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Abstract The cofactors nicotinamide adenine dinucleotide (NAD+) and its phosphate
form, NADP+, are crucial molecules present in all living cells. The delicate balance
between the oxidized and reduced forms of these molecules is tightly regulated by
intracellular metabolism assuring the maintenance of homeostatic conditions, which
are essential for cell survival and proliferation. A recent cluster of data has highlighted
the importance of the intracellular NAD+/NADH and NADP+/NADPH ratios during
host–pathogen interactions, as fluctuations in the levels of these cofactors and in
precursors’ bioavailability may condition host response and, therefore, pathogen
persistence or elimination. Furthermore, an increasing interest has been given towards
how pathogens are capable of hijacking host cell proteins in their own advantage and,
consequently, alter cellular redox states and immune function. Here, we review the
basic principles behind biosynthesis and subcellular compartmentalization of NAD+

and NADP+, as well as the importance of these cofactors during infection, with a
special emphasis on pathogen-driven modulation of host NAD+/NADP+ levels and
contribution to the associated immune response.
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4.1 Introduction

The maintenance of an adequate cellular redox state, characterized by a tight regula-
tion of the intracellular levels of nicotinamide adenine dinucleotide (NAD+) and its
phosphate form, NADP+, is a vital premise for cellular homeostasis. NAD+ is reduced
to NADH during catabolic reactions, which yields a high quantity of mitochondrial
respiration-driven energy to fulfil cellular needs. NADPH is regenerated from NADP+

through a variety of redox reactions that support reductive biosynthesis contributing to
maintain the cellular pool of reduced glutathione (GSH), essential for the development
of detoxification mechanisms. Consistent with these important roles in cell biology,
the intracellular NAD+/NADH and NADP+/NADPH ratios have arisen as central
players in metabolic homeostasis, as well as cell survival and proliferation. A growing
body of evidences has begun to unravel the importance of NAD+ and NADP+

bioavailability and fluctuations during host-pathogen interactions. In this chapter, we
will revisit the alterations on cellular redox states and further implications for host cell
homeostasis and defence against distinct infectious agents and argue for NAD+ and
NADP+ metabolism as potential therapeutic targets.

4.2 The Biosynthetic Machinery Behind NAD+ and NADP+

Production

In eukaryotic cells, NAD+ is originated either through de novo synthesis or by salvage
pathways. The de novo pathway relies on the uptake and metabolism of dietary
L-tryptophan in N-formylkynurenine, a rate-limiting step catalysed by indoleamine
2,3-dioxygenase (IDO) or tryptophan 2,3-dioxygenase (TDO). Following subsequent
enzymatic reactions, quinolinic acid is generated and converted in nicotinic acid
mononucleotide (NaMN), which then originates nicotinic acid adenine dinucleotide
(NaAD), through the action of nicotinamide mononucleotide adenylyltransferases
(NMNATs 1–3). The final step in de novo synthesis is the conversion of NaAD in
NAD+ by the glutamine-dependent NAD+ synthase (Magni 2008). However, NAD+

pools can also be replenished through salvage pathways, which rely on the uptake of
biosynthetic precursors, namely, nicotinic acid (NA), nicotinamide (NAM) or nico-
tinamide riboside (NR). Both these biosynthetic pathways may converge by activation
of the Preiss–Handler pathway, in which NA is converted to NaMN by the NA
phosphoribosyltransferase (NAPT). Additionally, NAM can originate NAD+ via
NAM mononucleotide (NMN) intermediate, through the combined action of the
rate-limiting NAM phosphoribosyltransferase (NAMPT) and NMNAT (Revollo
et al. 2007). Finally, NR can also be phosphorylated in NMN by nicotinamide ribose
kinase (NRK) and then adenylated to NAD+ by NMNAT (Fig. 4.1).

The conversion of NAD+ to NADP+ allows the cells to sustain a high demand in
reducing equivalents, such as in conditions where high levels of nucleotide, protein
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and lipid synthesis, or detoxification mechanisms are required. The only known
enzyme responsible for this replenishment through NAD+ phosphorylation is NAD+

kinase (NADK). NADPH regeneration may be achieved in the cytosol and/or
mitochondria through the activity of several enzymes: glucose-6-phosphate dehy-
drogenase (G6PDH) and 6-phosphogluconate dehydrogenase in the oxidative
branch of pentose phosphate pathway (PPP), methylenetetrahydrofolate dehydroge-
nase (MTHFD) and aldehyde dehydrogenases (ALDHs) during folate metabolism
and isocitrate dehydrogenases (IDHs) and malic enzyme (ME) in the tricarboxylic
acid (TCA) cycle.

The use of 13C-labelled tracers has helped to address the metabolic activity during
cellular events. However, using this technology to address NADPH biosynthesis
may originate misleading data, as the same carbon source may originate both NADH
or NADPH, depending on the isoenzyme involved: some enzymes that catalyse
NADPH synthesis, as MTHFD, ALDHs and IDHs may also generate NADH (Liu
et al. 2016; Tibbetts and Appling 2010; Wise et al. 2011).
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Fig. 4.1 Intracellular machinery for NAD+/NADP+ synthesis in mammals. De novo (blue) and
salvage (red) pathways for NAD+ production, as well as NADP+ production and utilization during
redox metabolism (green) are depicted. GSSG oxidized glutathione, GSH reduced glutathione, IDH
isocitrate dehydrogenase, IDO indoleamine 2,3-dioxygenase, ME malic enzyme, MTHFD methy-
lene tetrahydrofolate dehydrogenase, NAD+, nicotinamide adenine dinucleotide, NaAD nicotinic
acid dinucleotide, NADP nicotinamide adenine dinucleotide phosphate, NADK NAD+ kinase, NAM
nicotinamide,NaMN nicotinic acid mononucleotide,NAMPT nicotinamide phosphoribosyltransferase,
NAPT nicotinic acid phosphoribosyltransferase, NMNAT nicotinamide mononucleotide
adenylyltransferase, NMN nicotinamide mononucleotide, NR nicotinamide riboside, NRK nicotin-
amide riboside kinase, TDO tryptophan 2,3-dioxygenase, Trp tryptophan
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4.3 Intracellular Pools of NAD+ and NADP+

As abovementioned, adequate ratios of these cofactors within the intracellular milieu
must be maintained to guarantee the development of adequate metabolic functions.
The exquisite balance between the reduced and oxidized forms of these cofactors
depends on the cellular requirements and the chosen metabolic pathways that will
fulfil them. On one hand, NAD+ catalyses catabolic reactions, as it is used as a
hydrogen acceptor in several steps of the TCA cycle. During these dehydrogenation
reactions, NADH is produced, and the majority of newly synthetized molecules are
redirected to oxidative phosphorylation, in an attempt to produce high quantities of
adenosine triphosphate (ATP). On the other hand, cytosolic NADPH production
relies greatly on the oxidative branch of the PPP, as well as serine-driven one-carbon
metabolism (Fan et al. 2014). Upon production, this cofactor is essentially used in
biosynthetic pathways that require a strong reductive power (as lipid synthesis) and
cellular detoxification mechanisms. Furthermore, a layer of complexity is added
when considering that cellular membranes are not permissive to the flow of numer-
ous molecules and that these cofactors are not only essential in the cytosol but are
also key elements within distinct organelles. As so, cells are capable of preserving
compartmentalized and independent pools, as in the case of NAD+ (Dölle et al.
2010). Interestingly, intracellular NADP+ content is somewhat limiting, when con-
sidering the vast number of metabolic pathways that rely on the bioavailability of
this cofactor (proliferation, lipid synthesis and defence against stressful conditions).
Similar to what happens with NAD+, NADP+ is also compartmentalized in different
organelles, and electron transport across membranes is only achieved through
shuttles. Accordingly, in eukaryotic cells, metabolic reactions can take place in
different organelles that will condition and impact the further utilization of specific
metabolites and precursors. Consequently, a cluster of studies has started to highlight
the importance of certain pathways in the replenishment of organelle-specific pools
of NAD+ and NADP+.

4.3.1 Subcellular NAD+ Compartmentalization

The main cellular pools of NAD+ are the cytosolic and mitochondrial ones (VanLinden
et al. 2015), with the cytosolic being around 100 times superior than the mitochondrial
counterpart. It is estimated that while the cytosolic pool displays NAD+/NADH ratios
between 60 and 700, the mitochondrial one ranges from 7 to 8 (Williamson et al. 1967).
Considering the need for distinct intermediates and cofactors during different met-
abolic processes, it is well-defined the importance of NAD+ compartmentalization
when considering the impermeability of cellular membranes. One of the main
enzymes responsible for this subcellular specificity and control of NAD+ pool
distribution is the biosynthetic enzyme NMNAT, which has three distinctly localized
isoforms: NMNAT1 is a nuclear enzyme, NMNAT2 has a cytosolic localization and
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NMNAT3 is present at the mitochondria (Mori et al. 2014). It is known that the
isoform 1 is the most efficient enzyme, responsible for adenylyl transference or
pyrophosphorylysis and for the maintenance of the nuclear NAD+ pool. However,
whether NMNAT1-driven NAD+ can shuttle to the cytoplasm, by exchange through
nuclear pores, is still questionable, as cytosolic NAD+ may be replenished through
NMNAT2 activity. The mitochondrial NAD+ pool is maintained by NMNAT3 (Lau
et al. 2010; Di Stefano and Conforti 2013), which is the enzyme with lowest
selectivity for purine nucleotides, and it appears to be independent of other enzymes
in the NAD+ biosynthetic pathway as NAMPT inhibition by FK866 does not affect
NAD+ intramitochondrial levels (Pittelli et al. 2010). The maintenance of individu-
ally compartmentalized regions is essential for preventing short-term cell death in
the event of massive NAD+ depletion. This protective capacity, mainly mediated by
the activation of a SIRT3/SIRT4/NAMPT-mediated axis, is known as the ‘mito-
chondrial oasis effect’, during which cell viability is maintained for a short period of
time after cytosolic NAD+ depletion, due to the preservation of mitochondrial
function (Yang et al. 2007).

4.3.2 Subcellular NADP+ Compartmentalization

One of the most important characteristics associated with eukaryotic cell metabolism
is the compartmentalization of metabolic reactions within organelles. Similar to what
happens with NAD+, multistep shuttles are used to transfer NADPH-reducing power
between the different cellular compartments to ensure correct organellar metabolic
processes. The use of isotope tracing experiments has provided new insights regard-
ing cytosolic and mitochondrial production of NADPH, namely, the contribution of
the PPP for cytosolic pools and serine/glycine metabolism for the mitochondrial one.
The major source of NADPH production is the oxidative branch of PPP in the
presence of a high demand of nucleotide synthesis. As abovementioned, other
potential sources of cytosolic NADPH include reactions catalysed by IDH, malic
enzyme (ME), ALDH and MTHFD (Pollak et al. 2007; Tibbetts and Appling 2010).
However, some isoforms of these enzymes are involved in mitochondrial reactions,
which may explain the transference of reducing equivalents between cytosol and
mitochondria. For instances, IDH2 catalyses the reductive carboxylation of alpha-
ketoglutarate (αKG) to isocitrate in the mitochondria, at the expense of one molecule
of mitochondrial NADPH. Next, citrate/isocitrate may be shuttled to the cytosolic
compartment, where it is oxidized by IDH1, with a concomitant production of
cytosolic NADPH (Wise et al. 2011). ME is a NADP+-dependent enzyme, which
through malate decarboxylation generates NADPH to fuel fatty acid synthesis, the
most NADPH-demanding pathway in eukaryotes. The three isoforms (1, 2 and 3) are
distinctively compartmentalized (ME1 is cytosolic, while ME2 and ME3 are mito-
chondrial), thus contributing for separate pools of NADPH. Lewis et al. (2014) have
recently developed a reporter system that allows the tracing of compartmentalized
sources of NADPH. In this work, they took advantage of a neomorphic mutant IDH,
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which catalyses the conversion of αKG into (D)2-hydroxyglutarate (2HG), through
transference of a hydride from NADPH. The production of 2HG serves as an
end-product readout, as this metabolite is not further metabolized. By supplementing
the cells with [3-2H]-glucose and assessing the enrichment of 2H in the 2HG pool, the
authors were able to discriminate between mitochondrial versus cytosolic NADPH
production. Furthermore and considering that serine and glycine interconversion
generates NADPH, Lewis et al. sought to evaluate the contribution of this metabolic
pathway in NADPH compartmentalization, thus showing that serine metabolism is
capable of replenishing mitochondrial NADPH. Mitochondrial NADPH may also be
produced through activity of a nicotinamide nucleotide transhydrogenase (NNT),
which transfers reducing equivalents from NADH to NADPH (Gameiro et al. 2013).
This purely cofactor-modulating enzyme has been shown to modulate central carbon
metabolism, namely, through coordination of glucose and glutamine metabolism in
the TCA cycle, as NNT knockdown affected glucose and glutamine consumption in
cancer cell lines.

4.4 The Role of NAD+ and NADP+ During Host–Pathogen
Interactions

As abovementioned, the maintenance of homeostatic levels of both NAD+ and NADP+

is essential for a correct cellular function that supports survival and proliferation. This is
particularly important when acknowledging that, upon infection, the metabolic require-
ments of host cells are altered, in order to privilege certain pathways to fulfil their highly
demanding cellular needs. This suggests that the bioavailability of certain precursors
within the intracellular milieu is essential in dictating if a host cell is capable of arresting
or sustaining the infectious process, which will ultimately allow for the pathogen to be
cleared or to thrive and persist within the host. When considering the importance of
adequate NAD+/NADH and NADP+/NADPH ratios in the establishment of an appro-
priate metabolic environment, it seems clear that fluctuations in these factors or in the
bioavailability of their building blocks impact host defence and pathogen success. In
fact, it has already been demonstrated the importance of NAD+ and NADP+ levels
during infection and how these ratios may be altered upon pathogen proliferation
(Mesquita et al. 2016).

4.4.1 Pathogen-Driven Modulation of NAD+ Levels

Several reports have shown how the modulation of host NAD+ levels is imperious
for achieving effective pathogen colonization and survival. However, additional
layers of complexity arise when considering that distinct cell types and pathogenic
agents may drive different alterations in host cell energy status. For instance, upon

202 I. Mesquita et al.



erythrocyte infection, the parasitic agent Plasmodium falciparum increases the
intracellular levels of NAD+, which is due to increased activity of NAMPT and
NAPT (Zerez et al. 1990). The observed elevation of NAD+ levels is expected to be
essential for supporting a high glycolytic rate in the infected erythrocyte, which
displays a concomitant upregulation of lactate production (Olszewski et al. 2009).
Conversely, human immunodeficiency virus (HIV) infection of human peripheral
blood lymphocytes (PBMCs) leads to a decrease in intracellular NAD+ levels
(Murray et al. 1995). Having in consideration that advanced states of HIV infection
display common features with pellagra (a clinical state that is associated with niacin
deficiency), it was also shown that exogenous administration of NAM inhibits HIV
replication in PBMCs (Murray and Srinivasan 1995). Consistent with these findings,
it has been recently suggested that a disruption of host metabolic machinery by HIV
(and also other viruses) may contribute to persistence of the HIV reservoir and,
consequently, disease and pathogenesis progression (Palmer et al. 2016). Infection
of macrophages with the protozoan agent Leishmania infantum was shown to induce
a transient increase in NAD+ levels, 18–24 h postinfection, which is consistent with a
metabolic switch towards mitochondrial respiration at later stages of infection
(Moreira et al. 2015).

Group A streptococci (GAS) has a noteworthy capacity of modulating NAD+ levels
in infected cells. Among other virulence factors, GAS produce a NAD+ glycohydrolase
that cleaves NAD+ to produce NAM, adenosine diphosphate (ADP)-ribose and cyclic
ADP-ribose (Tatsuno et al. 2010). Along with streptolysin O, these virulence factors
promote intracellular survival within host cells, mainly by preventing phagolysosome
acidification and thus evading the immune system (Bastiat-Sempe et al. 2014; Sharma
et al. 2016). In a mechanistic perspective, it was shown that NAD+ glycohydrolase
depletes intracellular NAD+ and ATP levels (Michos et al. 2006), which disrupts
several host defence mechanisms and contributes to dissemination and chronic persis-
tence. Moreover, NAD+ glycohydrolase expression also protects against xenophagic
killing, thus allowing for increased bacterial survival in pharyngeal keratinocytes
(O’Seaghdha and Wessels 2013). In an experimental model of pneumococcal menin-
gitis, it was demonstrated that an activation of the kynurenine pathway and consequent
accumulation of 3-hydroxykynurenine in the hippocampus were correlated with
extended apoptotic damage (Bellac et al. 2006). Consistently, it was also shown that
pharmacological inhibition of 3-hydroxylase and kynureninase leads to a decreased
level of NAD+, thus originating energy failure and consequent cell death. These data
seem to suggest that the replenishment of cellular NAD+ pools during infection may
serve as a neuroprotective mechanism (Bellac et al. 2010).

Recent evidences have also suggested the link between liver X receptor (LXR)
pathway and NAD+ intracellular metabolism during macrophage infection with
invasive bacteria. Matalonga et al. (2017) proposed that LXR activation originates
a reduction of intracellular NAD+ levels, through a CD38-dependent mechanism.
This activation decreased macrophage bacterial burden, due to alterations in cyto-
skeleton dynamics. Additionally, exogenous administration of NAD+ rescued the
infective ability of the bacteria. Furthermore, using an in vivo model of infection
with Salmonella Typhimurium, an amelioration of the clinical symptoms and
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protection against bacteria dissemination upon treatment with LXR agonists was
also observed, which emphasizes the relevance of LXR agonists or other inducers of
CD38 NADase activity as potential therapies against infection.

Despite all these recent examples showing that infection with intracellular patho-
gens can directly increase or decrease host NAD+ levels, further studies are required
to determine the druggability of this metabolism for therapeutic intervention.

4.4.2 The Impact of Enzymes Involved in NAD+ Metabolism
in Host Immune Response Towards Invading
Pathogens

4.4.2.1 Indoleamine 2,3-Dioxygenase

The most well-studied enzyme in NAD+ de novo synthesis is IDO, which catalyses
the rate-limiting step in tryptophan catabolism and, consequently, contributes to
tryptophan depletion. More than a metabolic hub of amino acid metabolism, this
enzyme has arisen as an important regulator of immune plasticity and homeostasis,
particularly during autoimmunity, infection and neoplasia. It has been shown, using
different models, that IDO has an immunosuppressive role, characterized by an
impairment of effector T cell proliferation and induction of regulatory T cells
(Prendergast et al. 2014). During tryptophan starvation, naïve CD4+ T cells become
tolerogenic, and autoimmune-preventive T regulatory cells are generated, through a
general control nonderepressible 2 (GCN2)-dependent mechanism (Fallarino et al.
2006). In opposition, IDO activity may also be controlled by interferons, which are
major players in the development of an immune response. This crosstalk between
tryptophan catabolism and immune modulation indicates IDO as a major metabolic
rheostat, which suggests that it may be involved in host immune response towards
invading pathogens.

It has been shown in distinct infectious models that genetic or pharmacological
modulation of IDO alters infection outcome (Munn and Mellor 2013; Schmidt and
Schultze 2014). Furthermore, considering that several important human pathogens
are tryptophan auxotrophs, it is expected that IDO-mediated depletion of this metab-
olite may further influence microorganism survival (Brown et al. 2008). IDO has
already been demonstrated to be essential for gut homeostasis and development of a
protective response against bacteria and other pathogens. Consistently, in a context of
experimental colitis, IDO inhibition resulted in higher mortality, when compared
with the placebo-treated animals, as well as increased immunopathology and elevated
colonic pro-inflammatory cytokine expression (Gurtner et al. 2003). Furthermore,
using aClostridium difficile infection model, IDO knockout mice displayed increased
mucosal destruction and caecal haemorrhage, along with increased levels of inter-
feron (IFN)-γ-producing neutrophils (El-Zaatari et al. 2014). This phenotype appears
to indicate that tryptophan catabolism may be a central mechanism associated with
the regulation of tissue pathology and control of bacterial burden.
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Several research groups addressed the role of IDO during HIV infection. This
chronic infection is characterized by a progressive and severe immune dysfunction,
associated with increased tryptophan metabolism by IDO (denominated as trypto-
phan starvation). The induction of this enzyme is driven by host- and virus-derived
factors, such as cytotoxic T lymphocyte-associated protein 4 (CTLA-4)/B7 engage-
ment; IFN-α and IFN-γ production by the innate and adaptive immune system,
respectively; and HIV-associated proteins (Boasso et al. 2007). The immunosup-
pressive role of IDO is mainly correlated with its capacity to impair CD4 and CD8 T
cells (Boasso et al. 2007, 2008), which results in the gradual establishment of a state
of T cell anergy, characteristic of HIV infection. Additionally, Potula and colleagues
showed that IDO inhibition by the competitive inhibitor 1-methyl-tryptophan
(1-MT) increases cytotoxic CD8 T cells and decreases HIV-infected macrophages
in a murine model of HIV encephalitis (Potula et al. 2005). In line with the already
described importance of IDO during HIV infection, Vujkovic-Cvijin et al. showed
that during both acute and chronic simian immunodeficiency virus (SIV) infection of
rhesus macaques, a specific depletion of gut-resident Lactobacillus is correlated with
increased levels of IDO1 and loss of T helper (Th)17 cell abundance. The observed
phenotype suggests that IDO1 inhibition by Lactobacillus species may serve as a
protective mechanism that prevents Th17 loss (Vujkovic-Cvijin et al. 2015). Con-
sequently, the maintenance of gut homeostasis may prevent microbial translocation
into the bloodstream, which is a hallmark of chronic immune activation and disease
progression in HIV patients.

Other viral infections have been associated with induction of IDO expression in
immune cells. A lipooligosaccharide expressed by the pathogenic agent of chan-
croid, Haemophilus ducreyi, is responsible for IDO induction in dendritic cells, via
type I interferon- and tumour necrosis factor (TNF)-α-dependent mechanisms, as
well as modulation of the mitogen-associated protein kinase (MAPK), nuclear factor
kappa B (NF-κB) and Janus kinase/signal transducers and activators of transcription
(JAK-STAT) pathways (Li et al. 2011). In a similar fashion, IDO expression was
also increased during macrophage infection with Epstein-Barr virus (EBV), which is
commonly associated with infectious mononucleosis and human malignancies.
Furthermore, EBV-induced IDO expression was linked to an impairment of the
cytotoxic activity of CD8 T cells, which are vital for the control of viral particles, as
well as cancer progression (Liu et al. 2014). West Nile virus induces IDO expression
on infected macrophages through a NF-κB-dependent manner. Although IDO is not
required for the control of flavivirus replication, its expression prior to macrophage
exposure to West Nile virus prevents infection (Yeung et al. 2012). These results
suggest that, although IDO is commonly associated with immune suppression and
dysfunction, its impact during infection may be time-dependent, as well as pathogen-
dependent.

Although IDO has a very noteworthy role during host-pathogen interactions,
other enzymes involved in NAD+ anabolism and catabolism may be associated with
host susceptibility versus resistance during infection.
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4.4.2.2 Nicotinamide Phosphoribosyltransferase

NAMPT, a biosynthetic enzyme from the salvage pathway, inhibits HIV replication
in monocytes by preventing the integration of proviral DNA in host genome (Van den
Bergh et al. 2010). However, a multifunctional transactivator encoded by HIV, the
Tat protein, is capable of inhibiting NAMPT activity and consequently depleting
intracellular NAD+ pools. Consistently, an imbalance in NAD+ content in the
intracellular milieu further impacts the activity of NAD+-consuming protein, as
sirtuin (SIRT)1 (Zhang et al. 2010). The inhibition of SIRT1 activation during HIV
infection has been associated to Tat-induced p53 activation and decreased
deacetylation of SIRT1 (Thakur et al. 2012). Pretreatment of HeLa-CD4-long terminal
repeat (LTR)-β-gal (MAGI) cells transfected with Tat plasmid with resveratrol, a natural
product that activates SIRT1, resulted in increased NAD+ levels and attenuates
Tat-induced HIV transactivation (Zhang et al. 2010). Furthermore, pretreatment with
SIRT1 inhibitor, nicotinamide, results in the opposite phenotype, which indicates that
SIRT1 inhibition by Tat is crucial for an adequate viral proliferation (Zhang et al. 2009).
Another natural compound, tanshinone II A, has been shown to inhibit Tat-regulated HIV
transactivation.After treatment of TZM-bl cellswith tanshinone IIA, SIRT1 andNAMPT
activity is rescued, as well as intracellular NAD+ levels. Furthermore, the increase in
NAMPT expression appears to result from activation of adenosine monophosphate-
activated protein kinase (AMPK) signalling pathway (Zhang et al. 2014).

This cluster of data insinuates that this important link between the regulation of
NAD+ levels and viral replication can be used in the development of new therapeutic
strategies against HIV infection, with a particular emphasis towards the NAMPT/
SIRT1 axis. It is important to emphasize that alterations in NAD+/NADH levels,
driven by changes in anabolic versus catabolic mechanisms, are also associated with
metabolic disorders and altered cellular functions, as seen, for instance, during
sepsis. Sepsis is potentially life-threatening complication, derived from a generalized
bacterial or fungal infection, which is associated to an acute inflammatory response
and eventually a late immunosuppressive state. It has been recently shown that
cellular bioenergetics is essential in dictating the functional fate of immune cells,
which are rendered tolerant upon septic shock. Using an in vitro model of
immunotolerance, Chen et al. demonstrated that immunotolerant monocytes, when
restimulated with lipopolysaccharide (LPS), showed a defect in glucose fermenta-
tion, characterized by decreased production of lactate and NAD+ levels, when
compared with non-tolerant ones. Furthermore, LPS-stimulated PBMCs from
immunotolerant patients with sepsis displayed a similar defective phenotype,
which was only restored upon patient recovery from septic shock (Cheng et al.
2016). The shift from an acute to a late inflammatory stage during sepsis is
associated with a switch from a glycolytic phenotype, highly dependent on NAD+

availability, to an oxidative metabolism, characterized by fatty acid oxidation. It was
demonstrated that during Toll-like receptor (TLR) 4 stimulation, this switch is
coordinated by a crosstalk between NAMPT, SIRT1 and SIRT6: while NAMPT
drives NAD+ production to allow a metabolic coupling between the acute and late
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stage on inflammation, NAD+-dependent SIRT1 and SIRT6 coordinate the increase
in fatty acid oxidation and decrease in glucose fermentation, thus integrating the
metabolic reprogramming with the immune response during sepsis (Liu et al. 2012).
Furthermore, during the phase of cellular adaptation to sepsis, it was shown that the
sequential activity of NAD+-dependent SIRT1 and mitochondrial SIRT3 is essential
in driving a functional mitochondrial biogenesis (Liu et al. 2015). This suggests that
NAD+ availability is essential in dictating the outcome after septic shock, as well as
the metabolic reprogramming during endotoxin tolerance, such as the activity of
several proteins, like sirtuins, are highly dependent on intracellular NAD+ pools.

4.4.2.3 NAD+-Consuming Proteins

NAD+ is a vital cofactor for three distinct classes of proteins: sirtuins, poly(ADP-ribose)
polymerases (PARPs) and CD38/157, where it serves as a donor of ADP-ribose and,
therefore, controls the levels of extracellular and intracellular NAD+. These nucleotide-
metabolizing proteins are metabolic sensors, responsible for the tight regulation of
energy metabolism, cell survival and proliferation.

CD38/157 Membrane Proteins

The class of cADP-ribose synthases, also known as the lymphocyte antigens CD38
and CD157, are involved in the production of secondary messengers that play
important roles in distinct signalling pathways. These proteins are the main regula-
tors of NAD+ levels, as around 100 molecules of NAD+ require processing to yield a
single molecule of cADP-ribose (Dousa et al. 1996; de Toledo et al. 2000). As
membrane proteins, these molecules possess an extracellular domain, and its rapid
activity is responsible for maintaining low levels of extracellular NAD+ (Seman et al.
2004). Consistently, during homeostasis, low quantities of NAD+ are found in mice
serum (Kim et al. 1993). However, upon infection or tissue damage, NAD+ levels
can quickly rise and be secreted. This extracellular NAD+ activates P2Y11

purinoceptors at the surface of human granulocytes, which contributes for their
functional activation (Moreschi et al. 2006). Following CD38 activation, Ca2+ levels
are dramatically increased, which promotes the migration of innate immune cells
(as monocytes, neutrophils and dendritic cells) to danger sites and to secondary
lymphoid organs (Partidá-Sánchez et al. 2007). The role of CD38 in the regulation of
immune responses has already started to be elucidated in vivo, by taking advantage
of CD38�/� mice. Partida-Sánchez et al. (2001) showed that in the absence of these
proteins, mice become more susceptible to Streptococcus pneumonia, as neutrophils
appear to be incapable of accumulating in the lung of infected animals and are
irresponsive to the bacterial chemoattractant fMLP. Likewise, using an experimental
infection with Listeria monocytogenes, Lischke et al. (2013) showed that the
absence of CD38 renders the mice more susceptible 3 days postinfection, which
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suggests a role of this molecule in the innate immune response. CD38�/� mice also
display higher susceptibility toMycobacterium avium infection, as Th1 differentiation
and polarization seem to be impaired. Furthermore, alterations in the granulomatous
barrier were also observed in these animals, which suggest that the absence of CD38
promotes bacterial dissemination and growth (Viegas et al. 2007). Likewise, CD38�/�

mice display a reduced hepatic elimination of Entamoeba histolytica, which is asso-
ciated with a limited inflammatory response (Estrada-Figueroa et al. 2011).

This cluster of data suggests that a deeper understanding of the role of CD38 and
extracellular NAD+ levels is essential for achieving a specific modulation of the
inflammatory responses, with the aim of better controlling the infectious process.

PARPs

Mono- or poly(ADP-ribosyl)ation (PARylation) reactions, which are mediated by
ADP-ribose transferases (ARTs) or PARPs, are also dependent onNAD+ availability.
PARP-1 is the most abundantly expressed protein of the PARP family, and it is
involved in DNA damage response, cell death by apoptosis and epigenetic alterations
in mammalian cells (Schreiber et al. 2006). This protein induces the translocation of
ADP-ribose molecules from NAD+ to acceptor proteins or to a previously formed
poly(ADP-ribose) chain. In situations of PARP-1 overactivity, which may be driven
by metabolic insults, intracellular NAD+ pools are depleted, and the cell enters in a
state of bioenergetic failure, which culminates with the initiation of the apoptotic
pathway (Sodhi et al. 2010; Yu et al. 2002). During infection, some pathogens may
hijack host PARP-1 activity in their own advantage. Recently, it was demonstrated
that PARP-1 is overexpressed inHelicobacter pylori-infected gastric mucosa and that
antibiotic treatment reduces gastric inflammation, through decreasing PARP-1
expression and NF-kB activation (Lee et al. 2016). In EBV-infected B cells, phar-
macological inhibition, as well as genetic ablation of PARP-1 suppressed the expres-
sion of latent membrane protein (LMP) 1-activated genes, which are essential for
driving EBV latency and tumorigenesis (Martin et al. 2016). Consistently with this
report, a recent study highlighted the role of PARP-1 in the inhibition of EBV lytic
reactivation, through binding at the BZLF1 lytic switch promoter. Furthermore, EBV
reactivation has a negative impact on PARP-1 activity, which reinforces the restric-
tive function of this molecule towards EBV reactivation (Lupey-Green et al. 2017). In
a very similar fashion, it was demonstrated that Kaposi’s sarcoma-associated herpes-
virus (KSHV) also downregulates PARP-1 upon reactivation. This is due to the
expression of viral processivity factor of KSHV (PF-8), which directly interacts with
PARP-1 and triggers proteasome-dependent degradation (Cheong et al. 2015). In line
with these data, Navarro et al. developed a mouse model that exhibited PARP-1-
deficiency with a Cd4-promoter-driven conditional deletion of PARP-2 in T cells.
Mice bearing a double deficiency in PARP-1 and -2 displayed an accumulation ofDNA
damage, which conditioned the replenishment of the memory pool in response to
vaccinia virus infection (Navarro et al. 2017). The role of PARP-1 duringHIV infection
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has been vastly studied; however, it has also suffered immense debate: several contra-
dictory reports suggest that PARP-1 activation is essential for HIV DNA integration
(Ha et al. 2001; Kameoka et al. 2005), while other state that it is not only dispensable
(Siva and Bushman 2002), but also associated with an impairment of the viral process
(Gutierrez et al. 2016; Rom et al. 2015). This suggests that further studies are required
to understand the exact impact of PARP-1 activity during viral infections.

The activity of PARP-1 has also been addressed during bacterial infections,
although at lower extent. FollowingMycobacteria infection of alveolar macrophages,
necrosis appears to be induced as a possible evasion strategy that allows infectious
bacteria to escape and disseminate to new host cells. Wu and colleagues showed that,
upon Bacillus Calmette-Guerin (BCG) infection of RAW264.7 macrophages, NAD+

levels are decreased, which is consistent with an increase in PARP-1 expression.
Furthermore, they demonstrated that activation of Wnt/β-catenin signalling prevents
BCG-induced macrophage necrosis, which appears to be correlated with increased
levels of intracellular glutathione and downregulation of PARP-1 expression
(Wu et al. 2015). Similarly, PARP-1 activation was found in the brainstem of patients
that died with Plasmodium falciparum malaria (Medana et al. 2001). PARP-1
inhibition with 3-aminobenzamide was shown to attenuate NAD+ depletion and
pneumococci-induced cytotoxicity, in a context of experimental pneumococcal men-
ingitis (Koedel et al. 2002). Using a lipopolysaccharide-induced model of acute lung
injury, it was demonstrated that PARP-1 inhibitor, 3, 4-Dihydro-5[4-(1-piperindinyl)
butoxy]-1(2H)-isoquinoline, reduced lung inflammation and vascular leakage, as
well as neutrophil infiltration and the establishment of an inflammatory environment,
thus promoting a protective phenotype (Wang et al. 2013).

These reports suggest that the modulation of PARP-1 activity may be explored in
the context of potential therapies against infections. However, it is necessary to have
in consideration that alterations in PARP-1 activity may be cell- and context-
specific, so each individual case should be properly addressed.

Sirtuins

As abovementioned, sirtuins are a class of NAD+-dependent proteins, and this family of
proteins includes seven members (SIRT1-7), which display distinct subcellular local-
izations (Michan and Sinclair 2007). Sirtuins are activated in situations of energy deficit
and, therefore, prompt metabolic shifts to increase ATP production, namely, through
utilization of noncarbohydrate energy sources, as fatty acids (Houtkooper et al. 2012).

It was recently shown that SIRT1 is downregulated during in vitroMycobacterium
tuberculosis (Mtb) infection of monocytes/macrophages and the rescue of SIRT1
activation during the course of infection leads to dampened inflammatory responses,
through deacetylation of RelA/p65 and impaired binding to the promoter of inflam-
matory genes. Furthermore, in Mtb-infected mice, SIRT1 activators improved lung
pathology, decreased inflammatory responses and augmented the efficacy of anti-TB
drugs (Cheng et al. 2017). This suggests that SIRT1 activators may disclose a
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potential utilization during host-directed therapies for the treatment of tuberculosis.
Similarly, treatment of Trypanosoma cruzi-infected mice with SIRT1 agonists,
resveratrol or SRT1720, decreased cardiac pathology and improved heart function
in chagasic mice (Wan et al. 2016). In line with this, it was shown that SIRT1
knockdown or inhibition by NAD+ precursor NAM or sirtinol in KSHV-infected
cells originated an increase in the quantity of infectious virions (He and Gao 2014;
Li et al. 2014). Ganesan and colleagues showed that macrophage infection with
virulent Salmonella enterica serovar Typhimurium is characterized by a quick drop in
ATP andNAD+ levels,which originated a transient activation ofAMPK.Thismetabolic
sensor appears to be regulated by the complex liver kinase B1 (LKB1)/SIRT1, which is
degraded in lysosomes, culminating in the disruption of AMPK-derived modulation of
mammalian target of rapamycin (mTOR). This suggests that S. Typhimurium degrades
host cell proteins as an evasion strategy to avoid xenophagy and consequent bacterial
elimination (Ganesan et al. 2017). Interestingly, during macrophage infection with the
protozoan parasite Leishmania infantum, Moreira et al. observed a metabolic switch
towards a respiratory phenotype, which was consistent with AMPK activation 10–14 h
postinfection. Furthermore, the increase in NAD+ levels of 18 h postinfection was
concomitant with the observed decrease in SIRT1 expression, which suggests that
L. infantum is capable of modulating host SIRT1 activity by altering the redox status
of the host cell (Moreira et al. 2015). Likewise, the parasite Cryptosporidium parvum is
also capable of altering SIRT1 expression, as infected human biliary epithelial cells
display higher levels of SIRT1, which regulates NF-kB-driven innate immune response
(Xie et al. 2014). SIRT1 expression was also found to be increased during hepatitis B
virus (HBV) infection, with its inhibition by sirtinol being associated with a suppression
of viral replication (Ren et al. 2014).

Although SIRT1 is the most studied member of the sirtuin family, some reports
regarding the role of the other members during infections have started to appear,
namely, SIRT2. Upon L. monocytogenes infection, SIRT2 is translocated to the nucleus,
where it deacetylates histone H3 on lysine 18 (H3K18) and possibly reprogrammes host
cells to allow bacterial proliferation. Consistently, experimental infection of SIRT2�/�

mice resulted in an impairment in bacterial proliferation, which suggests that SIRT2-
mediated H3K18 deacetylation has an essential role during L. monocytogenes infection
(Eskandarian et al. 2013). However, the role of this protein during infection is most
likely pathogen-specific, as the modulation of SIRT2 duringMtb infection did not alter
the outcome of chronic infection (Cardoso et al. 2015).

Although sirtuins have recently arisen as very promising drug targets for meta-
bolic, neurodegenerative, cardiovascular and neoplastic diseases, it is wise to further
study their implication during infectious processes, especially when considering
their possible modulation by invading pathogens. The major mechanisms of action
of NAD+-consuming proteins and metabolic consequences during host–pathogen
interaction is synthetized on Fig. 4.2.

210 I. Mesquita et al.



4.5 Pathogen-Driven Modulation of NADP+ Levels

NADPH can provide reducing equivalents for anabolic processes, as fatty acid
synthesis, and to protect cells against oxidative burst-induced damage. It acts as a
cofactor for NADPH-dependent glutathione reductases that yield reduced glutathione,
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Fig. 4.2 Mechanism of action of NAD+-consuming proteins and metabolic consequences during
host–pathogen interaction. Three major classes of NAD+-consuming proteins are involved in NAD+

catabolism upon infection: CD38/157, PARPs and sirtuins. The ectoenzymes CD38/157 are
responsible for the breakdown of 100 molecules of NAD+, with concomitant production of one
molecule of NAADP and cADP-ribose, which are involved in the activation of intracellular
signalling pathways and in the chemotactic process of innate immune cells, such as neutrophils,
dendritic cells and monocytes, to the sites of inflammation. PARPs respond to DNA damage with a
simultaneous poly (ADP-rybosyl)ation of target protein, which may be at the genesis of epigenetic
alterations. The consequent NAD+ depletion may reduce intracellular energy reservoirs and induce
apoptotic cell death. Sirtuins (SIRT1-7) may be modulated by energy stress associated with the
infectious process. Upon activation, sirtuins degrade NAD+ and originate a metabolic shift that aims
at restoring energetic homeostasis, with a possible function in regulating inflammation. Biosyn-
thetic enzymes, such as IDO and NAMPT, may be targeted by pathogens and consequently alter
intracellular NAD+ levels. Tryptophan starvation, originated by hyperactivation of IDO, originated
an unbalance in T cell response, characterized by anergy and a decrease in pro-inflammatory
subsets, such as Th1 and Th17. Activation of NAMPT during infection may also originate a
metabolic switch towards an oxidative phenotype, which is most likely connected with sirtuin
activity and function. ADP adenosine diphosphate, ATP adenosine triphosphate, IDO indoleamine
2,3-dioxygenase, NAD+ nicotinamide adenine dinucleotide, NAADP nicotinic acid dinucleotide
phosphate, NAMPT nicotinamide phosphoribosyltransferase, PARPs poly(ADP-ribose) polymer-
ases, Th T helper, Trp tryptophan
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essential for detoxifying reactive oxygen species (ROS), mainly formed in the mito-
chondria. The NOX family of NADPH oxidase is the major source of ROS during
host–pathogen interactions. These transmembrane proteins are capable of crossing
electrons through biological membranes and consequently produce superoxide or
hydrogen peroxide from oxygen reduction. These microbicidal ROS are detrimental to
pathogen survival, and, therefore, it is hypothesized that the maintenance of redox
potential through NADPH regeneration is vital for host defence against intracellular
microbes (Van Assche et al. 2011; Hogan andWheeler 2014; Paiva and Bozza 2014). In
humans, NADPH oxidases display seven isoforms, responsible for the production of
distinct types of ROS in different tissues. NOX1-5 are responsible for the production of
superoxide anion, while the two dual oxidase enzymes (DUOX1-2) produce hydrogen
peroxide (Rada and Leto 2008). The most well-characterized isoform is NOX2, which is
found in macrophage phagosomes and in neutrophil membranes. NOX2 possesses six
distinct subunits (gp91phox, p22phox, p47phox, p40phox, p67phox and Rac GTPase) that,
upon activation by pathogen phagocytosis, interact to form an active complex that
oxidizes NADPH to NADP+. Once activated, this complex fuses with the plasma or
phagosomal membrane and transfers the electrons to oxygen yields superoxide, which
aims at eliminating the invading pathogen and protecting the host cell (Panday et al.
2015). Upon phagocytosis, different evasion mechanisms may be adopted by the
pathogens to circumvent killing by ROS, namely, through subversion of the respiratory
burst or by phagosome escape. However, recent studies have challenged this paradigm
by demonstrating that some antioxidants can be used as therapeutic agents against certain
pathogens (Mittal et al. 2014). Furthermore, exacerbated ROS levels may induce tissue
damage and increased pathological inflammation, which may be detrimental for the host.

DUOX1 and 2 are mainly expressed in mucosa-associated epithelium, as the
surface of salivary glands, airways and the gastrointestinal tract. The role of these
enzymes was initially described using a Drosophila model, where a knockdown of
DUOX rendered the flies more sensitive to gut infections (Kim and Lee 2014). This
susceptible phenotype was partially attributed to alterations in gut homeostasis as
well as decreased oxidative burst and, consequently, increased pathogen prolifera-
tion (Ha 2005). DUOX2 expression may be regulated by NOX1 activity during
intestinal infection with Citrobacter rodentium. Accordingly, Cyba (p22phox) defi-
ciency, which inactivates NOX 1–4, was shown to protect against gut infections.
This was mediated by activation of a compensatory mechanism in which gut
commensals rescue impaired hydrogen peroxide production, which negatively reg-
ulates C. rodentium virulence factors (Pircalabioru et al. 2016).

One of the most studied mechanisms associated with host defence is the devel-
opment of an adequate respiratory burst, during which several types of ROS
contribute to pathogen clearance. Consistently, an impairment in the establishment
of a hostile microenvironment may contribute to pathogen thriving. Chronic gran-
ulomatous disease (CGD) is a primary immunodeficiency caused by mutations in
any of the five genes (CYBB, CYBA, NCF1, NCF2 and NCF4) that encode for
components of the phagocyte NADPH oxidase complex. It is essentially character-
ized by an impairment of intracellular pathogens killing, due to a lack of NADPH
oxidase-derived ROS. Due to this defect, CGD patients develop aggressive forms of
bacterial and fungal infections, as well as dysregulated inflammatory responses
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being particularly susceptible to mycobacteriosis and aspergillosis (Conti et al. 2016;
Deffert et al. 2014; Segal and Romani 2009). The available treatment for the
comorbidities linked to this disease poses a challenge, particularly when having in
consideration that the majority of immunomodulators can exponentiate the degree of
immune suppression already observed in these patients. Recently, the utilization of
gene therapy as a curative treatment of this primary immunodeficiency has been
suggested, namely, for the treatment of fungal infections (Grez et al. 2011). During
CGD, the defects in NADPH oxidase originate decreased pathogen killing, since
there is a downregulation in the production of neutrophil extracellular traps (NETs),
which is highly dependent of ROS production. Consequently, Aspergillus hyphae
can infect and disseminate. The restoration of NETs formation by gene therapy
results in increased ability to control aspergillosis (Bianchi et al. 2009), in a process
driven by calprotectin released by NETs, which prevented spreading of fungal
components (Bianchi et al. 2011; Fig. 4.3).
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Fig. 4.3 NADP+/NADPH metabolism and function in host cell metabolism, homeostasis and
defence mechanisms. NADP+ may be obtained through phosphorylation of NAD+. The major
contributor for intracellular NADP+ pools is the pentose phosphate pathway. NADPH may be spent
to regenerate GSH, which is used for cellular detoxification of ROS. NADPH oxidases (gp91phox,
NOX1, NOX3, NOX4, NOX5, DUOX1, DUOX2) are responsible for the production of microbi-
cidal ROS (respiratory burst), at the expense of NADPH molecules. Mutations in different subunits
of the NOX family of NADPH oxidases (CYBB, CYBA, NCF1, NCF2, NCF4 genes) originate
decreased levels of ROS, which downregulates host cell microbicidal mechanisms and allow
pathogen survival and dissemination. NADPH may equally be used during fatty acid synthesis,
thus contributing for an increased pool of intracellular lipid droplets. GSSG oxidized glutathione,
GSH reduced glutathione, NAD+ nicotinamide adenine dinucleotide, NADP+ nicotinamide adenine
dinucleotide phosphate, NET neutrophil extracellular trap, ROS reactive oxygen species
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As previously mentioned, cellular detoxification depends mainly on reduced
NADPH mainly assured by the action of G6PDH in the PPP. A deficiency in this
enzyme, which is highly prevalent in the African population, results in a defect in
controlling reactive oxygen species and, therefore, increased oxidative stress. A clear
example of the intricate complexity associated with NADPH in host–pathogen
interactions is the reduced susceptibility of G6PDH-deficient people to Plasmodium
falciparum infection (Uyoga et al. 2015). Although these individuals are more
susceptible to oxidative stress, Plasmodium parasites are unable to establish a
successful infection. Eventually, infected red blood cells are eliminated by macro-
phages, thus clearing the pathogen (Müller 2004).

4.6 Concluding Remarks

The study of NAD+ and NADP+ biology has highlighted the possibility of using the
acquired knowledge in the development of new therapeutic strategies during infec-
tion. The modulation of the intracellular levels of these cofactors appears to be a
requisite for the adequate establishment of a pathogen within host cells. However,
several outstanding questions are still to be answered: (1) Would counteracting the
observed modulation of NAD(P)+/NAD(P)H be an effective strategy to tackle
infection? (2) After modulation of biosynthetic pathways, are pathogens capable to
bypass the altered intracellular milieu and thrive within the host cell? (3) Can
pathogen auxotrophy be the driving force behind evasion mechanisms? (4) Is it
possible to target NAD(P)+/NAD(P)H metabolism in infected cells, without
compromising the homeostasis of both uninfected and bystander cells? Although it
seems clear that NAD(P)+/NAD(P)H metabolism is a central hub during infectious
diseases, further studies are mandatory to understand how we can effectively
modulate these pathways. Additionally, it is important to acknowledge that the
majority of the studies where the role of these cofactors during host–pathogen
interactions was elucidated lack the intrinsic complexity of living beings, and
notably the fluctuations in NAD+ biosynthesis related to the circadian clock (Peek
et al. 2013). Targeting NAD(P)+/NAD(P)H biology during an experimental in vitro
infection is vital for understanding the underlying cellular and molecular mecha-
nisms associated with resistance versus susceptibility. However, transposing this
knowledge for clinical therapy may be a challenging and a long-lasting protocol.
Nonetheless, important steps towards the utilization of NAD(P)+/NAD(P)H biology
to fight infectious diseases have been made, and the following years will be crucial
for developing new strategies.
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