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1 The Problem

Here, we shall consider the equation

ut (t, x) + divx (D(x)u(t, x)) − �xβ(u(t, x)) = 0 in (0,∞) × R
d ,

u(0, x) = u0(x), x ∈ R
d , d ≥ 1,

(1.1)

where

(i) D ∈ L∞(Rd;Rd), div D ∈ L∞(Rd).

β is continuous, monotonically nondecreasing, β(0) = 0,

|β(r)| ≤ C1|r |m + C2, ∀r ∈ R, where 1 ≤ m < ∞.

Equation (1.1) describes the evolution of a probability density u = P associated to
theMarkovian stochastic processes with drift coefficients (Di )

d
i=1 = D and diffusion
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σi j = δi j .Moreover, it is related to the anomalous diffusion which describes particle
transport in irregular media. In the special case D ≡ 0, (1.1) reduces to the nonlinear
porous media equation in Rd .

In 1D, Eq. (1.1) can be derived from the entropy functional

S[u] =
∫
R

�[u(x)]dx, (1.2)

where
� ∈ C∞(0,∞), lim

r→0
�′(r) = ∞ and �′′(r) < 0 for r > 0. (1.3)

The corresponding Fokker–Planck equation is

Pt +
(
H(x)P − 1

α
(�(P) − P�′(P))x

)
x

= 0. (1.4)

Here the drift function H is the gradient of a potential V (i.e., H = − dV
dx ) and the

constant α represents the strength of fluctuations [5]. A similar approach applies to
higher dimensions.

In the special case of the Boltzmann–Gibbs entropy

S[u] = −
∫

u(x) log u(x)dx,

Equation (1.4) reduces to

Pt + Px − 1

α
Pxx = 0, (1.5)

while, for the entropy functional

S[u] = 1

p − 1

∫
(|u|p − u)dx, p > 1, (1.6)

Equation (1.4) with H ≡ 1 reads as the Plastino and Plastino model [7]

Pt + Px − 1

α
((P)p)xx = 0.

Assumption (i) agrees with the key entropy condition (1.3). Indeed, if � ∈
C1(0,∞) ∩ C[0,∞) is a solution to the equation

�(r) − r�′(r) = β(r), ∀r > 0; �′(0) = ∞, (1.7)

such that
�′′(r) < 0, �′(r) ≥ 0, ∀r ∈ R,
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where β satisfies (i), the NFPE reduces to (1.1) such that (1.3) holds. We note that, in
particular, assumption (i) is satisfied for β(u) = 1

α
ln(1 + u), that is, for the Fokker–

Planck equation of classical bosons (see [4, 5])

Pt + (DP)x + 1

α
(ln(1 + P))xx = 0.

In [1], Eq. (1.1), was studied the existence of an entropy solution for the Fokker–
Planck equation

ut + div(D(x, u)u) − �β(u) = 0, in (0, T ) × R
d ,

u(0, x) = u0(x),
(1.8)

where D(x, u) ≡ b(u), with b continuous. In this work, we shall confine to the case
of linear drift D(x, u) ≡ D(x).

2 The Existence and Uniqueness of a Generalized Solution

To (1.1) we associate the operator A : L1(Rd) → L1(Rd) defined as the closure A1

in L1(Rd) × L1(Rd) of the operator

A1u = −�β(u) + div(D(x)u), ∀u ∈ D(A1),

D(A1) = {u ∈ L1(Rd) ∩ L∞(Rd), β(u) ∈ H 1(Rd), A1u ∈ L1(Rd)}. (2.1)

We have also

Lemma 2.1 The operator A1 is accretive in L1(Rd) and

L1(Rd) ∩ L∞(Rd) ⊂ R(I + λA1), ∀λ > 0. (2.2)

(I + λA1)
−1 f ≥ 0 in Rd if f ≥ 0 in Rd (2.3)∫

Rd

(I + λA1)
−1 f dx =

∫
Rd

f dx in Rd . (2.4)

Proof The accretivity of A1 follows by multiplying the equation

u − ū + λ(A1u − A1ū) = f − f̄ , u, ū ∈ D(A1),

in the duality pair H−1(Rd )〈·, ·〉H 1(Rd ) withXε(u − ū) and integrate overRd , whereXε

is a smooth approximation of the sign function for ε → 0.
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More precisely, χε is defined by

χε(r) =
⎧⎨
⎩

−1 for r < −ε,
1
ε
r for |r | < ε,
1 for r > ε.

To prove (2.2), we fix f ∈ L1(Rd) ∩ L∞(Rd) ⊂ L2(Rd) and consider the equa-
tion u + λA1u = f , that is,

u − λ�β(u) + λ div(Du) = f in D′(Rd), λ > 0. (2.5)

(Here, D′(Rd) is the space of distributions on R
d .)

We set βε = 1
ε
β(I + εβ)−1) and approximate (2.5) by

u − λ�(βε(u) + εu) + λ div(Du) = f in Rd , (2.6)

Equivalently,

(ε + βε)
−1(v) − λ�v + λ div(D(ε + βε)

−1(v)) = f in Rd . (2.7)

The operator v → β−1
ε (v) − λ�v is coercive and maximal monotone in H 1(Rd) ×

H−1(Rd) and so, for each w ∈ L2(Rd),

(ε + βε)
−1(v) − λ�v = −λ div(D(ε + βε)

−1(w)) + f in Rd

has a unique solution v = F(w) ∈ H 1(Rd).
By the contraction principle, for λ > 1

2L ‖D‖∞, Eq. (2.7) has a unique solution
vε ∈ H 1(Rd). This extends to all λ > 0.

We have by (2.6)

|uε|p ≤ | f |p, ∀ε > 0, p ∈ [1,∞),

|∇βε(uε)|22 + ε|∇uε|22 ≤ C, ∀ε > 0.

(Here, | · |p, 1 ≤ p ≤ ∞, is the norm of L p(Rd).)
On a subsequence ε → 0, we have

uε → u weakly in L p, p ∈ (1,∞),

βε(uε) → η weakly in H 1,

�(βε(uε) + εuε) → �η weakly in H−1,

div(Duε) → div(Du) in H−1.

lim sup
ε→0

∫
Rd

βε(uε)uε dx ≤ −λ

∫
Rd

|∇η|2dx −
∫
Rd

f u dx =
∫
Rd

ηu dx,
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u − λ�η + λ div(Du) = f in D′(Rd).

Hence η = β(u), a.e. in Rd and u + λA1u = f , as claimed.

Proposition 2.2 Under assumption (i), the operator A = A1 is m-accretive in
L1(Rd). Moreover, one has for all λ > 0

(I + λA)−1 = (I + λA1)
−1 on L∞(Rd) ∩ L1(Rd) (2.8)

(I + λA)−1 f ≥ 0 if f ≥ 0 in Rd (2.9)∫
Rd

(I + λA)−1 f dx =
∫
Rd

f dx, ∀λ > 0. (2.10)

It follows also that D(A) = L1(Rd).

By Proposition 2.2, the finite difference scheme

uh(t) + hAuh(t) = uh(t − h), h > 0, t ≥ 0,

uh(t) = u0, for t ≤ 0,
(2.11)

has a unique solutionuh and, by then, by theCrandall andLiggett exponential formula
(see [3]),

uh(t) → u(t) strongly in L1(Rd), (2.12)

uniformly on compact intervals.
The function u is called the mild solution to Eq. (1.1).
Now, we can formulate the main existence result.

Theorem 2.3 Under assumptions (i), for each u0 ∈ L1(Rd) ∩ L∞(Rd), Eq. (1.1)
has a uniquemild solution u ∈ C([0, T ]; L1(Rd)),∀T > 0.Moreover, S(t)u0 = u(t)
is a continuous semigroup of contractions in L1(Rd),

|S(t)u0|p ≤ |u0|p, ∀u0 ∈ L p(Rd), 1 ≤ p ≤ ∞ (2.13)

u(t, x) ≥ 0, a.e. x ∈ R
d if u0(x) ≥ 0, a.e. x ∈ R

d , (2.14)∫
Rd

u(t, x)dx =
∫
Rd

u0(x)dx, ∀t ≥ 0. (2.15)

Definition 2.4 The function u ∈ C([0, T ]; L1(Rd)) is said to be a generalized solu-
tion to (1.1) if

∂u

∂t
+ divx (D(x)u) − �xβ(u) = 0 in D′((0, T ) × R

d),

u(0, x) = u0(x) in Rd .

(2.16)

By (2.11)–(2.12), we see that



298 V. Barbu

Theorem 2.5 Under assumption (i), for each u0 ∈ L1(Rd) ∩ L∞(Rd), the mild
solution u to (2.1) is a generalized solution. Moreover, there is at most one gen-
eralized solution u ∈ C([0, T ]; L1(Rd) ∩ L∞((0, T ) × R

d).

The uniqueness part of Theorem 2.5 follows as in [1] and it will be omitted.

3 Long-Time Dynamical Behavior

Let S(t) be the semigroup of contractions generated on D(A) under assumption (i).

Definition 3.1 A real valued function ψ : L1(Rd) → R
+ is a Lyapunov function

for S(t) ifψ(S(t)u0) ≤ ψ(u0), ∀t ≥ 0, ∀u0 ∈ D(ψ) ∩ D(A),where D(ψ) = {u0 ∈
L1(Rd); ψ(u0) < ∞}.

Aswe shall see later on, the free energy of the system (the so-called H -functional)
is the best candidate for the Lyapunov functions.

Again, by (2.11) and (2.12), we see that

Proposition 3.2 Assume that ψ : L1(Rd) → R
+ is lower semicontinuous and, for

all λ > 0,
ψ((I + λA)−1u0) ≤ ψ(u0), ∀u0 ∈ D(ψ) ∩ D(A). (3.1)

Then, ψ is a Lyapunov function for the semigroup S(t).

Here, D(ψ) = {u; ψ(u) < ∞}.
We shall look at Lyapunov functions of the form

ψ(u) =
∫
Rd

j (u(x))dx, ∀u ∈ L1(Rd), (3.2)

where j : R → R
+ is convex, lower semicontinuous and j (0) = 0. Then, as well

known, ψ : L1(Rd) → R is convex, lower semicontinuous and

D(ψ) = {u ∈ L1(Rd); j (u) ∈ L1(Rd)}.

We have (see [1]).

Theorem 3.3 Under hypothesis (i), the function ψ is a Lyapunov function for S(t).

Remark 3.4 In particular, it follows by Proposition 3.2 that the operator A is m-
completely accretive in sense of [2].
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4 The H-Theorem

The so-called H -theorem amounts to saying that, for t → ∞, S(t)u0 → v, where v

is a stationary solution to Eq. (1.1), that is, Av = 0 (see [5, 6]).
Since, as easily seen by (2.11), for each � and u0 ∈ D(A),

∫
Rd

|(S(t)u0)(x + �) − (S(t)u0)(x)|dx ≤
∫
Rd

|u0(x + �) − u0(x)|dx,

by the Kolmogorov compactness theorem, the trajectory {S(t)u0; t ≥ 0} is compact
in L1

loc(R
d) and in every L p

loc(R
d), 1 ≤ p < ∞, if u0 ∈ L1(Rd) ∩ L∞(Rd).

Hence the ω-limit set

ω(u0) =
{
v = lim

tn→∞ S(tn)u0 in L1
loc(R

d)

}

is nonempty and, if u0 ∈ L1(Rd) ∩ L∞(Rd), we have also by (2.13) that

ω(u0) =
{
v = weak limit

tn→∞ S(tn)u0 in each L p(Rd)

}
.

By weak lower-semicontinuity of ψ, we have

ψ(v) ≤ lim
t→∞ ψ(S(t)u0), ∀v ∈ ω(u0).

If ψ is continuous on L1 and {S(t)u0, t ≥ 0} is compact, then we have

ψ(S(t)v) ≡ ψ(v), ∀t ≥ 0, v ∈ ω(u0), (4.1)

which is a weak form of the H -theorem.
To give a specific example, we assume that

D = −∇V, V ∈ C1(Rd), V ≥ 0, (4.2)

β ∈ C1(R), β(0) = 0, β′(r) > 0, ∀r > 0, (4.3)

inf{‖D(x)‖; x ∈ R
d} > 0. (4.4)

Then, as easily seen by (4.2), (4.3), the energy functional

E(u) =
∫
Rd

(V (x)u(x) − �(u(x)))dx,

where � is given by (1.7), and so
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�′′(r) = −β′(r)
r

∀r > 0.

We note that E is convex and is a Lyapunov functional for the semigroup S(t).
Indeed, taking into account that ∂E(u) = V − �′(u), we get that

〈∂E(u), A1u〉 =
∫
Rd

(V − �′(u))(−�β(u) + div(Du))dx

=
∫
Rd

(
(β′(u))2

u
|∇u|2 + u|∇V |2

)
dx ≥ 0,

∀u ∈ D(A1), u ≥ 0,

(4.5)

and, by density, this implies that

E(S(t)u0) ≤ E(u0), ∀t ≥ 0. (4.6)

Moreover, by (4.4), (4.6) and (2.11), we see that

E(uh(ih)) − E((uh(i − 1)h))

≤ −h
∫
Rd

(
(β′(uh(ih)))2

uh(ih)

)
|∇uh(ih)|2 + uh(ih)|∇V |2dx

≤ −ρ

∫
Rd

uh(ih)dx, ∀i = 1, 2, . . . , h > 0,

where ρ > 0. This yields

1

t − s
(E(S(t)u0) − E(S(s)u0)) ≤ ρ|S(t)u0|1, ∀t > s > 0,

and, therefore,
E(S(t)u0) ≤ exp(−ρt)|u0|1, ∀t ≥ 0.

Hence, if u∞ ∈ ω(u0), we have E(u∞) = 0. Assume further that

inf
x∈Rd

V (x) > sup
r>0

�(r)

r
. (4.7)

Then the latter implies that u∞ = 0. We have, therefore,

Theorem 4.1 Under assumptions (4.2)–(4.6), we have

lim
t→∞ S(t)u0 = 0 in L1(Rd) for each u0 ∈ L1(Rd).
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5 Final Remarks

For D = −∇V , we associate with Eq. (1.1) the free energy functional

F(u) =
∫
Rd

�(u)dx +
∫
Rd

V u dx, (5.1)

where � satisfies (1.7) and V ∈ C∞(Rd) is such that

V (x) ≥ 0, |∇V (x)| ≤ C(V (x) + 1), ∀x ∈ R
d .

On the set

K =
{
u : Rd → [0,∞) measurable,

∫
Rd

u(x)dx = 1,
∫
Rd

|x |2u(x)dx < ∞
}
,

consider the iterative scheme

uk+1 = argmin
u∈K

{
1

2h
d2(u, uk) + F(u)

}
, (5.2)

where d is the Wasserstein distance (see, e.g., [6]).
Consider the sequence uh : [0, T ] → R

d of the step functions

uh(t) = uk for t ∈ [kh, (k + 1)h], k = 0, 1. (5.3)

Problem Does the sequence {uh} strongly converge to S(t)u0 for h → 0?

The answer is positive (see [6]) if �(u) = u log u (the case of Gibbs–Boltzmann
entropy), that is, for the Fokker–Planck equation

ut + div(Du) − �u = 0 in (0, T ) × R
d

and one might suspect that it is true in this case for other functions� satisfying (1.7).
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