
Chapter 9
A Brief Guide to Reversing and Extended
Symmetries of Dynamical Systems

M. Baake

9.1 Introduction

Symmetries of dynamical systems are important objects to study, as they help in
understanding the orbit structure and many other properties. Moreover, the group of
symmetries is a topological invariant that can be useful for distinguishing between
different dynamical systems. Naturally, this invariant is generally weaker than other
invariants (such as those from (co-)homology or homotopy theory), but often easier
to access.

For both aspects, studying properties and defining invariants, one is clearly
interested in effective generalisations or extensions of the symmetry group. Inspired
by the time-reversal symmetry of many fundamental equations in physics, one
obvious step in this direction is provided by the reversing symmetry group of a
dynamical system, which—in the case of reversibility—is an index-2 extension of
the symmetry group.

Traditionally, the majority of the studies has concentrated on concrete dynamical
systems, where the space is usually simple, but the mapping(s) might be com-
plicated. Even for toral automorphism, the answer is amazingly rich. There is a
complementary picture, which arises through the coding of itineraries and leads
to the analogous questions in symbolic dynamics [59]. Here, the mapping(s) are
simple, but the space (usually a closed shift space) is complicated, and this is
particularly so when going to higher-dimensional shifts.
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In this brief introductory review, we recall the basic definitions and notions, and
present some results from the large body of literature that has accumulated. Clearly,
the exposition cannot be complete in any way, whence the references will provide
further directions.

After some examples from the classic theory of concrete dynamical systems, we
shall stroll through some more recent results on the complementary picture from
symbolic dynamics.

9.2 General Setting and Notions

A convenient starting point is a topological space X , which is usually (but
not always) assumed to be compact, and a mapping T ∈ Aut(X ), where the
automorphism group is understood in the Smale sense, meaning that it is the
group of all homeomorphisms of X . The pair (X ,T) then defines a (topological)
dynamical system, and the group 〈T〉 ⊂ Aut(X ) is important. Now, we define the
symmetry group of (X ,T) as

S(X ,T) := {G ∈ Aut(X ) : G ◦ T = T ◦ G} = centAut(X )(〈T〉) = Aut(X ,T).

(9.1)

This group plays an important role in the analysis of (X ,T), for instance in the
context of periodic orbits and dynamical zeta functions. Its is also a useful tool in
the classification of dynamical systems, because it is a topological invariant.

Remark 9.1 The group Aut(X ,T) is often used as a starting point for algebraic
considerations, and then simply called the automorphism group of the dynamical
system, but this is—as we shall see later—a use of the word that is too restrictive,
and effectively excludes many natural mappings from the consideration. We will
thus not use this notation, and rather view S(X ,T) as a subgroup of Aut(X ) in the
Smale sense.

In some cases, the group Aut(X ) might be too big a ‘universe’ to consider, and
some subgroup of it is a more natural choice, for instance when some additional
structure of X should be preserved. This is particularly so if some general results
are available that imply S(X ,T) and R(X ,T) to be subgroups of some group
U ⊂ Aut(X ). In this case, one can start with U, and simplify the algebraic
derivations considerably. The above point simply is that U should generally not
be chosen as Aut(X ,T), as this is too restrictive.

Since we will not consider the case that T is not invertible, a natural extension of
S(X ,T) is given by

R(X ,T) := {G ∈ Aut(X ) : G ◦ T ◦ G−1 = T±1}, (9.2)
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which is motivated by the time-reversal symmetry of many fundamental equations
of physics; see [53, 71] and references therein for background. From now on, we
write GT instead of G ◦ T etc. for ease of notation. The relation between S(X ,T)

and R(X ,T) can be summarised as follows; see [12] and references therein.

Theorem 9.2 If (X ,T) is a topological dynamical system, R(X ,T) ⊂ Aut(X )

is a group, with 〈T〉 and S(X ,T) as normal subgroups. Moreover, one either has
R(X ,T) = S(X ,T) or [R(X ,T) : S(X ,T)] = 2. In the latter case, the systems is
reversible.

Further, if T2 �= Id and if there is an involution H with HTH−1 = T−1, one has

R(X ,T) = S(X ,T) � 〈H〉 � S(X ,T) � C2 ,

which is the standard form of reversibility.

An element that conjugates T into its inverse (where we assume T2 �= Id) is
called a reversor. An elementary observation is the fact that a reversor cannot be of
odd order, so it is either of even or of infinite order. When the order is finite, hence
of the form 2�(2m + 1) for some � � 1, there exists another reversor of order 2�.
When T possesses an involutory reversor, R say, one has T = TR2 = (TR)R, where
(TR)2 = TRTR = TT−1 = Id, so T is the product of two involutions. This is a
frequently used approach in the older literature, before the group-theoretic setting
showed [38, 52] that the more general approach is natural and helpful; see [12, 53]
and references therein for details.

As is implicit from our formulation so far, reversibility is not an interesting
concept when T itself is an involution. More generally, when T has finite order,
the structure of R(X ,T) is a group-theoretic problem, and of independent interest;
see [60] for a concise exposition. However, in the context of dynamical systems, one
is mainly interest in the case that 〈T〉 � Z. Then, one can slightly change the point
of view by considering T as defining a continuous group action of Z on X , which
is often reflected by the modified notation (X ,Z) for the topological dynamical
system. From now on, unless explicitly stated otherwise, we shall adopt this point
of view here, too. The following result is elementary.

Fact 9.3 When T is not of finite order, one has R(X ,T) = normAut(X )(〈T〉).
It is thus the interplay between the (topological) centraliser and normaliser that is

added in the extension fromS(X ,T) to R(X ,T). One simple (but frequently useful)
instance of this is given by the following result, where C∞ and D∞ = C∞ � C2
denote the infinite cyclic and dihedral group, respectively.

Theorem 9.4 ([12, Thm. 1 and Cor. 1]) Let T ∈ Aut(X ) be of infinite order. If one
hasS(X ,T) � C∞ and if T is reversible, one hasR(X ,T) = S(X ,T)�C2 � D∞,
and all reversors of T are involutions.

Conversely, if all reversors of T are involutions, the symmetry group S(X ,T) is
Abelian.
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Clearly, in the setting of dynamical systems, one could equally well consider the
analogous questions for the measure-theoretic centraliser and normaliser, and this is
indeed frequently done in the literature; compare [35, 39, 69] and references therein.
Since, in many relevant cases, the measure-theoretic symmetry groups turn out to
be topological (see [69] for results in this direction), we concentrate on the latter
situation in this overview.

In what follows, we shall meet two rather different general situations, as briefly
indicated in the introduction. On the one hand, there are many systems from
nonlinear dynamics where the space is simple, but the map is complicated. In this
case, we will write S(T) instead of S(X ,T) to emphasise the mapping. Likewise,
when we are in the complementary situation (of symbolic dynamics, say) with a
simple map acting on a more complicated space, we will use S(X ) instead to
highlight the difference. This also matches the widely used conventions in these
two directions.

9.3 Concrete Systems from Nonlinear Dynamics

In this section, we will describe, in a somewhat informal manner, how symmetries
and reversing symmetries arise in three particular families of dynamical systems,
namely trace maps, toral automorphisms, and polynomial automorphisms of the
plane. Clearly, there are many other relevant examples, some of which can be found
in [53, 60, 71] and references therein.

9.3.1 Trace Maps

This class of dynamical system arises in the study of one-dimensional Schrödinger
operators with aperiodic potentials of substitutive origin, compare [31] and refer-
ences therein, and provide a powerful tool for the study of their spectra and transport
properties. The paradigmatic Fibonacci trace map in 3-space is given by

(x, y, z) 
−→ ( y, z, 2yz − x)

and is reversible, with involutory reversor (x, y, z) 
→ (z, y, x); see [65] and
references given there. The group-theoretic ‘universe’ to consider here is given
by the group of 3-dimensional invertible polynomial mappings that preserve the
Fricke–Vogt invariant

I(x, y, z) = x2 + y2 + z2 − 2xyz − 1
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and fix the point (1, 1, 1); see [9, 14, 65] and references therein for more. This group
of mappings is isomorphic with PGL(2,Z), and can thus be analysed by classic
methods, including the theory of binary quadratic forms.

In other words, the analysis of (reversing) symmetries of trace maps is equivalent
to the determination of S(M) and R(M) for matrices M ∈ PGL(2,Z). Since

PGL(2,Z) � GL(2,Z)/{±1|},

the following result is obvious.

Fact 9.5 Let M ∈ PGL(2,Z) and M′ be either of the two corresponding matrices
in GL(2,Z). Then, the symmetry group S(M) is given by

S(M) = centPGL(2,Z)(〈M〉) = centGL(2,Z)(〈M′〉)/{±1|}.

The symmetry groups can thus be derived from the analysis of general (two-
dimensional) toral automorphisms, which we will review in Sect. 9.3.2. For the
reversing symmetry group, the role of {±1|} changes. Let M ∈ PGL(2,Z) be given,
and view it as a GL(2,Z)-matrix. Then, we have to find all solutions H to

HMH−1 = ±M−1,

where the calculation modulo ±1| means that we get more cases with reversibility
than in GL(2,Z). For instance, M = (

1 1
1 0

)
is reversible in PGL(2,Z), with an

involutory reversor, but not within GL(2,Z), while M2 (known as Arnold’s cat map
[5, Ex. 1.15]) is reversible in both groups. Within GL(2,Z), this phenomenon is
called 2-reversibility; see [9] for details.

9.3.2 Toral Automorphisms

These systems, which are also known as ‘cat maps’, are much studied examples in
chaotic dynamics and ergodic theory. Here, in order to preserve the linear structure
ofTd , the d-dimensional torus, one usually works withinU = GL(d,Z) ⊂ Aut(Td);
see [1, 2, 5, 62] for background.

In the planar case (d = 2), one thus has to deal with the group GL(2,Z). Here,
if M is an element of infinite order, one always finds S(M) � C2 × C∞, where
C2 = {±1|}. This follows for any parabolic element by a simple calculation, and,
for the hyperbolic elements, is a consequence of Dirichlet’s unit theorem for real
quadratic number fields; see [24] for background.

Remark 9.6 Reversible cases among elements of infinite order are of three possible
types: When all reversors are involutions, one has R(M) � C2 × D∞, again with
D∞ = C∞ �C2; when all reversors are of fourth order, one has R(M) � C∞ �C4;
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finally, when reversors both of order 2 and 4 exist, one has R(M) � (C2×C∞)�C2.
All three types occur; see [12, Thm. 2 and Ex. 4] and references given there for more.

In this context, it is certainly a valid and interesting question how the concepts
can be extended to cover toral endomorphisms, or what happens when one restricts
to rational sublattices. This is connected with looking at the related questions over
finite fields and residue class rings; see [16, 18] and references therein for some
results.

The situation becomes more complex, and also more interesting, in higher
dimensions. In a first step, one has to analyse the symmetry group of a toral
automorphism, M ∈ GL(d,Z) say, within this matrix group. In the generic case,
where M is simple (meaning that its eigenvalues are distinct) one can employ
Dirichlet’s unit theorem again. Let us first look at the case that the characteristic
polynomial P(x) = det(M − x1|) of M is irreducible over Z, and hence also over
Q . Then, if λ is any of the d eigenvalues of M, it is an algebraic integer of degree
d = n1 + 2n2, where n1 is the number of real algebraic conjugates of λ and n2 the
number of complex conjugate pairs among the algebraic conjugates.

Now, if O is the maximal order in the algebraic number field Q (λ), Dirichlet’s
unit theorem states that the unit group O× is of the form

O× � T × Z
n1+n2−1 (9.3)

with T = O∩ {roots of unity} being a finite cyclic group. The latter is known as the
torsion subgroup of O×. Due to the isomorphism of Z[λ] with the ring Z[M] under
our irreducibility assumption on P, one then has the following result [10, Prop. 1
and Cor. 1].

Theorem 9.7 Let M ∈ GL(d,Z) have an irreducible characteristic polynomial,
P(x), of degree d = n1 + 2n2, with n1 and n2 as above. Then, S(M) is isomorphic
with a subgroup of O× of maximal rank, so

S(M) � T ′ × Z
n1+n2−1,

where T ′ is a subgroup of the torsion group T from Eq. (9.3).
Moreover, whenever P(x) has a real root, which includes all cases with d odd,

one simply has T ′ = {±1} � C2.

For our previous example, M = (
1 1
1 0

)
, one finds S(M) = {±1|} ×〈M〉 � C2 ×Z.

Note that, in general, the generators of the free part of S(M) can correspond to
powers of fundamental units, which is related with the question of the existence
of matrix roots within GL(d,Z); see [10] for more. One can quite easily extend
Theorem 9.7 to the case that M is simple. This is done by factoring P over Z and
treating the factors separately [9, Thm. 1].

Let us look at the reversibility of a matrix M ∈ GL(2,Z). A necessary condition
clearly is that M and M−1 have the same spectrum (including multiplicities). In
other words, if P is the characteristic polynomial of M with integer coefficients, it
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must satisfy the self-reciprocity condition

P(x) = (−1)dxd

det(M)
P
( 1
x

)
. (9.4)

Now, if d is odd or if det(M) = −1, this relation implies that 1 or −1 is a root, and
P is reducible over Z. In particular, d odd and P irreducible immediately excludes
reversibility. This means that, generically, reversible cases can only occur when d is
even and det(M) = 1.

Note that, even if Eq. (9.4) is satisfied, the reversibility still depends on the
underlying integer matrixM, and the class number of Z[λ] enters. It is then clear that
deciding on reversibility is a problem that increases with growing d; we refer to the
discussion in [10] for more. However, for any given characteristic polynomial that is
self-reciprocal according to the condition of Eq. (9.4), there is at least one reversible
class of matrices, and this can be represented by the Frobenius companion matrix
[10, Thm. 3].

A natural extension of symmetries can be considered in the setting of matrix
rings rather than groups, such as Mat(d,K) instead of GL(d,K), where K can itself
be a ring (such as Z) or a field (such as Q ). Then, one can define

S(M) = {G ∈ Mat(d,K) : [M,G] = 0}.

Concretely, if M is an integer matrix with irreducible characteristic polynomial, and
λ is any of its roots, one finds S(M) to be isomorphic with an order O in the number
field Q (λ) that satisfies Z[λ] ⊆ O ⊆ Omax, where Omax denotes the maximal order
in Q (λ); see [41, Ch. III] as well as [10, Sec. 3.3] and references given there for
more.

9.3.3 Polynomial Automorphisms of the Plane

Let K be a field and consider the group UK = GA2(K) of polynomial automor-
phisms of the affine plane over K. Consequently, we have X = K2 in this case,
which need not be compact. UK consists of all mappings of the form

(
x
y

)

−→

(
P(x, y)
Q(x, y)

)

with P,Q ∈ K[x, y], subject to the condition that the inverse exists and is also
polynomial. Note that, over general fields, different polynomials might actually
define the same mapping on K2, but we will distinguish them on the level of the
polynomials.
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In nonlinear dynamics, where GA2(R ) and GA2(C) have received considerable
attention, a common alternative notation is

x ′ = P(x, y) , y ′ = Q(x, y).

Frequently studied examples include the Hénon quadratic map family, defined by
P(x, y) = y and Q(x, y) = −δx + y2 + c with constants c, δ ∈ C and δ �= 0. Quite
often, for instance in the context of area-preserving mappings, the starting point is a
polynomial automorphism in generalised standard form,

x ′ = x + P1( y) , y ′ = y + P2(x
′),

with single-variable polynomials P1 and P2; compare [37, 66] and references
therein. Here, the inverse is simply given by y = y ′ − P2(x

′) together with
x = x ′ − P1(y).

In a certain sense, such particular normal forms are important, but do not exhaust
the full power of the algebraic setting. Let us explain this a little in the context of
combinatorial group theory. We begin by defining three subgroups of GA2(K) as
follows. First,

A := {
(a,M) : a ∈ K2, M ∈ GL(2,K)

}

is the group of affine transformations, where (a,M) encodes the mapping
x 
→ Mx + a. We write a for a column vector, and tacitly identify the elements
of A with the canonically corresponding elements of GA2(K). Multiplication is
defined by

(a,A)(b,B) = (a + Ab,AB),

whence A is a semi-direct product, namely A = K2
� GL(2,K). The inverse of an

element is (a,A)−1 = (−A−1a,A−1).
The second group, E, is known as the group of elementary transformations. It

consists of all mappings of the form

(
x
y

)

−→

(
αx + P( y)

βy + v

)

with P a single-variable polynomial and α, β, v ∈ K subject to the condition
αβ �= 0. It is easy to check that the inverse exists and it of the same form.
Transformations of this kind map lines with constant y-coordinate to lines of the
same type. It is a well-known fact that the group GA2(K) is generated by A and E;
see [42, 72] as well as [73, Sec. 1.5].
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Finally, our third group, B, is defined as the intersection B = A ∩ E, with
obvious meaning as subgroups of GA2(K). The elements of B are called basic
transformations, and are mappings of the form

(
x
y

)

−→

(
α γ

0 β

) (
x
y

)
+

(
u
v

)

with α, β, γ, u, v ∈ K and αβ �= 0. Clearly, also B is a semi-direct product, namely
B = K2

� T , where T denotes the subgroups of GL(2,K) that consists of all
invertible upper triangular matrices over K.

Now, the following result [68, 73] is fundamental to the classification of
(reversing) symmetries of polynomial automorphisms.

Lemma 9.8 The group GA2(K) is the free product of the groups A and E,
amalgamated along their intersection,B, which is abbreviated as GA2(K) = A ∗

BE.

Through this result, the problem has been reset in a purely algebraic way, and
one can now explore the subgroup structure [43] of the amalgamated free product.
In particular, one can classify the Abelian subgroups of GA2(K), which has trivial
centre. Naturally, S(T) for a given T ∈ GA2(K) is more complex, and need no
longer be Abelian. When K has characteristic 0, one can derive restrictions on the
order of other symmetries, which gives access to the finite subgroups of S(T); for
details, the reader is referred to [11].

For an important subclass of transformations known as CR elements, one can
say a lot more. In particular, if K is a field of characteristic 0, all reversors must be
of finite order. If, in addition, the roots of unity in K are just {±1}, any reversor is
an involution or an element of order 4, which makes their detection feasible. The
possible reversing symmetry groups in this case are then the same three types we
saw earlier, in Remark 9.6, for 2-dimensional toral automorphisms of infinite order.
Since further details in this setting of combinatorial group theory tend to be a bit
technical, we refer to [11] and references therein for more.

9.4 Shift Spaces with Faithful Z-action

All examples in the previous section shared the feature that the space X is simple,
but the map T on it is not. This is the standard situation in most dynamical systems
that arise from concrete problems, for instance in nonlinear dynamics. However, it
has long been known [59] that there is a complementary picture, which arises by
coding orbits in such systems by symbolic sequences, for instance via itineraries.
The latter keep track of a coarse-grained structure in such a way that the full
dynamics can be recovered from them—at least almost surely in some suitable
measure-theoretic sense.
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This leads to symbolic dynamics, where the space X is ‘replaced’ by a closed
shift space Y (often over a finite alphabet), and T by the action of the left shift,
S. More precisely, one constructs a conjugacy, a semi-conjugacy, or (typically) a
measure-theoretic isomorphism that makes the diagram

commutative and φ as ‘invertible as possible’. This motivates to also consider
symmetries and reversing symmetries of shift spaces, where we shall always assume
that the action of Z on the shift space is faithful in order to exclude degenerate
situations. We refer to [50, 56] for general background, and to [49, 55] for the study
of topological Markov chains in this context.

One immediate problem that arises is the fact that the symmetry group of a shift
space (now called X again) is generally huge, in the sense that it contains a copy
of the free group of two generators—and is thus not amenable [56]. This turns a
potential classification into a wild problem, and not much has been done in this
direction. On the other hand, as has long been known, it is also possible that one
simply gets S(X ) = 〈S〉 � Z, in which case one speaks of a trivial centraliser,
or of a minimal symmetry group. This is a form of rigidity, for which different
mechanisms are possible. Interestingly, rigidity is not a rare phenomenon [23], but
actually generic in some sense [40], which makes it rather relevant also in practice.

To explore the possibilities a little, let us assume that A is a finite set, called
the alphabet, and that X ⊆ AZ is a closed and shift-invariant set, which is then
automatically compact. Such a space is called a shift space, or subshift for short.

A special role has the ‘canonical’ reversor R defined by

(Rx)n := x−n (9.5)

or any combination of R with a power of the shift S. It is clear that R conjugates S
into its inverse on the full shift, X = AZ. More generally, one has the following
property.

Lemma 9.9 Let X be a shift space with faithful shift action. If X is reflection-
invariant, which means R(X ) = X with the mapping R from Eq. (9.5), the system is
reversible, with R(X ) = S(X ) � C2, where C2 = 〈R〉.

Let us collect a few examples of reversible subshifts, in an informal manner; see
[20] and references therein for precise statements and proofs, and [3, 7, 26, 63, 64]
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for general background on substitution generated subshifts. Among these examples
are

1. the full shift [50, 56], X = AZ, where S(X ) is huge (and not amenable);
2. any Sturmian shift [27], which is always palindromic [33] and hence reversible,

with symmetry group S(X ) � Z;
3. the period doubling shift, defined by the primitive substitution rule a 
→ ab,

b 
→ aa, again with S(X ) � Z;
4. the Thue–Morse (TM) shift, defined by a 
→ ab, b 
→ ba, here with

S(X ) � Z × C2, where the extra symmetry is the letter exchange map defined
by a ↔ b;

5. the square-free shift, obtained as the orbit closure of the characteristic function
of the square-free integers, also with S(X ) � Z.

In fact, the last example is quite remarkable, as its rigidity mechanism relies
on the heredity of the shift, as was recently shown by Mentzen [57]. Note that
the square-free shift has positive topological entropy, but nevertheless possesses
minimal centraliser. Though this is not surprising in view of known results from
Toeplitz sequences [25], it does show that rigidity as a result of low complexity, as
studied in [28–30, 32], is only one of several mechanisms. We shall see more in
Sect. 9.5. The square-free shift is a prominent example from the class of B-free
shifts, see [22, 34] and references therein, and also of interest in the context
of Sarnak’s conjecture on the statistical independence of the Möbius function
from deterministic sequences (as discussed at length in other contributions to this
volume).

Of course, things are generally more subtle than in these examples. First of all, a
subshift can be irreversible, as happens for the one defined by the binary substitution
a 
→ aba, b 
→ baa, where R(X ) = S(X ) � Z. Next, consider the subshift X k,�
defined by the primitive substitution

a 
−→ akb�, b 
−→ bka�

with k, � ∈ N, which is reversible if and only if k = �. This is an extension of the
TM shift (which is the case k = � = 1), in the spirit of [17, 45]. The symmetry
group is S(X k,�) � Z×C2 in all cases, where C2 is once again the group generated
by the letter exchange map.

Going to larger alphabets, A = {a0, a1, . . . , aN−1} say, one can look at a cyclic
extension of the TM shift, as defined by the substitution ai 
→ aiai+1 with the index
taken modulo N. This shift is reflection invariant only for N = 2, but nevertheless
reversible for any N, and even with an involutory reversor. The symmetry group is
Z ×CN .

The quaternary Rudin–Shapiro shift shows another phenomenon. Its symmetry
group is Z×C2, and it is reversible, but no reversor is an involution. Instead, there is
a reversor of order 4 (and all reversors have this order), and the reversing symmetry
group is Z � C4, where the square of the generating element of the cyclic group
C4 is the extra (involutory) symmetry; see [20] for details on this and the previous
examples.
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9.5 Shift Spaces with Faithful Zd-action

It is more than natural to also consider higher-dimensional shift actions. Here, given
some alphabet A, a subshift is any closed subspace X ⊆ AZ

d
that is invariant

under the shift in each of the d directions. With n = (n1, . . . , nd)
T ∈ Z

d as well as
xn = (

xn1
, . . . , xnd

)
, one defines the shift in direction i by

(Six)n := xn+ei
,

where ei is the standard unit vector in direction i. The individual shifts commute
with one another, SiSj = SjSi, for all 1 � i, j � d. Now, we define the symmetry
group of X as

S(X ) = centAut(X )(G),

where G := 〈S1, . . . , Sd〉 is a subgroup of Aut(X ).
As before, we are only interested in subshifts with faithful shift action, which

means G = 〈S1〉 × . . . × 〈Sd〉 � Z
d , where the direct product structure is a

consequence of the commutativity of the individual shifts. In this case, we define
the group of extended symmetries as

R(X ) = normAut(X )(G),

which is the obvious extension of the one-dimensional case. As we shall see shortly,
many of the obvious ‘symmetries’ of X are only captured by this extension step.

Unlike before, the structure of the normaliser is generally much richer now,
which also means that R(X ) is a considerably better topological invariant than
S(X ). Indeed, the normaliser can even be an infinite extension of the centraliser
when d > 1, as can be seen from the full shift as follows; see [20, Lemma 4].

Fact 9.10 Let d ∈ N and let X = AZ
d
be the full d-dimensional shift over the

(finite or infinite) alphabet A. Then, the group of extended symmetries is given by
R(X ) = S(X ) � GL(d,Z).

The reasoning behind this observation is simple. Each element of R(X ) must
map generators of G = 〈S1, . . . , Sd〉 � Z

d onto generators of G, and thus induces a
mapping into GL(d,Z), which is the automorphism group of the free Abelian group
of rank d. Now, one checks that, for any M ∈ GL(d,Z), the mapping hM defined by

(hMx)n = xM−1n ,

with n considered as a column vector, defines an automorphism of the full shift. This
leads to the semi-direct product structure as stated.
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Fig. 9.1 The chair inflation rule (upper left panel; rotated tiles are inflated to rotated patches), a
legal patch with full D4 symmetry (lower left) and a level-3 inflation patch generated from this
legal seed (shaded; right panel). Note that this patch still has the full D4 point symmetry (with
respect to its centre), as will the infinite inflation tiling fixed point emerging from it

9.5.1 Tiling Dynamical Systems as Subshifts

Substitution tilings of constant block size are a generalisation of substitutions of
constant length, and admit an alternative description as subshifts, for instance via
a suitable symbolic coding. Classic examples include the chair and the table tiling
[67], but many more are known [8, 36].

Here, we take a look at the chair tiling, which is illustrated in Fig. 9.1; see [7] for
more. Its geometric realisation makes it particularly obvious that any reasonable
notion of a group of full symmetries must somehow contain the elementary
symmetries of the square, simply because the inflation tiling (whose orbit closure
under the translation action of Z2 defines the tiling dynamical system, with compact
space X ) is invariant under a fourfold rotation and a reflection in the horizontal axis.
These two operations generate a group that is isomorphic with the dihedral group
D4, a maximal finite subgroup of GL(2,Z).

Now, none of these orthogonal transformations occur in the centraliser of the shift
group, which was shown to be minimal in [61]. This is a rigidity phenomenon of
topological origin, due to the fibre structure of X over its maximal equicontinuous
factor (MEF). Consequently, this example provides ample evidence that one also
needs to consider the normaliser. The general result reads as follows; see [20] for
the details.

Theorem 9.11 Let X be the hull of the chair tiling, and (X ,Z2) the corresponding
dynamical system. It is topologically conjugate to a subshift of {0, 1, 2, 3}Z2

with
faithful shift action. Moreover, one has S(X ) � Z

2 and R(X ) � Z
2
� D4, where

D4 is the symmetry group of the square, and a maximal finite subgroup of GL(2,Z).
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Proof (Sketch) It is well known that X is a.e. one-to-one over its MEF, which is a
two-dimensional odometer here. The orbits of non-singleton fibres over the MEF
create the topological rigidity that enforce the centraliser to agree with the group
generated by the lattice translations.

The extension by D4 is constructive, via the symmetries of the inflation fixed
point. Any further extension would require the inclusion of a GL(2,Z)-element
of infinite order (because D4 is a maximal finite subgroup of GL(2,Z)), which is
impossible by the geometric structure (and rigidity) of the prototiles.

Similar results will occur for other tiling dynamical system, also in higher
dimensions. For instance, it is clear that the d-dimensional chair (with d � 2; see
[7]) will have S = Z

d and R = Z
d
�Wd, where Wd is the symmetry group of the

d-dimensional cube, also known as the hyperoctahedral group [6].
Let us note that there is no general reason why the extended symmetry group

should be a semi-direct product (though this will be the most frequent case to
encounter in the applications). In fact, in (periodic) crystallography, the classifica-
tion of space groups in dimensions d � 2 contains so-called non-symmorphic cases
that do not show a semi-direct product structure between translations and linear
isometries [70]. It will be an interesting question to identify or construct planar shift
spaces that show the planar wallpaper groups as their extended symmetry groups.
This and similar results would emphasise once more that and how the extension
from S(X ) to R(X ) is relevant to capture the full symmetry of faithful shift actions.

9.5.2 Shifts of Algebraic Origin

There is a particularly interesting and important class of subshifts that has attracted
a lot of attention. They are known as subshifts of algebraic origin; see [69] and
references therein. The important point here is that such a subshift is also an Abelian
group under pointwise addition, and thus carries the corresponding Haar measure as
a canonical invariant measure.

Here, we take a look at one of the paradigmatic examples from this class, the
Ledrappier shift [54]. This is the subshift X L ⊂ {0, 1}Z2

defined as

X L = ker(1 + S1 + S2) = {
x ∈ {0, 1}Z2 : xn + xn+e1

+ xn+e2
= 0 for all n ∈ Z

2},
(9.6)

where the sums are pointwise, and to be taken modulo 2. This definition highlights
the special role of elementary lattice triangles, whose vertices are supporting the
local variables that need to sum to 0; see Fig. 9.2 for an illustration. The symmetry
group is known to be minimal, which can be seen as a rigidity phenomenon of
algebraic type. More generally, one has the following result.
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Theorem 9.12 The symmetry group of Ledrappier’s shift X L from Eq. (9.6) is

S(X L) = 〈S1, S2〉 � Z
2,

while the group of extended symmetries is given by

R(X ) = 〈S1, S2〉 � H � Z
2
� D3 ,

where H is the finite group generated by the autormorphisms hA and hB, with
A = ( −1 −1

1 0

)
and B = (

0 1
1 0

)
. This group is isomorphic with the dihedral group

D3 ⊂ GL(2,Z) that is generated by the corresponding matrices, A and B.

Proof (Sketch) The triviality of the centraliser is a consequence of the group struc-
ture, which heavily restricts the homeomorphisms between irreducible subshifts that
commute with the translations [23, 51, 69].

For the extension to the normaliser, the presence of D3 is again constructive, and
evident from Fig. 9.2. One then excludes any element of order 6 that would complete
D3 to D6, and finally any element of infinite order that could extend the group D3.
Both types of extensions are impossible because any such additional element would
change the defining condition by deforming the elementary triangles.

This example is of interest for a number of reasons. First of all, it shows
the phenomenon of rank-1 entropy, which is to say that the number of circular
configurations grows exponentially in the radius of the patch, but not in the area.
While this means that the topological entropy still vanishes, Ledrappier’s shift
is not an example of low complexity. Second, the spectral structure displays a

Fig. 9.2 Central configurational patch for Ledrappier’s shift condition, indicating the relevance
of the triangular lattice. Equation (9.6) implies a condition for the values at the three vertices
of all elementary L-triangles (shaded). The overall pattern of these triangles is preserved by all
(extended) symmetries. The group D3 from Theorem 9.12 can now be viewed as the colour-
preserving symmetry group of the ‘distorted’ hexagon as indicated around the origin
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mixture of trivial point spectrum with further absolutely continuous (Lebesgue)
components [13], which highlights the fact that the inverse problem of structure
determination, in the presence of mixed spectra, is really a lot more complex than
in the case of pure point spectra. Once again, capturing the full extended symmetry
group is an important first step in this analysis, as is well-known from classical
crystallography [70].

Let us consider the planar point set

V := {(x, y) ∈ Z
2 : gcd(x, y) = 1} ⊂ Z

2,

which is known as the set of visible (or primitive) lattice points; see the cover
page of [4] for an illustration. The set V has numerous fascinating properties, both
algebraically and geometrically. In particular, it fails to be a Delone set, because
it has holes of arbitrary size that even repeat lattice-periodically. Nevertheless, the
natural density exists and equals 6/π2 = 1/ζ(2). Moreover, the set V is invariant
under the group GL(2,Z), which acts transitively on V; see [15] and references
therein.

The corresponding subshift XV is defined as the orbit closure of the characteristic
function 1V under the shift action of Z2, which turns (XV ,Z2) into a topological
dynamical system with faithful shift action and positive topological entropy. This
system, like the square-free shift from above, is hereditary, which implies rigidity
for the symmetry group. On the other hand, due to the way that GL(2,Z)-matrices
act on it, the normaliser is the maximal extension of the centraliser in this case [21].
In fact, there is no reason to restrict to the planar case here, as the visible lattice
points can be defined for Zd with any d � 2 (the case d = 1 gives a finite set that is
not of interest). Thus, one has the following result.

Theorem 9.13 Let XV be the subshift defined by the visible lattice points of Z
d,

where d � 2. Then, XV has faithful shift action with minimal symmetry group,
S(XV ) = Z

d, while the extended symmetry group emerges as the maximal extension
of it, R(XV ) = Z

2
� GL(2,Z).

Proof (Sketch) Here, the triviality of the centraliser, as in the earlier example of
the square-free shift, is a consequence of the heredity of the subshift [21], and really
follows from a mild generalisation of Mentzen’s approach [57]. The extension to the
normaliser, as explained above, is by all of GL(d,Z), where the semi-direct product
structure is the same as for the full shift in Fact 9.10.

More generally, one can study systems of this kind as defined from primitive
lattice systems, for instance in the spirit of [19]. This also covers subshifts that are
generated from rings of integers in general algebraic number fields subject to certain
freeness conditions. This gives a huge class of examples that can be viewed as multi-
dimensional generalisations of B-free systems. Interestingly, they are also examples
of weak model sets [19], which gives access to a whole new range of tools from
the interplay of dynamical systems and algebraic number theory [44, 46–48], in the
spirit of the original approach by Meyer [58].
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