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Abstract In this survey paper, we discuss strong uniqueness of Dirichlet operators
related to stochastic quantization under exponential (and polynomial) interactions
in one-dimensional infinite volume based on joint works with Sergio Albeverio and
Michael Röckner (Albeverio et al., J Funct Anal 262:602–638, 2012, [4], Kawabi
and Röckner, J Funct Anal 242:486–518, 2007, [11]).We also raise an open problem.
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1 Introduction

Dirichlet form theory on infinite dimensional spaces plays a crucial role in many
fields of mathematical physics including Euclidean quantum field theory and statis-
tical mechanics. It is also indispensable in stochastic analysis on path and loop spaces
over Riemannian manifolds. From an analytic point of view, it is very important to
study L p-uniqueness of the Dirichlet operator associated with a givenDirichlet form,
that is, the question whether or not the Dirichlet operator restricted to some minimal
domain uniquely determines a strongly continuous semigroup on the corresponding
L p-space. As is well known, in the case of p = 2, this uniqueness is equivalent to
essential self-adjointness of the Dirichlet operator. This kind of uniqueness problem
on infinite dimensional state spaces has been studied intensively by many authors.
We refer to Eberle [6] and references therein for a detailed review. However, it is still
understood very insufficiently in the sense that there are several important types of
infinite dimensional Dirichlet operators for which it is not knownwhether uniqueness
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holds or not. As in Michael Röckner’s speech at the conference dinner of the SPDE
conference 2016 in Bielefeld, the most prominent example in which essential self-
adjointness is not known is the stochastic quantization of P(φ)2-quantum fields
in infinite volume in the context of Euclidean quantum field theory. We refer to
Albeverio–Ma–Röckner [5] for a concise overview on stochastic quantization. We
should also mention that recently there has arisen a renewed interest in singular
SPDEs, in connection with Hairer’s groundbreaking work on regularity structures
[8] and related work by Gubinelli, Imkeller and Perkowski [7]. By using these
new theories, Mourrat and Weber [13] constructed a unique strong solution to the
stochastic quantization equation associated with the P(φ)2-quantum fields in infinite
volume, andRöckner, R. Zhu andX. Zhu [15] obtained restrictedMarkov uniqueness
for the corresponding Dirichlet operator. Note that essential self-adjointness implies
restricted Markov uniqueness. However, the converse does not hold in general.

On the other hand, even in the case of P(φ)1-quantum fields in infinite volume,
essential self-adjointness of the Dirichlet operator has been open for many years and
solved by the author and Röckner [11]. Moreover in that paper, it was shown that the
corresponding dynamics coincides with the P(φ)1-time evolution, which had been
constructed by Iwata [10] as a unique strong solution to the stochastic quantization
equation (7) defined on the whole line R.

In this survey paper, we discuss L p-uniqueness of the Dirichlet operator on an
infinite volume path spaceC(R,Rd)withGibbsmeasures obtained in [4, 11]. Impor-
tant examples of the Gibbsmeasures are P(φ)1, exp(φ)1, and trigonometric quantum
fields in infinite volume. In particular, exp(φ)1-quantum fields were introduced (for
the case where R occurring in (1) below is replaced by a 2-dimensional Euclidean
space-time R2 and where d = 1) by Albeverio and Høegh-Krohn in the early 1970s
(cf. [1, 2]). More precisely, we are concerned with Gibbs measures on an infinite
volume path space C(R,Rd) given by the following formal expression:

μ(dw) = Z−1 exp
{

− 1

2

∫

R

(
(−Δx + m2)w(x),w(x)

)
Rd dx

−
∫

R

(∫

Rd

e(w(x),ξ)Rd ν(dξ)

)
dx

} ∏
x∈R

dw(x). (1)

Here Z is a normalizing constant,m > 0 denotesmass,Δx := d2/dx2, ν is a bounded
positive measure onRd with compact support, and

∏
x∈R dw(x) stands for a (heuris-

tic) volumemeasure on the space of maps fromR intoRd . This has the interpretation
of a quantized d-dimensional vector field with an interaction of exponential type in
the 1-dimensional space-time R, a model which is known as stochastic quantization
of the exp(φ)1-quantum field model (with weight measure ν).

Furthermore, we also discuss a characterization of the stochastic dynamics corre-
sponding to the above Dirichlet operator. Thanks to a general theory of Albeverio–
Röckner [3], the stochastic dynamics constructed through the Dirichlet form ap-
proach solves the parabolic SPDE (7) below weakly. However, we obtain something
much better, namely existence and uniqueness of a strong solution. We achieve this
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by first proving pathwise uniqueness for SPDE (7) and then applying the recent work
on the Yamada–Watanabe theorem for mild solutions of SPDEs (cf. Ondreját [14]).
As a consequence, we have the existence of a unique strong solution to SPDE (7) by
using simple and straightforward arguments which do not rely on any finite volume
approximations discussed as in [10]. However, as we will mention in Sect. 2, this
uniqueness does not imply the L p-uniqueness of the Dirichlet operator, and vice
versa.

The rest of this paper is organized as follows: In Sect. 2, we present the framework
and state our strong uniqueness results for bothDirichlet operators and corresponding
stochastic dynamics. In Sect. 3, we raise an open problem.

2 Framework and Results

First of all, we introduce some notation and objects we will be working with. We de-
fine a weight function ρr ∈ C∞(R,R), r ∈ R by ρr (x) := erχ(x), x ∈ R, where χ ∈
C∞(R,R) is a positive symmetric convex function satisfyingχ(x) = |x | for |x | ≥ 1.
We fix a positive constant r sufficiently small. We set E := L2(R,Rd; ρ−2r (x)dx).
This space is a Hilbert space with its inner product defined by

(w, w̃)E :=
∫

R

(
w(x), w̃(x)

)
Rdρ−2r (x)dx, w, w̃ ∈ E .

Moreover, we set H := L2(R,Rd) and denote by ‖ · ‖E and ‖ · ‖H the corre-
sponding norms in E and H , respectively. We regard the dual space E∗ of E as
L2(R,Rd; ρ2r (x)dx). We endow C(R,Rd) with the compact uniform topology and
introduce a family of Banach spaces

Cr := {
w ∈ C(R,Rd)| lim|x |→∞ |w(x)|ρ−r (x) < ∞}

, r > 0

with norms defined by ‖w‖r,∞ := supx∈R |w(x)|ρ−r (x),w ∈ Cr . We also introduce
a tempered subspace of C(R,Rd) by C := ∩r>0Cr . We note that C is a Fréchet
space with respect to the system of norms {‖ · ‖r,∞}r>0 and the inclusion C ⊂ E ∩
C(R,Rd) is dense with respect to the topology of E . LetB be the topological σ -field
onC(R,Rd). For T1 < T2 ∈ R, we definebyB[T1,T2] andB[T1,T2],c the sub-σ -fields of
B generated by {w(x); T1 ≤ x ≤ T2} and {w(x); x ≤ T1, x ≥ T2}, respectively. For
T1, T2 ∈ R and z1, z2 ∈ Rd , let W z1,z2

[T1,T2] be the path space measure of the Brownian
bridge such that w(T1) = z1,w(T2) = z2. We sometimes regard this measure as a
probability measure on the measurable space (C(R,Rd),B) by putting w(x) = z1
for x ≤ T1 and w(x) = z2 for x ≥ T2.

We now introduce a (U -)Gibbs measure μ on C(R,Rd) based on Iwata [9]. Let
U ∈ C(Rd ,R) be a (self-interaction) potential function which can be written as
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U (z) = U0(z) +U1(z), z ∈ Rd ,

where U0 ∈ C(Rd ,R) is convex and U1 ∈ C1(Rd ,R). We impose the following
three conditions on U :
(U1): There exists a constant K1 ∈ R such that

(∇̃U (z1) − ∇̃U (z2), z1 − z2
)
Rd ≥ K1|z1 − z2|2, z1, z2 ∈ Rd ,

where ∇̃U (z) := ∂0U0(z) + ∇U1(z), z ∈ Rd and ∂0U0 is the minimal section of the
subdifferential ∂U0. (Wenote that ∇̃U coincideswith the usual gradient∇U provided
U ∈ C1(Rd ,R).)
(U2): There exist K2 > 0, R > 0 and α > 0 such that U1(z) ≥ K2|z|α, |z| > R.

(U3): There exist K3, K4 > 0 and 0 < β < 1 + α
2 such that

|∇̃U (z)| ≤ |∂0U0(z)| + |∇U1(z)| ≤ K3 exp(K4|z|β), z ∈ Rd .

Let HU := − 1
2Δz +U be the Schrödinger operator on L2(Rd ,R), where Δz :=∑d

i=1 ∂2/∂z2i is the d-dimensional Laplacian. Then condition (U2) assures that HU

has purely discrete spectrum and a complete set of eigenfunctions. We denote by
λ0(> minU ) the minimal eigenvalue and byΩ the corresponding normalized eigen-
function in L2(Rd ,R). This eigenfunction is called ground state and it can be chosen
to be strictly positive. Moreover, it has exponential decay at infinity. To be precise,
there exist some positive constants D1, D2 such that

0 < Ω(z) ≤ D1 exp
( − D2|z|U 1

2 |z|(z)
1/2

)
, z ∈ Rd , (2)

where U 1
2 |z|(z) := inf{U (y)| |y − z| ≤ 1

2 |z|}.
For T1 < T2, and for all T1 ≤ x1 < x2 < · · · < xn ≤ T2, A1, A2, . . . , An ∈

B(Rd), we define a cylinder set A ∈ B[T1,T2] by A := {w ∈ C(R,Rd) | w(x1) ∈
A1,w(x2) ∈ A2, . . . ,w(xn) ∈ An}. Next, we set

μ(A) :=
(
Ω, e−(x1−T1)(HU−λ0)

(
1A1e

−(x2−x1)(HU−λ0)
(
1A2 · · ·

e−(xn−xn−1)(HU−λ0)
(
1An e

−(T2−xn)(HU−λ0)Ω
))))

L2(Rd ,R)

= eλ0(T2−T1)
∫

Rd
Ω(z1)

{ ∫

Rd
Ω(z2)p(T2 − T1, z1, z2)

×
(∫

C(R,Rd )

1A(w) exp

(
−

∫ T2

T1
U (w(x))dx

)
W

z1,z2[T1,T2](dw)

)
dz2

}
dz1, (3)

where p(t, z1, z2), t > 0, z1, z2 ∈ Rd is the transition probability density of standard
Brownian motion (Bt )t≥0 on Rd , and we used the Feynman–Kac formula for the
second line. Then by recalling that e−t HU Ω = e−tλ0Ω, ‖Ω‖L2(Rd ,R) = 1 and by the
Markov property of the d-dimensional Brownian motion, (3) defines a consistent
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family of probabilitymeasures, and henceμ can be extended to a probabilitymeasure
on C(R,Rd). We mention that the Gibbs measure μ coincides with the probability
law of the P(φ)1-process associated with the potential U , that is, the stationary
solution of the following SDE on Rd :

dzt = ∇ logΩ(zt )dt + dBt .

Carrying out the standard moment estimates of Brownian motion, we see that the
Gibbs measure μ is supported on the tempered path space C . Thus we may regard
μ ∈ P(E) by identifying it with its image measure under the inclusion map of C
into E . Furthermore, μ satisfies the following DLR-equation:

Eμ
[
1A|B[T1,T2],c

]
(ξ)=Z−1

[T1,T2](ξ)

∫

A
exp

(
−

∫ T2

T1

U (w(x))dx

)
W ξ(T1),ξ(T2)

[T1,T2] (dw),

μ-a.e. ξ ∈ C(R,Rd), for all A ∈ B[T1,T2], T1 < T2, (4)

where Z[T1,T2](ξ) := EW
ξ(T1),ξ(T2)

[T1 ,T2 ] [exp(− ∫ T2
T1

U (w(x))dx)] is a normalizing constant.
Although generally there exist other probabilitymeasures onC(R,Rd) satisfying the
DLR-equation (4),we only consider theGibbsmeasureμwhich has been constructed
in (3).

Remark 1 If condition (U2) holds with α > 2, we obtain the following Fernique
type estimate:

Eμ
[
exp(p‖w‖2E )

] =
∞∑
n=0

pn

n! E
μ
[‖w‖2nE

]

≤
∞∑
n=0

( p

r

)n 1

n!
∫

Rd

|z|2nRdΩ(z)2dz

≤ D2
1

∞∑
n=0

( p

r

)n 1

n!
∫

Rd

|z|2nRd e−c|z|1+α/2
dz

= C1Sd−1

(1 + α/2)

∞∑
n=0

( p

r

)n 1

n!c
1+α/2
2n+d Γ

(
2n + d

1 + α/2

)

≤ C2 exp

{
C3

( p

r

) α+2
α−2

}
, p > 0,

where c and Ci (i = 1, 2, 3) are positive constants and Sd−1 denotes the area of the
(d − 1)-dimensional unit sphere.

Now we are in a position to introduce the pre-Dirichlet form (E ,FC∞
b ). Let

FC∞
b be the space of all smooth cylinder functions on E having the form

F(w) = f (〈w, ϕ1〉, . . . , 〈w, ϕn〉), w ∈ E,
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with n ∈ N, f = f (α1, . . . , αn) ∈ C∞
b (Rn,R) and ϕ1, . . . , ϕn ∈ C∞

0 (R,Rd). Here
we set 〈w, ϕ〉 := ∫

R(w(x), ϕ(x))Rd dx if the integral converges absolutely. Note that
FC∞

b is dense in L p(μ) for all p ≥ 1. For F ∈ FC∞
b , we define the H -Fréchet

derivative DH F : E → H by

DH F(w) :=
n∑
j=1

∂ f

∂α j
(〈w, ϕ1〉, . . . , 〈w, ϕn〉)ϕ j .

Then we consider the pre-Dirichlet form (E ,FC∞
b ) which is given by

E (F,G) = 1

2

∫

E

(
DH F(w), DHG(w)

)
Hμ(dw), F,G ∈ FC∞

b .

Proposition 1 ([4, Proposition 2.7]):

E (F,G) = −
∫

E
L0F(w)G(w)μ(dw), F,G ∈ FC∞

b ,

where L0F ∈ L p(μ), p ≥ 1, F ∈ FC∞
b is given by

L0F(w) = 1

2
Tr(D2

H F(w)) + 1

2

〈
w,Δx DH F(w(·))〉 − 1

2

〈
(∇̃U )(w(·)), DH F(w)

〉

= 1

2

n∑
i, j=1

∂2 f

∂αi∂α j

(〈w, ϕ1〉, . . . , 〈w, ϕn〉
)〈ϕi , ϕ j 〉

+1

2

n∑
i=1

∂ f

∂αi

(〈w, ϕ1〉, . . . , 〈w, ϕn〉
) · {〈w,Δxϕi 〉 − 〈(∇̃U )(w(·)), ϕi 〉

}
.

This proposition means that the operator L0 is the pre-Dirichlet operator which
is associated with the pre-Dirichlet form (E ,FC∞

b ). In particular, (E ,FC∞
b ) is

closable in L2(μ). Let us denote by D(E ) the completion of FC∞
b with respect to

the E 1/2
1 -norm. By the standard theory of Dirichlet forms, (E ,D(E )) is a Dirichlet

form and the operator L0 has a self-adjoint extension (Lμ,Dom(Lμ)), called the
Friedrichs extension, corresponding to the Dirichlet form (E ,D(E )). The semigroup
{etLμ}t≥0 generated by (Lμ,Dom(Lμ)) is Markovian, i.e., 0 ≤ etLμ F ≤ 1, μ-a.e.
whenever 0 ≤ F ≤ 1, μ-a.e. Moreover, since {etLμ}t≥0 is symmetric on L2(μ), the
Markovian property implies that ‖etLμ F‖L1(μ) ≤ ‖F‖L1(μ) holds for F ∈ L2(μ),
and {etLμ}t≥0 can be extended as a family of C0-semigroup of contractions in L p(μ)

for all p ≥ 1.
On the other hand, it is a fundamental question whether the Friedrichs extension

is the only closed extension generating a C0-semigroup on L p(μ), p ≥ 1, which for
p = 2 is equivalent to the fundamental problem of essential self-adjointness ofL0 in
quantumphysics. Even if p = 2, in general there aremany lower bounded self-adjoint
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extensions L̃ ofL0 in L2(μ)which therefore generate different symmetric strongly
continuous semigroups {etL̃ }t≥0. If, however, we have L p(μ)-uniqueness ofL0 for
some p ≥ 2, there is hence only one semigroup which is strongly continuous and
with generator extending L0. Consequently, in this case, only one such L p-, hence
only one such L2-dynamics exists, associated with the Gibbs measure μ.

Before stating our main results of this paper, we recall the notion of “capacity”
for the convenience. For an open set O ⊂ E , we define

Cap(O) := inf{E1(F, F)| F ∈ D(E ), F ≥ 1 on O, μ-a.e.}

and for an arbitrary subset A ⊂ E , we define Cap(A) := inf{Cap(O)| A ⊂ O, O
open}.

The following two theorems are the main results of this survey paper.

Theorem 1 ([11, Theorem 2.4], [4, Theorem 2.8]): (1) The pre-Dirichlet opera-
tor (L0,FC∞

b ) is L p(μ)-unique for all p ≥ 1, i.e., there exists exactly one C0-
semigroup in L p(μ) such that its generator extends (L0,FC∞

b ).
(2) There exists a diffusion process M := (Θ,F , {Ft }t≥0, {Xt }t≥0, {Pw}w∈E )

such that the semigroup {Pt }t≥0 generated by the unique (self-adjoint) extension
of (L0,FC∞

b ) satisfies the following identity for any bounded measurable function
F : E → R, and t > 0:

Pt F(w) =
∫

Θ

F(Xt (ω))Pw(dω), μ-a.s. w ∈ E . (5)

Moreover,M is the unique diffusion process solving the following “componentwise”
SDE:

〈Xt , ϕ〉 = 〈w, ϕ〉 + 〈Wt , ϕ〉 + 1

2

∫ t

0

{〈Xs,Δxϕ〉 − 〈(∇̃U )(Xs(·)), ϕ〉}ds,
t > 0, ϕ ∈ C∞

0 (R,Rd), Pw-a.s., (6)

for quasi-every w ∈ E and such that its corresponding semigroup given by (5) con-
sists of locally uniformly bounded (in t) operators on L p(μ), p ≥ 1, where {Wt }t≥0

is an {Ft }t≥0-adapted H-cylindrical Brownian motion starting at origin defined on
(Θ,F , {Ft }t≥0,Pw).

Theorem 2 ([4, Theorem 2.9]): For quasi-every w ∈ E, the parabolic SPDE

∂Xt (x)

∂t
= 1

2

{
Δx Xt (x) − (∇̃U )(Xt (x))

} + Ẇt (x), x ∈ R, t > 0 (7)

hasaunique strong solution X = {Xw
t (·)}t≥0 living inC([0,∞), E) ∩ C((0,∞),Cr ).

Namely, there exists a set S ⊂ E with Cap(S) = 0 such that for any H-cylindrical
Brownian motion {Wt }t≥0 starting at origin defined on a filtered probability
space (Θ,F , {Ft }t≥0,P) satisfying the usual conditions and for any initial datum



468 H. Kawabi

w ∈ E \ S, there exists a unique {Ft }t≥0-adapted process X = {Xw
t (·)}t≥0 living in

C([0,∞), E) ∩ C((0,∞),Cr ) satisfying (6).

Remark 2 Obviously, the uniqueness result in Theorem 2 implies the (thus weaker)
uniqueness stated for the diffusion processM in Theorem 1. However, it does not im-
ply the L p(μ)-uniqueness of the Dirichlet operator. This is obvious, since a priori the
latter might have extensions which generate non-Markovian semigroups which thus
have no probabilistic interpretation as transition probabilities of a process. Therefore,
neither of the two uniqueness results in Theorems 1 and 2, i.e., L p(μ)-uniqueness of
theDirichlet operator and strong uniqueness of the corresponding SPDE respectively,
implies the other.

We give three examples which satisfy our conditions (U1), (U2) and (U3).

Example 1 (P(φ)1-quantum fields): We consider the case where the potential func-
tion U is written as the following potential function on Rd :

U (z) =
2n∑
j=0

a j |z| j , a2n > 0, n ∈ N.

Especially, in the case U (z) = m2

2 |z|2,m > 0, the corresponding Gibbs measure μ

coincides with the Gaussian measure on C with mean 0 and covariance operator
(−Δx + m2)−1. It is just the (space-time) free field of mass m in terms of Euclidean
quantum field theory. A double-well potential U (z) = a(|z|4 − |z|2), a > 0, is also
particularly important from the point of view of physics.

We should mention that the Gibbs measure μ is supported by a smaller subset of
C(R,Rd) than C . Actually, it holds

μ

({
w

∣∣ lim sup
|x |→∞

|w(x)|Rd

(log |x |)1/(m+1)
≤ C

})
= 1 (8)

with a suitable constantC > 0. See e.g.,Rosen–Simon [16] andLörinczi–Hiroshima–
Betz [12]. Following Remark 3 below, we can also show (8) easily.

Example 2 (exp(φ)1-quantum fields): We introduce a Gibbs measure μ with the
formal expression (1). Let us consider an exponential type potential function U :
Rd → R (with weight ν) given by

U (z) = m2

2
|z|2 + V (z) := m2

2
|z|2 +

∫

Rd

e(ξ,z)Rd ν(dξ), z ∈ Rd ,

where ν is a bounded positive measure with supp(ν) ⊂ {ξ ∈ Rd | |ξ | ≤ L} for some
L > 0. We note thatU is a smooth strictly convex function (i.e., ∇2U ≥ m2). Hence
we can take K1 = m2, K2 = m2

2 and α = 2. Moreover,
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|U (z)| ≤ m2

2
|z|2 + ν(Rd)eL|z| ≤

(
m2

2L2
+ ν(Rd)

)
e2L|z|, z ∈ Rd ,

and

|∇U (z)| ≤ m2|z| +
∫

Rd

|ξ |e(ξ,z)Rd ν(dξ) ≤
(
m2

L
+ Lν(Rd)

)
eL|z|, z ∈ Rd .

Thus we can take β = 1, which satisfies β < 1 + α
2 in condition (U3).

Remark 3 Now we consider a simple example of exp(φ)1-quantum fields in the
case d = 1. This example has been discussed in the 2-dimensional space-time case
(e.g., exp(φ)2-quantum fields) in Albeverio–Høegh-Krohn [2]. Let δa be the Dirac
measure at a ∈ R and we consider ν(dξ) := 1

2

(
δ−a(dξ) + δa(dξ)

)
, a > 0. Then the

corresponding potential function is U (z) = m2

2 z2 + cosh(az), and (2) implies that
the Schrödinger operator HU has a ground state Ω satisfying

0 < Ω(z) ≤ D1 exp

(
− D2√

2
|z| e a

4 |z|
)

, z ∈ R (9)

for some D1, D2 > 0. By the translation invariance of the Gibbs measure μ and (9),
there exist positive constants M1 and M2 such that

AT := μ

({
w ∈ C(R,R)| |w(T )| >

4

a
log log T

})

=
∫

|z|> 4
a log log T

Ω(z)2dz

≤ M1 exp
{ − M2(log T )(log log T )

} = M1T
−M2 log log T

for T large enough, and it implies
∑∞

T=1 AT < ∞. Then the first Borel–Cantelli
lemma yields

μ

({
w ∈ C(R,R)| lim sup

|x |→∞
|w(x)|

log log |x | ≤ 4

a

})
= 1.

This means that μ is supported by a much smaller subset of C(R,R) than C .

Example 3 (Trigonometric quantum fields): We consider a trigonometric type po-
tential function U : Rd → R (with weight ν) given by

U (z) = m2

2
|z|2 + V (z) := m2

2
|z|2 +

∫

Rd

cos
{
(ξ, z)Rd + α

}
ν(dξ), z ∈ Rd ,

where α ∈ R, m > 0 and ν is a bounded signed measure with finite second absolute
moment, i.e.,
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|ν|(Rd) < ∞, K (ν) :=
∫

Rd

|ξ |2|ν|(dξ) < ∞.

This potential function is smooth, and it can be regarded as a bounded perturbation
of a quadratic function. Moreover, ∇2U ≥ m2 − K (ν) and

|∇U (z)| ≤ m2|z| + K (ν)1/2|ν|(Rd)1/2, z ∈ Rd .

This type of potential functions corresponds to quantum field models with “trigono-
metric interaction” andhas beendiscussed especially in the 2-dimensional space-time
case (cf. [1]).

3 An Open Problem

Finally, we raise an open problem which is concerned with this paper.
If the potential function U is a C1-function with polynomial growth at infinity,

Iwata [10] proves that SPDE (7) has a unique strong solution Xw = {Xw
t (·)}t≥0

living in C([0,∞),C ) for every initial datum w ∈ C . On the other hand, it should
be remarked that (∇U )(w(·)) /∈ C for w ∈ C in the case of exp(φ)1-quantum fields.
Thus if U has exponential growth at infinity, we cannot apply Iwata’s argument
directly to solve SPDE (7) in C([0,∞),C ) for every initial datum w ∈ C . Can we
overcome this difficulty?

It is natural to think that we can easily construct a unique strong solution to SPDE
(7) living in C([0,∞),Ce) for every initial datum w ∈ Ce by only replacing the state
space C by a much smaller tempered subspace Ce and then by applying Iwata’s
argument. One might guess that a possible candidate for Ce is a subspace of C such
that (∇U )(w(·)) ∈ Ce holds for w ∈ Ce, which is the space of all paths behaving like

|w(x)| ∼ log(log(log(log(· · · x)))) =: ρe(x)
−1

at infinity. However, we cannot follow all arguments in the papers [4, 10, 11] if we

replace ρ−2r (x) by ρe(x) because of
∫ ∞

ρe(x)
−2dx = ∞. Hence it seems that this

approach is not valid for our problem.
On the other hand, in the case d = 1, by applying a comparison theorem for

parabolic SPDEs (cf. Shiga [17]), we might construct a unique strong solution to
SPDE (7) with exponentially growing drift which lives in C([0,∞),C ) for every
initial datum w ∈ C . However, this approach does not work in the case d ≥ 2.

Hence we still need to find a new approach to tackle this problem. It should be a
preliminary step toward a construction of a unique strong solution to the stochastic
quantization equation associated with the exp(φ)2-quantum fields in infinite volume.
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