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Abstract Although for a number of semilinear stochastic wave equations existence
and uniqueness results for corresponding solution processes are known from the
literature, these solution processes are typically not explicitly known and numer-
ical approximation methods are needed in order for mathematical modelling with
stochastic wave equations to become relevant for real world applications. Therefore,
the numerical analysis of convergence rates for such numerical approximation pro-
cesses is required. A recent article by the authors proves upper bounds forweak errors
for spatial spectral Galerkin approximations of a class of semilinear stochastic wave
equations. The findings there are complemented by the main result of this work, that
provides lower bounds for weak errors which show that in the general framework
considered the established upper bounds can essentially not be improved.
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1 Introduction

In this work we consider numerical approximation processes of solution processes of
stochastic wave equations and examine corresponding weak convergence properties.
As opposed to strong convergence, weak convergence even in the case of stochastic
evolution equations with regular nonlinearities is still only poorly understood (see,
e.g., [3, 6–8, 12] for several weak convergence results for stochastic wave equations
and, e.g., the references in Sect. 1 in [4] for further results onweak convergence in the
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literature). Therefore, equations available to current numerical analysis are limited to
model problems, such as the ones considered in the present article, that cannot take
into account the full complexity ofmodels for evolutionary processes under influence
of randomness appearing in real world applications (see, e.g., the references in Sect. 1
in [4]). The recent article [4] by the authors provides upper bounds for weak errors
for spatial spectral Galerkin approximations of a class of semilinear stochastic wave
equations, including equations driven by multiplicative noise and, in particular, the
hyperbolic Anderson model. The main result of this article, Theorem 1.1 below, in
turn shows that the weak convergence rates for stochastic wave equations established
in Theorem 1.1 in [4] can in the general setting there essentially not be improved.
Theorem 1.1 is obtained by proving lower bounds for weak errors in the case of
concrete examples of stochastic wave equations with additive noise and without drift
nonlinearity (cf. Corollary 2.10 and (1.4) below).We argue similarly to the reasoning
in Sect. 7 in Conus et al. [1] and Sect. 9 in Jentzen and Kurniawan [5]. First results on
lower bounds for strong errors for two examples of stochastic heat equations were
achieved in Davie and Gaines [2]. Furthermore, lower bounds for strong errors for
examples and whole classes of stochastic heat equations have been established in
Müller-Gronbach et al. [10] (see also the references therein) and inMüller-Gronbach
and Ritter [9], respectively. Results on lower bounds for weak errors in the case of a
few specific examples of stochastic heat equations can be found in Conus et al. [1]
and in Jentzen and Kurniawan [5].

Theorem 1.1 For all real numbers η, T ∈ (0,∞), every R-Hilbert space
(H, 〈·, ·〉H , ‖·‖H ), every orthonormal basis (en)n∈N={1,2,3,...} : N → H of
H, every probability space (�,F ,P) with a normal filtration (Ft )t∈[0,T ],
and every idH -cylindrical (�,F ,P, (Ft )t∈[0,T ])-Wiener process (Wt )t∈[0,T ]
there exist a strictly increasing sequence (λn)n∈N : N → (0,∞), a linear
operator A : D(A) ⊆ H → H with D(A) = {

v ∈ H : ∑∞
n=1|λn〈en, v〉H |2 <

∞}
and ∀ v ∈ D(A) : Av = ∑∞

n=1 −λn〈en, v〉Hen, a family of interpola-
tion spaces (Hr , 〈·, ·〉Hr , ‖·‖Hr ), r ∈ R, associated to −A (cf., e.g., [11,
Section3.7]), a family of R-Hilbert spaces (Hr , 〈·, ·〉Hr , ‖·‖Hr ), r ∈ R, with
∀ r ∈ R : (Hr , 〈·, ·〉Hr , ‖·‖Hr ) = (

Hr/2 × Hr/2−1/2, 〈·, ·〉Hr/2×Hr/2−1/2
, ‖·‖Hr/2×Hr/2−1/2

)
,

families of functions PN : ⋃
r∈R Hr → ⋃

r∈R Hr , N ∈ N ∪ {∞}, and PN : ⋃
r∈R Hr

→ ⋃
r∈R Hr , N ∈ N ∪ {∞}, with ∀ N ∈ N ∪ {∞}, r ∈ R, u ∈ Hr , (v, w) ∈

Hr : (
PN (u) = ∑N

n=1〈(λn)
−r en, u〉Hr (λn)

−r en and PN (v, w) = (PN (v), PN (w))
)
,

a linear operator A : D(A) ⊆ H0 → H0 with D(A) = H1 and ∀ (v, w) ∈
H1 : A(v, w) = (w, Av), real numbers γ, c ∈ (0,∞), a vector ξ ∈ Hγ , and
functions ϕ ∈ C2

b (H0,R), F ∈ C2
b (H0,H0), B ∈ C2

b (H0,HS(H,H0)), and
(Cε)ε∈(0,∞) : (0,∞) → [0,∞) with ∀β ∈ (γ/2, γ] : (−A)−β/2 ∈ HS(H), F(H0) ⊆
Hγ , (H0 � v �→ F(v) ∈ Hγ) ∈ C2

b (H0,Hγ), ∀v ∈ H0, u ∈ H : B(v)u ∈ Hγ ,
∀v ∈ H0 : (H � u �→ B(v)u ∈ Hγ) ∈ L(H,Hγ), and (H0 � v �→ (H � u �→
B(v)u ∈ Hγ) ∈ L(H,Hγ)) ∈ C2

b (H0, L(H,Hγ)) such that

(i) it holds that there exist up tomodifications unique (Ft )t∈[0,T ]-predictable stochas-
tic processes XN : [0, T ] × � → PN (H0), N ∈ N ∪ {∞}, which satisfy for all
N ∈ N ∪ {∞}, t ∈ [0, T ] that sups∈[0,T ] E

[‖XN
s ‖2H0

]
< ∞ and P-a.s. that
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XN
t = etAPNξ +

∫ t

0
e(t−s)APNF(XN

s ) ds +
∫ t

0
e(t−s)APNB(XN

s ) dWs (1.1)

(ii) and it holds for all ε ∈ (0,∞), N ∈ N that

c · (λN )−η ≤ ∣∣E
[
ϕ
(
X∞

T

)] − E
[
ϕ
(
XN

T

)]∣∣ ≤ Cε · (λN )ε−η. (1.2)

Here and below we denote for every non-trivialR-Hilbert space (V, 〈·, ·〉V , ‖·‖V )

and every R-Hilbert space (W, 〈·, ·〉W , ‖·‖W ) by C2
b (V,W ) the set of all globally

bounded twice continuously Fréchet differentiable functions from V to W with
globally bounded derivatives. In the following we provide a few further com-
ments regarding the statement and the proof of Theorem 1.1. The initial value
ξ and the functions F and B in the setting of Theorem 1.1 can be chosen in
such a way that there exist appropriate ξ0 ∈ H , ξ1 ∈ H−1/2 and appropriate func-
tions F : H0 → H−1/2, B : H0 → HS(H, H−1/2) such that ξ = (ξ0, ξ1), F = (0, F),
and B = (0, B). In this case, for every N ∈ N ∪ {∞} the first component process
XN : [0, T ] × � → PN (H) of XN is, roughly speaking, a mild solution of the
stochastic wave-type evolution equation

Ẍt = AXt + PN F(Xt , Ẋt ) + PN B(Xt , Ẋt )Ẇt (1.3)

with X0 = PNξ0, Ẋ0 = PN ξ1 for t ∈ [0, T ]. Theorem 1.1 is a direct consequence
of Theorem 1.1 in [4] (with γ = 2η, β = min{η + ε, 2η}, ρ = 0 in the notation of
Theorem 1.1 in [4]) and Corollary 2.10 below (with p = 1/η, δ = 1/2 − η in the
notation of Corollary 2.10 below). In the case η = 1/2, the lower bound in (1.2) is
obtained, for example, for the stochastic wave equations

Ẍt (x) = ∂2

∂x2 Xt (x) + PN Ẇt (x) (1.4)

with X0(x) = Ẋ0(x) = 0 and Xt (0) = Xt (1) = 0 for x ∈ (0, 1), t ∈ [0, T ],
N ∈ N ∪ {∞}, corresponding to the choices H = L2((0, 1);R), ∀ n ∈ N :
en = √

2 sin(nπ(·)) ∈ H , ∀ n ∈ N : λn = π2n2, ξ = 0, F = 0,B = (H0 � (v, w) �→
(H � u �→ (0, u) ∈ H0) ∈ HS(H,H0)) in the setting of Theorem 1.1 (cf. Corol-
lary 2.11 below). Inequality (1.2) reveals that the weak convergence rates in Theo-
rem 1.1 in [4] are essentially sharp. More details and further lower bounds for weak
approximation errors for stochastic wave equations can be found in Corollary 2.8
and Corollary 2.10 below.

2 Lower Bounds for Weak Errors

2.1 Setting

Let (H, 〈·, ·〉H , ‖·‖H ) be a separableR-Hilbert space, for every set A letP(A) be the
power set of A, let T ∈ (0,∞), let (�,F ,P) be a probability space with a normal fil-
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tration (Ft )t∈[0,T ], let (Wt )t∈[0,T ] be an idH -cylindrical (�,F ,P, (Ft )t∈[0,T ])-Wiener
process, let H ⊆ H be a non-empty orthonormal basis of H , let λ : H → R be a
function with suph∈H λh < 0, let A : D(A) ⊆ H → H be the linear operator which
satisfies D(A) = {

v ∈ H : ∑
h∈H|λh〈h, v〉H |2 < ∞}

and ∀ v ∈ D(A) : Av =∑
h∈H λh〈h, v〉Hh, let (Hr , 〈·, ·〉Hr , ‖·‖Hr ), r ∈ R, be a family of interpolation

spaces associated to −A, let (Hr , 〈·, ·〉Hr , ‖·‖Hr ), r ∈ R, be the family of
R-Hilbert spaces which satisfies for all r ∈ R that (Hr , 〈·, ·〉Hr , ‖·‖Hr ) = (

Hr/2 ×
Hr/2−1/2, 〈·, ·〉Hr/2×Hr/2−1/2

, ‖·‖Hr/2×Hr/2−1/2

)
, let PI : ⋃

r∈R Hr → ⋃
r∈R Hr , I ∈ P(H),

and PI : ⋃
r∈R Hr → ⋃

r∈R Hr , I ∈ P(H), be the functions which satisfy for all
I ∈ P(H), r ∈ R, u ∈ Hr , (v, w) ∈ Hr that PI (u) = ∑

h∈I 〈|λh |−r h, u〉Hr |λh|−r h
and PI (v, w) = (

PI (v), PI (w)
)
, let A : D(A) ⊆ H0 → H0 be the linear operator

which satisfies D(A) = H1 and ∀ (v, w) ∈ H1 : A(v, w) = (w, Av), let μ : H → R

be a function which satisfies
∑

h∈H
|μh |2
|λh | < ∞, let B ∈ HS(H,H0) be the linear

operator which satisfies for all v ∈ H that Bv = (
0,

∑
h∈H μh〈h, v〉Hh

)
, and let

XI = (X I,1, X I,2) : � → PI (H0), I ∈ P(H), be random variables which satisfy for
all I ∈ P(H) that it holds P-a.s. that XI = ∫ T

0 e(T−s)APIB dWs .

2.2 Lower Bounds for the Squared Norm

Lemma 2.1 Assume the setting in Sect.2.1. Then for all I ∈ P(H) it holds P-a.s.
that

XI = PIXH =
(
X I,1

X I,2

)

=
⎛

⎝
∑

h∈I
(

μh

|λh |1/2
∫ T
0 sin

(|λh|1/2(T − s)
)
d〈h,Ws〉H

)
h

∑
h∈I

(
μh

|λh |1/2
∫ T
0 cos

(|λh |1/2(T − s)
)
d〈h,Ws〉H

)
|λh |1/2h

⎞

⎠ . (2.1)

Proof of Lemma 2.1. Lemma 2.5 in [4] proves that it holds P-a.s. that

XH =
∫ T

0
e(T−s)AB dWs =

∑

h∈H

∫ T

0
e(T−s)ABh d〈h,Ws〉H

=
∑

h∈H

(
μh

|λh |1/2
∫ T
0 sin

(|λh |1/2(T − s)
)
h d〈h,Ws〉H

μh
∫ T
0 cos

(|λh|1/2(T − s)
)
h d〈h,Ws〉H

)

(2.2)

=
⎛

⎝
∑

h∈H
(

μh

|λh |1/2
∫ T
0 sin

(|λh|1/2(T − s)
)
d〈h,Ws〉H

)
h

∑
h∈H

(
μh

|λh |1/2
∫ T
0 cos

(|λh|1/2(T − s)
)
d〈h,Ws〉H

)
|λh|1/2h

⎞

⎠ .

Furthermore, Lemma 2.7 in [4] shows for all I ∈ P(H) that it holds P-a.s. that

PIXH =
∫ T

0
PI e

(T−s)AB dWs =
∫ T

0
e(T−s)APIB dWs = XI . (2.3)
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This and (2.2) complete the proof of Lemma 2.1. �

Lemma 2.2 Assume the setting in Sect.2.1 and let I ∈ P(H). Then

(i) it holds that 〈h, X I,1〉H0 , h ∈ H, is a family of independent centred Gaussian
random variables,

(ii) it holds that
〈|λh|1/2h, X I,2

〉
H−1/2

, h ∈ H, is a family of independent centredGaus-

sian random variables, and
(iii) it holds for all h ∈ H that

Var
(〈h, X I,1〉H0

) = 1I (h)
|μh|2
|λh|

1

2

(
T − sin

(
2|λh|1/2T

)

2|λh|1/2
)

, (2.4)

Var
(〈|λh |1/2h, X I,2

〉
H−1/2

)
= 1I (h)

|μh|2
|λh|

1

2

(
T + sin

(
2|λh|1/2T

)

2|λh|1/2
)

, (2.5)

Cov
(
〈h, X I,1〉H0 ,

〈|λh|1/2h, X I,2
〉
H−1/2

)
= 1I (h)

|μh|2
|λh |

(
1 − cos

(
2|λh|1/2T

)

4|λh |1/2
)

.

(2.6)

Proof of Lemma 2.2. Observe that Lemma 2.1 implies (i) and (ii). It thus remains to
prove (iii). Lemma 2.1 assures for all h ∈ H that it holds P-a.s. that

〈h, X I,1〉H0 = 1I (h)
μh

|λh|1/2
∫ T

0
sin

(|λh|1/2(T − s)
)
d〈h,Ws〉H , (2.7)

〈|λh|1/2h, X I,2
〉
H−1/2

= 1I (h)
μh

|λh|1/2
∫ T

0
cos

(|λh |1/2(T − s)
)
d〈h,Ws〉H . (2.8)

Itô’s isometry hence shows for all h ∈ H that

Var
(〈h, X I,1〉H0

) = E
[|〈h, X I,1〉H0 |2

]

= 1I (h)
|μh|2
|λh|

∫ T

0

∣∣sin
(|λh |1/2(T − s)

)∣∣2 ds (2.9)

= 1I (h)
|μh|2
|λh|

1

2

(
T − sin

(
2|λh |1/2T

)

2|λh |1/2
)

,

Var
(〈|λh|1/2h, X I,2〉

H−1/2

)
= E

[∣∣∣
〈|λh |1/2h, X I,2〉

H−1/2

∣∣∣
2]

= 1I (h)
|μh|2
|λh|

∫ T

0

∣∣cos
(|λh|1/2(T − s)

)∣∣2 ds (2.10)

= 1I (h)
|μh|2
|λh|

1

2

(
T + sin

(
2|λh|1/2T

)

2|λh |1/2
)

.
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Furthermore, observe that it holds for all h ∈ H that

Cov
(
〈h, X I,1〉H0 ,

〈|λh|1/2h, X I,2
〉
H−1/2

)
= E

[
〈h, X I,1〉H0

〈|λh |1/2h, X I,2
〉
H−1/2

]

= 1I (h)
|μh|2
|λh|

∫ T

0
sin

(|λh|1/2(T − s)
)
cos

(|λh|1/2(T − s)
)
ds

= 1I (h)
|μh|2
|λh|

(∣∣sin
(|λh|1/2T

)∣∣2

2|λh|1/2
)

(2.11)

= 1I (h)
|μh|2
|λh|

(
1 − cos

(
2|λh |1/2T

)

4|λh |1/2
)

.

The proof of Lemma 2.2 is thus completed. �

Lemma 2.3 Assume the setting in Sect.2.1 and let I ∈ P(H). Then it holds for all
i ∈ {1, 2} that

E
[‖XI‖2H0

] = T
∑

h∈I

|μh |2
|λh| < ∞, (2.12)

E

[
‖X I,i‖2H1/2−i/2

]
= 1

2

∑

h∈I

|μh|2
|λh|

(
T + sin

(
2|λh |1/2T

)

(−1)i 2|λh |1/2
)

< ∞. (2.13)

Proof of Lemma 2.3. Itô’s isometry and Lemma 2.6 in [4] imply that

E
[‖XI‖2H0

] = E

[∥∥∥∥

∫ T

0
e(T−s)APIB dWs

∥∥∥∥

2

H0

]
(2.14)

= T ‖PIB‖2HS(H,H0)
= T

∑

h∈I

|μh |2
|λh| < ∞.

In addition, Lemma 2.2 shows for all i ∈ {1, 2} that

E

[
‖X I,i‖2H1/2−i/2

]
=

∑

h∈H
E

[∣∣∣
〈|λh|i/2−1/2h, X I,i

〉
H1/2−i/2

∣∣∣
2]

(2.15)

= 1

2

∑

h∈I

|μh|2
|λh|

(
T + sin

(
2|λh |1/2T

)

(−1)i 2|λh|1/2
)

< ∞.

The proof of Lemma 2.3 is thus completed. �

Corollary 2.4 Assume the setting in Sect.2.1 and let I ∈ P(H). Then it holds for
all (v, w) ∈ PI (H0) that
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CovOp(XI )

(
v
w

)
=1

2

∑

h∈I

|μh |2
|λh |

[(
T − sin

(
2|λh |1/2T

)

2|λh |1/2
)

〈h, v〉H0

(
h
0

)

+
(
1 − cos

(
2|λh |1/2T

)

2|λh |1/2
)〈|λh |1/2h, w

〉
H−1/2

(
h
0

)
(2.16)

+
(
1 − cos

(
2|λh |1/2T

)

2|λh |1/2
)

〈h, v〉H0

(
0

|λh |1/2h
)

+
(
T + sin

(
2|λh |1/2T

)

2|λh |1/2
)〈|λh |1/2h, w

〉
H−1/2

(
0

|λh |1/2h
)]

∈ PI (H0).

Proof of Corollary 2.4. Lemma 2.1, and Lemma 2.2 prove for all x1 = (v1, w1),
x2 = (v2, w2) ∈ PI (H0) that

〈x1,CovOp(XI )x2〉H0 = Cov
(〈x1,XI 〉H0 , 〈x2,XI 〉H0

) = E
[〈x1,XI 〉H0〈x2,XI 〉H0

]

= E
[(〈v1, X I,1〉H0 + 〈w1, X

I,2〉H−1/2

)(〈v2, X I,1〉H0 + 〈w2, X
I,2〉H−1/2

)]

=
∑

h∈H
Var

(〈h, X I,1〉H0

)〈h, v1〉H0〈h, v2〉H0

+
∑

h∈H
Cov

(
〈h, X I,1〉H0 ,

〈|λh|1/2h, X I,2
〉
H−1/2

)
〈h, v1〉H0

〈|λh |1/2h, w2
〉
H−1/2

+
∑

h∈H
Cov

(
〈h, X I,1〉H0 ,

〈|λh|1/2h, X I,2
〉
H−1/2

)
〈h, v2〉H0

〈|λh |1/2h, w1
〉
H−1/2

+
∑

h∈H
Var

(〈|λh|1/2h, X I,2
〉
H−1/2

)〈|λh |1/2h, w1
〉
H−1/2

〈|λh |1/2h, w2
〉
H−1/2

=
〈
v1,

∑

h∈H

[
Var

(〈h, X I,1〉H0

)〈h, v2〉H0

+ Cov
(
〈h, X I,1〉H0 ,

〈|λh|1/2h, X I,2〉
H−1/2

)〈|λh |1/2h, w2
〉
H−1/2

]
h

〉

H0

(2.17)

+
〈
w1,

∑

h∈H

[
Cov

(
〈h, X I,1〉H0 ,

〈|λh|1/2h, X I,2
〉
H−1/2

)
〈h, v2〉H0

+ Var
(〈|λh|1/2h, X I,2

〉
H−1/2

)〈|λh|1/2h, w2
〉
H−1/2

]
|λh |1/2h

〉

H−1/2

=
〈
x1,

∑

h∈H

[
Var

(〈h, X I,1〉H0

)〈h, v2〉H0

+ Cov
(
〈h, X I,1〉H0 ,

〈|λh|1/2h, X I,2
〉
H−1/2

)〈|λh |1/2h, w2
〉
H−1/2

](h
0

)〉

H0

+
〈
x1,

∑

h∈H

[
Cov

(
〈h, X I,1〉H0 ,

〈|λh|1/2h, X I,2
〉
H−1/2

)
〈h, v2〉H0
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+ Var
(〈|λh|1/2h, X I,2

〉
H−1/2

)〈|λh|1/2h, w2
〉
H−1/2

]( 0
|λh|1/2h

)〉

H0

.

This and again Lemma 2.2 complete the proof of Corollary 2.4. �

Proposition 2.5 Assume the setting in Sect.2.1. Then it holds for all I ∈ P(H) that

E
[‖XH‖2H0

] − E
[‖XI‖2H0

] = E
[‖XH\I‖2H0

] ≥ T inf
h∈H

|μh |2
∑

h∈H\I

1

|λh| . (2.18)

Proof of Proposition 2.5. Orthogonality and Lemma 2.1 imply for all I ∈ P(H) that

E
[‖XI‖2H0

] + E
[‖XH\I‖2H0

] = E
[‖PIXH‖2H0

] + E
[‖PH\IXH‖2H0

]

= E
[‖(PI + PH\I )XH‖2H0

] = E
[‖XH‖2H0

]
.

(2.19)

This and Lemma 2.3 show for all I ∈ P(H) that

E
[‖XH‖2H0

] − E
[‖XI‖2H0

] = E
[‖XH\I‖2H0

]

= T
∑

h∈H\I

|μh |2
|λh| ≥ T inf

h∈H
|μh|2

∑

h∈H\I

1

|λh | .
(2.20)

The proof of Proposition 2.5 is thus completed. �
InCorollary 2.7 andCorollary 2.8 below lower bounds on theweak approximation

errorwith the squared norm as test function are presented.Our proofs of Corollary 2.7
and Corollary 2.8 use the following elementary and well-known lemma (cf., e.g.,
Proposition 7.4 in Conus et al. [1]).

Lemma 2.6 Let p ∈ (0,∞), δ ∈ (−∞, 1/2 − 1/(2p)). Then it holds for all N ∈ N

that ∞∑

n=N+1

np(2δ−1) ≥ N p(2δ−1)+1

[p(1 − 2δ) − 1]2p(1−2δ)−1
. (2.21)

Proof of Lemma 2.6. Observe that the assumption that δ ∈ (−∞, 1/2 − 1/(2p)) ensures
that p(2δ − 1) ∈ (−∞,−1). This implies for all N ∈ N that

∞∑

n=N+1

np(2δ−1) =
∞∑

n=N+1

∫ n+1

n
n p(2δ−1) dx ≥

∞∑

n=N+1

∫ n+1

n
x p(2δ−1) dx

=
∫ ∞

N+1
x p(2δ−1) dx = − (N + 1)p(2δ−1)+1

p(2δ − 1) + 1
(2.22)

≥ N p(2δ−1)+1

[p(1 − 2δ) − 1]2p(1−2δ)−1
.
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This completes the proof of Lemma 2.6. �

Corollary 2.7 Assume the setting in Sect.2.1, let c ∈ (0,∞), p ∈ (1,∞), let
e : N → H be a bijection which satisfies for all n ∈ N that λen = −cn p, and let IN ∈
P(H), N ∈ N, be the sets which satisfy for all N ∈ N that IN = {e1, e2, . . . , eN } ⊆
H. Then it holds for all N ∈ N that

E
[‖XH‖2H0

] − E
[‖XIN ‖2H0

] ≥ T infh∈H|μh |2N 1−p

c(p − 1)2p−1
. (2.23)

Proof of Corollary 2.7. Proposition 2.5 and Lemma 2.6 prove for all N ∈ N that

E
[‖XH‖2H0

] − E
[‖XIN ‖2H0

] ≥ T inf
h∈H

|μh|2
∑

h∈H\IN

1

|λh| = c−1 T inf
h∈H

|μh|2
∞∑

n=N+1

1

np

≥ T infh∈H|μh |2N 1−p

c(p − 1)2p−1
. (2.24)

The proof of Corollary 2.7 is thus completed. �

Corollary 2.8 Assume the setting in Sect.2.1, let c, p ∈ (0,∞), δ ∈ (−∞, 1/2 −
1/(2p)), let e : N → H be a bijection which satisfies for all n ∈ N that λen =
−cn p, let IN ∈ P(H), N ∈ N, be the sets which satisfy for all N ∈ N that IN =
{e1, e2, . . . , eN } ⊆ H, and assume for all h ∈ H that |μh | = |λh|δ . Then it holds for
all N ∈ N that

E
[‖XH‖2H0

] − E
[‖XIN ‖2H0

] ≥ T c2δ−1N p(2δ−1)+1

[p(1 − 2δ) − 1]2p(1−2δ)−1
. (2.25)

Proof of Corollary 2.8. Proposition 2.5, Lemma 2.3, and Lemma 2.6 show for all
N ∈ N that

E
[‖XH‖2H0

] − E
[‖XIN ‖2H0

] = T
∑

h∈H\IN

|μh|2
|λh| = T

∑

h∈H\IN
|λh|2δ−1 (2.26)

= T c2δ−1
∞∑

n=N+1

np(2δ−1) ≥ T c2δ−1N p(2δ−1)+1

[p(1 − 2δ) − 1]2p(1−2δ)−1
.

This completes the proof of Corollary 2.8. �
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2.3 Lower Bounds for the Weak Error of a Particular
Regular Test Function

The next result, Proposition 2.9 below, follows directly from Lemma 2.2, and
Lemma 2.3 above and Lemma 9.5 in Jentzen and Kurniawan [5].

Proposition 2.9 Assume the setting in Sect.2.1 and let ϕi : H0 → R, i ∈ {1, 2},
be the functions which satisfy for all i ∈ {1, 2}, (v1, v2) ∈ H0 that ϕi (v1, v2) =
exp

(−‖vi‖2H1/2−i/2

)
. Then it holds for all i ∈ {1, 2}, I ∈ P(H) that ϕi ∈ C2

b (H0,R)

and

E[ϕi (XI )] − E[ϕi (XH)] ≥
E

[
‖XH,i‖2H1/2−i/2

]
− E

[
‖X I,i‖2H1/2−i/2

]

exp
(
6E

[
‖XH,i‖2H1/2−i/2

]) . (2.27)

Corollary 2.10 Assume the setting in Sect.2.1, let c, p ∈ (0,∞), δ ∈ (−∞, 1/2 −
1/(2p)), let e : N → H be a bijection which satisfies for all n ∈ N that λen =
−cn p, let IN ∈ P(H), N ∈ N, be the sets which satisfy for all N ∈ N that IN =
{e1, e2, . . . , eN } ⊆ H, assume for all h ∈ H that |μh | = |λh|δ , and let ϕi : H0 →
R, i ∈ {1, 2}, be the functions which satisfy for all i ∈ {1, 2}, (v1, v2) ∈ H0 that
ϕi (v1, v2) = exp

(−‖vi‖2H1/2−i/2

)
. Then it holds for all i ∈ {1, 2}, N ∈ N that ϕi ∈

C2
b (H0,R) and

E[ϕi (XIN )] − E[ϕi (XH)]
≥

[
1 + inf

x∈[2c1/2T,∞)

sin(x)

(−1)i x

]
T c2δ−12p(2δ−1)N p(2δ−1)+1

[p(1 − 2δ) − 1] exp( 6 p(2δ−1)T c2δ−1

p(2δ−1)+1

) > 0. (2.28)

Proof of Corollary 2.10. Lemma 2.3, and Lemma 2.6, and the fact that ∀ x ∈ (0,∞) :∣∣ sin(x)
x

∣∣ < 1 prove for all i ∈ {1, 2}, N ∈ N that

E

[
‖XH,i‖2H1/2−i/2

]
− E

[
‖X IN ,i‖2H1/2−i/2

]
= 1

2

∑

h∈H\IN

|μh|2
|λh|

(
T + sin

(
2|λh|1/2T

)

(−1)i 2|λh|1/2
)

≥
(
1 + inf

h∈H
sin

(
2|λh|1/2T

)

(−1)i 2|λh|1/2T
)
T

2

∑

h∈H\IN
|λh |2δ−1 (2.29)

≥
(
1 + inf

x∈[2c1/2T,∞)

sin(x)

(−1)i x

)
T c2δ−1

2

∞∑

n=N+1

np(2δ−1)

≥
(
1 + inf

x∈[2c1/2T,∞)

sin(x)

(−1)i x

)
T c2δ−12p(2δ−1)N p(2δ−1)+1

[p(1 − 2δ) − 1] > 0.
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Furthermore, note that the fact that p(2δ − 1) ∈ (−∞,−1) ensures that

∞∑

n=1

np(2δ−1) ≤ 1 +
∞∑

n=1

∫ n+1

n
x p(2δ−1) dx = 1 +

∫ ∞

1
x p(2δ−1) dx (2.30)

= 1 − 1

p(2δ − 1) + 1
= p(2δ − 1)

p(2δ − 1) + 1
.

Lemma 2.3 hence implies for all i ∈ {1, 2} that

exp
(
−6E

[
‖XH,i‖2H1/2−i/2

])
≥ exp

(−6E
[‖XH‖2H0

]) = exp

(
−6T c2δ−1

∞∑

n=1

np(2δ−1)

)

≥ exp

(
−6 p(2δ − 1)T c2δ−1

p(2δ − 1) + 1

)
> 0. (2.31)

Combining this and (2.29) with Proposition 2.9 concludes the proof of
Corollary 2.10. �

Roughly speaking, Corollary 2.11 below specifies Corollary 2.10 to the case
where the linear operator A : D(A) ⊆ H → H in the setting in Sect. 2.1 is the Lapla-
cian with Dirichlet boundary conditions on H = L2((0, 1);R). Corollary 2.11 is an
immediate consequence of Corollary 2.10.

Corollary 2.11 Assume the setting in Sect.2.1, let δ ∈ (−∞, 1/4), let e : N → H be
a bijection which satisfies for all n ∈ N that λen = −π2n2, let IN ∈ P(H), N ∈ N,
be the sets which satisfy for all N ∈ N that IN = {e1, e2, . . . , eN } ⊆ H, assume for
all h ∈ H that |μh | = |λh|δ , and let ϕi : H0 → R, i ∈ {1, 2}, be the functions which
satisfy for all i ∈ {1, 2}, (v1, v2) ∈ H0 that ϕi (v1, v2) = exp

(−‖vi‖2H1/2−i/2

)
. Then it

holds for all i ∈ {1, 2}, N ∈ N that ϕi ∈ C2
b (H0,R) and

E[ϕi (XIN )] − E[ϕi (XH)]
≥

[
1 + inf

x∈[2πT,∞)

sin(x)

(−1)i x

]
T (4π2)2δ−1N 4δ−1

[1 − 4δ] exp( 12(2δ−1)Tπ4δ−2

4δ−1

) > 0. (2.32)
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