values a re-execution is required.

run experiments returns a Pandas data frame which can be analyzed further.
The API provides several ready-made Stage subclasses that implement calls

to foreign executables and several predicates that allow one to re-execute an
individual stage, all experiments, all experiments beginning with some specified
stage, or only those experiments which have not yet been run.

2.2 Executable

collider also provides an executable that runs experiments operating from
a description in a configuration file. In this file, the user has to provide the
individual stages by naming the executables that have to be called and their
arguments (which may be the results of previous stages), the parameter space,
and, optionally, a Python function postprocess(data, values) that accepts
the Pandas data frame with the collected data and the dictionary of input values.
The syntax of the configuration file is identical to Python syntax.

3 Conclusion and Outlook

This work presents the collider tool for describing and running experiments
in silico. Currently, the tool is capable of running an experiment for all input
values on all available CPU cores on a computer and save the results for further
analysis.

We believe there are several direction to improve collider. Up to now,
collider runs only on one machine. This can be improved on by introducing
clients which can process jobs from the queue on other machines on the network,
parallelizing the task further. Another direction of improvement is a more com-
plex dependency tracking mechanism: Re-evaluation should automatically force
additional re-evaluation only of dependent stages.

References

1. Pandas: Python Data Analysis Library. Online (2012). http://pandas.pydata.org/
2. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In:

Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
GRID 2004, pp. 4–10. IEEE Computer Society, Washington (2004)

http://pandas.pydata.org/


Collider – Parallel Experiments in Silico 331

3. Coelho, L.P.: Jug: a task-based parallelization framework (2008). https://jug.
readthedocs.io/en/latest/. Accessed 18 Sep 2017

4. Gradwell, P.: Overview of Grid Scheduling Systems. Department of Computer Sci-
ence, University of Bath. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.93.150&rep=rep1&type=pdf

5. Python Software Foundation: Python 3 documentation (2001). https://docs.python.
org/3/. Accessed 6 Nov 2017

6. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment. In:
Proceedings of the 1st International Conference on Simulation Tools and Techniques
for Communications, Networks and Systems and Workshops, Simutools 2008, pp.
60:1–60:10. ICST, Brussels, Belgium (2008)

https://jug.readthedocs.io/en/latest/
https://jug.readthedocs.io/en/latest/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.150&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.150&rep=rep1&type=pdf
https://docs.python.org/3/
https://docs.python.org/3/


FunSpec4DTMC – A Tool for Modelling
Discrete-Time Markov Chains Using Functional

Specification

Frederik Hauser(B), Dominik Krauß(B), and Michael Menth(B)

Chair of Communication Networks, University of Tuebingen,
Sand 13, 72076 Tuebingen, Germany

{frederik.hauser,menth}@uni-tuebingen.de,
johannes-dominik.krauss@student.uni-tuebingen.de

Abstract. We present a tool for the analysis of finite discrete-time
Markov chains (DTMCs). As a novelty, the tool offers functional speci-
fication of DTMCs and implements forward algorithms to compute the
stationary state distribution xs of the DTMC or derive its transition
matrix P [19]. In addition, we implement nine direct and indirect algo-
rithms to compute various metrics of DTMCs based on P including an
algorithm to determine the period of the DTMC. The tool is intended
for both production purposes and as platform for teaching the functional
specification of DTMCs. It is published under GPLv3 [3] on Github [2].

1 Introduction

Discrete-time Markov chains (DTMCs) are a widely applied concept for system
modelling. Typically, DTMCs are defined by a stochastic matrix P that holds
probabilities for transitions among system states. The vector xn describes the
state distribution of a system after n transitions. Consecutive distribution vectors
xn are calculated by xn+1 = xn ·P . The stationary state distribution fulfills xs =
xs ·P . It reflects the average state distribution after multiple transitions and is a
useful base for the derivation of further specific performance metrics. Theoretical
background of DTMCs is described in [21,22]. There are many scientific analysis
tools [6,13,14,16–18,23] and libaries for the field of teaching [6,20]. All utilize
the transition matrix P as the base for analysis.

In this work, we present a tool for modelling DTMCs with a finite state
space using the novel functional specification suggested in [19]. We introduce
the functional specification by an example. We consider a two-dimensional
constraint random walk on a grid with coordinates (a, b) and integer values
a ∈ {Amin, ..., Amax} = A and b ∈ {Bmin, ..., Bmax} = B. The walk starts at
position (Amin, Bmin). In any transition, the position may change horizontally
by integer values H = {Hmin, ...,Hmax} and vertically by V = {Vmin, ..., Vmax},
all with equal probability. We consider the system with Amin = Bmin = 1,
Amax = Bmax = 3, Hmin = Vmin = −1, and Vmax = Hmax = 1. It can
be modelled by a two-dimensional state space X = A × B and a factor space
c© Springer International Publishing AG, part of Springer Nature 2018
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Y = H × V with H = V = {−1, 0, 1}. The random variables Xn = (An, Bn) ∈ X
describe the position of the walk after n transitions. Given a random factor for
the move Y = (H,V ) ∈ Y, the next position (An+1, Bn+1) ∈ X of the walk is
determined by

An+1 = min(Amax,max(Amin, An + H)) (1)
Bn+1 = min(Bmax,max(Bmin, Bn + V )). (2)

This is a stochastic recursive equation that constitutes the state transition func-
tion of the system f : X × Y → X . Together with the distribution y of the
factor space Y this function constitutes a DTMC [19]. A so-called forward algo-
rithm may be used to compute consecutive state distributions xn based on this
description without the use of a transition matrix P . The transition matrix P
can be derived by a similar algorithm so that other analytical methods can be
applied to it.

Figure 1(a) shows all states of the random walk with potential transitions.
Figure 1(b) illustrates the state transition matrix. The stationary state distribu-
tion yields xs(i) = 1

9 for any i ∈ X .

Fig. 1. Random walk example.

The functional specification might appear more complex, but provides many
benefits. First, it allows intuitive modelling of systems with event-triggered state
transitions. Events are modelled by factors whose probabilities are described
by the factor distribution. The system’s state transition in case of particular
events is described by the transition function. Therefore, the functional speci-
fication is close to the system’s behaviour which facilitates modelling of com-
plex systems with even multi-dimensional state spaces. Second, the functional
specification allows the modelling of very large DTMCs. The conventional spec-
ification requires the transition matrix P which scales quadratically with the
number of states. For very large DTMCs, the resulting size of P may be so
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large (multiple Terabytes) that DTMC analysis based on P may become infea-
sible. Sparse matrix representation may reduce memory requirements, but its
effectiveness depends on the specific use case. With the functional specification,
the transition matrix is not needed for the analysis of the DTMC and mem-
ory requirements are reduced to the state and factor distribution. The memory
requirement for the state transition function is generally small. In [19] further
optimization methods are described to speed up the convergence of the consec-
utive state distributions based on the functional description.

FunSpec4DTMC implements the functional specification and the forward
algorithm to calculate consecutive state distributions xn and the transition
matrix P . Besides, the tool offers various direct and iterative computation meth-
ods to calculate metrics for DTMCs that are based on P . In particular, the
period of finite DTMCs can be derived and methods for output visualization are
provided.

The paper is structured as follows. In the next section, we present the core
idea and features of FunSpec4DTMC. Section 3 describes the architecture and
implementation.

2 Tool Description

FunSpec4DTMC consists of a library implementing the functionality and a
graphical user interface (GUI) that allows users to analyse DTMCs in an interac-
tive process. The four phases of FunSpec4DTMC’s analysis process for DTMCs
are depicted in Fig. 2.

In the first phase (I), the DTMC model is defined by the user. DTMCs can
be either defined in a GUI-based input dialogue or imported from JSON project
files. As an example for intuitive modelling of DTMCs, our tool offers a system
specification dialogue for a GI [GI]/D/1 − Qmax queuing system.

In the second phase (II), the DTMC model input is parsed and validated
against mistakes in the specification, e.g., state probability vectors that do not
sum up to 1. In addition, aspects of the DTMC model such as the initial state
vector can be visualized.

In the third phase (III), metrics for DTMCs are calculated. If the DTMC
is defined in a conventional way using the transition matrix P , multiple direct
and iterative computation algorithms can be applied. The former are accurate
and fast but require a large amount of memory. Examples are the Gaussian
elimination algorithm and the inverse iteration. The latter requires less memory
but lots of iterations to compute the stationary state distribution with high
accuracy. The tool offers the following iterative methods to approximate the
stationary state distribution xs:

– DTMC random walk (simulation)
– calculation of the limiting distribution ( lim

n→∞xn) (applicable to aperiodic

DTMCs)
– matrix powering ( lim

n→∞Pn) (applicable to aperiodic DTMCs and to DTMCs

with a period of 2n, n ∈ N0)
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Fig. 2. Four phases of FunSpec4DTMC’s analysis process for DTMCs.

– calculation of the Cesàro limit ( lim
n→∞

1
n+1

∑n
i=0 xi)

– modified calculation of the Cesàro limit ( lim
n→∞

1
p

∑
n≤i<n+p xi) as introduced

in [19]. To that end, the tool analyzes transition structures of the DTMC and
computes its period p.

With a functional specification of a DTMC, the tool computes consecutive
state distributions xn and DTMC simulations without the state transition matrix
P and uses for this purpose the forward algorithm or just the state transition
function f , respectively. Moreover, the state transition matrix P can be derived
from the functional specification based on another forward algorithm [19].

In the fourth phase (IV), the output of the DTMC analysis can be visualized.
That includes the visualization of general metrics, e.g., the stationary state dis-
tribution, and the visualizations of particular computation algorithm specifics,
e.g., the random walk.

3 Architecture and Implementation

The architecture of FunSpec4DTMC is based on the model-view-controller
(MVC) pattern that separates its functionality from the GUI. We designed an
object-oriented class hierarchy and applied design patterns, e.g., the observer
or strategy pattern [15], and language constructs, e.g., the signal-and-slot
approach [10].
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We chose Python in version 3.6.3 [8] as programming language. We use
Matplotlib [4] to generate plot figures and SciPy [11] to import common distri-
butions. To apply SciPy’s continuous distributions on DTMCs, we implemented
mechanisms for discretization and normalization. We implemented the GUI using
PyQt5 [7], the Python bindings to the widely applied GUI framework Qt [9]. It
is platform-independent and allows the creation of more advanced graphical sur-
faces compared to simple approaches like Tkinter [12]. Python is an interpreted
programming language, i.e., source code is translated at runtime. To compensate
performance drawbacks, computational-intense functions are implemented in C
and called at runtime. External libraries like NumPy [5] adopt this principle and
use efficient implementations, e.g., for vector-matrix and matrix-matrix multipli-
cations. We used the Cython [1] extension to implement the forward algorithm’s
interleaved loops and the model-specific transition functions. Cython allows to
implement CPU-intensive modules as C-extensions in a Python-like syntax with
additional annotations such as static type declarations. Afterwards, the Cython
source code is transformed into C code, compiled, and called at runtime from
within Python. Our tool automatically integrates the model-specific transition
function defined by the users into the forward algorithm that is a static part of
the tool. Analyzing large DTMCs is limited by the memory on the host system.
The functional specification may mitigate but not solve the memory problems
that arise with a large number of states. We applied the memory-to-disk swap-
ping mechanism of NumPy so that computing data is stored in a file on the hard
disk which can be accessed in small segments.

Within the tool’s GUI, users can define multiple projects. For each project,
multiple DTMCs can be specified either in the functional or conventional specifi-
cation within an interactive dialogue or by importing a JSON file. DTMC models
and the output of the calculation algorithms can be visualized in multiple plot
views. Projects can be stored as files in JSON format and be imported.
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Abstract. Becoming a ubiquitous part of a huge number of various
applications, image processing algorithms and underling architectures
have to meet many different requirements. Some have real-time perfor-
mance constraints combined with demands on efficient implementation
for limited or various hardware resources. This poses particular chal-
lenges for design, implementation, and evaluation of efficient image pro-
cessing systems. In this paper, we present a model-based approach to
address these issues using our framework SimTAny. Founded on the stan-
dard modeling language UML, we propose the UML Image Proccessing
Language (UIPL) to facilitate expressing image processing application
algorithms directly in UML, which is especially beneficial for rapid mod-
eling. With the help of SimTAny, such design models can be simulated in
order to investigate the performance of a modeled system, to determine
optimal design solutions, and to validate the required properties. We
extend SimTAny to enable the generation of efficient implementation
code of image processing algorithms for different target architectures.
The code generated is then directly integrated in the simulation environ-
ment to increase the accuracy of our performance evaluations.

Keywords: Model driven engineering · UML · SysML · MARTE
Image processing applications · High-level synthesis

1 Introduction

In recent years, image processing applications have become increasingly popu-
lar in various areas of research, industry and also in the private sector. Mobile
devices, like for example unmanned aerial vehicles (UAVs) applied for track-
ing of moving vehicles on roads, are often equipped with applications which
perform complex image processing algorithms on-board, dealing with a consid-
erable amount of sensor data. The design of such systems mainly relies on the
following challenging issues: first, how to deal with heterogeneity and ensure suf-
ficient performance; second, how to abstract implementation details in order to
c© Springer International Publishing AG, part of Springer Nature 2018
R. German et al. (Eds.): MMB 2018, LNCS 10740, pp. 338–342, 2018.
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manage their complexity; third, how to refine these abstract representation in
order to produce efficient implementations.

Recently, the SimTAny framework was proposed to cope with the above
issues. This framework aims at enabling the performance investigation and vali-
dation of hardware/software architectures by simulating the UML-based system
specification models and executing test cases at early engineering stages [1].
A notable special feature of SimTAny and its underlying modeling approach is
that they are solely based on common standards.

Due to the high heterogeneity of platform components and the complexity
of algorithms, the practical applicability of the UML-based design flows is still a
difficult question, particularly for the image processing domain. As a remedy, in
this work, we aim to exploit domain specific knowledge directly in a UML con-
form modeling library in order to benefit from rapid system description through
providing useful modeling elements often required in practice. We also suggest a
design flow which considers different abstraction levels with refinement stages [2].
The suggested design flow is accompanied by our modeling library that allows
for seamless application of common, UML-based modeling standards for system
specification, while reducing the complexity of the modeling process.

Furthermore, we improve upon a recently introduced SimTAny framework
with techniques which allow the designers to automatically generate code for
both simulation and implementation from high-level system specifications of
image processing algorithms. In order to enable the generation of efficient imple-
mentation code for different target architectures without cumbersome modeling
of platform specific details, we apply the HIPAcc framework [3]. Based on a
domain-specific language (DSL) embedded into C++, this framework offers a
source-to-source compiler which translates algorithms defined in this high-level
DSL to a highly optimized target-specific implementations. With SimTAny it is
now possible, to generate such DSL code for HIPAcc from UML-based specifica-
tion models. Additionally, techniques have been applied in SimTAny which allow
integration of the generated implementations into the simulation environment
for refined simulation of the overall system.

The remainder of this paper is structured as follows: Sect. 2 describes our
contributions to facilitate the suggested design process. Section 3 explains the
implemented evaluation process.

2 Modeling of Image Processing Systems

As mentioned in Sect. 1, creating formal specifications of image processing algo-
rithms takes a huge amount of effort. Hence, we enhanced the framework with
a concept of viewpoints and view-specific wizard support. As already described
in [2], we defined the general concerns to be covered by each viewpoint. For
the corresponding modeling activities, appropriate diagram types and stereo-
types from UML profiles have been associated. In the high-level specification
phase the requirements and functional system model have to be captured using
SysML modeling language [4]. The system model is progressively refined cap-
turing functional (behavior and structure) and non-functional (timing, power
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consumption, and etc.) properties with the help of MARTE [5] stereotypes. As
soon as a sufficient level of details is achieved, the architecture modeling level
phase can start. During this phase, we focus on detailed considerations of the
system architecture and on the preparation of the code generation phase. Based
on the concepts provided by SysML and MARTE, we refine the high-level system
components in terms of hardware/software application components. Thereby, the
provided extensions are primarily adapted for the modeling of image processing
systems.

Fig. 1. Description of an image processing behavior using UML activity diagram and
UIPL library

In general, any complex image processing algorithm can be described as an
image processing pipeline, which consists of several filter operators concatenated
in a pipeline structure. Depending on the memory access scheme, we distinguish
between a point, local, and global filter operators [6]. In this work, we propose the
UIPL to enable representing image processing applications directly in UML and
refining them with image processing offerings captured by dedicated UML pro-
files, like the one depicted in Fig. 1. The UIPL is realized as an extension to UML
that comprises a modeling library for expressing image processing pipeline and
a set of profiles for writing then with image processing offerings. The modeling
library provides predefined elements for describing artifacts related to the image
processing domain, like buffering, collections structure as well as generic data
types. The library also contains components which describe the structure and
behavior of certain filter operators, like threshold or sort operations, applied in a
wide range of local filter operators. The intended purpose of UIPL is to express
image processing pipelines by common UML modeling concepts and to enable the
writing of such models with concrete image processing offerings. This writing is
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achieved by applying a dedicated UML profile to a model expressed with the help
of the UIPL Library. The overall set of stereotypes encompass image processing
filter operator’s offerings such as computation cycles, number of instructions,
and memory usage. They are important for performance analysis issues and the
possible design choices provided in the later steps of the design process. In par-
ticular, we aim at providing an efficient and rapid modeling of image processing
algorithms, exploiting the benefits of wizard-based user guidance [2]. After the
specification of the image processing pipeline is obtained, the next step involves
the evaluation of the application description on the target hardware platform.

3 Model-Based System Evaluation

In order to enable the evaluation of image processing algorithms for different
target hardware platforms at the modeling level, we combine SimTAny with
the HIPAcc framework. The framework consists of a DSL that is embedded
into C++ and a source-to-source compiler. Exploiting the compiler, image filter
descriptions written in DSL code can be translated into multiple target lan-
guages such as CUDA, OpenCL or GPUs. In our work, we generate such DSL
code for HIPAcc from UML-based specification of image processing filter opera-
tors. Moreover, we apply in SimTAny the Pointer to IMPLementation (PIMPL)
programming technique [7] to integrate generated implementations from HIPAcc

into the simulation engine OMNeT++ [8]. The proposed design flow is depicted
in Fig. 2. The output data collected during the simulation can be directly ana-
lyzed in our framework, in the first instance, without prior external analysis
tools being required. Therefore, SimTAny provides a dedicated perspective for
analysis where the simulation results can be imported and visualized [1].

Fig. 2. Design flow of the proposed combination of SimTAny and HIPAcc.
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4 Conclusions

In this work, we demonstrated how the SimTAny framework can be extended for
rapid and efficient design of image processing systems. Therefore, we enhanced
the framework with a concept of viewpoints and view-specific wizard modeling.
Thereby, we introduced theUIPL modeling language which permits easy cap-
turing of image processing aspects at the model level. Additionally, we extend
SimTAny to enable the generation of efficient implementation code of image
processing algorithms for different target architectures.
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