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1 Introduction

Let E be a Lusin topological space endowed with the Borel σ -algebra B and
X = (Ω,F ,Ft , Xt ,P

x , ζ ) be a right Markov process with state space E , transition
function (Pt )t≥0: Pt u(x) = E

x (u(Xt ); t < ζ), t ≥ 0, x ∈ E .
One of the fundamental connections between potential theory and Markov pro-

cesses is the relation between excessive functions and (right-continuous) super-
martingales; see e.g. [1], Chap. VI, Sect. 10, or [2], Proposition 13.7.1 and Theorem
14.7.1. Similar results hold for (sub)martingales, and together stand as a keystone at
the foundations of the so called probabilistic potential theory. For completeness, let
us give the precise statement; a short proof is included in Appendix.

Proposition 1 The following assertions are equivalent for a non-negative real-
valued B-measurable function u and β ≥ 0.

(i) (e−βt u(Xt ))t≥0 is a right continuous Ft -supermartingale w.r.t. Px for all x ∈ E.
(ii) The function u is β-excessive.

Our first aim is to show that this connection can be extended to the space of
differences of excessive functions on the one hand, and to quasimartingales on the
other hand (cf. Theorem 1 from Sect. 2), with concrete applications to semi-Dirichlet
forms (see Theorem 2 below).

Remark 1 Recall the following famous characterization from [3]: If u is a real-
valued B -measurable function then u(X) is an Ft -semimartingale w.r.t. all Px ,
x ∈ E if and only if u is locally the difference of two finite 1-excessive functions.

The main result from Theorem1 should be regarded as an extension of
Proposition 1 and as a refinement of the just mentioned characterization for semi-
martingales from Remark1. However, we stress out that our result is not a conse-
quence of the two previously known results.

In Sect. 3 we focus on a special class of (0-)excessive functions called invariant,
whichwere studied in the literature from several slightly different perspectives. Here,
our aim is to provide a unifying result which clarifies the relations between harmonic,
co-harmonic, invariant, and co-invariant functions, showing that in the Markovian
(conservative) case they are all the same. The measurable structure of invariant func-
tions is also involved. We give the results in terms of L p(E, m)-resolvents of oper-
ators, where m is assumed sub-invariant, allowing us to drop the strong continuity
assumption. In addition, we show that when the resolvent is associated to a right
process, then the martingale functions and the co-martingale ones (i.e., martingale
w.r.t. to a dual process) also coincide.

The last topic where the existence of (co)excessive functions plays a fundamental
role is the problem of existence of invariant probability measures for a fixed Marko-
vian transition function (Pt )t≥0 on a general measurable space (E,B). Recall that
the classical approach is to consider the dual semigroup of (Pt )t≥0 acting on the
space of all probabilities P(E) on E , and to show that it or its integral means, also
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known as the Krylov-Bogoliubov measures, are relatively compact w.r.t. some con-
venient topology (metric) on P(E) (e.g. weak topology, (weighted) total variation
norm, Wasserstein metric, etc.). In essence, there are two kind of conditions which
stand behind the success of this approach: some (Feller) regularity of the semigroup
(Pt )t≥0 (e.g. it maps bounded and continuous (Lipschitz) functions into bounded
and continuous (Lipschitz) functions), and the existence of some compact (or small)
sets which are infinitely often visited by the process; see e.g. [4–10]. Our last aim
is to present (in Sect. 4) a result from [11], which offers a new (two-step) approach
to the existence of invariant measures (see Theorem 4 below). In very few words,
our idea was to first fix a convenient auxilliary measure m (with respect to which
each Pt respects classes), and then to look at the dual semigroup of (Pt )t≥0 acting
not on measures as before, but on functions. In this way we can employ some weak
L1(m)-compactness results for the dual semigroup in order to produce a non-zero
and non-negative co-excessive function.

At this point we would like to mention that most of the announced results, which
are going to be presented in the next three sections, are exposed with details in
[11–13].

The authors had the pleasure to be coauthors of Michael Röckner and part of the
results presented in this survey paper were obtained jointly. So, let us conclude this
introduction with a

“Happy Birthday, Michael!”

2 Differences of Excessive Functions and Quasimartingales
of Markov Processes

Recall that the purpose of this section is to study those real-valued measurable func-
tions u having the property that u(X) is a Px -quasimartingale for all x ∈ E (in short,
“u(X) is a quasimartingale”, or “u is a quasimartingale function”). At this point we
would like to draw the attention to the fact that in the first part of this section we study
quasimartingales with respect to P

x for all x ∈ E , in particular all the inequalities
involved are required to hold pointwise for all x ∈ E . Later on we shall consider
semigroups or resolvents on L p or Dirichlet spaces with respect to some duality
measure, and in these situations we will explicitly mention if the desired properties
are required to hold almost everywhere or outside some exceptional sets.

For the reader’s convenience, let us briefly present some classic facts about quasi-
martingales in general.

Definition 1 Let (Ω,F ,Ft ,P) be a filtered probability space satisfying the usual
hypotheses. An Ft -adapted, right-continuous integrable process (Zt )t≥0 is called
P-quasimartingale if
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V arP(Z) := sup
τ

E{
n∑

i=1

|E[Zti − Zti−1 |Fti−1 ]| + |Ztn |} < ∞,

where the supremum is taken over all partitions τ : 0 = t0 ≤ t1 ≤ . . . ≤ tn < ∞.

Quasimartingales played an important role in the development of the theory of
semimartingales and stochastic integration, mainly due to M. Rao’s theorem accord-
ing to which any quasimartingale has a unique decomposition as a sum of a local
martingale and a predictable process with paths of locally integrable variation. Con-
versely, one can show that any semimartingale with bounded jumps is locally a
quasimartingale. However, to the best of our knowledge, their analytic or potential
theoretic aspects have never been investigated or, maybe, brought out to light, before.

We return now to the frame given by a Markov process. Further in this section
we deal with a right Markov process X = (Ω,F ,Ft , Xt ,P

x , ζ ) with state space
E and transition function (Pt )t≥0. Although we shall not really be concerned with
the lifetime formalism, if X has lifetime ξ and cemetery point Δ, then we make the
convention u(Δ) = 0 for all functions u : E → [−∞,+∞].

Recall that for β ≥ 0, a B-measurable function f : E → [0,∞] is called β-
supermedian if Pβ

t f ≤ f pointwise on E , t ≥ 0; (Pβ
t )t≥0 denotes the β-level of the

semigroup of kernels (Pt )t≥0, Pβ
t := e−β Pt . If f is β-supermedian and lim

t→0
Pt f = f

point-wise on E , then it is called β-excessive. It is well known that aB-measurable
function f is β-excessive if and only if αUα+β f ≤ f , α > 0, and lim

α→∞ αUα f = f

point-wise on E , where U = (Uα)α>0 is the resolvent family of the process X ,
Uα := ∫ ∞

0 e−αt Pt dt . The convex cone of all β-excessive functions is denoted by
E(Uβ); here Uβ denotes the β-level of the resolvent U , Uβ := (Uβ+α)α>0; the
fine topology is the coarsest topology on E such that all β-excessive functions are
continuous, for some β > 0. If β = 0 we drop the index β.

Taking into account the strong connection between excessive functions and
supermartingales for Markov processes, the following characterization of M. Rao
was our source of inspiration: a real-valued process on a filtered probability
space (Ω,F ,Ft ,P) satisfying the usual hypotheses is a quasimartingale if and
only if it is the difference of two positive right-continuous Ft -supermartingales; see
e.g. [14], p. 116.

As a first observation, note that if u(X) is a quasimartingale, then the following
two conditions for u are necessary:

(i) sup
t>0

Pt |u| < ∞ and (ii) u is finely continuous. Indeed, since for each x ∈ E we

have that sup
t

Pt |u|(x) = sup
t
E

x |u(Xt )| ≤ V arP
x
(u(X)) < ∞, the first assertion is

clear. The second one follows by the result from [15] which is stated in the proof of
Proposition 1 in the Appendix at the end of the paper.

For a real-valued function u, a partition τ ofR+, τ : 0 = t0 ≤ t1 ≤ . . . ≤ tn < ∞,
and α > 0 we set
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V α(u) := sup
τ

V α
τ (u), V α

τ (u) :=
n∑

i=1

Pα
ti−1

|u − Pα
ti −ti−1

u| + Pα
tn |u|,

where the supremum is taken over all finite partitions of R+.
A sequence (τn)n≥1 of finite partitions ofR+ is called admissible if it is increasing,⋃

k≥1
τk is dense in R+, and if r ∈ ⋃

k≥1
τk then r + τn ⊂ ⋃

k≥1
τk for all n ≥ 1.

We can state now our first result, it is a version of Theorem 2.6 from [12].

Theorem 1 Let u be a real-valued B-measurable function and β ≥ 0 such that
Pt |u| < ∞ for all t . Then the following assertions are equivalent.

(i) (e−βt u(Xt ))t≥0 is a P
x -quasimartingale for all x ∈ E.

(ii) u is finely continuous and sup
n

V β
τn

(u) < ∞ for one (hence all) admissible

sequence of partitions (τn)n.
(iii) u is a difference of two real-valued β-excessive functions.

Remark 2 The key idea behind the previous result is that by the Markov property
is not hard to show that for all x ∈ E we have V arP

x
((e−αt u(Xt )t≥0) = V α(u)(x),

meaning that assertion (i) holds if and only if V α(u) < ∞. But V α(u) is a supremum
of measurable functions taken over an uncountable set of partitions, hence it may
no longer be measurable, which makes it hard to handle in practice. Concerning this
measurability issue, Theorem 1, (ii) states that instead of dealing with V α(u), we can
work with sup

n
V α

τn
(u) for any admissible sequence of partitions (τn)n≥1. This subtile

aspect was crucial in order to give criteria to check the quasimartingale nature of
u(X); see also Proposition 1 in the next subsection.

2.1 Criteria for Quasimartingale Functions

In this subsection, still following [12], we provide general conditions for u under
which (e−βt u(Xt ))t≥0 is a quasimartingale, which means that, in particular,
(u(Xt ))t≥0 is a semimartingale.

Let us consider thatm is aσ -finite sub-invariantmeasure for (Pt )t≥0 so that (Pt )t≥0

extends uniquely to a strongly continuous semigroup of contractions on L p(m),
1 ≤ p < ∞; U may as well be extended to a strongly continuous resolvent family
of contractions on L p(m), 1 ≤ p < ∞. The corresponding generators (Lp, D(Lp) ⊂
L p(m)) are defined by

D(Lp) = {Uα f : f ∈ L p(m)},

Lp(Uα f ) := αUα f − f for all f ∈ L p(m), 1 ≤ p < ∞,

with the remark that this definition is independent of α > 0.
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The corresponding notations for the dual structure are P̂t and (̂Lp, D(̂Lp)), and
note that the adjoint of Lp is L̂p∗ ; 1

p + 1
p∗ = 1. Throughout, we denote the standard

L p-norms by ‖ · ‖p, 1 ≤ p ≤ ∞.

We present below the L p-version of Theorem 1; cf. Proposition 4.2 from [12].

Proposition 2 The following assertions are equivalent for aB-measurable function
u ∈ ⋃

1≤p≤∞
L p(m) and β ≥ 0.

(i) There exists an m-version ũ of u such that (e−βt ũ(Xt ))t≥0 is aPx -quasimartingale
for x ∈ E m-a.e.
(ii) For an admissible sequence of partitions (τn)n≥1 of R+, sup

n
V β

τn
(u) < ∞ m-a.e.

(iii) There exist u1, u2 ∈ E(Uβ) finite m-a.e. such that u = u1 − u2 m-a.e.

Remark 3 Under the assumptions of Proposition 2, if u is finely continuous and one
of the equivalent assertions is satisfied then all of the statements hold outside an
m-polar set, not only m-a.e., since it is known that an m-negligible finely open set
is automatically m-polar; if in addition m is a reference measure then the assertions
hold everywhere on E exept a polar set.

Now, we focus our attention on a class of β-quasimartingale functions which
arises as a natural extension of D(Lp). First of all, it is clear that any function
u ∈ D(Lp), 1 ≤ p < ∞, has a representation u = Uβ f = Uβ( f +) − Uβ( f −) with
Uβ( f ±) ∈ E(Uβ) ∩ L p(m), hence u has a β-quasimartingale version for all β >

0; moreover, ‖Pt u − u‖p =
∥∥∥
∫ t
0 PsLpuds

∥∥∥
p

≤ t‖Lpu‖p. The converse is also true,

namely if 1 < p < ∞, u ∈ L p(m), and ‖Pt u − u‖p ≤ const · t , t ≥ 0, then u ∈
D(Lp). But this is no longer the case if p = 1 (because of the lack of reflexivity
of L1), i.e. ‖Pt u − u‖1 ≤ const · t does not imply u ∈ D(L1). However, it turns out
that this last condition on L1(m) is yet enough to ensure that u is a β-quasimartingale
function. In fact, the following general result holds; see [12], Proposition 4.4 and its
proof.

Proposition 3 Let 1 ≤ p < ∞ and suppose A ⊂ {u ∈ L p∗
+ (m) : ‖u‖p∗ ≤ 1}, P̂s

A ⊂ A for all s ≥ 0, and E = ⋃
f ∈A

supp( f ) m-a.e. If u ∈ L p(m) satisfies

sup
f ∈A

∫

E
|Pt u − u| f dm ≤ const · t f or all t ≥ 0,

then there exists and m-version ũ of u such that (e−βt ũ(Xt ))t≥0 is a P
x -quasimartin-

gale for all x ∈ E m-a.e. and every β > 0.

We end this subsection with the following criteria which is not given with respect
to a duality measure, but in terms of the associated resolvent U ; cf. Proposition 4.1
from [12].
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Proposition 4 Let u be a real-valued B-measurable finely continuous function.

(i) Assume there exist a constant α ≥ 0 and a non-negative B-measurable function
c such that

Uα(|u| + c) < ∞, lim sup
t→∞

Pα
t |u| < ∞, |Pt u − u| ≤ ct, t ≥ 0,

and the functions t �→ Pt (|u| + c)(x) are Riemann integrable. Then (e−αt u(Xt ))t≥0

is a P
x -quasimartingale for all x ∈ E.

(ii) Assume there exist a constant α ≥ 0 and a non-negative B-measurable function
c such that

|Pt u − u| ≤ ct, t ≥ 0, sup
t∈R+

Pα
t (|u| + c) =: b < ∞.

Then (e−βt u(Xt ))t≥0 is a P
x -quasimartingale for all x ∈ E and β > α.

(iii) Assume there exists x0 ∈ E such that for some α ≥ 0

Uα(|u|)(x0) < ∞, Uα(|Pt u − u|)(x0) ≤ const · t, t ≥ 0.

Then (e−βt u(Xt ))t≥0 is a P
x -quasimartingale for δx0 ◦ Uβ-a.e. x ∈ E and β >

α; if in addition U is strong Feller and topologically irreducible then the P
x -

quasimartingale property holds for q.e. x ∈ E.

2.2 Applications to Semi-Dirichlet Forms

Assumenow that the semigroup (Pt )t≥0 is associated to a semi-Dirichlet form (E ,F )

on L2(E, m), where m is a σ -finite measure on the Lusin measurable space (E,B);
as standard references for the theory of (semi-)Dirichlet forms we refer the reader
to [16–19], but also [20], Chap. 7. By Corollary 3.4 from [21] there exists a (larger)
Lusin topological space E1 such that E ⊂ E1, E belongs to B1 (the σ -algebra of
all Borel subsets of E1),B = B1|E , and (E ,F ) regarded as a semi-Dirichlet form
on L2(E1, m) is quasi-regular, where m is the trivial extension of m to (E1,B1).
Consequently, we may consider a right Markov process X with state space E1 which
is associated with the semi-Dirichlet form (E ,F ).

If u ∈ F then ũ denotes a quasi continuous version of u as a function on E1 which
always exists and it is uniquely determined quasi everywhere. Following [22], for a
closed set F wedefineFb,F := {v ∈ F : v is bounded and v = 0 m-a.e. on E \ F}.

The next result is a version of Theorem 5.5 from [12], dropping the a priori
assumption that the semi-Dirichlet form is quasi-regular.
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Theorem 2 Let u ∈ F and assume there exist a nest (Fn)n≥1 and constants (cn)n≥1

such that
E (u, v) ≤ cn‖v‖∞ for all v ∈ Fb,Fn .

Then ũ(X) is a P
x -semimartingale for x ∈ E1 quasi everywhere.

Remark 4 The previous result has quite a history behind and we take the opportunity
to recall some previous achievements on the subject. First of all, without going
into details, note that if E is a bounded domain in R

d (or more generally in an
abstract Wiener space) and the condition from Theorem 2 holds for u replaced by
the canonical projections, then the conclusion is that the underlying Markov process
is a semimartingale. In particular, the semimartingale nature of reflected diffusions
on general bounded domains can be studied. This problem dates back to the work of
[23], where the authors showed that the reflected Brownian motion on a Lipschitz
domain in R

d is a semimartingale. Later on, this result has been extended to more
general domains and diffusions; see [24–28]. A clarifying result has been obtained in
[25], showing that the stationary reflecting Brownian motion on a bounded Euclidian
domain is a quasimartingale on each compact time interval if and only if the domain
is a strong Caccioppoli set. At this point it is worth to emphasize that in the previous
sections we studied quasimartingales on the hole positive real semi-axis, not on finite
intervals. This slight difference is a crucial one which makes our approach possible
and completely different. A complete study of these problems (including Theorem 2
but only in the symmetric case) have been done in a series of papers byM. Fukushima
and co-authors (wemention just [22, 29, 30]), with deep applications toBV functions
in both finite and infinite dimensions.

All these previous results have been obtained using the same common tools:
symmetric Dirichlet forms and Fukushima decomposition. Further applications to
the reflection problem in infinite dimensions have been studied in [31, 32], where
non-symmetric situationswere also considered. In the case of semi-Dirichlet forms, a
Fukushima decomposition is not yet known to hold, unless some additional hypothe-
ses are assumed (see e.g. [19]). Here is where our study developed in the previous
sections played its role, allowing us to completely avoid Fukushima decomposition
or the existence of the dual process. On brief, the idea of proving Theorem 2 is to
show that locally, the conditions from Proposition 3 are satisfied, so that u(X) is
(pre)locally a semimartingale, and hence a global semimartingale.

Assume that (E ,F ) is quasi-regular and that it is local, i.e., E (u, v) = 0 for all
u, v ∈ F with disjoint compact supports. It is well known that the local property is
equivalent with the fact that the associated process is a diffusion; see e.g. [18], Chap.
V, Theorem 1.5. As in [29], the local property of E allows us to extend Theorem 2
to the case when u is only locally in the domain of the form, or to even more general
situations, as stated in the next result; for details see Sect. 5.1 from [12].

Corollary 1 Assume that (E ,F ) is local. Let u be a real-valued B-measurable
finely continuous function and let (vk)k ⊂ F such that vk −→

k→∞ u point-wise outside

http://dx.doi.org/10.1007/978-3-319-74929-7_5
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an m-polar set and boundedly on each element of a nest (Fn)n≥1. Further, suppose
that there exist constants cn such that

|E (vk, v)| ≤ cn‖v‖∞ f or all v ∈ Fb,Fn .

Then u(X) is a P
x -semimartingale for x ∈ E quasi everywhere.

3 Excessive and Invariant Functions on L p-spaces

Throughout this sectionU = (Uα)α>0 is a sub-Markovian resolvent of kernels on E
and m is a σ -finite sub-invariant measure, i.e. m(αUα f ) ≤ m( f ) for all α > 0 and
non-negative B-measurable functions f ; then there exists a second sub-Markovian
resolvent of kernels on E denoted by Û = (Ûα)α>0 which is in weak duality withU
w.r.t. M in the sense that

∫
E f Uαgdm = ∫

E gÛα f dm for all positiveB-measurable
functions f, g and α > 0. Moreover, both resolvents can be extended to contractions
on any L p(E, m)-space for all 1 ≤ p ≤ ∞, and if they are strongly continuous then
we keep the same notations for their generators as in Sect. 2.1. In this part, our
attention focuses on a special class of differences of excessive functions (which are
in fact harmonic when the resolvent is Markovian). Extending [33], they are defined
as follows.

Definition 2 Areal-valuedB-measurable functionv ∈ ⋃
1≤p≤∞ L p(E, m) is called

U -invariantprovided thatUα(v f )= vUα f m-a.e. for all bounded andB-measurable
functions f and α > 0.

A set A ∈ B is called U -invariant if 1A is U -invariant; the collection of all
U -invariant sets is a σ -algebra.

Remark 5 If v ≥ 0 is U -invariant, then by [13], Proposition 2.4 there exists u ∈
E(U ) such that u = v m-a.e. If αUα1 = 1 m-a.e. then for every invariant function
v we have that αUαv = v m-a.e, which is equivalent (if U is strongly continuous)
with v being Lp-harmonic, i.e. v ∈ D(Lp) and Lpv = 0.

The following result is a straightforward consequence of the duality between U
and Û ; for its proof see Proposition 2.24 and Proposition 2.25 from [13].

Proposition 5 The following assertions hold.

(i) A function u is U -invariant if and only if it is Û -invariant.
(ii) The set of all U -invariant functions from L p(E, m) is a vector lattice with

respect to the point-wise order relation.

Let
Ip := {u ∈ L p(E, m) : αUαu = u m-a.e., α > 0}.
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The main result here is the next one, and it unifies and extends different more or
less known characterizations of invariant functions; cf. Theorem2.27 andProposition
2.29 from [13].

Theorem 3 Let u ∈ L p(E, m), 1 ≤ p < ∞, and consider the following conditions.

(i) αUαu = u m-a.e. for one (and therefore for all) α > 0.

(ii) αÛαu = u m-a.e., α > 0.

(iii) The function u is U -invariant.

(iv) Uαu = uUα1 and Ûαu = uÛα1 m-a.e. for one (and therefore for all) α > 0.

(v) The function u is measurable w.r.t. the σ -algebra of all U -invariant sets.

Then Ip is a vector lattice w.r.t. the pointwise order relation and (i) ⇔ (ii) ⇒
(iii) ⇔ (iv) ⇔ v).

If αUα1 = 1 or αÛα1 = 1 m-a.e. then assertions (i)–(v) are equivalent.
If p = ∞ and U is m-recurrent (i.e. there exists 0 ≤ f ∈ L1(E, m) s.t. U f = ∞

m-a.e.) then the assertions (i)–(v) are equivalent.

Remark 6 Similar characterizations for invariance as in Theorem 3, but in the recur-
rent case and for functions which are bounded or integrable with bounded negative
parts were already investigated in [34]. Of special interest is the situation when
the only invariant functions are the constant ones (irreducibility) because it entails
ergodic properties for the semigroup resp. resolvent; see e.g. [13, 33, 35].

3.1 Martingale Functions with Respect to the Dual Markov
Process

Our aim in this subsection is to identify the U -invariant functions with martingale
functions and co-martingale ones (i.e., martingales w.r.t some dual process); cf.
Corollary 3 below. The convenient frame is that from [36] and we present it here
briefly.

Assume that U = (Uα)α>0 is the resolvent of a right process X with state space
E and let T0 be the Lusin topology of E havingB as Borel σ -algebra, and let m be
a fixed U -excessive measure. Then by Corollary 2.4 from [36], and using also the
result from [21], the following assertions hold: There exist a larger Lusin measurable
space (E,B), with E ⊂ E , E ∈ B, B = B|E , and two processes X and X̂ with
common state space E , such that X is a right process on E endowed with a convenient
Lusin topology having B as Borel σ -algebra (resp. X̂ is a right process w.r.t. to
a second Lusin topology on E , also generating B), the restriction of X to E is
precisely X, and the resolvents of X and X̂ are in duality with respect to m,where m is
the trivial extension of m to (E1,B1) : m(A) := m(A ∩ E), A ∈ B1. In addition,
the α-excessive functions, α > 0, with respect to X̂ on E are precisely the unique
extensions by continuity in the fine topology generated by X̂ of the Ûα-excessive
functions. In particular, the set E is dense in E in the fine topology of X̂ .
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Note that the strongly continuous resolvent of sub-Markovian contractions induced
on L p(m), 1 ≤ p < ∞, by the process X (resp. X̂ ) coincides with U (resp. Û ).

Corollary 2 Let u be function from L p(E, m), 1 ≤ p < ∞. Then the following
assertions are equivalent.

(i) The process (u(Xt ))t≥0 is a martingale w.r.t. Px for m-a.e. x ∈ E.
(ii) The process (u(X̂t ))t≥0 is a martingale w.r.t. P̂x for m-a.e. x ∈ E.
(iii) The function u is Lp-harmonic, i.e. u ∈ D(Lp) and Lpu = 0.
(iv) The function u is L̂p-harmonic, i.e. u ∈ D(̂Lp) and L̂pu = 0.

Proof The equivalence (i i i) ⇐⇒ (iv) follows by Theorem 3, i) ⇐⇒ i i), while the
equivalence (i) ⇐⇒ (i i i) is a consequence of Proposition 2. �

Wemake the transition to the next (also the last) section of this paperwith an appli-
cation of Theorem 3 to the existence of invariant probability measures for Markov
processes. More precisely, assume thatU is the resolvent of a right Markov process
with transition function (Pt )t≥0. As before, m is a σ -finite sub-invariant measure
for U (and hence for (Pt )t≥0), while L1 and L̂1 stand for the generator, resp. the
co-generator on L1(E, m).

Corollary 3 The following assertions are equivalent.

(i) There exists an invariant probability measure for (Pt )t≥0 which is absolutely
continuous w.r.t. m.

(ii) There exists a non-zero element ρ ∈ D(L1) such that L1ρ = 0.

Proof It is well known that a probability measure ρ · m is invariant w.r.t. (Pt )t≥0 is
equivalent with the fact that ρ ∈ D(̂L1) and L̂1ρ = 0 (see also Lemma 1, (ii) from
below). Now, the result follows by Theorem 3.

Remark 7 Regarding the previous result, we point out that ifm(E) < ∞ and (Pt )t≥0

is conservative (i.e. Pt1 = 1 m-a.e. for all t > 0) then it is clear that m itself is invari-
ant, so that Corollary 3 has got a point only when m(E) = ∞. Also, we emphasize
that the sub-invariance property ofm is an essential assumption.We present a general
result on the existence of invariant probability measures in the next section, where
we drop the sub-invariance hypothesis.

4 L1-harmonic Functions and Invariant Probability
Measures

Throughout this subsection (Pt )t≥0 is a measurable Markovian transition function
on a measurable space (E,B) and m is an auxiliary measure for (Pt )t≥0, i.e. a finite
positive measure such that m( f ) = 0 ⇒ m(Pt f ) = 0 for all t > 0 and all positive
B-measurable functions f . As we previously announced, our final interest concerns
the existence of an invariant probability measure for (Pt )t≥0 which is absolutely
continuous with respect to m.
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Remark 8 We emphasize once again that in contrast with the previous section, m
is not assumed sub-invariant, since otherwise it would be automatically invariant.
Also, any invariant measure is clearly auxiliary, but the converse is far from being
true. As a matter of fact, the condition on m of being auxiliary is a minimal one: for
every finite positive measure μ and α > 0 one has that μ ◦ Uα is auxiliary; see e.g.
[11, 37].

For the first assertion of the next result we refer to [11], Lemma 2.1, while the
second one is a simple consequence of the fact that Pt1 = 1.

Lemma 1 (i) The adjoint semigroup (P∗
t )t≥0 on (L∞(m))∗ maps L1(m) into itself,

and restricted to L1(m) it becomes a semigroup of positivity preserving operators.
(ii) A probability measure ρ · m is invariant with respect to (Pt )t≥0 if and only if

ρ is m-co-excessive, i.e. P∗
t ρ ≤ ρ m-a.e. for all t ≥ 0.

Inspired by well known ergodic properties for semigroups and resolvents (see for
example [13]), our idea in order to produce co-excessive functions is to apply (not
for (Pt )t≥0 but for its adjoint semigroup) a compactness result in L1(m) due to [38],
saying that an L1(m)-bounded sequence of elements possesses a subsequence whose
Cesaro means are almost surely convergent to a limit from L1(m).

Definition 3 The auxilliary measure m is called almost invariant for (Pt )t≥0 if there
exist δ ∈ [0, 1) and a set function φ : B → R+ which is absolutely continuous with
respect to m (i.e. lim

m(A)→0
φ(A) = 0) such that

m(Pt1A) ≤ δm(E) + φ(A) for all t > 0.

Clearly, any positive finite invariant measure is almost invariant. Here is our last
main result, a variant of Theorem 2.4 from [11].

Theorem 4 The following assertions are equivalent.

(i) There exists a nonzero positive finite invariant measure for (Pt )t≥0 which is
absolutely continuous with respect to m.

(ii) m is almost invariant.
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Appendix

Proof of Proposition 1 (i) ⇒ (ii). If (e−βt u(Xt ))t≥0 is a right-continuous super-
martingale then by taking expectations we get that e−βt

E
x u(Xt ) ≤ E

x u(X0), hence
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u is β-supermedian. Now, by [20], Corollary 1.3.4, showing that u ∈ E(Uβ) reduces
to prove that u is finely continuous, which in turns follows by the well known char-
acterization according to which u is finely continuous if and only if u(X) has right
continuous trajectories Px -a.s. for all x ∈ E ; see Theorem 4.8 in [15], Chap. II.

(ii) ⇒ (i). Since u is β-supermedian, by the Markov property we have for all
0 ≤ s ≤ t

E
x [e−β(t+s)u(Xt+s)|Fs] = e−β(t+s)

E
Xs u(Xt ) = e−β(t+s) Pt u(Xs) ≤ e−βsu(Xs),

hence (e−βt u(Xt ))t≥0 is anFt -supermartingale. The right-continuity of the trajecto-
ries follows by the fine continuity of u via the previously mentioned characterization.

�
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