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1 The Problem

Here, we shall consider the equation

u, (1, x) + div, (D(x)u(t, x)) — A Bu(t, x)) = 0in (0, 00) x RY,

1.1
u,x) = up(x), x eRY, d>1, (D

where
(i) D e L®@RY; RY), div D € L®(RY).
[ is continuous, monotonically nondecreasing, 3(0) = 0,

1B < Cilr|™ + Co, Vr € R, where 1 < m < oo.

Equation (1.1) describes the evolution of a probability density u = P associated to
the Markovian stochastic processes with drift coefficients (D,')lfl= , = D and diffusion
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oij = d;;. Moreover, it is related to the anomalous diffusion which describes particle
transport in irregular media. In the special case D = 0, (1.1) reduces to the nonlinear

porous media equation in R¢.
In 1D, Eq.(1.1) can be derived from the entropy functional

Slu] =/CI>[u(x)]dx, (1.2)
R

where
® € C*(0, 0), lir% ®'(r) = 0o and ®”(r) < 0 forr > 0. (1.3)

The corresponding Fokker—Planck equation is

P+ <H(x)P - é (®(P) — PdD’(P))x> =0. (1.4)

X

Here the drift function H is the gradient of a potential V (i.e., H = _%) and the
constant « represents the strength of fluctuations [5]. A similar approach applies to
higher dimensions.

In the special case of the Boltzmann—Gibbs entropy

Slu] = —/u(x) logu(x)dx,

Equation (1.4) reduces to
1
Pt_’_Px__Pxx:O» (15)
«

while, for the entropy functional
1
Stul =~ [l = wdx. p > 1. (16)
p—1
Equation (1.4) with H = 1 reads as the Plastino and Plastino model [7]
1
PZ+PX_E((P)p)xx:O-

Assumption (i) agrees with the key entropy condition (1.3). Indeed, if ® €
C'(0, 00) N C[0, o) is a solution to the equation

D) —r®'(r) =), Vr > 0; ®'(0) = oo, 1.7)

such that
®"(r) <0, ®) >0, Vr e R,
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where (3 satisfies (i), the NFPE reduces to (1.1) such that (1.3) holds. We note that, in
particular, assumption (i) is satisfied for S(u) = é In(1 + u), that is, for the Fokker—

Planck equation of classical bosons (see [4, 5])

P+ (DP), + é (In(1+ P))xx =0.

In [1], Eq.(1.1), was studied the existence of an entropy solution for the Fokker—
Planck equation

u; + div(D(x, w)u) — ABw) =0, in (0, T) x R?,

u(0, x) = up(x), (1.8)

where D(x, u) = b(u), with b continuous. In this work, we shall confine to the case
of linear drift D(x, u) = D(x).

2 The Existence and Uniqueness of a Generalized Solution

To (1.1) we associate the operator A : L' (R?) — L'(R¢) defined as the closure A
in L'(R?) x L'(RY) of the operator

Aju = —ALBu) + div(D(x)u), Yu € D(Ay),

D(A}) = {u € L'(RY) N L®RY), Bu) € H'(R?), Aju € L'(R?)). @1
We have also
Lemma 2.1 The operator A, is accretive in L' (RY) and
L'RH NL®MRY) c R(I +NAy), YA > 0. (2.2)
T+MD)'f>0nRUFf>0 inRY (2.3)
(I+M)"fdx=| fdx inRY. (2.4)

R4 R4
Proof The accretivity of A; follows by multiplying the equation
u—i+MNAu—Ai)=f—f, u,ii € D(A)),

in the duality pair g-1ge) (-, -) g1 (rey With Xz (u — 1) and integrate over R?, where X.
is a smooth approximation of the sign function for ¢ — 0.
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More precisely, x. is defined by
—1 for r < —¢,

Xe(r) = ér for |r| < ¢,
1 for r > e.

To prove (2.2), we fix f € L'(RY) N L>®°RY) c L*(R?) and consider the equa-
tion u + A\Au = f, that s,

u — ANABw) + Adiv(Du) = f in D' (RY), X > 0. (2.5)

(Here, D'(RY) is the space of distributions on R?.)
We set 3. = %ﬂ(l +¢3)~") and approximate (2.5) by

u — MA(B-(u) + eu) + Adiv(Du) = f in R?, (2.6)
Equivalently,
(e 4 6)7 ') — ANAv + Adiv(D(e + 5.) "' (v)) = finRY. 2.7)

The operator v — 3-(v) — AAv is coercive and maximal monotone in H!(R?) x
H~'(R?) and so, for each w € L2(RY),

(e 4+ 6)7'(w) — AAv = =X div(D(e + 8.) "(w)) + f inRY

has a unique solution v = F(w) € H'(R?).
By the contraction principle, for A >

v. € H'(R?). This extends to all A > 0.
We have by (2.6)

ﬁ ID|ls> Eq.(2.7) has a unique solution

|u5|p =< |f|ps Ve >0, p e[l 00),
|VB:(u)|3 + €|Vuc|3 < C, Ye > 0.

(Here, | - |, 1 < p < o0, is the norm of L”(R?).)
On a subsequence ¢ — 0, we have

U: —> U weakly in L?, p € (1, 00),
Be(u:) — n Weakly in Hl,
A(B:(us) +ecu) — An weakly in H~!,
div(Du.) — div(Du) in H™'.

limsup [ B-(uu-dx < =X\ | |Vnl’dx — | fudx =/ nudx,
e—0 R4 R4 R4 R4
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u — AAN + Adiv(Du) = f in D'(RY).
Hence ) = $(u), a.e. in R? and u + M\A u = f, as claimed. .

Proposition 2.2 Under assumption (i), the operator A = A| is m-accretive in
LY(R?). Moreover, one has for all A > 0

(I+X)"'=UT+2A)7" on L°@®RY) N L' (RY) (2.8)

(I+XA)'f>0iff>0 inR? (2.9)

/ (I+XA)'fdx = f fdx, YA > 0. (2.10)
Rd Rd

It follows also that D(A) = L' (RY).
By Proposition 2.2, the finite difference scheme

up(t) + hAuy(t) = up(t — h), h >0, t >0,

(2.11)
up(t) = ug, fort <0,
has aunique solution u, and, by then, by the Crandall and Liggett exponential formula

(see [3]),
up(t) — u(r) strongly in L' (RY), (2.12)

uniformly on compact intervals.
The function u is called the mild solution to Eq. (1.1).
Now, we can formulate the main existence result.

Theorem 2.3 Under assumptions (i), for each ug € L'(R?) N L®°(R?), Eq.(1.1)
has aunique mild solutionu € C([0, T1; L' (R%)), VT > 0. Moreover, S(t)uo = u(t)
is a continuous semigroup of contractions in L' (R?),

|S(uolp < luolp, Vug € LP(RY), 1 < p < o0 (2.13)
u(t,x) >0, ae x e€R? ifup(x) >0, a.e. x € R4, (2.14)
/ u(t, x)dx =f up(x)dx, vt > 0. (2.15)

R4 Rd

Definition 2.4 The functionu € C([0, T]; L' (R)) is said to be a generalized solu-
tion to (1.1) if

Z_L: + dive (D)) — A Bw) =0 in D0, T) x RY),
u(0, x) = up(x) in RY.

(2.16)

By (2.11)-(2.12), we see that
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Theorem 2.5 Under assumption (i), for each u, € L' (R4 N L®°(RY), the mild
solution u to (2.1) is a generalized solution. Moreover, there is at most one gen-
eralized solution u € C([0, TT; L'(RY) N L>=((0, T) x RY).

The uniqueness part of Theorem 2.5 follows as in [1] and it will be omitted.

3 Long-Time Dynamical Behavior

Let S(¢) be the semigroup of contractions generated on D(A) under assumption (i).

Definition 3.1 A real valued function v : L'(R?) — R* is a Lyapunov function
for S(¢) if (S(t)uo) < ¥(up), ¥t = 0, Yug € D(3p) N D(A), where D(v)) = {up €
LY RY); 1(ug) < 00}

As we shall see later on, the free energy of the system (the so-called H -functional)
is the best candidate for the Lyapunov functions.
Again, by (2.11) and (2.12), we see that

Proposition 3.2 Assume that 1) : L'(R?) — RY is lower semicontinuous and, for
all A > 0,
(I +AA) " ug) < Y (uo), Yuo € D()) N D(A). (3.1

Then, v is a Lyapunov function for the semigroup S(t).

Here, D(v) = {u; 1 (u) < oo}.
We shall look at Lyapunov functions of the form

w(u)zf j(x)dx, Yu e L'(RY), (3.2)
]Rd

where j : R — RT is convex, lower semicontinuous and j(0) = 0. Then, as well
known, ¢ : L'(R?) — R is convex, lower semicontinuous and

D) ={u € L'RY); ju) e L'RY)).

We have (see [1]).
Theorem 3.3 Under hypothesis (i), the function v is a Lyapunov function for S(t).

Remark 3.4 In particular, it follows by Proposition 3.2 that the operator A is m-
completely accretive in sense of [2].
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4 The H-Theorem

The so-called H-theorem amounts to saying that, for t — oo, S(¢)ug — v, where v
is a stationary solution to Eq. (1.1), that is, Av = 0 (see [5, 6]).
Since, as easily seen by (2.11), for each £ and ug € D(A),

/ [(S(Duo)(x + £) = (S()uo) (x)|dx =< / luo(x + £) — uo(x)ldx,
R4 R4

by the Kolmogorov compactness theorem, the trajectory {S(#)uo; ¢ > 0} is compact
inL! (R?) andinevery L’ (RY),1 < p < oo, ifuy € L'(R?) N L®(R?).

loc loc
Hence the w-limit set

w(iy) = {v = lim S(,)uo in L}UC(R”’)}

is nonempty and, if ug € L'(R?) N L>(R?), we have also by (2.13) that

1,—>00

w(ug) = {v = weak limit S(z,)ug in each L”(Rd)} .

By weak lower-semicontinuity of ), we have
P(v) = lim Y(S(Huo), Vv & wl(uo).
If v is continuous on L' and {S(#)uo, ¢t > 0} is compact, then we have

Y(S@)v) = Y(), Yt >0, v € w(uyp), 4.1)

which is a weak form of the H-theorem.
To give a specific example, we assume that

D=-VV, VeC'RY, V>0, 4.2)
BeC'\(R), p(0)=0, B'(r) >0, Vr >0, 4.3)
inf{|DX)|; x € RY} > 0. (4.4)

Then, as easily seen by (4.2), (4.3), the energy functional

E(u) = /Rd(V(X)M(X) — P (u(x)))dx,

where @ is given by (1.7), and so
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ﬁ/

) Vr > 0.
,

D" (r) = —

We note that E is convex and is a Lyapunov functional for the semigroup S(z).
Indeed, taking into account that OE (u) = V — ®'(u), we get that

(OE(u), Ayu) = / (V — @' (u)(—ABu) + div(Du))dx
R4

/ 2
_ f (WT”)) Vil +u|VV|2> dx > 0, .5
RY

Yu € D(Ay), u >0,
and, by density, this implies that
E(S(t)up) < E(up), vVt > 0. (4.6)
Moreover, by (4.4), (4.6) and (2.11), we see that

E(up(ih)) — E((up(i — Dh))

/ . 2
< —h/ (M) \Vun ih) 2 + up i)V V | 2dx
R up(ih)

<—,0/1-§duh(ih)dx, Vi=1,2,...,h >0,

where p > 0. This yields

1
P— (E(S(D)uo) — E(S(s)uo)) = plS(Dugly, Vi > s >0,

and, therefore,
E(S(t)up) < exp(—pt)|uply, ¥t > 0.

Hence, if uo, € w(ug), we have E (1) = 0. Assume further that

. D(r)
inf V(x) > sup . 4.7)
xeRd r

r>0

Then the latter implies that u, = 0. We have, therefore,

Theorem 4.1 Under assumptions (4.2)—(4.6), we have

lim S(0)ug = 0 in L'(RY) for each uy € L' (R?).
—00
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5 Final Remarks

For D = —VV, we associate with Eq. (1.1) the free energy functional
F(u) =/ @(u)dx+f Vudx, (5.1)
R4 Rd

where ® satisfies (1.7) and V € C®(RY) is such that
V(x) =0, [VV(x)] < C(V(x) + 1), ¥x e R

On the set

K = {u ‘R > [0, 00) measurable, f

u(x)dx =1, / |x|2u(x)dx < oo},
Rd R4

consider the iterative scheme
Uy = arg min ! d (M u ) ) (u) (5 2)
ke MEIK 2h Pk ’ ’

where d is the Wasserstein distance (see, e.g., [6]).
Consider the sequence u" 1 [0, T] — RY of the step functions

ul(t) = uy for t € [kh, (k + Dh], k=0, 1. (5.3)

Problem Does the sequence {u"} strongly converge to S(t)uq for h — 0?

The answer is positive (see [6]) if ®(u) = u logu (the case of Gibbs—Boltzmann
entropy), that is, for the Fokker—Planck equation

u, +div(Du) — Au =0 in (0, T) x R?

and one might suspect that it is true in this case for other functions & satisfying (1.7).

References

1. Barbu, V.: Generalized solutions to nonlinear Fokker-Plank equations. J. Differ. Equ. 261, 2446—
2471 (2016)

2. Benilan, Ph, Crandall, M.G.: Completely accretive operators. Semigroup Theory and Evolution
Equations. Lecture Notes in Pure and Applied Mathematics, pp. 41-75 (1989)

3. Crandall, M.G., Liggett, T.M.: Generation of semi-groups of nonlinear transformations on gen-
eral Banach spaces. Amer. J. Math. 93, 265-298 (1971)

4. Frank, T.D.: Nonlinear Fokker-Planck Equations. Springer, Berlin (2005)



302 V. Barbu

5. Frank, T.D., Daffertshofer, A.: A-Theorem for nonlinear Fokker-Planck equations related to
generalized thermostatistics. Phys. A 295, 455-474 (2001)

6. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation.
SIAM J. Math. Anal. 29, 1-17 (1998)

7. Plastino, A.R., Plastino, A.: Phys. A 222, 347 (1995)



	Generalized Solutions to Nonlinear Fokker–Planck Equations with Linear Drift
	1 The Problem
	2 The Existence and Uniqueness of a Generalized Solution
	3 Long-Time Dynamical Behavior
	4 The H-Theorem
	5 Final Remarks
	References




