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Abstract A robust biomarker screening and validation is crucial for overcoming the
current limits in the clinical management of infectious diseases. In this chapter, a
general workflow for metabolomics is summarized. Subsequently, an overview of
the major contributions of this omics science to the field of biomarkers of infectious
diseases is discussed. Different approaches using a variety of analytical platforms
can be distinguished to unveil the key metabolites for the diagnosis, prognosis,
response to treatment and susceptibility for infectious diseases. To allow the imple-
mentation of such biomarkers into the clinics, the performance of large-scale studies
employing solid validation criteria becomes essential. Focusing on the etiological
agents and after an extensive review of the field, we present a comprehensive
revision of the main metabolic biomarkers of viral, bacterial, fungal, and parasitic
diseases. Finally, we discussed several articles which show the strongest validation
criteria. Following these research avenues, precious clinical resources will be
revealed, allowing for reduced misdiagnosis, more efficient therapies, and affordable
costs, ultimately leading to a better patient management.

Keywords Metabolomics · Infectious diseases · Diagnostics · Biomarkers ·
Biomarker discovery

7.1 Introduction

The new challenge in the study of the biological processes is to understand the
interactions among all biological agents (genes, transcripts, proteins, and metabo-
lites). The metabolome, defined as the set of all metabolites (Oliver et al. 1998),
represents the closest level to the phenotype which can be directly correlated with the
status of the organism. In other words, changes in endogenous and environmental
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factors are likely to impact on the metabolome, which acts as a major chemical
bridge connecting the environment with the different levels of a biological system
(Fig. 7.1).

The interactions among organisms are uncountable. However, only a few of them
produce a dysregulation of homeostatic processes, eventually leading to disease.
Infectious diseases are one of the leading causes of mortality (WHO 2017a), and a
better management of patients is undoubtedly necessary. Unfortunately, some diag-
nostic methods can be slow and tedious and lack adequate specificity and sensitivity
(Brand et al. 2010; Jain 2010). In this context, metabolomics analyses can be
performed to screen for metabolic biomarkers, which display novel potential advan-
tageous features such as more accurate diagnosis, dynamic disease evaluation,
non-invasive sampling, or personalized treatment assessment (Mayeux 2004). A
biomarker can be defined as the biological molecule which is able to create a
predictive model that can be used to classify a new sample or person into a specific
group (e.g., healthy vs. diseased) with enough sensitivity and specificity (Xia et al.
2013). This task is technically challenging (Xia et al. 2013). Note that a PubMed
search from 1990 to 2009 for the term “biomarker” revealed a total of 441,510
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Fig. 7.1 General scheme showing the major mass fluxes (normal arrows) and molecular interac-
tions (dashed arrows) between the different systems of an organism and its environment
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published articles, an enormous academic investment not translated into the
expected improvements for patient care (Ptolemy and Rifai 2010).

Herein, we present a robust analytical workflow for biomarker discovery and
validation with special attention to experimental design, sample treatment, analytical
platforms, and data analysis. Subsequently, we will focus on the contributions of
metabolomics to the identification of biomarkers in the context of infectious dis-
eases. Table 7.1 depicts the strenghts, weaknesses and typical applications in
metabolomics of the main analytical techniques.

7.2 Metabolomics Workflow for Biomarker Discovery

Sensu stricto, metabolomics corresponds with a non-target analysis—also named as
global profiling or fingerprinting (Fiehn 2002)—in which the total metabolome is
measured and the data are treated following differential analysis methodologies.
Metabolomics is ideal for biomarker discovery, since no previous hypotheses are
needed. Nevertheless, before they can be routinely used in clinics, biomarkers need
to be validated which, from the analytical point of view, requires the performance of
a classic target analysis.

The fingerprinting workflow for biomarkers screening (Fig. 7.2) encompasses
several steps such as experimental design, sample treatment, analytical measurement
and data processing, which will be below described in detail. Note that each step

Table 7.1 Overview of the metabolome coverage of the main analytical techniques

Analytical
technique

Metabolome
coverage

Compound
requirements Polarity Examples

GC-MS Low Thermostable
compounds with
acidic H or volatiles

High–mid Amino acids, small organic
acids, carbohydrates, fatty acids,
terpenes, cholesterol derivatives

LC-MS High Soluble compounds Depending
on column

Amino acids, oligopeptides,
small organic acids,
carbohydrates, phosphate
compounds nucleosides, lipids,
nucleotides, carnitines

CE-MS Medium Charged
compounds

Only polar Amino acids, oligopeptides,
small organic acids, phosphate
compounds nucleosides,
nucleotides, carnitines

1H-NMR Low Abundant
compounds with
non-exchangeable
protons

– Small organic acids,
carbohydrates, amino acids

31P-NMR Low Abundant
phosphorus-
containing
compounds

– Nucleotides, nucleosides,
polyphosphate, phosphate
enzyme cofactors, sugar
phosphates
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represents a potential source of error which may be accumulated. Special attention
should be paid to the biospecimen selection and data meta-analysis, the two major
bottlenecks in biomarker screening (Voskuil 2015).

7.2.1 Experimental Design

A certain amount of variability is inherent to biology. However, ideally, the charac-
teristic under study should be the only source of differences among the sample
groups. Therefore, group selection becomes critical for a successful differential
analysis. In order to minimize this problem, the size of the study cohort can be
increased to mathematically dilute the interindividual variability. Nevertheless, a
long analytical sequence can cause a problem in the signal stability. Although there
are several normalization strategies (Godzien et al. 2013), it is highly recommended
to periodically analyze quality controls (QC) through the analytical batch to monitor
any potential bias. Ideally QCs should be a pool of aliquots obtained from each
biological sample. However, when this is not possible, other alternatives are accept-
able (Dunn et al. 2012; Godzien et al. 2015).

7.2.2 Sample Treatment

All the samples should be obtained following a strict protocol. What is more, their
transport and storage are crucial to avoid metabolite degradation and subsequent
potential bias between batches. Specific standard operating procedures (SOP) should
be adapted to each type of matrix, although samples should be generally preserved at
�80 �C unless otherwise recommended. Another turning point for sample stability is
a fast and efficient metabolic quenching. Enzymes can be inactivated by the addition
of organic solvents, or abrupt temperature, or pH variations (Mushtaq et al. 2014).
Typical metabolic quenching strategies comprise the use of liquid nitrogen or cold
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Fig. 7.2 General workflow in a metabolomics experiment for biomarker discovery and validation
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methanol/water mixtures (Dettmer et al. 2007). However, caution must be taken as
aggressive quenching methods can damage plasma membranes, causing potential
metabolite leakage (Winder et al. 2008). To overcome this, a softer quenching
methodology based on a fast vacuum filtration of cells and subsequent addition of
a quenching solution has been proposed (da Luz et al. 2014), although its relatively
longer quenching time can alter the metabolome.

The next step along sample preparation is metabolite extraction. If the sample is a
solid (e.g., tissue), matrix disaggregation is previously needed. In a fingerprinting
approach, the selected extraction solvent should solubilize as many metabolites as
possible. Double extraction with both polar and non-polar solvents is always
recommended to enhance the metabolite coverage (note that independent series of
extractions with such solvents are always more efficient than a single extraction with
the mix). On the other hand, in a target analysis, the solvent of interest is the one that
maximizes the analyte recovery. Liquid–liquid and solid-phase extractions are
commonly used methods for liquid samples such as biofluids and cell culture
supernatants. Furthermore, samples can be derivatized to modify the chemical
properties of analytes. Derivatization is usually required for gas chromatography
(GC) analysis which needs thermally stable and volatile metabolites.

7.2.3 Analytical Measurement

In metabolomics fingerprinting, the main analytical platforms are nuclear magnetic
resonance (NMR) and mass spectrometry (MS). NMR spectroscopy is a nondestruc-
tive technique which allows in vivo evaluation of the metabolism. However, the low
sensitivity limits its applicability. On the other hand, MS is usually coupled to a
separation technique as far as it is not possible to perform the direct analysis of the
metabolome due to its chemical complexity. A mass spectrometer is composed by a
source (where the molecules are ionized), an analyzer (in which the metabolites are
separated by their m/z ratio), and a detector (which register the number of counts per
hit). Different types of analyzers are available for metabolomics, being the time of
flight (TOF) one of the most used, considering that it renders mass accuracy with
only several part per million (ppm) of error. The quadrupole time of flight (QTOF)
allows ion separation and subsequent collision-induced dissociation for MS/MS
identification analysis. Finally, the triple quadrupole (QqQ) is ideal for target
quantification by multiple reaction monitoring (MRM) mode.

GC separation of metabolites is based on their different vapor pressure and their
affinity for the stationary phase of the column. Generally, low bleeding capillary
columns are used in GC-MS, being the wall-coated open-tubular columns the most
popular option (Mirnaghi and Caudy 2014). In metabolomics, the most frequently
used stationary phases are DB-5 and DB-50 ((5%-phenyl)-methylpolysiloxane and
(50%-phenyl)-methylpolysiloxane, respectively) (Rojo 2014). The main types of ion
sources in GC-MS are electron ionization (EI) and chemical ionization (CI). GC-EI-
MS renders well-separated efficient peaks, with high reproducibility in the MS
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spectra. These advantageous features have promoted the development of GC-MS
spectral libraries (e.g., FiehnLib, NIST 14), which are extremely useful for metab-
olite identification. GC-MS metabolite coverage is limited to thermally stable and
volatile compounds such as esters, terpenes, certain alcohols, aldehydes, thiols, or
aromatic compounds (Rowan 2011). To overcome this limitation, chemical deriva-
tization procedures are routinely applied (e.g., silylation with N,O-Bis(trimethylsilyl)
trifluoroacetamide and trimethylchlorosilane for sugars, amino acids, amines,
amides, fatty acids, etc.).

In liquid chromatography (LC), MS coupled systems samples are injected into a
packed column containing a stationary phase. Metabolites are separated due to their
different partition coefficients between the stationary phase and the eluotropic
mobile phase (either isocratic or in a gradient). Based on the stationary phase, it
can be distinguished among reverse-phase LC (e.g., C18, C8), hydrophilic interac-
tion liquid chromatography (HILIC), and normal-phase LC. Reverse-phase LC is the
gold standard technique for the analysis of hydrophobic and medium polarity
compounds (e.g., lipids), whereas HILIC is preferred for polar metabolites although
its reproducibility is challenging. Normal phase is not commonly used in
metabolomics since highly hydrophobic mobile phases are required (e.g., hexane).
The subsequent ionization of the metabolites is generally driven by an electrospray
source either in positive or negative mode. The use of a QTOF analyzer enables
metabolite annotation by comparing their accurate masses with public databases
(e.g., HMDB, METLIN, and LIPID MAPS) and eventually their structural elucida-
tion by MS/MS analysis.

Capillary electrophoresis (CE) comprises a wide variety of electrokinetic separa-
tion methods, from which capillary zone electrophoresis is the most commonly used
in metabolomics (Zhang et al. 2017). Such technique is based on the application of
high voltages between two electrodes, which are connected by a buffer solution that
flows through a capillary. Net charges are produced in the capillary inner wall, which
interacts with the oppositely charged ions contained in the buffer solution. When
voltages are applied, ions migrate toward the oppositely charged electrode, carrying
solvent molecules. Consequently, a plug-like flow defined as electroosmotic flow is
produced. Electrophoretic mobility is an additional force that appears only in
charged compounds and produces their displacement toward the electrode with
opposite charge. CE-MS instruments can operate in two different modes depending
on the charge of metabolites and MS detector polarity. Cation separation is mainly
performed in bare fused silica capillaries by application of high voltage with positive
MS ionization. It is ideal for metabolites such as nucleotides, nucleosides, amino
acids, acylcarnitines, and other amines and amides. On the contrary, electrophoresis
with reversed polarity required electroosmotic flow suppression or inversion by
neutral or positively coated (e.g., polybrene-dextran sulfate-polybrene) capillaries
(Ramautar et al. 2011). Although it is highly interesting for the analysis of short-
chain organic acids or sugar phosphates, reversed polarity CE-MS capabilities have
been limited by certain technical difficulties that occur whenever positive potential is
applied to the stainless steel needle (e.g., a special ESI platinum needle is required
under ESI in negative ionization mode).
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In NMR, radio-frequency pulses are applied to the liquid samples which are
placed in a magnetic field. Such pulses are capable of altering nuclei with non-zero
magnetic momentum as 1H or 13C. Since the specific chemical environment of a
nucleus determines its spin momentum dynamic evolution and coupling with other
nuclei, precise acquisition information about the molecular structure information is
acquired. Hence, accurate metabolite identification and quantification can be
performed. Advantages of NMR are highly reproducible spectra, fast speed acqui-
sition rates, minimum sample preparation, and relatively low cost of analysis. NMR
can also be used for the analysis of phosphorus-containing metabolites, rendering
relatively simplified spectra. These metabolites are either indicative of various
cellular processes, energy metabolism (e.g., ATP, GMP, NADPH), central carbon
metabolism processes (e.g., sugar phosphates, phosphoenol-3-pyruvate), or struc-
tural and signaling functions (e.g., phospholipids). To increase the sensitivity and
metabolome coverage of NMR, chemical derivatization with 13C and 15N isotopic
tags has been described (Gowda et al. 2012).

7.2.4 Data Processing

Data processing workflow is technique-dependent. Generally speaking, the first task
once the analysis is finished is to check whether all profiles with the corresponding
internal standard peaks and QC samples show a good repeatability and if the
pressure or current curves are adequate. To deliver high-quality results, the repro-
ducibility and suitability of every sample must be verified. Traceability of the
analytical batch through an internal standard or based on QCs are the two main
strategies to ensure a stable equipment performance.

A MS chromatogram/electropherogram contains three main pieces of informa-
tion: MS spectrum, time, and abundance (ion current). Based on them,
deconvolution algorithms reprocess the signal, and, according to the isotopic pattern
distribution across the time, they create the metabolic features which ideally corre-
spond to a chromatographic peak characterized by a defined area, elution time, and
m/z. A particular case of deconvolution is done in GC-MS, in which the identifica-
tion of the metabolic features is done by comparing the retention times and spectra
from empirical data to reference libraries. Subsequently, features are aligned and a
matrix is created. Alignment should be performed with a certain tolerance in
retention time and mass windows to correct small fluctuations.

In some cases, normalization may be required to minimize alterations in the
stability of analytical platforms. Data filtering is necessary to eliminate spurious
signals produced after deconvolution (Godzien et al. 2015). First, a filtration by
presence in QCs is performed. Secondly, filtration by presence in at least a minimum
number of samples of one of the groups is also performed. As only stable signals
pass the filter, random artifacts are reduced. As a result, only the metabolites that are
strongly represented in the sample set are considered for statistical analysis. Data
scaling is desirable to adjust the importance assigned to the elements of the data in
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fitting the model. By scaling, the weight of each variable is adjusted with a scaling
factor estimated by either a dispersion criterion or a size measure.

Differential analysis statistical methods are used in fingerprinting analysis for
biomarker discovery, considering each metabolite as a variable. Both univariate and
multivariate statistical tests can be applied. Univariate models such as student’s t-test
contemplate each metabolite as an independent variable, whereas multivariate can
measure the influence of each metabolite on others. Regarding to multivariate tests,
both unsupervised and supervised analysis can be performed. Principal component
analysis (PCA) is the most common unsupervised model based on which any
potential sample outlier can be detected. What is more, an adequate reproducibility
of the analyses can be easily assessed by observing tight clustering of QCs in PCA
plots. On the contrary, supervised analyses aim to generate models with a priori
assigned groups. The most common supervised multivariate models are partial least
squares regression discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-
DA) analyses. To overcome the statistical bias induced by model overfitting and
finding spurious correlations, different statistical methodologies such as permutation
tests, cross-validation, or jackknifing have been used. Note that a detailed explana-
tion of these algorithms is out of the scope of this chapter.

7.3 Metabolomics Workflow for Biomarker Validation

In a broad sense, validation is the assessment of an action, instrument, or technique
to establish that it is delivering the intended outcome. Considering the multi-
disciplinary nature of the metabolomics experiment, different validation steps must
be performed across the whole workflow. From the analytical point of view, validity
is assessed as reporting several parameters for a certain method, such as the
accuracy, precision, linearity, and limit of quantification. With respect to a mathe-
matical model, validation ensures that overfitting is absent, which can be calculated
by applying several tests mentioned above. Regarding the biological interpretation,
validations aim to confirm the initial hypothesis using several strategies like
detecting the same group of metabolites with a different technique in an independent
set of samples, integrating multi-omics information, or developing ad hoc
experiments.

Focusing on biomarker discovery, there is a relatively little consistency in the
way of validating candidate biomarkers (Xia et al. 2013). Besides their identification
by structural elucidation or standard spiking, to validate a biomarker means to
(1) demonstrate that it is still significant in a second sample cohort, bigger than the
previous one and with a broader interindividual variability, and (2) to assess on it the
discriminant capability of the candidate by reporting its sensitivity and specificity
which should be calculated based on accurate concentration values. In other words,
a strong biomarker with a potential use in clinics’ daily routine should have a
small ratio of false negatives (misdiagnosed diseased patients) and false positives
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(misdiagnosed healthy patients). A way to visualize both is performing the calcula-
tion of the receiver operator characteristic (ROC) curve. In this type of diagrams,
specificity is plotted against selectivity for a given set of concentration values in
order to determine the threshold between disease and healthy status. The area under
the curve (AUC) of the ROC curve defines the strength of the biomarker. Generally,
a strong biomarker displays AUC values bigger than 0.8, whereas fair biomarkers
account for values between 0.8 and 0.6. An AUC below 0.6 does not satisfy the
quality criteria for a good biomarker.

Any analytical platform is potentially suitable to measure accurate concentration
values by using the classical quantification methods of standard curve, standard
addition, or internal standard. Nevertheless, due to its superior capabilities in terms
of sensitivity, the gold standard technique for quantification is a triple quadrupole
(QqQ-MS), coupled to LC or GC and operating in MRM which reaches limits of
detection of part per billion (μg/L). In brief, MRM mode is based on a selective
fragmentation of the molecular ion of the MS spectra of the candidate, respectively,
using its two most abundant fragments as quantification and qualification transitions.
Thanks to MRM it is possible to avoid background MS noises.

7.4 Biomarkers for Infectious Diseases: Current Landscape

The analysis of biofluids or tissues from infected patients represents the most
accurate methodology to describe the truly metabolic changes associated with
disease. However, since sample availability is generally compromised in acute,
low prevalent, or hazardous diseases, other experimental designs have been con-
ceived, being most of these studies performed in human disease-mimicking models
(Fig. 7.3). Although substantial differences between the metabolic profiles of disease
models and human patients have been reported (Himmelreich et al. 2005; Salek et al.
2007), models show several advantages such as an enhanced evaluation of the
disease prognosis. Model-based experiments comprise studies wherein animals are
challenged with human or humanlike pathogens and in vitro studies wherein infec-
tion is performed under host cell lines. Other studies, while not containing truly
present host–pathogen interactions, are capable of elucidating considerable aspects
of the infectious process; these include, among others, experiments wherein a host–
pathogen interaction has been previously established (e.g., analysis of cultures from
clinical isolates) and studies wherein host–pathogen interactions are mimicked by
means of challenging either host or pathogen cells with chemical conditions char-
acteristics of disease (e.g., hypoxia (Eoh and Rhee 2013), addition of bacterial
lipopolysaccharide (Laiakis et al. 2012)). Although a clear distinction can be
observed between biomarker identification and unveiling disease’s mechanism, it
should be highlighted that metabolomics studies which aim to understand the
pathogenesis of infectious diseases can also reveal potential biomarkers. Due to
the large number of the studies in this area, we focused on selected series of
examples which illustrate an overview of the state of the art in the field.
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7.4.1 Biomarker Discovery

7.4.1.1 Metabolomics of Viral Diseases

The area of metabolomics of viral diseases has been subject of extensive study and
review (Sanchez and Lagunoff 2015). In this book chapter, we will describe the
major applications of metabolomics in three relevant viral diseases [human immu-
nodeficiency virus infection (HIV), hepatitis C, and dengue fever]. Since the begin-
ning of AIDS epidemics, HIV has infected more than 70 million people, from which
36.7 million live with HIV/AIDS worldwide (WHO 2017d). Although diverse
therapeutic treatments have been developed, more than 1 million deaths per year
are still caused by AIDS-related diseases (WHO 2017d). The first metabolomics
studies regarding to HIV aimed to find metabolic biomarkers for HIV infection/
response to antiretroviral (ART) treatment. In this context, Hewer et al. (2006)
studied the serum metabolic profiles from ART-treated/ART-naïve HIV+ patients
and HIV—controls by 1H-NMR. Changes in the levels of glucose, lipids, amino
acids, glycerol, choline, and lipoproteins were observed, suggesting potentially
diagnostic capabilities of this technique, alternative to the current gold standard
(Western blot) (Syed et al. 2005). Other studies have been conducted to find a fast
and non-invasive HIV diagnostic test; Ghannoum et al. (2013) compared the GC-MS
and LC-MS metabolic profiles of oral lavage from healthy subjects and ART-naïve

Fig. 7.3 Classification of metabolomics experiments in infectious diseases attending to (a) host
nature, (b) analytical technique, (c) sample type, and (d) disease under study. Items in pie charts are
displayed clockwise
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and ART-experienced patients. Interestingly, an increased phenylalanine/tyrosine
ratio was found in ART-naïve patients, opening doors for new oral biomarkers. In
contrast, a notable number of studies regarding the study of HIV-related conditions
have been reported; since secondary lung infections are common among HIV+
patients, Cribbs et al. (2014) used LC-MS to study the differences between
metabolic profiles of bronchoalveolar lavage fluid (BALF) of HIV+ patients and
controls. Groups notably clustered in OPLS-DA models, and important altered
levels of phospholipids, tripeptides, and pyochelin (a siderophore related with the
opportunistic pathogen Pseudomonas aeruginosa) were observed. Additionally,
HIV-related neurocognitive impairment has also been an object of study by Cassol
et al. (2014). They performed a multiplatform, combined GC-MS and LC-MS analysis
of the cerebrospinal fluid (CSF) of HIV+ individuals and controls, finding correlations
between the levels of ketone bodies (1,2-propanediol, β-hydroxybutyrate), neurotrans-
mitters (glutamate, N-acetylaspartate), and myoinositol with neurocognitive worsening.

Hepatitis C is a highly prevalent disease, affecting more than 71 million people
worldwide (WHO 2017b). This liver disease is caused by the hepatitis C virus
(HCV), a flavivirus comprehending six different genotypes. HCV infection usually
displays mild symptoms in the acute phase of the disease and considerably high rates
of chronification (85% of infected patients) (Pawlotsky 2004). Chronic HCV infec-
tion generates a progressive fibrosis of the liver, which is classified in four stages by
the METAVIR system (F0 for absence of fibrosis, F1–2 for mild fibrosis, F3 for
advanced fibrosis, and F4 for fully developed cirrhosis) (Bedossa and Poynard
1996). Such deterioration can ultimately lead to severe conditions, such as cirrhosis
and hepatocellular carcinoma (HCC) (Pawlotsky 2004). Due to the considerable
prevalence and such potentially fatal outcomes, HCV infection has been consider-
ably studied by metabolomics (du Preez and Sithebe 2013). Additionally, given the
invasiveness of the current gold standard for assessing the progression of
HCV-related liver fibrosis (liver biopsy), many studies have focused on the devel-
opment of alternative methods to assess disease progression. In this context, Zhang
et al. (2006) conducted a targeted method using LC to quantify amino acids in
plasma samples of HCV+ patients, generating models based on amino acid ratios
from which a combined model ((Phe)/(Val) + (Thr + Met + Orn)/(Pro + Gly)) was
capable of discriminating F0–2 from F3–F4 patients (ROC AUC ¼ 0.92, 95% CI:
0.84–1.00) and F0–F3 from F4 patients (ROC AUC ¼ 0.99, 95% CI: 0.96–1.01).
Additionally, Cheng et al. (2012) performed a multiplatform LC-MS and GC-MS
analysis of plasma metabolites comparing advanced fibrotic patients with hepatitis C
patients not showing this condition. Notable alterations in primary bile acids
(glycocholate, taurocholate), long-chain fatty acids (stearidonate, palmitoleate),
and cysteine were observed. In another study conducted by Embade et al. (2016), a
1H-NMR analysis on serum samples from fibrotic and non-fibrotic patients was
performed, finding significant alterations in amino acids and lipoproteins, among
others. From such alterations, a multivariate model based on choline, acetoacetate,
and LDL1 levels which effectively discriminated between F0 and F4 patients (ROC
AUC ¼ 0.922, 95% CI: 0.85–0.97) was generated. On the other hand, potential
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biomarkers to predict the treatment outcome of hepatitis C have also been studied.
Before direct-acting antivirals (DAAs)—the current first-line treatments—were
developed, predictive models of the outdated treatment comprising alpha-interferon
plus ribavirin were generated (Saito et al. 2013). Following a similar line, Ceccotti
et al. (2016) performed a longitudinal study wherein 1H-NMR was applied to serum
samples from HCV+ patients before and after successful DAA therapy, finding
differences in the levels of formate, acetate, and methionine between baseline and
12th week post-treatment samples from patients who achieved a sustained virolog-
ical response.

Dengue fever (DF) is a widespread disease with an incidence of approximately
390 million people per year worldwide (Bhatt et al. 2013). DF is caused by dengue
virus (DENV), from which four different serotypes have been described—DENV-1
to DENV-4. This mosquito-borne disease is usually asymptomatic (80% of cases) or
manifested through mild symptoms (e.g., fever, rash, joint pain) (Martina et al.
2009). However, approximately 5% of DF cases progress to more severe forms,
namely, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS),
which seriously affect the cardiovascular system of patients, potentially leading to
death (Martina et al. 2009). Given the heterogeneity of possible disease outcomes
and the lack of an effective biomarker for prediction of a severe prognosis (John et al.
2015), different metabolomics studies have been performed to elucidate the mech-
anism of this disease and to find possible diagnostic and prognostic biomarkers.
Preliminary studies of DENV-infected cell cultures have been described, such as the
performance of a combined 1H-NMR and direct infusion MS analysis of DENV-
infected endothelial cell lines (EA.hy926) by Birungi et al. (2010). These analyses
revealed metabolic alterations in the levels of amino acids, fatty acids, and metab-
olites of the tricarboxylic acid cycle, showing a full separation among DENV
serotypes in PCA plots, suggesting differences in the disease mechanism for each
serotype. In another study from Fontaine et al. (2015), a combined LC-MS and
GC-MS analysis of infected human foreskin fibroblasts unveiled alterations
in the host central carbon metabolism (particularly in glycolytic intermediates).
Different studies analyzing the serum, plasma, and urine of DF patients have
been performed. For example, Shahfiza et al. (2015) identified by 1H-NMR a
series of relevant gender-dependent alterations of urinary metabolites during
DF (e.g., acetaminophen, glycine, betaine, creatinine, creatine phosphate,
N-methylhydantoin, and β-hydroxybutyrate), while El-Bacha et al. (2016), using
the same analytical technique, found plasma evidences for a DF-induced liver
dysfunction (e.g., branched-chain amino acids, LDL, and VLDL). LC-MS and sub-
sequent MS/MS ex vivo analyses have also revealed important contributions to DENV
diagnostics. In this context, Voge et al. (2016) identified a differential metabolic
profile between patients infected with DENV-1 and DENV-2 (octadecatrienal,
octadecadienal, octadecadienoic acid, octadecenamide, sphingosine, 25-hydroxy-
hexadehydrovitamin D3, 1,25-dihydroxycholesterol, and 3-deoxy-25-hydroxyvitamin
D3, among others). Another LC-MS study, performed by Cui et al. (2016), suggested
candidate biomarkers for the prediction of the progression of mild DF to DHF/DSS
(e.g., kynurenine, serotonin, bilirubin, oleamide, 13-E-docosenamide, deoxyinosine,

294 M. Fernández-García et al.



and several glycerophospholipids) from which particularly serotonin, in combination
with γ-interferon, was able to build a robust predictive model (ROC AUC ¼ 0.92).

7.4.1.2 Metabolomics of Bacterial Diseases

Prokaryotic cells encompass the biggest set of living organisms, comprising thou-
sands of eubacterial and archaeal species. Interestingly, from the human health point
of view, some of these organisms can potentially establish a symbiotic or a patho-
genic relationship. In some cases, such relationship can be tracked trough different
specific non-eukaryotic metabolites which unfortunately are not always easy to
measure. We overview this vast area focusing on selected types of bacterial diseases.

Urinary tract infection (UTI) is a common disease, which is potentially capable of
leading to severe excretory system complications. Although the etiology of UTI can
be diverse, the major causative pathogen is uropathogenic Escherichia coli (UPEC)
(up to 80% of cases) (Ronald 2003). Conventional bacterial identification tests
display several limitations, suggesting the necessity of a better diagnostic tool
(Pearle 2004). Candidate biomarkers for the potential diagnosis of UPEC-produced
UTI were suggested by Lv et al. (2011), which compared the LC-MS urinary
metabolic profile between both female UTI patients and healthy individuals.
PLS-DA analysis notably discriminated these two sample groups, from which
the metabolites most contributing to the group separation were identified as
diphosphomevalonate, N-acetylneuraminic acid, tetrahydroaldosterone-3-glucuro-
nide, 3-carboxy-1-hydroxypropylthiamine diphosphate, 6-ketoprostaglandin F1α,
cortolone-3-glucuronide and 21-hydroxypregnenolone, desmosine, and pregnanediol-
3-glucuronide. Interestingly, some UTI diagnostic biomarkers have been validated
(see Sect. 7.4.2).

Clostridium difficile is a gram-positive, frequently nosocomial pathogen, which
affects approximately 0.5–3 million people per year (Rojo et al. 2015). Clostridium
difficile infection (CDI) affects the gastrointestinal tract and constitutes a potentially
fatal disease which shows high rates of recurrence (20% after an initial infection,
40% after a second episode, and 60–80% in subsequent episodes) (Kao et al. 2016).
Given the shortcomings derived from the current tests for the differential diagnosis
or prediction of recurrent CDI (Burnham and Carroll 2013), several metabolomics
studies have been focused on the identification of such diagnostic and prognostic
biomarkers. For example, Kao et al. (2016) performed a combined non-targeted and
targeted 1H-NMR analysis of the urine of patients with symptomatic CDI and
healthy controls. Patients were grouped attending to the recurrence of CDI (one,
two, three, or more than three episodes). When comparing patients and controls,
choline was identified as the metabolite most contributing to the discrimination of
both groups, while other relevant metabolites (e.g., hippurate, 3-methylhistidine,
dimethylamine, trimethylamine, ethanolamine, leucine, valine, pyroglutamate,
asparagine, threonine, and glutamine) were also identified. Differences between
patients showing primary CDI and recurrent CDI infections were also clearly
observed in PCA plots: recurrent patients showing more than two CDI episodes
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were effectively discriminated from the rest of CDI patients. Metabolites most
contributing to this separation were identified as trans-aconitic acid and histidine,
although other metabolites such as creatine, sucrose, O-acetylcarnitine, ethanol,
tartrate, acetate, asparagine, 3-hydroxyvaleric acid, and carnitine were also found
to be altered. In the same framework, Allegretti et al. (2016) performed a target
LC-MS analysis directed toward the evaluation of bile salts on stool samples from
patients with primary CDI and recurrent CDI and healthy controls. Statistically
significant differences in the bile acid profile were found across the different groups
under study; significantly decreased levels of litocholate and deoxycholate were
found in all CDI patients when compared with controls. Similarly, the levels of
deoxycholate were also found to be increased in primary CDI when compared to
recurrent CDI patients. Recurrent CDI patients also showed higher abundance of
primary bile salts and lower abundance of secondary bile salts than other groups, as
well as higher levels of cholate and chenodeoxycholate compared with controls.
Interestingly, the ratio of deoxycholate to glycoursodeoxycholate plus deoxycholate
was identified as a potential biomarker combination model for the differential
diagnosis between first and recurrent CDI. Regarding the search for potential bio-
markers of CDI susceptibility, Dann et al. (2015) performed a longitudinal study
wherein untargeted metabolomics were applied to stool samples of either patients at
risk of developing CDI or patients being tested for CDI, finding increased concen-
trations of γ-aminobutyric acid in patients who developed CDI.

Enteric fever is a disease caused by the gram-negative bacteria Salmonella
enterica, serotype typhi (typhoid fever), and Salmonella enterica, serotype paratyphi
(paratyphoid fever). Enteric fever worldwide causes more than 25 million new
infections per year (Buckle et al. 2012). Unfortunately, the current standard diag-
nostic tests for enteric fever lack of sensitivity and specificity, thus requesting the
development of a potentially useful diagnostic biomarker (Parry et al. 2011). Fur-
thermore, as both pathogens may display similar clinical symptoms and at the same
time different antimicrobial resistance (Zaki and Karande 2011), biomarkers for the
differential diagnosis may be potentially useful for a correct clinical practice.
Näsström et al. (2014) compared the plasma metabolic profile of Salmonella
typhi-/paratyphi-infected patients and healthy volunteers through GC-MS analysis.
Although partial overlap in PCA scores was observed when comparing all groups,
OPLS-DA analyses revealed correct group clustering, suggesting the potential
discriminatory capacity of the analyzed metabolites. Subsequent selection of the
most statistically significant metabolites identified a combination of six metabolites
(gluconic acid, phenylalanine, ethanolamine, pipecolic acid, and two carbohydrates),
which could discriminate between typhi and paratyphi patients (ROCAUC¼ 0.796),
as well as between these patients and controls (ROC AUC ¼ 0.923 and 0.948 for
typhi and paratyphi patients, respectively).

The potential role of metabolomics in the diagnosis of lethal bacterial diseases
can be exemplified by the studies of melioidosis. This disease, caused by the gram-
negative bacteria Burkholderia pseudomallei, can have high mortality rates (up to
19%) (Currie et al. 2000). Melioidosis symptoms range from local abscesses to
pneumonia or sepsis. Given the sensitivity lack of the current gold standard for the
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diagnosis of this disease (observation in cell cultures) (Limmathurotsakul et al.
2010), Lau et al. (2016) performed an untargeted LC-MS analysis of the plasma
from patients with either melioidosis or bacteremia (distinct from B. pseudomallei)
and healthy volunteers. PCA scores plot revealed notable clustering among the
disease groups. About melioidosis patients, the most significant metabolites were
found to be acylcarnitines, sphingomyelins, lysophosphatidylethanolamines, and
phosphatidylcholines when compared to other disease groups/controls. Interestingly,
sphingomyelin (d18:2/16:0) was found to be the best discriminator of melioidosis
when compared with controls or other bacteremic patients.

Tuberculosis (TB) is another potentially lethal disease, which is primarily caused
by Mycobacterium tuberculosis. Despite being treatable and curable, this wide-
spread mycobacterial disease constitutes the first mortality cause among all infec-
tious diseases, with estimated incidence and mortality rates of 10.4 and 1.4 million
people per year worldwide, respectively (WHO 2017d). Given that infection with
M. tuberculosis is usually acquired through bacilli inhalation, TB is most likely
primarily developed in the lungs, causing pulmonary disease (active pulmonary TB).
However, most of the infections remain subclinical, causing a latent infection (latent
TB) that can progress to active pulmonary TB (10% of latent TB cases) (Fatima et al.
2017). In addition,M. tuberculosis can affect a wide range of extrapulmonary organs
and tissues, such as the CNS, the genitourinary tract, and the lymphatic system
(lymph node TB or LNTB) (Fatima et al. 2017). For instance, CNS invasion by
M. tuberculosis can cause a varied range of serious conditions associated with high
mortality and disability rates, such as tubercular meningitis (TBM), which is more
common in children. In contrast, genital tuberculosis (GTB) specially constitutes a
notable factor for women infertility. Active TB must be treated for at least 6 months,
being the first-line treatment a combination of isoniazid, rifampicin, ethambutol, and
pyrazinamide. Unfortunately, multidrug-resistant tuberculosis (MDR-TB) and
extensively drug-resistant tuberculosis (XDR-TB) constitute a major concern for
public health, mainly in developing countries (Günther 2014). Given that current
standard diagnostic methods (such as identification of the bacteria in cell cultures)
show important drawbacks (time-consuming, low specificity, and sensitivity), most
studies have focused on the development of biomarkers for the diagnosis of different
forms of TB. To find such diagnostic biomarkers for active TB diagnosis, different
experiments have compared the metabolic profile of active TB patients with controls.
For instance, du Preez and Loots (2013) performed a non-targeted GC-MS analysis
of sputum samples from patients suspected of having TB. After outlier removal,
clustering of active TB patients and healthy controls was observed in PCA score
plots. Altered levels of carbohydrates (glucosamine, N-acetylglucosamine, 2-deoxy-
erythro-pentitol, glucopyranose, mannopyranose, gluconic acid δ-lactone), fatty
acids (nonadecanoic acid, oleic acid, sebacic acid, C17:1ω7c), and other com-
pounds (citramalic acid, glutaric acid, ethane, butanal, γ-aminobutyric acid,
3,4-dihydroxybutanoic acid, and normetanephrine) were found in TB-positive
patients. In the same line, Frediani et al. (2014a) performed a LC-MS profiling of
plasma. Interestingly, increased metabolites were found in the TB patient group from
this study, such as lipids, choline derivatives, and glutamate. A similar experiment
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was designed by Zhong et al. (2016), who performed a non-targeted LC-MS analysis
of serum from TB patients. The correspondent PCA scores plot revealed discrimi-
nation of TB-positive patients and controls. Interestingly, 99 significant metabolites
were found to be statistically significant between patients and controls (e.g., fatty
acids, phosphatidylcholines, and phosphatidylethanolamines). In the same frame-
work, Luier and Loots (2016) performed a GC-MS analysis of urine samples from
active TB and healthy controls, revealing significantly altered metabolites in the
urine of TB patients (e.g., 5-hydroxyhexanoate, phenylacetate, 2-octenoate, 2-C-
methylglycerol, 5-hydroxyhydantoin, oxalic acid, rhamnulose, quinolinic acid,
ribitol, indole-3-carboxylate, kynurenate, and glycerol monostearate).

Other studies have also explored diagnostic biomarkers for latent TB and the
differential diagnosis between active and latent TB. The typical experimental design
of these studies comprises the grouping of individuals in active TB patients, latent
TB patients, and controls. An example of this is the study published by Weiner et al.
(2012), which evaluated the serum profiles of TB patients by means of a combined
GC-MS and LC-MS analysis. Metabolites capable of discriminating between active
TB patients and the rest of groups under study were identified as kynurenine,
pyroglutamine, phenylalanine, histidine, cysteine, glutamine, citrulline, creatine, and
tryptophan, among others. In contrast, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic
acid, N-acetylneuraminate, xanthine, hypoxanthine, and inosine levels were reported as
statistically significant between active and latent TB patients. Even more interestingly,
some compounds differed between latent TB and healthy controls (e.g., glycylvaline,
5-oxoproline, and inosine), suggesting the presence of potential biomarkers for latent
TB diagnosis. Another potential application of metabolomics regarding the TB study is
the suggestion of biomarkers that differentiate TB from other diseases that may show
similar clinical features. These studies generally include groups of patients suffering
from other diseases in their analysis cohort. For instance, Feng et al. (2015) compared
the serum profiles obtained by LC-MS analysis of patients showing active TB, lung
cancer, pneumonia, bronchiectasis, and chronic obstructive pulmonary disease. OPLS-
DA models showed a full discrimination of TB patients when compared with other
diseases, except for the pneumonia group. Interestingly, a combination of potential
biomarkers (behenic acid, lysophosphatidylcholine (18:0), threoninyl-γ-glutamate, and
presqualene diphosphate) displayed remarkable discriminatory capacity between TB
patients and controls (ROC AUC ¼ 0.991, 95% CI: 0.982–1.000). Only
lysophosphatidylcholine (16:0) was able to statistically discriminate between TB
patients and the rest of disease patients. Another approximation for the differential
diagnosis of TB was conducted by Das et al. (2015) who compared the GC-MS urinary
profile of symptomatic individuals suspected of TB infection. Urine analysis revealed
notable clustering in PLS-DA analyses from which 44 statistically significant metab-
olites (e.g., lactic acid, norepinephrine, malic acid, hydroquinone, glucose, and
4-hydroxybenzoic acid) were used to build a model capable of differentiating TB
patients (ROC AUC ¼ 0.855, 95% CI: 0.72–0.96). Another potential capacity of
metabolomics regarding TB is to unravel biomarkers capable of predicting early
treatment response. In this context, Mahapatra et al. (2014) compared the LC-MS
profiles of the urine from pulmonary TB at different times of treatment (baseline,
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month 1, month 2, and month 6). A comparison of metabolic profiles was further
performed, ultimately leading to the selection of six molecular features that showed
the highest statistical significance between baseline and early (1 month) treatment
samples, from which four features were tentatively annotated as p-aminobenzoic acid,
formimino-L-glutamic acid, Leu-Ala, and L-alpha-aspartyl-L-hydroxyproline. From
another point of view, in the line of correct treatment management, few preliminary
studies have been documented to evaluate possible biomarkers for distinguishing drug
susceptible TB (DS-TB) from drug-resistant TB. Based on the results of an untargeted
LC-MS analysis performed in MDR and DS-TB patients, Frediani et al. (2014a, b)
suggested a relationship between the profile of D-resolvins, phosphatidylinositol, and
trehalose-6-mycolate. In this context, the same group performed another LC-MS anal-
ysis comparing both MDR-TB and DS-TB patients. Statistical analysis revealed 66 sig-
nificant features (e.g., mannose, isopentenyl diphosphate, etc.) (Frediani et al. 2015).

The aforementioned studies principally evaluated either latent or active pulmo-
nary tuberculosis. Apart from this, other complications of TB have also been studied.
With regard to the lymphatic system, Singh et al. (2014) performed a high-resolution
magic-angle spinning (NMR technique used to perform experiments in solid state)
analysis of biopsies from lymph node tissue of tuberculous cervical lymphadenitis
and non-specific cervical lymphadenitis patients in order to find potential biomarkers
for differential diagnosis. Successful separation between both patient groups was
observed in PCA score plots. Statistically significant metabolites comprised mono-
unsaturated and polyunsaturated fatty acids, amino acids (e.g., Ala, Lys, Gly, and
Tyr), glucose, phosphocholine, and lactate, among others. Diagnostic biomarkers
have also been suggested for tubercular meningitis in children. By 1H-NMR, Mason
et al. (2016) compared the urinary profiles among TBM patients, non-TBM patients
manifesting neurological disease, and healthy controls. In PCA analysis, the TBM
group clustered and separated totally from controls, although partially from
non-TBM patients. Further statistical analysis revealed a series of metabolites
that widely contributed to the separation of groups. These included mostly small
organic acids (4-hydroxyhippuric acid, quinolinic acid, 2-ketoglutaric acid,
3-hydroxyisovaleric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, succinic
acid, methylcitric acid) and amino acids (tryptophan, glutamic acid). Further eval-
uation of these metabolites revealed a combined model of four metabolites
(4-hydroxyhippuric, 2-ketoglutaric, quinolinic, and methylcitric acids), which
could differentiate TBM patients at early onset of disease (ROC AUC ¼ 0.974). In
order to find biomarkers for genital tuberculosis, Subramani et al. (2016) performed
a 1H-NMR analysis of the serum from women with dormant GTB and controls
(unexplained infertile women, women undergoing recurrent spontaneous miscar-
riage (RSM), and healthy proven fertile women undergoing voluntary sterilization).
OPLS-DA revealed several metabolites that separate GTB women from the rest of
the groups. These included mostly small organic acids (3-hydroxybutyrate, citrate,
acetate, succinate) and amino acids (glutamine, glutamic acid, threonine), suggesting
potential biomarkers for the differential diagnosis of this disease.
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7.4.1.3 Metabolomics of Parasitic Diseases

Parasites are defined as a broad biological group encompassing different types of
organisms ranging from protozoa to helminths. In this context, certain apicomplexan
protozoa cause relevant human diseases, such as malaria (Plasmodium spp.), babe-
siosis (Babesia spp.), toxoplasmosis (Toxoplasma gondii), and cryptosporidiosis
(Cryptosporidium spp.). There is a wide variety of metabolomics experiments of
Plasmodium spp., which have been extensively reviewed (Lakshmanan et al. 2011;
Olszewski and Llinás 2011; Sonawat and Sharma 2012). In contrast, few studies
regarding Toxoplasma gondii and Cryptosporidium parvum have been described
(Bisanz et al. 2006; Ng et al. 2012; Ramakrishnan et al. 2012). For these reasons, we
focus on the major contributions of metabolomics to the study of malaria in truly
infected patients.

With more than 212 million infected individuals and 429,000 deaths per year
worldwide reported (2015) (WHO 2017d), malaria is a mosquito-borne disease
shows high incidence and considerable mortality rates. Etiological agents of malaria
comprehend different obligate intracellular parasites of the genus Plasmodium
(P. falciparum, P. malariae, P. vivax, P. ovale, and P. knowlesi). These species
parasitize erythrocytes and hepatocytes, causing human malaria with different dis-
ease severity and persistence of infection profiles. Although symptoms of mild
malaria are often unspecific, severe malaria, usually caused by P. falciparum, can
cause severe problems such as respiratory distress, renal failure, coagulopathy,
shock, encephalopathy, and multiple organ dysfunction (Autino et al. 2012). The
gold standard for malaria diagnosis implies direct observation of the parasites in
blood smears. However, shortcomings are derived from this method (Hänscheid
2003), which could be potentially overcome by other diagnostic biomarkers. In this
context, Lakshmanan et al. (2012) performed a LC-MS analysis of plasma samples
from both P. falciparum-infected and P. falciparum-non-infected individuals, find-
ing excellent group clustering in PLS-DA analyses. Traumatin, a plantlike metabo-
lite was found to be considerably altered between both groups, as well as other
statistically significant metabolites such as amino acids, amino acid derived com-
pounds, lipids, and metabolites of the central carbon metabolism. Other studies,
apart from suggesting potential diagnostic biomarkers, have been focused on the
identification of biomarkers for the prognosis and differential diagnosis of malaria.
Severe cases of malaria with CNS affectation—cerebral malaria (CM) or cerebral
malaria with multiple organ dysfunction (CMMOD)—are an important source of
mortality. With regard to this, Surowiec et al. (2015) performed a GC-MS analysis to
compare the plasma profile of pediatric patients suffering from mild and severe
malaria and healthy controls. Different metabolites were found to be altered between
binary comparisons of disease groups that contributed to the generation of OPLS-
DA models with calculated ROC curves. Mild malaria and severe malaria patients
could be distinguished from the control groups, as well as mild malaria from severe
malaria patients (ROC AUC values of 0.8442, 0.9165, and 0.7637, respectively).
The most significantly altered metabolites found in this study included urea,
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glucuronic acid, histidine, β-hydroxybutyric acid, cysteine, tryptophan, palmitoleic
acid, and octadecatrienoic acid. In the same line, Sengupta et al. (2016) performed a 1

H-NMR experiment which compared the plasma profiles of differently affected
(mild malaria, severe non-cerebral malaria, CM, and CMMOD) P. falciparum-
infected patients, as well as patients presenting sepsis and viral encephalitis. Partial
segregation between all patient groups (all forms of malaria, sepsis, viral encepha-
litis, and controls) was observed in PCA and OPLS-DA score plots. Important
metabolites differentiating malaria patients and controls were lipoproteins
(LDL/VLDL), lactate, and glycoproteins. Metabolites discriminating between
P. falciparum-infected patients and patients suffering from sepsis/encephalitis
included LDL/VLDL, lactic acid, and isoleucine. It is worthwhile to comment that
a decrease in the glycoprotein levels was observed in CM and CMMOD patients
when compared to other malaria patients, suggesting their potential applicability
as CM diagnostic biomarkers. Pappa et al. (2015) studied the association between
brain volume (a strong predictor of the outcome of cerebral malaria) and the plasma
metabolic profile of children with CM. Based on a GC-MS and LC-MS
multiplatform analysis, different metabolites were found to be correlated with
brain volume. These included, among others, metabolites from the phospholipase
A2 pathway (Arachidonic acid, 1-eicosatrienoylglycerophosphoethanolamine,
1-oleoylglycerophosphoetanolamine), mannitol, urobilin, fatty acids (pentadecanoic
acid) and fatty acid-related metabolites (5-hydroxyhexanoic acid). Diagnostic bio-
markers of vivax malaria have been proposed by Sengupta et al. (2011), who
compared the 1H-NMR urinary profiles of P. vivax-infected patients, non-malarial
fever patients, and healthy controls. Increased (valerylglycine, N-acetylornithine,
salicylurate, phenylpyruvic acid, pipecolic acid, biopterin-3-hydroxybutyrate) and
decreased (tyrosine, glucose, guanidinoacetate, alanine, creatine/phosphocreatine,
N-acetylglutamate) metabolites were suggested as potential biomarkers for differ-
entiating between malaria patients and controls. In contrast increased (glucose,
glutamine, alanine, ornithine, hippurate, phenylalanine) and decreased (N-butyrate,
acetate) metabolites were suggested as biomarkers for the differential diagnosis of
fever due to either malaria or viral CNS affectation. Lastly, a 1H-NMR longitudinal
study performed by the same group searched for diagnostic biomarkers and bio-
markers for response to treatment in urine samples from P. vivax-infected patients
and patients suffering from viral encephalitis (Sengupta et al. 2015). Urine samples
were collected from day 1 (admission day) to day 5 and at day 30 after treatment,
being this last sample set used as a self-negative control group. Day 30 samples were
compared by PCA analyses with samples from day 1 to day 5, revealing progressive
loss of observable clustering, which completely disappeared at day 5. Altered
metabolites comprised, among others, alanine, glycine, 3-methylhistidine, hippuric
acid, taurine, guanidinoacetate, and citric acid. Predictive models were generated,
which were able to identify P. vivax malaria patients with up to a value of 85%
success rate in a second sample cohort. Discriminatory metabolites were identified
when comparing the urine of viral fever patients and P. vivax-infected patients from
day 1 (particularly taurine and citrate, with ROC AUC values of 0.66 and 0.69,
respectively).
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From the clinical point of view, kinetoplastids are another group of relevant
protozoal organisms in which various etiological agents of important human dis-
eases such as human African trypanosomiasis (HAT) and Chagas disease are
included. More than 65 million people are at risk of developing HAT, which is
caused by Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense
(WHO 2017c). Two stages of HAT can be clearly distinguished. In the first stage,
parasites live and replicate extracellularly in the circulatory and lymphatic systems,
whereas in the second stage (sleeping sickness) CNS invasion occurs, causing
neurological disorders and, ultimately, coma and death if untreated (Kennedy
2004). Since important toxicity is derived from the current therapies for HAT
advanced stages, a sensitive and specific test for disease staging is required
(Kennedy 2004). However, the current surrogate standard for HAT staging lacks
sensitivity and is invasive (requiring a lumbar puncture), since it implies the direct
observation of either the parasite or an increase in the white blood cells count in the
CSF (Vincent et al. 2016). To potentially overcome these limitations and study the
global metabolic alterations of HAT, Vincent et al. (2016) performed a LC-MS
analysis which compared the plasma, urine, and CSF metabolic profiles of T. brucei-
infected patients of first and second HAT stages with controls. In CSF analysis,
neopterin could discriminate between disease stages with 100% sensitivity
and specificity. Furthermore, the levels of 5-hydroxytryptophan, a metabolite asso-
ciated with somnolence, and other relevant metabolites, such as kynurenine,
O-acetylcarnitine, N-acetylhistidine, tryptophan, N-acetyl-aspartylglutamate,
linoleamide, and oleamide, were also found to be altered. Altered plasma metabolites
were used to construct a model with two unidentified features that effectively
discriminated both disease stages, (ROC AUC ¼ 0.92) suggesting a potentially
useful, less invasive method for the staging of this potentially fatal disease.

Chagas disease, caused by Trypanosoma cruzi, affects 8 million people world-
wide, causing 15,000 deaths per year (Gironès et al. 2014). In contrast with T. brucei
life cycle, T. cruzi requires to invade host cells to replicate as amastigotes, ultimately
causing cellular lysis. Given that cardiac muscle cells are particularly invaded by this
parasite, serious cardiovascular alterations are generally presented in T. cruzi-
infected patients (Teixeira et al. 2011). Chagas disease can be manifested in an
acute or chronic form and is usually asymptomatic (Teixeira et al. 2011). Current
treatment efficacy is poorly assessed, due to the absence of a surrogate indicator of
therapeutic success (Gironès et al. 2014). A preliminary study performed by Gironès
et al. (2014) aimed to study the general metabolic alterations found in heart tissue
and plasma of T. brucei-infected mice by untargeted GC-MS and LC-MS analysis.
Metabolites such as p-cresol sulfate (a toxic metabolite from microbial origin),
kynurenine, and allantoin were suggested as potential biomarkers of this disease,
due to their considerable concentration changes found in serum.

Focusing on helminthiasis, several illustrative examples of how metabolomics
has helped to identify biomarkers can be found in the study of onchocerciasis. This
disease, commonly known as river blindness, affects more than 37 million people
worldwide (Globisch et al. 2013). Onchocerciasis is a blackfly-borne (Simulium
spp.) disease caused by filariae (Onchocerca volvulus), which typically affects the

302 M. Fernández-García et al.



eyes and skin, causing inflammation and blindness (Globisch et al. 2013). Denery
et al. (2010) performed a combined non-targeted and targeted analysis to evaluate
the metabolic profile from serum and plasma of O. volvulus positive and negative
individuals from different regions (African countries, Guatemala, USA, India) and
compared such profile with other possible comorbidities (Chagas disease, leishman-
iasis, HAT). After data filtering, 14 features were selected for LC-MS/MS and
Fourier transform ion cyclotron resonance mass spectrometry analysis. These
included hexacosenoic and pentacosenoic acids, a phosphorylated sphingolipid, a
phosphorylated sphingolipid, sterol lipids, and fatty acids. Considering such candi-
date biomarkers, PCA analysis revealed discrimination of O. volvulus positive
patients for the African samples, although group overlapping was observed (mainly
in Guatemalan samples and samples from patients affected by either Chagas disease
or leishmaniasis). Subsequent models considering these 14 features were generated
by machine learning algorithms. The highest discriminatory capacity for the entire
sample set was achieved using a random forests algorithm (88.6% of sensitivity and
88.3% of specificity), whereas for the African sample set, a functional trees algo-
rithm achieved a 100% sensitivity and specificity. In another study of the same
group, Globisch et al. (2013) performed a non-targeted LC-MS analysis in urine
samples, identifying a highly enriched feature in O. volvulus positive African
patients. Further validation of this compound will be discussed (see Sect. 7.4.2).

7.4.1.4 Metabolomics of Fungal Diseases

To the best of our knowledge, few metabolomics studies of fungal infections have
been performed, being these particularly focused on the study of invasive fungal
infections (IFIs) (de Francisco et al. 2015; Dessì et al. 2014; Koo et al. 2014; Liew
et al. 2016). IFIs are generally caused by fungi from the genera Aspergillus (invasive
aspergillosis or IA), Cryptococcus (cryptococcosis), and Candida (invasive candi-
diasis). Because of the inhalation of conidia, initial infection by Aspergillus spp. and
Cryptococcus spp. is usually localized in the lungs. However, as in infections caused
by Candida spp., fungi can spread to other regions such as the blood or CNS,
developing potentially fatal diseases (Badiee and Hashemizadeh 2014). For this
reason, IFIs constitute a notable source of mortality among immunocompromised
patients (Enoch et al. 2017). The gold standard for IFI diagnosis is cell culture, which
is usually slow (>72 h) and lacks sensitivity (Enoch et al. 2017). Koo et al. (2014)
evaluated the volatile organic compounds (VOCs) from the breath of pulmonary
IA suspected patients by GC-MS, finding a metabolic signature in IA patients
(increased levels of β-trans-bergamotene, α-trans-bergamotene, β-vatirenene, and
trans-geranylacetone). Focusing on cryptococcosis, a study published by Liew et al.
(2016) simulated a primary C. neoformans infection using lung epithelial cell
cultures. Two initial doses of yeast cells were used for the study, which consisted
in the incubation and analysis of yeast positive and negative controls at 6, 12, and
18 h. GC-MS analysis revealed altered levels of metabolites in the supernatants of
C. neoformans-infected cultures. Independently of the inoculation dose, cysteine
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was identified as a discriminative metabolite at 6 h of incubation. In contrast lactic
acid, tyrosine, fructose, fumaric acid, and pantothenic acid were identified at
12 and 18 h of incubation in low inoculated cell cultures, whereas malic acid,
3-hydroxyvaleric acid, 3-phenyllactic acid, and adonitol were significantly altered
in highly inoculated cell cultures. Another form of IFI, invasive candidiasis of the
bloodstream, displays high mortality rates in newborns (up to 30%) (Dessì et al.
2014). A preliminary study performed by Dessì et al. (2014) compared the GC-MS
urinary metabolic profiles between healthy controls and a newborn presenting fungal
sepsis, obtained at different time points. Groups clustered separately in PCA analysis
and the most relevant metabolites altered in the fungal septic patient were identified
as amino acids (glycine, serine, threonine), carbohydrates (glucose, maltose), and
both organic and fatty acids (citrate, hexadecanoate, octadecanoate), suggesting
potential biomarkers for the diagnosis of this potentially fatal disease.

7.4.1.5 Metabolomics of Diseases with Diverse Etiological Agents

In clinics, one of the main potential goals of biomarkers is to discriminate between
different etiological agents that can cause a disease with the same symptoms,
contributing to a better patient management and a more sensitive use of pharmaco-
logical resources. In this line, Slupsky et al. (2009) performed a study which aimed
to identify potential biomarkers for community-acquired pneumonia (CAP). CAP is
a serious condition, generally caused by Streptococcus pneumoniae, wherein
patients show a high mortality rate (up to 25%) (MMWR Recommendations and
reports 1996). Currently, the standard diagnosis for CAP is based on pathogen
isolation and culture from biofluids. This process has serious disadvantages:
S. pneumoniae culture is time-consuming (typically more than 36 h) (Marston
et al. 1997) and displays notable false positive rates (up to 65% in children)
(Faden et al. 2002), since this microorganism can be found in the commensal
human microbiota. In order to perform a preliminary approach for adequate bio-
marker identification, 1H-NMR analysis was performed in urine samples, wherein
PCA analysis revealed notable discrimination of S. pneumoniae-infected and control
groups. To further assess selectivity of these biomarkers, the S. pneumoniae-infected
group was compared with other patients with lung infections that shared common
clinical features with CAP (caused by Legionella pneumophila, Mycobacterium
tuberculosis, Staphylococcus aureus, Coxiella burnetii, Haemophilus influenzae,
Mycoplasma pneumoniae, Escherichia coli, Enterococcus faecalis, Moraxella
catarrhalis, Streptococcus viridans, Streptococcus anginosus, influenza A virus,
picornavirus, respiratory syncytial virus, parainfluenza viruses, coronaviruses,
human metapneumovirus, or hantavirus). PCA analysis revealed notable discrimi-
nation between pneumococcal pneumonia and other bacterial and viral pulmonary
infections except for L. pneumophila, evidencing the notable differential diagnostic
capacity achieved by this study.

Other studies are specifically focused on the identification of biomarkers for
differential diagnosis, such as the one performed by Li et al. (2017), who explored
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the possibility of discriminating tubercular meningitis from viral meningitis. Men-
ingitis is a serious condition wherein inflammation of the meninges is produced,
caused by a multitude of virus, bacteria (including mycobacteria), fungi, or parasites.
Clinical symptoms (e.g., fever, neck stiffness, headache, photophobia, and vomiting)
are common among diverse etiological agent, and therefore a fast patient manage-
ment becomes crucial in order to reduce meningitis mortality. For this reason, given
the wide variety of agents causing meningitis, pathogen-specific diagnostic methods
have been developed (Bahr and Boulware 2014). In the same framework, this study
reported a 1H-NMR analysis of the CSF from TBM and viral meningitis patients.
While PCA analysis showed partial clustering of sample groups, OPLS-DA analysis
allowed their complete discrimination. Metabolites most contributing to such dis-
crimination were amino acids (glycine, tyrosine, glutamine, threonine, valine, ala-
nine, aspartic acid, asparagine), carbohydrates (glucose, sucrose, fructose), small
organic acids (acetate, citrate, malonic acid, pyruvic acid, malonate), lipoproteins,
and others (betaine, glycerine, putrescine, choline), thus confirming a different
metabolic signature among TBM and viral meningitis.

Another differential analysis example was proposed by Soga et al. (2011). In this
study, the capacity of a CE-MS analysis of serum to discriminate among different
forms of liver disease was evaluated. Patients suffering from infectious diseases at
different disease stages, such as asymptomatic hepatitis B virus infection (AHB),
chronic hepatitis B (CHB), chronic hepatitis C (CHC) hepatitis C with persistently
normal alanine transaminase (CNALT), cirrhosis type C (CIR), hepatocellular
carcinoma, non-alcoholic steatohepatitis (NASH), simple steatosis (SS), and drug-
induced liver injury (DI), were included. Analysis revealed, among others, 49 statis-
tically significant metabolites, mainly corresponding to γ-glutamyl dipeptides which
were generally found to be increased in liver disease. The discriminatory capacity of
models comprising the levels of γ-glutamyl dipeptides alone or in combination with
biochemical parameters (aspartate aminotransferase (AST) and alanine aminotrans-
ferase (ALT), methionine sulfoxide) was tested in a first training and a second
validation cohort. ROC AUC for both cohorts were able to effectively each liver
disease with the rest of liver diseases and healthy controls (values of the ROC AUCs
from the validation cohorts were 0.895, 0.707, 0.993, 0.803, 0.967, 0.849, 0.763,
and 0.762 for CNALT (γ-Glu-Taurine, ALT), CHC (γ-Glu-Lys), CIR (γ-Glu-Ala,
γ-Glu-Leu, γ-Glu-Ser, γ-Glu-Taurine), HCC (γ-Glu-Ala, γ-Glu-Citrulline,
γ-Glu-Thr, γ-Glu-Phe), C (γ-Glu-Phe), DI (γ-Glu-Citrulline, ALT), AHB (Methio-
nine sulfoxide, AST), and CHB (γ-Glu-Thr), respectively), brilliantly evidencing the
potential of metabolomics in differential diagnosis.

Independently of the disease-causing pathogen, metabolic biomarkers for the
diagnosis of multipathogenic diseases can be potentially identified. In this line, Su
et al. (2014) identified several diagnostic and prognostic biomarkers of sepsis by
LC-MS/MS analysis. Sepsis is a serious condition caused by multiple possible
pathogens that spread from a local infection focus through the blood, generating a
systemic infection, ultimately leading to septic shock and multiple organ failure.
Even with the correct treatment, patients with sepsis show considerably high mor-
tality rates (Martin 2012). The study was performed on controls, septic patients, and
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patients showing non-septic systemic inflammatory response syndrome (SIRS
group), a sepsis-like condition. Further subdivision of the sepsis patients’ group
was performed attending to different clinical criteria, classifying these in sepsis,
severe sepsis, septic shock, and death patients (death occurred within 48 h after the
analysis). Serum samples were obtained within 24 h after emergency room admis-
sion except for the death group, from which samples were collected within 48 h
before death. Several metabolites were found to be altered between the different
disease groups. Different statistical analyses were performed; PCA analysis
revealed differentiation of controls from the rest of group patients, while OPLS-
DA allowed the observation of discrimination between SIRS and sepsis groups.
Further PLS-DA analysis differentiated mild sepsis from severe sepsis and septic
shock. Additionally, PLS-DA analysis also differentiated patients of the death
subgroup from the rest of septic patients. Eventually, the ROC curves for
12 selected significant metabolites among the different groups were calculated.
Regarding sepsis diagnosis, lactitol dehydrate, N-nonanoyl-glycine, S-phenyl-
cysteine, and S-(3-methylbutanoyl)-dihydrolipoamide-E were identified as
potential biomarkers, from which this last obtained the best ROC values
(AUC ¼ 0.900; 95% CI: 0.799–1.001). Severity of sepsis could be determined
by N,N-dimethyllysine, glycerylphosphorylethanolamine, cysteine, and
2-phenylacetamide, accounting this last metabolite for the highest ROC value
between these potential biomarkers (AUC ¼ 0.804; 95% CI: 0.647–0.962).
Predictive biomarkers of death were identified as phosphatidylglycerol (22:2/
0:0), S-(3-methylbutanoyl)-dihydrolipoamide-E, S-succinyl glutathione, and
glycerophosphocholine), being phosphatidylglycerol (22:2/0:0) the best predictor
of death within these groups (ROC AUC ¼ 0.96; 95% CI: 0.863–1.057). In
conclusion, this study was able to clearly assess disease diagnosis, differential
diagnosis, and prognosis of sepsis between the different patients.

7.4.2 Biomarker Validation

To our knowledge, most of infectious disease metabolomics experiments have been
focused on a discovery phase combining, in some cases, non-targeted and targeted
analysis on the same samples. Fully validation following the criteria mentioned
above is not so common.

One of the most successful examples is the validation of a diagnostic method for
urinary tract infection (see Sect. 7.4.1.2) by Gupta et al. (2012). In this target
experiment, the selection of the analytes was done based on the findings of previous
fingerprinting studies (Gupta et al. 2009; Lenz et al. 2003, 2004; Sweatman et al.
1993), which suggested an increase of certain end products of bacterial metabolism in
contaminated urine samples (lactate, acetate, succinate, formate, ethanol, citrate,
trimethylamine, urea, glycine, hippurate, creatinine, trimethylamine, trimethylamine-
N-oxide). For the biomarker validation, different experiments were designed: first, an
ex vivo study was performed over a cohort of 682 suspected urine patients and

306 M. Fernández-García et al.



50 healthy controls to test the diagnostic capabilities of the method; secondly, an
in vitro study was carried out in pathogen inoculated culture media in which samples
were generated by urine sterilization supplementation and uropathogen inoculation.
The results showed significant statistical variations in the levels of the measured from
which acetate, formate, lactate, and succinate urine concentrations were selected to
generate a model that was able to remarkably discriminate UTI patients from healthy
controls (ROC AUC ¼ 0.996; 95% CI: 0.992–1.001). Moreover, the levels of these
metabolites were able to differentiate urine samples infected by either gram-positive
cocci or gram-negative bacilli (ROC AUC¼ 0.975; 95% CI: 0.957–0.993), indicating
the potential differential diagnostic capabilities of this method; finally, on the third
place, a longitudinal study was performed, wherein the urine 10 UTI patients were
sampled before and after 7, 14, and 21 days of antibiotic treatment. Further validation
of the method was confirmed by the observation of a control-like urine profile in
successfully antibiotic treatment patients, indicating eradication of the infection.
Therefore, the remarkable ability of this large-scale study to identify and discriminate
the causal agent of UTI was stated.

In relation with onchocerciasis, as mentioned above (see Sect. 7.4.1.3), Globisch
et al. (2013) identified a highly increased feature in African O. volvulus positive
urine samples (m/z 356.1340). In order to decipher the molecular structure of such
feature, the fragmentation patterns of a subsequent LC-MS/MS analysis revealed
losses of glucuronic acid, an aliphatic N-acetyl moiety, water, and ethylene. As a
result, N-acetyltyramine-O,β-glucuronide (NATOG) was proposed as candidate
structure. Structure assignment was confirmed by LC purification of NATOG from
samples and subsequent comparative analysis of the m/z and retention times of both
purified and de novo synthesized NATOG. However, when analysis of NATOG was
performed in Guatemalan samples, lower levels of NATOG were detected,
suggesting phylogenetic differences between African and American O. volvulus.
NATOG capacities as prognostic biomarker were further tested in a comparative
analysis wherein NATOG levels were measured in urine samples from O. volvulus
positive patients receiving either doxycycline or placebo at 4–6 weeks posttreatment.
Diminished levels of NATOG were observed in successfully treated patients, thus
proving its potential use in disease progression evaluation.

7.5 Conclusions and Future Trends

The examples discussed in previous sections just illustrate selected representative
possibilities of metabolomics which are far from being fully summarized. We have
observed few biomarkers that have been integrated in clinics. Important obstacles to
this are the lack of a consensus on validation criteria and standardization of
metabolomics experiments. There is a need for a refinement of both analytical
(e.g., pathogen isolation methods) and computational techniques (e.g., refinement
of computational models of host–pathogen interactions) to ease the conclusions
inferred from analysis. Given the current landscape of the actual development of
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metabolic biomarkers in this area, it can be concluded that it is time to take advantage
of the evidence supported by previous knowledge found in preliminary studies. This
would ultimately permit wider integration of metabolomics in the context of a more
translational research, allowing this yet relatively recent omics science to reach one
of its paramount objectives: to become a standard, well-stablished tool for biomarker
identification which eventually will need to be competitive in cost/benefit with the
classical clinical test.
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