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Foreword

The interaction between number theory and ergodic theory can be traced to
the birth of the latter with Birkhoff’s pointwise ergodic theorem. The early
applications were naturally concerned with typical behavior, for example in the
metrical theory of diophantine approximation. Most number theoretic questions
which can be connected to ergodic theory are concerned with the dynamics of
specific orbits or systems constructed from an arithmetic or combinatorial input,
and it is with the classification or determination of the basic properties of the
possible systems that can arise that the interaction becomes powerful. Starting with
Furstenberg’s introduction of such concepts as unique ergodicity, disjointness of
dynamical systems, and nonconventional ergodic averages, and thanks to advances
by many ergodic/number theorists, there is by now a body of striking applications.
Homogeneous dynamics takes place on parameter spaces of arithmetic objects, and
as a consequence, rigidity theorems such as that of Ratner for unipotent orbits
become powerful tools which underlie many of the most striking applications
in homogeneous dynamics. There have also been major advances and arithmetic
applications in various nonhomogeneous dynamical settings. For example it turns
out that Vinogradov’s bilinear method in the study of sums over primes for a
sequence which is an observable in a dynamical system is intimately connected
with the Birkhoff sums for joinings of the system with itself. An example exploiting
this is the proof by Mauduit and Rivat of a conjecture of Gelfond about the
distribution of the parity of the sum of the binary digits of prime numbers. As far
as combinatorial/additive number theory, the path developed by Furstenberg in his
proof of Szemeredi’s theorem on arithmetic progressions in sets of positive density
is at the center of this well-developed modern tool from ergodic theory.

The above are just a small sample (and biased to my taste and knowledge) of what
is today a thriving interaction between ergodic theory and number theory. The well-
timed 2016 fall semester activity at CIRM (Luminy) focused on this theme, with
the aim of exposing these interactions and the theories that underlie the progress
and the latest developments, as well advancing them. From my own experience and
accounts by others, the minicourses and the workshops and seminars were a great
success and there were a number of exciting new developments.
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vi Foreword

Fortunately many of the experts who are responsible for this success prepared
and expanded their presentations for this volume. The result is an instructive and
insightful account of the basic techniques from ergodic theory and number theory
that have facilitated the recent developments. There are also excellent survey papers
that bring the reader up to forefront of the latest developments and open problems
in this fast moving area.

Princeton, NJ, USA Peter Sarnak
October 3, 2017



Preface

This volume consists of minicourses notes, survey, research/survey, and research
articles that have arisen as an outcome of workshops, research in pairs, and
other scientific work held under the auspices of the Jean Morlet Chair at CIRM
between August 1, 2016 and January 31, 2017. The semester had a substantial core
support and funding by CIRM, Aix-Marseille University, and the city of Marseille.
Additionally, it was supported by the LABEX Archimède, and the ANR grants
of Christian Mauduit (Aix-Marseille University) and Joël Rivat (Aix-Marseille
University).

The minicourses were those given in the framework of the doctoral school
Applications of Ergodic Theory in Number Theory organized by Sébastien Fer-
enczi (Aix-Marseille University), Joanna Kułaga-Przymus (Nicolaus Copernicus
University Toruń and Aix-Marseille University), Mariusz Lemańczyk (Nicolaus
Copernicus University Toruń), and Serge Troubetzkoy (Aix-Marseille University).
The main aim of this school was, on one hand, to provide participants with modern
methods of ergodic theory and topological dynamics oriented toward applications
in number theory and combinatorics, and, on the other hand, to present them with
a broad spectrum of number theory problems that can be treated with the use of
such tools. These tasks were realized in four minicourses by Vitaly Bergelson (Ohio
State University), “Mutually enriching connections between ergodic theory and
combinatorics,” Manfred Einsiedler (ETH Zürich), “Equidistribution on homoge-
neous spaces, a bridge between dynamics and number theory,” Carlos Matheus Silva
Santos (CNRS - Université Paris 13), “The Lagrange and Markov spectra from the
dynamical point of view,” and Joël Rivat “Introduction to analytic number theory."

The main conference Ergodic Theory and its Connections with Arithmetic
and Combinatorics was organized by Julien Cassaigne (Aix-Marseille University),
Sébastien Ferenczi, Pascal Hubert (Aix-Marseille University), Joanna Kułaga-
Przymus, Mariusz Lemańczyk with the scientific committee consisting of Artur
Avila (University Paris Diderot and IMPA, Rio de Janeiro), Vitaly Bergelson,
Mandred Einsiedler, Hillel Furstenberg (The Hebrew University of Jerusalem),
Anatole Katok (Penn State University), Christian Mauduit, Imre Ruzsa (Alfred
Rényi Institute Budapest), and Peter Sarnak (IAS Princeton). The conference was

vii



viii Preface

aimed at interactions between ergodic theory and dynamical systems and number
theory. Its main subjects were disjointness in ergodic theory and randomness in
number theory, ergodic theory and combinatorial number theory, and homogenous
dynamics and its applications.

Important events of the semester were two smaller specialized workshops. The
first one Ergodic Theory and Möbius Disjointness was organized by Sébastien Fer-
enczi, Joanna Kułaga-Przymus, Mariusz Lemańczyk, Christian Mauduit, and Joël
Rivat. The meeting focused on the recent progress on Sarnak’s conjecture on Möbius
disjointness: methods, results, and the feedback in ergodic theory. The second
one Spectral Theory of Dynamical Systems and Related Topics was organized by
Alexander Bufetov (Aix-Marseille University), Sébastien Ferenczi, Joanna Kułaga-
Przymus, Mariusz Lemańczyk, and Arnaldo Nogueira (Aix-Marseille University).
The meeting was aimed at the recent progress in the spectral theory and joinings
of dynamical systems, especially, in the recent spectacular progress toward the
solutions of some open classical problems of ergodic theory: Rokhlin problem on
mixing of all orders, stability of spectral properties under smooth changes for the
parabolic systems, the Banach problem on the existence of dynamical systems with
simple Lebesgue spectrum, and the problem of spectral multiplicity.

The scientific part of the semester was completed by two research in pairs:
Dynamical Properties of Systems Determined by Free Points in Lattices and On
the Stability of Möbius Disjointness in Topological Models and a special program
of invitations with participation of Michael Baake (University of Bielefeld), Jean-
Pierre Conze (University of Rennes 1), Alexandre Danilenko (Institute of Low
Temperature, Kharkov), Christian Huck (University of Bielefeld), Joanna Kułaga-
Przymus, El Houcein El Abdalaoui (University of Rouen), Mariusz Lemańczyk and
Thierry de la Rue (University of Rouen).

The contents of this volume are as follows. It begins with Part I which is entirely
the course.

• Joël Rivat, Bases of Analytic Number Theory. Among other aspects, the course
contains a presentation of the main properties of the Riemann ζ function with
a generous introduction to the theory of Dirichlet series. Large sieve method
together with a beautiful application to Twin Prime conjecture and deep relations
with the theory of multiplicative functions are dealt with. We find also a detailed
presentation of Vinogradov’s method of major and minor arcs, together with a
deep analysis of sums of type I and II which are of great use in current research.
The final chapter is devoted to the van der Corput method of computing and
estimating trigonometric sums.

Part II of the volume consists of articles devoted to interactions between
arithmetic and dynamics. They are all of research/survey/course type:

• M. Baake, A Brief Guide to Reversing and Extended Symmetries of Dynamical
Systems is a survey which presents the basic notions and reviews facts concerning
the reversing symmetry of dynamical systems, focusing on systems (subshifts) of
algebraic and number-theoretic origin.
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• M. Einsiedler, M. Luethi, Kloosterman Sums, Disjointness, and Equidistribution
summarizes the aforementioned minicourse of M. Einsiedler. Various appli-
cations of Kloosterman sums are shown: equidistribution properties of sparse
subsets of horocycle orbits in the modular case, disjointness results on the torus,
mixing properties.

• S. Ferenczi, J. Kułaga-Przymus, M. Lemańczyk, Sarnak’s Conjecture: What’s
New? is a survey presenting an exhaustive list of methods and results concerning
the problem of Möbius disjointness. Some new results are also included.

• A. Gomilko, D. Kwietniak, M. Lemańczyk, Sarnak’s Conjecture Implies the
Chowla Conjecture Along a Subsequence proves this elementary but new result.

• C. Huck, On the Logarithmic Probability That a Random Integral Ideal Is A-free
is an article which extends a theorem of Davenport and Erdös on sets of multiples
with integers to the existence of logarithmic density for unions of integral ideals
in number fields.

• C. Matheus, The Lagrange and Markov Spectra from the Dynamical Point
of View summarizes the aforementioned minicourse of C. Matheus. The notes
introduce the world of Lagrange and Markov spectra with a special focus on the
proof of Moreira’s theorem on the intricate structure of such spectra.

• O. Ramaré, On the Missing Log Factor is a “journey” around the Axer-Landau
Equivalence Theorem of the Prime Number Theorem and properties of the
Möbius and von Mangoldt functions.

• O. Ramaré, Chowla’s Conjecture: From the Liouville Function to the Möbius
Function is a note focusing on proofs of implications between various versions
of the Chowla conjecture in which we use either Liouville or Möbius function.

Part III of the volume consists of three articles of survey or research/survey type
from selected topics in dynamics:

• T. Adams, C. Silva, Weak Mixing for Infinite Measure Invertible Transformations
surveys and studies mixing properties of transformations preserving infinite
measure.

• E. Glasner, M. Megrelishvili, More on Tame Dynamical Systems surveys and
amplifies old results in (topological) tame dynamical systems, proves some new
results, and provides new examples of tame systems.

• K. Inoue, H. Nakada, A Piecewise Rotation of the Circle, IPR Maps and
Their Connection with Translation Surfaces reviews a construction of translation
surfaces in terms of a continuous version of the cutting-and-stacking systems and
proves a new result of realization of Rauzy classes.

Marseille, France Sébastien Ferenczi
Toruń, Poland Joanna Kułaga-Przymus
Toruń, Poland Mariusz Lemańczyk
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Part I
Bases of Analytic Number Theory

Joël Rivat

These lecture notes were written in French in 2000 with no plan to be published,
and I used them several times to give lectures. Many thanks to Sébastien Ferenczi
for the English translation. They should not be compared with reference books like
Tenenbaum [6], Iwaniec and Kowalski [3] and Montgomery and Vaughan [4], but
an invitation to read these books.

The zeta function part owes much to Davenport’s book [1]. The chapter on
the large sieve uses the complete works of Selberg [5]. Our upper bounds on
exponential sums are adapted from Graham and Kolesnik [2], with an effort to
make the constants explicit but without attempting at optimality; they were then
used later by Tenenbaum [6]. We think that the constant factor 16 instead of 2π2 in
the Bombieri-Iwaniec inequality (Theorem 6.38) is new.

September 29, 2017
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Chapter 1
Prime Numbers

Joël Rivat

1.1 Historical Notes

We denote by π(x) the number of prime numbers smaller than or equal to x, and
decide that p will always denote a prime number.

Euclides (third–second century BC) was the first to prove that

π(x)→+∞, x →+∞,

by noticing that, if there were only finitely many prime numbers, then for n large
enough all would be smaller than n, and by considering

N := n! + 1

we could build an integer N which is divisible by no d such that 2 � d � n
(the remainder of the division is 1), so that N would have only prime factors larger
than n. Contradiction.

Eratosthenes (second–first century BC) devised an excellent method to compile a
full finite list of prime numbers. To delete the multiples of p up to x requires �x/p�
operations, hence building the table of prime numbers up to x does not exceed

x+ x
∑

p�x

1

p
∼ x log log x, x →+∞,

J. Rivat (�)
Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille,
I2M – UMR 7373, Marseille, France
e-mail: joel.rivat@univ-amu.fr
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4 J. Rivat

operations, to find about x/ log x prime numbers, which is optimal up to a factor
O(log x log log x).

Legendre (1752–1833) was the first to propose a reasonable conjecture about the
size of π(x):

π(x) ≈ x

log x− 1.08 . . .
,

but it was Gauß (1777–1855) who formulated the “good” conjecture:

π(x) ≈ li(x) :=
∫ x

2

dt

log t
.

The first proven results on the behavior of π(x) at infinity are the work of
Tchebychev (1821–1894) who was first able to prove (in 1851) that

lim inf
π(x)

li(x)
� 1 � lim sup

π(x)

li(x)
,

so that the limit, if it exists, is 1. The following year (1852), Tchebychev got the
inequalities

(0.92 . . .)
x

log x
< π(x) < (1.105 . . .)

x

log x
,

for x large enough.
Mertens (1840–1927) made a substantial progress in 1874 by showing that

∑

p�x

1

p
= log log x+ A+ O((log x)−1).

Before stating modern results about the repartition of prime numbers, we need to
introduce the von Mangoldt arithmetic function, defined by

Λ(n) =
{

log p if n is a power of p prime,
0 otherwise.

It constitutes a convenient alternative to the indicator function of prime numbers,
and will be used frequently, as well in statements as in proofs. Its main quality is to
satisfy the convolution formula

∑

d | n
Λ(d) = log n,



1 Prime Numbers 5

which makes it much more pleasant to handle without introducing an important
distorsion, as a simple summing by parts allows to show that π(x) ∼ li(x), x →
+∞ if and only if

ψ(x) :=
∑

n�x

Λ(n) ∼ x, x → +∞.

Euler (1707–1783) had got that for all real s > 1,

ζ(s) :=
+∞∑

n=1

1

ns
=
∏

p

(1− p−s)−1,

thus establishing a link between prime numbers and the most famous among the
series of Dirichlet, but it was Riemann (1860), by considering this function for
complex values of s, who opened a decisive way by formulating a few remarkable
conjectures about the repartition of zeros of ζ . The famous Riemann hypothesis
locates all non real zeros of ζ on the vertical straight line of first coordinate σ = 1

2
(the “critical line”). Let us mention also the following explicit formula, a conjecture
proved by von Mangoldt in 1895:

ψ0(x) := 1
2 (ψ(x+)+ ψ(x−)) = x− lim

T→+∞
∑

ρ|�ρ|�T

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2 log(1− x−2),

where the summation over ρ involves the non trivial zeros ρ of ζ with imaginary
part satisfying

∣∣�ρ
∣∣ � T.

We note that ζ ′(0)
ζ(0) = log(2π).

Finally, Hadamard and de la Vallée Poussin showed independently in 1896 the
famous prime numbers theorem:

π(x) ∼ li(x), x →+∞,

which was quickly made more precise under the form

π(x) = li(x)+ O(x exp(−c
√

log x))

for some c > 0.
This result did not know much improvement during the twentieth century, as the

best error term, due to Vinogradov and Korobov (1958) after a very difficult proof,
remains hardly better:

π(x) = li(x)+ O(x exp(−c(log x)3/5/(log log x)1/5)),
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while the Riemann hypothesis would imply

π(x) = li(x)+ O(x1/2 log x).

1.2 The von Mangoldt Function

Definition 1.1 The arithmetic von Mangoldt function is defined by

Λ(n) =
{

log p if n is a power of p ( prime),
0 sinon.

Proposition 1.2 For every integer n � 1,

∑

d | n
Λ(d) = log n.

Proof It is easy to check this formula by writing n = pa1
1 · · · pak

k , but it is
more enlightening, for proving this formula and similar identities, to compare the
coefficients of two equal Dirichlet series. By Euler’s formula, for all real s > 1,

ζ(s) :=
∏

p

(1− p−s)−1,

thus on one side

log ζ(s) = −
∑

p

log(1− p−s) =
∑

p

+∞∑

k=1

p−ks

k

and by making a derivation under the sum,

−ζ ′(s)
ζ(s)

=
∑

p

+∞∑

k=1

p−ks log p =
+∞∑

n=1

Λ(n)n−s

while on the other side

(+∞∑

n=1

Λ(n)n−s

)(+∞∑

n=1

n−s

)
= −ζ ′(s)

ζ(s)
ζ(s) =

+∞∑

n=1

n−s log n

and the comparison of coefficients gives the result.
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1.3 The Tchebychev Inequalities

Theorem 1.3 For x � 2, we have the inequalities

x log 2+ O(log x) � ψ(x) � x log 4+ O((log x)2).

Proof Summing on n the convolution formula on Λ, we get

T(x) :=
∑

n�x

log n =
∑

n�x

∑

d | n
Λ(d) =

∑

md�x

Λ(d) =
∑

d�x

Λ(d) �x/d�

and as the log function is concave, we get the bounds

x log x− x =
∫ x

0
log t dt �

∑

n�x

log n �
∫ x+1

1
log t dt = (x+ 1) log(x+ 1)− x

which gives a weak form of the Stirling formula:

∑

n�x

log n = x log x− x+ O(log x).

We consider the equality

T(x)− 2T(x/2) =
∑

n�x

Λ(n)
(⌊ x

n

⌋
− 2

⌊ x

2n

⌋)
.

The left term is equal to x log 2 + O(log x). The function u 	→ �u� − 2 �u/2� is
2-periodic and satisfies

�u� − 2 �u/2� =
{

0 if 0 � u < 1,
1 if 1 � u < 2.

Thus we have on one side

x log 2+ O(log x) �
∑

n�x

Λ(n) = ψ(x)

and on the other side

x log 2+ O(log x) �
∑

x/2<n�x

Λ(n) = ψ(x)− ψ(x/2).
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Take K = �log x/ log 2�. We have

ψ(x/2k)− ψ(x/2k+1) � x

2k
log 2+ O(log x), k = 0, . . . ,K.

Adding all these inequalities, we get

ψ(x) � x(log 2)
1− 2−K−1

1− 2−1 + O((log x)2) � 2x log 2+ O((log x)2).

Corollary 1.4 For x � 2, we have the inequalities

x

log x
log 2+ O(1) � π(x) � x

log x
log 4+ O

(
x

(log x)2

)
.

Proof We get the lower bound by observing that

x log 2+ O(log x) �
∑

n�x

Λ(n) =
∑

p�x

⌊
log x

log p

⌋
log p � π(x) log x.

Taking

θ(x) =
∑

p�x

log p

we have

π(x)− π(
√

x) =
∑

√
x<p�x

log p

log p
=
∫ x

√
x

1

log t
dθ(t)

= θ(x)

log x
− θ(

√
x)

log
√

x
+
∫ x

√
x

θ(t)

t(log t)2 dt.

Thus, by deleting the negative term and observing that θ(t) � ψ(t), we get the upper
bound

π(x)− π(
√

x) � ψ(x)

log x
+
∫ x

√
x

ψ(t)

t(log t)2 dt.

We use

ψ(x) � x log 4+ O((log x)2)

to bound the first term, while for the integral we need only ψ(t) = O(t) and log t �
1
2 log x, which allows to bound it by O(x(log x)−2).
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1.4 The Mertens Theorems

Theorem 1.5 For x � 2,

∑

p�x

log p

p
= log x+ O(1).

Proof We have already proved that

T(x) =
∑

d�x

Λ(d)
⌊ x

d

⌋
= x log x+ O(x).

The contribution to this sum of prime values of d is

∑

p�x

�x/p� log p = x
∑

p�x

log p

p
+ O(x).

The contribution of other values of d is bounded by

∑

p�√x

(log p)
∞∑

k=2

x

pk
= x

∑

p�√x

log p

p2 · 1

1− 1
p

= O(x).

thus we get the result after dividing by x.

Theorem 1.6 There exists a constant A such that for x � 2,

∑

p�x

1

p
= log log x+ A+ O((log x)−1).

Proof Put

S(t) =
∑

p�t

log p

p
.

We have

∑

p�x

1

p
=
∑

p�x

1

log p

log p

p
=
∫ x+

2−
1

log t
dS(t)

= S(x)

log x
− S(2−)

log 2
+
∫ x

2
S(t)

dt

t(log t)2
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We observe that S(2−) = 0 and from Theorem 1.5 we have

S(x)

log x
= 1+ O((log x)−1).

The last integral is

∫ x

2

dt

t log t
+
∫ ∞

2
(S(t)− log t)

dt

t(log t)2 −
∫ ∞

x
(S(t)− log t)

dt

t(log t)2 .

The integral on the right is bounded by

O

(∫ ∞

x

dt

t(log t)2

)
= O

(
(log x)−1

)
,

which implies also the convergence of the middle integral, and we have

∫ x

2

dt

t log t
= log log x− log log 2.

By putting all the terms together we get the claimed result, with

A = 1− log log 2+
∫ ∞

2
(S(t)− log t)

dt

t(log t)2
.

Theorem 1.7 (The Mertens Formula) For x � 2,

∏

p�x

(1− 1/p)−1 = eγ log x+ O(1),

where γ denotes the Euler constant.

Proof See for example Tenenbaum [1, p. 17].

Reference

1. G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, quatrième edn.
(Belin, Paris, 2015)



Chapter 2
Arithmetic Functions

Joël Rivat

Definition 2.1 We call an arithmetic function any application from N
∗ to C.

Definition 2.2 We call the Dirichlet convolution of two arithmetic functions f and
g the arithmetic function, denoted by f ∗ g, defined by

f ∗ g(n) =
∑

d | n
f (d)g(n/d).

Proposition 2.3 The convolution is associative and commutative. It has a neutral
element, the function δ, defined by

δ(n) =
{

1 if n = 1,
0 if n > 1.

Furthermore, if f1, f2, g1, g2 are arithmetic functions and α, β ∈ C, we have

(αf1 + f2) ∗ (βg1 + g2) = (αβ)(f1 ∗ g1)+ (α)(f1 ∗ g2)+ (β)(f2 ∗ g1)+ (f2 ∗ g2).

Proof If f1, . . . , fk are arithmetic functions we get that for whatever parentheses and
order of factors,

f1 ∗ · · · ∗ fk(n) =
∑

d1···dk=n

f1(d1) · · · fk(dk).
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and for the neutral element

f ∗ δ(n) =
∑

d | n
f (d) δ(n/d) = f (n).

The linearity properties are trivial.

Definition 2.4 An arithmetic function f is said to be invertible if there exists an
arithmetic function g such that f ∗ g = δ.

Proposition 2.5 An arithmetic function f is invertible if and only if f (1) = 0. In
that case, the inverse of f is unique.

Proof If f is invertible, there exists g such that f ∗ g = δ. In particular, we have
f (1)g(1) = 1 hence f (1) = 0. Conversely, if f (1) = 0, we put g(1) = 1/f (1). The
relation

f (1) g(n)+
∑

d | n, d<n

f (n/d) g(d) = 0, (n > 1),

allows to build g inductively, which proves both existence and unicity.

Definition 2.6 An arithmetic function f is multiplicative if f (1) = 1 and

(m, n) = 1 ⇒ f (mn) = f (m)f (n).

Proposition 2.7 An arithmetic function f is multiplicative if and only if

f (1) = 1, ∀n � 2, f (n) =
∏

pν‖n
f (pν),

where the product is taken on the powers of prime numbers pν which divide n
exactly, namely such that pν | n and pν+1

� n.

Proposition 2.8 If f and g are multiplicative, then f ∗ g is multiplicative.

Proof Let m and n be coprime. The divisors of mn are all of the form uv where u |m
and v | n. Thus we have

f ∗ g(mn) =
∑

d |mn

f (d) g(mn/d) =
∑

u |m

∑

v | n
f (uv) g(mn/uv).

We have (u, v) = 1 and (m/u, n/v) = 1, hence by multiplicativity

f ∗ g(mn) =
∑

u |m
f (u) g(m/u)

∑

v | n
f (v) g(n/v) = f ∗ g(m) f ∗ g(n),

which shows that f ∗ g is multiplicative.
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Example 2.9 The function number of divisors, denoted by d or τ , is multiplicative.

Proof We have

τ (n) =
∑

d | n
1 = 1l ∗ 1l(n),

and 1l is multiplicative.

Example 2.10 The function sum of divisors, denoted by σ , is multiplicative.

Proof By introducing the identity function Id(n) = n, we have

σ(n) =
∑

d | n
d =

∑

d | n
Id(d) 1l(n/d) = 1l ∗ Id(n),

and Id and 1l are multiplicative.

Proposition 2.11 If f is multiplicative, then f is invertible and its inverse is
multiplicative.

Proof If f is multiplicative, then f (1) = 1 = 0 hence f is invertible. To show that
the inverse g of f is multiplicative, we prove by induction on N that

∀m, n � 1, (mn � N and (m, n) = 1)⇒ g(mn) = g(m)g(n).

As g(1) = 1, this property is satisfied for N = 1. Suppose it is true for N − 1, and
let (m, n) = 1, mn = N > 1. We can write

g(mn) = −
∑

u |m,v | n
uv<mn

f (mn/uv) g(uv),

and as (u, v) = 1 and (m/u, n/v) = 1, we get by multiplicativity

g(mn) = −
∑

u |m

∑

v | n
f (m/u) f (n/v) g(u) g(v)+ g(m) g(n).

The double sum is δ(m)δ(n) = 0 (as mn > 1), which achieves the induction.

Example 2.12 The inverse of 1l for convolution, denoted by μ, is a multiplicative
function, called the Möbius function:

1l ∗ μ = δ, i.e.,
∑

d | n
μ(d) =

{
1 if n = 1,
0 if n > 1.
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Proposition 2.13 We have μ(1) = 1 and for n > 1,

μ(n) =
{
(−1)k if n is a product of k distinct prime numbers,
0 otherwise.

Proof The Möbius function is the inverse of a multiplicative function, hence μ is
multiplicative. Thus we have μ(1) = 1 and we need only to determine μ(pν) for
ν � 1. By applying 1l ∗ μ = δ, we get

μ(1)+ μ(p) = 0

hence μ(p) = −1, and for all ν � 2,

μ(1)+ μ(p)+ μ(p2)+ · · · + μ(pν) = 0

which allows to show by induction that μ(pν) = 0 for ν � 2.

Example 2.14 The Euler function ϕ(n) is multiplicative.

Proof We have Id = 1l ∗ ϕ hence ϕ = μ ∗ Id.

Proposition 2.15 If f is multiplicative and limpν→+∞ f (pν) = 0, then

lim
n→+∞ f (n) = 0.

Proof By deciding that an empty product is equal to 1, we can write for all Q > 0,

|f (n)| =

⎛
⎜⎜⎝

∏

pν‖n, pν�Q
|f (pν)|�1

∣∣f (pν)
∣∣

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∏

pν‖n, pν�Q
|f (pν)|>1

∣∣f (pν)
∣∣

⎞
⎟⎟⎠

⎛

⎝
∏

pν‖n, pν>Q

∣∣f (pν)
∣∣

⎞

⎠ .

The first product is � 1, the second is bounded by the product

A :=
∏

pν

|f (pν)|>1

∣∣f (pν)
∣∣ � 1,

which is a finite product as limpν→+∞ f (pν) = 0.
For a fixed 0 < ε < 1, we can choose Q large enough so that

pν > Q ⇒ ∣∣f (pν)
∣∣ � ε.

With these hypotheses, the third product, if nonempty, is � ε. But the integers n
such that

pν ‖ n ⇒ pν � Q
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divide and thus are smaller than the product

B :=
∏

pν�Q

pν.

By choosing n large enough, the third product is not empty, and is thus � ε,
which shows that | f (n)| � Aε and finishes the proof.

Corollary 2.16 For all ε > 0, we have

τ (n) = Oε(n
ε).

Proof Set f (n) = τ (n)/nε. We have

0 � f (pν) = 1+ ν

pνε
� 1+ (log pν)/(log 2)

pνε
→ 0 (pν →+∞),

hence f (n)→ 0 by the previous proposition.

Theorem 2.17 (Hyperbola Principle) Let f and g be two arithmetic functions
whose summing functions are respectively

F(x) =
∑

n�x

f (n), G(x) =
∑

n�x

g(n).

For 1 � y � x, we have

∑

n�x

f ∗ g(n) =
∑

n�y

F(x/n) g(n)+
∑

n�x/y

f (n) G(x/n)− F(x/y)G(y).

Proof The left side can be written as

∑

uv�x

f (u)g(v) =
∑

uv�x
v�y

f (u)g(v)+
∑

uv�x
v>y

f (u)g(v)

=
∑

v�y

F(x/v)g(v)+
∑

u�x/y

f (u) (G(x/u)− G( y)) ,

hence the result by expanding the last term.

Corollary 2.18 (Dirichlet) For x � 2, we have

∑

n�x

τ (n) = x log x+ (2γ − 1) x+ O(
√

x),

where γ is the Euler constant.
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Proof We apply the previous theorem with f = g = 1l and y = √x. Then

F(t) = G(t) = �t� ,

and

∑

n�x

τ (n) = 2
∑

n�√x

⌊ x

n

⌋
− ⌊√x

⌋2 = 2
∑

n�√x

x

n
− x+ O(

√
x).

The conclusion comes from the classic identity

∑

n�t

1

n
= log t + γ + O

(
1

t

)
,

applied with t = √x.



Chapter 3
Dirichlet Series

Joël Rivat

Definition 3.1 We call Dirichlet series any function of a complex variable

F(s) :=
∑

n�1

an

ns
,

where an ∈ C, defined wherever it converges.

Notation 3.2 We write s = σ + iτ with (σ, τ ) ∈ R
2.

Proposition 3.3 Given two arithmetic functions f and g, formally we have

∑

n�1

f ∗ g(n)

ns
=
⎛

⎝
∑

n�1

f (n)

ns

⎞

⎠

⎛

⎝
∑

n�1

g(n)

ns

⎞

⎠ .

Theorem 3.4 (Eulerian Product) Let f be a multiplicative function. We have

∑

n�1

∣∣∣∣
f (n)

ns

∣∣∣∣ < +∞ if and only if
∑

p

∑

ν�1

∣∣∣∣
f (pν)

pνs

∣∣∣∣ < +∞.
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When these series converge, we get the Eulerian product expansion

∑

n�1

f (n)

ns
=
∏

p

⎛

⎝1+
∑

ν�1

f (pν)

pνs

⎞

⎠ .

Proof The absolute convergence of the Dirichlet series

F(s) :=
∑

n�1

f (n)n−s

implies the absolute convergence of the double series. Conversely suppose that

∑

p

∑

ν�1

∣∣∣∣
f (pν)

pνs

∣∣∣∣ < +∞,

and consider the infinite product

M :=
∏

p

⎛

⎝1+
∑

ν�1

∣∣∣∣
f (pν)

pνs

∣∣∣∣

⎞

⎠ = exp

⎛

⎝
∑

p

log

⎛

⎝1+
∑

ν�1

∣∣∣∣
f (pν)

pνs

∣∣∣∣

⎞

⎠

⎞

⎠ .

As for u � 0, we have log(1+ u) � u, we get the bound

M � exp

⎛

⎝
∑

p

∑

ν�1

∣∣∣∣
f (pν)

pνs

∣∣∣∣

⎞

⎠ < +∞.

Denote by P+(n) the largest prime factor of n. For x � 1, we have the bounds

∑

n�x

∣∣f (n)n−s
∣∣ �

∑

P+(n)�x

∣∣f (n)n−s
∣∣ =

∏

p�x

⎛

⎝1+
∑

ν�1

∣∣∣∣
f (pν)

pνs

∣∣∣∣

⎞

⎠ � M,

which establishes the absolute convergence of F(s).
To prove the Eulerian product formula, it is enough to observe that
∣∣∣∣∣∣

∑

n�1

f (n)n−s −
∏

p�x

⎛

⎝1+
∑

ν�1

f (pν)

pνs

⎞

⎠

∣∣∣∣∣∣
=
∣∣∣∣∣∣

∑

P+(n)>x

f (n)n−s

∣∣∣∣∣∣
�
∑

n>x

∣∣f (n)n−s
∣∣

and to make x go to +∞.

Corollary 3.5 For all s ∈ C with�(s) > 1,

ζ(s) =
∞∑

n=1

1

ns
=
∏

p

(1− 1/ps)−1.
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Proof Apply the previous theorem with f = 1l.

Theorem 3.6 Let F(s) :=∑n�1 ann−s be a Dirichlet series.

1. If the series converges at s0 := σ0 + iτ0, then it converges in the half-plane
σ > σ0, and the convergence is uniform in every angular sector

S(ϑ) := {s ∈ C : |arg(s− s0)| < ϑ}, with ϑ < π/2.

2. If the series converges absolutely for s = s0, then it converges absolutely and
uniformly for σ � σ0.

3. The function F(s) is holomorphic in every open convergence domain, and in such
a domain we have

F(k)(s) = (−1)k
∑

n�1

an(log n)k

ns
.

Proof

1. By setting a′n = ann−s0 and s′ = s− s0 if necessary, we can assume that s0 = 0,
or equivalently that

∑
an converges.

Thus for a fixed ε > 0, there exists n0 > 0 such that for all integers M,N �
n0,

∣∣∣∣∣∣

∑

M<n�N

an

∣∣∣∣∣∣
� ε.

Integrating by parts, we get

∑

M<n�N

ann−s = N−s
∑

M<n�N

an + s
∫ N

M

⎛

⎝
∑

M<n�t

an

⎞

⎠ dt

ts+1
,

which gives
∣∣∣∣∣∣

∑

M<n�N

ann−s

∣∣∣∣∣∣
� N−σ ε + |s| ε

∫ ∞

M

dt

tσ+1 = ε

(
N−σ + |s|

σ
M−σ

)

� ε

(
1+ |s|

σ

)
.

If s ∈ S(ϑ), then (with s0 = 0) we get σ = |s| cos(arg(s)) � |s| cosϑ , hence
∣∣∣∣∣∣

∑

M<n�N

ann−s

∣∣∣∣∣∣
� ε

(
1+ 1

cosϑ

)
,

which establishes the uniform convergence of
∑

ann−s.
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If the series converges at s0, then for all s such that σ > σ0, there exists
ϑ < π/2 such that s ∈ S(ϑ), hence the series converges at s.

2. This comes from the initial bound
∣∣∣∣∣∣

∑

M<n�N

ann−s

∣∣∣∣∣∣
�

∑

M<n�N

|an| n−σ .

3. For all compact K included in an open convergence domain, we can find s0
and 0 < ϑ < π/2 such that K ⊂ S(ϑ). On K, F(s) is thus a uniform limit
of the partial sums

∑N
n=1 ann−s, hence from a theorem of Weierstrass, F is a

holomorphic function and its derivatives are the limits of the derivatives of the
partial sums.

The first two points of this theorem show that the convergence of a Dirichlet
series (as well as its absolute convergence) takes place in a half-plane.

Definition 3.7 Let F(s) :=∑n�1 ann−s be a Dirichlet series.

1. We call convergence abscissa, and denote by σc:

σc := inf
{
σ ∈ R :

∑

n�1

ann−σ converges
}
.

2. We call absolute convergence abscissa, and denote by σa:

σa := inf
{
σ ∈ R :

∑

n�1

|an| n−σ converges
}

We decide that σc and σa can possibly be ±∞.

Proposition 3.8 Let F(s) := ∑
n�1 ann−s be a Dirichlet series, of convergence

abscissa σc and absolute convergence abscissa σa. Then

σc � σa � σc + 1.

Proof Clearly, σc � σa.
Let ε > 0. The convergence of the series

∑
n�1 ann−σc−ε implies that ann−σc−ε

is bounded, hence the series

∑

n�1

ann−σc−εn−1−ε

converges absolutely, which proves that σa � σc+1+2ε, hence the result by going
to the limit.
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Example 3.9 The Dirichlet series

F(s) :=
∑

n�1

(−1)nn−s

satisfies σc = 0 (alternate series criterion) and σa = 1.

Proposition 3.10 Let F(s) := ∑n�1 ann−s be a Dirichlet series equal to 0 for σ

large enough. Then an = 0 for all n � 1.

Proof Let m be the smallest integer such that am = 0. We have for σ large enough

0 = F(s) =
∑

n�m

ann−s = amm−s(1+ G(s)),

hence G(s) = −1 for σ large enough, where

G(s) := ms

am

∑

n>m

an

ns
.

For σ � σc + 2, the convergence is absolute and uniform, hence

|G(s)| � mσ

|am|
∑

n>m

|an|
nσc+2

1

nσ−σc−2

� |am|−1 mσ

(m+ 1)σ−σc−2

∑

n>m

|an|
nσc+2

= cm

(
m

m+ 1

)σ

,

thus G(s) tends to 0 when σ goes to +∞, which contradicts G(s) = −1 for σ large
enough.

The following theorem is the analogue of Hadamard’s theorem, which for power
series gives the convergence radius from the size of coefficients.

Theorem 3.11 Let F(s) :=∑n�1 ann−s be a Dirichlet series. Set

A(x) :=
∑

n�x

an, κ := lim sup
x→+∞

log |A(x)|
log x

.

1. If κ = 0, then σc = κ .
2. If κ = 0 and if A(x) has no finite limit when x →+∞, then σc = 0.
3. If κ = 0 and A(x)→ α ∈ R when x →+∞, then

σc = lim sup
x→+∞

log |A(x)− α|
log x

� 0.
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Proof Let us first show that σc � κ . Suppose σ > κ and let ε > 0 be such that
κ + ε < σ . We have thus |A(x)| = Oε(xκ+ε). Summing by parts,

∑

M<n�N

ann−s = A(N)N−s − A(M)M−s + s
∫ N

M
A(t)

dt

ts+1 ,

so that
∣∣∣∣∣∣

∑

M<n�N

ann−s

∣∣∣∣∣∣
= Oε(N

κ+ε−σ )+ Oε(M
κ+ε−σ )+ Oε

(
|s|
∫ ∞

M
tκ+ε−σ−1dt

)

which tends to 0 when M goes to +∞.
We can write for 0 < y � x,

∑

y<n�x

an

ns
ns =

⎛

⎝
∑

n�x

an

ns

⎞

⎠ xs −
⎛

⎝
∑

n�y

an

ns

⎞

⎠ ys −
∫ x

y

⎛

⎝
∑

n�t

an

ns

⎞

⎠ sts−1dt,

hence for σ > σc, as t 	→∑
n�t

an
ns is bounded, we have

|A(x)− A(y)| =
∣∣∣∣∣∣

∑

y<n�x

an

ns
ns

∣∣∣∣∣∣
= O(xσ )+ O(yσ ).

Suppose κ > 0. By taking y = 1−, we get A(x) = O(xσ )+ O(1), hence κ � σ .
As σ can be taken arbitrarily close to σc, in the limit we get κ � σc and finally
κ = σc.

Suppose κ < 0. Then σc < 0 and A(y) → 0 when y → +∞. For σc < σ < 0,
we get by letting y → +∞, that A(x) = O(xσ ) thus κ � σ and again κ = σc.

If κ = 0 and A(x) has no limit when x →+∞, then σc � 0 = κ and thus σc = 0.
If κ = 0 and A(x)→ α when x →+∞, set

�0 = inf{� � 0 : A(x) = α + o(x�)}.
Summing by parts, we get

∑

M<n�N

ann−s = A(N)N−s − A(M)M−s + s
∫ N

M
A(t)

dt

ts+1

and when we replace A(u) by α + O(u�), the terms in α disappear and we get

∣∣∣∣∣∣

∑

M<n�N

ann−s

∣∣∣∣∣∣
= O(N�−σ )+ O(M�−σ )
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which shows that F(s) converges as soon as σ > �0, hence σc � �0. If we had
σc < σ < �0 � 0, then by letting y → +∞, we would get A(x)− α = O(xσ ), and
this would contradict the definition of �0.



Chapter 4
Euler’s Gamma Function

Joël Rivat

For proofs of the following results, see for example Chapters 12 and 13 of [2].

Definition 4.1 For all z ∈ C with�(z) > 0, we define

Γ (z) =
∫ ∞

0
e−ttz−1dt.

Theorem 4.2 (Weierstrass Product) For all z ∈ C,

1

Γ (z)
= z eγ z

∞∏

n=1

(
1+ z

n

)
e−z/n,

where γ = 0.5772156649 . . . is the Euler constant.
Thus the function Γ is meromorphic on C, has no zero, and admits simple poles

at z = 0,−1,−2, . . ..

Proposition 4.3 For z ∈ C \ (−N), we have

Γ (z+ 1) = zΓ (z).

Corollary 4.4 For n ∈ N, we have Γ (n+ 1) = n!.
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Proposition 4.5 For z ∈ C \ Z,

Γ (z) Γ (1− z) = π

sin πz
.

Corollary 4.6 We have Γ ( 1
2 ) =

√
π .

Proposition 4.7 (Legendre Duplication Formula) For z ∈ C \ (− 1
2N),

Γ (z) Γ (z+ 1
2 ) = π1/2 21−2z Γ (2z).

Corollary 4.8 For z ∈ C \ (2Z), we have

Γ ( z
2 )/Γ ( 1−z

2 ) = π−1/2 21−z cos(πz
2 ) Γ (z).

Theorem 4.9 (Stirling Formula) For fixed 0 � ϑ < π and |arg(z)| < ϑ , we have

logΓ (z) = (z− 1
2 ) log z− z− 1

2 log 2π + O(|z|−1), |z| → +∞.

Proposition 4.10 For fixed 0 � ϑ < π and |arg(z)| < ϑ , we have

Γ ′(z)
Γ (z)

= log z+ O(|z|−1), |z| → +∞.

Proof See [1, footnote, p.57].
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Chapter 5
Riemann’s Zeta Function

Joël Rivat

5.1 The Functional Equation of Zeta

The zeta function is defined for�(s) > 1 by

ζ(s) =
+∞∑

n=1

1

ns
.

Theorem 5.1 The zeta function can be extended analytically to the whole complex
plane, into a meromorphic function, with one pole, which is a simple pole, at the
point 1, with residue 1.

We can write both

ζ(s) = s

s− 1
− s
∫ +∞

1
t−s−1{t} dt = 1

s− 1
+ s
∫ +∞

1
t−s−1(1− {t}) dt.
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Proof We show here the extension to�(s) > 0, the extension to all C will be done
in the next theorem. We write for�(s) > 1,

+∞∑

n=1

1

ns
=
∫ +∞

1−
t−sd[t]

=
∫ +∞

1−
t−sdt −

∫ +∞

1−
t−sd{t}

= 1

s− 1
+ 1− s

∫ +∞

1
t−s−1{t}dt

and the integral on the right side converges absolutely for�(s) > 0, hence the right
side is a meromorphic function on the half-plane�(s) > 0, which admits one pole,
on s = 1, and this pole is simple, with residue 1.

Corollary 5.2 For s > 0, s = 1, we have

1

s− 1
< ζ(s) <

s

s− 1
.

Theorem 5.3 The function π−s/2Γ (s/2)ζ(s) can be extended into a meromorphic
function on C \ {0, 1}, and we have the functional equation:

π−s/2Γ (s/2)ζ(s) = π−(1−s)/2Γ ((1− s)/2)ζ(1− s).

Remark 5.4 The functional equation expresses a symmetry with respect to s = 1
2

which allows us to deduce the properties for σ < 0 from those for σ > 1.

Proof We give one of Riemann’s original proofs, cf. Titchmarsh [4] For σ > 0,
we have

Γ (s/2) =
∫ ∞

0
e−tt

s
2−1dt,

hence by putting t = n2πx, we get

π−s/2Γ (s/2)n−s =
∫ ∞

0
e−n2πxx

s
2−1dx,

and by summing on n, for a real s > 1, we get (everything being positive)

π−s/2Γ (s/2)ζ(s) =
∫ ∞

0

⎛

⎝
∑

n�1

e−n2πx

⎞

⎠ x
s
2−1dx,
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We write

ω(x) =
∑

n�1

e−n2πx, θ(x) =
∑

n∈Z
e−n2πx.

The function θ is a particular case of Jacobi’s functions ϑ , and satisfies the
functional equation

θ(1/x) = x1/2θ(x), x > 0.

which we shall prove below. As

2ω(x) = θ(x)− 1,

we deduce that

ω(1/x) = − 1
2 + 1

2 x1/2 + x1/2 ω(x).

We write

π−s/2Γ (s/2)ζ(s) =
∫ 1

0
ω(x)x

s
2−1dx+

∫ ∞

1
ω(x)x

s
2−1dx

=
∫ ∞

1
ω(1/x)x−

s
2−1dx+

∫ ∞

1
ω(x)x

s
2−1dx

and
∫ ∞

1
ω(1/x)x−

s
2−1dx =

∫ ∞

1

(
− 1

2 + 1
2 x1/2 + x1/2 ω(x)

)
x−

s
2−1dx

= −1

s
+ 1

s− 1
+
∫ ∞

1
ω(x)x−

s
2− 1

2 dx

which gives for all real s > 1,

π−s/2Γ (s/2)ζ(s) = 1

s(s− 1)
+
∫ ∞

1
ω(x)

(
x

s
2−1 + x

1−s
2 −1

)
dx.

For x � 1,

ω(x) = e−πx
∑

n�1

e−(n2−1)πx � e−πx
∑

n�1

e−(n2−1)π
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hence

ω(x) = O(e−πx), x →+∞,

the integral on the right side converges for all s ∈ C, uniformly on every compact
subset of C. Thus this integral is an entire function (holomorphic on C), and the
right side gives an analytic extension of zeta to the whole complex plane. Moreover
it is invariant when we replace s by 1− s, which proves the functional equation.

Corollary 5.5 The function

ξ(s) := 1
2 s(s− 1)π−s/2Γ (s/2)ζ(s)

is holomorphic on C.

Proof We have neutralized the term 1
s(s−1) .

Corollary 5.6 The only pole of zeta is s = 1, and it is a simple pole with residue 1.

Proof From the Weierstrass product formula applied to the function Γ ,

( s

2

)
Γ
( s

2

)
= e−γ s/2

∞∏

n=1

(
1+ s

2n

)−1
es/2n,

hence the function s 	→ (s/2)Γ (s/2) has no zero.

Corollary 5.7 ζ(0) = − 1
2 .

Proof As (s/2)Γ (s/2)→ 1 when s → 0, in the formula

π−s/2(s/2)Γ (s/2)ζ(s) = 1

2(s− 1)
+ s

2

∫ ∞

1
ω(x)

(
x

s
2−1 + x−

s
2−1
)

dx

the left side tends to ζ(0) when s → 0, and the right side tends to − 1
2 .

Corollary 5.8 The zeros of zeta with σ < 0 are the negative even integers (s =
−2,−4,−6, . . .). We call them the trivial zeros of zeta.

Proof These are the poles of Γ
( s

2

)
= 2

s
e−γ s/2

∞∏

n=1

(
1+ s

2n

)−1
es/2n.

Definition 5.9 The subset of the plane defined by 0 < σ < 1 is called the critical
stripe.

What is still to prove is the claimed property of θ :

Lemma 5.10 The function θ(a) =∑n∈Z e−πan2
satisfies the functional equation

θ(1/a) = a1/2θ(a), a > 0.
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Proof It is a special case of Poisson’s summation formula

∑

n∈Z
f (n) = lim

N→+∞

N∑

n=−N

f̂ (n), with f̂ (t) =
∫

R

f (x) e−2iπxtdx,

which holds (see Zygmund [5, p. 68]) as soon as f is integrable on R, with bounded
variation on R and normalized:

∀x ∈ R, f (x) = 1
2 (f (x

+)+ f (x−)).

Here we have Gaussian functions, for a > 0,

f (x) = e−πax2
, f̂ (t) = a−1/2e−π t2/a,

which satisfy the conditions of Poisson’s formula, hence

∑

n∈Z
e−πan2 = a−1/2

∑

n∈Z
e−πn2/a,

which is precisely the expected formula.

5.2 Entire Functions of Finite Order

Definition 5.11 An entire function f (z) is said to be of finite order if there exists a
real number α such that

f (z) = O(e|z|α ), x →+∞.

The lower bound of these numbers α is called the order of f (z).

Proposition 5.12 (Jensen Formula) Let f (z) be a holomorphic function on |z| <
R′ such that f (0) = 0. If z1, . . . , zk are the zeros of f (z) for |z| � R < R′, then

1

2π

∫ 2π

0
log
∣∣∣f (Reiθ )

∣∣∣ dθ − log |f (0)| = log
Rk

|z1| · · · |zk| =
∫ R

0

n(r)

r
dr,

where n(r) is the number of zeros of f (z) for |z| � r.

Remark 5.13 This formula links the modulus of a holomorphic function with the
modulus of its zeros.

Proof See Titchmarsh [3, 3.61].
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Theorem 5.14 An entire function f (z) of order 1 with f (0) = 0 must be of the form

f (z) = eA+Bz
∞∏

n=1

(1− z/zn) ez/zn,

where the zn are the zeros of f (z), repeated if they are multiple, and for every ε > 0,

∑

n�1

|zn|−1−ε < +∞.

If also
∑

n�1 |zn|−1 < +∞, then there exists a constant C > 0 such that

|f (z)| < eC|z|.

Proof See Davenport [1, pp. 74–78].

5.3 Infinite Product for ξ(s)

We recall the definition of the entire function

ξ(s) = 1
2 s(s− 1)π−s/2Γ (s/2)ζ(s).

Proposition 5.15 There exists a constant C > 0 such that

|ξ(s)| < exp(C |s| log |s|).

Corollary 5.16 The function ξ(s) is of order at most 1.

Proof As ξ(s) = ξ(1− s), it is enough to bound |ξ(s)| for σ � 1
2 . We have

∣∣∣ 1
2 s(s− 1)π−s/2

∣∣∣ < exp(c1 |s|).

and using the Stirling formula for−π/2 < arg(s) < π/2,

|Γ (s/2)| < exp(c2 |s| log |s|).

We have still to bound |ζ(s)|, and for that we recall that for σ > 0,

ζ(s) = s

s− 1
− s
∫ ∞

1
{t}t−s−1dt.
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The integral is bounded for σ � 1
2 , hence

|ζ(s)| < c3 |s| , for σ � 1
2 , |s| � 2,

which completes the proof.

Remark 5.17 When s → +∞ (s real), we have logΓ (s) ∼ s log s and ζ(s) → 1,
thus the bound we got for ξ(s) is, except for the constants, optimal. In particular,
ξ(s) is not bounded by exp(C |s|).
Theorem 5.18 The function ξ(s) admits infinitely many zeros, denoted by
ρ1, ρ2, . . ., such that

∑

n�1

|ρn|−1 = +∞; ∀ε > 0,
∑

n�1

|ρn|−1−ε < +∞,

and the expansion into an infinite product

ξ(s) = eA+Bs
∏

ρ

(1− s/ρ) es/ρ

with

A = − log 2 ≈ −0.69314718 . . .

B = − 1
2γ − 1+ 1

2 log 4π ≈ −0.023095708966121 . . . .

Proof The results on the series come immediately from the fact that ξ(s) is of order
1 and is not bounded by exp(C |s|). In particular,

∑ |ρ|−1 = +∞ implies the
existence of infinitely many zeros. We have yet to compute A and B, which will
be done later.

Corollary 5.19 When ξ(s) = 0, we have

ξ ′(s)
ξ(s)

= B+
∑

ρ

(
1

s− ρ
+ 1

ρ

)
.

Proof This is the logarithmic derivative of the infinite product.

Corollary 5.20 When s = 1 and ζ(s) = 0, we have

ζ ′(s)
ζ(s)

= B− 1

s− 1
+ 1

2 logπ − Γ ′(s/2+ 1)

2 Γ (s/2 + 1)
+
∑

ρ

(
1

s− ρ
+ 1

ρ

)
.
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Proof We write

ξ(s) = 1
2 s(s− 1)π−s/2Γ (s/2)ζ(s) = (s− 1)π−s/2Γ (s/2+ 1)ζ(s),

thus the logarithmic derivative of ξ equals

ξ ′(s)
ξ(s)

= 1

s− 1
− 1

2 logπ + Γ ′(s/2 + 1)

2 Γ (s/2 + 1)
+ ζ ′(s)

ζ(s)
,

hence the result by comparing both expressions of ξ ′/ξ .

Remark 5.21 This formula exhibits the pole ζ(s) at s = 1, and the nontrivial zeros
at s = ρ. The trivial zeros of ζ(s) appear in the expression in Γ , as by computing
the logarithmic derivative of Γ from the Weierstrass product we get

− Γ ′(s/2+ 1)

2 Γ (s/2+ 1)
= 1

2γ +
∞∑

n=1

(
1

s+ 2n
− 1

2n

)
.

Lemma 5.22 We have A = − log 2 and B = − 1
2γ − 1+ 1

2 log 4π .

Proof As

ξ(1) = 1
2π
−1/2Γ (1/2) lim

s→1
(s− 1)ζ(s) = 1

2 ,

we get ξ(0) = 1
2 , thus eA = 1

2 and A = − log 2.
To get B, we have

B = ξ ′(0)
ξ(0)

= −ξ ′(1)
ξ(1)

by using the logarithmic derivative of the infinite product and ξ(s) = ξ(1 − s). The
other formula for the logarithmic derivative of ξ gives

ξ ′(s)
ξ(s)

= ζ ′(s)
ζ(s)

+ 1

s− 1
− 1

2 logπ + Γ ′(s/2+ 1)

2 Γ (s/2+ 1)
,

and we can make s → 1.
As

− Γ ′(1/2+ 1)

2 Γ (1/2+ 1)
= 1

2γ +
∞∑

n=1

(
1

1+ 2n
− 1

2n

)
= 1

2γ − 1+ log 2,
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we get

B = 1
2γ − 1+ 1

2 log 4π − lim
s→1

(
ζ ′(s)
ζ(s)

+ 1

s− 1

)
.

Recall that

ζ(s) = s

s− 1
− sI(s), I(s) =

∫ ∞

1
(x− �x�)x−s−1dx,

hence (s− 1)ζ(s) = s(1− (s− 1)I(s)), thus

ζ ′(s)
ζ(s)

+ 1

s− 1
= 1

s
+ −I(s)− (s− 1)I′(s)

1− (s− 1)I(s)
→ 1− I(1), when s → 1.

Finally

∫ N

1
(x− �x�)x−2dx = log N −

N−1∑

n=1

∫ n+1

n
nx−2dx

= log N −
N−1∑

n=1

1

n+ 1
= 1+ log N −

N∑

n=1

1

n
,

thus I(1) = 1− γ and it yields B = − 1
2γ − 1+ 1

2 log 4π .

Proposition 5.23 Writing ρ = β + iγ , we get

B = −
∑

ρ

1

ρ
= −

∑

γ>0

2β

β2 + γ 2 ,

where the sum is taken simultaneously on ρ and ρ.

Proof The convergence holds because 0 � 1

ρ
+ 1

ρ
= 2β

β2 + γ 2 � 2

|ρ|2 , and the

series
∑ |ρ|−2 converges by Theorem 5.18. We have

ξ ′(1− s)

ξ(1− s)
= B+

∑

ρ

(
1

1− s− ρ
+ 1

ρ

)
= −ξ ′(s)

ξ(s)
= −B−

∑

ρ

(
1

s− ρ
+ 1

ρ

)
.

while if ρ is a zero, then 1 − ρ is a zero also, thus the terms 1 − s − ρ and s − ρ

compensate.

Corollary 5.24 Every zero ρ = β + iγ satisfies |γ | > 6.5611.
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Proof Possibly by changing ρ into 1−ρ = 1−β− iγ , we can assume 1
2 � β � 1.

We have

2β

β2 + γ 2 � −B,

thus

|γ | �
√
−2β

B
− β2 �

√
− 1

B
− 1

4
> 6.5611.

5.4 A Zero Free Region for Zeta

Remark 5.25 The meromorphic function ζ ′(s)/ζ(s) admits as only poles for σ > 0
the zeros of ζ(s) and s = 1.

Proposition 5.26 (Mertens) For σ > 1 and τ ∈ R,

3

(
−ζ ′(σ )

ζ(σ )

)
+ 4

(
−�ζ ′(σ + iτ )

ζ(σ + iτ )

)
+
(
−�ζ ′(σ + 2iτ )

ζ(σ + 2iτ )

)
� 0.

Proof For k ∈ {0, 1, 2} we can write

−�ζ ′(σ + ikτ )

ζ(σ + ikτ )
= �

∞∑

n=1

Λ(n)n−σ−ikτ =
∞∑

n=1

Λ(n)n−σ cos(kτ log n).

It is enough to prove that

∞∑

n=1

Λ(n)n−σ (3+ 4 cos(kτ log n)+ cos(2τ log n)) � 0,

which follows from the inequality 3+ 4 cos θ + cos 2θ = 2(1+ cos θ)2 � 0.

Remark 5.27 The behaviour of−ζ ′(σ )/ζ(σ ) is well known when σ → 1+. Indeed,
as s = 1 is a simple pole of ζ , we have

−ζ ′(σ )

ζ(σ )
<

1

σ − 1
+ O(1),

for 1 < σ � 2. It is thus clear that the other two terms will influence each other in
the case when ζ would admit a zero slightly to the left of 1+ iτ or 1+ 2iτ .
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Theorem 5.28 The function zeta has no zero in the region

σ � 1− 1

35 log(|τ | + 2)+ O(1)
.

Proof We recall the formula

−ζ ′(s)
ζ(s)

= 1

s− 1
− B− 1

2 logπ + Γ ′(s/2+ 1)

2 Γ (s/2+ 1)
−
∑

ρ

(
1

s− ρ
+ 1

ρ

)

and also

Γ ′(s)
Γ (s)

= log s+ O(|s|−1), |s| → +∞, |arg s| � θ < π.

We have for 1 � σ � 2 and τ � 2,

� log(s/2 + 1) = log
√
(σ/2+ 1)2 + τ 2/4 = log τ + O(1),

thus, for 1 � σ � 2 and τ � 2,

−�ζ ′(s)
ζ(s)

< 1
2 log τ −

∑

ρ

�
(

1

s− ρ
+ 1

ρ

)
+ O(1).

We remark that

�
1

s− ρ
= σ − β

|s− ρ|2 , and �
1

ρ
= β

|ρ|2 ,

so that

∑

ρ

�
(

1

s− ρ
+ 1

ρ

)
� 0.

It results, by applying what precedes to s = σ + 2iτ , and by omitting the sum on ρ,
that

−�ζ ′(σ + 2iτ )

ζ(σ + 2iτ )
< 1

2 log τ + O(1),

which coincides with the second coordinate γ of a zero β + iγ , and in the sum on
ρ, we only keep the term 1/(s− ρ) corresponding to that zero. We get

−�ζ ′(σ + iτ )

ζ(σ + iτ )
< 1

2 log τ − 1

σ − β
+ O(1).
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Combining these estimates with Proposition 5.26 we get

3

σ − 1
+ 5

2
log τ − 4

σ − β
+ O(1) � 0.

We take σ = 1+ δ/ log τ , with δ > 0. Then

β < 1+ δ

log τ
− 4

(3/δ + 5/2) log τ + O(1)
,

and by taking for example δ = 1/5, we get the result for τ � 2. For |τ | � 2, we
already know there is no zero, hence the result holds for every τ .

Remark 5.29 The zero free region was extended by Littlewood (1922) to

σ � 1− C
log log τ

log τ
,

then, independently, by Vinogradov and Korobov (1958), to

σ � 1− C(log τ )−2/3(log log τ )−1/3.

5.5 The Number of Zeros of Zeta

Theorem 5.30 If f (z) is holomorphic inside and in the neighborhood of a closed
path C, nonzero on C, then the number N of zeros of f (z), counted with their
multiplicity, inside C, is given by

N = 1

2iπ

∫

C

f ′(z)
f (z)

dz = 1

2π
�
∫

C

f ′(z)
f (z)

dz = ΔC arg f (z),

where ΔC means generically the variation along the path C.

Proof See e.g. [3, 3.41].

Definition 5.31 For T > 0, we denote by N(T) the number of zeros (counted with
their multiplicity) of ζ(σ + iτ ) in the rectangle 0 < σ < 1, 0 < τ < T.

Proposition 5.32 If T > 0 is not the second coordinate of a zero of zeta then

2πN(T) = ΔR arg ξ(s),

where R is the rectangle with vertices 2, 2+ iT,−1+ iT,−1, spanned in the positive
sense.

Proof The zeros of ζ(s) and ξ(s) coincide in this region, and ξ is entire.
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Proposition 5.33 If T > 0 is not the second coordinate of a zero of zeta then

πN(T) = ΔL arg ξ(s),

where L is the broken line joining 2 with 2+ iT then 1
2 + iT.

Proof When s spans the base of the rectangle, arg ξ(s) does not change as in this
place ξ(s) is real and nonzero.

As

ξ(σ + iτ ) = ξ(1− σ − iτ ) = ξ(1− σ + iτ ),

the variation of arg ξ(s) when s goes from 1
2 + iT to −1 + iT then −1 equals the

variation of arg ξ(s) along L.

Proposition 5.34 If T > 0 is not the second coordinate of a zero of zeta then

N(T) = T

2π
log

T

2π
− T

2π
+ 7

8
+ S(T)+ O(T−1),

with S(T) defined by

πS(T) = ΔL arg ζ(s) = arg ζ( 1
2 + iT).

Proof We can write ξ(s) under the form

ξ(s) = (s− 1)π−s/2Γ (s/2+ 1)ζ(s).

We have

ΔL arg(s− 1) = arg(iT − 1
2 ) = π/2+ O(T−1),

ΔL argπ−s/2 = ΔL(− 1
2τ logπ) = − 1

2 T logπ.

By Stirling’s formula,

ΔL argΓ (s/2+ 1)

= � logΓ ( 1
2 iT + 5/4)

= �
(
( 1

2 iT + 3/4) log( 1
2 iT + 5/4)− 1

2 iT − 5/4+ 1
2 log 2π + O(T−1)

)

= 1
2 T log 1

2 T − 1
2 T + 3π

8
+ O(T−1)

and the result follows.
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Remark 5.35 To get an asymptotic formula for N(T), it suffices to estimate S(T).
Littlewood showed that

∫ T

0
S(τ )dτ = O(log T),

thus hopefully at least S(T) = o(1), when T → +∞, but this result was never
proved. If it was true, the term 7/8 would be significant. The best known result is

S(T) = O(log T),

which we are going to prove.

Lemma 5.36 If ρ = β+ iγ runs over all the nontrivial zeros of zeta, then for large
T > 0,

∑

ρ

1

1+ (T − γ )2 = O(log T).

Proof We recall the inequality

−�ζ ′(s)
ζ(s)

< 1
2 log τ −

∑

ρ

�
(

1

s− ρ
+ 1

ρ

)
+ O(1),

which holds for 1 � σ � 2 and τ � 2.
Taking s = 2 + iT, we remark that

∣∣ζ ′(s)/ζ(s)
∣∣ is bounded independently of T,

thus we get

∑

ρ

�
(

1

s− ρ
+ 1

ρ

)
< 1

2 log T + O(1).

Observing that

�
1

ρ
= β

|ρ|2 � 0,

�
1

s − ρ
= 2− β

(2− β)2 + (T − γ )2 � 1

4+ (T − γ )2

permits to bound from below the left hand sum and the result follows.

Corollary 5.37 For all T � 1,

N(T + 1)− N(T − 1) = O(log T).
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Proof We have the inequalities

N(T + 1)− N(T − 1) �
∑

ρ
|T−γ |�1

1 �
∑

ρ

2

1+ (T − γ )2 = O(log T).

Corollary 5.38 For all T � 1,

∑

ρ
|T−γ |�1

1

(T − γ )2 = O(log T).

Proof We have the inequalities

∑

ρ
|T−γ |�1

1

(T − γ )2 �
∑

ρ

2

1+ (T − γ )2 = O(log T).

Corollary 5.39 For all −1 � σ � 2, and all large enough τ which does not
coincide with the second coordinate of a zero of zeta,

ζ ′(s)
ζ(s)

=
∑

ρ
|τ−γ |<1

1

s− ρ
+ O(log τ ).

Proof We recall the formula

ζ ′(s)
ζ(s)

= B− 1

s− 1
+ 1

2 logπ − Γ ′(s/2+ 1)

2 Γ (s/2+ 1)
+
∑

ρ

(
1

s− ρ
+ 1

ρ

)

which we apply for s = σ + iτ and 2+ iτ . We remark that for all large enough τ ,

1

σ + iτ − 1
= O(1),

1

2+ iτ − 1
= O(1),

and as Γ ′(z)/Γ (z) = log z+ O(|z|−1), we have

Γ ′(s/2+ 1)

2 Γ (s/2+ 1)
− Γ ′((2+ iτ )/2+ 1)

2 Γ ((2+ iτ )/2+ 1)
= O(1),

thus by subtracting we get

ζ ′(s)
ζ(s)

= O(1)+
∑

ρ

(
1

s− ρ
− 1

2+ iτ − ρ

)
.
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As �(s− ρ) = �(2+ iτ − ρ) = τ − γ , we get

∣∣∣∣
1

s− ρ
− 1

2+ iτ − ρ

∣∣∣∣ =
2− σ

|(s− ρ)(2+ iτ − ρ)| �
3

|γ − τ |2 ,

hence

∑

ρ
|γ−τ |�1

∣∣∣∣
1

s− ρ
− 1

2+ iτ − ρ

∣∣∣∣ = O(log τ ).

We have still to deal with terms such as |γ − τ | < 1. Their number is at most
O(log τ ), and, as |2+ iτ − ρ| � 1, we get the claimed result.

Lemma 5.40 We have

S(T) = O(log T).

Proof We can write

πS(T) =
∫ 2+iT

2
�
ζ ′(s)
ζ(s)

ds−
∫ 2+iT

1
2+iT

�
ζ ′(s)
ζ(s)

ds = O(1)−
∫ 2+iT

1
2+iT

�
ζ ′(s)
ζ(s)

ds

because

∫ 2+iT

2
�
ζ ′(s)
ζ(s)

ds = −
∞∑

2

Λ(n)

n2

∫ T

0
sin(−τ log n)dτ

=
∞∑

2

Λ(n)

n2

1− cos(T log n)

log n
= O(1).

Now,

∣∣∣∣∣

∫ 2+iT

1
2+iT

�
1

s− ρ
ds

∣∣∣∣∣ = |Δ arg(s− ρ)| � π.

As the number of terms to be summed (i.e., the ρ such that |γ − T| < 1) is O(log T),
we deduce the result.

Theorem 5.41 We have

N(T) = T

2π
log

T

2π
− T

2π
+ O(log T).

Proof Immediate from what precedes.
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Corollary 5.42 If we enumerate the second coordinates γ > 0 of the zeros of zeta
in increasing order by γ1, γ2, . . ., then

γn ∼ 2πn/ log n, when n →+∞.

Remark 5.43 Littlewood proved in 1924 that

γn+1 − γn → 0, when n →+∞.

5.6 An Explicit Formula for ψ(x)

Theorem 5.44 For x � 2,

ψ0(x) := 1
2 (ψ(x+)+ ψ(x−)) = x−

∑

ρ

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2 log(1− x−2),

where, in the sum on nontrivial zeros ρ of zeta, ρ and ρ must be taken simultane-
ously. Note that ζ ′(0)/ζ(0) = log(2π).

Our first objective is to establish a link between, on one side

ψ(x) =
∑

n�x

Λ(n) =
∑

pm�x

log p,

and on the other side

−ζ ′(s)
ζ(s)

=
∑

n�1

Λ(n)

ns
.

In this perspective, we shall use the famous Perron formula:

1

2iπ

∫ c+i∞

c−i∞
ys ds

s
= δ(y) :=

⎧
⎨

⎩

0 if 0 < y < 1,
1
2 if y = 1,
1 if y > 1,

holding for c > 0, in a quantitative form which we shall prove.
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Taking y = x/n and c = σ > 1, we have

ψ0(x) =
∑

n�1

Λ(n) δ(x/n)

= 1

2iπ

∫ c+i∞

c−i∞

⎛

⎝
∑

n�1

Λ(n)

ns

⎞

⎠ xs ds

s

= 1

2iπ

∫ c+i∞

c−i∞

(
−ζ ′(s)

ζ(s)

)
xs ds

s
.

If we could move the vertical integration line infinitely to the left, then we could
express ψ0(x) as the sum of residues of the function

(
−ζ ′(s)

ζ(s)

)
xs

s

in its poles. The pole of zeta at s = 1 contributes with x, the pole at s = 0 contributes
with −ζ ′(0)/ζ(0), and each zero of zeta, whether trivial or not, contributes with
xρ/ρ.

Lemma 5.45 For y > 0, c > 0, T > 0, put

I(y,T) = 1

2iπ

∫ c+iT

c−iT

ys

s
ds.

Then

|I(y,T)− δ(y)| <
{

yc min(π−1T−1 |log y|−1 , 1) if y = 1,
cπ−1T−1 if y = 1.

Proof Suppose first that 0 < y < 1. The function ys/s tends to 0 when σ → +∞,
uniformly in τ . Hence, integrating on a rectangle with right side going to infinity,
we have

I(y,T) = − 1

2iπ

∫ +∞+iT

c+iT

ys

s
ds+ 1

2iπ

∫ +∞−iT

c−iT

ys

s
ds.

But

∣∣∣∣
1

2iπ

∫ +∞+iT

c+iT

ys

s
ds

∣∣∣∣ <
1

2πT

∫ +∞

c
yσ dσ = yc

2πT |log y| ,

and similarly for the other integral. This gives the first inequality.
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For the second one, we replace the vertical integration line by an arc on the right
with centre O. Its radius is R = (c2 + T2)1/2. On this arc, we have | ys| � yc and
|s| = R, hence

|I(y,T)| � 1

2π
πR

yc

R
< yc.

The proof for y > 1 is similar by using a rectangle on the left:

∣∣∣∣
1

2iπ

∫ c+iT

−∞+iT

ys

s
ds

∣∣∣∣ <
1

2πT

∫ c

−∞
yσ dσ = yc

2πT |log y| ,

where we get the strict inequality by dealing separately with the |σ | � ε, for which
we cannot do better than |s| � T. Elsewhere, we have |s| � (T2 + ε2)1/2.

Then the integration closed path includes the pole in s = 0, with residue 1 =
δ(y).

In the same way we get the second bound with an arc on the left, and

|I(y,T)− 1| < 1

2π
2πR

yc

R
< yc.

We have still to deal with y = 1. We do it by a direct computation: for s = c+ it,

I(1,T) = 1

2π

∫ T

0

2c

c2 + t2
dt = 1

π

∫ T/c

0

du

1+ u2 =
1

2
− 1

π

∫ ∞

T/c

du

1+ u2

and the last integral is < c/T.

Lemma 5.46 For c > 1, set

J(x,T) = 1

2iπ

∫ c+iT

c−iT

−ζ ′(s)
ζ(s)

xs

s
ds.

Then

|ψ0(x)− J(x,T)| <
∑

n�1
n =x

Λ(n)(x/n)c min(1,T−1 |log x/n|−1)+ c T−1Λ(x).

where the term with Λ(x) is present only when x = pm.

Proof It comes immediately from what precedes.

Notation 5.47 We introduce Vinogradov’s notation

A � B if and only if A = O(B).
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Lemma 5.48 We have

|ψ0(x)− J(x,T)| � x(log x)2

T
+min

(
1,

x

T〈x〉
)

log x,

where 〈x〉 denotes the distance from x to the nearest power of a prime number which
is different from x.

Proof We choose c = 1 + (log x)−1. Then we observe that xc = ex � x. We begin
to bound the sum we got in the last lemma by considering the n such that n � 3x/4
or n � 5x/4. Then we have |log x/n| � 1, thus the contribution of these terms is at
most

� xc

T

∑

n�1

Λ(n)n−c = xc

T

(
−ζ ′(c)

ζ(c)

)
� x log x

T
.

Consider now the n such that 3x/4 < n < x. Let x1 be the largest power of a prime
number which is strictly smaller than x. We can assume 3x/4 < x1 < x, as otherwise
the relevant terms vanish. For n = x1, we have

log
x

n
= − log

(
1− x− x1

x

)
� x− x1

x
,

thus the contribution of this term is

� Λ(x1)min

(
1,

x

T(x− x1)

)
� min

(
1,

x

T(x− x1)

)
log x.

For the other terms, we write n = x1 − v with 0 < v < x/4 (it is clear, by definition
of x1, that Λ(n) = 0 for x1 < n < x), hence

log
x

n
� log

x1

n
= − log

(
1− v

x1

)
� v

x1
.

Thus the contribution of these terms is

�
∑

0<v<x/4

Λ(x1 − v)
x1

Tv
� x(log x)2

T
.

The terms x < n < 5x/4 are dealt with similarly, except that we replace x1 by x2,
the smallest power of a prime number which is strictly larger than x.

This completes the proof of the lemma, by bounding x−x1 and x2−x form below
by 〈x〉.
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Lemma 5.49 For all T ′ > 0, we can choose T = T ′ + O(1) such that

|γ − T| � (log T)−1,

for all the zeros ρ = β + iγ of zeta.

Proof We have shown that

N(T ′ + 1)− N(T ′ − 1)� log T,

so that among the second coordinates of the relevant zeros, there must be a gap of
length� (log T)−1.

Lemma 5.50 Let U be a large enough odd integer, and let T > 0 such that
|γ − T| � (log T)−1 for every zero ρ = β + iγ of zeta. We call R(T,U) the
rectangle with vertices

c− iT, c+ iT, −U − iT, −U + iT.

Then

1

2iπ

∫

R(T,U)

(
−ζ ′(s)

ζ(s)

)
xs

s
ds = x−

∑

|γ |<T

xρ

ρ
− ζ ′(0)

ζ(0)
−

∑

0<2m<U

x−2m

−2m
.

Proof The left vertical side of the closed path goes through the middle point
between two trivial zeros of zeta. Hence we can apply the residues theorem.

Remark 5.51 The integral we want to estimate, J(x,T), is the integral on the right
vertical side of the closed path. To deal with the other three sides of the rectangle,
we need upper bounds for ζ ′/ζ .

Lemma 5.52 For s = σ + iT, with |γ − T| � (log T)−1 for every zero ρ = β+ iγ ,
and −1 � σ � 2, we have

ζ ′(s)
ζ(s)

= O((log T)2)

Proof We recall that under these hypotheses,

ζ ′(s)
ζ(s)

=
∑

|γ−T|<1

1

s− ρ
+ O(log T),

and here, each term of the right-hand sum is� log T, and also the number of terms
is� log T.
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Lemma 5.53 For s ∈ C, with �(s) � −1 and |s+ 2m| � 1
2 for all m ∈ N, we

have

∣∣ζ ′(s)/ζ(s)
∣∣� log(2 |s|).

Proof We work with 1 − s instead of s (hence σ � 2), and we use the asymmetric
form of the functional equation:

ζ(1− s) = 21−sπ−s cos(πs/2)Γ (s)ζ(s),

which we got through the complements formula and the Legendre duplication
formula (for the function Gamma).

The logarithmic derivative gives

ζ ′(1− s)

ζ(1− s)
= − log 2π − π

2
tan
(πs

2

)
+ Γ ′(s)

Γ (s)
+ ζ ′(s)

ζ(s)
.

When |s− (2m+ 1)| � 1
2 , the term tan(πs/2) is bounded, hence the condition

|(1− s)+ 2m| � 1
2 .

The term in Γ is� log |s|, hence� log 2 |1− s| for σ � 2.
The last term is bounded, hence the result.

Theorem 5.54 For x � 2,

ψ0(x) = x−
∑

|ρ|<T

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2 log(1− x−2)+ R(x,T),

with

R(x,T)� x log2(xT)

T
+min

(
1,

x

T〈x〉
)

log x.

Proof We recall the choice c = 1+ (log x)−1. We have

∫ c+iT

−1+iT

ζ ′(s)
ζ(s)

xs

s
ds� log2 T

T

∫ c

−1
xσ dσ � x log2 T

T log x

and

∫ −1+iT

−U+iT

ζ ′(s)
ζ(s)

xs

s
ds � log 2T

T

∫ −1

−U
xσ dσ � log T

Tx log x



5 Riemann’s Zeta Function 49

thus the contribution from the horizontal sides of the rectangle R(T,U) is

� x log2 T

T log x

The contribution from the left vertical side is

∫ −U+iT

−U−iT

ζ ′(s)
ζ(s)

xs

s
ds � log 2U

U

∫ T

−T
x−Udt � T log U

UxU

which tends to 0 when U → +∞.
Gathering the terms, and remarking that

∞∑

m=1

x−2m

−2m
= log(1− x2),

we get the claimed result, with the restriction that |γ − T| � (log T)−1. This
restriction can be lifted, as by modifying T by O(1), we change the sum of ρ by
at most O(log T) terms, and each of them is O(x/T), then the total sum is changed
at most by O(x(log T)/T), and this quantity is absorbed by the error term.

Remark 5.55 Obviously we have

R(x,T)→ 0, when T →+∞.

Furthermore, if x is an integer, then 〈x〉 � 1, and then

R(x,T)� x log2 xT

T
.

Remark 5.56 Ingham [2, p. 81] showed that a slight modification of the estimate
for R(x,T) allows to prove that the formula holds for 1 < x < 2.

5.7 The Prime Numbers Theorem

Lemma 5.57 We have

∑

|γ |<T

∣∣∣∣
xρ

ρ

∣∣∣∣� x log2 T exp

(
−c1

log x

log T

)
.
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Proof We have already studied the region without zeros of zeta. If ρ = β + iγ is a
nontrivial zero with |γ | < T, and T is large enough, then

β < 1− c1

log T
,

where c1 > 0 is an absolute constant. We deduce that

∣∣xρ
∣∣ = xβ < x exp

(
−c1

log x

log T

)
.

Furthermore, we have |ρ| � γ , for γ > 0, thus we have to estimate

∑

0<γ<T

1

γ
.

Also, denoting by N(t) the number of zeros in the critical strip with second
coordinate between 0 and t, we have

∑

0<γ<T

1

γ
=
∫ T

0
t−1dN(t) = N(T)

T
+
∫ T

0
t−2N(t)dt,

and as N(t)� t log t for t large enough, we get

∑

0<γ<T

1

γ
� log2 T

which ends the proof.

Theorem 5.58 For x � 2,

ψ(x) :=
∑

n�x

Λ(n) = x+ O(x exp(−c2
√

log x)).

Proof Without loss of generality, we can choose x integer, which allows us to use
the simple upper bound for R(x,T). Thus we get

|ψ(x)− x| � x log2 xT

T
+ x log2 T exp

(
−c1

log x

log T

)
,

for x large enough. We choose T such that

log2 T = log x, i.e., T−1 = exp(−√log x).
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We get

|ψ(x)− x| � x(log x)2 exp(−√log x)+ x(log x) exp(−c1
√

log x)

� x exp(−c2
√

log x)

by choosing 0 < c2 < min(1, c1).

Corollary 5.59 For x � 2,

θ(x) :=
∑

p�x

log p = x+ O(x exp(−c2
√

log x)).

Proof We have

0 � ψ(x)− θ(x) =
∑

pm�x
m�2

log p � log x
∑

m�2

π(x1/m) = O(
√

x).

Corollary 5.60 For x � 2,

π(x) = li(x)+ O(x exp(−c3
√

log x)).

Proof We have

π(x) =
∑

p�x

log p

log p
=
∫ x

2−
dθ(t)

log t

=
∫ x

2−
dt

log t
+
∫ x

2−
d(θ(t)− t)

log t

= li(x)+ θ(x)− x

log x
+ O(1)+

∫ x

2−
θ(t)− t

t log2 t
dt,

and we can cut this last integral into two parts. For t < x1/4, the contribution is
O(x1/4), and for x1/4 < t < x, we have (log t)1/2 > 1

2 (log x)1/2, hence the result.

Theorem 5.61 If all the zeros of zeta satisfy β � Θ , where 1
2 � Θ < 1, then

ψ(x) = x+ O(xΘ log2 x), π(x) = li(x)+ O(xΘ log x).

Remark 5.62 The Riemann hypothesis corresponds to Θ = 1
2 .
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Proof Same proof, with |xρ | � xΘ . The explicit formula gives

|ψ(x)− x| � x log2 xT

T
+ xΘ log2 T.

and we choose T = x1−Θ .

Theorem 5.63 If there exists 1
2 � α < 1 such that ψ(x) = x+ O(xα), then all the

zeros of zeta satisfy β � α.

Proof We have

−ζ ′(s)
ζ(s)

=
∞∑

n=1

Λ(n)

ns
=
∫ ∞

1−
dψ(x)

xs
=
∫ ∞

1−
dx

xs
+
∫ ∞

1−
d(ψ(x)− x)

xs

= 1

s− 1
+ s
∫ ∞

1
(ψ(x) − x)x−s−1dx,

and if ψ(x) = x + O(xα), then the integral represents a holomorphic function on
σ > α, hence ζ(s) cannot have any zero in this half-plane.
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Chapter 6
The Large Sieve

Joël Rivat

6.1 Analytic Form of the Large Sieve

Notation 6.1 For x ∈ R, we denote by ‖x‖ the distance from x to Z:

‖x‖ = min
n∈Z

|x− n| .

Definition 6.2 Let 0 < δ < 1. We say that the real numbers x1, . . . , xR are δ-well
spaced if

min
1�r<s�R

‖xr − xs‖ � δ > 0.

Remark 6.3 We have R � δ−1.

Proof By considering the fractional parts we may assume that the xr are in [0, 1[,
then re-order them in the increasing order, and then we have

x1 + (R− 1)δ � xR � x1 + 1− δ,

hence Rδ � 1.
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Theorem 6.4 (Analytic Form of the Large Sieve) If x1, . . . , xR are δ-well spaced
real numbers (0 < δ < 1) and a1, . . . , aN ∈ C then

R∑

r=1

∣∣∣∣∣

N∑

n=1

an e(nxr)

∣∣∣∣∣

2

�
(

N − 1+ 1

δ

) N∑

n=1

|an|2 .

Remark 6.5 We can translate the indices n by observing that e((n + t)xr) =
e(txr) e(nxr) and |e(txr)| = 1.

Remark 6.6 This inequality is optimal: for an integer R � 1, set

xr := r

R
, for 1 � r � R, an :=

{
1 if R | n,
0 if R � n.

then for each integer N ≡ 1 mod R, we have

R∑

r=1

∣∣∣∣∣

N−1∑

n=0

an e(nxr)

∣∣∣∣∣

2

=
R∑

r=1

∣∣∣∣∣∣∣∣

∑

0�n�N−1
R | n

1

∣∣∣∣∣∣∣∣

2

= R

(
1+ N − 1

R

)2

,

(
N − 1+ 1

δ

) N−1∑

n=0

|an|2 = (N − 1+ R)

(
1+ N − 1

R

)
= R

(
1+ N − 1

R

)2

.

Notation 6.7 For each integrable function f : R → C, we denote by f̂ its Fourier
transform, defined by

f̂ (x) =
∫

R

f (t) e(−xt) dt.

Lemma 6.8 Let Fδ : R → R be a continuous integrable function with bounded
variation such that

(i) Fδ � 1l[1,N], (ii) F̂δ(u) = 0 for |u| � δ.

Then

R∑

r=1

∣∣∣∣∣

N∑

n=1

an e(nxr)

∣∣∣∣∣

2

� F̂δ(0)
N∑

n=1

|an|2 .

Proof (see Selberg [8, p. 220]) For convenience take an = 0 for n ∈ Z \ [1,N] and

S(α) =
N∑

n=1

an e(nα) =
∑

n

an e(nα).
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By expanding the left-hand term of the inequality

∑

n∈Z

∣∣∣∣∣
an√

Fδ(n)
F̂δ(0)−

R∑

r=1

√
Fδ(n)S(xr) e(−nxr)

∣∣∣∣∣

2

� 0,

we get

∑

n

|an|2
Fδ(n)

(
F̂δ(0)

)2 − 2 F̂δ(0)�
(

R∑

r=1

S(xr)
∑

n

an e(−nxr)

)

+
R∑

r=1

R∑

s=1

S(xr)S(xs)
∑

n

Fδ(n) e(−n(xr − xs)) � 0.

By Poisson summing formula, we have

∑

n

Fδ(n) e(−n(xr − xs)) =
∑

m∈Z

∫

R

Fδ(t) e(−t(xr − xs)) e(−tm)dt

=
∑

m∈Z
F̂δ(m+ xr − xs)

=
{

F̂δ(0) if r = s,
0 otherwise.

The previous inequality can be written under the form

∑

n

|an|2
Fδ(n)

(
F̂δ(0)

)2 − 2F̂δ(0)
R∑

r=1

|S(xr)|2 + F̂δ(0)
R∑

r=1

|S(xr)|2 � 0,

which gives

R∑

r=1

|S(xr)|2 � F̂δ(0)
∑

n

|an|2
Fδ(n)

� F̂δ(0)
∑

n

|an|2 ,

as expected.

In order to prove Theorem 6.4 it remains to prove that we can find a function Fδ

such that

(i) Fδ � 1l[1,N], (ii) F̂δ(u) = 0 for |u| � δ, (iii) F̂δ(0) = N − 1+ δ−1.
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6.2 The Beurling–Selberg Function

Proposition 6.9 The complex variable functions H(z) and K(z) defined by

H(z) :=
(

sin πz

π

)2
( ∞∑

n=−∞

sgn(n)

(z− n)2 +
2

z

)
; K(z) :=

(
sinπz

πz

)2

,

are entire, and of exponential type 2π (i.e., bounded from above by O(e2π|�z|)).
Proof The function K is obviously entire, and on every compact set H is a uniform
limit of a sequence of holomorphic functions, hence H is entire. The exponential
type comes from the Euler formula

sin(x+ iy) = eix−y− e−ix+y

2i
.

The function H is odd and H(n) = sgn n for all n ∈ Z. We shall study the
difference sgn x − H(x) for x ∈ R. As H is odd, it suffices to consider x > 0, for
which we have sgn x− H(x) = 1− H(x). We can compute this quantity:

Lemma 6.10 For all z ∈ C,

1− H(z) =
(

sinπz

π

)2 ∞∑

n=0

1

(z+ n)2(z+ n+ 1)2 . (6.1)

Proof By Euler formula

∞∑

n=−∞

1

(z− n)2 =
(

π

sin πz

)2

we get for z ∈ C,

1− H(z) =
(

sin πz

π

)2
( ∞∑

n=−∞

1− sgn(n)

(z− n)2 − 2

z

)

=
(

sin πz

π

)2
(

2
∞∑

n=0

1

(z+ n)2 −
2

z
− 1

z2

)
.

Also, for z ∈ C \ Z,

2

z
= 2

∞∑

n=0

(
1

z+ n
− 1

z+ n+ 1

)
= 2

∞∑

n=0

1

(z+ n)(z+ n+ 1)
,
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and

1

z2 =
∞∑

n=0

(
1

(z+ n)2 −
1

(z+ n+ 1)2

)
,

thus, for all z ∈ C (by analytic continuation),

1− H(z) =
(

sin πz

π

)2 ∞∑

n=0

(
1

(z+ n)2 +
1

(z+ n+ 1)2 −
2

(z+ n)(z+ n+ 1)

)

=
(

sin πz

π

)2 ∞∑

n=0

(
1

z+ n
− 1

z+ n+ 1

)2

.

and equality (6.1) follows.

Theorem 6.11 For all x ∈ R,

|H(x)| � 1, |sgn(x)− H(x)| � K(x).

Proof For x > 0, from (6.1), we get on one side, by summing positive terms, the
inequality 1−H(x) � 0, and on the other side as 1 � (x+ n+ 1)2− (x+ n)2 when
x > 0 and n � 0, we can write

1− H(x) �
(

sin πx

π

)2 ∞∑

n=0

(x+ n+ 1)2 − (x+ n)2

(x+ n)2(x+ n+ 1)2
=
(

sin πx

π

)2 1

x2
= K(x),

hence 0 � 1 − H(x) � K(x) � 1. As both functions H and sgn are odd, and the
function K is even, we get the claimed inequalities.

The equality (6.1) shows that the previous result does not give the order of
magnitude of 1− H(x) when x → +∞. We can improve this result:

Proposition 6.12 For all x ∈ R,

|sgn(x)− H(x)| � K(x)min

(
1,

1

3 |x|
)
.

Proof For x > 0,

1

x3 =
∞∑

n=0

(
1

(x+ n)3 −
1

(x+ n+ 1)3

)
=

∞∑

n=0

3(x+ n)2 + 3(x+ n)+ 1

(x+ n)3(x+ n+ 1)3 ,
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hence

1

x3 �
∞∑

n=0

3(x+ n)2 + 3(x+ n)

(x+ n)3(x+ n+ 1)3 = 3
∞∑

n=0

1

(x+ n)2(x+ n+ 1)2 ,

thus

1− H(x) �
(

sin πx

π

)2 1

3x3
= K(x)

3x
.

As both functions H and sgn are odd, and the function K is even, we get the claimed
inequality.

Corollary 6.13 The (Beurling–Selberg) function

B(z) := H(z)+ K(z) =
(

sin πz

π

)2
( ∞∑

n=0

1

(z− n)2
−

∞∑

n=1

1

(z+ n)2
+ 2

z

)
,

is entire, of exponential type 2π , and satisfies

∀x ∈ R, 0 � B(x)− sgn(x) � 2K(x),
∫

R

(B(t)− sgn(t))dt = 1.

Proof We just have to compute the last integral, and as H(x) − sgn(x) is odd and
integrable (its absolute value is below K(x)), we have

∫

R

(B(t)− sgn(t))dt =
∫

R

(H(t)− sgn(t))dt +
∫

R

K(t)dt =
∫

R

K(t)dt = 1.

Corollary 6.14 Let a � b and δ > 0. The function Fδ defined by

Fδ(x) := 1
2 B(δ(x− a))+ 1

2 B(δ(b− x)) (6.2)

is entire, of exponential type 2πδ, in L1(R) ∩ L2(R), and satisfies

(i) Fδ � 1l[a,b], (ii) F̂δ(u) = 0 for |u| � δ, (iii) F̂δ(0) = b− a+ δ−1.

Proof We have for all real number x different from a and b,

Fδ(x) � 1
2 sgn(δ(x− a))+ 1

2 sgn(δ(b− x)) =
{

0 if x < a ou x > b,
1 if a < x < b.

and by continuity of Fδ in a and b, we get Fδ � 1l[a,b].



6 The Large Sieve 59

As Fδ � 0, we show that Fδ ∈ L1(R) by computing F̂δ(0) :

F̂δ(0) =
∫

R

Fδ(x)dx

= 1
2

∫

R

(B− sgn)(δ(x− a))dx+ 1
2

∫

R

(B− sgn)(δ(b− x))dx

+
∫

R

(
1
2 sgn(δ(x− a))+ 1

2 sgn(δ(b− x))
)

dx

= 1

2δ
+ 1

2δ
+ b− a.

We have Fδ(z) = O(e2πδ|�z|), thus in particular, Fδ is bounded on R, and as
Fδ ∈ L1(R), we deduce that Fδ ∈ L2(R):

∫

R

F2
δ (t)dt �

(
sup
R

Fδ

)∫

R

Fδ(t)dt.

The fact that F̂δ has its support in [−δ, δ] comes from the following theorem (see
for example Rudin [7, Theorem 19.3]):

Theorem 6.15 (Paley and Wiener) For every entire function f of exponential type
2πA, such that f ∈ L2(R), there exists ϕ ∈ L2(R) such that

∀z ∈ C, f (z) =
∫ A

−A
ϕ(t) e(tz)dt.

It is indeed possible to compute explicitly F̂δ and thus avoid using the theorem of
Paley and Wiener.

6.3 The Sieve

How does the famous Eratosthenes sieve work? Let c1, . . . , cN ∈ C (it quite usual
to take cn = 1) be ordered from 1 to N in an indexed table. For each prime number
p �

√
N, we “sieve” by p, namely in the table we replace cn by 0 for n > p such

that n ≡ 0 mod p. Let a1, . . . , aN be the sequence we get. It satisfies

an = 0 ⇒ (n = 1) or (n prime).

A natural generalization of this process consists, for each prime number p, in
eliminating several classes modulo p. Let cM+1, . . . , cM+N be complex numbers
and P a set of prime numbers. For each prime number p, we choose to delete
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w(p) classes modulo p, say 0 � r(p, 1) < r(p, 2) < · · · < r(p,w(p)) < p. Let
aM+1, . . . , aM+N be the resulting sequence. It satisfies

an = 0 ⇒ ∀p ∈ P, ∀i ∈ {1, . . . ,w(p)}, n ≡ r(p, i) mod p.

This “constructive” approach is the right one to implement “concretely” a sieve,
on a computer for example, but in theoretical problems we do rather ask the question
directly from the resulting sequence, and this is the point of view we shall adopt in
the whole sequel.

Given a sequence of complex numbers aM+1, . . . , aM+N , we set

Z :=
M+N∑

n=M+1

an, Z(q, r) :=
∑

M+1�n�M+N
n≡r mod q

an.

and for all prime p we define w(p) as the number of classes r modulo p such
that an = 0 for all n ≡ r mod p. Excluding the case where the sequence (an) is
identically zero, we have 0 � w(p) < p for all p. The principle of the sieve is to
deduce information on the size of Z from the knowledge of w(p) for p prime.

6.4 The Arithmetic Form of the Large Sieve

To detect the integers n congruent to r modulo q, we use

q∑

a=1

e

(
a(n− r)

q

)
=
{

q if n ≡ r mod q,
0 otherwise.

which leads us to introduce

S(α) :=
M+N∑

n=M+1

an e(nα).

In particular

S

(
a

q

)
=

M+N∑

n=M+1

an e

(
an

q

)
=

q∑

r=1

e

(
ar

q

)
Z(q, r).
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We have

q∑

a=1

∣∣∣∣S
(

a

q

)∣∣∣∣
2

=
q∑

a=1

∣∣∣∣∣

q∑

r=1

e

(
ar

q

)
Z(q, r)

∣∣∣∣∣

2

=
q∑

r=1

q∑

r′=1

Z(q, r)Z(q, r′)
q∑

a=1

e

(
a(r − r′)

q

)

= q
q∑

r=1

|Z(q, r)|2 .

As

Z = S(0) =
q∑

r=1

Z(q, r),

we may imagine that with a good distribution, the mean value of Z(q, r) is close to
Z/q. We can estimate on average the variance of this approximation:

Proposition 6.16 We have

q
q∑

r=1

∣∣∣∣Z(q, r)− Z

q

∣∣∣∣
2

=
q−1∑

a=1

∣∣∣∣S
(

a

q

)∣∣∣∣
2

.

Proof We have

q
q∑

r=1

∣∣∣∣Z(q, r)− Z

q

∣∣∣∣
2

= q
q∑

r=1

(
|Z(q, r)|2 − 2

q
�(Z(q, r) Z)+ |Z|

2

q2

)

= q
q∑

r=1

|Z(q, r)|2 − 2 |Z|2 + |Z|2

=
q∑

a=1

∣∣∣∣S
(

a

q

)∣∣∣∣
2

− |S(1)|2

=
q−1∑

a=1

∣∣∣∣S
(

a

q

)∣∣∣∣
2

.

Proposition 6.17 For all real number Q > 1, we have

∑

q�Q

∑

1�a�q
(a,q)=1

|S(a/q)|2 � (N − 1+ Q2)

M+N∑

n=M+1

|an|2 .
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Proof We apply the analytic form of the large sieve by replacing xr with a/q,
(a, q) = 1, 1 � a � q, q � Q. We get for r = s,

‖xr − xs‖ =
∥∥∥∥

a

q
− a′

q′

∥∥∥∥ =
∥∥∥∥

aq′ − a′q
qq′

∥∥∥∥ �
1

Q2 ,

hence the xr are Q−2-well spaced.

We remark that the summation conditions on a are different in the last two
propositions. However, they coincide when q is prime. By bounding q from below
by the sum restricted to prime numbers, we get the following result, which is very
useful for applications:

Theorem 6.18 We have

∑

p�Q

p
p∑

r=1

∣∣∣∣Z(p, r)− Z

p

∣∣∣∣
2

� (N − 1+ Q2)

M+N∑

n=M+1

|an|2 .

Corollary 6.19 LetA be a set of integers in the interval [M+1,M+N]. Let P be a
set of prime numbers p � Q. We assume that there exists a real number 0 < τ < 1
such that, for all p ∈ P, #{a ∈ A : a ≡ r mod p} = 0 for at least τp classes r
modulo p. Then

|A| � N − 1+ Q2

τ |P| .

Remark 6.20 This result illustrates the denomination large sieve: we delete a
positive proportion (τ ) of classes modulo p.

Proof We take an = 1 if n ∈ A and an = 0 otherwise. Thus we have, for p ∈ P,

p∑

r=1

∣∣∣∣Z(p, r)− Z

p

∣∣∣∣
2

� τp

(
Z

p

)2

,

and, applying the theorem,

∑

p∈P
τZ2 �

∑

p�Q

p
p∑

r=1

∣∣∣∣Z( p, r)− Z

p

∣∣∣∣
2

� (N − 1+ Q2)

M+N∑

n=M+1

|an|2 = (N − 1+ Q2)Z,

which gives the result.
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Example 6.21 Let A be the set of squares in the interval [1,N]. We take Q = √N
and P the set of odd prime numbers p � Q. Then Z(p, r) = 0 when r is not a
quadratic residue modulo p, hence Z(p, r) = 0 for at least 1

2 (p − 1) values of r.
Thus we can take τ = 1

3 and we get

|A| � N

Q/ log Q
� √N log N

which is not far from the truth |A| ∼ √N.

Proposition 6.22 For every prime number p � 1,

|S(0)|2 w(p)

p− w(p)
�

p−1∑

a=1

∣∣∣∣S
(

a

p

)∣∣∣∣
2

.

Proof We write

Z =
p∑

r=1

Z(p, r),

and observing that Z(p, r) is zero for w(p) classes modulo p, we get by Cauchy-
Schwarz

|Z|2 � (p− w(p))
p∑

r=1

|Z(p, r)|2 .

But we have seen that

p
p∑

r=1

|Z(p, r)|2 =
p∑

a=1

∣∣∣∣S
(

a

p

)∣∣∣∣
2

= |Z|2 +
p−1∑

a=1

∣∣∣∣S
(

a

p

)∣∣∣∣
2

,

hence

p |Z|2 � ( p− w( p))p
p∑

r=1

|Z( p, r)|2

� ( p− w( p)) |Z|2 + ( p− w( p))
p−1∑

a=1

∣∣∣∣S
(

a

p

)∣∣∣∣
2

.
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In order to generalize this result to nonprime integers q, we introduce a
multiplicative function � and its summing function L by setting

�(q) = μ2(q)
∏

p | q

w(p)

p− w(p)
, L(Q) :=

∑

q�Q

�(q).

Theorem 6.23 For every integer q � 1,

∣∣∣∣∣

M+N∑

n=M+1

an

∣∣∣∣∣

2

μ2(q)
∏

p | q

w(p)

p− w(p)
�

∑

1�a�q
(a,q)=1

∣∣∣∣S
(

a

q

)∣∣∣∣
2

.

Proof If q is not square-free, then μ2(q) = 0 and the result is trivial. Let us show by
induction on q � 1 square-free that for each sequence aM+1, . . . , aM+N , we have

∣∣∣∣∣

M+N∑

n=M+1

an

∣∣∣∣∣

2

�(q) �
∑

1�a�q
(a,q)=1

∣∣∣∣∣

M+N∑

n=M+1

an e

(
an

q

)∣∣∣∣∣

2

.

The property is trivially true for q = 1, and by the previous proposition for q = 2,
q = 3, and all prime q.

Thus we take a nonprime q � 4, square-free and we suppose the property is true
for all q′ < q. Let p be the smallest prime factor (for example) and q′ = q/p. We
take a sequence aM+1, . . . , aM+N and we write

S(α) =
M+N∑

n=M+1

an e(nα).

Applying the induction hypothesis, on one side with p and the sequence (an e(nβ)),
we get

∀β ∈ R, |S(β)|2 �(p) �
∑

1�b<p

∣∣∣∣S
(

b

p
+ β

)∣∣∣∣
2

.

and on the other side with q′ and the sequence (an), we get

|S(0)|2 �(q′) �
∑

1�a′�q′
(a′,q′)=1

∣∣∣∣S
(

a′

q′

)∣∣∣∣
2

.
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We deduce that

|S(0)|2 �( p)�(q′) �
∑

1�a′�q′
(a′,q′)=1

∣∣∣∣S
(

a′

q′

)∣∣∣∣
2

�( p) �
∑

1�a′�q′
(a′,q′)=1

∑

1�b<p

∣∣∣∣S
(

b

p
+ a′

q′

)∣∣∣∣
2

.

As q is square-free we have (p, q′) = 1. The map which to (a′, b) associates a such
that 0 � a < pq′ and a ≡ bq′ + a′p mod pq′ is a bijection because by the Chinese
Remainder Theorem, the system

{
a ≡ bq′ mod p
a ≡ a′p mod q′

admits a unique solution a with 0 � a < pq′ (see [5, Theorem 59] for a different
argument). When (b, p) = 1 and (a′, q′) = 1, we have (a, q) = 1. Thus

S

(
b

p
+ a′

q′

)
= S

(
bq′ + a′p

q

)
= S

(
a

q

)
,

hence finally

|S(0)|2 �(q) �
∑

1�a�q
(a,q)=1

∣∣∣∣S
(

a

q

)∣∣∣∣
2

,

which completes the induction.

Theorem 6.24 We have

∣∣∣∣∣

M+N∑

n=M+1

an

∣∣∣∣∣

2

� N − 1+ Q2

L(Q)

M+N∑

n=M+1

|an|2 .

Proof It suffices to sum on q in the previous theorem, and to apply the large sieve
to the right-hand side.

6.5 Twin Prime Numbers

Theorem 6.25 The number J(x) of prime numbers p � x such that p + 2 is also
prime, satisfies

J(x) � 8
Cx

log2 x
+ O

(
x log log x

log3 x

)
,
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where

C := 2
∏

p�3

(
1− 1

(p− 1)2

)
.

Remark 6.26 This bound is asymptotically eight times larger than the value con-
jectured by Hardy and Littlewood (1922) on the basis of an analytic approach in
conformity with a probabilistic heuristic (see Hardy and Wright [5, pp. 371–373
and the notes on p. 374]), which is also corroborated by computer experiments.

Proof We apply the arithmetic large sieve with M = 0, N = �x�, Q = √x/(log x)
and

an =
{

1 if P−(n(n+ 2)) > Q,

0 otherwise.

Thus, counting for each prime number p � Q the number of sieved classes modulo
p, we get

w(2) = 1, ∀p � 3, w(p) = 2,

hence

�(2) = 1, ∀p � 3, �(p) = 2

p− 2
.

We have |an|2 = an, hence

J(x)− J(
√

x) �
∑

1�n�x

an � x

L(Q)

(
1+ Q2

x

)
,

where

L(Q) =
∑

q�Q

�(q), �(q) = μ2(q)
∏

p | q
�(p).

To finish the proof, it suffices then to determine the behaviour of L(Q) at infinity,
which will require several steps of manipulating arithmetic functions.

Proposition 6.27 For all integer n � 1,

μ2(n) =
∑

d2 | n
μ(d).
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Proof Each integer n � 1 is decomposed in a unique way under the form

n = qm2, μ2(q) = 1,

where q is the product of prime numbers which appear in the decomposition of n
into prime factors with an odd exponent. We can write

μ2(n) = δ(m) =
∑

d |m
μ(d),

but the condition d |m is equivalent to d2 | n, hence the result.

Proposition 6.28 For all x � 1,

∑

n�x

μ2(n) = 6

π2 x+ O(
√

x).

Proof We have

∑

n�x

μ2(n) =
∑

n�x

∑

d2 | n
μ(d) =

∑

d�√x

μ(d)
⌊ x

d2

⌋
= x

ζ(2)
+ O

⎛

⎝x
∑

d>
√

x

d−2 +√x

⎞

⎠ ,

hence the result.

Proposition 6.29 We have the convolution relations

2ω = 1l ∗ μ2, δ = (−1)Ω ∗ μ2,

where ω(n) (resp. Ω(n)) denotes the number of prime factors of n counted with
(resp. without) their multiplicity. We notice that (−1)Ω is the Liouville function.

Proof As all these arithmetic functions are multiplicative, it suffices to check these
relations for the pν , ν � 1. We have

1l ∗ μ2(pν) = 1 · μ2(1)+ 1 · μ2(p) = 2 = 2ω(pν)

and

(−1)Ω ∗ μ2( pν) = (−1)Ω( pν)μ2(1)+ (−1)Ω( pν−1)μ2( p)

= (−1)ν + (−1)ν−1 = 0 = δ( pν),

hence the result.
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Lemma 6.30 We have

∑

n�x

2ω(n) = 6

π2 x log x+ O(x).

Proof We write

∑

n�x

2ω(n) =
∑

n�x

1l ∗ μ2(n) =
∑

m�x

∑

d�x/m

μ2(d) =
∑

m�x

(
6

π2

x

m
+ O(

√
x/m)

)
,

and the result follows from the relations

∑

m�x

1

m
= log x+ O(1),

∑

m�x

1

m1/2
= O(x1/2).

Lemma 6.31 We have for x � 1,

∑

n�x

2ω(n)

n
= 3

π2 log2 x+ O(log x).

Proof We have

∑

n�x

2ω(n)

n
= 1

x

∑

n�x

2ω(n) +
∫ x

1−

⎛

⎝
∑

n�t

2ω(n)

⎞

⎠ dt

t2

= O(log x)+ 6

π2

∫ x

1

log t

t
dt+ O

(∫ x

1

dt

t

)

= 3

π2 log2 x+ O(log x).

Lemma 6.32 We have for 0 < σ < 1 and x � 1,

∑

n�x

2ω(n)

nσ
= O

(
x1−σ

1− σ
log x

)
.

Proof We have

∑

n�x

2ω(n)

nσ
= 1

xσ
∑

n�x

2ω(n) + σ

∫ x

1−

⎛

⎝
∑

n�t

2ω(n)

⎞

⎠ dt

tσ+1

� x1−σ log x+ σ

∫ x

1

log t

tσ
dt
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� x1−σ log x+ (log x) σ
∫ x

1

dt

tσ

� x1−σ

1− σ
log x.

We come back now to the study of L(Q). We can write

�(q) = μ2(q)
2ω(q)

q

∏

p | q
p�3

p

p− 2
,

which gives the idea to introduce f (q) = q �(q), and h such that

f = 2ω ∗ h = 1l ∗ μ2 ∗ h, h = f ∗ μ ∗ (−1)Ω.

This allows to write for ν � 1,

h( pν) =
∑

i+j+k=ν

f ( pi)μ( p j)(−1)Ω( pk)

=
1∑

i=0

min(1,ν−i)∑

j=0

f ( pi)μ( p j)(−1)ν−i−j.

As f (2) = 2 and f (p) = 2p/(p− 2) for p � 3, we get thus,

h(2) = 0,

h(2ν) = 2(−1)ν−1 (ν � 2),

h( p) = 4

p− 2
,

h( pν) = 2(−1)ν−1 p+ 2

p− 2
(ν � 2).

For all σ > 1
2 , we have

∑

p

∑

ν�1

|h(pν)|
pνσ

�
∑

ν�1

1

2νσ
+
∑

p

1

p1+σ
+
∑

p

∑

ν�2

1

pνσ
< +∞,

hence the Dirichlet series
∑

d h(d)d−s converges absolutely for σ > 1
2 .
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We can write

∑

q�Q

�(q) =
∑

q�Q

f (q)

q
=
∑

dm�Q

2ω(m)

m

h(d)

d
,

hence

∑

q�Q

�(q) =
∑

m�Q

2ω(m)

m

∑

d�Q/m

h(d)

d

=
∑

m�Q

2ω(m)

m

∞∑

d=1

h(d)

d
−
∑

m�Q

2ω(m)

m

∑

d>Q/m

h(d)

d
.

For all 1
2 < σ < 1,

∣∣∣∣∣∣

∑

d>Q/m

h(d)

d

∣∣∣∣∣∣
�
∑

d>Q/m

|h(d)|
dσd1−σ

� (Q/m)σ−1
∞∑

d=1

|h(d)|
dσ

,

hence

∑

q�Q

�(q) =
∑

m�Q

2ω(m)

m

∞∑

d=1

h(d)

d
+ Oσ

⎛

⎝Qσ−1
∑

m�Q

2ω(m)

mσ

⎞

⎠

= 3

π2 (log Q)2
∞∑

d=1

h(d)

d
+ Oσ (log Q),

and we can take for example σ = 2/3 (this choice has influence only on the implicit
constant).

Thus we get

J(x) � 2Cx

log2 Q
+ O

(
x

log3 x

)

with

C =
(

6

π2

∞∑

d=1

h(d)

d

)−1

= ζ(2)

( ∞∑

d=1

h(d)

d

)−1

=
∏

p

(
1− 1

p2

)−1∏

p

⎛

⎝1+
∑

ν�1

h( pν)

pν

⎞

⎠
−1

.
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The contribution of p = 2 in this product is

4

3

⎛

⎝1+
∑

ν�2

2(−1)ν−1

2ν

⎞

⎠
−1

= 4

3

(
1

1− (− 1
2 )

)−1

= 2.

For p � 3 we have

1+
∑

ν�1

h( pν)

pν
= 1+ 4

p( p− 2)
+ 2

p+ 2

p− 2

∑

ν�2

(−1)ν−1

pν

= 1+ 4

p( p− 2)
− 2

p+ 2

p− 2

1/p2

1− (−1/p)

= p3 − 2p2 + p2 − 2p+ 4p+ 4− 2p− 4

p( p− 2)( p+ 1)

= p2( p− 1)

p( p− 2)( p+ 1)
,

hence

C = 2
∏

p�3

(
1− 1

p2

)−1
⎛

⎝1+
∑

ν�1

h( pν)

pν

⎞

⎠
−1

= 2
∏

p�3

p2

p2 − 1
· p( p− 2)( p+ 1)

p2( p− 1)

= 2
∏

p�3

p( p− 2)

( p− 1)2

= 2
∏

p�3

(
1− 1

( p− 1)2

)
.

Finally,

log Q = log
√

x

log x
= 1

2 (log x− log log x),

hence

log2 Q = 1
4 log2 x

(
1+ O

(
log log x

log x

))
,
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which yields

J(x) � 8Cx

log2 x
+ O

(
x log log x

log3 x

)
.

6.6 Sums of Characters

For an introduction to Dirichlet characters and primitive characters we refer to
Davenport [3] and Montgomery and Vaughan [6].

Theorem 6.33 Let aM+1, . . . , aM+N be complex numbers and χ a Dirichlet char-
acter modulo q. We write

T(χ) =
M+N∑

n=M+1

anχ(n).

Then for all Q � 1,

∑

q�Q

q

ϕ(q)

∑

χ∗

∣∣T(χ∗)
∣∣2 � (N − 1+ Q2)

M+N∑

n=M+1

|an|2 ,

where χ∗ denotes a primitive character modulo q (i.e., a character for which the
smallest period is q).

Proof For a character χ modulo q, the Gauß sums are defined by

τ (a, χ) =
q∑

n=1

χ(n) e(an/q), τ (χ) = τ (1, χ).

They satisfy, when χ is a primitive character modulo q,

τ (a, χ) = χ(a)τ (χ), |τ (χ)| = √q,

hence for χ primitive modulo q, we have for all n,

χ(n) = 1

τ (χ)

q∑

a=1

χ(a) e(an/q).

Thus we have, still for χ primitive modulo q,

T(χ) = 1

τ (χ)

q∑

a=1

χ(a)
M+N∑

n=M+1

an e(an/q) = 1

τ (χ)

q∑

a=1

χ(a)S(a/q).
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Furthermore, summing on the primitive characters modulo q,

∑

χ∗

∣∣T(χ∗)
∣∣2 =

∑

χ∗

1
∣∣τ (χ∗)

∣∣2

∣∣∣∣∣

q∑

a=1

χ∗(a)S(a/q)

∣∣∣∣∣

2

= 1

q

∑

χ∗

∣∣∣∣∣

q∑

a=1

χ∗(a)S(a/q)

∣∣∣∣∣

2

.

We get an upper bound when we extend the right-hand sum to all the characters
modulo q. Thus

∑

χ∗

∣∣T(χ∗)
∣∣2 � 1

q

∑

χ

∣∣∣∣∣

q∑

a=1

χ(a)S(a/q)

∣∣∣∣∣

2

� 1

q

q∑

a=1

q∑

b=1

S(a/q)S(b/q)
∑

χ

χ(a)χ(b),

but, from the orthogonality relations on the characters,

∑

χ

χ(a)χ(b) =
{
ϕ(q) if (a, q) = 1 and a ≡ b mod q,

0 otherwise.

It follows that

∑

χ∗

∣∣T(χ∗)
∣∣2 � ϕ(q)

q

q∑

a=1
(a,q)=1

|S(a/q)|2 .

Applying the large sieve, we get

∑

q�Q

q

ϕ(q)

∑

χ∗

∣∣T(χ∗)
∣∣2 �

∑

q�Q

q∑

a=1
(a,q)=1

|S(a/q)|2 � (N − 1+ Q2)

M+N∑

n=M+1

|an|2 ,

which completes the proof.

6.7 Complements

A defect of the large sieve is that it does not take into account the irregularities in
the distribution of the xr, which are very natural. Thus when the xr are the a/q,
1 � a � q, (a, q) = 1, we have for adjacent a/q and a′/q′,

∥∥∥∥
a

q
− a′

q′

∥∥∥∥ =
1

qq′
,

thus the distance from a/q to its nearest neighbour is very variable.
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Theorem 6.34 (Montgomery and Vaughan) If x1, . . . , xR are distinct real num-
bers modulo 1 and δr = mins =r ‖xs − xr‖, we have

R∑

r=1

|S(xr)|2
(

N + 3
2δ
−1
r

)−1
�

M+N∑

n=M+1

|an|2 .

When for each prime number, we sieve almost all the classes modulo p, we can
use the following result:

Theorem 6.35 (Gallagher) LetA be a set of integers in the interval [M + 1,M +
N]. For each prime number p, we denote by ν(p) the number of residual classes
modulo p which contain an element of A. Then for a finite set P of prime numbers
we have

|A| �
∑

p∈P log p− log N
∑

p∈P
log p
ν(p) − log N

provided the denominator is strictly positive.

6.8 Double Large Sieve

Lemma 6.36 Let Y be a finite set of points y = (y1, . . . , yK) ∈ R
K and c(y) be

complex numbers. For all real numbers δ1,. . . ,δK > 0 and T1,. . . ,TK > 0, we have

∫ T1

−T1

· · ·
∫ TK

−TK

∣∣∣∣∣∣

∑

y∈Y

c(y) e(y · t)
∣∣∣∣∣∣

2

dt1 · · · dtK �
K∏

k=1

(2Tk+δ−1
k )

∑

(y,y′)∈Y2

|yk−y′k|<δk
(k=1,...,K)

∣∣c(y)c(y′)
∣∣ .

Proof cf. Bombieri-Iwaniec [2, Lemma 2.3] (see also [4, Lemma 7.4]).
For each (δk,Tk) ∈ R

2 with δk > 0 and Tk > 0, the Beurling-Selberg function,
thanks to (6.2) permits to construct Fδk such that Fδk(t) � 1 for |t| � Tk, Fδk(t) � 0
for t ∈ R, F̂δk(u) = 0 for |u| � δk,

∣∣F̂δk(u)
∣∣ � F̂δk (0) = 2Tk + δ−1

k for u ∈ R.
For k = 1, . . . ,K, majorizing 1 by Fδk(t) and then extending the integral, the left

hand side of the inequality is bounded above by

∫ +∞

−∞
· · ·
∫ +∞

−∞
Fδ1(t) · · ·FδK (t)

∣∣∣∣∣∣

∑

y∈Y

c(y) e(y · t)
∣∣∣∣∣∣

2

dt1 · · · dtK,
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and, expanding the square, this leads to

∑

(y,y′)∈Y2

c(y) c(y′) F̂δ1(y1 − y′1) · · · F̂δK (yK − y′K).

By the properties of Fδk , the non zero terms of this sum satisfy
∣∣ yk − y′k

∣∣ < δk for
k = 1, . . . ,K, and since

∣∣F̂δk

∣∣ � F̂δk(0) = 2Tk+δ−1
k , the complete sum is majorized

by the right hand side expression in the Lemma.

Lemma 6.37 Let a � b and δ > 0. There exists a function fδ ∈ L2(R) such that

| fδ|2 � 1l[a,b];
∫

R

| fδ(t)|2 dt = b− a+ δ−1

with a Fourier Transform f̂δ supported in [−δ/2, δ/2]:

fδ(t) =
∫ δ/2

−δ/2
f̂δ(u) e(tu)du.

Proof This result is mentioned by Vaaler [9, p.185] who refers to Boas [1, pp. 124–
126 (in particular the notes p. 132)].

It follows from a Theorem of Fejer, stating that for the function Fδ defined
by (6.2), which is of exponential type 2πδ and � 0 on the real axis, there exists
an entire function fδ ∈ L2(R) of exponential type πδ such that Fδ(t) = | fδ(t)|2 for
all t ∈ R. We have,

| fδ|2 = Fδ � 1l[a,b];
∫

R

| fδ(t)|2 dt = F̂δ(0) = b− a+ δ−1.

By a Theorem of Paley and Wiener (Theorem 6.15) the Fourier Transform f̂δ is
supported in [−δ/2, δ/2] and we get the claimed Fourier inversion formula.

We are now ready to present a variant of an inequality of Bombieri and Iwaniec
[2, Lemma 2.4] (see also [4, Lemma 7.5]), for which we obtain a slightly better
constant (16 instead of 2π2).

Theorem 6.38 Let X and Y be two finite sets of points of RK, and a(x), b(y) be
complex numbers. Let X1, . . . ,XK > 0 and Y1, . . . ,YK > 0. We write

B =
∑

x∈X|xk|�Xk
(k=1,...,K)

∑

y∈Y
|yk|�Yk

(k=1,...,K)

a(x) b(y) e(x · y),
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B1 =
∑

(x,x′)∈X2

|xk−x′k|<(2Yk)
−1

(k=1,...,K)

∣∣a(x) a(x′)
∣∣ ; B2 =

∑

(y,y′)∈Y2

|yk−y′k|<(2Xk)
−1

(k=1,...,K)

∣∣b(y) b(y′)
∣∣ .

Then

|B|2 � 16K

(
K∏

k=1

(XkYk + 1
8 )

)
B1B2.

Proof It is sufficient to show the result when all points x satisfy |xk| � Xk and
all points y satisfy | yk| � Yk (for k = 1, . . . ,K), as the potential other points
may appear only in the right hand side of the inequality. We now assume that this
hypothesis holds. By Lemma 6.37, we construct functions f1, . . . , fK ∈ L2(R) such
that for k = 1, . . . ,K,

| fk|2 � 1l[−Yk,Yk];
∫

R

| fk(t)|2 dt = 2Yk + δ−1
k ; fk(t) =

∫ δk/2

−δk/2
f̂k(u) e(tu)du.

For y ∈ Y such that | yk| � Yk (k = 1, . . . ,K), let

c(y) = b(y)
f1(y1) · · · fK(yK)

,

and observe that

|c(y)| � |b(y)| .

We can write

B =
∑

x∈X

∑

y∈Y

a(x)c(y) e(x · y)
∫

R

· · ·
∫

R

f̂1(u1) · · · f̂K(uK) e(u · y)du1 · · · duK.

Let v = x+ u, i.e. vk = xk + uk for k = 1, . . . ,K. We obtain

B =
∫

R

· · ·
∫

R

∑

x∈X

a(x)f̂1(v1 − x1) · · · f̂K(vK − xK)
∑

y∈Y

c(y) e(v · y)dv1 · · · dvK .

Since |xk| � Xk, we have f̂k(vk − xk) = 0 for |vk| > Vk with

Vk = Xk + 1
2δk,
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and we can restrict the interval of integration over vk to [−Vk,Vk]. By the Cauchy-
Schwarz inequality, we obtain

|B|2 � B′1B′2

with

B′1 =
∫ V1

−V1

· · ·
∫ VK

−VK

∣∣∣∣∣
∑

x∈X

a(x)f̂1(v1 − x1) · · · f̂K(vK − xK)

∣∣∣∣∣

2

dv1 · · · dvK,

and

B′2 =
∫ V1

−V1

· · ·
∫ VK

−VK

∣∣∣∣∣∣

∑

y∈Y

c(y) e(v · y)
∣∣∣∣∣∣

2

dv1 · · · dvK,

Expanding the square we obtain

B′1 =
∑

(x,x′)∈X2

a(x)a(x′)
K∏

k=1

∫

R

f̂k(vk − xk)f̂k(vk − x′k)dvk.

For a given k, if
∣∣xk − x′k

∣∣ � δk, by the triangle inequality we have for all vk ∈ R:

max(|vk − xk| , |vk − xk|) � δk/2,

with equality if and only if δk =
∣∣xk − x′k

∣∣ and vk = 1
2 (xk + x′k). Since the support

of f̂k is included in [−δk/2, δk/2], the function vk 	→ f̂k(vk − xk)f̂k(vk − x′k) is equal
to zero almost everywhere and we get

∫

R

f̂k(vk − xk)f̂k(vk − x′k)dvk = 0.

When
∣∣xk − x′k

∣∣ < δk, we majorize this integral by the Cauchy Schwarz inequality
and we obtain

(∫

R

∣∣ f̂k(vk − xk)
∣∣2 dvk

)1/2(∫

R

∣∣ f̂k(vk − x′k)
∣∣2 dvk

)1/2

=
∫

R

∣∣ f̂k(t)
∣∣2 dt
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which is equal to 2Yk + δ−1
k , by Plancherel’s formula and the definition of fk. Thus,

B′1 �
K∏

k=1

(2Yk + δ−1
k )

∑

(x,x′)∈X2

|xk−x′k|<δk
(k=1,...,K)

∣∣a(x)a(x′)
∣∣ .

Applying Lemma 6.36, we have for all δ′1, . . . , δ′K > 0

B′2 �
K∏

k=1

(2Vk + δ′k
−1

)
∑

(y,y′)∈Y2

|yk−y′k|<δ′k
(k=1,...,K)

∣∣c(y)c(y′)
∣∣ .

Choosing δk = (2Yk)
−1 et δ′k = (2Xk)

−1, we get

(2Yk + δ−1
k )(2Vk + δ′k

−1
) = 4Yk

(
4Xk + (2Yk)

−1
)
= 16

(
XkYk + 1

8

)
,

hence

|B|2 � 16K

(
K∏

k=1

(XkYk + 1
8 )

)
B1B2,

which is the expected inequality.
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Chapter 7
The Theorem of Vinogradov

Joël Rivat

7.1 The Circle Method

Hardy and Littlewood have shown in 1922 that assuming the Riemann hypothesis,
we could deduce that every large enough odd integer is the sum of three prime
numbers.

To detect the condition n1 + n2 + n3 = N, we use the equality

∀n ∈ Z,

∫ 1

0
e(nα)dα =

{
1 if n = 0,
0 if n = 0,

where we recall the notation e(u) = exp(2iπu).
Let us examine first the simplest case without prime numbers. We have

∑

n1+n2+n3=N

1 =
N−1∑

k=2

∑

n1+n2=k

1 =
N−1∑

k=2

(k − 1) = 1
2 (N − 1)(N − 2)

and can write

∑

n1+n2+n3=N

1 =
∫ 1

0
T(α)3 e(−Nα)dα,

J. Rivat (�)
Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille,
I2M – UMR 7373, Marseille, France
e-mail: joel.rivat@univ-amu.fr

© Springer International Publishing AG, part of Springer Nature 2018
S. Ferenczi et al. (eds.), Ergodic Theory and Dynamical Systems in their
Interactions with Arithmetics and Combinatorics, Lecture Notes
in Mathematics 2213, https://doi.org/10.1007/978-3-319-74908-2_7

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74908-2_7&domain=pdf
mailto:joel.rivat@univ-amu.fr
https://doi.org/10.1007/978-3-319-74908-2_7


80 J. Rivat

where T(α) is the exponential sum defined by

T(α) =
N∑

n=1

e(nα).

Thus we can write the identity

∫ 1

0
T(α)3 e(−Nα)dα = 1

2 N2 + O(N),

to which we shall reduce the problem in the general case.
Instead of working with the number of representations of N as a sum of three

prime numbers, we introduce a weighted version:

r(N) =
∑

n1+n2+n3=N

Λ(n1)Λ(n2)Λ(n3),

which is easier to handle.
This allows to write

r(N) =
∫ 1

0
S(α)3 e(−Nα)dα,

where S(α) is the exponential sum defined by

S(α) =
∑

n�N

Λ(n) e(nα).

The circle method consists in dealing separately with the numbers α close to
a rational with a small denominator and those close to a rational with a large
denominator. Indeed, S(α) should be small in the second case and large in the first
case, as appears from observing the graph of |S(α)| (Fig. 7.1).

We shall prove

Theorem 7.1 (Vinogradov) For all fixed A > 0,

r(N) = 1
2S(N)N2 + O(N2(log N)−A),

with

S(N) =
⎛

⎝
∏

p |N

(
1− 1

(p− 1)2

)⎞

⎠

⎛

⎝
∏

p �N

(
1+ 1

(p− 1)3

)⎞

⎠
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Fig. 7.1 Graph of |S(α)| 1000
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Remark 7.2 When N is even, this theorem has no interest. Indeed, on one side
S(N) = 0, and on the other side n1, n2 or n3 must be even, say n1, and to get a
contribution, Λ(n1) = 0 implies n1 = 2�, hence r(N)� N(log N)4.

But when N is odd, we have S(N) ≈ 1, thus r(N) � N2. The contribution to
r(N) of representations containing at least one true power (� 2) of prime numbers
does not exceed

∑

p
k1
1 �N
k1�1

∑

p
k2
2 �N
k2�2

(log N)3 �
(
π(N)+ π(

√
N)+ · · ·

) (
π(
√

N)+ · · ·
)
(log N)3 � N

3
2 log N,

hence every large enough odd number can be written as the sum of three prime
numbers in� N2(log N)−3 different ways.

Definition 7.3 Let P = (log N)B and Q = N(log N)−B, where B is a constant which
will be chosen later according to A. For q � P, 1 � a � q, (a, q) = 1, we call major
arc and denote by M(a, q) the interval |α − a/q| � 1/Q.

We denote by M the union of major arcs, and by m (the minor arcs) its
complement in [0, 1].
Remark 7.4 We work with real numbers modulo 1, hence M(1, 1) can be seen as
|α| � 1/Q.

Proposition 7.5 Two distinct major arcs are disjoint.

Proof If a/q = a′/q′, then

∣∣∣∣
a

q
− a′

q′

∣∣∣∣ �
1

qq′
� 1

P2
>

2

Q
,

hence M(a, q) and M(a′, q′) are disjoint.
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The proof of the Vinogradov theorem is quite long. It will consist on one side in
proving that major arcs provide the main term

∫

M
S(α)3 e(−Nα)dα = 1

2S(N)N2 + O(N2(log N)−B+1),

and on the other side in proving that minor arcs are negligible

∫

m
S(α)3 e(−Nα)dα � N2(log N)−B/2+5,

and then we shall get the final result by choosing B = 2A+ 10.

7.2 Major Arcs

We suppose α = a
q + β, with 1 � a � q � N, (a, q) = 1 and |β| � Q−1.

Lemma 7.6 We have

∑

n�N
(n,q)>1

Λ(n) � ω(q) log N � log N log q

log 2
.

Proof The von Mangoldt function is zero except on powers of prime numbers,
hence

∑

n�N
(n,q)>1

Λ(n) �
∑

pα�N
p | q

Λ( pα) =
∑

p | q
log p

⌊
log N

log p

⌋
� ω(q) log N � log N log q

log 2
,

the last inequality because 2ω(q) � q = pα1
1 · · · p

αω(q)

ω(q) .

Corollary 7.7 We have

∑

n�N

Λ(n) e(nα) =
q∑

r=1
(r,q)=1

e

(
ra

q

) ∑

n�N
n≡r mod q

Λ(n) e(nβ)+ O((log N)2).
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Theorem 7.8 (Siegel-Walfisz) For each constant B > 0, and uniformly for

x � 3, 1 � q � (log x)B, (r, q) = 1,

we have

ψ(x; r, q) = x

ϕ(q)
+ O(x exp(−c

√
log x))

θ(x; r, q) = x

ϕ(q)
+ O(x exp(−c

√
log x))

π(x; r, q) = li(x)

ϕ(q)
+ O(x exp(−c

√
log x)),

where c > 0 is an absolute constant.

Corollary 7.9 We have

∑

n�N
n≡r mod q

Λ(n) e(nβ) = 1

ϕ(q)
T(β)+ O(N exp(−c1

√
log N)).

Proof We can write

∑

n�N
n≡r mod q

Λ(n) e(nβ)

=
∫ N+

t=0+
e(tβ)dψ(t; r, q)

=
∫ N+

t=0+
e(tβ)d

�t�
ϕ(q)

+
∫ N+

t=0+
e(tβ)d

(
ψ(t; r, q)− �t�

ϕ(q)

)

= 1

ϕ(q)

N∑

n=1

e(nβ)+ e(Nβ)

(
ψ(N; r, q) − �N�

ϕ(q)

)

−
∫ N

0
2iπβ e(tβ)

(
ψ(t; r, q) − �t�

ϕ(q)

)
dt.

The first error term is admissible by the theorem of Siegel-Walfisz. As for the
integral, it is bounded by

∫ N

√
N

Q−1t exp(−c
√

log t)dt+ O(Q−1N),
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and as log t � log N for t >
√

N, we get an upper bound

� Q−1N2 exp(−c1
√

log N)+ Q−1N,

which is admissible because Q = N(log N)−B.

Corollary 7.10 We have

∑

n�N

Λ(n) e(nα) = cq(a)

ϕ(q)
T(β)+ O(N exp(−c2

√
log N)),

where cq(n) is the Ramanujan sum defined by

cq(n) :=
q∑

r=1
(r,q)=1

e

(
rn

q

)
.

Proof The sum of error terms is

� qN exp(−c1
√

log N),

which is admissible because q � P = (log N)B.

Proposition 7.11 The Ramanujan sum is a multiplicative function in q and equals

cq(n) = μ(q/(n, q))ϕ(q)

ϕ(q/(n, q))
.

Proof In this proof n is fixed. We have

q∑

r=1

e

(
rn

q

)
=
∑

d | q

q∑

r=1
(r,q)=d

e

(
rn

q

)
=
∑

d | q

q/d∑

r′=1
(r′,q/d)=1

e

(
r′n
q/d

)
=
∑

d | q
cq/d(n),

thus, setting

f (m) := cm(n), F(m) :=
m∑

r=1

e
( rn

m

)
=
{

m if m | n,
0 otherwise,

we get

F(q) = f ∗ 1l (q),
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hence

cq(n) = f (q) = F ∗ μ(q) =
∑

d | q
F(d) μ(q/d) =

∑

d | q
d | n

d μ(q/d).

We can now deduce that q 	→ cq(n) is multiplicative. Indeed if (q1, q2) = 1,
and d | q1q2, then d is written in a unique way as d = d1d2 with d1 | q1, d2 | q2,
and (d1, d2) = 1. We remark that d | n is equivalent to d1 | n and d2 | n, and that
(q1/d1, q2/d2) = 1.

We get

cq1q2(n) =
∑

d | q1q2
d | n

d μ(q1q2/d) =
∑

d1 | q1
d1 | n

d1 μ(q1/d1)
∑

d2 | q2
d2 | n

d2 μ(q2/d2)

There remains for prime p and α � 1 to check the equality

cpα (n) = μ(pα/(n, pα))ϕ(pα)

ϕ(pα/(n, pα))
.

If α � vp(n), we have (n, pα) = pα , and

cpα (n) =
α∑

ν=0

pνμ(pα−ν) = pα − pα−1 = ϕ(pα).

If α � vp(n)+ 1, we have (n, pα) = pvp(n), and

cpα (n) =
vp(n)∑

ν=0

pνμ(pα−ν),

hence cpα (n) = 0 if α > vp(n)+ 1. If α = vp(n)+ 1, we have (pα, n) = pα−1, and

cpα (n) = −pα−1 = μ(p)ϕ(pα)

ϕ(p)
.

which completes the proof.
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Corollary 7.12 We have

S(α) =
∑

n�N

Λ(n) e(nα) = μ(q)

ϕ(q)
T(β)+ O(N exp(−c2

√
log N)).

We have trivially |T(β)| � N, thus, putting S(α) to the cube, we get,

S(α)3 = μ(q)

ϕ(q)3 T(β)3 + O(N3 exp(−c2
√

log N)).

The total contribution of M(a, q) is

∫

M(a,q)
S(α)3 e(−Nα)dα = μ(q)

ϕ(q)3 e

(−Na

q

)∫ 1/Q

−1/Q
T(β)3 e(−Nβ)dβ

+O(N2 exp(−c3
√

log N)).

and, summing on all major arcs, we get

∫

M
S(α)3 e(−Nα)dα =

∑

q�P

μ(q)

ϕ(q)3 cq(N)

∫ 1/Q

−1/Q
T(β)3 e(−Nβ)dβ

+O(N2 exp(−c4
√

log N)).

Lemma 7.13 We have

∫ 1/Q

−1/Q
T(β)3 e(−Nβ)dβ = 1

2 N2 + O(N2(log N)−2B).

Proof We had already

∫ 1

0
T(β)3 e(−Nβ)dβ = 1

2 N2 + O(N).

Furthermore

|T(β)| � min

(
N,

1

sinπ |β|
)
,

thus

∫ 1−1/Q

1/Q
|T(β)|3 dβ �

∫ 1/2

1/Q

dβ

β3 � Q2 = N2(log N)−2B

gives the result.
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Lemma 7.14 We have

S(N) =
∞∑

q=1

μ(q)

ϕ(q)3
cq(N).

Proof We have

∞∑

q=1

μ(q)

ϕ(q)3 cq(N) =
∏

p

(
1− cp(N)

( p− 1)3

)

=
∏

p |N

(
1− 1

( p− 1)2

)∏

p �N

(
1+ 1

( p− 1)3

)

= S(N).

Theorem 7.15 We have
∫

M
S(α)3 e(−Nα)dα = 1

2S(N)N2 + O(N2(log N)−B+1).

Proof As
∣∣cq(N)

∣∣ � ϕ(q), we have

∑

q>P

∣∣∣∣
μ(q)

ϕ(q)3
cq(N)

∣∣∣∣ �
∑

q>P

1

ϕ(q)2
.

For all 0 < δ < 1, since f (n) = n1−δ

ϕ(n) is multiplicative and

f (pm) = pm(1−δ)

pm(1− 1/p)
= p−mδ

1− 1/p
→ 0, pm → +∞,

it follows that

f (n) = n1−δ

ϕ(n)
→ 0, n →+∞,

Thus we get

∑

q>P

μ(q)

ϕ(q)3 cq(N)�
∑

q>P

1

q2(1−δ)
� (log N)−B+1,

taking δ = 1
2B .



88 J. Rivat

7.3 Minor Arcs

We must show that the contribution of minor arcs is o(N2).

Lemma 7.16 We have
∣∣∣∣
∫

m
S(α)3 e(−Nα)dα

∣∣∣∣ � N(log N) sup
m
|S(α)| .

Proof We have

∣∣∣∣
∫

m
S(α)3 e(−Nα)dα

∣∣∣∣ � sup
m
|S(α)|

∫

m
|S(α)|2 dα � sup

m
|S(α)|

∫ 1

0
|S(α)|2 dα

and the last integral, by the Parseval identity, becomes

∑

m�N

Λ(m)
∑

n�N

Λ(n)
∫ 1

0
e((m− n)α)dα =

∑

n�N

Λ(n)2 � N log N.

Remark 7.17 Thanks to the Parseval identity, we could bound the sum of N2 terms
by N log N, which is excellent.

It remains now to bound |S(α)| on m.

Lemma 7.18 (Dirichlet) For all real numbers α and Q � 1, there exists a rational
number a/q such that

∣∣∣∣α −
a

q

∣∣∣∣ �
1

qQ
, 1 � q � Q, (a, q) = 1.

Proof Set N = �Q�. The N + 1 numbers {nα}, n = 0, . . . ,N are in the interval
[0, 1[, hence there exist two among them, say {mα} and {nα}, with m < n, such that

|{nα} − {mα}| � 1

N + 1
,

that is

|(n− m)α − �nα� + �mα�| � 1

N + 1
.

It suffices to take q = n−m and a = �nα� − �mα�. If (a, q) = d > 1, we replace a
with a′ = a/d and q with q′ = q/d.
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Proposition 7.19 If α ∈ m, there exists a rational number a/q such that

∣∣∣∣α −
a

q

∣∣∣∣ �
1

qQ
, P = (log N)B < q � Q = N

(log N)B
, (a, q) = 1.

Proof Applying the Dirichlet lemma to α and Q, it suffices to prove that we do have
P < q. Indeed, if 1 � q � P, then as

∣∣∣∣α −
a

q

∣∣∣∣ �
1

qQ
� 1

Q
,

we would have α ∈M, and thus α /∈ m.

Corollary 7.20 If α ∈ m, there exists a rational number a/q such that

∣∣∣∣α −
a

q

∣∣∣∣ �
1

N
, P < q � Q, (a, q) = 1.

Proposition 7.21 If α ∈ m, there exists a rational number a/q such that P < q �
Q, (a, q) = 1, and

|S(α)| � max
1�x�N

|S(x; a, q)| , S(x; a, q) :=
∑

n�x

Λ(n) e

(
na

q

)
.

Proof We can write α = a/q+ β with |β| � 1/N, hence

S(α) =
∑

n�N

Λ(n) e

(
na

q
+ nβ

)

= e(Nβ)S(N; a, q)− 2iπβ
∫ N

1
e(xβ)S(x; a, q)dx

� max
1�x�N

|S(x; a, q)| .

To achieve the bound for the contribution of minor arcs, it suffices to prove that
for 1 � x � N, P < q � Q, (a, q) = 1, we have

S(x; a, q)� N(log N)−B/2+4.
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7.4 The Vaughan Identity

Suppose we want to bound a sum

S :=
∑

n�x

Λ(n)f (n),

where f is a function which we can control relatively well. The principle of the
method we shall use consists in transforming the sum S into a finite number of sums
of the form

∑

m

∑

n

am f (mn) (type I)

∑

m

∑

n

ambn f (mn) (type II)

with am, bn ∈ C, and the sizes of m and n are well determined. The sums of type I
involve a summing on the variable n which is “smooth” hence “easy”. For the sums
of type II, which are more difficult, we can apply the Cauchy-Schwarz inequality to
involve a smooth variable. Of course this operation has a price (we lose something
in Cauchy-Schwarz).

The original method of Vinogradov was quite laborious, but Vaughan (1977)
proposed a much simpler approach. We recall

ζ(s) =
∞∑

n=1

1

ns
,

1

ζ(s)
=

∞∑

n=1

μ(n)

ns
,

ζ ′(s)
ζ(s)

= −
∞∑

n=1

Λ(n)

ns
.

To control the size of summed variables, we introduce the auxiliary functions

FU(s) :=
∞∑

n=1

ΛU(n)

ns
=
∑

n�U

Λ(n)

ns
, MV (s) :=

∞∑

n=1

μV (n)

ns
=
∑

n�V

μ(n)

ns
.

Then

1− ζ(s)MV (s) = 1−
∞∑

n=1

1l ∗ μV(n)

ns
= −

∑

n>V

1l ∗ μV (n)

ns

and

−ζ ′(s)
ζ(s)

− FU(s) =
∑

n>U

Λ(n)

ns
,
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thus by multiplication we get

(
−ζ ′(s)

ζ(s)
− FU(s)

)
(1− ζ(s)MV (s)) =

∞∑

n=1

ν(n)

ns
,

where

ν(n) = −
∑

n1n2=n
n1>U, n2>V

Λ(n1) 1l ∗ μV(n2),

which gives a good control of the size of the divisors of n we used in ν.

Proposition 7.22 (Vaughan Identity) We have

−ζ ′(s)
ζ(s)

= FU(s)− ζ(s)FU(s)MV (s)− ζ ′(s)MV (s)

+
(
−ζ ′(s)

ζ(s)
− FU(s)

)
(1− ζ(s)MV (s)) .

Proof Obvious!

Corollary 7.23 We have

Λ(n) = ΛU(n)−
∑

n1n2n3=n
n2�U, n3�V

Λ(n2)μ(n3)+
∑

n1n2=n
n2�V

log(n1)μ(n2)

−
∑

n1n2=n
n1>U, n2>V

Λ(n1) 1l ∗ μV (n2).

Corollary 7.24 We have S = S1 + S2 + S3 + S4, with:

S1 =
∑

n�U

Λ(n)f (n),

S2 = −
∑

m�UV

ΛU ∗ μV (m)
∑

n�x/m

f (mn),

S3 =
∑

m�V

μ(m)
∑

n�x/m

log(n)f (mn),

S4 = −
∑

U<m�x/V

Λ(m)
∑

V<n�x/m

1l ∗ μV(n)f (mn).
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The sum S1 is bounded trivially:

|S1| �
∑

n�U

Λ(n) | f (n)| � U max
n�U

| f (n)| .

The sum S2 is of type I. We have for m � UV

|ΛU ∗ μV (m)| � Λ ∗ 1l(m) = log m � log(UV),

hence

|S2| � log(UV)
∑

m�UV

∣∣∣∣∣∣

∑

n�x/m

f (mn)

∣∣∣∣∣∣
.

The sum S3 is also of type I. Indeed

S3 =
∑

m�V

μ(m)
∑

n�x/m

f (mn)
∫ n

1

dt

t
=
∑

m�V

μ(m)

∫ x

1

∑

t�n�x/m

f (mn)
dt

t
,

hence

|S3| � log(x)
∑

m�V

sup
t

∣∣∣∣∣∣

∑

t�n�x/m

f (mn)

∣∣∣∣∣∣
.

The sum S4 is of type II.

7.5 Sums of Type I

We want to bound

SI =
∑

m�M

sup
1�t�x/m

∣∣∣∣∣∣

∑

t�n�x/m

e(mna/q)

∣∣∣∣∣∣
,

where the inner sum is geometric, hence

SI �
∑

m�M

min

(
x

m
,

1

|sin(πma/q)|
)
.
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When ma ≡ 0 mod q (i.e. m = kq because (a, q) = 1), we are obliged to use x/m,
otherwise we take the sine term. We get

SI �
�M/q�∑

k=1

x

kq
+
⌈

M

q

⌉ q−1∑

m=1

1

|sin(πma/q)| .

When m spans all the nonzero residual classes modulo q, so does am as (a, q) = 1.
Furthermore we check easily that t 	→ 1/ sin t is convex on ]0, π[, hence

q−1∑

m=1

1

|sin(πma/q)| =
q−1∑

r=1

1

sin(πr/q)
�
∫ q−1/2

1/2

dt

sin(π t/q)
=
[

q

π
log tan

π t

2q

]q−1/2

1/2

and as tan(π2 − θ) = cot θ , we get for q � 2,

q−1∑

m=1

1

|sin(πma/q)| �
2q

π
log cot

π

4q
� 2q

π
log

4q

π

and, for 3 � q � M (otherwise the term does not exist), we have

�M/q�∑

k=1

1

k
� 1+

∫ M/q

1

dt

t
� log(3M/q) � log M,

thus the bound for sums of type I:

SI �
x

q
log M + 2

π
(M + q) log

4q

π
.

In particular, the sums S2 and S3 coming from the Vaughan identity are bounded
for f (n) = e(nα) by

x

q
log(UV)+ 2

π
(UV + q) log

4q

π
.

7.6 Sums of Type II

We want to bound

SII =
∑

M<m�2M

am

∑

V<n�x/m

bn e(mna/q).
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By Cauchy-Schwarz, we get

|SII|2 �

⎛

⎝
∑

M<m�2M

|am|2
⎞

⎠

⎛
⎜⎝

∑

M<m�2M

∣∣∣∣∣∣

∑

V<n�x/m

bn e(mna/q)

∣∣∣∣∣∣

2
⎞
⎟⎠ .

The right-hand sum is bounded by

∑

V<n1�x/M

∑

V<n2�x/M

∣∣bn1

∣∣ ∣∣bn2

∣∣

∣∣∣∣∣∣

∑

M<m�min(2M,x/n1,x/n2)

e(m(n1 − n2)a/q)

∣∣∣∣∣∣
,

and as
∣∣bn1bn2

∣∣ � 1
2

∣∣bn1

∣∣2 + 1
2

∣∣bn2

∣∣2, we get (using the symmetry between n1 and
n2)

|SII|2 �

⎛

⎝
∑

M<m�2M

|am|2
⎞

⎠
∑

V<n1�x/M

∣∣bn1

∣∣2

∑

V<n2�x/M

min

(
M,

1

|sin π(n1 − n2)a/q|
)
.

When n2 ≡ n1 mod q, we bound by M, and otherwise by the sine term. We get,
summing on n2:

|SII|2 �

⎛

⎝
∑

M<m�2M

|am|2
⎞

⎠
∑

V<n1�x/M

∣∣bn1

∣∣2
⌈

x

qM

⌉⎛

⎝M +
q−1∑

r=1

1

sin πr/q

⎞

⎠ ,

hence

|SII|2 � x2

⎛

⎝ 1

M

∑

M<m�2M

|am|2
⎞

⎠

⎛

⎝M

x

∑

V<n�x/M

|bn|2
⎞

⎠

(
1

q
+ M

x
+
(

1

M
+ q

x

)
2

π
log

4q

π

)
.

To bound the sum S4 coming from the Vaughan identity, we decompose the sum
in m, U < m � x/V into O(log x) sums of the form SII with U < M � x/V , thus

S4 � x

⎛

⎝ 1

M

∑

M<m�2M

Λ(m)2

⎞

⎠
1/2⎛

⎝M

x

∑

V<n�x/M

|1l ∗ μV(n)|2
⎞

⎠
1/2
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(
1

q
+ 1

V
+ 1

U
+ q

x

)1/2

(log N)3/2.

We have

∑

M<m�2M

Λ(m)2 � log 2M
∑

M<m�2M

Λ(n)� M log M

and

∑

V<n�x/M

|1l ∗ μV (n)|2 �
∑

n�x/M

τ (n)2,

where τ (n) denotes the number of divisors of n.

Lemma 7.25 For all x � 1, we have

∑

n�x

τ (n)2 � x(log 2x)3.

Proof As τ is multiplicative, we define a multiplicative function h by setting h =
μ ∗ τ 2. We have h(pa) = 2a+ 1 and

τ (n)2 =
∑

d | n
h(d),

hence

∑

n�x

τ (n)2 =
∑

d�x

h(d)
⌊ x

d

⌋
� x

∑

d�x

h(d)

d

� x
∏

p�x

(
1+ h( p)

p
+ h( p2)

p2 + · · ·
)

� x
∏

p�x

(
1− 1

p

)−3

� x(log 2x)3.

Finally

S4 � x(log N)7/2
(

1

q
+ 1

V
+ 1

U
+ q

x

)1/2

.
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7.7 Completing the Bound on Minor Arcs

From all what precedes, we have

S(x; a, q)� x(log N)7/2
(

1

q1/2
+ 1

V1/2
+ 1

U1/2
+ q1/2

x1/2
+ 1

q
+ UV + q

x

)

and taking U = V = x2/5, we get

S(x; a, q)� N(log N)7/2
(

1

q1/2 +
1

x1/5 +
q1/2

N1/2

)

and for P � q � Q, we have

S(x; a, q)� N(log N)−B/2+7/2

which completes the proof of the Vinogradov theorem.

7.8 Combinatorial Identities

The key of the bound on minor arcs is a combinatorial identity, for example the
Vaughan identity. This identity has been generalized by Heath-Brown:

ζ ′

ζ
(1− ζMX)

� = ζ ′

ζ
+

�∑

r=1

(
�

r

)
(−1)rζ ′ζ r−1Mr

X

with

ζ(s) =
∞∑

n=1

1

ns
,

ζ ′

ζ
(s) = −

∞∑

n=1

Λ(n)

ns
, MX(s) =

∑

n�X

μ(n)

ns
=

∞∑

n=1

μX(n)

ns

Using elementary properties of Dirichlet series we have

1− ζMX =
∑

n>X

aX(n)

ns
, (1− ζMX)

� =
∑

n>X�

aX(n, �)

ns
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thus identifying the coefficients of the Dirichlet series in the previous identity, we
get for n � X�

Λ(n) = −
�∑

r=1

(
�

r

)
(−1)r

∑

n1···nrnr+1···n2r=n

μX(n1) · · ·μX(nr) log n2r.

To use this identity, we group a number of variables into a single one (which
generates complicated coefficients but we can bound them by divisor functions).
This is a very versatile tool which has a lot of applications.

We can use also the same idea to deal with

∑

n

μ(n)f (n),

replacing ζ ′ with 1 in all what precedes.



Chapter 8
The van der Corput Method

Joël Rivat

8.1 Uniformly Distributed Sequences Modulo 1

Definition 8.1 A sequence of real numbers (un) is said to be uniformly distributed
modulo 1 if for all interval I of length |I| < 1, we have

lim
N→+∞

1

N
#{n : 1 � n � N, un ∈ I mod 1} = |I|.

Notation 8.2 We write e(x) = exp(2iπx).

Theorem 8.3 (Weyl Criterion) A sequence of real numbers (un) is uniformly
distributed modulo 1 if and only if

∀h ∈ N
∗, lim

N→+∞
1

N

N∑

n=1

e(hun) = 0.

Proof For compactness we will prefer to denote here by un the fractional part of un.
Suppose (un) is uniformly distributed modulo 1. For all 0 � a � b � 1, we have

1

N

N∑

n=1

1l[a,b](un)→ b− a =
∫ 1

0
1l[a,b](t) dt,
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hence every step function f satisfies

1

N

N∑

n=1

f (un)→
∫ 1

0
f (t) dt.

Let f be Riemann integrable and ε > 0. There exist g and h step functions such
that

g � f � h and
∫ 1

0
(h− g)(t) dt � ε.

Then for N large enough

∫ 1

0
g(t) dt− ε � 1

N

N∑

n=1

g(un) �
1

N

N∑

n=1

f (un) �
1

N

N∑

n=1

h(un) �
∫ 1

0
h(t) dt + ε

and as
∫ 1

0 (h− f )(t) dt � ε and
∫ 1

0 ( f − g)(t) dt � ε, we get

∣∣∣∣∣
1

N

N∑

n=1

f (un)−
∫ 1

0
f (t) dt

∣∣∣∣∣ � 2ε.

Hence every Riemann integrable function f satisfies

1

N

N∑

n=1

f (un)→
∫ 1

0
f (t) dt.

In particular the function f (x) = e(hx) is continuous hence Riemann integrable, thus

1

N

N∑

n=1

e(hun) = 1

N

N∑

n=1

e(hun)→ 0 =
∫ 1

0
e(ht) dt.

Conversely suppose that for all h ∈ Z
∗ (or N∗),

1

N

N∑

n=1

e(hun)→ 0.

Then for each trigonometric polynomial ϕ(x) =∑H
h=−H ah e(hx), we have

1

N

N∑

n=1

ϕ(un) =
H∑

h=−H

ah
1

N

N∑

n=1

e(hun)→ a0 =
∫ 1

0
ϕ(t) dt, N →+∞.
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For each continuous 1-periodic function f and all ε > 0, by the Stone-Weierstrass
theorem there exists a trigonometric polynomial ϕ such that ‖ϕ − f‖∞ � ε. Then

∣∣∣∣∣
1

N

N∑

n=1

f (un)−
∫ 1

0
f (t) dt

∣∣∣∣∣

�
∣∣∣∣∣

1

N

N∑

n=1

( f − ϕ)(un)

∣∣∣∣∣+
∣∣∣∣∣

1

N

N∑

n=1

ϕ(un)−
∫ 1

0
ϕ(t) dt

∣∣∣∣∣+
∣∣∣∣
∫ 1

0
(ϕ − f )(t) dt

∣∣∣∣

� 3ε,

for N large enough.
If 0 � a � b � 1 and ε > 0, there exist continuous 1-periodic ψ1 and ψ2 such

that

ψ1 � 1l[a,b] � ψ2 and
∫ 1

0
(ψ2 − ψ1)(t) dt � ε,

and applying what precedes we get finally

1

N

N∑

n=1

1l[a,b](un)→ b− a =
∫ 1

0
1l[a,b](t) dt

and (un) is uniformly distributed modulo 1.

Remark 8.4 The Weyl criterion gives no information on the “quality” of the uniform
distribution.

Definition 8.5 We call discrepancy of real numbers u1, . . . , uN the quantity

DN(u1, . . . , uN) = sup
I

∣∣∣∣∣
1

N

N∑

n=1

1lI(un)− |I|
∣∣∣∣∣ ,

where the sup is taken on all intervals I of length |I| < 1.

Theorem 8.6 (Erdős-Turan) For N > 0, H > 0 integers and u1, . . . , uN real
numbers we have

DN(u1, . . . , uN) � 1

H + 1
+

H∑

h=1

1

h

∣∣∣∣∣
1

N

N∑

n=1

e(hun)

∣∣∣∣∣ .
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We shall only sketch the proof of the Erdős-Turan theorem under this strong form
(with good constants). We write for α, β, u ∈ [0, 1[,

1l[α,β[(u) = �u− α� − �u− β� ,

and we introduce the function ψ(u) = u− �u� − 1
2 , which allows to write

1l[α,β[(u) = β − α − ψ(u − α)+ ψ(u− β).

The first Bernoulli function ψ can be approximated very closely by trigonometric
polynomials, using the following result

Lemma 8.7 (Vaaler (1985)) For H ∈ N, h ∈ Z, 1 � |h| � H, let

0 < bH(h) := π
|h|

H + 1

(
1− |h|

H + 1

)
cot

(
π
|h|

H + 1

)
+ |h|

H + 1
< 1.

Then the trigonometric polynomial

ψH(x) = − 1

2iπ

∑

1�|h|�H

bH(h)

h
e(hx)

satisfies for every real number x,

|ψ(x)− ψH(x)| � 1

2H + 2

∑

|h|�H

(
1− |h|

H + 1

)
e(hx) = sin2 π(H + 1)x

2(H + 1)2 sin2 πx
.

Proof For x ∈ Z this is inequality (7.14) from Vaaler (1985)—see also Theorem
A.6 from Graham-Kolesnik [1]. For x ∈ Z, both sides are equal to 1

2 , and thus the
result is still true.

Replacing ψ(u−α) and ψ(u−β) respectively by ψH(u−α) and ψH(u−β), and
managing the error we create, we get the result without any difficulty. In particular,
the term 1/(H + 1) comes from h = 0 in the error term.

Remark 8.8 After applying the Weyl criterion or Erdős-Turan inequality, we need
to know how to bound sums

N∑

n=1

e(hun).
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Theorem 8.9 For α ∈ R \Q, the sequence (αn) is uniformly distributed modulo 1.

Proof The sum of exponentials is a geometric sum:

∣∣∣∣∣

N∑

n=1

e(hαn)

∣∣∣∣∣ =
∣∣∣∣e(hα)

1− e(hαN)

1− e(hα)

∣∣∣∣ �
1

|sin(πhα)| ,

because for h ∈ N
∗, we have hα ∈ Z. Thus,

1

N

∣∣∣∣∣

N∑

n=1

e(hαn)

∣∣∣∣∣ �
1

N |sin(πhα)| → 0, N →+∞,

and (αn) is uniformly distributed modulo 1 by the Weyl criterion.

8.2 Upper Bounds on Exponential Sums

Lemma 8.10 (Kusmin-Landau) Let 0 < θ � 1/2. For all x1, . . . , xN ∈ R such
that

0 < θ � x2 − x1 � · · · � xN − xN−1 � 1− θ,

we have

∣∣∣∣∣

N∑

n=1

e(xn)

∣∣∣∣∣ � cot
πθ

2
.

Remark 8.11 It is useful to notice that cot πθ
2 � 2

πθ
.

Proof To see yn = xn+1 − xn, we write

N∑

n=1

e(xn) =
N−1∑

n=1

(e(xn)− e(xn+1)) cn + e(xN)

with

cn = e(xn)

e(xn)− e(xn+1)
= 1

1− e( yn)
= e(−yn/2)

−2i sinπyn
= 1

2
(1+ i cotπyn)

Then we have

|cn| = |1− cn| � 1

2| sinπyn| �
1

2 sinπθ
.
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An Abel summation allows to write:

N∑

n=1

e(xn) =
∑

1<n<N

e(xn)(cn − cn−1)+ e(x1)c1 + e(xN)(1− cN−1).

In consequence:

∣∣∣∣∣

N∑

n=1

e(xn)

∣∣∣∣∣ �
1

2

∑

1<n<N

| cotπyn−1 − cotπyn| + |c1| + |1− cN−1|.

The sequence cotπyn is nonincreasing, thus we can delete the absolute values in
the sum on the right hand side. Then, two by two, terms cancel one another and we
get:

∣∣∣∣∣

N∑

n=1

e(xn)

∣∣∣∣∣ �
1

2
(cotπy1 − cotπyN−1)+ |c1| + |1− cN−1|

� 1

2
(cotπθ + cotπθ)+ 1

2 sinπθ
+ 1

2 sinπθ
= cosπθ + 1

sin πθ

� 2 cos2(πθ/2)

2 sin(πθ/2) cos(πθ/2)
= cot

πθ

2
,

which yields the claimed inequality. The inequality in the remark is elementary:

tan
πθ

2
=
∫ πθ/2

0
(1+ tan2 t) dt �

∫ πθ/2

0
dt = πθ

2
,

hence cot πθ
2 � 2

πθ
.

Notation 8.12 For a real number x, ‖x‖ denotes the distance from x to the nearest
integer.

Theorem 8.13 (Kusmin-Landau) Let I be a bounded interval of R and f : I → R

a continuously differentiable function on I, f ′ monotonous and
∥∥ f ′
∥∥ � λ1 > 0 on I.

Then
∣∣∣∣∣
∑

n∈I

e( f (n))

∣∣∣∣∣ � cot
πλ1

2
� 2

πλ1
.

Proof By translation, we can suppose I = [1,N], and, possibly by changing f into
−f , we can suppose that f ′ is nondecreasing.
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As
∥∥ f ′
∥∥ � λ1 > 0 on I, the continuity of f ′ implies the existence of an integer k

such that

∀x ∈ I, k + λ1 � f ′(x) � k + 1− λ1.

As e( f (n)) = e( f (n)− kn), we can suppose that λ1 � f ′ � 1− λ1 on I.
By the finite increments theorem, for every integer n with 1 � n � N − 1, there

exists θn ∈]n, n+ 1[ such that f (n+ 1)− f (n) = f ′(θn).
As f ′ is nondecreasing,

0 < λ1 � f ′(θ1) � · · · � f ′(θN−1) � 1− λ1,

hence

0 < λ1 � f (2)− f (1) � · · · � f (N)− f (N − 1) � 1− λ1,

and we can conclude by Lemma 8.10.

Remark 8.14 The Kusmin-Landau inequality is very precise, but unfortunately the
condition

∥∥ f ′
∥∥ � λ1 > 0 is seldom fulfilled in practice. The following result allows

to dispense with it.

Theorem 8.15 (van der Corput) Let I be an interval of R containing N integers
(N � 0). Let f : I → R be a twice continuously differentiable function on I.
Furthermore we suppose there exists a real number λ2 > 0 and a real number
α � 1 such that

∀x ∈ I, λ2 � | f ′′(x)| � αλ2.

Then we have the upper bound:

∣∣∣∣∣
∑

n∈I

e( f (n))

∣∣∣∣∣ � 3 αNλ
1/2
2 + 6 λ

−1/2
2 .

Proof We can suppose λ2 < 1/9 because if λ2 � 1/9, we have the trivial bounds:

∣∣∣∣∣
∑

n∈I

e( f (n))

∣∣∣∣∣ � N � 3αNλ
1/2
2 .

Let 0 < δ < 1/2 which we shall choose later. The variation of f ′ between the
first and last integer of I does not exceed αλ2N, hence the interval I may be cut into
� αNλ2 + 2 intervals on which || f ′|| � δ and � αNλ2 + 2 intervals on which
|| f ′|| < δ.
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For each interval on which || f ′|| � δ we apply the Kusmin-Landau inequality
(Theorem 8.13) and we get a contribution � 2/(πδ).

For each interval on which || f ′|| < δ, we bound trivially by the number of terms.
The length of such an interval is < 2δ/λ2, and thus it contains at most 2δ/λ2 + 1
integer points. Hence we have the bound:

∣∣∣∣∣
∑

n∈I

e( f (n))

∣∣∣∣∣ � (αNλ2 + 2)

(
2

πδ
+ 2δ

λ2
+ 1

)
.

We optimize the choice of δ by taking δ = (λ2/π)1/2. As λ2 < 1/9, we do have
0 < δ < 1/2 and also 1 � 1

3
√
λ2

, hence

2

πδ
+ 2δ

λ2
+ 1 � 2√

πλ2
+ 2√

πλ2
+ 1

3
√
λ2

� 3√
λ2

,

and the theorem follows immediately.

Remark 8.16 If we have a more precise knowledge of the function f , in particular if
we know its first derivative, we can improve the previous result. Thus when f (n) =
An−σ , or more generally when there exist λ1 > 0, λ2 > 0, α � 1, with λ1 � Nλ2,
and such that

λ1 �
∣∣ f ′(x)

∣∣ � αλ1, λ2 �
∣∣ f ′′(x)

∣∣ � αλ2, (x ∈ I),

we have
∣∣∣∣∣
∑

n∈I

e( f (n))

∣∣∣∣∣� αNλ
1/2
2 + λ−1

1 .

Indeed, when αλ1 < 1
2 , we apply Kusmin-Landau which yields an upper bound in

λ−1
1 , and in the opposite case we have αNλ2 � 1, hence αNλ

1/2
2 � λ

−1/2
2 , and we

apply van der Corput’s lemma which yields an upper bound in αNλ
1/2
2 .

Application: the Voronoi Theorem
We denote by τ (n) the number of divisors of n. Dirichlet has shown that

∑

n�x

τ (n) = x log x+ (2γ − 1)x+ O(
√

x),

where γ is the Euler constant, defined by

γ = lim
N→+∞

⎛

⎝
∑

n�N

1

n
− log N

⎞

⎠ .
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We shall prove the following result

Theorem 8.17 (Voronoi) For every real number x � 2,

Δ(x) :=
∑

n�x

τ (n)− x log x− (2γ − 1)x = O(x1/3 log x).

To establish this result, we need a fine knowledge of the harmonic series.

Lemma 8.18 For every real number y � 1,

∑

n�y

1

n
= log y+ γ − ψ( y)

y
+ O

(
1

y2

)
,

where ψ(u) = u− �u� − 1
2 .

Corollary 8.19 For all integer N � 1,

∑

n�N

1

n
= log N + γ + 1

2N
+ O

(
1

N2

)
.

Proof We write

∑

n�y

1

n
=
∫ y+

1−
d �u�

u
=
∫ y+

1−

d(u− ψ(u)− 1
2 )

u

= log y−
∫ y+

1−
dψ(u)

u

= log y−
[
ψ(u)

u

]y+

1−
−
∫ y

1
ψ(u)

du

u2

= log y− ψ( y)

y
+ ψ(1−)

1
−
∫ ∞

1
ψ(u)

du

u2 +
∫ ∞

y
ψ(u)

du

u2 ,

where we remarked that ψ(y+) = ψ(y), because ψ is right continuous.
If we let y tend to infinity, we get

γ = lim
y→∞

⎛

⎝
∑

n�y

1

n
− log y

⎞

⎠ = ψ(1−)
1

−
∫ ∞

1
ψ(u)

du

u2 ,
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hence it remains to prove that

∫ ∞

y
ψ(u)

du

u2 = O

(
1

y2

)
.

As ψ(u) is an oscillating function, we shall integrate by parts. We set

Ψ (u) =
∫ u

0
ψ(v)dv.

As Ψ (1) = 0, the function Ψ is periodic with period 1, and continuous hence
bounded. Then

∫ ∞

y
ψ(u)

du

u2 =
[
Ψ (u)

u2

]∞

y
+ 2

∫ ∞

y
Ψ (u)

du

u3 = O

(
1

y2

)
.

Proposition 8.20 For every real number x � 1,

Δ(x) = −2
∑

n�√x

ψ
( x

n

)
+ O(1).

Proof We use the hyperbola method. We write

∑

��x

τ (�) =
∑

mn�x

1

=
∑

mn�x
m�√x

1+
∑

mn�x
n�√x

1−
∑

m�√x
n�√x

1.

The first two sums are equal, namely to

∑

n�√x

⌊ x

n

⌋
=
∑

n�√x

(
x

n
− ψ

( x

n

)
− 1

2

)

= x

(
log
√

x+ γ − ψ(
√

x)√
x
+ O

(
1

x

))
−
∑

n�√x

ψ
( x

n

)
− 1

2

⌊√
x
⌋

= 1
2 x log x+ γ x−√x ψ(

√
x)−

∑

n�√x

ψ
( x

n

)
− 1

2

√
x+ O(1).
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We have

∑

m�√x
n�√x

1 = ⌊√x
⌋2 =

(√
x− ψ(

√
x)− 1

2

)2 = x− 2
√

x ψ(
√

x)−√x+ O(1).

Thus

∑

��x

τ (�) = 2
∑

n�√x

⌊ x

n

⌋
− ⌊√x

⌋2 = x log x+ (2γ − 1)x− 2
∑

n�√x

ψ
( x

n

)
+ O(1).

Remark 8.21 Dirichlet’s proof consists simply in replacing ψ(x/n) with O(1) in
what precedes, and using the simplest asymptotic expansion

∑

n�y

1

n
= log y+ γ + O

(
1

y

)
,

and we get immediately

Δ(x) = O(
√

x).

Lemma 8.22 Let f be a twice continuously differentiable function on an interval I
containing N > 0 integers. We suppose there exist λ1 > 0, λ2 > 0, α � 1, such that
λ1 � Nλ2 and

λ1 � | f ′(x)| � αλ1, λ2 � | f ′′(x)| � αλ2 (x ∈ I).

Then we have

∑

n∈I

ψ ( f (n)) = O
(
αNλ

1/3
2 + λ−1

1

)

Proof We can suppose λ2 � 1 as otherwise the result is trivial. Applying Vaaler’s
lemma, we get

∣∣∣∣∣
∑

n∈I

ψ ( f (n))

∣∣∣∣∣ �
N

2H + 2
+

∑

1�|h|�H

(
1

2π |h| +
1

2H + 2

) ∣∣∣∣∣
∑

n∈I

e (hf (n))

∣∣∣∣∣

� N

2H
+

∑

1�h�H

2

h

∣∣∣∣∣
∑

n∈I

e (hf (n))

∣∣∣∣∣ .



110 J. Rivat

The exponential sum on the right-hand side is bounded through the van der
Corput lemma (improved version in the remark). We get

∑

1�h�H

1

h

∣∣∣∣∣
∑

n∈I

e (hf (n))

∣∣∣∣∣ =
∑

1�h�H

1

h
O

(
α2N

√
λ2h+ 1

λ1h

)

= O

(
α2N

√
λ2H + 1

λ1

)
,

so that
∣∣∣∣∣
∑

n∈I

ψ ( f (n))

∣∣∣∣∣ = O

(
N

H
+ α2N

√
λ2H + 1

λ1

)
.

Taking H =
⌊
λ
−1/3
2

⌋
, we get the expected result.

We are now able to complete the proof of the Voronoi theorem. We write (with
Vinogradov’s notation)

Δ(x)�
∣∣∣∣∣∣

∑

n�√x

ψ
( x

n

)
∣∣∣∣∣∣
�

R∑

r=1

∣∣∣∣∣∣

∑

n∈Ir

ψ
( x

n

)
∣∣∣∣∣∣

with, for r = 1, . . . ,R,

Ir =]2−r√x, 2−r+1√x], 2R−1 � x1/2 < 2R.

Hence we apply the previous lemma with

λ1 � x

(2−r
√

x)2
� 22r, λ2 � x

(2−r
√

x)3
� 23r

x1/2 ,

hence

Δ(x)�
R∑

r=1

(
2−r√x

2r

x1/6
+ 2−2r

)
� x1/3 log x.

Remark 8.23 The van der Corput theorem above is useful to bound an exponential
sum through the second derivative, particularly when we have | f ′| > 1 and | f ′′| < 1
on I. When | f ′′| > 1, we use the following lemma to lower the order of magnitude
of the derivatives.
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Lemma 8.24 Let N and Q be integers � 1, and zn complex numbers. Then we have:

∣∣∣∣∣∣

∑

1�n�N

zn

∣∣∣∣∣∣

2

�
(

1+ N − 1

Q

) ∑

|q|<Q

(
1− |q|

Q

) ∑

1�n�N
1�n+q�N

zn+qzn.

Proof The statement uses only zn for 1 � n � N. For convenience, we assume
zn = 0 for n � 0 and for n � N + 1.

We have the equalities

Q
∑

n∈Z
zn =

∑

1�q�Q

∑

n∈Z
zn+q =

∑

n∈Z

∑

1�q�Q

zn+q.

The integers n which may have a nonzero contribution in the last sum satisfy
1− Q � n � N − 1. Hence there are at most N − 1+ Q of them.

Applying the Cauchy-Schwarz inequality we get:

Q2

∣∣∣∣∣
∑

n∈Z
zn

∣∣∣∣∣

2

� (N − 1+ Q)
∑

n∈Z

∣∣∣∣∣∣

∑

1�q�Q

zn+q

∣∣∣∣∣∣

2

� (N − 1+ Q)
∑

1�q1�Q

∑

1�q2�Q

∑

n∈Z
zn+q1zn+q2

� (N − 1+ Q)
∑

1�q1�Q

∑

1�q2�Q

∑

m∈Z
zm+q1−q2zm

� (N − 1+ Q)
∑

−Q�q�Q

r(q)
∑

m∈Z
zm+qzm,

where r(q) = #{(q1, q2), 1 � q1 � Q, 1 � q2 � Q, q1 − q2 = q}.
It is clear that r(−q) = r(q).
For 0 � q � Q, r(q) is the number of q1 such that 1 � q1 � Q and 1+q � q1 �

Q+ q, i.e. such that 1+ q � q1 � Q, hence r(q) = Q− q.
Consequently r(q) = Q− |q| for−Q � q � Q. Thus we have

Q2

∣∣∣∣∣
∑

n∈Z
zn

∣∣∣∣∣

2

� (N − 1+ Q)
∑

−Q�q�Q

(Q− |q|)
∑

m∈Z
zm+qzm,

and we get the expected inequality after dividing by Q2.

Remark 8.25 If zn = e( f (n)), then zn+qzn = e( f (n + q) − f (n)) and under good
hypotheses (Q much smaller than N), the derivatives of g(x) = f (x + q)− f (x) are
much smaller than those of f .
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Theorem 8.26 (van der Corput) Let R be an integer � 2. We suppose that f has
R continuous derivatives on an interval I ⊆ [N + 1, 2N]. Furthermore we suppose
that there exists a constant F such that

∀x ∈ I, FN−r � | f (r)(x)| � FN−r,

for r = 1, . . . ,R. Then

∑

n∈I

e( f (n))� (FN−R)1/(2R−2) N + F−1N.

Proof cf. [1, Theorem 2.9].

Complement: Generalized van der Corput Inequality

Theorem 8.27 (Rivat-Sargos) Let z1, . . . , zN ∈ C and x1, . . . , xN ∈ R. We define

ρ(t) =
(

sin π t

π t

)2

, ρ(0) = 1, ρ̂(u) = max(0, 1−|u|).

For all δ > 0, we have

∣∣∣∣∣

N∑

n=1

zn

∣∣∣∣∣

2

�
∑

k∈Z
ρ(δk)

N∑

i=1

N∑

j=1

zizj e(k(xi−xj))

� 1

δ

N∑

i=1

N∑

j=1

zizj

∑

k∈Z
ρ̂

(
xi − xj + k

δ

)
.

If furthermore we suppose max1�i,j�N |xi − xj| � 1− δ (hence 0 < δ � 1), then

∣∣∣∣∣

N∑

n=1

zn

∣∣∣∣∣

2

� 1

δ

N∑

i=1

N∑

j=1

ρ̂

(
xi − xj

δ

)
zizj.

Proof Denote

ρδ(t) = δρ(δt),

ρ̂δ(ξ) =
∫

R

δρ(δt) e(−tξ)dt =
∫

R

ρ(u) e(−uξ/δ)du = ρ̂(ξ/δ).
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We have

∣∣∣∣∣

N∑

n=1

zn

∣∣∣∣∣

2

� 1

δ

∑

k∈Z
ρδ(k)

∣∣∣∣∣

N∑

n=1

zn e(kxn)

∣∣∣∣∣

2

and expanding the square of the right-hand side we get the first inequality. Applying
Poisson’s summing formula to the right-hand side we get

∣∣∣∣∣

N∑

n=1

zn

∣∣∣∣∣

2

� 1

δ

∑

k∈Z

∫

R

ρδ(t)

∣∣∣∣∣

N∑

n=1

zn e(txn)

∣∣∣∣∣

2

e(tk) dt.

We expand the square and exchange the sums:

1

δ

N∑

i=1

N∑

j=1

zizj

∑

k∈Z

∫

R

ρδ(t) e(t(xi−xj+k)) dt = 1

δ

N∑

i=1

N∑

j=1

zizj

∑

k∈Z
ρ̂δ(xi−xj+k)

and get the second inequality because ρ̂δ(x) = ρ̂(x/δ).
We have ρ̂δ(x) = 0 for |x| � δ. When |xi−xj| � 1−δ, we have |xi−xj+k| � δ for

all k = 0, and thus ρ̂δ(xi−xj+k) = 0 for all k = 0, which proves the third inequality.

Remark 8.28 Taking δ =
(

1+ N − 1

Q

)−1

= Q

N − 1+ Q
and xn = nδ

Q
we have

∣∣xi − xj
∣∣ = |i− j| δ

Q
� (N − 1)δ

Q
= N − 1

N − 1+ Q
= 1− δ,

and get from applying Theorem 8.27:

∣∣∣∣∣

N∑

n=1

zn

∣∣∣∣∣

2

�
(

1+ N − 1

Q

) N∑

i=1

N∑

j=1

max

(
0, 1− |i− j|

Q

)
zizj

=
(

1+ N − 1

Q

) ∑

|q|<Q

(
1− |q|

Q

) ∑

1�n�N
1�n+q�N

zn+qzn,

which is the van der Corput inequality.
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Chapter 9
A Brief Guide to Reversing and Extended
Symmetries of Dynamical Systems

M. Baake

9.1 Introduction

Symmetries of dynamical systems are important objects to study, as they help in
understanding the orbit structure and many other properties. Moreover, the group of
symmetries is a topological invariant that can be useful for distinguishing between
different dynamical systems. Naturally, this invariant is generally weaker than other
invariants (such as those from (co-)homology or homotopy theory), but often easier
to access.

For both aspects, studying properties and defining invariants, one is clearly
interested in effective generalisations or extensions of the symmetry group. Inspired
by the time-reversal symmetry of many fundamental equations in physics, one
obvious step in this direction is provided by the reversing symmetry group of a
dynamical system, which—in the case of reversibility—is an index-2 extension of
the symmetry group.

Traditionally, the majority of the studies has concentrated on concrete dynamical
systems, where the space is usually simple, but the mapping(s) might be com-
plicated. Even for toral automorphism, the answer is amazingly rich. There is a
complementary picture, which arises through the coding of itineraries and leads
to the analogous questions in symbolic dynamics [59]. Here, the mapping(s) are
simple, but the space (usually a closed shift space) is complicated, and this is
particularly so when going to higher-dimensional shifts.
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In this brief introductory review, we recall the basic definitions and notions, and
present some results from the large body of literature that has accumulated. Clearly,
the exposition cannot be complete in any way, whence the references will provide
further directions.

After some examples from the classic theory of concrete dynamical systems, we
shall stroll through some more recent results on the complementary picture from
symbolic dynamics.

9.2 General Setting and Notions

A convenient starting point is a topological space X , which is usually (but
not always) assumed to be compact, and a mapping T ∈ Aut(X ), where the
automorphism group is understood in the Smale sense, meaning that it is the
group of all homeomorphisms of X . The pair (X ,T) then defines a (topological)
dynamical system, and the group 〈T〉 ⊂ Aut(X ) is important. Now, we define the
symmetry group of (X ,T) as

S(X ,T) := {G ∈ Aut(X ) : G ◦ T = T ◦ G} = centAut(X )(〈T〉) = Aut(X ,T).

(9.1)

This group plays an important role in the analysis of (X ,T), for instance in the
context of periodic orbits and dynamical zeta functions. Its is also a useful tool in
the classification of dynamical systems, because it is a topological invariant.

Remark 9.1 The group Aut(X ,T) is often used as a starting point for algebraic
considerations, and then simply called the automorphism group of the dynamical
system, but this is—as we shall see later—a use of the word that is too restrictive,
and effectively excludes many natural mappings from the consideration. We will
thus not use this notation, and rather view S(X ,T) as a subgroup of Aut(X ) in the
Smale sense.

In some cases, the group Aut(X ) might be too big a ‘universe’ to consider, and
some subgroup of it is a more natural choice, for instance when some additional
structure of X should be preserved. This is particularly so if some general results
are available that imply S(X ,T) and R(X ,T) to be subgroups of some group
U ⊂ Aut(X ). In this case, one can start with U, and simplify the algebraic
derivations considerably. The above point simply is that U should generally not
be chosen as Aut(X ,T), as this is too restrictive.

Since we will not consider the case that T is not invertible, a natural extension of
S(X ,T) is given by

R(X ,T) := {G ∈ Aut(X ) : G ◦ T ◦ G−1 = T±1}, (9.2)
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which is motivated by the time-reversal symmetry of many fundamental equations
of physics; see [53, 71] and references therein for background. From now on, we
write GT instead of G ◦ T etc. for ease of notation. The relation between S(X ,T)

and R(X ,T) can be summarised as follows; see [12] and references therein.

Theorem 9.2 If (X ,T) is a topological dynamical system, R(X ,T) ⊂ Aut(X )

is a group, with 〈T〉 and S(X ,T) as normal subgroups. Moreover, one either has
R(X ,T) = S(X ,T) or [R(X ,T) : S(X ,T)] = 2. In the latter case, the systems is
reversible.

Further, if T2 = Id and if there is an involution H with HTH−1 = T−1, one has

R(X ,T) = S(X ,T)� 〈H〉 � S(X ,T)� C2 ,

which is the standard form of reversibility.

An element that conjugates T into its inverse (where we assume T2 = Id) is
called a reversor. An elementary observation is the fact that a reversor cannot be of
odd order, so it is either of even or of infinite order. When the order is finite, hence
of the form 2�(2m + 1) for some � � 1, there exists another reversor of order 2�.
When T possesses an involutory reversor, R say, one has T = TR2 = (TR)R, where
(TR)2 = TRTR = T T−1 = Id, so T is the product of two involutions. This is a
frequently used approach in the older literature, before the group-theoretic setting
showed [38, 52] that the more general approach is natural and helpful; see [12, 53]
and references therein for details.

As is implicit from our formulation so far, reversibility is not an interesting
concept when T itself is an involution. More generally, when T has finite order,
the structure of R(X ,T) is a group-theoretic problem, and of independent interest;
see [60] for a concise exposition. However, in the context of dynamical systems, one
is mainly interest in the case that 〈T〉 � Z. Then, one can slightly change the point
of view by considering T as defining a continuous group action of Z on X , which
is often reflected by the modified notation (X ,Z) for the topological dynamical
system. From now on, unless explicitly stated otherwise, we shall adopt this point
of view here, too. The following result is elementary.

Fact 9.3 When T is not of finite order, one has R(X ,T) = normAut(X )(〈T〉).
It is thus the interplay between the (topological) centraliser and normaliser that is

added in the extension fromS(X ,T) to R(X ,T). One simple (but frequently useful)
instance of this is given by the following result, where C∞ and D∞ = C∞ � C2
denote the infinite cyclic and dihedral group, respectively.

Theorem 9.4 ([12, Thm. 1 and Cor. 1]) Let T ∈ Aut(X ) be of infinite order. If one
hasS(X ,T) � C∞ and if T is reversible, one hasR(X ,T) = S(X ,T)�C2 � D∞,
and all reversors of T are involutions.

Conversely, if all reversors of T are involutions, the symmetry group S(X ,T) is
Abelian.
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Clearly, in the setting of dynamical systems, one could equally well consider the
analogous questions for the measure-theoretic centraliser and normaliser, and this is
indeed frequently done in the literature; compare [35, 39, 69] and references therein.
Since, in many relevant cases, the measure-theoretic symmetry groups turn out to
be topological (see [69] for results in this direction), we concentrate on the latter
situation in this overview.

In what follows, we shall meet two rather different general situations, as briefly
indicated in the introduction. On the one hand, there are many systems from
nonlinear dynamics where the space is simple, but the map is complicated. In this
case, we will write S(T) instead of S(X ,T) to emphasise the mapping. Likewise,
when we are in the complementary situation (of symbolic dynamics, say) with a
simple map acting on a more complicated space, we will use S(X ) instead to
highlight the difference. This also matches the widely used conventions in these
two directions.

9.3 Concrete Systems from Nonlinear Dynamics

In this section, we will describe, in a somewhat informal manner, how symmetries
and reversing symmetries arise in three particular families of dynamical systems,
namely trace maps, toral automorphisms, and polynomial automorphisms of the
plane. Clearly, there are many other relevant examples, some of which can be found
in [53, 60, 71] and references therein.

9.3.1 Trace Maps

This class of dynamical system arises in the study of one-dimensional Schrödinger
operators with aperiodic potentials of substitutive origin, compare [31] and refer-
ences therein, and provide a powerful tool for the study of their spectra and transport
properties. The paradigmatic Fibonacci trace map in 3-space is given by

(x, y, z) 	−→ ( y, z, 2yz− x)

and is reversible, with involutory reversor (x, y, z) 	→ (z, y, x); see [65] and
references given there. The group-theoretic ‘universe’ to consider here is given
by the group of 3-dimensional invertible polynomial mappings that preserve the
Fricke–Vogt invariant

I(x, y, z) = x2 + y2 + z2 − 2xyz− 1
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and fix the point (1, 1, 1); see [9, 14, 65] and references therein for more. This group
of mappings is isomorphic with PGL(2,Z), and can thus be analysed by classic
methods, including the theory of binary quadratic forms.

In other words, the analysis of (reversing) symmetries of trace maps is equivalent
to the determination of S(M) and R(M) for matrices M ∈ PGL(2,Z). Since

PGL(2,Z) � GL(2,Z)/{±1|},

the following result is obvious.

Fact 9.5 Let M ∈ PGL(2,Z) and M′ be either of the two corresponding matrices
in GL(2,Z). Then, the symmetry group S(M) is given by

S(M) = centPGL(2,Z)(〈M〉) = centGL(2,Z)(〈M′〉)/{±1|}.

The symmetry groups can thus be derived from the analysis of general (two-
dimensional) toral automorphisms, which we will review in Sect. 9.3.2. For the
reversing symmetry group, the role of {±1|} changes. Let M ∈ PGL(2,Z) be given,
and view it as a GL(2,Z)-matrix. Then, we have to find all solutions H to

HMH−1 = ±M−1,

where the calculation modulo ±1| means that we get more cases with reversibility
than in GL(2,Z). For instance, M = (

1 1
1 0

)
is reversible in PGL(2,Z), with an

involutory reversor, but not within GL(2,Z), while M2 (known as Arnold’s cat map
[5, Ex. 1.15]) is reversible in both groups. Within GL(2,Z), this phenomenon is
called 2-reversibility; see [9] for details.

9.3.2 Toral Automorphisms

These systems, which are also known as ‘cat maps’, are much studied examples in
chaotic dynamics and ergodic theory. Here, in order to preserve the linear structure
ofTd , the d-dimensional torus, one usually works withinU=GL(d,Z) ⊂ Aut(Td);
see [1, 2, 5, 62] for background.

In the planar case (d = 2), one thus has to deal with the group GL(2,Z). Here,
if M is an element of infinite order, one always finds S(M) � C2 × C∞, where
C2 = {±1|}. This follows for any parabolic element by a simple calculation, and,
for the hyperbolic elements, is a consequence of Dirichlet’s unit theorem for real
quadratic number fields; see [24] for background.

Remark 9.6 Reversible cases among elements of infinite order are of three possible
types: When all reversors are involutions, one has R(M) � C2 × D∞, again with
D∞ = C∞ �C2; when all reversors are of fourth order, one has R(M) � C∞ �C4;
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finally, when reversors both of order 2 and 4 exist, one hasR(M) � (C2×C∞)�C2.
All three types occur; see [12, Thm. 2 and Ex. 4] and references given there for more.

In this context, it is certainly a valid and interesting question how the concepts
can be extended to cover toral endomorphisms, or what happens when one restricts
to rational sublattices. This is connected with looking at the related questions over
finite fields and residue class rings; see [16, 18] and references therein for some
results.

The situation becomes more complex, and also more interesting, in higher
dimensions. In a first step, one has to analyse the symmetry group of a toral
automorphism, M ∈ GL(d,Z) say, within this matrix group. In the generic case,
where M is simple (meaning that its eigenvalues are distinct) one can employ
Dirichlet’s unit theorem again. Let us first look at the case that the characteristic
polynomial P(x) = det(M − x1|) of M is irreducible over Z, and hence also over
Q . Then, if λ is any of the d eigenvalues of M, it is an algebraic integer of degree
d = n1 + 2n2, where n1 is the number of real algebraic conjugates of λ and n2 the
number of complex conjugate pairs among the algebraic conjugates.

Now, if O is the maximal order in the algebraic number field Q (λ), Dirichlet’s
unit theorem states that the unit group O× is of the form

O× � T × Z
n1+n2−1 (9.3)

with T = O∩ {roots of unity} being a finite cyclic group. The latter is known as the
torsion subgroup of O×. Due to the isomorphism of Z[λ] with the ring Z[M] under
our irreducibility assumption on P, one then has the following result [10, Prop. 1
and Cor. 1].

Theorem 9.7 Let M ∈ GL(d,Z) have an irreducible characteristic polynomial,
P(x), of degree d = n1 + 2n2, with n1 and n2 as above. Then, S(M) is isomorphic
with a subgroup of O× of maximal rank, so

S(M) � T ′ × Z
n1+n2−1,

where T ′ is a subgroup of the torsion group T from Eq. (9.3).
Moreover, whenever P(x) has a real root, which includes all cases with d odd,

one simply has T ′ = {±1} � C2.

For our previous example, M = ( 1 1
1 0

)
, one finds S(M) = {±1|} ×〈M〉 � C2×Z.

Note that, in general, the generators of the free part of S(M) can correspond to
powers of fundamental units, which is related with the question of the existence
of matrix roots within GL(d,Z); see [10] for more. One can quite easily extend
Theorem 9.7 to the case that M is simple. This is done by factoring P over Z and
treating the factors separately [9, Thm. 1].

Let us look at the reversibility of a matrix M ∈ GL(2,Z). A necessary condition
clearly is that M and M−1 have the same spectrum (including multiplicities). In
other words, if P is the characteristic polynomial of M with integer coefficients, it
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must satisfy the self-reciprocity condition

P(x) = (−1)d xd

det(M)
P
( 1

x

)
. (9.4)

Now, if d is odd or if det(M) = −1, this relation implies that 1 or −1 is a root, and
P is reducible over Z. In particular, d odd and P irreducible immediately excludes
reversibility. This means that, generically, reversible cases can only occur when d is
even and det(M) = 1.

Note that, even if Eq. (9.4) is satisfied, the reversibility still depends on the
underlying integer matrix M, and the class number of Z[λ] enters. It is then clear that
deciding on reversibility is a problem that increases with growing d; we refer to the
discussion in [10] for more. However, for any given characteristic polynomial that is
self-reciprocal according to the condition of Eq. (9.4), there is at least one reversible
class of matrices, and this can be represented by the Frobenius companion matrix
[10, Thm. 3].

A natural extension of symmetries can be considered in the setting of matrix
rings rather than groups, such as Mat(d,K) instead of GL(d,K), where K can itself
be a ring (such as Z) or a field (such as Q ). Then, one can define

S(M) = {G ∈ Mat(d,K) : [M,G] = 0}.

Concretely, if M is an integer matrix with irreducible characteristic polynomial, and
λ is any of its roots, one finds S(M) to be isomorphic with an order O in the number
field Q (λ) that satisfies Z[λ] ⊆ O ⊆ Omax, where Omax denotes the maximal order
in Q (λ); see [41, Ch. III] as well as [10, Sec. 3.3] and references given there for
more.

9.3.3 Polynomial Automorphisms of the Plane

Let K be a field and consider the group UK = GA2(K) of polynomial automor-
phisms of the affine plane over K. Consequently, we have X = K2 in this case,
which need not be compact.UK consists of all mappings of the form

(
x
y

)
	−→

(
P(x, y)
Q(x, y)

)

with P,Q ∈ K[x, y], subject to the condition that the inverse exists and is also
polynomial. Note that, over general fields, different polynomials might actually
define the same mapping on K2, but we will distinguish them on the level of the
polynomials.
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In nonlinear dynamics, where GA2(R ) and GA2(C) have received considerable
attention, a common alternative notation is

x ′ = P(x, y) , y ′ = Q(x, y).

Frequently studied examples include the Hénon quadratic map family, defined by
P(x, y) = y and Q(x, y) = −δx + y2 + c with constants c, δ ∈ C and δ = 0. Quite
often, for instance in the context of area-preserving mappings, the starting point is a
polynomial automorphism in generalised standard form,

x ′ = x+ P1( y) , y ′ = y+ P2(x
′),

with single-variable polynomials P1 and P2; compare [37, 66] and references
therein. Here, the inverse is simply given by y = y ′ − P2(x

′) together with
x = x ′ − P1(y).

In a certain sense, such particular normal forms are important, but do not exhaust
the full power of the algebraic setting. Let us explain this a little in the context of
combinatorial group theory. We begin by defining three subgroups of GA2(K) as
follows. First,

A := {
(a,M) : a ∈ K2, M ∈ GL(2,K)

}

is the group of affine transformations, where (a,M) encodes the mapping
x 	→ Mx+ a. We write a for a column vector, and tacitly identify the elements
of A with the canonically corresponding elements of GA2(K). Multiplication is
defined by

(a,A)(b,B) = (a+ Ab,AB),

whenceA is a semi-direct product, namelyA = K2
� GL(2,K). The inverse of an

element is (a,A)−1 = (−A−1a,A−1).
The second group, E, is known as the group of elementary transformations. It

consists of all mappings of the form

(
x
y

)
	−→

(
αx+ P( y)
βy+ v

)

with P a single-variable polynomial and α, β, v ∈ K subject to the condition
αβ = 0. It is easy to check that the inverse exists and it of the same form.
Transformations of this kind map lines with constant y-coordinate to lines of the
same type. It is a well-known fact that the group GA2(K) is generated byA and E;
see [42, 72] as well as [73, Sec. 1.5].
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Finally, our third group, B, is defined as the intersection B = A ∩ E, with
obvious meaning as subgroups of GA2(K). The elements of B are called basic
transformations, and are mappings of the form

(
x
y

)
	−→

(
α γ

0 β

)(
x
y

)
+
(

u
v

)

with α, β, γ, u, v ∈ K and αβ = 0. Clearly, also B is a semi-direct product, namely
B = K2

� T , where T denotes the subgroups of GL(2,K) that consists of all
invertible upper triangular matrices over K.

Now, the following result [68, 73] is fundamental to the classification of
(reversing) symmetries of polynomial automorphisms.

Lemma 9.8 The group GA2(K) is the free product of the groups A and E,
amalgamated along their intersection,B, which is abbreviated as GA2(K) = A ∗BE.

Through this result, the problem has been reset in a purely algebraic way, and
one can now explore the subgroup structure [43] of the amalgamated free product.
In particular, one can classify the Abelian subgroups of GA2(K), which has trivial
centre. Naturally, S(T) for a given T ∈ GA2(K) is more complex, and need no
longer be Abelian. When K has characteristic 0, one can derive restrictions on the
order of other symmetries, which gives access to the finite subgroups of S(T); for
details, the reader is referred to [11].

For an important subclass of transformations known as CR elements, one can
say a lot more. In particular, if K is a field of characteristic 0, all reversors must be
of finite order. If, in addition, the roots of unity in K are just {±1}, any reversor is
an involution or an element of order 4, which makes their detection feasible. The
possible reversing symmetry groups in this case are then the same three types we
saw earlier, in Remark 9.6, for 2-dimensional toral automorphisms of infinite order.
Since further details in this setting of combinatorial group theory tend to be a bit
technical, we refer to [11] and references therein for more.

9.4 Shift Spaces with Faithful Z-action

All examples in the previous section shared the feature that the space X is simple,
but the map T on it is not. This is the standard situation in most dynamical systems
that arise from concrete problems, for instance in nonlinear dynamics. However, it
has long been known [59] that there is a complementary picture, which arises by
coding orbits in such systems by symbolic sequences, for instance via itineraries.
The latter keep track of a coarse-grained structure in such a way that the full
dynamics can be recovered from them—at least almost surely in some suitable
measure-theoretic sense.
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This leads to symbolic dynamics, where the space X is ‘replaced’ by a closed
shift space Y (often over a finite alphabet), and T by the action of the left shift,
S. More precisely, one constructs a conjugacy, a semi-conjugacy, or (typically) a
measure-theoretic isomorphism that makes the diagram

commutative and φ as ‘invertible as possible’. This motivates to also consider
symmetries and reversing symmetries of shift spaces, where we shall always assume
that the action of Z on the shift space is faithful in order to exclude degenerate
situations. We refer to [50, 56] for general background, and to [49, 55] for the study
of topological Markov chains in this context.

One immediate problem that arises is the fact that the symmetry group of a shift
space (now called X again) is generally huge, in the sense that it contains a copy
of the free group of two generators—and is thus not amenable [56]. This turns a
potential classification into a wild problem, and not much has been done in this
direction. On the other hand, as has long been known, it is also possible that one
simply gets S(X ) = 〈S〉 � Z, in which case one speaks of a trivial centraliser,
or of a minimal symmetry group. This is a form of rigidity, for which different
mechanisms are possible. Interestingly, rigidity is not a rare phenomenon [23], but
actually generic in some sense [40], which makes it rather relevant also in practice.

To explore the possibilities a little, let us assume that A is a finite set, called
the alphabet, and that X ⊆ AZ is a closed and shift-invariant set, which is then
automatically compact. Such a space is called a shift space, or subshift for short.

A special role has the ‘canonical’ reversor R defined by

(Rx)n := x−n (9.5)

or any combination of R with a power of the shift S. It is clear that R conjugates S
into its inverse on the full shift, X = AZ. More generally, one has the following
property.

Lemma 9.9 Let X be a shift space with faithful shift action. If X is reflection-
invariant, which means R(X ) = X with the mapping R from Eq. (9.5), the system is
reversible, with R(X ) = S(X )� C2, where C2 = 〈R〉.

Let us collect a few examples of reversible subshifts, in an informal manner; see
[20] and references therein for precise statements and proofs, and [3, 7, 26, 63, 64]
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for general background on substitution generated subshifts. Among these examples
are

1. the full shift [50, 56], X = AZ, where S(X ) is huge (and not amenable);
2. any Sturmian shift [27], which is always palindromic [33] and hence reversible,

with symmetry group S(X ) � Z;
3. the period doubling shift, defined by the primitive substitution rule a 	→ ab,

b 	→ aa, again with S(X ) � Z;
4. the Thue–Morse (TM) shift, defined by a 	→ ab, b 	→ ba, here with
S(X ) � Z× C2, where the extra symmetry is the letter exchange map defined
by a ↔ b;

5. the square-free shift, obtained as the orbit closure of the characteristic function
of the square-free integers, also with S(X ) � Z.

In fact, the last example is quite remarkable, as its rigidity mechanism relies
on the heredity of the shift, as was recently shown by Mentzen [57]. Note that
the square-free shift has positive topological entropy, but nevertheless possesses
minimal centraliser. Though this is not surprising in view of known results from
Toeplitz sequences [25], it does show that rigidity as a result of low complexity, as
studied in [28–30, 32], is only one of several mechanisms. We shall see more in
Sect. 9.5. The square-free shift is a prominent example from the class of B-free
shifts, see [22, 34] and references therein, and also of interest in the context
of Sarnak’s conjecture on the statistical independence of the Möbius function
from deterministic sequences (as discussed at length in other contributions to this
volume).

Of course, things are generally more subtle than in these examples. First of all, a
subshift can be irreversible, as happens for the one defined by the binary substitution
a 	→ aba, b 	→ baa, where R(X ) = S(X ) � Z. Next, consider the subshift X k,�
defined by the primitive substitution

a 	−→ akb�, b 	−→ bka�

with k, � ∈ N, which is reversible if and only if k = �. This is an extension of the
TM shift (which is the case k = � = 1), in the spirit of [17, 45]. The symmetry
group is S(X k,�) � Z×C2 in all cases, where C2 is once again the group generated
by the letter exchange map.

Going to larger alphabets,A = {a0, a1, . . . , aN−1} say, one can look at a cyclic
extension of the TM shift, as defined by the substitution ai 	→ aiai+1 with the index
taken modulo N. This shift is reflection invariant only for N = 2, but nevertheless
reversible for any N, and even with an involutory reversor. The symmetry group is
Z×CN .

The quaternary Rudin–Shapiro shift shows another phenomenon. Its symmetry
group is Z×C2, and it is reversible, but no reversor is an involution. Instead, there is
a reversor of order 4 (and all reversors have this order), and the reversing symmetry
group is Z � C4, where the square of the generating element of the cyclic group
C4 is the extra (involutory) symmetry; see [20] for details on this and the previous
examples.
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9.5 Shift Spaces with Faithful Zd-action

It is more than natural to also consider higher-dimensional shift actions. Here, given
some alphabet A, a subshift is any closed subspace X ⊆ AZ

d
that is invariant

under the shift in each of the d directions. With n = (n1, . . . , nd)
T ∈ Z

d as well as
xn =

(
xn1

, . . . , xnd

)
, one defines the shift in direction i by

(Six)n := xn+ei
,

where ei is the standard unit vector in direction i. The individual shifts commute
with one another, SiSj = SjSi, for all 1 � i, j � d. Now, we define the symmetry
group of X as

S(X ) = centAut(X )(G),

where G := 〈S1, . . . , Sd〉 is a subgroup of Aut(X ).
As before, we are only interested in subshifts with faithful shift action, which

means G = 〈S1〉 × . . . × 〈Sd〉 � Z
d , where the direct product structure is a

consequence of the commutativity of the individual shifts. In this case, we define
the group of extended symmetries as

R(X ) = normAut(X )(G),

which is the obvious extension of the one-dimensional case. As we shall see shortly,
many of the obvious ‘symmetries’ of X are only captured by this extension step.

Unlike before, the structure of the normaliser is generally much richer now,
which also means that R(X ) is a considerably better topological invariant than
S(X ). Indeed, the normaliser can even be an infinite extension of the centraliser
when d > 1, as can be seen from the full shift as follows; see [20, Lemma 4].

Fact 9.10 Let d ∈ N and let X = AZ
d

be the full d-dimensional shift over the
(finite or infinite) alphabet A. Then, the group of extended symmetries is given by
R(X ) = S(X )� GL(d,Z).

The reasoning behind this observation is simple. Each element of R(X ) must
map generators of G = 〈S1, . . . , Sd〉 � Z

d onto generators of G, and thus induces a
mapping into GL(d,Z), which is the automorphism group of the free Abelian group
of rank d. Now, one checks that, for any M ∈ GL(d,Z), the mapping hM defined by

(hMx)n = xM−1n ,

with n considered as a column vector, defines an automorphism of the full shift. This
leads to the semi-direct product structure as stated.
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Fig. 9.1 The chair inflation rule (upper left panel; rotated tiles are inflated to rotated patches), a
legal patch with full D4 symmetry (lower left) and a level-3 inflation patch generated from this
legal seed (shaded; right panel). Note that this patch still has the full D4 point symmetry (with
respect to its centre), as will the infinite inflation tiling fixed point emerging from it

9.5.1 Tiling Dynamical Systems as Subshifts

Substitution tilings of constant block size are a generalisation of substitutions of
constant length, and admit an alternative description as subshifts, for instance via
a suitable symbolic coding. Classic examples include the chair and the table tiling
[67], but many more are known [8, 36].

Here, we take a look at the chair tiling, which is illustrated in Fig. 9.1; see [7] for
more. Its geometric realisation makes it particularly obvious that any reasonable
notion of a group of full symmetries must somehow contain the elementary
symmetries of the square, simply because the inflation tiling (whose orbit closure
under the translation action of Z2 defines the tiling dynamical system, with compact
space X ) is invariant under a fourfold rotation and a reflection in the horizontal axis.
These two operations generate a group that is isomorphic with the dihedral group
D4, a maximal finite subgroup of GL(2,Z).

Now, none of these orthogonal transformations occur in the centraliser of the shift
group, which was shown to be minimal in [61]. This is a rigidity phenomenon of
topological origin, due to the fibre structure of X over its maximal equicontinuous
factor (MEF). Consequently, this example provides ample evidence that one also
needs to consider the normaliser. The general result reads as follows; see [20] for
the details.

Theorem 9.11 Let X be the hull of the chair tiling, and (X ,Z2) the corresponding
dynamical system. It is topologically conjugate to a subshift of {0, 1, 2, 3}Z2

with
faithful shift action. Moreover, one has S(X ) � Z

2 and R(X ) � Z
2
� D4, where

D4 is the symmetry group of the square, and a maximal finite subgroup of GL(2,Z).
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Proof (Sketch) It is well known that X is a.e. one-to-one over its MEF, which is a
two-dimensional odometer here. The orbits of non-singleton fibres over the MEF
create the topological rigidity that enforce the centraliser to agree with the group
generated by the lattice translations.

The extension by D4 is constructive, via the symmetries of the inflation fixed
point. Any further extension would require the inclusion of a GL(2,Z)-element
of infinite order (because D4 is a maximal finite subgroup of GL(2,Z)), which is
impossible by the geometric structure (and rigidity) of the prototiles.

Similar results will occur for other tiling dynamical system, also in higher
dimensions. For instance, it is clear that the d-dimensional chair (with d � 2; see
[7]) will have S = Z

d and R = Z
d
� Wd, where Wd is the symmetry group of the

d-dimensional cube, also known as the hyperoctahedral group [6].
Let us note that there is no general reason why the extended symmetry group

should be a semi-direct product (though this will be the most frequent case to
encounter in the applications). In fact, in (periodic) crystallography, the classifica-
tion of space groups in dimensions d � 2 contains so-called non-symmorphic cases
that do not show a semi-direct product structure between translations and linear
isometries [70]. It will be an interesting question to identify or construct planar shift
spaces that show the planar wallpaper groups as their extended symmetry groups.
This and similar results would emphasise once more that and how the extension
from S(X ) to R(X ) is relevant to capture the full symmetry of faithful shift actions.

9.5.2 Shifts of Algebraic Origin

There is a particularly interesting and important class of subshifts that has attracted
a lot of attention. They are known as subshifts of algebraic origin; see [69] and
references therein. The important point here is that such a subshift is also an Abelian
group under pointwise addition, and thus carries the corresponding Haar measure as
a canonical invariant measure.

Here, we take a look at one of the paradigmatic examples from this class, the
Ledrappier shift [54]. This is the subshift X L ⊂ {0, 1}Z2

defined as

X L = ker(1+ S1 + S2) =
{
x ∈ {0, 1}Z2 : xn + xn+e1

+ xn+e2
= 0 for all n ∈ Z

2},
(9.6)

where the sums are pointwise, and to be taken modulo 2. This definition highlights
the special role of elementary lattice triangles, whose vertices are supporting the
local variables that need to sum to 0; see Fig. 9.2 for an illustration. The symmetry
group is known to be minimal, which can be seen as a rigidity phenomenon of
algebraic type. More generally, one has the following result.
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Theorem 9.12 The symmetry group of Ledrappier’s shift X L from Eq. (9.6) is

S(X L) = 〈S1, S2〉 � Z
2,

while the group of extended symmetries is given by

R(X ) = 〈S1, S2〉� H � Z
2
� D3 ,

where H is the finite group generated by the autormorphisms hA and hB, with
A = (−1 −1

1 0

)
and B = (

0 1
1 0

)
. This group is isomorphic with the dihedral group

D3 ⊂ GL(2,Z) that is generated by the corresponding matrices, A and B.

Proof (Sketch) The triviality of the centraliser is a consequence of the group struc-
ture, which heavily restricts the homeomorphisms between irreducible subshifts that
commute with the translations [23, 51, 69].

For the extension to the normaliser, the presence of D3 is again constructive, and
evident from Fig. 9.2. One then excludes any element of order 6 that would complete
D3 to D6, and finally any element of infinite order that could extend the group D3.
Both types of extensions are impossible because any such additional element would
change the defining condition by deforming the elementary triangles.

This example is of interest for a number of reasons. First of all, it shows
the phenomenon of rank-1 entropy, which is to say that the number of circular
configurations grows exponentially in the radius of the patch, but not in the area.
While this means that the topological entropy still vanishes, Ledrappier’s shift
is not an example of low complexity. Second, the spectral structure displays a

Fig. 9.2 Central configurational patch for Ledrappier’s shift condition, indicating the relevance
of the triangular lattice. Equation (9.6) implies a condition for the values at the three vertices
of all elementary L-triangles (shaded). The overall pattern of these triangles is preserved by all
(extended) symmetries. The group D3 from Theorem 9.12 can now be viewed as the colour-
preserving symmetry group of the ‘distorted’ hexagon as indicated around the origin
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mixture of trivial point spectrum with further absolutely continuous (Lebesgue)
components [13], which highlights the fact that the inverse problem of structure
determination, in the presence of mixed spectra, is really a lot more complex than
in the case of pure point spectra. Once again, capturing the full extended symmetry
group is an important first step in this analysis, as is well-known from classical
crystallography [70].

Let us consider the planar point set

V := {(x, y) ∈ Z
2 : gcd(x, y) = 1} ⊂ Z

2,

which is known as the set of visible (or primitive) lattice points; see the cover
page of [4] for an illustration. The set V has numerous fascinating properties, both
algebraically and geometrically. In particular, it fails to be a Delone set, because
it has holes of arbitrary size that even repeat lattice-periodically. Nevertheless, the
natural density exists and equals 6/π2 = 1/ζ(2). Moreover, the set V is invariant
under the group GL(2,Z), which acts transitively on V; see [15] and references
therein.

The corresponding subshift XV is defined as the orbit closure of the characteristic
function 1V under the shift action of Z2, which turns (XV ,Z

2) into a topological
dynamical system with faithful shift action and positive topological entropy. This
system, like the square-free shift from above, is hereditary, which implies rigidity
for the symmetry group. On the other hand, due to the way that GL(2,Z)-matrices
act on it, the normaliser is the maximal extension of the centraliser in this case [21].
In fact, there is no reason to restrict to the planar case here, as the visible lattice
points can be defined for Zd with any d � 2 (the case d = 1 gives a finite set that is
not of interest). Thus, one has the following result.

Theorem 9.13 Let XV be the subshift defined by the visible lattice points of Z
d,

where d � 2. Then, XV has faithful shift action with minimal symmetry group,
S(XV ) = Z

d, while the extended symmetry group emerges as the maximal extension
of it, R(XV ) = Z

2
� GL(2,Z).

Proof (Sketch) Here, the triviality of the centraliser, as in the earlier example of
the square-free shift, is a consequence of the heredity of the subshift [21], and really
follows from a mild generalisation of Mentzen’s approach [57]. The extension to the
normaliser, as explained above, is by all of GL(d,Z), where the semi-direct product
structure is the same as for the full shift in Fact 9.10.

More generally, one can study systems of this kind as defined from primitive
lattice systems, for instance in the spirit of [19]. This also covers subshifts that are
generated from rings of integers in general algebraic number fields subject to certain
freeness conditions. This gives a huge class of examples that can be viewed as multi-
dimensional generalisations ofB-free systems. Interestingly, they are also examples
of weak model sets [19], which gives access to a whole new range of tools from
the interplay of dynamical systems and algebraic number theory [44, 46–48], in the
spirit of the original approach by Meyer [58].
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Chapter 10
Kloosterman Sums, Disjointness,
and Equidistribution

M. Einsiedler and M. Luethi

10.1 Introduction to Homogeneous Dynamics

Homogeneous dynamics is concerned with the action of a subgroup A < G of
a locally compact group G on quotient spaces of the form X = Γ\G (or more
generally Y = Γ\G/M), where usually and for this discussion always Γ < G is a
discrete subgroup (and M < G is a compact subgroup such that A normalizes M).
Since Γ is discrete, X = Γ\G is locally homeomorphic to G. A similar statement
also holds for the dynamics in question, as we will now explain. For the sake of
illustration, let x = Γ g ∈ X and for ε ∈ G let ε · x = Γ gε−1. The natural action of
an element a ∈ A maps x and ε · x respectively to a · x = Γ ga−1 and to

a · (ε · x) = Γ gε−1a−1 = Γ ga−1(aε−1a−1) = (aεa−1) · (a · x).

Assuming that ε is close to the identity in G, it will represent the “minimal
displacement” between x and ε · x. At the same time, aεa−1 will represent the
“minimal displacement” between a·x and a·(ε·x). This shows that the dynamics of a
acting on X is closely linked to conjugation on G by a. If G is a Lie group, then the
latter is locally conjugated via the exponential map to the adjoint representation Ada

on the Lie algebra g of G. In order to develop some understanding for the number
theoretical and geometric meaning and for the dynamical behavior of such systems,
we need to discuss a few examples of this setup.
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Example 10.1 Probably one of the easiest groups to consider is G = R

and Γ = {0}. In this case the action of a on Γ\G ∼= G is just translation on R

by a, which does not lend itself to examination using dynamical tools, as this action
does not even satisfy Poincaré recurrence.

This example suggests, that we should require Γ to be such that X = Γ\G is not
too big. One could for example require that X is compact, in which case the discrete
subgroup Γ is called a uniform lattice. It turns out that this requirement would
exclude many natural and important examples which can be treated dynamically.
Rather, the correct requirement is that X carries a G-invariant probability measure,
in which case Γ is called a lattice in G.

Example 10.2 (Circle Rotation) If G = R and Γ = Z, then X = Z\R = T and
every real number a ∈ R induces a circle rotation x mod 1 	→ x+ a mod 1.

We can also get a fundamentally different algebraic type of action, namely
multiplication by a prime p on T, fit into the framework of homogeneous dynamics,
at least if we consider its invertible extension.

Example 10.3 (×2-Map) In what follows, we will make use of the p-adic num-
bers Qp for p = 2, where Qp is the completion of Q with respect to the topology
induced by the absolute value |pk r

s |p = p−k, where p � rs and k ∈ Z. Vaguely
speaking, Qp can be considered as the field of Laurent series in “the variable p”,
and from this perspective the closure Zp of Z in Qp corresponds to the subring of
power series. The set Zp is a compact, open subring of Qp. For background on the p-
adic numbers in general, we refer the reader to [37]. Let G = (R×Q2)�Z, where Z
acts by multiplication by 2 on the coordinates of R×Q2. Formally this is realized as

G =
{(

2m (x∞, x2)

0 1

) ∣∣∣∣m ∈ Z, x∞ ∈ R, x2 ∈ Q2

}
⊆ Mat2(R×Q2),

where we view the top left coordinate (in Z[ 1
2 ]) as an element in R × Q2 by

embedding it diagonally, and the group operation is matrix multiplication

(
2m (x∞, x2)

0 1

)(
2n ( y∞, y2)

0 1

)
=
(

2n+m (x∞ + 2my∞, x2 + 2my2)

0 1

)

for m, n ∈ Z, x∞, y∞ ∈ R and x2, y2 ∈ Q2. Consider the subgroups Γ = Z[ 1
2 ]� Z

and H = R × Q2 of G, where again Z[ 1
2 ] is diagonally embedded in H. Since the

generator of Z in the product G = H � Z belongs to Γ , we have Γ\G ∼= H/Γ ∩ H. In
fact, we claim that

X := Γ

∖
G ∼= H

/
Γ ∩ H = R×Q2

/
Z[ 1

2 ]
∼= R× Z2

/
Z

where Z is diagonally embedded in R× Z2. Let us assume for the moment that we
are given the isomorphism R×Q2/Z[ 1

2 ] ∼= R× Z2/Z. We will give the construction of
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this isomorphism below. Once we know that Z is a lattice in R × Z2, one deduces
that Γ is a cocompact lattice in G. Discreteness of Z ⊆ R × Z2 is obtained as
follows: The set (−ε, ε) × Z2 is an open neighbourhood of 0 inside R × Z2, and
if ε < 1, then any x contained in the intersection of the diagonally embedded copy
of Z and this open neighbourhood is in fact 0. The cocompactness follows from
compactness of Z2 together with the fact that the set [0, 1] × Z2 is surjective for
the quotient map R× Z2 → R× Z2/Z. Using the isomorphism indicated above, we
obtain a canonical projection

X = Γ

∖
G ∼= R× Z2

/
Z→ T = R

/
Z,

where we simply forget the Z2-component of the representative.
We will now construct the isomorphism R×Q2/Z[ 1

2 ] ∼= R× Z2/Z. Using the
interpretation of Q2 as Laurent series in the variable 2 with coefficients equal to 0
or 1, every x2 ∈ Q2 is of the form x2 = [x2] + {x2} with [x2] ∈ Z2 and {x2} ∈ Z[ 1

2 ]
(say with {x2} ∈ [0, 1)), so that for x∞ ∈ R and x2 ∈ Q2 we obtain the following
equality of cosets

(x∞, x2)+ Z[ 1
2 ] = (x∞ − {x2}, [x2])+ Z[ 1

2 ].

This shows that (x∞, x2) + Z[ 1
2 ] ∈ R × Z2 + Z[ 1

2 ], i.e. the orbit of the identity
coset Z[ 1

2 ] under R × Z2 is the full space. As Z2 ∩ Z[ 1
2 ] = Z, the stabilizer of the

identity coset in R×Z2 is the diagonally embedded Z. From this it follows that, up
to choice of the basepoint, a canonical isomorphism is given by the map

x+ Z ∈ R× Z2
/
Z 	→ x+ Z[ 1

2 ] ∈ R×Q2
/
Z[ 1

2 ].

Note that this isomorphism is evidently×2-equivariant.
We now consider the element a = ( 2 0

0 1

) ∈ Γ < G. Given x∞ ∈ R, x2 ∈ Q2 and
an element h = ( 1 (x∞,x2)

0 1

) ∈ G, then

a · (hΓ ) = (aha−1) · Γ =
(

1 (2x∞, 2x2)

0 1

)
· Γ

and using the isomorphism described above and the stated canonical projection, we
see that the action of a projects to T2 : T → T, the multiplication by 2 on T. In
fact, X is the invertible extension of T2 : T → T and Q2 can be interpreted as the
field that is needed to make the invertible extension of T2 a diagonalizable map.

For the reader who is not accustomed with the p-adic numbers, we want to point
out that Z2 is the set underlying the simple dyadic odometer, whose dynamics then is
realized as addition of the multiplicative unit, and hence is a rotation on the compact
group Z2. This connection to odometers is discussed in greater detail for example
in [8].
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Moreover, it might be helpful to compare the previous construction to the
following realization of another common dynamical system as a homogeneous
dynamical system. Consider the toral automorphism defined by the matrix
A = (

0 1
1 1

)
and the associated (invertible) dynamical system. We can realize this

system as a homogeneous dynamical system, by considering the group G = R
2
�Z

embedded in Mat3(R) via (v,m) 	→ (
Am v
0 1

)
. As before, we consider the

subgroups Γ = Z
2
� Z and H = R

2. Then the homogeneous space X = Γ\G
is X ∼= H/H ∩ Γ

∼= T
2 and under the isomorphism the action of the element

a = ( A 0
0 1

)
on X maps to the action of A on T

2.

We recall that dynamically the two maps arising in the above examples could not be
more different from each other.

• For the circle rotation, there are two cases to consider. If a ∈ Q, then clearly
every orbit is periodic. If a ∈ Q, then every orbit is dense and equidistributed, as
in that case the dynamical system is uniquely ergodic (cf. [15, p. 107]).

• For the ×2 map T2 : T → T, there are infinitely many finite orbits, as every
rational point has a finite orbit under T2. This follows immediately from the
fact that the rational numbers are exactly the numbers whose base 2 expansion
is eventually periodic and the property that T2 acts by left-shift on the base 2
expansion. Alternatively we note that in case 2 � q, the denominator of T2(

p
q )

is the same as the denominator of p
q . As there are only finitely many rational

numbers with denominator q in [0, 1), it follows that the orbit of p
q is finite. Note

that the image of any rational number will be of this form after finitely may
applications of T2.

Ergodicity of T2 implies that the orbit of almost every point is equidistributed,
which is an application of Birkhoff’s pointwise ergodic theorem. However,
contrary to the first example, there are plenty of points with closed fractal Cantor-
set-like orbit closures. In fact, T2 is isomorphic to the one-sided shift on {0, 1}N,
and it is easy to define closed subshifts by e.g. disallowing sequences containing
three 1’s in a row.

We introduce two more homogeneous spaces. In terms of generality, the first one
is at the opposite relative to the ones discussed above, because it will play the role of
a mother-space for almost all homogeneous spaces appearing in number theory. The
second will be in between and will reveal the strong interaction between dynamics
on homogeneous spaces and Riemannian geometry.

10.1.1 The Space of Lattices

We set G = SLd(R) and Γ = SLd(Z) for some d � 2 and we consider

Xd = Γ

∖
G = SLd(Z)

∖
SLd(R).
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As was already applied during the construction of the invertible extension of the×2-
map, it is an elementary fact from algebra, that given some space Ω equipped with
a G-action and some ω0 ∈ Ω such that H = StabG(ω0), the quotient H\G identifies
with the orbit of ω0 under G and for continuous or smooth actions, the identification
will be of the corresponding category. For the space Xd this is easily achieved by
letting

Ω = {Λ | Λ is a closed subgroup of Rd}

and ω0 = Z
d , which leads to

Xd =SLd(Z)

∖
SLd(R) ∼= {Zdg | g ∈ SLd(R)}

={Λ | Λ < R
d is discrete, cocompact and has covolume 1}.

Here, the covolume covol(Λ) of the lattice Λ < R
d is the Lebesgue measure m(F)

of a fundamental domain F for translation by Λ. Note that [0, 1)d is a fundamental
domain for Z

d and that for every g ∈ SLd(Z) the set [0, 1)dg is a fundamental
domain for Λ = Z

dg, so that m(F) = m([0, 1)dg) = det(g) = 1 (where the
Lebesgue measure considered is the one normalized so that m([0, 1)d) = 1).

Using this identification, it becomes clearer that the space Xd is not compact, as
for the sequence of matrices1

gn =
⎛

⎝
1
n

n
Id−2

⎞

⎠ ∈ SLd(R)

the sequence Zdgn in the space Xd does not have any converging subsequence with
limit within Xd. Indeed, it converges to the subgroup R× {0} × Z

d−2 ∈ Ω \ Xd for
the right topology on Ω , which would be the Chabauty topology (see [4]).

Pursuing this line of thought and combining it with Minkowski’s geometry of
numbers leads to

Theorem 10.1 (Mahler’s Compactness Criterion [2, p. 16]) A subset K ⊂ Xd

has compact closure if and only if the lattices in K are uniformly discrete, i.e. there
exists some δ > 0 such that for all Λ ∈ K we have Bδ(0)∩Λ = {0}, where Bδ(0) is
the ball of radius δ around 0 in R

d.

Taking the closure of Xd in Ω with respect to the Chabauty topology, one obtains the
lattice compactification of Xd (cf. [3, §III.19]), which reveals some of the complexity
of Xd for larger values of d.

1Here and in what follows matrix entries which are 0 are omitted.
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Even though Xd is not compact, it still has finite volume in a natural way, i.e. it
carries a natural finite SLd(R)-invariant measure, which we simply call the Haar
measure on Xd . The fact that this Haar measure is finite, i.e. that the volume of Xd

is finite, is essentially a calculation carried out in [2, p. 17f.] for example. This
calculation is aided by the Iwasawa decomposition of SLd(R), which is obtained
from the familiar Gram-Schmidt orthonormalization procedure, and, once more,
Minkowski’s geometry of numbers.

On Xd one can study the action of many different subgroups of SLd(R), which
we categorize as follows:

• If the acting group (in this case denoted U) is unipotent, i.e. all eigenvalues of
all elements of the acting group equal 1, then many dynamical questions are
completely answered by the celebrated theorems of Ratner concerning unipotent
dynamics (cf. [26–28]) and the related theorems in [6] and [25]. This situation
can be viewed as a vast and rich generalization of the circle rotation from before.
For instance, Ratner proved that for any x ∈ Xd the orbit closure Ux equals the
orbit Lx for some intermediate closed subgroup U < L < SLd(R).

• If the acting group (in this case denoted A) is diagonalizable, there are two
subtypes to consider:

– If dim A = 1, then many different types of fractal orbits appear and it is pretty
much impossible to classify its invariant probability measures. The situation
is very similar to the situation for the ×2-map considered above.

– If dim A > 1, then several conjectures of Furstenberg, Margulis, and
Katok-Spatzier apply. These conjectures would classify invariant probability
measures for some actions as described above. A number of these conjectures
have been confirmed (see e.g. [10, 12, 13]), at least under not too strong
additional assumptions (as for example positive entropy for the invariant
measure). The situation is frequently very similar to the situation in Fursten-
berg’s×2,×3-problem on T, which asks what the jointly T2- and T3-invariant
ergodic probability measures on T are, where the ×3 map T3 : T → T is
defined in complete analogy by T3(x mod 1) = 3x mod 1.

• If the acting group H is semisimple without compact factors, then H is generated
by unipotents and thus Ratner’s theorems apply again. However, this case is from
many perspectives easier (see [9]) and in some cases the corresponding results
can be made effective (see [16]), which in greater generality would be a very
difficult objective when using ergodic theoretic arguments (see also [23]).

We close our discussion of Xd by indicating, why we called it the mother
space. Since SLd(R) has many closed subgroups (unipotent, diagonalizable, and
semisimple), all of these could have different types of interesting orbits. In fact, for
every connected, semisimple Lie group H with finite center there is some d � 2
such that H is isogeneous to a subgroup of SLd(R) and has closed orbits in Xd

(which have finite volume). Hence we can obtain finite volume quotients of H by
considering orbits Hx ∼= H/StabH(x) in Xd.
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10.1.2 The Modular Surface

The special case of X2 = SL2(Z)\SL2(R) deserves special attention due to its
connection to hyperbolic geometry, which allows us to visualize the global structure
of X2 (which for the 8-dimensional manifold X3 or even for the 5-dimensional
double quotient SL3(Z)\SL3(R)/SO3(R) many people find harder).

In fact, SL2(R) acts by isometries on the hyperbolic planeH = {z ∈ C
∣∣�z > 0

}
,

which is equipped with the hyperbolic Riemannian metric dx2+dy2

y2 . The action of an

element g = ( a b
c d

)
on z ∈ C is defined by the Möbius transformation

g · z = az+ b

cz+ d
.

It is a straight-forward calculation to show that this indeed defines an action
of SL2(R) on H and that z ∈ H 	→ g · z is differentiable and preserves the length
of tangent vectors with respect to the hyperbolic metric. Moreover, this action is
transitive and StabSL2(R)(i) = SO2(R), so that SL2(R)/SO2(R)

∼= H.
If we let SL2(Z) act on H, then it is possible to completely describe a

fundamental domain for the action (see Fig. 10.1). The hyperbolic triangle F should
be understood as a hyperbolic analog of the fundamental domain [0, 1)2 ⊆ R

2 for
the Euclidean isometries of R2 corresponding to translation by an element in Z

2.
In our case the map defined by

(
1 1

1

) ∈ SL2(Z) acts by z ∈ H 	→ z + 1 and
glues the left and the right sides of F together. Moreover the map

( −1
1

)
acts

by z 	→ − 1
z , thus mapping the unit circle to itself and glueing the lower boundary

of F together. The resulting surface SL2(Z)\H has one so-called cusp at ∞, and two

special points obtained from i and 1
2 +

√
3

2 i (which are conical singularities). This
surface is called the modular surface. Filling in the cusp point, i.e. taking the one-
point compactification, SL2(Z)\H ∪ {∞} topologically becomes a sphere.

Fig. 10.1 A fundamental
domain for the action
of SL2(Z) on H
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We now wish to return from the study of H ∼= SL2(R)/SO2(R) to the study
of SL2(R) or rather the study of PSL2(R) = SL2(R)/{±I}. If we look at the unit
tangent bundle T1

H ∼= H × S1 of H consisting of all tangent vectors of unit
length, then the induced action of SL2(R) on this space is transitive but −I acts
trivially. One checks, that I and −I are the only elements stabilizing the reference
vector (i, i), so that any choice of a reference vector (z, v) ∈ T1

H yields an
isomorphism T1

H ∼= PSL2(R) by g 	→ g · (z, v). It follows that the quotient

X2 ∼= SL2(Z)

∖
SL2(R) ∼= PSL2(Z)

∖
PSL2(R) ∼= PSL2(Z)

∖
T1

H

should be thought of as the unit tangent bundle of the surface SL2(Z)\H. In what
follows, we fix the identification corresponding to the reference vector that points
north at i, i.e. the tangent vector (i, i) ∈ T1

H. In particular, under the resulting
isomorphism the identity I ∈ PSL2(R) corresponds to (i, i) ∈ T1

H.
If we multiply I ∈ PSL2(R) on the right by a diagonal element

( y
1/y

)
in SL2(R),

then the natural isomorphism PSL2(R) ∼= T1
H maps the element I

( y
1/y

)
to the

point
( y

1/y

) · (i, i) = (y2i, y2i). This shows that the group

A =
{(

et/2

e−t/2

) ∣∣∣∣ t ∈ R

}
< SL2(R)

moves (i, i) up and down along the imaginary axis. However, the imaginary axis
is precisely a geodesic in the hyperbolic plane. Using that the natural left- and
right-action of SL2(R) on PSL2(R) commute, and that on the left SL2(R) acts by
isometries for some left-invariant Riemannian metric on PSL2(R), it follows that
the right action of A on PSL2(R) corresponds to following the geodesic determined
by the given vector in T1

H (cf. [15, Chapter 9.2]). This flow on PSL2(R) is called
the geodesic flow.

The Riemannian manifold X2 = Γ\SL2(R) carries the topology induced by the
metric

dX2(Γ g1, Γ g2) = inf
γ∈Γ dPSL2(R)(γ g1, g2)

(
g1, g2 ∈ PSL2(R)

)
.

The geodesic flow on PSL2(R) then descends to the geodesic flow on the unit
tangent bundle X2 of the modular surface, which is illustrated in Fig. 10.2. The initial
tangent vector determines a geodesic in the hyperbolic plane, which (typically)
leaves the fundamental domain at some point. At this point we apply an isometry
from SL2(Z) to move it back into the fundamental domain. (The translation action
of a one-dimensional subspace V ⊂ R

2 on T
2 = R

2
/Z2 is described in the same way

using the fundamental domain [0, 1)2 and the isometries Z2 ⊂ R
2.) The geodesic
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Fig. 10.2 An illustration of
the geodesic flow
on SL2(Z)\H along the
direction determined by the
tangent vector (z, v) ∈ T1

H

Fig. 10.3 The U-orbit
of (i, i) is a horizontal line
with vectors pointing north.
The image of U · (i, i) under
the Möbius transform
corresponding to

( −2
1/2

)
is a

circle tangent to the real axis

flow on the modular surface (or on any other hyperbolic surface) has many invariant
subsets and invariant measures. This can for instance be seen via a symbolic coding
of the geodesic flow, which in the case of the modular surface can be linked to the
continued fraction expansion of real numbers, see [1, 32] and [15, Ch. 9].

The second type of dynamical systems on X2 that we wish to consider is the
horocycle flow. We define U = {(

1 s
1

) ∣∣ s ∈ R
}

and as with the geodesic flow
we first apply U to our reference vector to obtain a horizontal line with tangent
vectors pointing north. The Möbius transformations map this orbit to other so-
called horocycle orbits. Two such horocycles are illustrated in Fig. 10.3. As in
the case of the geodesic flow, the horocycle flow on X2 can be understood within
the fundamental domain by following the horocycle determined by the initial
vector until a boundary is reached and then moving the continuation back into the
fundamental domain using an isometry from SL2(Z).

As was discussed before, since U is unipotent, the dynamics of U on X2 is better
behaved and can be completely understood. This is due to the work of Hedlund [20],
Furstenberg [19], Dani [5], and Dani-Smillie [7] (and is today also a very special
case of Ratner’s theorems).



146 M. Einsiedler and M. Luethi

10.2 Disjointness and Kloosterman Sums

We wish to discuss here an interaction between the classical Kloosterman sums
appearing in number theory and a disjointness result for (T2,T3) and related systems
(which is a partial result towards Furstenberg’s conjecture mentioned above).

10.2.1 Kloosterman Sums

Given an integer q > 1, we define the modulo q hyperbola

Hq =
{
(a, b) ∈ (Z/qZ

)2 ∣∣∣ ab = 1
}

and its image (after division by q) in the 2-torus

HT

q =
{(

a

q
,

b

q

)
∈ T

2
∣∣∣∣ a, b ∈ Z and ab ≡ 1 mod q

}

Note that |Hq| = |HT
q | = ϕ(q) is the Euler ϕ-function.

Theorem 10.2 (Kloosterman/Weil’s Bound) As q → ∞, the set HT
q equidis-

tributes in T
2 with respect to the Lebesgue measure. Moreover, for any (m, n) ∈ Z

2

satisfying gcd(m, n, q) = 1 we have the estimate

∣∣∣∣
1

ϕ(q)

∑

(a,b)∈Hq

e

(
ma+ nb

q

) ∣∣∣∣l � q−κ ,

where κ = 1
4 (Kloosterman’s bound) or κ = 1

2 (Weil’s bound).

Here e(·) stands for the function x 	→ e2π ix, so that the expression on the left-hand
side equals the mean value of the productφ(a)ψ(a−1) for units a mod q, where φ,ψ

are characters of the additive group Z/qZ.
We are not concerned with optimality of the exponents, so we are quite content

with using the original Kloosterman bound κ = 1
4 , which can be obtained via

elementary means, whereas Weil’s bound originally was much harder to achieve,
even though there is by now a relatively elementary proof thereof, based on a method
by Stepanov (see [33]). For a complete discussion, we refer the reader to [21]. In
what follows, we denote by

Kq
m,n =

∑

(a,b)∈Hq

e

(
ma+ nb

q

)
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the so-called Kloosterman sums appearing in the above statement. Using the bound
and a simple Fourier series argument, one can obtain the equidistribution statement
in the theorem. In fact, the bound even implies an effective equidistribution
result, i.e.

∀f ∈ C∞(T2) :

∣∣∣∣∣∣∣

1

ϕ(q)

∑

(a,b)∈HT
q

f (a, b)−
∫

T2
f dm

∣∣∣∣∣∣∣
� q−κS( f )

for some Sobolev norm S on C∞(T2) and some κ > 0.

10.2.2 A Disjointness Result

Let H be a group that acts measure preservingly on two probability spaces (X, μ)

and (Y, ν), hence yielding two separate dynamical systems. A joining between these
two systems is defined to be a probability measure ρ on X×Y that is invariant under
the induced diagonal action of H defined by h · (x, y) = (h · x, h · y) for h ∈ H
and (x, y) ∈ X × Y, and that projects to the original measures on X and Y, i.e.

(πX)∗ρ = μ and (πY)∗ρ = ν.

For example the product measure is a joining and is called the trivial joining (as
it always exists). In what follows, we assume that the probability spaces (X, μ)

and (Y, ν) are nontrivial, i.e. there exist measurable subsets which neither have
measure zero nor full measure. The existence of nontrivial joinings indicates some
nontrivial relationship between the two systems. More precisely, disjointness—
i.e. the absence of nontrivial joinings—proves (see [15, Ch. 6]) that they can not
have a common factor (otherwise one could construct the relatively independent
joining over the common factor, which will be trivial if and only if the common
factor is trivial) and in particular that the two systems can not be isomorphic. The
latter statement is proven very easily, as otherwise the graph would immediately
give rise to a joining.

Theorem 10.3 (Disjointness of ×2,×3 and Its Inverse) Let H = Z
2 and

X = R×Q2 ×Q3
/
Z[ 1

6 ]
∼= R× Z2 × Z3

/
Z

be the common invertible extension for T2 and T3 acting on T via Tp(x) = px mod 1.
Consider the action

(m, n) : x ∈ X 	→ 2m3nx ∈ X
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and its inverse

(m, n) : x ∈ X 	→ 2−m3−nx ∈ X

of H on X and equip X with the Haar measure. The two resulting dynamical systems
are disjoint.

This follows from [11] but can also be proven by the TNS-method in [22], and the
proof is similar to the slightly easier zero-dimensional analog considered in [14].

10.2.3 The Connection

We will now show that Theorem 10.3 implies the ineffective equidistribution
statement in Theorem 10.2. For this we assume first that 2 � q and 3 � q. With
this, the projection ofHT

q to one factor, i.e. the points

PT

q =
{

a

q
∈ T

∣∣∣∣ a ∈ Z, gcd(a, q) = 1

}
,

consists of ϕ(q) points periodic both for T2 and T3. Moreover, this set can be lifted
to the collection

PX
q =

{(
a

q
,

a

q
,

a

q

)
∈ X

∣∣∣∣ a ∈ Z, gcd(a, q) = 1

}

of points in X = R× Z2 × Z3/Z, which consists of ϕ(q) points which are periodic
under the lifted realizations of T2 and T3.

Lemma 10.4 As q → ∞, the finite sets PX
q become equidistributed in X w.r.t. the

Haar measure on X.

Proof As PX
q is invariant under T2 and T3, it suffices to show the similar claim

for PT
q . To this end we denote by νq the counting measure on PX

q and by ν any
weak∗ limit for q → ∞ along a sequence of numbers coprime to 2 and 3. The
counting measure μq on PT

q is the push-forward of the counting measure on PX
q

under the canonical projection π : X → T, that is μq = π∗νq. If μq converges to
the Lebesgue measure mT on T, then also π∗ν = mT. As the sets PX

q are invariant
under T2 and T3, so is the measure ν. Hence (T,mT) is a factor of (X, ν) for T2
and T3 with factor map being the canonical projection. However, the measure on
the invertible extension, for which the original system is a factor, is unique, and
as X equipped with the Haar measure is an invertible extension also with factor map
being the canonical projection, it follows that ν and mX agree.
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It remains to show that the sets PT
q equidistribute as q → ∞ along a suitable

sequence. Using Weyl’s criterion, we need to show that for any m ∈ Z\ {0} we have

1

ϕ(q)

∑

a∈Z/qZ

′
e

(
m

a

q

)
q→∞−→ 0,

where
∑′ denotes the sum restricted to the congruence classes mod q which are

coprime to q. If gcd(m, q) > 1, we can cancel them partially and consider the
cancelled expressions. As m is fixed while q →∞, we can without loss of generality
assume that gcd(m, q) = 1. If q = pk is a power of a prime p, then

{
a

q

∣∣∣∣ gcd(a, q) = 1

}
=

p−1⊔

j=1

{
j+ pl

pk

∣∣∣∣ l = 0, . . . , pk−1 − 1

}

and

1

ϕ(q)

∑

a∈Z/qZ

′
e

(
m

a

q

)
= 1

ϕ(q)

p−1∑

j=1

pk−1−1∑

l=0

e

(
m

j+ pl

q

)

In particular, we see that

1

ϕ(q)

∑

a∈Z/qZ

′
e

(
m

a

q

)
=
{

0 if k > 1
−1

p−1 else

which yields the equidistribution statement along powers of p.
If q = q1 · · · qn is a product of powers q1, . . . , qn of distinct primes, then the

Chinese remainder theorem implies multiplicativity of the sum in the sense that it
can be written as a product of character sums as above, each factor corresponding
to the correct power of a prime divisor of q. If q contains a square, i.e. there is a
prime p and k > 1 such that pk | q, then the above discussion together with the
multiplicativity implies that the factor corresponding to pk vanishes and thus

∣∣∣∣∣∣
1

ϕ(q)

∑

a∈Z/qZ

′
e

(
m

a

q

)∣∣∣∣∣∣
= 0 < ε.

Otherwise, q = q1 · · · qn for distinct primes q1, . . . , qn. Fix some arbitrary ε > 0
and let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of prime numbers. Then there is
some N ∈ N such that (pi−1)−1 < ε for all i � N. Now assume that q � p1 · · · pN ,
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then we can find some 1 � i � m so that qi � pN , and thus

∣∣∣∣∣∣
1

ϕ(q)

∑

a∈Z/qZ

′
e

(
m

a

q

)∣∣∣∣∣∣
=

n∏

i=1

1

qi − 1
≤ 1

pN − 1
< ε.

Lemma 10.5 Consider the family of normalized counting measures on

HX
q,d =

{((
a

q
,

a

q
,

a

q

)
,

(
b

q
,

b

q
,

b

q

)) ∣∣∣∣ a, b ∈ Z
/

qZ, ab = d mod q

}
⊂ X2

for q ∈ N with 2 � q and 3 � q and gcd(q, d) = 1. Then any accumulation point is
a joining for the system generated by T2 and T3 in the first and their inverses in the
second factor.

Proof We note that the projection of the set HX
q,d to the second component is PX

q ,
because d is a unit mod q. Recall from the introduction that the maps T2 and T3
on R×Q2 ×Q3/Z[ 1

6 ] are realized on R× Z2 × Z3/Z also by multiplication by 2 and 3
respectively. Assume that b ∈ Z. Let k ∈ Z such that 2k ≡ 1 mod q, then

(
(2k)

b

q
, (2k)

b

q
, (2k)

b

q

)
≡
(

b

q
,

b

q
,

b

q

)
mod Z,

so that on points in PX
q ⊂ R× Z2 × Z3/Z the inverse of ×2 is given by multiplication

with 2−1 ∈ Z/qZ. The same argument works for×3. In particular it follows thatHX
q,d

is invariant under (T2,T2
−1) and (T3,T3

−1).
Let ρ be any weak∗ limit of the normalized counting measure on HX

q,d where d

is allowed to vary with q, then ρ is invariant under (T2,T2
−1) and under (T3,T3

−1).
Equidistribution of PX

q implies that ρ projects onto the Haar measure on X in both
components. Hence ρ is a joining.

Proof (of the Ineffective Equidistribution) We start with the more general statement
that for any sequence q → ∞ satisfying 2 � q and 3 � q and any sequence dq so
that gcd(q, dq) = 1, if gcd(m, n, q) = 1, then

Kq
m,dqn =

1

ϕ(q)

∑

ab≡dq mod q

e

(
ma+ nb

q

)
q→∞−→ 0.

By the preceding lemma, any weak∗ limit ρ of the normalized counting measures
on HX

q,dq
is a joining between the system generated by T2 and T3 and the system

generated by their inverses. By the disjointness theorem this joining is trivial,
i.e. ρ = mX ⊗ mX . In particular the limit is independent of the choice of the
subsequence and the whole sequence converges to the same limit ρ = mX ⊗ mX .
It follows that the corresponding counting measures on the torus T2 converge to the
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uniform measure mT2 . The integral of χm,n : T2 → C, (s, t) 	→ e(ms + nt) with
respect to the Haar measure vanishes whenever m, n are not simultaneously 0, so
the ineffective statement follows.

If on the other hand q = 2j3k for some ( j, k)→∞, we apply the same argument
replacing 2 and 3 by 5 and 7.

The general case can be reduced to these cases in a fashion similar to the proof of
Lemma 10.4. To this end assume that q1, q2 satisfy gcd(q1, q2) = 1 and assume q =
q1q2. Using the Chinese remainder theorem, we can find a, b ∈ Z so that aq1 ≡ 1
mod q2 and bq2 ≡ 1 mod q1. One calculates

Kq1
bm,bnKq2

am,an =
∑

x∈(Z/q1Z)×

∑

y∈(Z/q2Z)×
e

(
bmx+ bnx−1

q1
+ amy+ any−1

q2

)

=
∑

x∈(Z/q1Z)×

∑

y∈(Z/q2Z)×
e

(
m(aq1y+ bq2x)+ n(aq1y−1 + bq2x−1)

q

)

=Kq
m,n,

where the map Z/q1Z⊕Z/q2Z→ Z/qZ given by (x, y) 	→ bq2x+ aq1y is exactly
the isomorphism appearing in the proof of the Chinese remainder theorem and the
same theorem implies (Z/qZ)× ∼= (Z/q1Z)

× × (Z/q2Z)
×. This yields

Kq
m,n = Kq1

bm,bnKq2
am,an = Kq1

m,b2n
Kq2

m,a2n

q→∞−→ 0

after splitting q according to the cases discussed above.
The ineffective equidistribution statement in Theorem 10.2 now follows from

density of the characters inside C(T2).

10.3 Kloosterman Sums and Spectral Gap

We return to the study of X2 = SL2(Z)\SL2(R). This section, when explicated,
strongly connects dynamical properties of the action of subgroups of SL2(R) on X2
and Kloosterman sums, as the effective claims made here could be proven using
bounds on Kloosterman sums. For what follows, we recall that the action of SL2(R)

on X2 is defined by

(g, x) ∈ SL2(R)× X2 	→ g · x = xg−1 ∈ X2.
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10.3.1 Ineffective Equidistribution

As SL2(R) acts transitively on X2, it also acts ergodically. By a special feature
of SL2(R) (or rather of simple Lie groups), any ergodic action of SL2(R) is actually
strongly mixing. In particular,

∀f1, f2 ∈ L2(X2) : 〈πg( f1), f2〉 g→∞−→
∫

f1dmX2

∫
f2dmX2,

where the unitary representation π on L2(X2) of SL2(R) is defined by

πg( f )(x) := f (xg) mX2-a.e.,

for all f ∈ L2(X2) and for all g ∈ SL2(R). This is the “vanishing of matrix
coefficients at∞” or the Howe-Moore theorem, for which we refer to [15, Ch. 11].

We wish to explain how this proves the following ineffective version of a theorem
by Sarnak [29].

Theorem 10.6 Let P1 = U · SL2(Z) ⊂ X2 be the periodic horocycle orbit at the
identity coset, where U = {us :=

(
1 s

1

) ∣∣ s ∈ R
}

is the horocycle subgroup and P1 is
equipped with the normalized Lebesque measure mP1 (note that P1 ∼= T). Then

the push-forward (aT)∗mP1 of mP1 under the diagonal element aT =
(

T−1

T

)

equidistributes w.r.t. mX2 as T → 0.

Geometrically this theorem corresponds to the equidistribution of long periodic
horocycle orbits in X2, see Fig. 10.4. We note that the U-orbit aTU · Γ has
volume T−2, which follows from the calculation aTusa

−1
T = uT−2s.

Proof (Sketch) The idea is to thicken the very thin object P1 and its one-dimensional
Lebesgue measure in the two other directions (with the resulting “banana” having
positive Haar measure) and to apply the strong mixing property of SL2(R) � X2.

Fig. 10.4 The dashed line is
a periodic horocycle orbit,
which, if drawn within the
fundamental domain, would
look very messy, as
guaranteed by Sarnak’s
theorem
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This method commonly goes under the names mixing-trick, Margulis’ trick, or
banana-trick and has proven useful in many applications (e.g. [18]).

More precisely, fix f ∈ Cc(X2) and let ε > 0 arbitrary. By uniform continuity
of f , there exists some δ > 0 such that

dX2(x1, x2) < δ ⇒ | f (x1)− f (x2)| < ε,

where dX2 is the metric on X2 induced by the left-invariant metric on SL2(R). Using
basic properties of Lie groups, one can show that the map sending r, t, s ∈ R to the
product of matrices

usb(t, r) =
(

1 s
1

)(
et

r e−t

)

yields a local coordinate system around the identity. We use this coordinate system
to thicken the orbit P1 to a three-dimensional tube of positive measure. Using the
abundant continuity properties of the objects involved, we can find η > 0 such
that |t| < η and |r| < η implies

dSL2(R)

((
et

r e−t

)
, I

)
< δ

If now |t| < η, |r| < η, and s ∈ [0, 1], then (for T � 1)

dX2

(
Γ

(
1 s

1

)(
et

r e−t

)
a−1

T , Γ

(
1 s

1

)
a−1

T

)

=dX2

(
Γ

(
1 s

1

)
a−1

T aT

(
et

r e−t

)
a−1

T , Γ

(
1 s

1

)
a−1

T

)

�dSL2(R)

(
aT

(
et

r e−t

)
a−1

T , I

)
= dSL2(R)

((
et

T2r e−t

)
, I

)
< δ,

which in particular implies that

∣∣∣∣ f
(
Γ

(
1 s

1

)(
et

r e−t

)
a−1

T

)
− f

(
Γ

(
1 s

1

)
a−1

T

)∣∣∣∣ < ε.

As discussed in [15, Lemma 11.31], we can locally express the Haar measure in this
coordinate system. Integration of the above expression with respect to r, t ∈ (−η, η)

and s ∈ [0, 1] implies that

∣∣∣∣
1

mX2(B)

∫
f (aT · x)χB(x)dmX2(x)−

∫
f (aT · x)dmP1(x)

∣∣∣∣ < ε
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where χB is the indicator function of some neighbourhood B of I ∈ SL2(R).
However, for small enough T (or rather large enough T−1) the first expression is ε-
close to

∫
f dmX2

∫
1

mX2(B)
χBdmX2 =

∫
f dmX2

due to strong mixing.

10.3.2 Effective Decay of Matrix Coefficients

The mixing property mentioned above has the following significant strengthening,
which follows from the work of Selberg [31].

Theorem 10.7 (Effective Mixing on X2) For f1, f2 ∈ C∞c (X2) and for all g ∈ G
holds

∣∣∣∣〈πg( f1), f2〉 −
∫

f1dmX2

∫
f2dmX2

∣∣∣∣� ‖g‖−κ S( f1)S( f2)

for some absolute implicit constant and some absolute κ > 0, where S( f ) denotes
some fixed Sobolev norm for f ∈ C∞c (X2).

Using this theorem, one can prove an effective version of the equidistribution of
(pieces of) long periodic horocycles from Theorem 10.6. We refer to [36] for similar
arguments. In the case of the whole periodic horocycle orbit, much stronger results
appear already in [29].

Corollary 10.8 For f ∈ C∞c (X2) we have

∣∣∣∣
∫

f d(aT)∗mP1 −
∫

f dmX2

∣∣∣∣� TκS( f )

for some absolute implicit constant, some fixed κ > 0, and some fixed Sobolev norm.

10.4 Sparse Equidistribution of Primitive Points

In what follows, we want to consider subsets of the orbits aT · P1, and examine
equidistribution properties of these subsets. The question here is twofold: First we
are in some sense interested in how much of the U-orbit we actually need in order
to equidistribute in X2, and second we ask for the equidistribution of arithmetically
defined sets, i.e. whether the arithmetic nature of a subset forces the possibly small
collection to still equidistribute effectively.
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10.4.1 The Discrete Periodic Horocycle Orbit: Ineffective
Discussion

Recall from the preceding section that the long periodic orbits

Γ U

(
y1/2

y−1/2

)
= Γ

(
y1/2

y−1/2

)
U

equidistribute in X2 as their volume y−1 goes to infinity. We also recall, that we

denote ay−1/2 = (
√

y
1/
√

y

)
. Assume for the moment, that y = n−1 for some n ∈ N.

In this case we consider the discrete orbit Γ ay−1/2U(Z) consisting of n points, where

U(Z) =
{(

1 k
1

) ∣∣∣∣ k ∈ Z

}
.

We can use equidistribution of long periodic horocycles to deduce the following
discrete version.

Corollary 10.9 The discrete periodic orbit

{
k

n
+ i

n

∣∣∣∣ k = 0, . . . , n − 1

}

equidistributes inside Γ\H as n →∞ and so does the discrete periodic orbit

Γ

(
n− 1

2

n
1
2

)
U(Z)

in the tangent bundle Γ\SL2(R) ∼= Γ\T1(H) of the modular surface.

The above corollary and in particular Corollary 10.10 are in spirit related to a
conjecture by Nimish Shah, a much harder problem. The question is, whether certain
sequences along horocycles in compact quotients equidistribute in the full space.
Note that in the context of compact quotients, horocycle orbits are equidistributed.
We refer the reader to the work of Venkatesh, Tanis and Tanis-Vishe as well as
Sarnak-Ubis (cf. [30, 34–36]).

Proof (of Corollary 10.9) Let δ ∈ (0, 1) and thicken the discrete periodic orbit to
obtain

Pn,δ = Γ an1/2U(Z)

{(
1 s

1

) ∣∣∣∣ s ∈ [0, δ]
}
.
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Consider now the normalized Lebesgue measure mn,δ on this set and take the
weak∗ limit along some subsequence to obtain a limit point μδ . Recall from
above that the normalized probability measure on the full periodic orbit converges
to mX2 as n → ∞. Hence the normalized measure on the complement of Pn,δ

inside an−1/2 · P1 converges as well, say to the probability measure μ′δ. We note that
by construction μδ and μδ′ are both invariant probability measures for the action
of
(

1 1
1

)
. It follows that

δμδ + (1− δ)μ′δ = mX2 .

However, one of the characterizations of ergodicity is extremality of the probability
measure in question—in our case the measure mX2—within the convex set of
invariant probability measures. Since

(
1 1

1

)
acts ergodically, we obtain μδ = mX2 .

If now f ∈ Cc(X2) and ε > 0, then we can choose δ > 0 satisfying the uniform
continuity estimate for f and this given ε. This implies

∣∣∣∣∣

∫
f dmn,δ − 1

n

n−1∑

k=0

f

(
Γ

(
n− 1

2

n
1
2

)(
1 k

1

))∣∣∣∣∣ < ε,

so that the corollary follows by first letting n →∞, then ε→ 0 (and with it δ → 0).

10.4.2 The Discrete Periodic Horocycle: Effective Discussion

Like in the discussion of the full periodic orbit, we wish to upgrade the equidistri-
bution claim in the above corollary and give an error rate, which will be needed in
the following discussions. Indeed, using the effective version of equidistribution of
long periodic horocycles (10.8) instead of just equidistribution and the mean value
theorem instead of uniform continuity, one can effectivize the preceding proof in
order to obtain an error rate in terms of the function f and the covolume n.

Corollary 10.10 The discrete periodic orbit Γ an1/2U(Z) equidistributes effec-
tively: There exists some κ > 0 such that for any f ∈ C∞c (X2) we have

∣∣∣∣∣
1

n

n−1∑

k=0

f

(
Γ

(
n− 1

2

n
1
2

)(
1 k

1

))
−
∫

f dmX2

∣∣∣∣∣� n−κS( f ),

for some L2-Sobolev norm S on C∞c (X2).
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10.4.3 Selecting the Primitive Rational Points and Retaining
Effective Equidistribution

We want to choose an even sparser set from the discrete periodic orbit and want to
discuss its dynamics. To select this sparse set, we start with a short calculation.
Let n > 1 be any positive number, for the moment not necessarily an integer.
We will show below, that n in fact has to be an integer for the question we
are interested in. In addition to the periodic orbit (the so-called stable horocycle
orbit) discussed above, there is also the periodic orbit P′1 of Γ under the subgroup
V = {vr =

(
1
r 1

) ∣∣ r ∈ R
}
, called the unstable horocycle. In complete analogy to the

above discussion, one can show that the sequence of measures (aT)∗mP′1 supported

on one-dimensional periodic orbits of volume T2 equidistributes as T goes to∞. It is
an interesting question to find out, what the intersection points, if any, of stretched
one-dimensional V and U orbits of Γ are. To answer this question, it is sufficient,
to consider the intersections of a stretched U orbit with the orbit V · Γ of volume 1.
Explicitly, we wish to describe the set

{
Γ

(
1 s

1

) ∣∣∣∣ ∃s ∈ [0, 1)∃r ∈ [0, 1) : Γ
(

1 s
1

)(
n−1

n

)
= Γ

(
1
r 1

)}

and understand the relationship between s ∈ [0, 1) and r ∈ [0, 1) appearing in this
definition. So suppose that γ = ( a −b

c d

) ∈ Γ and s, r ∈ [0, 1) satisfy

(
a −b
c d

)(
1 s

1

)(
n−1

n

)
=
(

1
r 1

)

or equivalently

(
a as− b
c cs+ d

)
=
(

n
rn n−1

)
.

As γ ∈ SL2(Z), it follows that a = n ∈ N, s = b
n , r = c

n , where in particular we
have bc = 1− ad ≡ 1 mod (n). In other words, the set of pairs (r, s) obtained from
the geometric intersection above, is precisely the modulo-n hyperbolaHT

n that we
considered in Sect. 10.2. If we now consider the collection of points

Γ

(
1 b

n
1

)(
t

t−1

)
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for b ∈ Z coprime to n and t > 0, we observe the following behaviour:

• For t = 1 the points equidistribute on the periodic orbit Γ U ∼= T as n →∞.
• If t > 1, the points move closer together, sitting on the periodic orbit of length t−2

which moves to the cusp, as t →∞. For fixed t, the points equidistribute inside
the periodic orbit Γ

( t
t−1

)
U ∼= T as n →∞.

• For t < 1, the points (originally at distance about 1
n from each other) move apart

(along the U-orbit) as we shrink t. There are two special cases which help us
understand the dynamics as t → 0:

– When t = 1√
n
, the points, lying on the orbit of volume n, are at least at

distance 1 apart from the perspective of U ∼= R and form a potentially thin
subset of the set of points considered in Sect. 10.4.1.

– When t = 1
n , the points have moved apart at least to distance n, when viewed

along the U-orbit. However, by the above geometric-algebraic miracle, we
know that the points get to lie on the periodic orbit Γ V of volume 1, so in fact
they move closer together again (but in a different order).

– As t < 1
n goes to 0, the points remain on the periodic orbit Γ

( τ
τ−1

)
V of

volume τ 2 with τ = nt, which uniformly diverges into the cusp as τ → 0.

This above description of the rational points on Γ U serves as a motivation for
understanding the intermediate case t = 1√

n
better.

Theorem 10.11 The normalized counting measure on

{
Γ

(
1 b

n
1

)( 1√
n √

n

) ∣∣∣∣∣ gcd(b, n) = 1

}

equidistributes to mX2 as n →∞.

The proof (of an effective version) of this theorem is the content of [17]. Here, let
us provide a sketch of the proof of the theorem in increasingly harder cases:

• If n = p is a prime, then the theorem is an immediate consequence of
Corollary 10.9, since the two sets appearing in Theorem 10.11 and Corollary 10.9
differ only by one point (as ϕ(p) = p− 1).

• If n is a product of many prime powers but ϕ(n)
n � 1

100 say, then by the multiplica-

tivity of the totient function and using lim infn→∞ ϕ(n)
n = 0, there is one prime p

from a list of finitely many primes (independent of n) such that n is coprime to p.
This p is a unit mod n, so that the set

(
Z/nZ

)× = {b ∈ Z/nZ
∣∣ gcd(b, n) = 1

}
of

units mod n is invariant under multiplication by p. This multiplication can also
be constructed in a homogeneous space Xp (as indicated in the introduction),
so that under this multiplication ap : Xp → Xp our realization of the above
points is invariant and ap acts ergodically with respect to the Haar measure
on Xp. However, the ergodicity of ap together with equidistribution of the discrete
periodic orbit in Corollary 10.9 extended to Xp then gives Theorem 10.11. The
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correct space to use in this context is Xp = SL2(Z[1/p])\SL2(R×Qp), and the
map ap : Xp → Xp is given by

ap : x = Γp(g∞, gp) 	→ x

((
p−1

p

)
,

(
p−1

p

))
,

which commutes with the diagonal maps in SL2(R) considered above and
normalizes the upper unipotent group in SL2(R × Qp). In particular it fixes the
periodic orbit

Γp

{((
1 s∞

1

)
,

(
1 sp

1

)) ∣∣∣∣ s∞ ∈ R, sp ∈ Qp

}
∼= Z[1/p]

∖
R×Qp.

As ap can be realized as multiplication by a group element which is not contained
in a compact subgroup of SL2(R × Qp), we can use the Howe-Moore theorem
to deduce ergodicity of ap. We now can argue as in the proof of Corollary 10.9
using the assumption ϕ(n)

n � 1
100 to obtain the desired equidistribution.

• In the general case, we have

ϕ(n)

n
� 1

log log n
,

so the expression can go to zero along a subsequence, but only very slowly. In this
case one uses the smallest prime p coprime to n and effectivizes the argument
outlined above. Here an effective argument is required, because we can not use a
fixed dynamical system (p depends on n) and also because ϕ(n)

n may go to zero.
Spectral gap in the form of effective mixing (Theorem 10.7) is again the key to
the proof, together with a discrepancy argument.

We point out that the proof of the corresponding statement for Hilbert modular
surfaces is essentially the same but easier, i.e. consider the group G = SL2 defined
over k, where k is a totally real number field, and formulate the corresponding
statement on X = Resk/QG(Z)\Resk/QG(R). Then this can be proven without having to
consider a p-adic extension but instead making use of the existence of a similar non-
compact element a ∈ Resk/QG(Z) which normalizes the horospherical subgroups.
This case is examined in [24].

10.4.4 Another Application of the Disjointness Result

We wish to mention one more application of a disjointness result, which yields a
relatively soft proof of equidistribution of sparse, arithmetically defined subsets.
Instead of asking for equidistribution of the primitive points

{ i
n + j

n

∣∣ ( j, n) = 1
}
,
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we can ask the same question for a polynomial version thereof. Consider the set

{( i
n + p1( j)

n , . . . , i
n + pk( j)

n

) ∣∣∣ ( j, n) = 1
}
⊂ (Γ

∖
H
)k
,

where p1, . . . , pk ∈ Z[X] are polynomials. The disjointness result in [13] allows
a proof of the equidistribution of these sets as n → ∞ along any sequence for
which p, q � n, for the special case pl = Xl, where 1 � l � k. The method of
proof is similar to our discussion in Sect. 10.2.3, using the invariance of the sets
lifted to the p, q-adic cover of the unit tangent bundle under suitable diagonalizable
elements. To our knowledge, there is no proof of this using more classical number
theoretic methods.
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Chapter 11
Sarnak’s Conjecture: What’s New

Sébastien Ferenczi, Joanna Kułaga-Przymus, and Mariusz Lemańczyk

11.1 Introduction

11.1.1 Möbius Disjointness

Assume that T is a continuous map1 of a compact metric space X. Following Peter
Sarnak [148, 150], we will say that T, or, more precisely, the topological dynamical
system (X,T) is Möbius disjoint (or Möbius orthogonal)2 if:

lim
N→∞

1

N

∑

n�N

f (Tnx)μ(n) = 0 for each f ∈ C(X) and x ∈ X. (11.1)

1Most often, however not always, T will be a homeomorphism.
2μ stands for the arithmetic Möbius function, see next sections for explanations of notions that
appear in Introduction.
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In 2010, Sarnak [148, 150] formulated the following conjecture3:

Each zero entropy continuous map T of a compact metric space X is
Möbius disjoint.

(11.2)

Note that if f is constant then convergence (11.1) takes place in an arbitrary
topological system (X,T); indeed, 1

N

∑
n�N μ(n) → 0 is equivalent to the Prime

Number Theorem (PNT), e.g. [89, 160]. We can also interpret this statement as the
equivalence of the PNT and the Möbius disjointness of the one-point dynamical
system. The Prime Number Theorem in arithmetic progressions (Dirichlet’s theo-
rem) can also be viewed similarly: it is equivalent to the Möbius disjointness of the
system (X,T), where Tx = x + 1 on X = Z/kZ for each k � 1. Note also that the
classical Davenport’s [33] estimate: for each A > 0, we have

max
t∈T

∣∣∣∣∣∣

∑

n�N

e2π intμ(n)

∣∣∣∣∣∣
� CA

N

logA N
for some CA > 0 and all N � 2, (11.3)

yields the Möbius disjointness of irrational rotations.4

The present article is concentrated on an overview of research done during the
last 7 years5 on Sarnak’s conjecture (11.2) from the ergodic theory point of view. It
is also rather aimed at the readers with a good orientation in dynamics, especially
in ergodic theory. It means that we assume that the reader is familiar with at least
basics of ergodic theory, but often more than that is required, monographs [28, 50,
76, 78, 165] are among best sources to be consulted. In contrast to that, we included
in the article a selection of some basics of analytic number theory. Those which
appear here, in principle, are not contained in [146] and, as we hope, allow one for
a better understanding of dynamical aspects of some number-theoretic results. We
should however warn the reader that some number-theoretic results will be presented
in their simplified (typically, non-quantitative) forms, sufficient for some ergodic
interpretations but not putting across the whole complexity and depth of the results.
In particular, this remark applies to recent break-through results of Matomäki and

3To be compared with Möbius Randomness Law by Iwaniec and Kowalski [99], p. 338, that any
“reasonable” sequence of complex numbers is orthogonal to μ.
4In order to establish Möbius disjointness, we need to show convergence (11.1) (for all x ∈ X)
only for a set of functions linearly dense in C(X), so, for the rotations on the (additive) circle
T = [0, 1), we only need to consider characters. Note also that if the topological system (X,T) is
uniquely ergodic then we need to check (11.1) (for all x ∈ X) only for a subset of C(X) which is
linearly dense in L1.

In what follows, for inequalities (as (11.3)), we will also use notation � or O(·), or �A or
OA(·) if we need to emphasize a role of A > 0.
5For a presentation of a part of it, see [37].
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Radziwiłł [126] and some related concerning a behavior of multiplicative functions
on short intervals.6

11.1.2 Ergodic Theory Viewpoint on Sarnak’s Conjecture

Sarnak’s conjecture (11.2) is formulated as a problem in topological dynamics.
However, for each topological system (X,T) the set M(X,T) of (Borel, probability)
T-invariant measures is non-empty and we can study dynamical properties of
(X,T) by looking at all measure-theoretic dynamical systems (X,B, μ,T) for μ ∈
M(X,T). Via the Variational Principle, Sarnak’s conjecture can be now formulated
as Möbius disjointness of the topological systems (X,T) whose measure-theoretic
systems (X,B, μ,T) for all μ ∈ M(X,T) have zero Kolmogorov-Sinai entropy.
But one of main motivations for (11.2) in [150] was that this condition is weaker
than a certain (open since 1965) pure number-theoretic result, known as the Chowla
conjecture (see Sect. 11.4.1). Since the Chowla conjecture has its pure ergodic
theory interpretation (Sect. 11.4.1), the approach through invariant measures allows
one to see the implication7

Chowla conjecture ⇒ Sarnak’s conjecture

as a consequence of some disjointness (in the sense of Furstenberg) results in
ergodic theory. While the Chowla conjecture remains open, some recent break-
through results in number theory find their natural interpretation as particular
instances of the validity of Sarnak’s conjecture. Samples of such results are (see
Sects. 11.4.4.1 and 11.4.5):

1. The result of Matomäki, Radziwiłł and Tao [127]:

∑

h�H

∣∣∣∣∣∣

∑

m�M

μ(m)μ(m+ h)

∣∣∣∣∣∣
= o(HM)

(when H,M → ∞, H � M) implies that each system (X,T) for which all
invariant measures yield measure-theoretic systems with discrete spectrum is
Möbius disjoint.8

6For a detailed account of these results, we refer the reader to [153].
7As proved by Tao [156], the logarithmic averages version of the Chowla conjecture is equivalent
to the logarithmic version of Sarnak’s conjecture. We will see later in Sect. 11.4 that once the
logarithmic Chowla conjecture holds for the Liouville function λ, we have that all configurations
of ±1s appear in λ (infinitely often).
8The same argument applied to the Liouville function λ implies that the subshift Xλ generated by
λ is uncountable, see Sect. 11.4.
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2. The result of Tao [155]:

∑

n�N

μ(n)μ(n+ h)

n
= o(log N)

(when N → ∞) for each h = 0 implies that each system (X,T) for which all
invariant measures yield measure-theoretic systems with singular spectrum are
logarithmically Möbius disjoint.

This is done by:

• interpreting the number theoretic results as ergodic properties of the dynamical
systems given by the invariant measures of the subshift Xμ for which μ is quasi-
generic,

• using classical disjointness results in ergodic theory.

It is surprising and important that the ergodic theoretical methods of the last decades
that led to new non-conventional ergodic theorems and showed a particular role of
nil-systems, also appear in the context of Sarnak’s conjecture, and again the role
of nil-systems seems to be decisive. Together with some new disjointness results
in ergodic theory, it pushes forward significantly our understanding of Möbius
disjointness, at least on the level of logarithmic version of Sarnak’s conjecture. The
most spectacular achievement here is the recent result of Frantzikinakis and Host
[71] (see Sect. 11.4.5) who proved that each zero entropy topological system (X,T)

with only countably many ergodic measures is logarithmically Möbius disjoint.
The proofs reflect the “local” nature of all the aforementioned results. In other

words, regardless the total entropy of the system, to obtain (11.1) for a FIXED
x ∈ X (and all f ∈ C(X)), we only need to look at ergodic properties of the
dynamical systems given by measures “produced” by x itself (the limit points of the
empiric measures given by x). So, if all such measures yield zero entropy systems,
the Chowla conjecture implies (11.1) (for the fixed x and all f ∈ C(X)). When all
such measures yield systems with discrete spectrum/singular spectrum/countably
many ergodic components then the relevant Möbius disjointness holds (at x). Points
with one of the listed properties may appear in (X,T) having positive entropy. In
fact, a positive entropy system can be Möbius disjoint [45]. To distinguish between
zero and positive entropy systems it is natural to expect that in the zero entropy case
the behavior of sums in (11.1) is homogenous in x (for a fixed f ∈ C(X)). Indeed,
the uniform convergence (in x ∈ X, under the Chowla conjecture) of sums (11.1)
has been proved in [58] (see Sect. 11.5); in fact (11.2) is equivalent to Sarnak’s
conjecture in its uniform form and also in a uniform short interval form. Moreover
(still under the Chowla conjecture), for the Liouville function, no positive entropy
system satisfies (11.1) in its uniform short interval form.

The problem of uniform convergence turns out to be closely related to the
general question whether Möbius disjointness is stable under our ergodic theory
approach. More precisely, suppose that the topological dynamical systems (X,T)

and (X′,T ′) are such that the dynamical systems obtained from invariant measures
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are the same for each of them (up to measure-theoretic isomorphism). Does the
Möbius disjointness of (X,T) imply the Möbius disjointness of (X′,T ′)? Although
the answer in general seems unknown, in case of uniquely ergodic models of the
same measure-theoretic system a satisfactory (positive) answer can be given [58].

11.1.3 Content of the Article

We include the following topics:

• Sarnak’s conjecture a.e., Sarnak’s conjecture versus Prime Number Theorem in
dynamics—see Introduction and Sect. 11.2.

• Brief introduction to multiplicative functions, Prime Number Theorem, Kátai-
Bourgain-Sarnak-Ziegler criterion—see Sect. 11.3.

• Results of Matomäki, Radziwiłł and Matomäki, Radziwiłł, Tao on multiplicative
functions and some of their ergodic interpretations—see Sect. 11.4.

• Chowla conjecture, logarithmic Chowla and logarithmic Sarnak conjectures
(Tao’s results and Frantzikinakis and Host’s results)—see Sect. 11.4.

• Frantzikinakis’ theorem on some consequences of ergodicity of measures for
which μ is quasi-generic—see Sect. 11.4.

• Ergodic criterion for Sarnak’s conjecture—the AOP and MOMO properties
(uniform convergence in (11.1)), Sarnak’s conjecture in topological models—see
Sect. 11.5.

• Glimpses of results on Sarnak’s conjecture: systems of algebraic origin (horo-
cycle flows, nilflows); systems of measure-theoretic origin (finite rank systems,
distal systems), interval exchange transformations, systems of number-theoretic
origin (automatic sequences and related)—see Sect. 11.6.

• Related research: B-free systems, applications to ergodic Ramsey theory—see
Sect. 11.7.

11.1.4 Sarnak’s Conjecture a.e.

Before we really get into the subject of Sarnak’s conjecture, let us emphasize that
this is the requirement “for each f ∈ C(X) and x ∈ X” in (11.1) that makes Sarnak’s
conjecture deep and difficult to establish. As it has been already noticed in [150],
the a.e. version of (11.2) is always true regardless of the entropy assumption:

Proposition 11.1 ([150]) Let T be an automorphism of a standard Borel probabil-
ity space (X,B, μ) and let f ∈ L1(X,B, μ). Then, for a.e. x ∈ X, we have

1

N

∑

n�N

f (Tnx)μ(n) −−−→
N→∞ 0.
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For a complete proof, see [57]. The main ingredient is the Spectral Theorem which

replaces
∥∥∥ 1

N

∑
n�N f (Tnx)μ(n)

∥∥∥
2

by
∥∥∥ 1

N

∑
n�N znμ(n)

∥∥∥
L2(σf )

,9 together with Dav-

enport’s estimate (11.3) (for A = 2) which yields

∥∥∥
1

N

∑

n�N

f (Tnx)μ(n)
∥∥∥

2
� 1

log2 N
, N � 2.

The latter shows that, for ρ > 1, the function
∑

k�1

∣∣∣ 1
ρk

∑
n�ρk f (Tn·)μ(n)

∣∣∣ is in

L2(X, μ) which, letting ρ → 1 allows one to conclude for f ∈ L∞(X, μ). The
general case f ∈ L1(X, μ) follows from the pointwise ergodic theorem.

As shown in [51], a use of Davenport’s type estimate proved in [83] for the nil-
case, yields a polynomial version of Proposition 11.1. See also [29] for the pointwise
ergodic theorem for other arithmetic weights.

11.2 From a PNT in Dynamics to Sarnak’s Conjecture

The content of this section can be viewed as a kind of motivation for Sarnak’s
conjecture (and is written on the base of Tao’s post [157] and Sarnak’s lecture given
at CIRM [149]).

We denote by N := {1, 2, . . .} the set of positive integers. Given N ∈ N, we let
π(N) := { p � N : p ∈ P}. The classical Prime Number Theorem states that

lim
N→∞

π(N)

N/ log N
= 1. (11.4)

We will always refer to this theorem as the (classical) PNT.
Assume that T is a continuous map of a compact metric space X. Assume

moreover that (X,T) is uniquely ergodic, that is, the set M(X,T) of T-invariant
probability Borel measures is reduced to one measure, say μ. By unique ergodicity,
the ergodic averages go to zero (even uniformly) for zero mean continuous
functions:

1

N

∑

n�N

f (Tnx) −−−→
N→∞ 0

for each f ∈ C(X),
∫

X f dμ = 0, and x ∈ X. Hence, the statement that a PNT holds
in (X,T) “should” mean

lim
N→∞

1

π(N)

∑

P#p�N

f (Tpx) = 0 (11.5)

9σf stands for the spectral measure of f .
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for all zero mean f ∈ C(X) and x ∈ X (in what follows, instead of
∑

P#p, we write

simply
∑

p if no confusion arises).10 Let us see how to arrive at (11.5) differently.

Recall that the von Mangoldt function � is defined by �(n) = log p if n = pk

for a prime number p (and k � 1) and �(n) = 0 otherwise. Contrary to most
of arithmetic functions considered in this article, � is not multiplicative. It is not
bounded either and its support has zero density. The (classical) PNT is equivalent to

1

N

∑

n�N

�(n) −−−→
N→∞ 1.

A given sequence (an) ⊂ C can be said to satisfy a PNT whenever we can give an
asymptotic estimate on

∑

n�N

an�(n)

when N tends to infinity; thus the classical PNT is a PNT for the sequence an = 1.
In particular, a sequence (an) also satisfies a PNT if

∑

n�N

an�(n) =
∑

n�N

an + o(N), (11.6)

and, if additionally (an) has zero mean, i.e. if 1
N

∑
n�N an −−−→

N→∞ 0, then (an)

satisfies a PNT if

1

N

∑

n�N

an�(n) −−−→
N→∞ 0. (11.7)

An interesting special case is an = (−1)n, which has zero mean. Here, we do have
estimates of the sums of �(n) over the odd numbers smaller than N, but they are of
the order of N, thus (11.7) is not satisfied. Beyond this point, we will not be studying
such particular cases and we shall always write that the sequence (an) satisfies a
PNT whenever (11.6) holds.

Zero mean sequences are easily “produced” in uniquely ergodic systems. We will
say that a uniquely ergodic topological dynamical system (X,T) satisfies a PNT if

1

N

∑

n�N

f (Tnx)�(n) −−−→
N→∞ 0 (11.8)

10We recall that Bourgain in [16–18], proved that for each α � (1 +√3)/2, each automorphism
T of a probability standard Borel space (X,B, μ) and each f ∈ Lα(X,B, μ) the sums in (11.5)
converge for a.e. x ∈ X. The result has been extended by Wierdl in [170] for all α > 1.
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for all zero mean f ∈ C(X) and x ∈ X. We have

1

N

∑

n�N

f (Tnx)�(n) = 1

N

∑

p�N

f (Tpx) log p+ 1

N

∑

pk�N,k�2

f (Tpk
x) log p.

Now, in the second sum if pk � N then p ∈ [1,√N]; the largest value of log p is
bounded by 1

2 log N, therefore, the second sum is of order O(
√

N · log N/N), hence

of order N− 1
2+ε for each ε > 0. Thus, a PNT in (X,T) means that

1

N

∑

p�N

f (Tpx) log p −−−→
N→∞ 0 (11.9)

for all zero mean f ∈ C(X) and x ∈ X. Note that by the classical PNT to prove (11.9),
we need to show it for a linearly dense set of functions.11

Let us now write

1

N

∑

p�N

f (Tpx) log p = 1

N

∑

p�N/ log N

f (Tpx) log p+ 1

N

∑

N/ log N�p�N

f (Tpx) log p.

We have 1
N

∑
p�N/ log N f (Tpx) log p = O(1/ log N) (by 1

M

∑
p�M log p → 1 when

M →∞). Moreover, write f = f+ − f− and then we have

log N − log log N

N

∑

N/ log N�p�N

f+(Tpx)

� 1

N

∑

N/ log N�p�N

f+(Tpx) log p � log N

N

∑

N/ log N�p�N

f+(Tpx)

as log N − log log N � log p � log N for the p in the considered interval. Now,
π(N)/(N/(log N − log log N)) −−−→

N→∞ 1 and π(N)/(N/ log N) −−−→
N→∞ 1, whence

∣∣∣∣∣∣
1

N

∑

p�N

f+(Tpx) log p− 1

π(N)

∑

p�N

f+(Tpx)

∣∣∣∣∣∣
−−−→
N→∞ 0.

11Indeed, we have
∣∣∣∣∣∣

1

N

∑

p�N

f (Tpx) log p− 1

N

∑

p�N

g(Tpx) log p

∣∣∣∣∣∣

� 1

N

∑

p�N

| f (Tpx)− g(Tpx)| log p � ‖ f − g‖ 1

N

∑

p�N

log p = O(‖ f − g‖),

as condition 1
N

∑
n�N �(n) −−−→

N→∞ 1 is equivalent to 1
N

∑
p�N log p −−−→

N→∞ 1.
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Repeating the same reasoning with f+ replaced by f− and by (11.9), we obtain that
the statement a PNT holds in (X,T) is equivalent to (11.5) for all zero mean f ∈
C(X) and x ∈ X.

Remark 11.2 By replacing � in (11.8) by μ, we come back to Sarnak’s conjecture.
The identity � = μ ∗ log (see (11.10) below), i.e. �(n) = ∑d|n μ(d) log(n/d) =
−∑d|n μ(d) log d suggests some other connections between the simultaneous
validity of a PNT and Möbius disjointness in (X,T) but no rigorous theorem toward
a formal equivalence of the two conditions has been proved. Actually, such an
equivalence taken literally does not hold. Indeed, the fact that the support of � is of
zero upper Banach density makes a PNT vulnerable under zero density replacements
of the observable ( f (Tnx)). On the other hand, Möbius orthogonality is stable under
such replacements. We illustrate this using the following simple example.

Consider the classical case an = 1 for all n ∈ N. This is the same as to consider
a PNT in a uniquely ergodic model12 of the one-point system. One can now ask
if we have a PNT in all uniquely ergodic models of the one-point system (it is
an exercise to prove that all such models are Möbius disjoint). Take any sequence
(cpk)pk ∈ {−1, 1}N and define bn as an when n = pk and bpk = cpk . We can see that

1

N

∑

n�N

bn�(n) = 1

N

∑

pk�N

cpk log p.

Now, the subshift Xb ⊂ {−1, 1}N generated by b (cf. (11.27)) has only one invariant
measure δ11..., so it is a uniquely ergodic model of the one-point system and if
we take f (z) = 1 − z(1) (z ∈ Xb) as our continuous function, we can see that f
has zero mean but neither (11.8) nor (11.5) are satisfied if the sequence c is badly
behaving. It follows that we can expect a PNT to hold only in some classes of
“natural” dynamical systems, samples of which we will see in Sect. 11.6.

Returning to our discussion on a PNT, in any such situation, given a bounded
sequence ( f (n)) ⊂ C, we can write

∑

n�N

f (n)�(n) = −
∑

n�N

f (n)
∑

d|n
μ(d) log(d) = −

∑

d�N

μ(d) log d
∑

e�N/d

f (ed).

Then a further decomposition of the second sum into a structured part and
a remainder leads to two sums and allows one for an application of Möbius
Randomness Law to the second sum in order to predict the correct main term value
of
∑

n�N f (n)�(n), see [149].

12We recall that if (Z,D, κ,R) is a measure-preserving system then by its uniquely ergodic model
we mean a uniquely ergodic system (X,T) with the unique (Borel) T-invariant measure μ such
that (Z,D, κ,R) is measure-theoretically isomorphic to (X,B(X), μ,T).
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11.3 Multiplicative Functions

11.3.1 Definition and Examples

An arithmetic function u : N → C is called multiplicative if u(1) = 1 and
u(mn) = u(m)u(n) whenever (m, n) = 1. If u(mn) = u(m)u(n) without the
coprimeness restriction on m, n, then u is called completely multiplicative. Clearly,
each multiplicative function is entirely determined by its values at pα, where p ∈ P

is a prime number and α ∈ N (for completely multiplicative functions α = 1). A
prominent example of a multiplicative function is the Möbius function μ determined
by μ(p) = −1 and μ(pα) = 0 for α � 2. Note that μ2 (which is obviously
also multiplicative) is the characteristic function of the set of square-free numbers.
The Liouville function λ : N → C is completely multiplicative and is given by
λ(p) = −1. Clearly, μ = λ · μ2 and we will see soon some more relations between
μ and λ. Many other classical arithmetic functions are multiplicative, for example:
the Euler function φ; the function n 	→ (−1)n+1 is a periodic multiplicative function
which is not completely multiplicative; d(n) :=number of divisors of n, n 	→ 2ω(n),
where ω(n) stands for the number of different prime divisors of n; σ (n) = ∑d|n d.
Recall that given q � 1, a function χ : N → C is called a Dirichlet character of
modulus q if:

1. χ is q-periodic and completely multiplicative,
2. χ(n) = 0 if and only if (n, q) = 1.

It is not hard to see that Dirichlet characters are determined by the ordinary
characters of the multiplicative group (of order φ(q)) (Z/qZ)∗ of invertible (under
multiplication) elements in Z/qZ. The Dirichlet character χ1(n) := 1 iff (n, q) = 1
is called the principal character of modulus q. Moreover, each periodic, completely
multiplicative function is a Dirichlet character (of a certain modulus). Another
class of important (completely) multiplicative functions is given by Archimedean
characters n 	→ nit = eit log n which are indexed by t ∈ R.

11.3.2 Dirichlet Convolution, Euler’s Product

Recall that given two arithmetic functions u, v : N → C, by their Dirichlet
convolution u ∗ v we mean the arithmetic function

u ∗ v(n) :=
∑

d|n
u(d)v(n/d), n ∈ N. (11.10)
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If by A we denote the set of arithmetic functions then (A,+, ∗) is a ring which is
an integral domain and the unit e ∈ A is given by 1{1}.13 There is a natural ring
isomorphism between A and the ring D of (formal)14 Dirichlet series

A # u 	→ U(s) :=
∞∑

n=1

u(n)
ns

∈ D, s ∈ C,

under which

U(s)V(s) =
∞∑

n=1

u ∗ v(n)

ns
.

When u = 1N then the Dirichlet series defines the Riemann ζ function15:

ζ(s) =
∞∑

n=1

1

ns for Re s > 1.

It is classical that if u and v are multiplicative then so is their Dirichlet
convolution. The importance of multiplicativity can be seen in the representation
of the Dirichlet series of a multiplicative function u as an Euler’s product. Indeed, a

general term of
∏

p∈P(1+u(p)p−s+u(p2)p−2s+ . . .) has the form
u(p

α1
i1

)·...·u(pαr
ir

)

(p
α1
i1
·...·pαr

ir
)s =

u(p
α1
i1
·...·pαr

ir
)

(p
α1
i1
·...·pαr

ir
)s , i.e. equals u(n)

ns for some n. It easily follows that

∑

n�1

u(n)
ns

=
∏

p∈P
(1+ u( p)p−s + u( p2)p−2s + . . .).

If additionally u is completely multiplicative (and |u| � 1), then u(pk) = u(p)k and

∞∑

n=1

u(n)
ns

=
∏

p∈P
(1− u( p)p−s)−1.

13The Möbius Inversion Formula is given by μ ∗ 1N = e.
14We will not discuss here the problem of convergence of Dirichlet series, see [146].
15An analytic continuation of ζ yields a meromorphic function on C (with one pole at s = 1)
satisfying the functional equation

ζ(s) = 2sπ s−1 sin
(πs

2

)
Γ (1− s)ζ(1 − s). (11.11)

Because of the sine, ζ(−2k) = 0 for all integers k � 1—these are so called trivial zeros of ζ

(ζ(2k) = 0 since Γ has simple poles at 0,−1,−2, . . .). In Re s > 1 there are no zeros of ζ (ζ
is represented by a convergent infinite product), so except of −2k, k � 1, there are no zeros for
s ∈ C, Re s < 0 (as Re(1 − s) > 1). The Riemann Hypothesis asserts that all nontrivial zeros of ζ
are on the line x = 1

2 . See [146].



174 S. Ferenczi et al.

Note that if u = μ, we obtain

∑

n�1

μ(n)

ns
=
∏

p∈P
(1− p−s)

since μ(p) = −1 and μ(pr) = 0 whenever r � 2. Since for the Riemann ζ function,
we have ζ(s) =∏p∈P(1− p−s)−1 for Re s > 1, we obtain the following.

Corollary 11.3 We have 1
ζ(s) =

∑
n�1

μ(n)
ns whenever Re s > 1.

We could have derived the above assertion in a different way. Indeed, μ ∗ 1N = e.
If G(s) :=∑∞

n=1
μ(n)

ns stands for the Dirichlet series of the Möbius function, then

G(s) · ζ(s) =
∞∑

n=1

(μ ∗ 1N)(n)

ns
=

∞∑

n=1

e(n)
ns

= 1.

11.3.3 Distance Between Multiplicative Functions

Denote by

M := {u : N→ C : u is multiplicative and |u| � 1}. (11.12)

Let u, v ∈M. Define the “distance” function D on M by setting

D(u, v) :=
⎛

⎝
∑

p∈P

1

p

(
1− Re

(
u( p)v( p)

))
⎞

⎠
1/2

. (11.13)

For each u, v,w ∈M, we have:

• D(u,u) � 0; D(u,u) = 0 iff
∑

p∈P 1
p (1 − |u(p)|2) = 0 iff |u(p)| = 1 for all

p ∈ P, so D(nit, nit) = 0 for each t ∈ R, D(λ,λ) = D(μ,μ) = 0. Of course,
if u(p) = 0 for each p ∈ P then D(u,u) = +∞. Moreover, φ(n)/n ∈ M and

D(φ(n)/n,φ(n)/n) =∑p∈P 1
p (1− (1−p)2

p2 ) is positive and finite.
• D(u, v) = D(v,u).
• D(u, v) � D(u,w)+ D(w, v), see [81].

When D(u, v) < +∞ then one says that u pretends to be v. For example, μ2 and
φ(n)/n pretend to be 1 (as

∑
p∈P 1

p (1− p−1
p ) =∑p∈P 1

p2 < +∞).

Lemma 11.4 ([81]) For each u, v,w,w′ ∈M, we have

(i) D(uw, vw′) � D(u, v)+ D(w,w′).
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Moreover, by (i) and a simple induction,

(ii) mD(u, v) � D(um, vm) for all m ∈ N.

If we fix t = 0 and k � k0 then the number of p ∈ P satisfying

exp

(
2π

t
(k + 1

3
)

)
� p � exp

(
2π

t
(k + 2

3
)

)

is (by the PNT) at least C exp(2πk/t)
k/t (for a constant C > 0), whence

∣∣∣∣

{
p ∈ P : k + 1

3
� t log p

2π
� k+ 2

3

}∣∣∣∣ � C
exp(2πk/t)

k/t
.

It follows that

∑

exp( 2π
t (k+ 1

3 ))�p�exp( 2π
t (k+ 2

3 ))

1

p
(1− cos(t log p)) � C′

1

k
(11.14)

for a constant C′ > 0. Now, using (11.13), (11.14) and summing over k, we obtain
the following16:

D(1, nit) = ∞ for each t = 0. (11.15)

It is not difficult to see that for t = 0, D(χ, nit) = +∞ for each Dirichlet character
χ , while for t = 0, we have D(χ, 1) < +∞ if and only if χ is principal.

11.3.4 Mean of a Multiplicative Function: The Prime Number
Theorem (PNT)

The distance D is useful when we want to compute means of multiplicative
functions. Given an arithmetic function u : N → C, its mean M(u) is defined as
M(u) := limN→∞ 1

N

∑
n�N u(n) (if the limit exists).

Theorem 11.5 (Halász; e.g. Thm. 6.3 [60]) Let u ∈ M. Then M(u) exists and is
non-zero if and only if

(i) there is at least one positive integer k so that u(2k) = −1, and
(ii) the series

∑
p∈P 1

p (1− u(p)) converges.

16This proof of (11.15) has been shown to us by G. Tenenbaum.
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When these conditions are satisfied, we have

M(u) =
∏

p∈P

(
1− 1

p

)(
1+

∞∑

m=1

p−mu( pm)

)
.

The mean value M(u) exists and is zero if and only if either

(iii) there is a real number τ , so that for each positive integer k, u(2k) = −2kiτ ,
moreover D(u, niτ ) < +∞; or

(iv) D(u, nit) = ∞ for each t ∈ R.

Corollary 11.6 (Wirsing’s Theorem) If u ∈M is real-valued then M(u) exists.

Proof Since Re(pit) = Re(p−it), and u(p) ∈ R, we have

D(1, n2it) = D(n−it, nit) � 2D(u, nit)

by the triangle inequality. By (11.15), it follows that D(u, nit) = +∞ for each
0 = t ∈ R. Hence, if D(u,1) = +∞, then D(u, nit) = +∞ for each t ∈ R and then
M(u) = 0 by Halász’s theorem (iv).

If not then D(u, 1) < +∞. Then the series
∑

p∈P 1
p (1− u(p)) converges (so (ii)

is satisfied) and we check whether or not u(2k) = −1 for all k ∈ N, that is, either (i)
holds or (iii) holds.

Remark 11.7 It follows from (11.15) that in Halász’s theorem (iii) and (iv) are two
disjoint conditions.

Remark 11.8 Not all functions from M have mean. Indeed, an Archimedean
character nit has mean iff t = 0. This can be shown by a direct computation: apply
Euler’s summation formula to f (x) = xit with t = 0, to obtain 1

N

∑
n�N nit =

Nit

it+1 + O
(

log N
N

)
.

Theorem 11.9 (e.g. [81, 89, 160]) The PNT is equivalent to M(μ) = 0.

Remark 11.10 The statement above is an elementary equivalence, see the discus-
sion in Section 4 [42]. For a PNT for a more general f (i.e. not for f = 1) the relation
between such a disjointness and sums over the primes requires more quantitative
estimates than simply o(N).

Remark 11.11 By Halász’s theorem, condition M(μ) = 0 is equivalent to
D(μ, nit) = ∞ for each t ∈ R (μ does not pretend to be nit), and this can be
established similarly to the proof of (11.15).

The PNT tells us about cancelations of +1 and −1 for μ. When one requires a
behavior similar to random sequences, say “square-root type cancelation”, the result
is much stronger:

Theorem 11.12 (Littlewood, see [27]) The Riemann Hypothesis holds if and only

if for every ε > 0, we have
∑

n�N μ(n) = Oε(N
1
2+ε).
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This result is not hard to establish and we show the sufficiency: By Corollary 11.3,
we have

1

ζ(s)
=

∞∑

n=1

μ(n)

ns
= −

∞∑

n=1

μ(n)
∫ ∞

n
dx−s = s

∞∑

n=1

μ(n)
∫ ∞

n

dx

xs+1 .

Setting M(x) =∑n�x μ(n), we obtain

1

ζ(s)
= s

∫ ∞

1

M(x)

xs+1 dx, Re s > 1 (11.16)

and, by the assumption on M(·),
∫ ∞

1

∣∣∣∣
M(x)

xs+1

∣∣∣∣ dx =
∫ ∞

1

∣∣M(x)
∣∣

xRe s+1 dx �
∫ ∞

1
x

1
2+ε−(Re s+1) dx =

∫ ∞

1
x−Re s− 1

2+ε dx.

It follows that the integral on the RHS of (11.16) is absolutely convergent for Re s >
1
2 + ε. Hence, (11.16) yields an analytic extension of 1

ζ(·) to {s ∈ C : Re s > 1
2 + ε}.

In this domain there are no zeros of ζ and by the functional equation (see (11.11))
on ζ , we obtain the Riemann Hypothesis.

11.3.5 Aperiodic Multiplicative Functions

Denote by

Mconv := {u ∈M : lim
N→∞

1

N

∑

n�N

u(an+ r) exists for all a, r ∈ N}.

The following is classical.

Lemma 11.13 Let u ∈M. Then u ∈Mconv if and only if the mean value M(χ · u)
exists for each Dirichlet character χ .

An arithmetic function u : N → C is called aperiodic if, for all a, r ∈ N, we
have limN→∞ 1

N

∑
n�N u(an + r) = 0. Similarly to Lemma 11.13, we obtain that

u ∈ M is aperiodic if and only if M(χ · u) = 0 for each Dirichlet character χ .
Delange theorem (see, e.g., [81]) gives necessary and sufficient conditions for u to
be aperiodic. In particular, each u ∈M satisfying D(u, χ · nit) = 0 for all Dirichlet
characters χ and all t ∈ R, is aperiodic. Classical multiplicative functions as μ or λ

are aperiodic.
Frantzikinakis and Host in [70] prove a deep structure theorem for multiplicative

functions from M. One of the consequences of it is the following characterization
of aperiodic functions: u ∈ M is aperiodic if and only if it is uniform, that is, all
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Gowers uniformity seminorms17 vanish [70]. In [12] (see Theorem 1.3 therein), this
result is extended to show that u ∈ Mconv is either uniform or rational.18 Also, a
variation of this result has been proved in [12] (see Theorem A therein):

for each positive density level set E = {n ∈ N : u(n) = c} of
u ∈ M there is a (unique if density is smaller than 1) rational (i.e.
coming from a rational function from M) level set R of v ∈ M such
that d(R)1E − d(E)1R is Gowers uniform.

(11.17)

For example, for E = {n ∈ N : μ(n) = 1} the unique set R is just the set of
square-free numbers.

11.3.6 Davenport Type Estimates on Short Intervals

Given u ∈M, for our purposes we will need additionally the following19: for each
(bn) ⊂ N with bn+1 − bn →∞ and any c ∈ C, |c| = 1, we have

1

bK+1

∑

k�K

∣∣∣∣∣∣

∑

bk�n<bk+1

cnu(n)

∣∣∣∣∣∣
−−−→
K→∞ 0. (11.18)

It is not hard to see that if u ∈M satisfies (11.18) for each (bn) and c as above, then
it must be aperiodic.

17For N ∈ N we write [N] for the set {1, 2, . . . ,N}. Given h,N ∈ N and f : N → C, we let
Sh f (n) = f (n + h) and fN = 1[N] · f . For s ∈ N, the Gowers uniformity seminorm [80] ‖.‖Us[N] is
defined in the following way:

‖ f‖U1[N]
:=
∣∣∣∣∣

1

N

N∑

n=1

fN(n)

∣∣∣∣∣

and for s � 1

‖ f‖2s+1

Us+1
[N]
:= 1

N

N∑

h=1

∥∥ fNSh fN
∥∥2s

Us[N]
.

A bounded function f : N→ C is called uniform if ‖ f‖Us[N] converges to zero as N →∞ for each
s � 1.
18An arithmetic function u is rational if for each ε > 0 there is a periodic function v such that
lim supN→∞ 1

N

∑
n�N |u(n) − v(n)| < ε. Note that since μ is aperiodic, whence orthogonal to

all periodic sequences, it will also be orthogonal to each rational u [12]. An example of rational
sequence is given by μ2. For more examples, see the sets of B-free numbers in the Erdös case in
Sect. 11.7.
19To be compared with the estimates (11.3), where we drop the sup requirement.



11 Sarnak’s Conjecture: What’s New 179

In fact, it follows from a break-through result in [126] and [127] that the class of
u ∈M for which (11.18) holds contains all u for which

inf|t|�M,χ mod q,q�Q
D(u, n 	→ χ(n)nit;M)2 →∞, (11.19)

when 10 � H � M, H → ∞ and Q = min(log1/125 M, log5 H); here χ runs over
all Dirichlet characters of modulus q � Q and

D(u, v;M) :=
⎛

⎝
∑

p�M,p∈P

1− Re(u( p)v( p))

p

⎞

⎠
1/2

for each u, v ∈ M. Moreover, classical multiplicative functions like μ and λ

satisfy (11.19), see [127].
Finally, note that (11.18) true for all (bn) as above is equivalent to the following

statement:

1

M

∑

M�m<2M

∣∣∣∣∣∣

∑

m�h<m+H

chu(h)

∣∣∣∣∣∣
−−−−−−−−−−−→
M,H→∞,H=o(M)

0 (11.20)

(we can also replace the first sum by
∑

1�m<M), see [59] for details. This statement
is much closer to the original formulations of (simplified versions of) theorems from
[126, 127].

One more consequence of the main result in [126] is the following:

Theorem 11.14 (Thm. 1.1 in [127] and a Corollary for k = 2 Therein) For H →
∞ arbitrarily slowly with M →∞ (H � M), we have

∑

h�H

∣∣∣∣∣∣

∑

m�M

μ(m)μ(m+ h)

∣∣∣∣∣∣
= o(HM).

11.3.7 The KBSZ Criterion

Sarnak’s conjecture is aimed at showing that deterministic sequences (i.e. those
given as observable sequences in the zero entropy systems) are orthogonal to
μ. In particular, as μ is a multiplicative function, the result20 below establishes
disjointness with μ.

20The main ideas for this result appeared in [30] and [134]. It was first established in a slightly
different form in [106] and then in [21], see also [88] for a proof. The criterion has its origin in the
bilinear method of Vinogradov [164] which is a technique to study sums of a over primes in terms
of sums over progressions

∑
n�N adn and sums

∑
n�N ad1nad2n. If an = f (Tnx) then these sums

are Birkhoff sums for powers of T and their joinings.
In what follows we will refer to Theorem 11.15 as to the KBSZ criterion.
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Theorem 11.15 ([21, 106]) Assume that (an) is a bounded sequence of complex
numbers. Assume that for all prime numbers p = q

1

N

∑

n�N

apnaqn −−−→
N→∞ 0. (11.21)

Then, for each multiplicative function u ∈M, we have

1

N

∑

n�N

anu(n) −−−→
N→∞ 0. (11.22)

For example, see [106], the criterion applies to the sequences of the form (eiP(n)),
where P ∈ R[x] has at least one irrational coefficient (different from the constant
term).

In the context of dynamical systems, we use this criterion for an = f (Tnx), n � 1.
Clearly, this leads us to study the behavior of different (prime) powers of a fixed
map T. We should warn the reader that when applying Theorem 11.15, we do not
expect to have (11.21) satisfied for all continuous functions, in fact, even in uniquely
ergodic systems, in general, it cannot hold for all zero mean functions21 but we need
a subset of C(X) which is linearly dense, cf. footnote 4.

We will also need the following variation of Theorem 11.15, see [59]:

Proposition 11.16 Assume that (an) is a bounded sequence of complex numbers.
Assume, moreover, that

lim sup
p,q→∞

different primes

⎛

⎝lim sup
N→∞

∣∣∣∣∣∣
1

N

∑

n�N

apnaqn

∣∣∣∣∣∣

⎞

⎠ = 0. (11.23)

Then, for each multiplicative function u : N→ C, u ∈M, we have

lim
N→∞

1

N

∑

n�N

an · u(n) = 0. (11.24)

Remark 11.17 In contrast to the KBSZ criterion given by Theorem 11.15, condi-
tion (11.23) has its ergodic theoretical counterpart—the property called AOP (see
Sect. 11.5) which is a measure-theoretic invariant.

21We can easily see that when Tx = x+α is an irrational rotation on T = [0, 1), then, by the Weyl
criterion on uniform distribution, (11.21) is satisfied for all characters (for all x ∈ T), but there are
continuous zero mean functions for which (11.21) fails [112].



11 Sarnak’s Conjecture: What’s New 181

11.4 Chowla Conjecture

In this section we get into the subject of the Chowla conjecture which is the main
motivation for Sarnak’s conjecture.

11.4.1 Formulation and Ergodic Interpretation

The Chowla conjecture deals with higher order correlations of the Möbius func-
tion,22 that is, the conjecture asserts that

1

N

∑

n�N

μj0(n)μj1(n+ k1) . . .μ
jr(n+ kr) −−−→

N→∞ 0 (11.25)

whenever 1 � k1 < . . . < kr, js ∈ {1, 2} not all equal to 2, r � 0.23

We will now explain an ergodic meaning of the Chowla conjecture. Recall that
given a dynamical system (X,T) and μ ∈ M(X,T), a point x ∈ X is called generic
for μ if

1

N

∑

n�N

f (Tnx) −−−→
N→∞

∫

X
f dμ

for each f ∈ C(X). Equivalently, 1
N

∑
n�N δTnx −−−→

N→∞ μ (we recall that M(X,T) is

endowed with the weak∗ topology which makes it a compact metrizable space). By
compactness, each point is quasi-generic for a certain measure ν ∈ M(X,T), i.e.

1

Nk

∑

n�Nk

δTnx −−−→
k→∞ ν

22As a matter of fact, in [27], it is formulated for the Liouville function. We follow [150]. For
a discussion on an equivalence of the Chowla conjecture with μ and λ, we invite the reader
to [143]. As shown in [127], there are non-pretentious (completely) multiplicative functions for
which Chowla conjecture fails. For more information, see the discussion on Elliot’s conjecture in
[127].
23The Chowla conjecture is rather “close” in spirit to the Twin Number Conjecture in the sense
that the latter is expressed by (∗) ∑n�x �(n)�(n+2) = (2Π2) ·x+o(x), where Π2 = ∏p>2(1−

1
(p−1)2 ) = 0, 66016 . . . which can be compared with

∑
n�x μ(n)μ(n+ 2) = o(x) which is “close”

to the Chowla conjecture, see e.g. [158]. A recent development shows that it is realistic to claim
that the Chowla conjecture with an error term of the form o((log N)−A) for some A large enough
(A depending on the number of shifts of μ that are considered) implies (∗). (Of course, everywhere
� is a good approximation of 1P.)

See also [138] for a (conditional) equivalence of (∗) with
∑

n�N �(n)μ(n+ 2) = o(N).
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for a certain subsequence Nk →∞. Let24

Q-gen(x) := {ν ∈ M(X,T) : x is quasi-generic for ν}. (11.26)

Assume now that we have a finite alphabet A. We consider (AZ, S), so called full
shift, or more precisely, two-sided full shift, where AZ is endowed with the product
topology and S((xn)) = (yn) with yn = xn+1 for each n ∈ Z. Each X ⊂ AZ that is
closed and S-invariant yields a subshift, i.e. the dynamical system (X, S). One way
to obtain a subshift is to choose x ∈ AZ and consider the closure Xx of the orbit of x
via S. If x is given as a one-sided sequence, x ∈ AN, we still might consider

Xx := { y ∈ AZ : each block appearing in y appears in x} (11.27)

to obtain a two-sided subshift. In case when each block appearing in x reappears
infinitely often, Xx = {Snx : n ∈ Z}, for some x for which x( j) = x( j) for each
j � 1 but, in general, there is no such a good x. Moreover, we will let ourselves
speak about a one-sided sequence x to be generic or quasi-generic for a measure
ν ∈ M(Xx, S).

Now take A = {−1, 0, 1}. For each subshift X ⊂ {−1, 0, 1}Z let θ ∈ C(X) be
defined as

θ( y) = y(0), y ∈ X. (11.28)

Note that directly from the Stone-Weierstrass theorem we obtain the following.

Lemma 11.18 The linear subspace generated by the constants and the family

{θ j0 ◦ Sk0 · θ j1 ◦ Sk1 · . . . · θ jr ◦ Skr : ki ∈ Z, ji ∈ {1, 2}, i = 0, 1, . . . , r, r � 0}
of continuous functions is an algebra of functions separating points, hence it is
dense in C(X).

The subshift (Xμ, S) is called the Möbius system and Xμ2 ⊂ {0, 1}Z ⊂
{−1, 0, 1}Z is the square-free system.25 Note that s : (z(n)) 	→ (z(n)2) will settle
a factor map between the Möbius system and the square-free system. The point μ2

is a generic point for so called Mirsky measure νμ2 [23, 133] (see Sect. 11.7.2). In
other words, there are frequencies of blocks on μ2: for each block B ∈ {0, 1}�, the
following limit exists:

lim
N→∞

1

N

∣∣∣{1 � n � N − � : μ2(n, n+ �− 1) = B}
∣∣∣ =: νμ2(B).

24We recall that either x is generic or Q-gen(x) is a connected uncountable set, see Proposition 3.8
in [40].
25The point μ2 is recurrent, so there is a “completion” of μ2 to a two-sided sequence generating
the same subshift.
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We can now consider the relatively independent extension26 ν̂μ2 of νμ2 which is
the measure on s−1(Xμ2) ⊂ {−1, 0, 1}Z given by the following condition: for each
block C ∈ {−1, 0, 1}�, we have

ν̂μ2(C) := 1

2k
νμ2(C2),

where C2 is obtained from B by squaring on each coordinate and k is the number
of 1 in C2. A straightforward computation shows that

∫

{−1,0,1}Z
θ j0 ◦ Sk0 · θ j1 ◦ Sk1 · . . . · θ jr ◦ Skr d ν̂μ2 = 0 (11.29)

whenever { j0, . . . , jr} = {2}. On the other hand, in view of Lemma 11.18, the values
of integrals

∫

{−1,0,1}Z
θ2 ◦ Sk0 · θ2 ◦ Sk1 · . . . · θ2 ◦ Skr d ν̂μ2

for all ki ∈ Z and r � 0 entirely determine the Mirsky measure νμ2 .

Corollary 11.19 The Chowla conjecture holds if and only if μ is a generic point
for ν̂μ2 .

Proof We consider any extension of μ to a two-sided sequence (for example, we set
μ(n) = 0 for each n � 0). Suppose that

1

Nk

∑

n�Nk

δSnμ −−−→
k→∞ κ. (11.30)

In order to get κ = ν̂μ2 , in view of Lemma 11.18, we need to show that

∫

{−1,0,1}Z
θ j0 ◦ Sk0 · θ j1 ◦ Sk1 · . . . · θ jr ◦ Skr dκ = 0

for any choice of integers k0 < k1 < . . . < kr, { j0, j1, . . . , jr} = {2} and r � 0.
Since the measure ν is S-invariant, it is the same as to show that

∫

{−1,0,1}Z
θ j0 · θ j1 ◦ Sk1−k0 · . . . · θ jr ◦ Skr−k0 dκ = 0.

26Consider Bernoulli measure B(1/2, 1/2) on {−1, 1}Z and Mirsky measure νμ2 on {0, 1}Z.
Measure ν̂μ2 is the image of the product measure B(1/2, 1/2)⊗νμ2 via the map

(x, y) 	→ ((x(n) · y(n)))n∈Z ∈ {−1, 0, 1}Z.



184 S. Ferenczi et al.

Now, we have 1 � k1 − k0 < . . . < kr − k0 and the result follows from (11.25)
and (11.30).

The Chowla conjecture for r = 0 is just the PNT, however, it remains open
even for r = 1. As in [150], we could consider a weaker version of the Chowla
conjecture. Namely, we say that μ satisfies the topological Chowla conjecture if
Xμ = s−1(Xμ2).

Remark 11.20 Note that (11.25) holds if

|{0 � t � r : jt = 1}| = 1.

Indeed, it is not hard to see that if t0 is the only index for which jt0 = 1 then the
sequence a(n) := ∏t =t0 μ2(n + kt) is rational. Hence, μ is orthogonal to a(·), cf.
footnote 18.

11.4.2 The Chowla Conjecture Implies Sarnak’s Conjecture

Assume that (X,T) is a topological system. Following [101, 167] a point x ∈ X is
called completely deterministic if for each measure ν ∈ Q-gen(x) (see (11.26)), the
measure theoretic dynamical system (X,B(X), ν,T) has zero Kolmogorov-Sinai
entropy: hν(T) = 0. Of course, if the topological entropy of T is zero, then by the
Variational Principle, each x ∈ X is completely deterministic. On the other hand,
(Xμ2, S) has positive topological entropy [55, 140, 150] and μ2 ∈ Xμ2 is completely
deterministic, see [23, 57].

Let f ∈ C(X) and x ∈ X be completely deterministic. We have

1

N

∑

n�N

f (Tnx)μ(n) =
∫

X×Xμ

( f ⊗ θ)d

⎛

⎝ 1

N

∑

n�N

δ(T×S)n(x,μ)

⎞

⎠ .

We can assume that

1

Nk

∑

n�Nk

δ(T×S)n(x,μ) −−−→
k→∞ ρ in the space M(X × Xμ,T × S).

Under the Chowla conjecture, the projection of ρ on Xμ is equal to ν̂μ2 (since, by
Corollary 11.19, μ is a generic point for ν̂μ2 ), while the projection of ρ on X is
some T-invariant measure κ and hκ(T) = 0 (since x is completely deterministic).
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Note that ρ is a joining27 of the (measure-theoretic) dynamical systems (X, κ,T)

and (Xμ, ν̂μ2, S). Moreover, the latter automorphism has the so called relative
Kolmogorov property with respect to the factor (Xμ2, νμ2, S). We then consider
the restriction of the joining ρ|X×X

μ2 and ρ|Xμ to obtain two systems that have
a common factor (namely Xμ2 ) relatively to which the first one has zero entropy
and the second being relatively Kolmogorov. Since the function θ is orthogonal to
L2(Xμ2, νμ2), the relative disjointness theorem on zero entropy and Kolmogorov
property yields the following (see also Remark 11.23):

Theorem 11.21 ([57]) The Chowla conjecture implies

1

N

∑

n�N

f (Tnx)μ(n)→ 0

for each dynamical system (X,T), f ∈ C(X) and x ∈ X completely deterministic. In
particular, the Chowla conjecture implies Sarnak’s conjecture.28

Remark 11.22 It is also proved in [57] that this seemingly stronger statement of
the validity of Sarnak’s conjecture at completely deterministic points is in fact
equivalent to the Möbius disjointness of all zero entropy systems.

Remark 11.23 A word for word repetition of the above proof29 yields the same
result when we replace μ by another generic point of ν̂μ2 in which we control the
relative Kolmogorov property over the maximal factor with zero entropy, so called
Pinsker factor. In particular, we can replace μ by λ (for which the Pinsker factor
will be just the one-point dynamical system).

As a matter of fact, it is expected that each aperiodic real-valued multiplicative
function satisfies the Chowla type result (and hence satisfies the Sarnak type result),
see the conjectures by Frantzikinakis and Host formulated after Theorem 11.47.

Remark 11.24 The original proof of Sarnak of the implication “Chowla conjecture
⇒ Sarnak’s conjecture” used some combinatorial arguments and probabilistic
methods, see [158].

27Recall that if Ri is an automorphism of a probability standard Borel space (Zi,Di, νi), i = 1, 2,
then each R1 × R2-invariant measure λ on (Z1 × Z2,D1⊗D2) having the projections ν1 and ν2,
respectively is called a joining of R1 and R2: we write λ ∈ J(R1,R2). If R1,R2 are ergodic then the
set Je(R1,R2) of ergodic joinings between R1 and R2 is non-empty. A fundamental notion here is
the disjointness (in sense of Furstenberg) [73]: R1 and R2 are disjoint if J(R1,R2) = {ν1⊗ν2}: we
write R1 ⊥ R2. For example, zero entropy automorphisms are disjoint with automorphisms having
completely positive entropy (Kolmogorov automorphisms) and also a relativized version of this
assertion holds.
28We will see later that some special cases of validity of convergence in (11.25) also have their
ergodic interpretations and they imply Möbius disjointness for restricted classes of dynamical
systems of zero entropy; in particular, see Corollaries 11.37 and 11.42.
29The above proof was already suggested by Sarnak in [150].
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Sarnak’s conjecture (11.2) is formulated for the Möbius function. But of course
one can consider other multiplicative functions.30 Below, we show that if we use the
Liouville function then nothing changes.

Corollary 11.25 Sarnak’s conjecture with respect to μ is equivalent to Sarnak’s
conjecture with respect to λ.

Proof Let us recall the basic relation between these two functions: λ(n) =∑
d2|n μ(n/d2).
Assume that (X,T) is a dynamical system with h(T) = 0. As the zero entropy

class is closed under taking powers, we assume Möbius disjointness for all powers
of T. Then

1

N

∑

n�N

f (Tnx)λ(n) = 1

N

∑

n�N

f (Tnx)

⎛

⎝
∑

d2|n
μ(n/d2)

⎞

⎠

= 1

N

∑

n�N

∑

d2|n
μ(n/d2)f ((Td2

)n/d2
x)

=
∑

d�√N

1

d2
· 1

N/d2

∑

n�N/d2

μ(n)f ((Td2
)nx).

Take ε > 0 and select M � 1 so that
∑

d�M
1

d2 < ε. Consider T,T2,T3, . . . ,TM .
We have

∣∣∣∣∣∣
1

N

∑

n�N

f (Tknx)μ(n)

∣∣∣∣∣∣
< ε

for all k = 1, . . . ,M whenever N � N0. It follows that
∣∣∣∣∣∣

1

N/d2

∑

n�N/d2

μ(n)f (Td2nx)

∣∣∣∣∣∣
< ε

for all d = 1, . . . ,M if N > MN0. Otherwise we estimate such a sum by ‖ f‖∞.
To obtain the other direction, we first recall that μ2 is a completely deterministic

point. Then use Theorem 11.21 for λ (see Remark 11.23), write λ(n)μ2(n) = μ(n)
for each n � 1 and we obtain

1

N

∑

n�N

f (Tnx)μ2(n)λ(n) = 1

N

∑

n�N

( f ⊗ θ)((T × S)n(x,μ2))λ(n)→ 0

as the point (x,μ2) is completely deterministic.

30If Möbius disjointness in a dynamical system is shown through the KBSZ criterion then we
obtain orthogonality with respect to all multiplicative functions.
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11.4.3 The Logarithmic Versions of Chowla and Sarnak’s
Conjectures

An intriguing problem arises whether the Chowla and Sarnak’s conjecture are
equivalent. An intuition from ergodic theory would say that this is rather not the
case as the class of systems that are disjoint (in the Furstenberg sense) from all zero
entropy measure-theoretic systems is the class of Kolmogorov automorphisms and
not only Bernoulli automorphisms (and a relative version of this result persists).31

From that point of view a recent remarkable result of Terence Tao [156] about
the equivalence of logarithmic versions of the Chowla and Sarnak’s conjectures is
quite surprising. We will formulate some versions32 of three (out of five) conjectures
from [156].

Conjecture A We have

1

log N

∑

n�N

μj0(n)μj1(n+ k1) . . .μ
jr (n+ kr)

n
−−−→
N→∞ 0

whenever 1 � k1 < . . . < kr, js ∈ {1, 2} not all equal to 2, r � 0.

Remark 11.26 It should be noted that passing to such logarithmic averages moves
one away from questions about primes, twin primes and subtleties such as the
parity problem. For example, the statement

∑
n�N

μ(n)
n = o(log N) is easy to

establish,33 while the PNT is equivalent to much stronger statement
∑∞

n=1
μ(n)

n = 0
(as conditionally convergent series).

On the other hand, the logarithmically averaged Chowla conjecture implies that
all “admissible” configurations do appear on μ, see Corollary 11.30 below (the
topological Chowla conjecture for λ implies that all blocks of ±1 appear in λ).

Conjecture B We have

1

log N

∑

n�N

f (Tnx)μ(n)

n
−−−→
N→∞ 0

31If we consider general sequences z ∈ {−1, 0, 1}N then we can speak about the Sarnak and
Chowla properties on a more abstract level: for example the Chowla property of z means (11.25)
with μ replaced by z. See Example 5.1 and Remark 5.3 in [57] for sequences orthogonal to all
deterministic sequences but not satisfying the Chowla property. However, arithmetic functions in
these examples are not multiplicative.

However, an analogy between disjointness results in ergodic theory and disjointness of
sequences is sometimes accurate. For example, a measure-theoretic dynamical system has zero
entropy if and only if it is disjoint with all Bernoulli automorphisms. As pointed out in [57] (Prop.
5.21), a sequence t ∈ {−1, 1}N is completely deterministic if and only if it is disjoint with any
sequence z ∈ {−1, 0, 1}N satisfying the Chowla property.
32See Remark 1.9. Also, in [156] the Liouville function λ is considered, see page 2 in [156] how
to replace λ by μ.
33In fact, |∑n�N μ(n)/n| � 1.
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whenever (X,T) is a topological system of zero topological entropy, f ∈ C(X) and
x ∈ X.

To formulate the third conjecture, we need to recall the definition of a nilrotation.
Let G be a connected, simply connected Lie group and Γ ⊂ G a lattice (a discrete,
cocompact subgroup). For any g0 ∈ G we define Tg0(gH) := g0gH. Then the
topological system (G/Γ,Tg0) is called a nilrotation.

Conjecture C Let f ∈ C(G/Γ ) be Lipschitz continuous and x0 ∈ G. Then (for
H � N)

∑

n�N

supg∈G

∣∣∣
∑

h�H f (Th+n
g (x0Γ ))μ(n+ h)

∣∣∣
n

= o(H log N).

Theorem 11.27 ([156]) Conjectures A, B and C are equivalent.

Remark 11.28 Tao also shows that if instead of logarithmic averages we come back
to Cesàro averages, then

Conjecture A ⇒ Conjecture B ⇒ Conjecture C

and it is the implication Conjecture C ⇒ Conjecture A that requires logarithmic
averages.

Remark 11.29 Let us consider the Cesàro version of Conjecture C with H = o(N)

and we drop the assumption on the sup (which is inside), i.e.: for each g ∈ G,
we have

1

N

∑

n�N

∣∣∣∣∣∣

∑

h�H

f (Th+n
g (x0Γ ))μ(n+ h)

∣∣∣∣∣∣
−−−−−−−−−−→
H,N→∞,H=o(N)

0.

This is a particular case of what we will see in Sect. 11.5, where we introduce the
strong MOMO notion (hence, the validity of Sarnak’s conjecture on (typical) short
interval).

Corollary 11.30 (A Letter of W. Veech in June 2016) Sarnak’s conjecture implies
topological Chowla conjecture. Equivalently, Sarnak’s conjecture implies that each
block B ∈ {−1, 0, 1}� for which B2 appears in μ2 appears in μ (and the entropy of
(Xμ, S) equals 6

π2 log 3).

Proof Indeed, Sarnak’s conjecture implies its logarithmic version which, by

Theorem 11.27, implies logarithmic Chowla conjecture, that is, 1
log N

∑
n�N

δSnμ

n →
ν̂μ2 . However, the logarithmic averages of the Dirac measures are convex
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combinations of the consecutive Cesàro averages34 1
n

∑
j�n δSjμ, so if we take

a block B ∈ s−1(Xμ2), we have ν̂μ2(B) > 0 and therefore there exists n such that
1
n

∑
j�n δSjμ(B) > 0, which means that B appears in μ.

Remark 11.31 (Added in October 2017) As a matter of fact, as shown in [79], Sar-
nak’s conjecture implies the existence of a subsequence (Nk) along which we have
1

Nk

∑
n�Nk

δSnμ → ν̂μ2 . This follows from a general observation that, given a topo-
logical system (X,T), whenever an ergodic measure ν is a limit of a subsequence
(Mk) of logarithmic averages of Dirac measures: ν = limk→∞ 1

log Mk

∑
m�Mk

δTmx
m ,

then there exists a subsequence (Nk) for which ν = limk→∞ 1
Nk

∑
n�Nk

δTnx. We
apply this to the measure ν̂μ2 which is ergodic.

In [155], Tao proves the logarithmic version of Chowla conjecture for the
correlations of order 2 (which we formulate for the Liouville function):

Theorem 11.32 ([155]) For each 0 = h ∈ Z, we have

1

log N

∑

n�N

λ(n)λ(n+ h)

n
−−−→
N→∞ 0.

See also [126], where it is proved that for each integer h � 1 there exists δ(h) > 0

such that lim supN→∞ 1
N

∣∣∣
∑

n�N λ(n)λ(n+ h)
∣∣∣ � 1 − δ(h) and [128], where it is

proved that for the Liouville function the eight patterns of length 3 of signs occur
with positive lower density, and the density result with lower density replaced by
upper density persists for k+ 5 patterns (out of total 2k) for each k ∈ N.

For a proof of a function field Chowla’s conjecture, see [22].

Remark 11.33 See also [159], where, given k0, . . . k� ∈ Z and u0, . . . ,u� ∈ M,
one studies sequences of the form

n 	→ u0(n+ ak0) · . . . · u�(n+ ak�), a ∈ Z.

34 Assume that (an) is a bounded sequence and set An = a1+. . .+an. Then, we have by summation
by parts

1

log N

∑

n�N

an

n
= 1

log N

∑

n�N

(An+1 − An)
1

n

= 1

log N

∑

n�N

An

(
1

n
− 1

n+ 1

)
+ o(1) = 1

log N

∑

n�N

An

n

1

n+ 1
+ o(1). (11.31)

It follows that:

• If the Cesàro averages of (an) converge, so do the logarithmic averages of (an).
• The converse does not hold (see e.g. [14] in B-free case, Sect. 11.7.1).
• If the Cesàro averages converge along a subsequence (Nk) then not necessarily the logarithmic

averages do the same. Indeed, by (11.31), 1
log Nk

∑
n�Nk

an
n is (up to a small error) a convex

combination of the Cesàro averages for all n � Nk.
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By considering their logarithmic averages, one obtains a sequence ( f (a)). The main
result of [159] is a structure theorem (depending on whether or not the product
u0 · . . .u� weakly pretends to be a Dirichlet character) for the sequences ( f (a)). As
a corollary, the logarithmically averaged Chowla conjecture is proved for any odd
number of shifts.

11.4.4 Frantzikinakis’ Theorem

Tao’s approach from [156] is continued in [69]. Before we formulate Frantzikinakis’
results, let us interpret some arithmetic properties, especially the role of a “good
behavior” on (typical) short interval of a multiplicative function in the ergodic theory
language.

11.4.4.1 Ergodicity of Measures for Which μ Is Quasi-Generic

In this subsection we summarize ergodic consequences of some recent, previously
mentioned number-theoretic results, cf. [68]. By that we mean that we consider all
measures κ ∈ Q-gen(μ) and we study ergodic properties of the dynamical systems
(Xμ, κ, S).

Let κ ∈ Q-gen(μ), i.e. 1
Mk

∑
m�Mk

δSmμ −−−→
k→∞ κ ∈ M(Xμ, S) for some

increasing sequence (Mk). As usual, θ(x) = x(0) (θ ∈ C(Xμ)). We have

∫

Xμ

θ dκ = 0, (11.32)

as the integral equals limk→∞ 1
Mk

∑
n�Mk

θ(Snμ) = 0 (by the PNT). Denoting by
Inv the σ -algebra of S-invariant (modulo the measure κ) subsets of Xμ, we recall that

1

H

∑

h�H

θ ◦ Sh −−−−→
H→∞ E(θ |Inv) in L2(Xμ, κ)

(by the von Neumann ergodic theorem). We want to show that

θ ⊥ L2(Xμ, Inv, κ)

(i.e. κ must be “slightly” ergodic). In other words, we want to show that

∫

Xμ

∣∣∣∣∣∣
1

H

∑

h�H

θ ◦ Sh

∣∣∣∣∣∣

2

dκ −−−−→
H→∞ 0.
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But such integrals can be computed:

1

Mk

∑

m�Mk

∣∣∣∣∣∣
1

H

∑

h�H

θ ◦ Sh(Smμ)

∣∣∣∣∣∣

2

−−−→
k→∞

∫

Xμ

∣∣∣∣∣∣
1

H

∑

h�H

θ ◦ Sh

∣∣∣∣∣∣

2

dκ.

Putting things together, given ε > 0, for H � 1 large enough, we want to see

lim sup
k→∞

1

Mk

∑

m�Mk

∣∣∣∣∣∣
1

H

∑

h�H

μ(m+ h)

∣∣∣∣∣∣

2

� ε.

The latter is true because of [126]: for a “typical” m the sum
∣∣∣ 1

H

∑
m�h<m+H μ(h)

∣∣∣
is small.

Remark 11.34 As the calculation above shows, the fact that

1

M

∑

m�M

∣∣∣∣∣∣
1

H

∑

h�H

μ(m+ h)

∣∣∣∣∣∣

2

→ 0

when H → ∞ and H = o(M) is equivalent to θ ⊥ L2(Xμ, Inv, κ) for each
κ ∈ Q-gen(μ). In particular, the Chowla conjecture implies the above short interval
behavior.

However, remembering that κ |X
μ2 = νμ2 , one can ask now whether θ is

measurable with respect to the factor given by the Mirsky measure. As this factor has
rational discrete spectrum [23], to show that this is not the case, we need to prove
that θ ⊥ L2(Σrat), where Σrat stands for the factor given by the whole rational
spectrum of (Xμ, κ, S). To do it, we need to show that for each r � 1, we have

1

N

∑

n�N

θ ◦ Srn −−−→
N→∞ 0 in L2(Xμ, κ).

This convergence can be shown by using the strong MOMO property (which we will
consider in Sect. 11.5) for the rotation j 	→ j + 1 on Z/rZ. We skip this argument
here and show still a stronger consequence.

Assume that κ ∈ Q-gen(μ) and that we want to show that the spectral measure
of θ ∈ L2(Xμ, κ) is continuous. Hence, we need to show that

1

H

∑

h�H

|̂σθ (h)| −−−−→
H→∞ 0
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when H →∞. Equivalently, we need to show that

1

H

∑

h�H

∣∣∣∣∣

∫

Xμ

θ ◦ Sh · θ dκ

∣∣∣∣∣ −−−−→H→∞ 0.

If we fix H � 1 then

∫

Xμ

θ ◦ Sh · θ dκ = lim
k→∞

1

Mk

∑

m�Mk

θ ◦ Sh(Smμ) · θ(Smμ)

= 1

Mk

∑

m�Mk

μ(m+ h)μ(m).

It follows that we need to show that

1

H

∑

h�H

∣∣∣∣∣∣
1

Mk

∑

m�Mk

μ(m+ h)μ(m)

∣∣∣∣∣∣
→ 0

when H,Mk →∞; to be precise, given ε > 0 we want to show that for H > Hε , we

have lim supk→∞ 1
H

∑
h�H

∣∣∣ 1
Mk

∑
m�Mk

μ(m+ h)μ(m)

∣∣∣ < ε. Hence, directly from

Theorem 11.14, we obtain the following.

Corollary 11.35 The spectral measure of θ is continuous for each κ ∈ Q-gen(μ).

While it is obvious that the subshift Xμ is uncountable (indeed, it is the subshift
Xμ2 which is already uncountable, see Sect. 11.7), it is not clear whether Xλ is
uncountable. However, if a subshift (Y, S) is countable, all its ergodic measures
are given by periodic orbits, hence there are only countably many of them and it
easily follows that each κ ∈ M(Y, S) yield a system with discrete spectrum. Hence,
immediately from Corollary 11.35, we obtain that:

Corollary 11.36 The subshift Xλ is uncountable.35

From Corollary 11.35 we derive immediately the Möbius disjointness of all
dynamical systems with “trivial” invariant measures (see also [93]). This kind of
problems will be the main subject of our discussion in Sect. 11.5.

Corollary 11.37 Let (X,T) be any topological dynamical system such that, for
each measure ν ∈ M(X,T), (X, ν,T) has discrete spectrum (not necessarily
ergodic, of course). Then (X,T) is Möbius disjoint. In particular, the result holds if
Me(X,T) is countable with each member of Me(X,T) yielding a discrete spectrum
dynamical system.

35The result has been observed in [71], cf. also [95].
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Proof Fix x ∈ X and consider

1

Mk

∑

m�Mk

δ(Tmx,Smμ) −−−→
k→∞ ρ.

We have ρ|Xμ =: κ ∈ Q-gen(μ) and ρ|X =: ν. Now, we fix f ∈ C(X) and we need
to show that

∫
f⊗θ dρ = 0. But

∫

X×Xμ

f⊗θ dρ =
∫

X×Xμ

( f⊗1) · (1⊗θ) dρ = 0. (11.33)

Indeed, the spectral measure of f⊗1 with respect to ρ is the same as the spectral
measure of f with respect to ν and the spectral measure of 1⊗θ with respect to ρ is
the same as the spectral measure of θ with respect to κ . Therefore, these spectral
measures are mutually singular by assumption and Corollary 11.35. Hence, the
functions f⊗1 and 1⊗θ are orthogonal, i.e. (11.33) holds.36

If we have all ergodic measures giving discrete spectrum but we have too many
ergodic measures then the argument above does not go through. Consider37

(x, y) 	→ (x, x+ y) on T
2. (∗)

Question 1 (Frantzikinakis (2016)) Can we obtain κ ∈ Q-gen(λ), so that (Xλ, κ, S)
is isomorphic to (∗)?

Of course, the answer to Question 1 is expected to be negative.

11.4.4.2 Frantzikinakis’ Results

We now follow [69] and formulate results for the Liouville function, although, up
to some obvious modifications, they also hold for μ.

Theorem 11.38 ([69]) Assume that Nk → ∞ and let 1
log Nk

∑
n�Nk

δSnλ
n −−−→

k→∞ κ .

If κ is ergodic then the Chowla conjecture (and Sarnak’s conjecture) holds along
(Nk) for the logarithmic averages.

Taking into account footnote 34, we cannot deduce a similar statement for
ordinary averages along (Nk) but in view of [79], see Remark 11.31, the Chowla

36We use here the standard result in the theory of unitary operators that mutual singularity of
spectral measures implies orthogonality. Recall also the classical result in ergodic theory that
spectral disjointness implies disjointness.
37Consider X1 = X2 = T

2 with μ1 = μ2 = LebT2 , the diagonal joining Δ on X1 × X2 and
f (x, y) = θ(x, y) with θ(x, y) = e2π iy. The spectral measure of θ is Lebesgue, and all ergodic
components of the measure μ1 have discrete spectra.
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conjecture holds along another subsequence. The situation becomes clear when (Nk)

is the sequence of all natural numbers and we assume genericity.

Corollary 11.39 ([69]) If λ is generic for an ergodic measure then the Chowla
conjecture holds.

Let us say a few words on the proof. Recall that given a bounded sequence
(a(n)) ⊂ C admitting correlations,38 one defines its local uniformity seminorms
(see Host and Kra [91]) in the following manner:

‖a‖2
U1(N)

= Eh∈NEn∈Na(n+ h)a(n), (11.34)

‖a‖2s+1

Us+1(N)
= Eh∈N‖Sh a · a‖2s

Us(N), s � 2, (11.35)

where, for each bounded sequence (b(n)), (Sh b)(n) := b(h + n) and En∈Nb(n) =
limN→∞ 1

N

∑
n�N b(n). (Similar definitions are considered along a subsequence

(Nk).)
The following result has been proved by Tao:

Theorem 11.40 ([156]) Assume that λ is generic. The Chowla conjecture holds if
and only if ‖λ‖Us(N) = 0 for each s � 1.39

Remark 11.41 We have assumed in the statement of Theorem 11.40 that λ is
generic but we would like also to note that, without this latter (strong) assumption,
Tao obtained the equivalence in Theorem 11.40 for the logarithmic averages, see
Conjecture 1.6 and Theorem 1.9 in [156] (however, one has to modify the definition
of seminorms [156]).

Hence, under the assumption of Corollary 11.39, we need to prove that all local
uniform seminorms of λ vanish. The inverse theorem for seminorms reduces this
problem to the statement: for every basic nilsequence (a(n))40 on an s − 1-step
nilmanifold G/Γ and every s− 2-step manifold H/Λ, we have

lim
N→∞Em∈N sup

b∈ΨH/Λ

∣∣En∈[m,m+N]λ(n)a(n)b(n)
∣∣ = 0,

where ΨH/Λ is a special class of basic nil-sequences (coming from Lipschitz
functions). The latter is then proved using a deep induction argument.

38I.e., we assume the existence of the limits of sequences(
1
N

∑
n�N a′(n)a′(n+ k1) . . . a′(n+ kr)

)

N�1
for every r ∈ N and k1, . . . , kr ∈ N (not

necessarily distinct) with a′ = a or a. It is not hard to see that a admits correlations if and only if
it is generic, cf. Sect. 11.4.1.
39We have ‖λ‖U1(N) = 0 by Matomäki and Radziwiłł [126], moreover ‖λ‖U2(N) = 0 is equivalent
to limN→∞ Em∈N supα∈[0,1)

∣∣En∈[m,m+N]λ(n)e2π inα
∣∣ = 0 (cf. Conjecture C) and remains open. For

a subsequence version of Theorem 11.40 for logarithmic averages, see [156].
40By that we mean a(n) = f (gnΓ ) for some continuous f ∈ C(G/Γ ) and g ∈ G.
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11.4.5 Dynamical Properties of Furstenberg Systems
Associated to the Liouville and Möbius Functions

We now continue considerations about logarithmic version of Sarnak’s conjecture,
cf. Conjecture B, Theorem 11.38. Consider all measures κ for which λ is loga-
rithmically quasi-generic, i.e. 1

log Nk

∑
n�Nk

δSnλ

n → κ for some Nk → ∞. We
denote the set of all such measures by log−Q-gen(λ). Following [71], for each κ ∈
log−Q-gen(λ) the corresponding measure-theoretic dynamical system (Xλ, κ, S)
will be called a Furstenberg system of λ. Before we get closer to the results of [71],
let us see first some consequence of Theorem 11.32 for the logarithmic Sarnak’s
conjecture:

For each Furstenberg system (Xλ, κ, S), the spectral measure σθ of

θ is Lebesgue.
(11.36)

Indeed, assuming 1
log Nk

∑
n�Nk

δSnλ
n −−−→

k→∞ κ , Theorem 11.32 tells us that for each

h ∈ Z \ {0}, we have

σ̂θ (h) =
∫

Xλ

θ ◦ Sh · θ dκ = lim
k→∞

1

log Nk

∑

n�Nk

λ(n+ h)λ(n)

n
= 0.

Using (11.36) and repeating the proof of Corollary 11.37, we obtain the
following.

Corollary 11.42 Let (X,T) be a topological system such that each of its Fursten-
berg’s systems has singular spectrum. Then (X,T) is logarithmically Liouville
disjoint.

The starting point of the paper [71] is a surprising Tao’s identity (implicit in
[155]) for general sequences which in its ergodic theory language (cf. Sect. 11.4.4.1)
takes the following form:

Theorem 11.43 (Tao’s Identity, [71]) Let κ ∈ log−Q-gen(λ). Then

∫

Xλ

⎛

⎝
�∏

j=1

θ ◦ Skj

⎞

⎠ dκ = (−1)� lim
N→∞

log N

N

∑

P#p�N

∫

Xλ

⎛

⎝
�∏

j=1

θ ◦ Spkj

⎞

⎠ dκ

for all � ∈ N and k1, . . . , k� ∈ Z.

Now, the condition in Theorem 11.43 is purely abstract (indeed, the function θ

generates the Borel σ -algebra), and the strategy to cope with logarithmic Sarnak’s
conjecture is to describe the class of measure-theoretic dynamical systems satisfying
the assertion of Theorem 11.43 and then to obtain Liouville disjointness for all
systems which are disjoint (in the Furstenberg sense) from all members of the class.
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In fact, Frantzikinakis and Host deal with extensions of Furstenberg systems of λ,
so called systems of arithmetic progressions with prime steps.41 They prove the
following result.

Theorem 11.44 ([71]) For each system of arithmetic progressions with prime
steps, its “typical” ergodic component is isomorphic to the direct product of
an infinite-step nilsystem and a Bernoulli automorphism.42 In particular, each
Furstenberg system (Xλ, κ, S) of λ is a factor of a system which:

(i) has no irrational spectrum and
(ii) has ergodic components isomorphic to the direct product of an infinite-step

nilsystem and a Bernoulli automorphism.

Remark 11.45 All the above results are also true when we replace λ by μ.

Then, some new disjointness results in ergodic theory are proved (for example,
all totally ergodic automorphisms are disjoint from an automorphism satisfying (i)
and (ii) in Theorem 11.44) and the following remarkable result is obtained:

Theorem 11.46 ([71]) Let (X,T) be a topological dynamical system of zero
entropy with countably many ergodic invariant measures. Then Conjecture B holds
for (X,T).

In particular, logarithmic Sarnak’s conjecture holds for all zero entropy uniquely
ergodic systems. As a matter of fact, some new43 consequences are derived:

Theorem 11.47 ([71]) Let (X,T) be a topological dynamical system with zero
entropy. Assume that x ∈ X is generic for a measure ν with only countably many
ergodic components all of which yield totally ergodic systems. Then, for every
f ∈ C(X),

∫
X f dν = 0, we have

lim
N→∞

1

log N

∑

n�N

f (Tnx)
∏�

j=1 μ(n+ kj)

n
= 0

for all � ∈ N and k1, . . . , k� ∈ Z.

41Given a measure-theoretic dynamical system (Z,D, ρ,R), its system of arithmetic progressions
with prime steps is of the form (ZZ,B(ZZ), ρ̃, S), where S is the shift and the (shift invariant)
measure ρ̃ is determined by

∫

ZZ

m∏

j=−m

fj(zj) dρ̃(z) = lim
N→∞

log N

N

∑

p�N

∫

Z

m∏

j=−m

fj ◦ Rpj dρ

for all m � 0, f−m, . . . , fm ∈ L∞(Z, ρ) (here z = (zj)). It is proved that such shift systems have
no irrational spectrum. One of key observations is that each Furstenberg system of the Liouville
function is a factor of the associated system of arithmetic progressions with prime steps.
42The product decomposition depends on the component.
43They are new even for irrational rotations. Cf. the notions of (S)-strong and (S0)-strong and their
equivalence to the Chowla type condition in [57].
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New conjectures are proposed in [71]:

1. Every real-valued u ∈ M has a unique Furstenberg system (i.e. u is generic)
which is ergodic and isomorphic to the direct product of a Bernoulli automor-
phism and an odometer.

2. If, additionally, u ∈ M takes values ±1 then its Furstenberg system is either
Bernoulli or it is an odometer.

Finally, it is noticed in [71] that the complexity of the Liouville function has to
be superlinear, that is

lim
N→∞

1

N

∣∣∣{B ∈ {−1, 1}N : B appears in λ}
∣∣∣ =∞. (11.37)

The reason is that, as shown in [71], for transitive systems having linear block
growth we have only finitely many ergodic measures (and clearly systems with
linear block growth have zero topological entropy). Hence, by Theorem 11.46, such
systems are Liouville disjoint. As Xλ is not Liouville disjoint, λ cannot have linear
block growth, i.e. (11.37) holds.

11.5 The MOMO and AOP Properties

11.5.1 The MOMO Property and Its Consequences

We will now consider Sarnak’s conjecture from the ergodic theory point of view.
We ask whether (already) measure-theoretic properties of a measurable system
(Z,D, κ,R) imply the validity of (11.1) for any (X,T), f ∈ C(X) provided
that x ∈ X is a generic point for a measure μ such that the measure-theoretic
system (X,B(X), μ,T) is measure-theoretically isomorphic to (Z,D, κ,R). More
specifically, we can ask whether some measure-theoretic properties of (Z,D, κ,R)

can imply Möbius disjointness of all its uniquely ergodic models.44 We recall that
the Jewett-Krieger theorem implies the existence of a uniquely ergodic model of
each ergodic system.45 As a matter of fact, there are plenty of such models and they

44Note that the answer is positive in all uniquely ergodic models of the one-point system: each
such a model has a unique fixed point that attracts each orbit on a subset of density 1, cf. the map
e2π ix 	→ e2π ix2

, x ∈ [0, 1). This argument is however insufficient already for uniquely ergodic
models of the exchange of two points: in this case we have a density 1 attracting 2-periodic orbit
{a, b}, but we do not control to which point a or b the orbit returns first. Quite surprisingly, it
seems that already in this case we need [126] to obtain Möbius disjointness of all uniquely ergodic
models.
45If all uniquely ergodic systems were Möbius disjoint, then as noticed by T. Downarowicz, we
would get that the Chowla conjecture fails in view of the result of B. Weiss [169] Thm. 4.4’ on
approximation of generic points of ergodic measures by uniquely ergodic sequences.
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can have various additional topological properties including topological mixing46

[117]. Here is another variation of the approach to view Möbius disjointness as a
measure-theoretic invariant:

Question 2 Does the Möbius disjointness in a certain uniquely ergodic model of an
ergodic system yield the Möbius disjointness in all its uniquely ergodic models?

To cope with these questions we need a definition. Let u : N→ C be an arithmetic
function.47

Definition 1 (Strong MOMO48 Property [58]) We say that (X,T) satisfies the
strong MOMO property (relatively to u) if, for any increasing sequence of integers
0 = b0 < b1 < b2 < · · · with bk+1 − bk →∞, for any sequence (xk) of points in
X, and any f ∈ C(X), we have

1

bK

∑

k<K

∣∣∣∣∣∣

∑

bk�n<bk+1

f (Tn−bk xk)u(n)

∣∣∣∣∣∣
−−−→
K→∞ 0. (11.38)

Remark 11.48 The property (11.38) looks stronger than the condition on Möbius
disjointness. The idea behind it is to look at the pieces of orbits (of different points)
in one system as a single orbit of a point in a different, larger but “controllable”
(from measure-theoretic point of view) system.

Remark 11.49 One can easily show (as in Sect. 11.4.4.1) that the strong MOMO
property (relative to μ) implies f⊗θ ⊥ L2(Inv, ρ) for each ρ ∈ Q-gen((x,μ),

T × S).49

By taking f = 1 in Definition 1, we obtain that whenever strong MOMO holds,
u has to satisfy:

1

bK

∑

k<K

∣∣∣∣∣∣

∑

bk�n<bk+1

u(n)

∣∣∣∣∣∣
−−−→
K→∞ 0 (11.39)

for every sequence 0 = b0 < b1 < b2 < · · · with bk+1 − bk → ∞. In particular,
1
N

∑
n<N u(n) −−−→

N→∞ 0. This is to be compared with (11.18), (11.20) and (11.19) to

realize that we require a special behavior of u on a typical short interval.

46Topological mixing for example excludes the possibility of having eigenfunctions continuous.
47Our objective is of course the Möbius function μ, however the whole approach can be developed
for an arithmetic function satisfying some additional properties.
48The acronym comes from Möbius Orthogonality of Moving Orbits.
49Inv stands here for the σ -algebra of T × S-invariant sets modulo ρ.
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Theorem 11.50 ([58]) Let (Z,D, κ,R) be an ergodic dynamical system. Let
u : N→ C be an arithmetic function. The following conditions are equivalent:

(a) There exist a topological system (Y, S) enjoying the strong MOMO prop-
erty (relative to u) and ν ∈ Me(Y, S) such that the measurable systems
(Y,B(Y), ν, S) and (Z,D, κ,R) are isomorphic.

(b) For any topological dynamical system (X,T) and any x ∈ X, if there exists a
finite number of T-invariant measures μj, 1 � j � t, such that

• (X,B(X), μj,T) is measure-theoretically isomorphic to (Z,D, κ,R) for
each j,

• any measure for which x is quasi-generic is a convex combination of the
measures μj, i.e. Q-gen(x) ⊂ conv(μ1, . . . , μt),

then 1
N

∑
n�N f (Tnx)u(n) −−−→

N→∞ 0 for each f ∈ C(X).

(c) All uniquely ergodic models of (Z,D, κ,R) enjoy the strong MOMO property
(relative to u).

The proof of implication (a)⇒ (b) borrows some ideas from [93] and the proof
of implication (b)⇒ (c) uses some ideas from [59].

Remark 11.51 It can be easily shown that any minimal (hence uniquely ergodic)
rotation on a compact Abelian group satisfies the strong MOMO property (say,
relatively to μ). It follows from Theorem 11.50 (and the Halmos-von Neumann
theorem) that in each uniquely ergodic model of an ergodic automorphism with
discrete spectrum, we also have the strong MOMO property (in particular, the
Möbius disjointness).

We now list three consequences of Theorem 11.50:

Corollary 11.52 ([58])

(a) If Sarnak’s conjecture holds then the strong MOMO property (relative to μ)
holds for every zero entropy dynamical system.50

(b) If Sarnak’s conjecture holds then it holds uniformly, that is, the convergence
in (11.1) is uniform in x.51

(c) Fix δ(...0.00...) = κ ∈ Me((DL)
Z, S), where DL = {z ∈ C : |z| � L}. Let (X,T)

be any uniquely ergodic model of ((DL)
Z, κ, S). Then for any u ∈ (DL)

Z for
which Q-gen(u) ⊂ conv(κ1, . . . , κm), where ((DL)

Z, κj, S) for j = 1, . . . ,m is

50That is, Sarnak’s conjecture and the strong MOMO property (relatively to μ) for all deterministic
systems are equivalent statements.
51It is not hard to see that the MOMO property implies the relevant uniform convergence. As a
matter of fact, the strong MOMO property is equivalent to the uniform convergence (in x, for a fixed

f ∈ C(X)) on short intervals: 1
M

∑
1�m<M

∣∣∣ 1
H

∑
m�h<m+H f (Thx)μ(n)

∣∣∣ → 0 (when H,M → ∞
and H = o(M)). It follows that we have equivalence of: Sarnak’s conjecture (11.2), Sarnak’s
conjecture in its uniform form, Sarnak’s conjecture in its short interval uniform form and the strong
MOMO property. Moreover, each of these conditions is implied by the Chowla conjecture.
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measure-theoretically isomorphic to ((DL)
Z, κ, S), the system (X,T) does not

satisfy the strong MOMO property (relative to u).52

Remark 11.53 Let us come back to Theorem 11.21 and Remark 11.23, i.e. to the
reformulation of Sarnak’s conjecture using completely deterministic sequences. We
intend to show that a natural generalization of Corollary 11.52 (b) to the completely
deterministic case fails. Indeed, consider the square-free system (Xμ2 , S). In
Remark 11.20, we have already noticed that whenever kj, j = 1, . . . , r are different
non-negative integers, then

∑

n�N

μ2(n+ k1) . . .μ
2(n+ kr−1)μ(n+ kr) = o(N). (∗)

It follows that for each f ∈ C(Xμ2), for each k ∈ Z, we have

1

N

∑

n�N

f (Sn+kμ2)μ(n)→ 0. (∗∗)

On the other hand, the convergence in (∗∗) cannot be uniform in k ∈ Z. Indeed, if it
were then the whole square-free system would be Möbius disjoint. This is however
impossible since (Xμ2, S) is hereditary, see Remark 11.77. Indeed, we can find y ∈
Xμ2 such y(n) = 1 if and only if μ(n) = 1 and y(n) = 0 otherwise (then y � μ2)

and if we set θ(z) := z(0) then limN→∞ 1
N

∑
n�N θ(Sny)μ(n) = 3

π2 .
See also [137], where a quantitative version of (∗) has been proved.

Note that Theorem 11.50 does not fully answer Question 2. In certain situations
the following general (lifting) lemma of Downarowicz and Lemańczyk can be
helpful:

Lemma 11.54 ([44, 56]) Assume that an ergodic automorphism R is coalescent.53

Let (X̃, T̃) and (X,T) be uniquely ergodic models of R. Assume that T is a
topological factor of T̃, i.e. there exists π : X̃ → X which is continuous and onto
and which satisfies π ◦ T̃ = T ◦ π . If T is Möbius disjoint then also T̃ is Möbius
disjoint.

11.5.2 Möbius Disjointness and Entropy

Sarnak’s conjecture deals with deterministic systems but Möbius disjointness, a
priori, does not exclude the possibility of positive (topological) entropy systems

52This result means that there must be an observable sequence in (X,T) which significantly
correlates with u.
53This means that each measure-preserving transformation commuting with R must be invertible.
Finite multiplicity of the Koopman operator associated to R guarantees coalescence. In particular,
all ergodic rotations are coalescent.
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which are Möbius disjoint.54 The first “natural” trial would be to take the square-
free system (Xμ2, S) which has positive entropy (see Sect. 11.7.2) and clearly μ2 is
orthogonal to μ. However, in spite of the orthogonality of the two sequences, as we
have noticed in Remark 11.53, the square-free system is not Möbius disjoint.

Recently, Downarowicz and Serafin [45] constructed Möbius disjoint positive
entropy homeomorphisms of arbitrarily large entropy. On the other hand, see [104],
in the subshift of finite type case we do not have Möbius disjointness. Using
Katok’s horseshoe theorem, it follows that C1+δ-diffeomorphisms of surfaces are
not Möbius disjoint but the following question seems to be open:

Question 3 Is there a positive entropy diffeomorphism of a compact manifold
which is Möbius disjoint?

Viewed all this above, another natural question arises:

Question 4 Does there exist an ergodic positive entropy measure-theoretic system
all uniquely ergodic models of which are Möbius disjoint?

Using Theorem 11.50, Sinai’s theorem on Bernoulli factors (see e.g. [78]) and B.
Weiss’ theorem [168] on strictly ergodic models of some diagrams a partial answer
to Question 4 is given by the following result:

Corollary 11.55 ([58]) Assume that u ∈ (DL)
Z is generic for a Bernoulli mea-

sure κ . Let v ∈ (DL)
Z, u and v correlate. Then for each dynamical system (X,T)

with h(X,T) > h((DL)
Z, κ, S), we do not have the strong MOMO property relatively

to v.

By substituting u = λ, v = μ and assuming the Chowla conjecture for λ,
we obtain that no system (X,T) with entropy > log 2 satisfies the strong MOMO
relatively to μ. When μ is replaced by λ, we still have a stronger result.

Proposition 11.56 ([58]) Assume that the Chowla conjecture holds for λ. Then no
topological system (X,T) with positive entropy satisfies the strong MOMO property
relatively to λ.

Remark 11.57 The proof of Theorem 11.50 tells us that when (Z,D, κ,R) is
ergodic and has positive entropy then there exists a system (X,T), which is not
Liouville disjoint, with at most three ergodic measures and all of these measures
yield a measurable system isomorphic to R. Therefore, it seems reasonable to
conjecture that the answer to Question 4 is negative.

We now have a completely clear picture for the Liouville function: it follows
from Theorem 11.21 (for λ) and Proposition 11.56 that if the Chowla conjecture
holds for λ then the strong MOMO property (relatively to λ) holds for (X,T) if and

54Sarnak in [150] mentions that Bourgain has constructed a positive entropy system which is
Möbius disjoint but this construction has never been published.
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only if h(X,T) = 0. Using footnote 51, we immediately obtain Proposition 11.56 in
its equivalent form:

Corollary 11.58 Assume that the Chowla conjecture holds for λ. Then, the short
interval uniform convergence in (11.1) (with μ replaced by λ) takes place if and
only if h(X,T) = 0.

11.5.3 The AOP Property and Its Consequences

We need an ergodic criterion to establish the strong MOMO property in models of
an automorphism. This turns out to be a natural ergodic counterpart of the KBSZ
criterion (Theorem 11.15). Following [59] an ergodic automorphism R is said to
have asymptotically orthogonal powers (AOP) if for each f , g ∈ L2

0(Z,D, κ),
we have

lim
P#p,q→∞,p =q

sup
κ∈Je(Rp,Rq)

∣∣∣∣
∫

X×X
f⊗g dκ

∣∣∣∣ = 0. (11.40)

Rotation Rx = x + 1 acting on Z/kZ with k � 2 has no AOP property because of
Dirichlet’s theorem on primes in arithmetic progressions. Hence, AOP implies total
ergodicity (clearly, AOP is closed under taking factors). The AOP property implies
zero entropy [59].

Clearly, if the powers of R are pairwise disjoint55 then R enjoys the AOP
property. In order to see a less trivial example of an AOP automorphism, consider
any totally ergodic discrete spectrum automorphism R on (Z,D, κ). For f , g take
eigenfunctions corresponding to eigenvalues c, d, respectively. Now, take ρ ∈
Je(Rp,Rq) and consider

∫

Z×Z
f⊗g dρ =

∫

Z×Z
( f⊗1Z) · (1Z⊗g) dρ.

Notice that f⊗1Z and 1Z⊗g are eigenfunctions of (Z×Z, ρ,Rp×Rq) corresponding
to cp and dq, respectively. If cp = dq (and this is the case for all but one pair (p, q)
because of total ergodicity) then these eigenfunctions are orthogonal and we are
done. We will see more examples in Sect. 11.6.

Remark 11.59 For an AOP automorphism the powers need not be disjoint. As a
matter of fact, we can have an AOP automorphism with all of its non-zero powers
isomorphic.56

55This is a “typical” property of an automorphism of a probability standard Borel space [38].
Möbius disjointness for uniquely ergodic models for this case is already noticed in [21].
56Take an ergodic rotation with the group of eigenvalues {e2π iαm/n : m, n ∈ Z, n = 0, α /∈ Q}.
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Theorem 11.60 ([58, 59]) Let u ∈ M. Suppose that (Z,D, κ,R) satisfies AOP.
Then the following are equivalent:

• u satisfies (11.39);
• The strong MOMO property relatively to u is satisfied in each uniquely ergodic

model (X,T) of R.

In particular, if the above holds, for each f ∈ C(X), we have

1

N

∑

n�N

f (Tnx)u(n) −−−→
N→∞ 0 uniformly in X.

Corollary 11.61 Assume that (Z,D, κ,R) enjoys the AOP property. Then, in each
uniquely ergodic model (X,T) of R, we have

1

M

∑

M�m<2M

∣∣∣∣∣∣
1

H

∑

m�h<m+H

f (Tnx)μ(n)

∣∣∣∣∣∣
−−−−−−−−−−−→
H,M→∞,H=o(M)

0 (11.41)

for all f ∈ C(X), x ∈ X.

The AOP property can be defined for actions of locally compact (second count-
able) groups. Then, for induced actions this property lifts [67], and in particular (by
taking the induced R-action), if we have an automorphism then the corresponding
suspension flow57 has this lifted property. In particular, using inducedZ-actions (for
aZ ⊂ Z), one can derive easily that for uniquely ergodic systems (X,T) with the
measure-theoretic AOP property we not only have Möbius disjointness but also

1

N

∑

n�N

f (Tnx)μ(an+ b) −−−→
N→∞ 0 (11.42)

for each a, b ∈ N, f ∈ C(X) and the convergence is uniform in x [67].58

11.6 Glimpses of Results on Sarnak’s Conjecture

The cases for which the Möbius disjointness has been proved, depend on the
complexity of the deterministic system. They fit into two basic types. The first
comes with sufficiently quantitative estimates for the disjointness sums which

57By the suspension flow of R we mean the special flow over R under the constant function (equal
to 1).
58The same argument shows that if Sarnak’s conjecture holds then (11.42) holds for each zero
entropy (X,T), a, b ∈ N, f ∈ C(X) uniformly in x ∈ X.
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makes possible an analysis of the sums on primes yielding a PNT. This group
includes Kronecker systems (Vinogradov [163]), nilsystems (Green and Tao [83])
and, perhaps the most striking, the Thue-Morse system (Mauduit and Rivat [129])
which resolved a conjecture of Gelfond [77]. When the systems are more complex,
such as horocycles flows,59 then at least to date they do not come with a PNT,60 and
for them the KBSZ criterion is used, in other words, the disjointness (perhaps in its
weaker form, see Sect. 11.5) is achieved.

We now review most of important cases in which Möbius disjointness has been
proved.

11.6.1 Systems of Algebraic Origin

11.6.1.1 Horocycle Flows

Let Γ ⊂ PSL2(R) be a discrete subgroup with finite covolume.61 Then the
homogeneous space X = Γ \PSL2(R) is the unit tangent bundle of a surface M
of constant negative curvature. Let us consider the corresponding horocycle flow62

(ht)t∈R and the geodesic flow (gs)s∈R on X. Since

gshtg
−1
s = he−2st for all s, t ∈ R, (11.43)

the flows (ht)t∈R and (he−2st)t∈R are measure-theoretically isomorphic for each
s ∈ R. In order to show that T := h1 is Möbius disjoint, the KBSZ criterion is
used, and, given x ∈ PSL2(R), one studies limit points of 1

N

∑
n�N δ(TpnΓ x,TqnΓ x),

N � 1. Now, the celebrated Ratner’s rigidity theorem [145] tells us two important
things: the point (Γ x, Γ x) is generic for a measure ρ (which must be a joining
by unique ergodicity: ρ ∈ J(Tp,Tq)) and moreover this joining is ergodic.63 Again
using Ratner’s theory (cf. [144]) such joinings are determined by the commensurator
Com(Γ ) of the lattice Γ :

Com(Γ ) := {z ∈ PSL2(R) : z−1Γ z ∩ Γ has finite index in both Γ and z−1Γ z}.

59Horocycle flows are mixing of all orders, see [123].
60In case of horocycle flows (Bourgain, Sarnak and Ziegler [21]) Ratner’s theorems on joinings are
used and these provide no rate.
61We will tacitly assume that Γ is cocompact, so that the homogenous space Γ \PSL2(R) is
compact and the system is uniquely ergodic by Furstenberg in [74]; otherwise, as in the modular
case when Γ = PSL2(Z) we need to compactify our space. The proof of Theorem 11.62 in the
modular case is slightly different than what we describe below.

62We have ht(Γ x) = Γ ·
(

x ·
[

1 t
0 1

])
and gs(Γ x) = Γ ·

(
x ·
[

e−s 0
0 es

])
; we identify gs and ht

with the relevant matrices.
63The measure ρ depends on p, q and x and it is so called algebraic measure, i.e. a Haar measure.
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Set xp,q := xg 1
2 log( p

q )
x−1(∞). The intersection of the stabilizer of xp,q with Com(Γ )

yields the correlator of xp,q: it is a subgroup C(Γ, xp,q) ⊂ R
∗+ and if ρ is not the

product measure then p
q ∈ C(Γ, xp,q). The careful analysis of the arithmetic and

non-arithmetic cases done in [21] shows that given x ∈ PSL2(R), p
q ∈ C(Γ, xp,q)

only for finitely many different primes p, q. Hence, the joining ρ has to be product
measure for all but finitely many pairs (p, q) ∈ P

2 with p = q which, by
Theorem 11.15, yields the following:

Theorem 11.62 ([21]) All time-automorphisms of horocycle flows are Möbius
disjoint.

Remark 11.63 As noticed in [59], this is (11.43) which yields the absence64 of AOP
and makes the following questions of interest.

Question 5 Do we have the MOMO property for horocycle flows? Are all uniquely
ergodic models of horocycle flows Möbius disjoint? Do we have uniform conver-
gence in (11.1)?

Since the method to prove Möbius disjointness is through the KBSZ criterion
(hence offers no rate of convergence), the following question is still open:

Question 6 (Sarnak) Do we have a PNT for horocycle flows?

For a partial answer, see [151], where it is proved that if Γ x is a generic point

for Haar measure μX of X then any limit point of
(

1
π(N)

∑
p�N δTpΓ x

)
is a measure

which is absolutely continuous with respect to μX .

Question 7 (Ratner) Are smooth time changes for horocycle flows Möbius dis-
joint?

As smooth time changes of horocycle flows enjoy so called Ratner’s property,
the above question can be asked in the larger context of flows possessing Ratner’s
property.

Added in September 2017

In the recent paper [102], a new criterion (of Ratner’s type) for disjointness of
different time-automorphisms of flows has been proved. The criterion applies for
some classes of flows with Ratner’s property, namely, in case of so called Arnold
flows and for non-trivial smooth time changes of horocycle flows (in particular, the
answer to Question 7 is positive).

64To be compared with Remark 11.59; the difference however is that when the ratio of p and q is
close to 1, we can choose graph joinings in a compact set.
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11.6.1.2 Nilrotations, Affine Automorphisms

Green and Tao in [83] proved Möbius disjointnes in the following strong form:

Theorem 11.64 ([83]) Let G be a simply-connected nilpotent Lie group with a
discrete and cocompact subgroup Γ . Let p : Z → G be any is polynomial
sequence65 and f : G/Γ → R a Lipschitz function. Then

∣∣∣∣∣∣
1

N

∑

n�N

f ( p(n)Γ )μ(n)

∣∣∣∣∣∣
= Of ,G,Γ,A

(
N

logA N

)

for all A > 0.

In particular, by considering Tg(xΓ ) = gxΓ , we see that all nilrotations are
Möbius disjoint with uniform Davenport’s estimate (11.3).

Also, a PNT holds for nilrotations: Let 2 = p1 < p2 < . . . denote the sequence
of primes.

Theorem 11.65 ([83], Theorem 7.1) Assume that a nil-rotation Tg is ergodic.66

Then, for every x ∈ G, we have

lim
N→∞

1

N

∑

n�N

f (Tpn
g xΓ ) =

∫

G/Γ

f dλG/Γ

for all continuous functions f : G/Γ → [−1, 1].
In [67], it is proved that all nil-rotations enjoy the AOP property (hence all

uniquely ergodic models of nil-rotations are Möbius disjoint). In fact, the result
is proved for all nil-affine automorphisms whose Möbius disjointness has been
established earlier in [122]. Earlier, AOP has been proved for all quasi-discrete
spectrum automorphism in [59], that is (following [85]) for all unipotent affine
automorphisms Tx = Ax + b of compact Abelian groups (A is a continuous group
automorphism and b is an element of the group). The Möbius disjointness of the
latter automorphisms has been established still earlier in [122].

The proof of the following corollary in [59] shows that Furstenberg’s proof [72]
(see e.g. [50]) of Weyl’s uniform distribution theorem can be adapted to the short
interval version.

65I.e. p(n) = ap1(n)
1 . . . apk(n)

k , where pj : N → N is a polynomial, j = 1, . . . , k. See, Section 6
in [84] for the equivalence with the classical definition of polynomials sequences in nilpotent Lie
groups.
66We assume that G is connected.
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Corollary 11.66 ([59]) Assume that u : N → C, u ∈ M. Then, for each non
constant polynomial P ∈ R[x] with irrational leading coefficient, we have67

1

M

∑

M�m<2M

1

H

∣∣∣∣∣∣

∑

m�n<m+H

e2π iP(n)u(n)

∣∣∣∣∣∣
−−−−−−−−−−−→
H,M→∞,H=o(M)

0.

Recall that a sequence (an) ⊂ C is called a nilsequence if it is a uniform limit
of basic nilsequences, i.e. of sequences of the form ( f (Tn

g xΓ )), where f ∈ C(G/Γ )

(here, we do not assume that G/Γ is connected, neither that Tg is ergodic).

Corollary 11.67 ([67]) We have

1

M

∑

M�m<2M

1

H

∣∣∣∣∣∣

∑

m�n<m+H

anu(n)

∣∣∣∣∣∣
−−−−−−−−−−−→
H,M→∞,H=o(M)

0.

It has been proved by Leibman [119] that all polynomial multicorrelation
sequences68 are limits in the Weyl pseudo-metric of nil-sequences, all such poly-
nomial sequences are orthogonal to μ on typical short interval, cf. Sect. 11.7.

The main problem connected with nilsequences is to prove the uniform version
of convergence on short intervals as it is made precise in Conjecture C of Tao (see
Sect. 11.4.3 and also Frantzikinakis’ proofs [69]).

11.6.1.3 Other Algebraic Systems

For a more general zero entropy algebraic systems and their Möbius disjointness
we refer the reader to [139], where in particular the Ad-unipotent translation case is
treated.

67For degree 1 polynomials, the result is already in [127].
68More precisely, given an automorphism T of a probability standard Borel space (X,B, μ), we
consider

an =
∫

X
g1 ◦ Tp1(n) · . . . · gk ◦ Tpk(n) dμ,

where gi ∈ L∞(X, μ), pi ∈ Z[x], i = 1, . . . , k (k � 1).
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11.6.2 Systems of Measure-Theoretic Origin: Substitutions
and Interval Exchange Transformations

11.6.2.1 Systems Whose Powers Are Disjoint

We are interested in ergodic automorphisms (Z,D, κ,R) for which (sufficiently
large) prime powers Rp are pairwise disjoint. Clearly, such automorphisms enjoy the
AOP property. A typical automorphism has this property [38] but there are also large
classes of rank one (we detail on this class below) automorphisms with this property
[20, 54, 147]. Also minimal self-joining automorphisms [39] enjoy this property.
Chaika and Eskin in [25] show that for a.e. 3-interval exchange transformation
(we detail on interval exchange transformations below) there are sufficiently many
prime powers that are disjoint. It follows that all uniquely ergodic models of these
automorphisms are Möbius disjoint.

11.6.2.2 Adic Systems and Bourgain’s Criterion

Let (Z,D, κ,R) be a measure-theoretic system.

Definition 2 In (Z,D, κ,R), a Rokhlin tower is a collection of disjoint measurable
sets called levels F, RF, . . . , Rh−1F. If Z is equipped with a partition P such that
each level RrF is contained in one atom Pw(r), the name of the tower is the word
w(0) . . .w(h − 1).

Definition 3 A system (Z,D, κ,R) is of rank one if there exists a sequence
of Rokhlin towers (Fn, . . . ,Rhn−1Fn), n � 1, such that the whole σ -algebra is
generated by the partitions {Fn,RFn, . . . ,Rhn−1Fn,X \⋃hn−1

j=0 RjFn}.
For topological systems, there is no canonical notion of rank, but the useful

notion is that of adic presentation [162], which we translate here from the original
vocabulary into the one of Rokhlin towers.

Definition 4 An adic presentation of a topological system (X,T) is given, for each
n � 0, by a finite collection Zn of Rokhlin towers such that:

• the levels of the towers in Zn partition X,
• each level of a tower in Zn is a union of levels of towers in Zn+1,
• the levels of the towers in

⋃
n�0 Zn form a basis of the topology of X.

In that case, the towers of Zn+1 are built from the towers of Zn by cutting and
stacking, following recursion rules: a given tower in Zn+1 can be built by taking
columns of successive towers in Zn and stacking them successively one above
another. These rules are best seen by looking at the partition P into levels of the
towers in Z0; possibly replacing Z0 by some Zk, we can always assume P has at
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least two atoms. The names of the towers in Zn form sets of words Wn, and the
cutting and stacking of towers gives a canonical decomposition of every W ∈Wn:

W = Wk1
1 · · ·Wkr

r

for r words Wi ∈Wn−1, 1 � i � r, integers k1, . . . , kr; all these parameters depend
on the word W. These decompositions are called the rules of cutting and stacking of
the system.

The following result is an improvement on Theorem 3.1 of [64], which itself can
be found in [20], though it is not completely explicit in that paper (it is stated in full
only in a particular case, as Theorem 3, and its proof is understated). The following
effective bound stems from a closer reading of [20]:

Theorem 11.68 Let (X,T) be a topological dynamical system admitting an adic
presentation, as in Definition 4 and the comment just after.
Suppose that for any n and W in Wn, we have:

• in the rules of cutting and stacking r � C, with C � 2,
• if we decompose W into words W� ∈ Wn−s by iteration of the rules of cutting

and stacking then for all � and s large enough, we have

|W| > C200s|W�|.

Then (X,T) is Möbius disjoint.
If such a system is uniquely ergodic and weakly mixing for its invariant

probability, it satisfies also the following PNT: for any word W = w1 . . .wN which
is a factor of a word in any Wn, we have

N∑

i=1

�(i)wi =
N∑

i=1

wi + o(N).

Proof We look at Theorem 2 of [20]. It requires a stronger assumption, denoted
by relations (2.2) and (2.3) in p. 119 of [20], which is indeed the assumption of
the present theorem with the estimate C200s replaced by β(s) for some function
satisfying logβ(s)

s → ∞ when s → ∞ (note that the assumption in [20] that the
words Wn are on the alphabet {0, 1} is not used in the proof, which works for any
finite alphabet). Then this theorem gives, for any word w1 · · ·wN in some Wm and
N large enough, an estimate for

∫ ∣∣∣∣∣∣

∑

n�N

wne2π inθ

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

n�N

μ(n)e2π inθ

∣∣∣∣∣∣
dθ,

and this, through the relation (1.62) on p. 118, implies that
∑

n�N wnμ(n) = o(N).
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Lacking space to rewrite the extensive computations in [20], we explain how to
weaken the hypothesis. First, as suggested in the remark at the beginning of Section
2, p. 119, of that paper, we replace β(s) by Cs

0 for some constant C0, as yet unknown
(the C0s written in the same p. 119 is a misprint). The relations (2.2) and (2.3) are
used twice in the course of the proof: first, to get the relation (2.15), namely

(
C

log |W|
n

)s

< |W|ε

for a word W in Wn, and then to get the estimate (2.42), which states that

(
C

log K

s

)s

< Kε,

where s is the number of stages such that a word of length N in Wn is divided into
words of Wn−s, of lengths in the order of N

K . Under our hypothesis, in the first case,
|W| is in Cn

0, and in the second case K is in Cs
0. Thus both (2.15) and (2.42) are

implied by the relation

log log C0 + log C

log C0
< ε.

The value of ε is dictated by relation (2.49), which requires QεKε(Q + K)− 1
4 �

(Q + K)− 1
5 for some large numbers Q and K, thus we can take ε = 1

20 . Then
log log C0

log C0
will be bounded if C0 is large enough independently of C, while to bound

log C
log C0

we need to take C0 = Ca; as C � 2, we see that a = 200 is convenient for the
sum of the two terms.

Now, if we replace wn by u(n) = f (Tn(x0)), because of Definition 4 above, we
can first assume that f is constant on all levels of the towers of some stage m, and
then conclude by approximation. Such an f is also constant on all levels of all towers
at stages q > m; fixing x0 and N, except for some initial values u(1) to u(N0) where
N0 is much smaller than N, we can replace u(n) by w′n, where w′n is the value of f
on the n-th level of some tower with name W in some Wq for q � m. Then the
w′1 · · ·w′N are built by the same induction rules as the w1 · · ·wN , and the estimates
using the w′n are computed as those using the wn in the proof of Theorem 2 of [20],
thus we get the same result.

The PNT is in (3.4), (3.7), (3.14) of [20] ((3.14) is proved for the particular case
of 3-interval exchanges but holds in the same way for the more general case).

Of course, the value of C0 could be improved, but we need it to be at least some
power of C.
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11.6.2.3 Substitutions

We start with some basic notions.

Definition 5 A substitution σ is an application from an alphabet A into the set A#

of finite words on A; it extends to a morphism of A# for the concatenation. A fixed
point of σ is an infinite sequence u with σu = u. The associated symbolic dynamical
system (Xσ , S) is (Xu, S) for a fixed point u.

Substitution σ has constant length q if |σa| = q for all a in A.
The Perron-Frobenius eigenvalue is the largest eigenvalue of the matrix giving

the number of occurrences of j in σa. A substitution σ is primitive if a power of this
matrix has strictly positive entries.

For the class of constant length substitutions, there have been a lot of partial
results on Möbius orthogonality:

• First for the most famous example, the Thue-Morse substitution 0 → 01, 1 →
10, with Indlekofer and Kátai [98], Dartyge and Tenenbaum [31], Mauduit and
Rivat [129], El Abdalaoui, Kasjan and Lemańczyk [56].69

• The case of the Rudin-Shapiro substitution 0 → 01, 1 → 02, 2 → 31, 3 → 32
was solved by Mauduit and Rivat [130], Deshouillers, Drmota and Müllner [41].

• Then Drmota [46], Ferenczi, Kułaga-Przymus, Lemańczyk and Mauduit [66]
proved Möbius disjointness for the dynamical systems given by bijective sub-
stitutions, while [41] proved it for the opposite case, the so-called synchronized
substitutions.70

See also [124, 125] for a PNT for some digital functions.
But all this was superseded by the general result of Müllner [136], whose proof

uses the arithmetic techniques of [130] together with a new structure theorem on the
underlying automata:

Theorem 11.69 ([136]) For any substitution of constant length, the associated
symbolic system is Möbius disjoint. Moreover, a PNT holds if the substitution is
primitive.

The substitutions which are not of constant length are much less known:

• The most famous example is the Fibonacci substitution, 0 → 01, 1 → 0: in
that case, the associated symbolic system is a coding of an irrational rotation,
hence it is Möbius disjoint as a uniquely ergodic model of a discrete spectrum
automorphism, see Sect. 11.6.3.1.

69In [31, 98, 129] it is proved that the sequence (−1)u(n), n � 1 is orthogonal to μ.
70As noted in [13], this leads to dynamical systems given by rational sequences and such systems
are Möbius disjoint. Note also that for the synchronized case, once the system is uniquely ergodic,
it is automatically a uniquely ergodic model of an automorphism with discrete spectrum, cf.
Corollary 11.37 and Remark 11.51.
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• Drmota, Müllner and Spiegelhofer [47] have just shown Möbius disjointness
for a new example, a substitution which generates (−1)sφ(n) , where sφ(n) is the
Zeckendorf sum-of-digits function.71

• Also, we can exhibit a small subclass of examples which are Möbius disjoint, by
a straightforward translation of Bourgain’s criterion above:

Theorem 11.70 Suppose that σ is a primitive substitution satisfying

• for all i ∈ A, σ i = ( j1(i))a1(i) . . . ( jqi(i))
aqi (i), , a1(i) ∈ A, . . . , aqi(i) ∈ A,

qi � C (this can be expressed as: the multiplicative length of σ is smaller than C),
• the Perron-Frobenius eigenvalue of σ is larger than C200;

then the associated symbolic dynamical system is Möbius disjoint. If (Xσ , S) is
weakly mixing, the fixed points satisfy a PNT.

Proof If all fixed points are periodic, the result is trivial. If σ has a non-periodic
fixed point, it is well known (and proved by the methods of [142] together with the
recognizability result of [135]) that the system has an adic presentation, where the
names of the towers in Zn are the words σ na, a ∈ A. Thus the results come from
Theorem 11.68 above and the properties of the matrix of σ .

Example 1 Here are some substitutions for which the above theorem applies, with
a PNT: 0 → 0k+112, 1 → 12, 2 → 0k12, k + 2 > 3200.

Question 8 Are dynamical systems associated to substitutions Möbius disjoint?72

11.6.2.4 Interval Exchanges

Definition 6 A k-interval exchange with probability vector (α1, α2, . . . , αk), and
permutation π is defined by

Tx = x+
∑

π−1( j)<π−1(i)

αj −
∑

j<i

αj.

when x ∈ Δi =
[∑

j<i αj,
∑

j�i αj

)
.

Exchanges of 2 intervals are just rotations, thus Möbius disjointness holds for
them by the Prime Number Theorem (on arithmetic progressions when the rotation
is rational and from a result of Davenport [33]—using a result of Vinogradov
[164]—when the rotation is irrational, cf. (11.3) in Introduction).

Then [20] exhibits exchanges of 3 intervals which are Möbius disjoint, with a
PNT if weak mixing holds: these use the criterion developed in Theorem 11.68
above, together with the adic presentation built in [65]. Generalizing these methods,

71This example has partly continuous spectrum.
72One can also ask about Möbius disjointness of related systems as tiling systems.
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it is shown in [64] that Möbius disjointness holds for examples of exchanges of
k intervals for every k � 2 and every Rauzy class, with a PNT in the weak mixing
case. A breakthrough came with [25], for a large subclass of exchange of 3 intervals:

Theorem 11.71 ([25]) For (Lebesgue)-almost all (α1, α2), Sarnak’s conjecture
holds for exchanges of 3 intervals with permutation π i = 3 − i and probability
vector (α1, α2, 1− α1 − α2).

To prove this, Chaika and Eskin use first the well-known fact that such an
exchange of 3 intervals, denoted by T, is the induced map of the rotation of angle
α = 1−α1

1+α2
on the interval [0, x) where x = 1

1+α2
. This approach, of course, does not

generalize to 4 intervals or more.
In fact, in [25] two different results are proved. In the easier one, they deduce

Möbius disjointness from the disjointness of powers of T; they give a sufficient
condition for Tm to be disjoint from Tn for all m = n, which is satisfied by almost all
these T. Namely, if we take (a1, . . .) to be the continued fraction of α and (b1, . . .)

the α-Ostrowski expansion of x, then it is enough that, for any ordered k-tuple of
pairs ((c1, d1), . . . (ck, dk)) of natural numbers such that di � ci − 1, there are
infinitely many i with ai = c1,. . . , ai+k−1 = ck, bi = d1,. . . , bi+k−1 = dk.

Then most of the paper is used to give an explicit Diophantine condition on α

and x, which implies a slightly weaker property than the disjointness of powers.
Under that condition, there exists a constant C such that for all n, and 0 � m � n,
Tm is disjoint from Tn except maybe when m belongs to a sequence mi(n) in which
any two consecutive terms satisfy mi+1(n) > Cmi(n), and this is proved to imply
Möbius disjointness. The Diophantine condition holds for almost all T, and, as it
is long, we refer the reader to Theorem 1.4 of [25]; it expresses the fact that the
geodesic ray from a certain flat torus with two marked points, defined naturally
from T and its inducing rotation, spends significant time in compact subsets of the
space of such tori.

11.6.2.5 Systems of Rank One

These systems form a measure-theoretic class defined in Definition 3 above. It is
well known, but has been shown explicitly for all cases only in the recent [1],
that each system of rank-one is measure-theoretically isomorphic to one of the
topological systems we define now.

Definition 7 A standard model of rank one is the shift on the orbit closure of the
sequence u which, for each n � 0, begins with the word Bn defined recursively by
concatenation as follows. We take sequences of positive integers qn, n � 0, with
qn > 1 for infinitely many n, and an,i, n � 0, 0 � i � qn − 1, such that, if hn are
defined by h0 = 1, hn+1 = qnhn +∑qn−1

j=0 an,i, then

∞∑

n=0

hn+1 − qnhn

hn+1
<∞.
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We define B0 = 0,

Bn+1 = Bn1an,0Bn . . .Bn1an,qn−1

for n � 0.

In [20], Bourgain proved Möbius disjointness for a standard model of rank one
if both the qn, n ∈ N ∪ {0} and an,i, n ∈ N ∪ {0}, are bounded by some constant C
(we will refer to this as to a bounded rank one construction).

Note however that, in the same paper, the half-hidden criterion deduced from
Theorem 2 or 3, see Theorem 11.68 above, is much more than an auxiliary to prove
the supposedly main Theorem 1 of [20]; it applies to a much wider class of systems,
and even for some famous rank one systems this criterion works while Theorem 1
does not apply.

Bourgain’s result was improved in [54], where so called recurrent rank one
constructions are considered with a stabilizing bounded subsequence of spacers
(that is, of a subsequence of (an,i)).73 One of main tools in [54] is a representation
of each rank one transformation as an integral automorphism over an odometer with
so called Morse-type roof function which goes back to [92]. See also [147] for a
simpler proof of a generalization of Bourgain’s result to a class of partially bounded
rank one constructions.

Spectral Approach

In order to prove Möbius disjointness for standard models of rank one transforma-
tions, both papers [20] and [54] use a spectral approach. In [54], unitary operators
U (of separable Hilbert spaces) are considered and weak limits of powers (Upmk)

(for different primes p) are studied. Once such limits yield sufficiently different
(for different p) analytic functions (of U), the powers Up and Uq are spectrally
disjoint.74 If for a positive real number a we set sa(x) = ax mod 1 on the additive
circle T = [0, 1), then the above spectral disjointness means that

σ ( p) := (sp)∗(σ ) are mutually singular for different p ∈ P, (11.44)

where σ = σU stands for the maximal spectral type of U.
In [20], a different spectral approach (sufficient for a use of the KBSZ criterion,

hence, sufficient for Möbius disjointness) is used. Namely, if r � 1 is an integer,
then by σr , we will denote the measure which is obtained first by taking the image

73Moreover, Möbius disjointness is established for some other famous classes of rank one
transformations such as: Katok’s α-weak mixing class (these are a special case of three interval
exchange maps) or rigid generalized Chacon’s maps.
74Hence, Tp and Tq are disjoint in Furstenberg’s sense, and, in fact, we even have AOP.
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of σ under the map x 	→ 1
r x, i.e. the measure σ (1/r), and then repeating this new

measure periodically in intervals [ j
r ,

j+1
r ), that is:

σr := 1

r

r−1∑

j=0

σ 1/r ∗ δj/r.

Bourgain [20] uses a representation of the maximal spectral type of a rank one
transformation as a Riesz product and then shows the mutual disjointness of
measures σp and σq for different p, q ∈ P (for more information about the measures
σr, see e.g. [142], p. 196). Although, there seems not to be too much relation
between the measures σ (r) and σr, the following observation75 explains some
equivalence of these both spectral approaches:

Lemma 11.72 Assume that σ and η are two probability measures on the circle.
Then:

(a) if σ (r) ⊥ η(s) then σs ⊥ ηr;
(b) if (r, s) = 1 then σ (r) ⊥ η(s) if and only if σs ⊥ ηr.

11.6.2.6 Rokhlin Extensions

Let T be a uniquely ergodic homeomorphism of a compact metric space X and let
f : X → R be continuous. Set Tf (x, t) := (Tx, f (x) + t) to obtain a skew product
homeomorphism on X×R. Note that the latter space is not compact. But, if we take
any continuous flow S = (St)t∈R acting on a compact metric space Y then the skew
product Tf ,S acting on X × Y by the formula:

Tf ,S(x, y) = (Tx, Sf (x)( y)), (x, y) ∈ X × Y

is a homeomorphism of the compact space X×Y and it is called a Rokhlin extension
of T. To get a good theory, usually one has to put some further assumptions on f
(considered as a cocycle taking values in a locally compact but not compact group,
see e.g. [120, 152]). It is proved in [113] that there are irrational rotations Tx = x+α

and continuous f : T → R (even smooth) such that Tf ,S has the AOP property for
each uniquely ergodic S.76

We would like to emphasize that the Rokhlin skew product construction are
usually relatively weakly mixing [120], so the class we consider here is drastically
different from the distal class which is our next object to give account.

75This has been proved, e.g. in an unpublished preprint of El Abadalaoui, Kułaga-Przymus,
Lemańczyk and de la Rue.
76If S preserves a measure ν then Tf ,S preserves measure μ⊗ν, the AOP property is considered
with respect to this measure.
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This approach leads in [113] to so called random sequences77 (an) ⊂ R such that

1

N

∑

n�N

g(Sany)μ(n)→ 0

for each uniquely ergodic flow S acting on a compact metric space Y, each g ∈ C(Y)

and (due to [58]) uniformly in y ∈ Y.

11.6.3 Distal Systems

Assume that R is an ergodic automorphism of a probability standard Borel space
(Z,D, κ). R is called (measurably) distal if it can be represented as transfinite
sequence of consecutive isometric extensions, where in case of a limit ordinal,
we take the corresponding inverse limit (i.e. we start with the one-point dynamical
system, the first isometric extension is a rotation and then we take a further isometric
extension of it etc.). Recall that by a separating sieve we mean a sequence

Z ⊃ A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ . . .

of sets of positive measure such that μ(An)→ 0 and there exists Z0 ⊂ Z, μ(Z0) = 1,
such that for each z, z′ ∈ Z0 if for each n � 1 there is kn ∈ Z such that Rknz,Rkn z′ ∈
An, then z = z′. A theorem by Zimmer [172] says that T is distal if and only if it has
a separating sieve.

Distal automorphisms play a special role in ergodic theory: each automorphism
has a maximal distal factor and is relatively weakly mixing over it [76, 171, 172].
Hence, many problems in ergodic theory can be reduced to study the two opposite
cases: the distal and the weak mixing one.78 Recall that distal automorphisms have
entropy zero.

There is also a notion of distality in topological dynamics. A homeomorphism
T of a compact metric space X is called distal if the orbit (Tnx,Tnx′), n ∈ Z, is
bounded away from the diagonal in X × X for each x = x′. Some of topologically
distal classes already appeared in previous sections. Indeed, zero entropy (minimal)
affine transformations are examples of distal homeomorphisms. Another natural
class of distal (uniquely ergodic) homeomorphisms is given by nil-translations and,
more generally, affine unipotent diffeomorphisms of nilmanifolds. A theorem by

77Such a sequence (an) is of the form (ϕ(n)(x)) with ϕ(n)(x) = ϕ(x) + ϕ(Tx) + . . . + ϕ(Tn−1x),
n � 0.
78See the most prominent example of such a reduction, namely, Furstenberg’s ergodic proof
of Szemerédi theorem on the existence of arbitrarily long arithmetic progressions in subsets of
integers of positive upper Banach density [76].
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Lindenstrauus [121] says that a measurably distal automorphism R has a minimal79

model (X,T) together with μ ∈ Me(X,T) of full support (and (X, μ,T) is
isomorphic to (Z, κ,R)) in which T is topologically distal.

The following (still open) question seems to be a natural and important step in
proving Sarnak’s conjecture:

Question 9 (Liu and Sarnak [122]) Are all topologically distal systems Möbius
disjoint?

As transformations with discrete spectrum are measurably distal and The-
orem 11.73 holds, we can of course ask whether given a measurably distal
automorphism, all of its uniquely ergodic models are Möbius disjoint.80

We now focus on the famous class of Anzai skew products. This is the class of
transformations defined on T

2 by the formula:

Tϕ : T2 → T
2, Tϕ(x, y) = (x+ α, ϕ(x)+ y).

In other words, Anzai skew products are given by Tx = x+α an irrational rotation on
the (additive) circle, and a measurable ϕ : T → T; the skew product Tϕ preserves
the Lebesgue measure. If ϕ is continuous, Tϕ is a homeomorphism of T2. If we
cannot solve the functional equations

kϕ(x) = ξ(x)− ξ(Tx) (11.45)

(k ∈ N) in continuous functions ξ : T→ T, then Tϕ is minimal, but if for one k ∈ N

we have a measurable solution then Tϕ is not uniquely ergodic. In [122], we find
examples of Anzai skew products which are minimal not uniquely ergodic but are
Möbius disjoint,81 moreover it is proved that if ϕ is analytic with an additional
condition on the decay (from below) of Fourier coefficients then Tϕ is Möbius
disjoint for each irrational α. In [112], it is proved that if ϕ is of class C1+δ then
for a typical (in topological sense) α, we have Möbius disjointness of Tϕ .82 A
remarkable result is proved by Wang [166]: all analytic Anzai skew products are
Möbius disjoint. The proofs in all these papers are using Fourier analysis techniques
but in [166], it is also a short interval argument from [127] used in one crucial case.

79In general, there is no uniquely ergodic model (X,T) of R with T topologically distal.
80As a matter of fact, such a question remains open even for 2-point extensions of irrational
rotations.
81As a matter of fact, in [58] it is proved that if a uniquely ergodic homeomorphism T satisfies
the strong MOMO property (see Definition 1 on page 198) and (continuous) ϕ : X → G (G is a
compact Abelian group) satisfies ϕ := ξ − ξ ◦ T has a measurable solution ξ : X → G, then the
homeomorphism Tϕ of X×G is Möbius disjoint. This applies if (11.45) has a measurable solution
for k = 1. It is however an open question whether we have Möbius disjointness when there is no
measurable solution for k = 1 but there is such a solution for some k � 2.
82It follows from a subsequent paper [113] that the Anzai skew products considered in [112] enjoy
the AOP property.
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Nothing seems to be proved about a PNT in the class of distal systems (except
for rotations).

11.6.3.1 Discrete Spectrum Automorphisms

The simplest examples of (measurably) distal automorphisms are those with discrete
spectrum. Recall that a measure-theoretic system (Z,D, κ,R) is said to have
discrete spectrum if the L2-space is generated by the eigenfunctions of the Koopman
operator Tf := f ◦T. The classical Halmos-von Neumann theorem tells us that each
ergodic automorphism with discrete spectrum has a uniquely ergodic model being a
rotation on a compact Abelian (monothetic) group.

Theorem 11.73 All uniquely ergodic models of automorphisms with discrete spec-
trum are Möbius disjoint.

This result was first proved in [59] for totally ergodic discrete spectrum automor-
phisms (as they have the AOP property) and in full generality by Huang, Wang and
Zhang in [93]. In fact, the latter result is stronger:

Theorem 11.74 ([93]) Let (X,T) be a dynamical system, x ∈ X and Ni → ∞.
Assume that 1

Ni

∑
n�Ni

δTnx −−−→
i→∞ μ. Assume that μ is a convex combination of

countably many ergodic measures, each of which yields a system with discrete
spectrum. Then limi→∞ 1

Ni

∑
n�Ni

f (Tnx)μ(n) = 0 for each f ∈ C(X).

Note that Theorem 11.73 also follows from Theorem 11.50 because ergodic
rotations enjoy the strong MOMO property [58] (see Remark 11.51). As a matter
of fact, as we have already noticed in Corollary 11.37, Theorem 11.73 follows
from [127].

11.6.4 Sub-polynomial Complexity

Let T be a homeomorphism of a compact metric space (X, d) and let μ ∈ M(X,T).
Assume also that a : N → R is increasing with limn→∞ a(n) = ∞. In the spirit of
[63], we say that the measure complexity of μ is weaker than a if

lim inf
n→∞

min{m � 1 : μ(
⋃m

j=1 Bdn(xj, ε)) > 1− ε for some x1, . . . , xm ∈ X}
a(n)

= 0

for each ε > 0 (here dn(y, z) = 1
n

∑n
j=1 d(Tjy,Tjz)).

The main result of the recent article [95] states the following:

Theorem 11.75 ([95]) If (X,T) is a topological system for which all its invariant
measures have sub-polynomial complexity, i.e. their complexity is weaker than nδ

for each δ > 0, then (X,T) is Möbius disjoint.
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As shown in [95], Theorem 11.75 applies to: topological systems whose all
invariant measures yield systems with discrete spectrum (cf. Corollary 11.37),
Anzai skew products of C∞-class (over each irrational rotation), K(Z)-sequences
introduced by Veech [161] and tame systems.83

11.6.5 Systems of Number-Theoretic Origin

Recall that a sequence x ∈ {0, 1}N is called a generalized Morse sequence [107] if

x = b0 × b1 × . . . (11.46)

with bi ∈ {0, 1}�i, �i � 2, bi(0) = 0 for each i � 0.84 The following question still
remains open.

Question 10 (Mauduit (2014)) Are dynamical systems arising from generalized
Morse sequences Möbius disjoint?

Consider the simplest subclass of the class of generalized Morse sequences, for
which in (11.46) we have |bi| = 2 for all i � 0 (in other words, either bi = 01 or
bi = 00). Such sequences are called Kakutani sequences [116]. A particular case of
Sarnak’s conjecture, namely:

1

N

N∑

n=1

(−1)x(n)μ(n)→ 0, (11.47)

for the classical Thue-Morse sequence x = 01 × 01 × . . . follows from [98, 106]
(see also [31] where, additionally, the speed of convergence to zero is given and
[129], where, additionally, a PNT has been proved). Then (11.47) has been proved
for some subclass of Kakutani sequences in [82]. As a matter of fact, in [82], the
problem whether 1

N

∑N
n=1(−1)sE(n)μ(n) → 0 is considered. Here E ⊂ N is fixed

and sE(n) :=∑i∈E ni, where n =∑∞
i=0 ni2i (ni ∈ {0, 1}). To see a relationship with

Kakutani sequences define a Kakutani sequence x = b0 × b1 × . . . with bn = 01 iff
n + 1 ∈ E; it is now not hard to see that sE(n) = x(n) mod 2. Finally, using some
methods from [129], Bourgain [19] completed the result from [82] so that (11.47)
holds in the whole class of Kakutani sequences (moreover, in [19, 82] a relevant
PNT has been proved). One can show that the methods used in the aforementioned
papers allow us to have (11.47) with x replaced by every y ∈ O(x) (as shown in
[66] in Lemma 6.5 therein, this can be sufficient to show Möbius disjointness for

83For the latter two classes all invariant measures yield discrete spectrum.
84If B ∈ {0, 1}k and C = C(0)C(1) . . . C(�−1) ∈ {0, 1}� then we define B×C := (B+C(0))(B+
C(1)) . . . (B+ C(�− 1)).
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the simple spectrum case; for example, this approach works for the Thue-Morse
system).

The problem of Möbius disjointness is also studied (and solved) in the class
of (generalized) Kakutani sequences taking values in compact (even non-Abelian)
groups, see [161].

11.6.6 Other Research Around Sarnak’s Conjecture

As all periodic observable sequences are orthogonal to μ, one could think that a limit
of periodic constructions of type of Toeplitz sequences85 also yields systems that are
Möbius disjoint.86 However, in [56] (and then [44]) there are examples of Toeplitz
systems which are not Möbius orthogonal. These examples have positive entropy
[44, 57]. Karagulyan in [103] shows Möbius disjointness of zero entropy continuous
maps of the interval and (orientation preserving) homeomorphisms of the circle.
In [51], Eisner proposes to study a polynomial version of Sarnak’s conjecture (in
the minimal case). See also [36, 43, 52, 53, 62, 94].

11.7 Related Research: B-free Numbers

11.7.1 Introduction

11.7.1.1 Sets of Multiples

We have already seen that some properties of the Möbius function μ can be
investigated by looking at its square μ2, i.e. the characteristic function of the set of
square-free numbers Q := {n ∈ Z : p2  |n for all primes p}. A natural generalization
comes when we study sets of integers that are not divisible by elements of a
given set. Let B ⊂ N and let MB be the corresponding set of multiples, i.e.
MB = ⋃

b∈B bZ and the associated set of B-free numbers FB := Z \ MB
(for convenience, we will deal now with subsets of Z instead of subsets of N—
the Möbius function μ is not defined for negative arguments, but its square has a
natural extension to negative integers). By η = ηB we will denote the characteristic
function of FB. It is not hard to see that a subset F ⊂ Z is a B-free set (for some
B) if F is closed under taking divisors.

85A sequence x ∈ AN is called Toeplitz if for each n ∈ N there is qn ∈ N such that x(n+jqn) = x(n)
for each j = 0, 1, . . .
86So called regular Toeplitz sequences are treated in [56] and [44], these are however uniquely
ergodic models of odometers.
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11.7.1.2 Historical Remarks

Sets of multiples were an object of intensive studies already in the 1930s [15,
26, 32, 61]. The basic motivating example there was the set of abundant numbers
(n ∈ Z is abundant if |n| is smaller than the sum of its (positive) proper divisors,
i.e. |n| < σ (|n|)), see also more recent [97, 100, 110] on that subject. Also many
natural questions on general B-free sets emerged. Besicovitch [14] showed that the
asymptotic density of MB may fail to exist. It turned out that it was more natural
to use the notion of logarithmic density (denoted by δ) which always exists in this
case and equals the lower density. More precisely, we have the following result of
Davenport and Erdös:

Theorem 11.76 ([34, 35]) For any B, the logarithmic density δ(MB) of MB
exists. Moreover, δ(MB) = d(MB) = limn→∞ d(M{b∈B:b�n}).

In the so-called Erdös case when B consists of pairwise coprime elements whose
sum of reciprocals converges, the density does exist, cf. [86] (in particular, 1FB is
rational). We refer the reader to [86, 87] for a coherent, self-contained introduction
to the theory of sets of multiples from the analytic and probabilistic number theory
viewpoint.

11.7.1.3 Dynamics Comes Into Play

Sarnak in [150], suggested to study μ2 from the dynamical viewpoint and he
announced the following results:

(i) μ2 is generic for an ergodic S-invariant measure νμ2 on {0, 1}Z such that
the measure-theoretical dynamical system (Xμ2, νμ2, S) has zero measure-
theoretic entropy87;

(ii) the topological entropy of (Xμ2, S) is equal to 6
π2 ;

(iii) Xμ2 = X{ p2:p∈P} (see the definition of admissibility below);
(iv) (Xμ2, S) is proximal.

This triggered intensive research in analogous direction for dynamical systems given
by other B-free sets. In [55], El Abdalaoui, Lemańczyk and de la Rue developed
the necessary tools in the Erdös case and covered (i)–(iii) from the above list. Given
B = {bk : k � 1}, In particular, they defined a function ϕ : G = ∏k�1 Z/bkZ →
{0, 1}Z given by

ϕ(g)(n) = 1 ⇐⇒ gk + n ≡ 0 mod bk for all k � 1.

87This is clearly a refinement of the fact that the asymptotic density of square-free integers exists
(it is given by 6/π2 = 1/ζ(2)). It follows that μ2 is a completely deterministic point.
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Note that ηB = ϕ(0) and ϕ is the coding of points under the translation by (1, 1, . . . )
on G with respect to a two-set partition {W,Wc}, where

W = {h ∈ G : hb = 0 for all b ∈ B}. (11.48)

This study was continued in a general setting in [48] and the first obstacle was that
it was no longer clear which subshift to study—it turned out that the most important
role is played by the following three subshifts, which coincide in the Erdös case (for
the square-free, case see [140] by Peckner and for the Erdös case, see [55]):

• Xη is the closure of the orbit of ηB under S (B-free subshift),
• X̃η is the smallest hereditary subshift containing Xη (a subshift (X, S) is heredi-

tary, whenever x ∈ X and y � x coordinatewise, then y ∈ X),
• XB is the set of B-admissible sequences, i.e. of x ∈ {0, 1}Z such that, for each

b ∈ B, the support supp x := {n ∈ Z : x(n) = 1} of x taken modulo b is a proper
subset of Z/bZ (B-admissible subshift).

Remark 11.77 As XB is hereditary, we have Xη ⊂ X̃η ⊂ XB. In the Erdös case, we
have Xη = XB [55] (for the square-free system [150]).

Also the group G turned out to be too large for the studies—it is natural to
consider its closed subgroup

H := {(n, n, . . . ) ∈ G : n ∈ Z}. (11.49)

In the Erdös case we have H = G. Certain special cases more general than the Erdös
one were considered in [48]:

• we say that B is taut whenever δ(FB) < δ(FB\{b}) for each b ∈ B;
• we say that B has light tails, i.e. d(

∑
b>K bZ)→ 0 as K →∞.

Following [87], we also say that B is Besicovitch if d(MB) exists (equivalently,
d(FB) exists). A set B ⊂ N \ {1} is called Behrend if δ(MB) = 1. Throughout, we
will tacitly assume that B is primitive, i.e. does not contain b = b′ with b|b′. Recall
that B is taut if and only if B does not contain dA, where A ⊂ N \ {1} is Behrend
and d ∈ N.

11.7.1.4 Further Generalizations

Several further generalizations of B-free integers were discussed in the literature
from the dynamical viewpoint. Let us briefly recall them here:

• Pleasants and Huck [141] considered k-free lattice points Fk = Fk(Λ) := Λ \⋃
p∈P pkΛ, where Λ is a lattice in R

d (the corresponding dynamical system given

by the orbit closure of 1Fk ∈ {0, 1}Λ under the multidimensional shift).
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• Cellarosi and Vinogradov [24] considered k-free integers in number fields Fk =
Fk(OK) := OK \⋃p∈P pk. Here K is a finite extension of Q, OK ⊂ K is the ring

of integers, P stands for the family of all prime ideals in OK and pk stands for
p . . . p (p is taken k times).

• Baake and Huck in their survey [5] considered B-free lattice points FB =
FB(Λ) := Λ \ ⋃b∈B bΛ. Here Λ is a lattice in R

d and B ⊆ N \ {1} is an
infinite pairwise coprime set with

∑
b∈B 1/bd <∞.

• Finally, one can consider B-free integers FB in number fields as suggested
in [5]. Here K is a finite extension of Q, OK ⊂ K is the ring of integers and
B is a family of pairwise coprime ideals in OK such that the sum of reciprocals
of their norms converges.

We will recall some of the main results from the above papers in the relevant
sections below.

11.7.2 Invariant Measures and Entropy

11.7.2.1 Mirsky Measure

Cellarosi and Sinai proved (i) in [23]: they showed that νμ2 is generic for a shift-
invariant measure νμ2 on {0, 1}Z, and that (Xμ2 , νμ2, S) is isomorphic to a rotation
on the compact Abelian group

∏
p∈P Z/p2

Z. In particular, (Xμ2 , νμ2, S) is of zero

Kolmogorov entropy.88 In case of k-free lattice points and k-free integers in number
fields an analogous result can be found in [141] and [24], respectively and for B-
free lattice points it was announced in [5]. Recently, Huck [96] showed that in case
of B-free integers in number fields, the logarithmic density of FB always exists
and equals the lower density, thus extending Theorem 11.76 in the (1-dimensional)
Erdös case.

Since FB may fail to have asymptotic density, the more η may fail to be a generic
point. However (Proposition E in [48]), for any B ⊂ N, η is always a quasi-generic
point for a natural ergodic S-invariant measure νη on {0, 1}Z (the relevant Mirsky
measure). Moreover, B is Besicovitch if and only if η is generic for νη. Now, if
we additionally assume that B is taut, then (Xη, νη, S) is isomorphic to an ergodic
rotation on a compact metric group (Theorem F in [48]).89 In particular, (Xη, νη, S)
has zero entropy.

Finally, for a generalization to so-called weak model sets, see [6], and for some
results related to the distribution of B-free integers, see [2, 3].

88The frequencies of blocks on μ2 were first studied by Mirsky [132, 133] and that is why we refer
to νμ2 (and the analogous measure in case of general B-free systems) as the Mirsky measure.
89More precisely, it is isomorphic to (H,P,T), where H is the closure of {(n mod bk)k�1 : n ∈ Z}
in
∏

k�1 Z/bkZ and Tg = g+ (1, 1, . . . ), cf. (11.49).
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11.7.2.2 Entropy

The topological entropy of Xμ2 is positive and equals 6/π2 = ∏p∈P(1 − 1/p2) =
d(FB) for B = { p2 : p ∈ P}, see [140]. This extends to the Erdös case, where the
topological entropy of Xη = X̃η = XB equals

∏
b∈B(1 − 1/b) = d(FB), see [55].

In the general case of B-free systems, we have htop(X̃η, S) = htop(XB, S) = δ(FB)

(see Proposition K in [48]). The formula for the topological entropy of k-free lattice
points is provided in [141].

In view of the variational principle, the positivity of the topological entropy
evokes two problems: whether the system under consideration is intrinsically
ergodic (i.e. whether there is a unique measure of maximal entropy) and to describe
the set of all invariant measures. We address them next.

11.7.2.3 Maximal Entropy Measure

In the square-free case, the intrinsic ergodicity is proved by Peckner in [140]. This
extends to the Erdös case, see [114] by Kułaga-Przymus, Lemańczyk and Weiss.
Finally, for any B ⊂ N, the subshift (X̃η, S) is intrinsically ergodic, see Theorem J
in [48]. In particular, if B has light tails and contains an infinite pairwise coprime
subset then (XB, S) is intrinsically ergodic.

11.7.2.4 All Invariant Measures

Notice that for each B, the map M : Xη×{0, 1}Z → X̃η given by the coordinatewise
multiplication of sequences is well-defined and each S × S-invariant measure ρ

on Xη × {0, 1}Z yields an S-invariant measure on X̃η. In particular, this applies to
those ρ whose projection on the first coordinate is νη. It turns out that the converse
is also true: for any S-invariant measure ν on X̃η there exists an S × S-invariant
measure ρ on Xη × {0, 1}Z whose projection on the first coordinate is νη and such
that M∗(ρ) = ν. For the Erdös case see [114] and for general B-free systems, see
Theorem I in [48] (for further generalizations of B-free systems listed before (see
page 222) no analogous description of the set of all invariant measures is known).

It turns out that a special role is played by B that are taut. We have the following:
for any B, there exists a unique taut set B′ ⊂ N such that FB′ ⊂ FB, X̃η′ ⊂ X̃η and
all S-invariant measures on X̃η are in fact supported on X̃η′ (Theorem C in [48]).

More subtle properties of the simplex of invariant measures of the B-shift
have been studied in [115] by Kułaga-Przymus, Lemańczyk and Weiss—it was
shown that in the positive entropy case the simplex of S-invariant measures on
X̃η is Poulsen, i.e. the ergodic measures are dense. In particular, if we additionally
know that Xη is hereditary (and has positive entropy), then its simplex of invariant
measures is Poulsen. However, this is no longer true for a general (not necessarilyB-
free) hereditary system. On the other hand, Konieczny, Kupsa and Kwietniak [111]



11 Sarnak’s Conjecture: What’s New 225

showed that the set of ergodic invariant measures of a hereditary shift is always
arcwise connected (when endowed with the d-bar metric).

11.7.3 Topological Results

A lot can be said about the topological properties of (Xη, S). E.g. for any B ⊂ N the
subshift Xη has a unique minimal subset that is the orbit closure of a Toeplitz system
(Theorem A in [48]). In particular, Xη is minimal if and only if Xη is a Toeplitz
system.90 In fact, η itself can be a Toeplitz sequence (see Example 3.1 in [48]) and
it was shown in [105] that η is a Toeplitz sequence different from . . . 0.00 . . . if and
only if B does not contain a subset of the form dA, where d ∈ N and A ⊂ N \ {1}
is infinite and pairwise coprime. Moreover, if η is Toeplitz then B is necessarily
taut [105].

On the other hand, the proximality of Xη is equivalent to {. . . 0.00 . . . } being the
unique minimal subset of Xη. Moreover, Xη is proximal if and only if B contains an
infinite pairwise coprime subset (Theorem B in [48]).

Some of the properties of the B-free subshift Xη can be characterized via
properties of a set W called the window: W = {h ∈ H : hb = 0 for all b ∈ B},
cf. (11.48). This name has its origins in the theory of weak model sets (for more
details see [4]); FB is an example of such a set. Again a special role is played by
sets B that are taut. In [105], Kasjan, Keller and Lemańczyk show the following:

• B is taut if and only if W is Haar regular, i.e. the topological support of Haar
measure restricted to W is the whole W;

• if B is primitive then Xη is a Toeplitz system if and only if W is topologically
regular;

• Xη is proximal if and only if W has empty interior.

In [105] there is also a detailed description of the maximal equicontinuous factor of
Xη (with no extra assumptions on B). See also [109].

Clearly, if Xη is hereditary, i.e. Xη = X̃η then (. . .0.00 . . . ) ∈ Xη and hence Xη

is proximal. If we assume that B has light tails and contains an infinite pairwise
coprime subset then the converse is true: proximality yields heredity (Theorem D
in [48]). However, X̃η = XB may fail to hold, even under quite strong assumptions
on B. Indeed, the set of abundant numbers A is the corresponding set of multiples
MB for a certain set B with the property that

∑
b∈B 1/b <∞. Here, X̃η = XB, see

Section 11 in [48].
More subtle results on heredity were recently obtained by Keller in [108]. He

shows that whenever Xη is proximal then it is contained in a slightly larger subshift
that is hereditary (there is no need to make extra assumptions on B). He also
generalizes the concept of heredity to the non-proximal case.

90This has been recently improved in [105] and by A. Bartnicka: Xη is minimal if and only if η is
Toeplitz.
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It is also interesting to ask about the (invertible) centralizer of (S,Xη). In the
Erdös case it was proved by Mentzen91 in [131] that the group of homeomorphisms
commuting with the shift (S,Xη) consists only of the powers of S. In case of some
Toeplitz B-free systems an analogous result was proved by Bartnicka in [49].

Question 11 Is the invertible centralizer trivial for each B-free subshift?

11.7.4 Ergodic Ramsey Theory

We will now see some connections of the theory of B-free sets with the theory
uniform distribution and ergodic Ramsey theory.

11.7.4.1 Polynomial Recurrence and Divisibility

Recall that Szemerédi showed [154] that any set S ⊂ N with positive upper density
contains arbitrarily long arithmetic progressions and Furstenberg [75, 76] introduced
an ergodic approach to this result that proved very fruitful from the point of view of
various generalizations. In particular, it allowed one to prove the following: for any
probability space (X,B, μ), invertible measure preserving transformation T : X →
X, A ∈ B with μ(A) > 0 and any polynomials pi ∈ Q[t] satisfying pi(Z) ⊂ Z and
pi(0) = 0, 1 � i � �, there exists arbitrarily large n ∈ N such that

μ
(
A ∩ T−p1(n)A ∩ . . . ∩ T−p�(n)A

)
> 0. (11.50)

In fact, we have

lim
N→∞

1

N

N∑

n=1

μ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−p�(n)A
)
> 0

[9, 90, 118]. One can now restrict attention to a specific subset R of n ∈ N for which
we ask whether (11.50) holds or even demand

lim
N→∞

1

|R ∩ [1,N]|
N∑

n=1

1R(n)μ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−p�(n)A
)
> 0. (11.51)

If (11.51) holds for any invertible measure preserving system (X,B, μ,T), A ∈ B
with μ(A) > 0, � ∈ N and any polynomials pi ∈ Q[t], i = 1, . . . , �, with pi(Z) ⊂ Z

and pi(0) = 0 for all i ∈ {1, . . . , �}, we say (cf. [8, Definition 1.5]) that R ⊂ N is

91Mentzen’s result is extended in [7] to every hereditary B-free subshift.
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averaging set of polynomial multiple recurrence. If � = 1, we speak of an averaging
set of polynomial single recurrence.

We will be interested in polynomial recurrence for B-free sets. Before we get
there, let us direct our attention to so-called rational sets. Recall that R ⊂ N

is rational if it can be approximated in density by finite unions of arithmetic
progressions, cf. footnote 18. Note that the rationality of FB is equivalent to B
being Besicovitch. An easy necessary condition for R ⊂ N to be an averaging set
of polynomial recurrence is that the density of R ∩ uN exists and is positive for
any u ∈ N (indeed, otherwise consider the cyclic rotation on Z/uZ to see that even
usual recurrence fails). If the latter holds, we will say that R is divisible. It turns out
that in case of rational sets, divisibility is not only necessary but also sufficient for
polynomial recurrence. More precisely, we have the following:

Theorem 11.78 ([13]) Let R ⊂ N be rational and of positive density. The following
conditions are equivalent:

(a) R is divisible.
(b) R is an averaging set of polynomial single recurrence.
(c) R is an averaging set of polynomial multiple recurrence.

Recall that it was proved in [10] that every self-shift Q − r, r ∈ Q, of the set of
square-free numbers Q is divisible and these are the only divisible shifts of Q. For
general B-free sets the situation is more complicated and we have the following
result:

Theorem 11.79 ([13]) Given B ⊂ N that is Besicovitch, there exists a set D ⊂ FB
with d(FB \ D) = 0 such that the set FB − r is an averaging set of polynomial
multiple recurrence if and only if r ∈ D. Moreover, D = FB if and only if the set B
is taut.

This can be generalized to B that are not Besicovitch by considering divisibility and
recurrence along a certain subsequence (Nk)k�1. As a combinatorial application,
one obtains in [13] the following result: Suppose that (Nk)k�1 is such that the
density of FB along (Nk)k�1 exists and is positive. Then there exists D ⊂ FB which
equals FB up to a set of zero density along (Nk)k�1 such that for all r ∈ D and for
all E ⊂ N with positive upper density, for any polynomials pi ∈ Q[t], i = 1, . . . , �,
which satisfy pi(Z) ⊂ Z and pi(0) = 0, for all 1 � i � �, there exists β > 0 such
that the set

{
n ∈ FB − r : d

(
E ∩ (E − p1(n)) ∩ . . . ∩ (E − p�(n))

)
> β

}

has positive lower density along (Nk)k�1. If, additionally, B is taut then one can
take D = FB.

Results of similar flavor as above have been also obtained in [12] in the context
of level sets of multiplicative functions. In particular, if E is a level set of a
multiplicative function and has positive density then every self-shift of E is an
averaging set of polynomial multiple recurrence (Corollary C in [12]). The key tool
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here is (11.17) that provides an important link between level sets of multiplicative
functions and rational sets. See also [11].
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Sarnak conjectures from ergodic theory point of view. Discrete Contin. Dyn. Syst. 37(6),
2899–2944 (2017)

58. E.H. El Abdalaoui, J. Kułaga-Przymus, M. Lemańczyk, T. de la Rue, Möbius disjointness for
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120. M. Lemańczyk, F. Parreau, Lifting mixing properties by Rokhlin cocycles. Ergod. Theory
Dyn. Syst. 32(2), 763–784 (2012)

121. E. Lindenstrauss, Measurable distal and topological distal systems. Ergod. Theory Dyn. Syst.
19(4), 1063–1076 (1999)

122. J. Liu, P. Sarnak, The Möbius function and distal flows. Duke Math. J. 164(7), 1353–1399
(2015)

123. B. Marcus, The horocycle flow is mixing of all degrees. Invent. Math. 46(3), 201–209 (1978)
124. B. Martin, C. Mauduit, J. Rivat, Théorème des nombres premiers pour les fonctions digitales.

Acta Arith. 165(1), 11–45 (2014)
125. B. Martin, C. Mauduit, J. Rivat, Fonctions digitales le long des nombres premiers. Acta Arith.

170(2), 175–197 (2015)
126. K. Matomäki, M. Radziwiłł, Multiplicative functions in short intervals. Ann. Math. (2) 183(3),

1015–1056 (2016)
127. K. Matomäki, M. Radziwiłł, T. Tao, An averaged form of Chowla’s conjecture. Algebra

Number Theory 9, 2167–2196 (2015)
128. K. Matomäki, M. Radziwiłł, T. Tao, Sign patterns of the Liouville and Möbius functions.

Forum Math. Sigma 4(e14), 44 (2016)
129. C. Mauduit, J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres

premiers. Ann. Math. (2) 171(3), 1591–1646 (2010)
130. C. Mauduit, J. Rivat, Prime numbers along Rudin–Shapiro sequences. J. Eur. Math. Soc.

17(10), 2595–2642 (2015)
131. M.K. Mentzen, Automorphisms of subshifts defined by B -free sets of integers. Colloq. Math.

147(1), 87–94 (2017)
132. L. Mirsky, Note on an asymptotic formula connected with r -free integers. Q. J. Math. Oxford

Ser. 18, 178–182 (1947)
133. L. Mirsky, Arithmetical pattern problems relating to divisibility by r th powers. Proc. Lond.

Math. Soc. (2) 50, 497–508 (1949)
134. H.L. Montgomery, R.C. Vaughan, Exponential sums with multiplicative coefficients. Invent.

Math. 43(1), 69–82 (1977)
135. B. Mossé, Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theor.

Comput. Sci. 99(2), 327–334 (1992)
136. C. Müllner, Automatic sequences fulfill the Sarnak conjecture. Duke Math. (to appear).

https://arxiv.org/abs/1602.03042.
137. M.R. Murty, A. Vatwani, A remark on a conjecture of Chowla. J. Ramanujan Math. Soc.

(2017, to appear)
138. M.R. Murty, A. Vatwani, Twin primes and the parity problem. J. Number Theory 180, 643–

659 (2017)
139. R. Peckner, Two dynamical perspectives on the randomness of the Mobius function. Thesis

(Ph.D.), Princeton University. ProQuest LLC, Ann Arbor, 2015
140. R. Peckner, Uniqueness of the measure of maximal entropy for the squarefree flow. Isr. J.

Math. 210(1), 335–357 (2015)
141. P.A.B. Pleasants, C. Huck, Entropy and diffraction of the k -free points in n -dimensional

lattices. Discrete Comput. Geom. 50(1), 39–68 (2013)
142. M. Queffélec, Substitution Dynamical Systems—Spectral Analysis, 2nd edn. Lecture Notes in

Mathematics, vol. 1294 (Springer, Berlin, 2010)

https://arxiv.org/abs/1602.03042


234 S. Ferenczi et al.

143. O. Ramaré, From Chowla’s conjecture: from the Liouville function to the Moebius function,
in Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetic and
Combinatorics, ed. By S. Ferenczi et al. Lecture Notes in Mathematics, vol. 2213 (Springer,
New York, 2018)

144. M. Ratner, Horocycle flows, joinings and rigidity of products. Ann. Math. (2) 118(2), 277–
313 (1983)

145. M. Ratner, On Raghunathan’s measure conjecture. Ann. Math. (2) 134(3), 545–607 (1991)
146. J. Rivat, Analytic number theory, in Ergodic Theory and Dynamical Systems in Their

Interactions with Arithmetic and Combinatorics, ed. By S. Ferenczi et al. Lecture Notes in
Mathematics, vol. 2213 (Springer, New York, 2018)

147. V.V. Ryzhikov, Bounded ergodic constructions, disjointness, and weak limits of powers.
Trans. Mosc. Math. Soc. 74, 165–171 (2013)

148. P. Sarnak, Mobius randomness and dynamics. Not. S. Afr. Math. Soc. 43(2), 89–97 (2012)
149. P. Sarnak, Möbius randomness and dynamics six years later. http://www.youtube.com/watch?

v=LXX0ntxrkb0
150. P. Sarnak, Three lectures on the Möbius function, randomness and dynamics. http://

publications.ias.edu/sarnak/
151. P. Sarnak, A. Ubis, The horocycle flow at prime times. J. Math. Pures Appl. (9) 103(2), 575–

618 (2015)
152. K. Schmidt, Cocycles on Ergodic Transformation Groups. Macmillan Lectures in Mathemat-

ics, vol. 1 (Macmillan Company of India, Ltd., Delhi, 1977)
153. K. Soundararajan, The Liouville function in short intervals [after Matomäki and Radziwiłł].

Séminarie Boubaki 68ème année (2015–2016), no. 1119
154. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression. Acta

Arith. 27, 199–245 (1975). Collection of articles in memory of Juriı̆ Vladimirovič Linnik
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Chapter 12
Sarnak’s Conjecture Implies the Chowla
Conjecture Along a Subsequence

Alexander Gomilko, Dominik Kwietniak, and Mariusz Lemańczyk

12.1 Introduction

For the definitions, basic notation and results concerning the conjecture of Sarnak
and the one of Chowla we refer the reader to the survey [5]. We only recall here
that the Chowla conjecture implies Sarnak’s conjecture [4, 11]. Then the intriguing
question arises whether the reverse implication is true. Motivated by some recent
results concerning logarithmic autocorrelations of the classical Möbius function
μ : N→ {−1, 0, 1} (and the Liouville function λ : N→ {−1, 1}), see [6, 7, 12, 13]
and using Tao’s result [13] on the equivalence of logarithmic versions of Sarnak’s
and Chowla conjectures, we give a partial answer to the aforementioned question
by showing that:

Theorem 12.1 If Sarnak’s conjecture is satisfied then there exists an increasing
sequence (Nk) of positive integers along which the Chowla conjecture holds.

As a matter of fact, we show that the assertion of Theorem 12.1 follows from the
logarithmic version of the Chowla conjecture.
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12.2 Cesàro and Harmonic Limits of Empirical Measures

12.2.1 Ergodic Components of Members of V(x) and Vlog(x)

Let X be a compact metric space. By M(X) we denote the space of probability Borel
measures on X, in fact, we will also consider the space of M̃(X) of Borel measures μ
on X for which μ(X) � 2. With the weak-∗-topology, M(X) is a compact metrizable
space and the metric we will consider is given by

d(μ, ν) =
∑

j�1

1

2 j

∣∣∣∣
∫

fj dμ−
∫

fj dν

∣∣∣∣ , (12.1)

where { fj : j � 1} is a linearly dense set of continuous function whose sup norm is
� 1. Note that, by (12.1), if 0 � α � 1 then d(αμ, αν) = αd(μ, ν). In particular, d
is convex:

d

(∫
μγ dP(γ ),

∫
νγ dP(γ )

)
�
∫

d(μγ , νγ ) dP(γ ), (12.2)

where P is a Borel probability measure on the set of indices γ in some Polish metric
space, γ 	→ μγ is an M(X)-valued Borel function, and

∫
μγ dP(γ ) denotes the

Pettis integral.
Let (X,T) be a dynamical system given by a continuous map T : X → X and

M(X,T) (respectively, Me(X,T)) stands for the set of T-invariant (respectively,
ergodic) measures. Given x ∈ X and n ∈ N, we write δTn(x) for the Dirac
measure concentrated at the point Tn(x). Let Δ(x,N) denote the counting measure
concentrated on {x,T(x), . . . ,TN−1(x)}, where N � 1 and let the empirical measure
E(x,N) be the normalized counting measure, that is,

Δ(x,N) =
N∑

n=1

δTn−1(x), and E(x,N) = 1

N
Δ(x,N).

We say that x ∈ X is quasi-generic for a measure ν ∈ M(X) if for some subsequence
(Nk) we have E(x,Nk)→ ν. The Cesàro limit set of x is

V(x) := {ν ∈ M(X) : x is quasi-generic for ν}.

The set was studied by many authors and it is well-known (and easy to see) that we
always have

V(x) ⊂ M(X,T) (12.3)
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and V(x) is a nonempty, closed and connected set, see [1], hence

either |V(x)| = 1 or V(x) is uncountable. (12.4)

Choosing different normalization method for the counting measures Δ(x,N), we
arrive at the notion of harmonic limit set of a point. Let

Elog(x,N) = 1

log N

N∑

n=1

1

n
δTn−1(x), for N � 2.

Note thatElog(x,N) is not a probability measure. In order to stay in M(X), we should
consider

Elog
nrm(x,N) = 1

HN

N∑

n=1

1

n
δTn−1(x), where HN =

N∑

n=1

1

n
.

Note that the limit sets of sequences (Elog(x,N)) and (Elog
nrm(x,N)) as N goes to ∞

coincide, so by abuse of notation we will not distinguish between M(X) and M̃(X)

and we will often deal with sequences of linear combinations of measures which are
not exactly convex (affine), but are closer and closer to be so when we pass with the
index N to infinity. We say that x ∈ X is logarithmically quasi-generic for a measure
ν if for some subsequence (Nk) we have Elog(x,Nk)→ ν as k →∞. The harmonic
limit set of x is defined as

V log(x) := {ν ∈ M(X) : x is logarithmically quasi-generic for ν}.

It is easy to see that the proofs of (12.3)–(12.4) presented for V(x) in [1] can be
easily adapted to harmonic averages, so we have that V log(x) is nonempty, closed,
connected, and consists of T-invariant measures. In particular, (12.4) also holds for
V log(x). If V(x) = {ν}, then V log(x) = {ν}, but the converse need not be true.
Nevertheless, the measures in the harmonic limit set of x are always members of
the closed convex hull of V(x) (note that the latter set need not be convex as in
a dynamical system with the specification property every nonempty compact and
connected set V ⊂ M(X,T) is the Cesàro limit set of some point x ∈ X, cf. [1,
Proposition 21.14]).

Proposition 12.2 We have Vlog(x) ⊂ conv(V(x)).

Proof Fix x ∈ X and let

A := {E(x,N) : N � 1}, B := {Elog(x,N) : N � 2}.

If x is eventually periodic, that is, Tk(x) = T�(x) for some 0 � k < �, then it
is easy to see that V(x) = V log(x) = {E(Tk(x), � − k)}. We will assume that x is
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not an eventually periodic point. It follows that A ∩M(X,T) = B ∩M(X,T) = ∅.
Furthermore, A = V(x) ∪ A and B = V log(x) ∪ B, where the summands are disjoint
in both cases. Note that

Δ(x, n)−Δ(x, n− 1) = δTn−1(x) for n = 2, 3, . . . .

Using the summation by parts trick, we obtain

N∑

n=1

1

n
δTn−1(x) = Δ(x, 1)+

N∑

n=2

1

n
(Δ(x, n)−Δ(x, n − 1))

= 1

N
Δ(x,N)+

N−1∑

n=1

(
1

(n+ 1)n

)
Δ(x, n)

= E(x,N)+
N−1∑

n=1

E(x, n)

n+ 1
. (12.5)

Fix ε > 0. Then, there exists K = Kε � 1 such that

d(E(x, n),V(x)) < ε for n � Kε. (12.6)

Using (12.5), we get

Elog
nrm(x,N) = 1

HN

K∑

n=1

E(x, n)

n+ 1
+ E(x,N)

HN
+ 1

HN

N−1∑

n=K+1

E(x, n)

n+ 1
. (12.7)

Now, keeping K fixed, we can assure that the total mass of the first two summands
on the RHS of (12.7) is as close to 0 as we want provided that N is large enough.
Therefore, for every N large enough, the measure Elog

nrm(x,N) is ε-close to

ξN = 1

HN − HK

N−1∑

n=K+1

E(x, n)

n+ 1
.

The latter measure is an affine combination of E(x, n) for n > Kε which are
all ε-close to V(x). Using (12.2), we get that ξN is ε-close to conv(V(x)), thus
d(ξN,Elog

nrm(x,N)) < 2ε for all N large enough. Putting all this together, we obtain
that for each ρ ∈ V log(x), we have

d(ρ, conv(V(x))) = 0

which completes the proof of Proposition 12.2.
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12.2.2 Ergodic Measures in Vlog(x)

It turns out that if x ∈ X is logarithmically quasi-generic for an ergodic measure
then x is also quasi-generic in the classical (Cesàro) sense.

Corollary 12.3 If an ergodic measure ν ∈ Vlog(x), then ν ∈ V(x).

Proof We first recall Milman’s theorem ([10], Chapter 1.3, Theorem 3.25): If K is a
compact set in a locally convex space and conv(K) is compact then ex(conv(K)) ⊂
K. Here, and elsewhere by ex(L) we denote the set of extreme points of a convex
set L. We apply Milman’s result to K = V(x) and ex(M(X,T)) = Me(X,T). By
Proposition 12.2, we have

V log(x) ∩Me(X,T) ⊂ conv(V(x)) ∩Me(X,T) ⊂ ex(conv(V(x))) ⊂ V(x).

12.2.3 Ergodic Components of Measures in Vlog(x)

Let us recall that in our setting M(X,T) is a metrizable, compact and convex subset
of a locally convex space. It follows that we can use Choquet’s representation
theorem (see [9], Chapters 3 and 10) to conclude that if L is a closed convex subset
of M(X,T) and κ ∈ L then there exists a Borel probability measure Pκ on M(X,T)

supported by ex(L) such that

κ =
∫

ex(L)
ρ dPκ(ρ). (12.8)

Furthermore, if L = M(X,T), then Pκ satisfying (12.8) is unique and the map
M(X,T) # κ 	→ Pκ ∈ M(Me(X,T)) is Borel measurable [2] Fact A.2.12 and
[9] Proposition 11.1.

Proposition 12.4 The set of ergodic components of measures in Vlog(x) is con-
tained in the set of ergodic components of measures in V(x). More precisely: if a
Borel setD ⊂ Me(X,T) satisfies

Pμ(D) = 1 for each μ ∈ V(x)

then

Pκ(D) = 1 for each κ ∈ Vlog(x).

In particular, if the set of ergodic components of measures in V(x) is countable,
so is the set of ergodic components of Vlog(x).
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Proof Fix κ ∈ V log(x). It follows from Proposition 12.2 that κ ∈ conv(V(x)). By
Choquet’s theorem, there exists Q ∈ M(M(X,T)) with Q(ex(conv(V(x))) = 1 such
that

κ =
∫

ex(conv(V(x)))
μ dQ(μ).

Using Milman’s theorem, we obtain that Q(V(x)) = 1, so that

κ =
∫

V(x)
μ dQ(μ).

Hence

κ =
∫

V(x)

(∫

Me(X,T)

ρ dPμ(ρ)

)
dQ(μ) =

∫

Me(X,T)

ρ dR(ρ),

where R ∈ M(M(X,T)) is defined by

R(C) :=
∫

V(x)
Pμ(C) dQ(μ) for a Borel subset C ⊂ M(X,T).

Note that the definition of R is correct as V(x) is Borel and μ 	→ Pμ is Borel
measurable. Now, since M(X,T) is a simplex, there is only one measure on
Me(X,T) satisfying (12.8) and we obtain that R = Pκ . Since Pμ(D) = 1 for each
μ ∈ V(x), we have Pκ(D) = 1.

12.3 Relations Between Sarnak’s Conjecture and the Chowla
Conjecture

Thinking of the Möbius function as of a point μ in the sequence space {−1, 0, 1}N,
we can consider the Möbius dynamical system (Xμ, S), where Xμ stands for the orbit
closure of μ and S denotes the left shift. We now apply results from the previous
sections to the Möbius system and sets V(μ) and V log(μ).

Proof (Proof of Theorem 12.1) It is obvious that Sarnak’s conjecture implies loga-
rithmic Sarnak’s conjecture which, by a result of Tao [13], implies the logarithmic
version of Chowla conjecture. The logarithmic version of Chowla conjecture for μ

phrased in the language of ergodic theory means that

1

log N

N∑

n=1

1

n
δSn−1(μ) → ν̂μ2, as N →∞,
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where ν̂μ2 is the relatively independent extension of the Mirsky measure νμ2 of
the square-free system (Xμ2, S) [4]. In particular, ν̂μ2 is ergodic. Equivalently, the
conjecture says that ν̂μ2 ∈ V log(μ). It follows from Corollary 12.3 that μ is a quasi-
generic point (in the sense of Cesàro) for ν̂μ2 , that is, there is a sequence (Ni) such
that for each 1 � a1 < . . . < ak and each choice of j0, j1, . . . , jk ∈ {1, 2} not all
equal to 2, we have

lim
i→∞

1

Ni

∑

n�Ni

μj0(n)μj1(n+ a1) · . . . · μjk(n+ ak) = 0,

i.e., we obtain the Chowla conjecture along the subsequence (Ni).

Remark 12.5 If instead of the Möbius function μ we consider the Liouville function
λ then the Chowla conjecture claims that the limit is the Bernoulli measure
B(1/2, 1/2) on {−1, 1}N.

In fact, using [6], we have the following:

Corollary 12.6 Assume that there exists an ergodic measure κ ∈ Vlog(μ). Then
there exists an increasing sequence (Ni) such that the Chowla conjecture holds
along (Ni).

Proof If there exists κ ∈ V log(μ)∩Me(Xμ, S), then, reasoning as above, we see that
for a subsequence (Ni), we have

1

Ni

∑

1�n�Ni

δSn−1(μ) → κ as i →∞.

Now, by Frantzikinakis [6], we get κ = ν̂μ2 . The result follows.

Remark 12.7 Assume that (X,T) is a dynamical system and x ∈ X is completely
deterministic (i.e. each member κ ∈ V(x) yields zero entropy measurable system
(X, κ,T)) such that the ergodic components of all measures from V(x) give
a countable set. It follows from Proposition 12.4 and [7] (see Remarks after
Theorem 1.3 in [7]) that, at x, we obtain Möbius disjointness in the logarithmic
sense.

12.4 Examples

We collect here a couple of examples demonstrating that some of our results are
optimal and cannot be improved. Our examples are points in the full shift {0, 1}N or
{0, 1, 2}N constructed so that the Cesàro and harmonic limit sets are easy to identify.
We will routinely omit some easy computations used in our proofs.
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Let d(J), d(J), δ(J), and δ(J) denote, respectively the lower/upper asymptotic
and lower/upper logarithmic density of a set J ⊂ Z. It is well known that we always
have d(J) � δ(J) � δ(J) � d(J). We write δ(J) for the common value of δ(J) and
δ(J) (if such an equality holds).

Our approach is based on the following criterion for logarithmic genericity. It
can be proved the same way as for Cesàro averages the only difference is that
logarithmic (harmonic) averages replace asymptotic averages.

Proposition 12.8 A point x = (xn) ∈ {0, 1}N is logarithmically generic for a
measure μ if and only if for every k � 1 and for every finite block w ∈ {0, 1}k,
the set of positions j such that w appears at the position j in w, that is the set Jw =
{ j ∈ N : xj = w1, . . . , xj+k−1 = wk} satisfies δ(Jw) = δ(Jw) = μ({y : y[0,k) = w}).

We will also apply the following observation.

Proposition 12.9 For every point x = (xn) ∈ {0, 1}N, k � 1 and finite block w ∈
{0, 1}k, we have

d( Jw) = min{ν({ y : y[0,k) = w}) : ν ∈ V(x)}

and

d( Jw) = max{ν({ y : y[0,k) = w}) : ν ∈ V(x)},

where Jw = { j ∈ N : xj = w1, . . . , xj+k−1 = wk}.
Both results are well-known. We now present our examples.

Proposition 12.10 It can happen that Vlog(x) � V(x).

Proof Let

x = 01100001111111110000000000000000 . . . ,

that is,

xn =
{

0, if 22k � n+ 1 < 22k+1 for some k � 0,

1, if 22k−1 � n+ 1 < 22k for some k � 1.

It is easy to see that V(x) = {αδ0 + (1− α)δ1 : 1/3 � α � 2/3}, where δp denotes
the Dirac measure concentrated at the fixed point ppp . . . ∈ {0, 1}N. We claim that
V log(x) = {1/2δ0 + 1/2δ1}. Indeed, it is easy to see that:

1. δ(Jw) = δ(Jw) = 1/2 for w = 0 and w = 1,
2. d(Jw) = d(Jw) = 0 for any block w containing 01 or 10 as a subblock,
3. δ(Jw) = δ(Jw) = 1/2 for any k � 2 and w = 0k or w = 1k.
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Our claim is an immediate consequence of these three observations. The proofs
of the first two are based on easy computations. To see the third one, fix k � 2 and
consider w = 1k (the case w = 0k is proved in the same way). Note that J1\Jw can be
equivalently described as the set of positions j such that the block xjxj+1 . . . xj+k−1
starts with 1 and contains 10 as a subblock. By 2. this set satisfies d(J1 \ Jw) = 0,
thus δ(Jw) = δ(J1) and δ(Jw) = δ(J1). It follows from 1. that δ(Jw) = 1/2.

We are grateful to J. Kułaga-Przymus for the following remark. It has also
inspired our next proposition presenting a simpler example of the same phe-
nomenon.

Remark 12.11 ( J. Kułaga-Przymus) It is implicit in [3] that for each B ⊂ N \ {1}
which is not Besicovitch, for the subshift (Xη, S), where η := 1FB (FB stands
for the set of B-free numbers), we have V log(η) = {νη} and νη (so called Mirsky
measure of (Xη, S)) is ergodic, while V(η) is uncountable, whence the set of ergodic
components of members in V(η) is strictly larger than the analogous set for V log(η).

Proposition 12.12 The set of ergodic measures appearing in the ergodic decompo-
sitions of members of V(x) can be strictly bigger than the set of ergodic components
of analogous set for Vlog(x).

Proof Let x = (xn) ∈ {0, 1}N, where

xn =
{

1, if 2k2−1 � n+ 1 < 2k2
, for some k � 1,

0, otherwise.

Then it follows either from [8, Lemma 2] or from direct computations that δ(J1) =
δ({0 � j < 2k2 : xj = 1}) = 0, which implies that V log(x) = {δ0}. On the other
hand for every k � 1 we have

|{0 � j < 2k2 : xj = 1}| =
k∑

j=1

2j2−1.

Therefore d({0 � j < 2k2 : xj = 1}) = 1/2 and we conclude that V(x) = {δ0}.
Proposition 12.13 The sets V(x) and Vlog(x) can be disjoint.

Proof Let

x = 00111111222222222222222220000000000000 . . . ,

that is,

xn =

⎧
⎪⎪⎨

⎪⎪⎩

0, if 33k � n+ 1 < 33k+1 for some k � 0,

1, if 33k+1 � n+ 1 < 33k+2 for some k � 0,

2, if 33k+2 � n+ 1 < 33k+3 for some k � 0.
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We claim that V log(x) = {1/3δ0 + 1/3δ1 + 1/3δ2} and V log(x) ∩ V(x) = ∅. We
proceed as in the first example. First, we note that the asymptotic density of the set
Jw of appearances of a block w = w1w2 ∈ {0, 1, 2}2 with w1 = w2 in x is zero.
It follows that the support of every measure ν ∈ V(x) ∪ V log(x) is contained in the
set {0, 1, 2} consisting of three shift-invariant (fixed) points. Next, we compute (or
conclude from [8, Lemma 2]) that

δ({ j ∈ N : xj = 0}) = δ({ j ∈ N : xj = 1}) = δ({ j ∈ N : xj = 2}) = 1/3.

This shows that V log(x) = {1/3δ0 + 1/3δ1 + 1/3δ2}.
Let ν ∈ V(x). It follows that there is a sequence (Ni) such that for every k � 1

and every block w ∈ {0, 1, 2}k, we have

lim
i→∞

|{0 � j < Ni : xj = w1, . . . , xj+k−1 = wk}|
Ni

= ν({ y : y[0,k) = w}).

Without loss of generality we can assume that there exists p ∈ {0, 1, 2} such that
Ni ≡ p mod 3 for every i ∈ N. Let q = p− 1 mod 3. It is then easy to see that

ν({ y : y0 = q}) � 3

13
<

1

3
,

which implies that ν = 1/3δ0 + 1/3δ1 + 1/3δ2.

Remark 12.14 With some more effort in can be seen that in the above example we
have that

conv(V(x)) = conv

({ 1

13
δ0 +

3

13
δ1 +

9

13
δ2,

1

13
δ2 +

3

13
δ0 +

9

13
δ1,

1

13
δ1 +

3

13
δ2 +

9

13
δ0

})
,

and V(x) is the combinatorial boundary of that simplex, that is,

V(x) = conv

({ 1

13
δ0 +

3

13
δ1 +

9

13
δ2,

1

13
δ1 +

3

13
δ2 +

9

13
δ0

})

∪conv

({ 1

13
δ2 +

3

13
δ0 +

9

13
δ1,

1

13
δ1 +

3

13
δ2 +

9

13
δ0

})

∪conv

({ 1

13
δ0 +

3

13
δ1 +

9

13
δ2,

1

13
δ2 +

3

13
δ0 +

9

13
δ1

})
.
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Chapter 13
On the Logarithmic Probability That a
Random Integral Ideal IsAAA-Free

Christian Huck

13.1 Introduction

Recently, the dynamical and spectral properties of so-calledA-free systems as given
by the orbit closure of the square-free integers, visible lattice points and various
number-theoretic generalisations have received increased attention; see [1, 2, 5, 6]
and references therein. One reason is the connection of one-dimensional examples
such as the square-free integers with Sarnak’s conjecture [12] on the ‘randomness’
of the Möbius function, another the explicit computability of correlation functions
as well as eigenfunctions for these systems together with intrinsic ergodicity
properties. Here, we provide a very first step towards the study of a rather general
notion of freeness for sets of integral ideals in an algebraic number field K.

A well known result by Benkoski [3] states that the probability that a randomly
chosen m-tuple of integers is relatively l-free (the integers are not divisible by a
common nontrivial lth power) is 1/ζ(lm), where ζ is the Riemann zeta function.
In a recent paper Sittinger [13] reproved that formula and gave an extension to
arbitrary rings of algebraic integers in number fields K. Due to a lack of unique
prime factorisation of integers in this general situation, one certainly passes to
counting integral ideals as a whole and, with a natural notion of asymptotic density,
the outcome is 1/ζK(lm), where

ζK(s) =
∑

0 =a⊂OK

1

N(a)s

C. Huck (�)
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is the Dedekind zeta function of K. This immediately leads to the question if the
result allows for a further generalisation to more general notions of freeness, where
one forbids common divisors from an arbitrary set A of non-zero integral ideals
instead of considering merely the set consisting of all prime-powers of the form pl

with p ⊂ OK prime. In the special case K = Q and m = 1, this was successfully
done in a paper by Davenport and Erdös [7] from 1951. The goal of this short note is
to provide a full generalisation of their result to arbitrary rings of algebraic integers.
It turns out that, building on old and new results from analytic number theory, one
can easily adjust their argument to the more general situation. In this generality, the
case m � 2 remains open.

13.2 Preliminaries

Let K be a fixed algebraic number field of degree d = [K : Q] ∈ N. Let OK denote
the ring of integers of K and recall that OK is a Dedekind domain [10]. Hence we
have unique factorisation of non-zero ideals into prime ideals at our disposal, i.e. any
non-zero integral ideal a ⊂ OK has a (up to rearrangement) unique representation
of the form

a = p1 · . . . · pl ,

where the pi are prime ideals. Recall that the (absolute) norm N(a) = [OK : a] of a
non-zero integral ideal a ⊂ OK is always finite. Moreover, the norm is completely
multiplicative, i.e. one always has N(ab) = N(a)N(b). A proof of the following
fundamental result can be found in [9].

Proposition 13.1 Let H(x) be the number of non-zero integral ideals with norm
less than or equal to x. Then

H(x) = cx+ O(x1− 1
d )

for some positive constant c.

Corollary 13.2 As x →∞, one has

∑

N(a)�x

1

N(a)
∼ c log x ,

where c is the constant from Proposition 13.1.
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Proof For k ∈ N, let h(k) denote the number of non-zero integral ideals with norm
equal to k. Summation by parts yields

∑

N(a)�x

1

N(a)
=

�x�∑

k=1

h(k)

k

= H(�x�)
�x� +

�x�−1∑

k=1

H(k)

k(k + 1)

= c+ O(x−
1
d )+ c

�x�−1∑

k=1

1

k + 1
+ O

( �x�−1∑

k=1

k− 1
d

k+ 1

)

= c
�x�−1∑

k=1

1

k + 1
+ O(1)

∼ c log x ,

since
∑�x�

k=1
1
k ∼ log x as x →∞.

The following generalisation of Mertens’ third theorem to partial Euler products
of the Dedekind zeta function ζK(s) of K at s = 1 was shown by Rosen. It will turn
out to be crucial for our main result.

Theorem 13.3 ([11]) There is a positive constant C such that

∏

N(p)�x

(
1− 1

N(p)

)−1 = C log x+ O(1) ,

where p ranges over the prime ideals of OK. In particular,
∏

N(p)�x(1− 1
N(p) )

−1 ∼
C log x as x →∞.

Remark 13.4 In fact, Rosen shows that the constant C above is given by C = αKeγ ,
where αK is the residue of ζK(s) at s = 1 and γ is the Euler-Mascheroni constant.

Let A = {a1, a2, . . . } be a fixed set of non-zero integral ideals ai ⊂ OK . We are
interested in the set

MA := {b = 0 | ∃i b ⊂ ai}

of non-zero integral ideals that are multiples of some ai respectively its complement
in the set of all non-zero integral ideals

VA := {b | ∀i b ⊂ ai}

of so-called A-free (or A-prime) integral ideals. More precisely, we ask if the
natural asymptotic densities of these sets exist. In general, one defines densities
of sets of non-zero integral ideals as follows.
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Definition 13.5 Let S be a set of non-zero integral ideals b ⊂ OK . And let S(x) be
the subset of those b with N(b) � x.

(1) The upper/lower (asymptotic) density D(S)/d(S) of S is defined as

lim sup
x→∞

/ lim inf
x→∞

S(x)

H(x)
.

If these numbers coincide, the common value is called the (asymptotic) density
of S, denoted by dens(S).

(2) The upper/lower (asymptotic) logarithmic density Δ(S)/δ(S) of S is defined as

lim sup
x→∞

/ lim inf
x→∞

∑
b∈S

N(b)�x

1
N(b)

∑
0 =b⊂OK
N(b)�x

1
N(b)

,

where one might substitute the denominator by c log x due to Corollary 13.2.
Again, if these numbers coincide, the common value is called the (asymptotic)
logarithmic density of S, denoted by denslog(S).

As in the well known special case of rational integers, the above lower and upper
densities are related as follows.

Lemma 13.6 (Density Inequality) For any set S of non-zero integral ideals of K,
one has

d(S) � δ(S) � Δ(S) � D(S) .

In particular, the existence of the density of S implies the existence of the logarithmic
density of S.

Proof The assertion follows from summation by parts as follows. Let us first show
that Δ(S) � D(S). To this end, let ε > 0 and choose N ∈ N such that S(n)

H(n) �
D(S)+ ε for all n � N. For k ∈ N, let s(k) denote the number of non-zero integral
ideals a ∈ S with norm equal to k. Summation by parts yields for n � N

n∑

k=1

s(k)

k
= S(n)

n
+

n−1∑

k=1

S(k)

k(k + 1)

� H(n)

n
+

N−1∑

k=1

S(k)

k(k + 1)
+

n−1∑

k=N

S(k)

k(k + 1)

� H(n)

n
+

N−1∑

k=1

S(k)

k(k + 1)
+ (D(S)+ ε)

n−1∑

k=N

H(k)

k(k + 1)
.
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Since H(n)
n → c and

∑n−1
k=N

H(k)
k(k+1) ∼ c log n as n → ∞ (see the proof of

Corollary 13.2), one obtains Δ(S) � D(S)+ ε. The assertion follows.
For the left inequality d(S) � δ(S), let ε > 0 and choose N ∈ N such that

S(n)
H(n) � d(S)− ε for all n � N. Again, summation by parts yields for n � N

n∑

k=1

s(k)

k
�

n−1∑

k=N

S(k)

k(k + 1)

� (d(S)− ε)

n−1∑

k=N

H(k)

k(k + 1)
,

which as above implies δ(S) � d(S)− ε and thus the assertion.

13.3 The Davenport-Erdös Theorem for Number Fields

Next, we shall study the densities of the setMA. Let us start with the finite case.
Note that, for a finite setJ of integral ideals, their least common multiple is just the
intersection

⋂
J .

Proposition 13.7 IfA is finite, then the density ofMA exists and is given by

dens(MA) =
∑

∅=J⊂A
(−1)|J |+1 1

N
(⋂
J
)

Proof If b is a non-zero integral ideal of norm N(b) and divisible by a, then there
is a unique non-zero integral ideal a′ such that b = aa′. In particular, N(a′) =
N(b)/N(a) by the multiplicativity of the norm. This provides a bijection from the
set of multiples of a of norm n to the set of non-zero integral ideals of norm n/N(a).
Hence, by the inclusion-exclusion principle, one has

S(x)

H(x)
=

∑

∅=J⊂A
(−1)|J |+1H

( x

N(
⋂
J)

)/
H(x) .

Application of Proposition 13.1 now yields the assertion.

Now let A = {a1, a2, . . . } be (countably) infinite. Since dens(M{a1,...,ar}) is an
increasing sequence with upper bound 1, we may define

A := lim
r→∞ dens(M{a1,...,ar}) .
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It is then natural to ask if, in general, A is the density ofMA. Already in the special
case K = Q the answer is negative in the sense that the natural lower and upper
densities may differ; cf. [4].

Remark 13.8 Due to dens(M{a1,...,ar}) � d(MA) for all r ∈ N, one has A �
d(MA).

Proposition 13.9 If the series
∑

a∈A 1
N(a) converges, then the density ofMA exists

and is equal to A.

Proof For fixed r ∈ N, the number of elements ofMA up to norm n not divisible
by any of a1, . . . , ar is at most

∑∞
i=r+1 H( n

N(ai)
). Hence, the corresponding upper

density is at most
∑∞

i=r+1
1

N(ai)
and this converges to 0 as r → ∞. It follows that

the upper density ofMA is

dens(M{a1,...,ar})+ O
( ∞∑

i=r+1

1

N(ai)

)
,

which converges to A as r →∞. This yields D(MA) � A and thus the assertion by
Remark 13.8.

Example 13.1 Recall that the Dedekind zeta function ζK(s) converges for all s > 1
and has the Euler product expansion

ζK(s) =
∑

a=0

1

N(a)s
=
∏

p

(
1− 1

N(p)s

)−1
.

It follows that, for l � 2 fixed and A = {pl | p prime}, the density ofMA exists
and is equal to

1−
∏

p

(
1− 1

N(p)l

)
= 1− 1

ζK(l)
.

In other words, the density ofVA exists and is equal to 1
ζK(l) , in accordance with [13,

Thm. 4.1].

As a preparation of the proof below, we next introduce the so-called multiplica-
tive density of MA. Let {p1, p2, . . . } be the set of all prime ideals of OK , with a
numbering that corresponds to increasing order with respect to the norms, i.e. i � j
always implies N(pi) � N(pj). For k ∈ N fixed, denote by n′ the general non-
zero integral ideal composed entirely of the prime ideals p1, . . . , pk (a so-called
p1, . . . , pk-ideal). Then, one has the convergence

∑

n′

1

N(n′)
=

k∏

i=1

(
1− 1

N(pi)

)−1 =: Πk .
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Further, denote by b′ those ideals fromMA that are p1, . . . , pk-ideals and let

Bk :=
∑

b′
1

N(b′)∑
n′

1
N(n′)

= Πk
−1
∑

b′

1

N(b′)
.

If the sequence Bk converges as k →∞, the limit is called the multiplicative density
of MA. Let A′ := {a′1, a′2, . . . } be the subset of A consisting of the p1, . . . , pk-
ideals only. Then the b′ from above are precisely those of the form a′in′. It follows
from the inclusion-exclusion principle and Proposition 13.9 in conjunction with the
convergence of

∑
a′∈A′ 1

N(a′) that

∑

b′

1

N(b′)
=
∑

n′

1

N(n′)
∑

∅=J⊂A′
(−1)|J |+1 1

N
(⋂
J
)

= Πk dens(MA′) .

One obtains that Bk = dens(MA′) which shows that the Bk increase with k.
Since the Bk are bounded above by 1, this proves that the Bk indeed converge, say
limk→∞ Bk =: B.

Next, we shall show that B = A. Clearly, if k is sufficiently large in relation to r,
then {a1, . . . , ar} ⊂ A′. Hence, one has

B � Bk = dens(MA′) � dens(M{a1,...,ar})

and therefore B � A. For the reverse inequality A � B, let k be fixed. The
convergence of

∑
a′inA′

1
N(a′) implies that the density of MA′ exists and satisfies

(see the proof of Proposition 13.9)

dens(MA′) � dens(M{a′1,...,a′r})+
∞∑

i=r+1

1

N(a′i)
.

Now choose s large enough such that {a′1, . . . , a′r} ⊂ {a1, . . . , as}. It follows that

dens(M{a′1dots,a′r}) � dens(M{a1,...,as}) � A

and further, by letting r →∞, dens(MA′) � A, i.e. Bk � A. It follows that B � A.
Altogether, this proves the claim B = A. We are now in a position to proof the main
result of this short note.

Theorem 13.10 The logarithmic density of MA exists and is equal to A. The
number A also equals the lower density ofMA.
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Proof We have to show, for S = MA, the equality d(S) = δ(S) = Δ(S) = A, i.e.
Δ(S) � A or, equivalently, Δ(S) � B since we have already seen above that A = B.
Let k ∈ N be fixed. Divide the b′ from above of norm � x into two classes, placing
in the first class those fromMA′ and in the second class the remaining ones. The b′
in the first class have density Bk (see above), hence the sum β1(x) corresponding to
the b′ in the first class satisfies (the density inequality is an equality in this case)

lim
x→∞

β1(x)

c log x
= Bk .

For the sum β2(x) corresponding to the b′ in the second class, let {p1, . . . , ph} be the
set of all prime ideals with norm up to x. The b′ in the second class are p1, . . . , ph-
ideals, but are not inMA′ . Denoting by b∗ the b′ of this kind (whether of norm � x
or not), one has

β2(x) �
∑

b∗

1

N(b∗)
.

The b∗ are obtained by taking all p1, . . . , ph-ideals b′′, and removing from them all
b′c, where b′ is a p1, . . . , pk-ideal and c is any pk+1, . . . , ph-ideal. Hence

∑

b∗

1

N(b∗) =
∑

b′′

1

N(b′′) −
∑

b′

1

N(b′)
∑

c

1

N(c)
= ΠhBh −ΠkBk

∑

c

1

N(c)
.

Since

∑

c

1

N(c)
=

h∏

i=k+1

(
1− 1

N(pi)

)−1 = ΠhΠ
−1
k ,

this shows that

∑

b∗

1

N(b∗)
= Πh(Bh − Bk) .

Finally, it follows from the Mertens type Theorem 13.3 by Rosen that

β2(x) �
∑

b∗

1

N(b∗)
= Πh(Bh − Bk) � C log x(Bh − Bk)

and thus, with β(x) := β1(x)+ β2(x),

lim sup
x→∞

β(x)

c log x
� Bk + C

c
(B− Bk) ,
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since x →∞ implies h →∞ which in turn implies Bh → B. Letting k →∞ and
thus Bk → B, one obtains that Δ(MA) � B.

Corollary 13.11 The logarithmic density ofVA exists and is equal to 1 − A. This
number also equals the upper density ofVA.

Proof In general, one has d(S) = 1− D(Sc) and δ(S) = 1−Δ(Sc).

Remark 13.12 It is natural to ask for an extension of the above results to the case
of m-tuples (b1, . . . , bm) of non-zero integral ideals, where one studies the set of
those tuples that consist of simultaneous multiples of ideals fromA respectively its
complement consisting of the relativelyA-free tuples. This is work in progress.

Remark 13.13 There is a non-canonical possibility of defining upper and lower
(asymptotic) densities of sets S of non-zero integral ideals b ⊂ OK by passing from
S to the subset

S̃ := {a ∈ OK | (a) ∈ S}

of OK and considering the image α(S̃) ⊂ Z
d under any isomorphism α : OK → Z

d

of Abelian groups (recall that d = [K : Q]). The set α(S̃) then has natural upper
and lower densities defined by counting points e.g. in centred balls (or cubes) of
radius R in R

d divided by the volume and then considering the lim sup resp. lim inf
as R → ∞. Note that this also extends componentwise to the case of m-tuples
mentioned in the last remark. In general, it is not clear if the outcome is independent
of the embedding α or coincides with the corresponding densities introduced above.
However, for the set of coprime m-tuples (b1, . . . , bm) of non-zero integral ideals
(i.e. b1 + . . .+ bm = OK) resp. the set of m-tuples (a1, . . . , am) ∈ Om

K with (a1)+
. . . + (am) = OK , even the (suitably defined) densities exist and all answers are
affirmative (with both densities equal to 1/ζK(m)) as follows from [8, 13]. Another
coincidence of the two ways of computing densities shows up (with both densities
equal to 1/ζK(l)) in the case of l-free non-zero integral ideals (non-divisibility by
any nontrivial lth power) resp. integers in OK [5, 13]. Proving such a coincidence
in our setting above for the lower density ofMA remains open, even for the case
m = 1.
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Chapter 14
The Lagrange and Markov Spectra
from the Dynamical Point of View

Carlos Matheus

14.1 Diophantine Approximations and Lagrange
and Markov Spectra

14.1.1 Rational Approximations of Real Numbers

Given a real number α ∈ R, it is natural to compare the quality |α − p/q| of a
rational approximation p/q ∈ Q and the size q of its denominator.

Since any real number lies between two consecutive integers, for every α ∈ R

and q ∈ N, there exists p ∈ Z such that |qα − p| � 1/2, i.e.

∣∣∣∣α −
p

q

∣∣∣∣ �
1

2q
(14.1)

In 1842, Dirichlet [4] used his famous pigeonhole principle to improve (14.1).

Theorem 14.1 (Dirichlet) For any α ∈ R−Q, the inequality

∣∣∣∣α −
p

q

∣∣∣∣ �
1

q2

has infinitely many rational solutions p/q ∈ Q.

C. Matheus (�)
Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), Villetaneuse, France

© Springer International Publishing AG, part of Springer Nature 2018
S. Ferenczi et al. (eds.), Ergodic Theory and Dynamical Systems in their
Interactions with Arithmetics and Combinatorics, Lecture Notes
in Mathematics 2213, https://doi.org/10.1007/978-3-319-74908-2_14

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74908-2_14&domain=pdf
https://doi.org/10.1007/978-3-319-74908-2_14


260 C. Matheus

Proof Given Q ∈ N, we decompose the interval [0, 1) into Q disjoint subintervals
as follows:

[0, 1) =
Q−1⋃

j=0

[
j

Q
,

j+ 1

Q

)

Next, we consider the Q+1 distinct1 numbers { iα}, i = 0, . . . ,Q, where {x} denotes

the fractional part2 of x. By the pigeonhole principle, some interval
[

j
Q ,

j+1
Q

)
must

contain two such numbers, say {nα} and {mα}, 0 � n < m � Q. It follows that

|{mα} − {nα}| < 1

Q
,

i.e., |qα− p| < 1/Q where 0 < q := m− n � Q and p := �mα�− �nα�. Therefore,

∣∣∣∣α −
p

q

∣∣∣∣ <
1

qQ
� 1

q2

This completes the proof of the theorem.

In 1891, Hurwitz [12] showed that Dirichlet’s theorem is essentially optimal:

Theorem 14.2 (Hurwitz) For any α ∈ R−Q, the inequality

∣∣∣∣α −
p

q

∣∣∣∣ �
1√
5q2

has infinitely many rational solutions p/q ∈ Q.
Moreover, for all ε > 0, the inequality

∣∣∣∣∣
1+√5

2
− p

q

∣∣∣∣∣ �
1

(
√

5+ ε)q2

has only finitely many rational solutions p/q ∈ Q.

The first part of Hurwitz theorem is proved in Appendix 1, while the second part
of Hurwitz theorem is left as an exercise to the reader:

1α /∈ Q is used here.
2{x} := x− �x� and �x� := max{n ∈ Z : n � x} is the integer part of x.
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Exercise 14.3 Show the second part of Hurwitz theorem. (Hint: use the identity

p2− pq− q2 =
(

q 1+√5
2 − p

) (
q 1−√5

2 − p
)

relating 1+√5
2 and its Galois conjugate

1−√5
2 .)
Moreover, use your argument to give a bound on

#

{
p

q
∈ Q :

∣∣∣∣∣
1+√5

2
− p

q

∣∣∣∣∣ �
1

(
√

5+ ε)q2

}

in terms of ε > 0.

Note that Hurwitz theorem does not forbid an improvement of “
∣∣∣α − p

q

∣∣∣ � 1√
5q2

has infinitely many rational solutions p/q ∈ Q” for certain α ∈ R − Q. This
motivates the following definition:

Definition 14.4 The constant

�(α) := lim sup
p,q→∞

1

|q(qα − p)|

is called the best constant of Diophantine approximation of α.

Intuitively, �(α) is the best constant � such that |α− p
q | � 1

�q2 has infinitely many
rational solutions p/q ∈ Q.

Remark 14.5 By Hurwitz theorem, �(α) �
√

5 for all α ∈ R − Q and �( 1+√5
2 )

= √5.

The collection of finite best constants of Diophantine approximations is the
Lagrange spectrum:

Definition 14.6 The Lagrange spectrum is

L := {�(α) : α ∈ R−Q, �(α) <∞} ⊂ R

Remark 14.7 Khinchin proved in 1926 a famous theorem implying that �(α) = ∞
for Lebesgue almost every α ∈ R − Q (see, e.g., Khinchin’s book [15] for more
details).
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14.1.2 Integral Values of Binary Quadratic Forms

Let q(x, y) = ax2 + bxy + cy2 be a binary quadratic form with real coefficients
a, b, c ∈ R. Suppose that q is indefinite3 with positive discriminant Δ(q) := b2 −
4ac. What is the smallest value of q(x, y) at non-trivial integral vectors (x, y) ∈
Z

2 − {(0, 0)}?
Definition 14.8 The Markov spectrum is

M :=

⎧
⎪⎨

⎪⎩

√
Δ(q)

inf
(x,y)∈Z2−{(0,0)}

|q(x, y)| ∈ R : q is an indefinite binary quadratic form with Δ(q) > 0

⎫
⎪⎬

⎪⎭

Remark 14.9 A similar Diophantine problem for ternary (and n-ary, n � 3)
quadratic forms was proposed by Oppenheim in 1929. Oppenheim’s conjecture
was famously solved in 1987 by Margulis using dynamics on homogeneous spaces:
the reader is invited to consult Witte Morris book [28] for more details about this
beautiful portion of Mathematics.

In 1880, Markov [18] noticed a relationship between certain binary quadratic
forms and rational approximations of certain irrational numbers. This allowed him
to prove the following result:

Theorem 14.10 (Markov) L ∩ (−∞, 3) = M ∩ (−∞, 3) = {k1 < k2 < k3 <

k4 < . . . } where k1 =
√

5, k2 =
√

8, k3 =
√

221
5 , k4 =

√
1517
13 , . . . is an explicit

increasing sequence of quadratic surds4 accumulating at 3.

In fact, kn =
√

9− 4
m2

n
where mn ∈ N is the n-th Markov number, and a Markov

number is the largest coordinate of a Markov triple (x, y, z), i.e., an integral solution
of x2 + y2 + z2 = 3xyz.

Remark 14.11 All Markov triples can be deduced from (1, 1, 1) by applying the
so-called Vieta involutions V1,V2,V3 given by

V1(x, y, z) = (x′, y, z)

3I.e., q takes both positive and negative values.
4I.e., k2

n ∈ Q for all n ∈ N.
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where x′ = 3yz− x is the other solution of the second degree equation X2− 3yzX+
(y2 + z2) = 0, etc. In other terms, all Markov triples appear in Markov tree5:

(1,5,13)

(2,5,29)

(1,13,34)

(5,13,194)

(5,29,433)

(2,29,169)

(1,34,89)

(13,34,1325)

(13,194,7561)

(5,194,2897)

(5,433,6466)

(29,433,37666)

(29,169,14701)

(2,169,985)

(1,1,1) (1,1,2) (1,2,5)

Remark 14.12 For more information on Markov numbers, the reader might consult
Zagier’s paper [30] on this subject. Among many conjectures and results mentioned
in this paper, we have:

• Conjecturally, each Markov number z determines uniquely Markov triples
(x, y, z) with x � y � z;

• If M(x) := #{m Markov number : m � x}, then M(x) = c(log x)2 +
O(log x(log log x)2) for an explicit constant c � 0.18071704711507 . . .; con-
jecturally, M(x) = c(log(3x))2 + o(log x), i.e., if mn is the n-th Markov number
(counted with multiplicity), then mn ∼ 1

3 A
√

n with A = e1/
√

c � 10.5101504 . . .

14.1.3 Best Rational Approximations and Continued Fractions

The constant �(α) was defined in terms of rational approximations of α ∈ R − Q.
In particular,

�(α) = lim sup
n→∞

1

|sn(snα − rn)|

5Namely, the tree where Markov triples (x, y, z) are displayed after applying permutations to put
them in normalized form x � y � z, and two normalized Markov triples are connected if we can
obtain one from the other by applying Vieta involutions.
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where (rn/sn)n∈N is the sequence of best rational approximations of α. Here, p/q is
called a best rational approximation6 whenever

∣∣∣∣α −
p

q

∣∣∣∣ <
1

2q2

The sequence (rn/sn)n∈N of best rational approximations of α is produced by the
so-called continued fraction algorithm.

Given α = α0 /∈ Q, we define recursively an = �αn� and αn+1 = 1
αn−an

for all
n ∈ N. We can write α as a continued fraction

α = a0 + 1

a1 + 1
a2+ 1

...

=: [a0; a1, a2, . . . ]

and we denote

Q # pn

qn
:= a0 + 1

a1 + 1
.. .+ 1

an

:= [a0; a1, . . . , an]

Remark 14.13 Lévy’s theorem [16] (from 1936) says that n
√

qn → eπ
2/12 log 2 �

3.27582291872 . . . for Lebesgue almost every α ∈ R. By elementary properties
of continued fractions (recalled below), it follows from Lévy’s theorem that
n
√
|α − pn

qn
| → e−π2/6 log2 � 0.093187822954 . . . for Lebesgue almost every α ∈ R.

Proposition 14.14 pn and qn are recursively given by

{
pn+2 = an+2pn+1 + pn, p−1 = 1, p−2 = 0
qn+2 = an+2qn+1 + qn, q−1 = 0, q−2 = 1

Proof Exercise.7

In other words, we have

[a0; a1, . . . , an−1, z] = zpn−1 + pn−2

zqn−1 + qn−2
(14.2)

6This nomenclature will be justified later by Propositions 14.18 and 14.19 below.
7Hint: Use induction and the fact that [t0; t1, . . . , tn, tn+1] = [t0; t1, . . . , tn + 1

tn+1
].
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or, equivalently,

(
pn+1 pn

qn+1 qn

)
·
(

an+2 1
1 0

)
=
(

pn+2 pn+1

qn+2 qn+1

)
(14.3)

Corollary 14.15 pn+1qn − pnqn+1 = (−1)n for all n � 0.

Proof This follows from (14.3) because the matrix

(∗ 1
1 0

)
has determinant−1.

Corollary 14.16 α = αnpn−1+pn−2
αnqn−1+qn−2

and αn = pn−2−qn−2α

qn−1α−pn−1
.

Proof This is a consequence of (14.2) and the fact that α =: [a0; a1, . . . , an−1, αn].
The relationship between pn

qn
and the sequence of best rational approximations is

explained by the following two propositions:

Proposition 14.17
∣∣∣α − pn

qn

∣∣∣ � 1
qnqn+1

< 1
an+1q2

n
� 1

q2
n

and, moreover, for all n ∈ N,

either

∣∣∣∣α −
pn

qn

∣∣∣∣ <
1

2q2
n

or

∣∣∣∣α −
pn+1

qn+1

∣∣∣∣ <
1

2q2
n+1

.

Proof Note that α belongs to the interval with extremities pn/qn and pn+1/qn+1 (by
Corollary 14.16). Since this interval has size

∣∣∣∣
pn+1

qn+1
− pn

qn

∣∣∣∣ =
∣∣∣∣
pn+1qn − pnqn+1

qnqn+1

∣∣∣∣ =
∣∣∣∣
(−1)n

qnqn+1

∣∣∣∣ =
1

qnqn+1

(by Corollary 14.15), we conclude that |α − pn
qn
| � 1

qnqn+1
.

Furthermore, 1
qnqn+1

= | pn+1
qn+1

− α| + |α − pn
qn
|. Thus, if

∣∣∣∣α −
pn

qn

∣∣∣∣ �
1

2q2
n

and

∣∣∣∣α −
pn+1

qn+1

∣∣∣∣ �
1

2q2
n+1

,

then

1

qnqn+1
� 1

2q2
n
+ 1

2q2
n+1

,

i.e., 2qnqn+1 � q2
n + q2

n+1, i.e., qn = qn+1, a contradiction.

In other terms, the sequence (pn/qn)n∈N produced by the continued fraction
algorithm contains best rational approximations with frequency at least 1/2.
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Conversely, the continued fraction algorithm detects all best rational approxima-
tions:

Proposition 14.18 If |α − p
q | < 1

2q2 , then p/q = pn/qn for some n ∈ N.

Proof Exercise.8

The terminology “best rational approximation” is motivated by the previous
proposition and the following result:

Proposition 14.19 For all q < qn, we have |α − pn
qn
| < |α − p

q |.
Proof If q < qn+1 and p/q = pn/qn, then

∣∣∣∣
p

q
− pn

qn

∣∣∣∣ �
1

qqn
>

1

qnqn+1
=
∣∣∣∣
pn+1

qn+1
− pn

qn

∣∣∣∣

Hence, p/q does not belong to the interval with extremities pn/qn and pn+1/qn+1,
and so

∣∣∣∣α −
pn

qn

∣∣∣∣ <
∣∣∣∣α −

p

q

∣∣∣∣

because α lies between pn/qn and pn+1/qn+1.

In fact, the approximations (pn/qn) of α are usually quite impressive:

Example 14.1 π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, . . .] so that

p0

q0
= 3,

p1

q1
= 22

7
,

p2

q2
= 333

106
,

p3

q3
= 355

113
, . . .

The approximations p1/q1 and p3/q3 are called Yuelü and Milü (after Wikipedia)
and they are somewhat spectacular:

∣∣∣∣π −
22

7

∣∣∣∣ <
1

700
<

∣∣∣∣π −
314

100

∣∣∣∣ and

∣∣∣∣π −
355

113

∣∣∣∣ <
1

3, 000, 000
<

∣∣∣∣π −
3141592

1, 000, 000

∣∣∣∣

14.1.4 Perron’s Characterization of Lagrange and Markov
Spectra

In 1921, Perron interpreted �(α) in terms of Dynamical Systems as follows.

8Hint: Take qn−1 < q � qn, suppose that p/q = pn/qn and derive a contradiction in each case
q = qn, qn/2 � q < qn and q < qn/2 by analysing |α − p

q | and | pq − pn
qn
| like in the proof of

Proposition 14.19.
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Proposition 14.20 α − pn
qn

= (−1)n

(αn+1+βn+1)q2
n

where βn+1 := qn−1
qn

=
[0; an, an−1, . . . , a1].
Proof Recall that αn+1 = pn−1−qn−1α

qnα−pn
(cf. Corollary 14.16). Hence, αn+1 + βn+1 =

pn−1qn−pnqn−1
qn(qnα−pn)

= (−1)n

qn(qnα−pn)
(by Corollary 14.15). This proves the proposition.

Therefore, the proposition says that �(α) = lim sup
n→∞

(αn+βn). From the dynamical

point of view, we consider the symbolic space Σ = (N∗)Z =: Σ− × Σ+ =
(N∗)Z− × (N∗)N equipped with the left shift dynamics σ : Σ → Σ , σ((an)n∈Z) :=
(an+1)n∈Z and the height function f : Σ → R, f ((an)n∈Z) = [a0; a1, a2, . . . ] +
[0; a−1, a−2, . . . ]. Then, the proposition above implies that

�(α) = lim sup
n→+∞

f (σ n(θ))

where α = [a0; a1, a2, . . . ] and θ = (. . . , a−1, a0, a1, . . . ). In particular,

L = {�(θ) : θ ∈ Σ, �(θ) <∞} (14.4)

where �(θ) := lim sup
n→+∞

f (σ n(θ)).

Also, the Markov spectrum has a similar description:

M = {m(θ) : θ ∈ Σ,m(θ) <∞} (14.5)

where m(θ) := sup
n∈Z

f (σ n(θ)).

Remark 14.21 A geometrical interpretation of σ : Σ → Σ is provided by the
so-called Gauss map9:

G(x) =
{

1

x

}
(14.6)

for 0 < x � 1.

9From Number Theory rather than Differential Geometry.
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1
2 11

3

1

Indeed, G([0; a1, a2, . . . ]) = [0; a2, . . . ], so that σ : Σ → Σ is a symbolic
version of the natural extension of G.

Furthermore, the identification (. . . , a−1, a0, a1, . . . ) � ([0; a−1, a−2, . . . ],
[a0; a1, a2, . . . ]) = (y, x) allows us to write the height function as f ((an)n∈Z) =
x+ y.

Perron’s dynamical interpretation of the Lagrange and Markov spectra is the
starting point of many results about L and M which are not so easy to guess from
their definitions:

Exercise 14.22 Show that L ⊂ M are closed subsets of R.

Remark 14.23 M − L = ∅: for example, Freiman [6] proved in 1968 that

s = 22122112211221122122 ∈ (N∗)Z
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has the property that 3.118120178 � m(s) ∈ M − L. (Here θ1 . . . θn means infinite
repetition of the block θ1 . . . θn.)

Also, Freiman [7] showed in 1973 that m(sn) ∈ M − L and m(sn) → m(s∞) �
3.293044265 ∈ M − L where

sn = 2221121 22 . . .22︸ ︷︷ ︸
ntimes

1211222121122212

for n � 4, and

s∞ = 21211222121122212

14.1.5 Digression: Lagrange Spectrum and Cusp Excursions
on the Modular Surface

The Lagrange spectrum is related to the values of a certain height function H along
the orbits of the geodesic flow gt on the (unit cotangent bundle to) the modular
surface: indeed, we will show that

L = {lim sup
t→+∞

H(gt(x)) <∞ : x is a unit cotangent vector to the modular surface}

Remark 14.24 This fact is not surprising to experts: the Gauss map appears
naturally by quotienting out the weak-stable manifolds of gt as observed by Artin,
Series, Arnoux, . . . (see, e.g., [1]).

An unimodular lattice in R
2 has the form g(Z2), g ∈ SL(2,Z), and the stabilizer

in SL(2,R) of the standard lattice Z
2 is SL(2,Z). In particular, the space of

unimodular lattices in R
2 is SL(2,R)/SL(2,Z).

As it turns out, SL(2,R)/SL(2,Z) is the unit cotangent bundle to the modular
surface H/SL(2,Z) (where H = {z ∈ C : Im(z) > 0} is the hyperbolic upper-half

plane and

(
a b
c d

)
∈ SL(2,R) acts on z ∈ H via

(
a b
c d

)
· z = az+b

cz+d ).

The geodesic flow of the modular surface is the action of gt =
(

et 0
0 e−t

)
on

SL(2,R)/SL(2,Z). The stable and unstable manifolds of gt are the orbits of the

stable and unstable horocycle flows hs =
(

1 0
s 1

)
and us =

(
1 s
0 1

)
: indeed, this

follows from the facts that gths = hse−2tgt and gtus = usetgt.
The set of holonomy (or primitive) vectors of Z2 is

Hol(Z2) := {( p, q) ∈ Z
2 : gcd( p, q) = 1}
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In general, the set Hol(X) of holonomy vectors of X = g(Z2), g ∈ SL(2,Z), is

Hol(X) := g(Hol(Z2)) ⊂ R
2

The systole sys(X) of X = g(Z2) is

sys(X) := min{‖v‖
R2 : v ∈ Hol(X)}

Remark 14.25 By Mahler’s compactness criterion [17], X 	→ 1
sys(X)

is a proper
function on SL(2,R)/SL(2,Z).

Remark 14.26 For later reference, we write Area(v) := |Re(v)| · |Im(v)| for the
area of the rectangle in R

2 with diagonal v = (Re(v), Im(v)) ∈ R
2.

Proposition 14.27 The forward geodesic flow orbit of X ∈ SL(2,R)/SL(2,Z) does
not go straight to infinity (i.e., sys(gt(X)) → 0 as t → +∞) if and only if there is
no vertical vector in Hol(X). In this case, there are (unique) parameters s, t, α ∈ R

such that

X = hsgtu−α(Z
2)

Proof By unimodularity, any X = g(Z2) has a single short holonomy vector. Since
gt contracts vertical vectors and expands horizontal vectors for t > 0, we have that
sys(gt(X))→ 0 as t →+∞ if and only if Hol(X) contains a vertical vector.

By Iwasawa decomposition, there are (unique) parameters s, t, θ ∈ R such that

X = hsgtrθ , where rθ =
(

cos θ − sin θ

sin θ cos θ

)
. Since cos θ = 0 when Hol(X) contains

no vertical vector and, in this situation,

rθ = htan θglog cos θu− tan θ ,

we see that X = hs+e−2t tan θ · gt+log cos θ · u− tan θ (Z
2) (because hsgtrθ =

hsgthtan θglog cos θu− tan θ = hs+e−2t tan θ · gt+log cos θ · u− tan θ ). This ends the proof of
the proposition.

Proposition 14.28 Let X = hsgtu−α(Z
2) be an unimodular lattice without vertical

holonomy vectors. Then,

�(α) = lim sup
|Im(v)|→∞
v∈Hol(X)

1

Area(v)
= lim sup

T→+∞
2

sys(gT(X))2

Remark 14.29 This proposition says that the dynamical quantity lim sup
T→+∞

2
sys(gT (X))2

does not depend on the “weak-stable part” hsgt (but only on α) and it can be
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computed without dynamics by simply studying almost vertical holonomy vectors
in X.

Proof Note that Area(gt(v)) = Area(v) for all t ∈ R and v ∈ R
2. Since

Area(v) = ‖gt(v)(v)‖2

2 for t(v) := 1
2 log |Im(v)|

|Re(v)| , the equality lim sup
|Im(v)|→∞
v∈Hol(X)

1
Area(v) =

lim sup
T→+∞

2
sys(gT (X))2 follows.

The relation gThs = hse−2T gT and the continuity of the systole function imply that
lim sup
T→+∞

2
sys(gT (X))2 depends only on α. Because any v ∈ Hol(u−α(Z

2)) has the form

v = (p − qα, q) = u−α(p, q) with (p, q) ∈ Hol(Z2), the equality lim sup
|Im(v)|→∞
v∈Hol(X)

1
Area(v)

= �(α).

In summary, the previous proposition says that the Lagrange spectrum L
coincides with

{lim sup
T→+∞

H(gT(x)) <∞ : x ∈ SL(2,R)/SL(2,Z)}

where H(y) = 2
sys(y)2 is a (proper) height function and gt is the geodesic flow on

SL(2,R)/SL(2,Z).

gt(x)

H

x

Remark 14.30 Several number-theoretical problems translate into dynamical ques-
tions on the modular surface: for example, Zagier [29] showed that the Riemann
hypothesis is equivalent to a certain speed of equidistribution of us-orbits on
SL(2,R)/SL(2,Z).
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14.1.6 Hall’s Ray and Freiman’s Constant

In 1947, Hall [9] proved that:

Theorem 14.31 (Hall) The half-line [6,+∞) is contained in L.

This result motivates the following nomenclature: the biggest half-line
[cF,+∞) ⊂ L(⊂ M) is called Hall’s ray.

In 1975, Freiman [8] determined Hall’s ray:

Theorem 14.32 (Freiman) cF = 4+ 253589820+283798
√

462
491993569 � 4.527829566 . . .

The constant cF is called Freiman’s constant.
Let us sketch the proof of Hall’s theorem based on the following lemma:

Lemma 14.33 (Hall) Denote by C(4) := {[0; a1, a2, . . . ] ∈ R : ai ∈
{1, 2, 3, 4} ∀ i ∈ N}. Then,

C(4)+C(4) := {x+y ∈ R : x, y ∈ C(4)} = [√2−1, 4(
√

2−1)] = [0.414 . . . , 1.656 . . . ]

Remark 14.34 The reader can find a proof of this lemma in Cusick-Flahive’s book
[3]. Interestingly enough, some of the techniques in the proof of Hall’s lemma
were rediscovered much later (in 1979) in the context of Dynamical Systems by
Newhouse [26] (in the proof of his gap lemma).

Remark 14.35 C(4) is a dynamical Cantor set10 whose Hausdorff dimension is >

1/2 (see Remark 14.44 below). In particular, C(4)× C(4) is a planar Cantor set of
Hausdorff dimension > 1 and Hall’s lemma says that its image f (C(4) × C(4)) =
C(4)+C(4) under the projection f (x, y) = x+ y contains an interval. Hence, Hall’s
lemma can be thought as a sort of “particular case” of Marstrand’s theorem [19]
(ensuring that typical projections of planar sets with Hausdorff dimension > 1 has
positive Lebesgue measure).

For our purposes, the specific form C(4) + C(4) is not important: the key point
is that C(4)+ C(4) is an interval of length > 1.

Indeed, given 6 � � < ∞, Hall’s lemma guarantees the existence of c0 ∈ N,
5 � c0 � � such that �− c0 ∈ C(4)+ C(4). Thus,

� = c0 + [0; a1, a2, . . . ] + [0; b1, b2, . . . ]

with ai, bi ∈ {1, 2, 3, 4} for all i ∈ N.

10See Sects. 14.2.2 and 14.2.3 below.
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Define

α := [0; b1, c0, a1︸ ︷︷ ︸
1st block

, . . . , bn, . . . , b1, c0, a1, . . . , an︸ ︷︷ ︸
nth block

, . . . ]

Since c0 � 5 > 4 � ai, bi for all i ∈ N, Perron’s characterization of �(α) implies
that

L # �(α) = lim
n→∞(c0 + [0; a1, a2, . . . , an] + [0; b1, b2, . . . , bn]) = �

This proves Theorem 14.31.

14.1.7 Statement of Moreira’s Theorem

Our discussion so far can be summarized as follows:

• L ∩ (−∞, 3) = M ∩ (−∞, 3) = {k1 < k2 < · · · < kn < . . . } is an explicit
discrete set;

• L ∩ [cF,∞) = M ∩ [cF,∞) is an explicit ray.

Moreira’s theorem [21] says that the intermediate parts L∩[3, cF] and M∩[3, cF]
of the Lagrange and Markov spectra have an intricate structure:

Theorem 14.36 (Moreira) For each t ∈ R, the sets L∩ (−∞, t) and M ∩ (−∞, t)
have the same Hausdorff dimension, say d(t) ∈ [0, 1].

Moreover, the function t 	→ d(t) is continuous, d(3 + ε) > 0 for all ε > 0 and
d(
√

12) = 1 (even though
√

12 = 3.4641 . . . < 4.5278 . . .= cF).

Remark 14.37 Many results about L and M are dynamical.11 In particular, it is not
surprising that many facts about L and M have counterparts for dynamical Lagrange
and Markov spectra12: for example, Hall ray or intervals in dynamical Lagrange
spectra were found by Parkkonen-Paulin [27], Hubert-Marchese-Ulcigrai [11] and
Moreira-Romaña [23], and the continuity result in Moreira’s Theorem 14.36 was
recently extended by Cerqueira, Moreira and the author in [2].

Before entering into the proof of Moreira’s theorem, let us close this section by
briefly recalling the notion of Hausdorff dimension.

11I.e., they involve Perron’s characterization of L and M, the study of Gauss map and/or the
geodesic flow on the modular surface, etc.
12I.e., the collections of “records” of height functions along orbits of dynamical systems.
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14.1.8 Hausdorff Dimension

The s-Hausdorff measure ms(X) of a subset X ⊂ R
n is

ms(X) := lim
δ→0

inf⋃
i∈N

Ui⊃X,

diam(Ui)�δ ∀ i∈N

∑

i∈N
diam(Ui)

s

The Hausdorff dimension of X is

HD(X) := sup{s ∈ R : ms(X) = ∞} = inf{s ∈ R : ms(X) = 0}

Remark 14.38 There are many notions of dimension in the literature: for example,
the box-counting dimension of X is lim

δ→0

log NX(δ)
log(1/δ) where NX(δ) is the smallest number

of boxes of side lengths � δ needed to cover X. As an exercise, the reader is invited
to show that the Hausdorff dimension is always smaller than or equal to the box-
counting dimension.

The following exercise (whose solution can be found in Falconer’s book [5])
describes several elementary properties of the Hausdorff dimension:

Exercise 14.39 Show that:

(a) if X ⊂ Y, then HD(X) � HD(Y);
(b) HD(

⋃
i∈N

Xi) = sup
i∈N

HD(Xi); in particular, HD(X) = 0 whenever X is a countable

set (such as X = { p} or X = Q
n);

(c) if f : X → Y is α-Hölder continuous,13 then α · HD( f (X)) � HD(X);
(d) HD(Rn) = n and, more generally, HD(X) = m when X ⊂ R

n is a smooth
m-dimensional submanifold.

Example 14.2 Cantor’s middle-third set C = {
∞∑

i=1

ai
3i : ai ∈ {0, 2} ∀ i ∈ N} has

Hausdorff dimension log 2
log 3 ∈ (0, 1): see Falconer’s book [5] for more details.

Using item (c) of Exercise 14.39 above, we have the following corollary of
Moreira’s Theorem 14.36:

Corollary 14.40 (Moreira) The function t 	→ HD(L ∩ (−∞, t)) is not α-Hölder
continuous for any α > 0.

13I.e., for some constant C > 0, one has | f (x) − f (x′)| � C|x− x′|α for all x, x′ ∈ X.
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Proof By Theorem 14.36, d maps L∩[3, 3+ε] to the non-trivial interval [0, d(3+ε)]
for any ε > 0. By item (c) of Exercise 14.39, if t 	→ d(t) = HD(L ∩ (−∞, t)) were
α-Hölder continuous for some α > 0, then it would follow that

0 < α = α ·HD([0, d(3+ ε)]) � HD(L ∩ [3, 3+ ε]) = d(3+ ε)

for all ε > 0. On the other hand, Theorem 14.36 (and item (b) of Exercise 14.39)
also says that

lim
ε→0

d(3+ ε) = d(3) = HD(L ∩ (−∞, 3)) = 0

In summary, 0 < α � lim
ε→0

d(3+ ε) = 0, a contradiction.

14.2 Proof of Moreira’s Theorem

14.2.1 Strategy of Proof of Moreira’s Theorem

Roughly speaking, the continuity of d(t) = HD(L∩(−∞, t)) is proved in four steps:

• if 0 < d(t) < 1, then for all η > 0 there exists δ > 0 such that L ∩ (−∞, t − δ)

can be “approximated from inside” by K + K′ = f (K × K′) where K and K′ are
Gauss-Cantor sets with HD(K) + HD(K′) = HD(K × K′) > (1 − η)d(t) (and
f (x, y) = x+ y);

• by Moreira’s dimension formula (derived from profound works of Moreira and
Yoccoz on the geometry of Cantor sets), we have that

HD( f (K × K′)) = HD(K × K′)

• thus, if 0 < d(t) < 1, then for all η > 0 there exists δ > 0 such that

d(t− δ) � HD( f (K × K′)) = HD(K × K′) � (1− η)d(t);

hence, d(t) is lower semicontinuous;
• finally, an elementary compactness argument shows the upper semicontinuity of

d(t).

Remark 14.41 This strategy is purely dynamical because the particular forms of
the height function f and the Gauss map G are not used. Instead, we just need the
transversality of the gradient of f to the stable and unstable manifolds (vertical and
horizontal axis) and the non-essential affinity of Gauss-Cantor sets. (See [2] for
more explanations.)
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In the remainder of this section, we will implement (a version of) this strategy in
order to deduce the continuity result in Theorem 14.36.

14.2.2 Dynamical Cantor Sets

A dynamically defined Cantor set K ⊂ R is

K =
⋂

n∈N
ψ−n(I1 ∪ · · · ∪ Ik)

where I1, . . . , Ik are pairwise disjoint compact intervals, and ψ : I1 ∪ · · · ∪ Ik → I
is a Cr-map from I1 ∪ · · · ∪ Ik to its convex hull I such that:

• ψ is uniformly expanding: |ψ ′(x)| > 1 for all x ∈ I1 ∪ · · · ∪ Ik;
• ψ is a (full) Markov map: ψ(Ij) = I for all 1 � j � k.

Remark 14.42 Dynamical Cantor sets are usually defined with a weaker Markov
condition, but we stick to this definition for simplicity.

Example 14.3 Cantor’s middle-third set C = {
∞∑

i=1

ai
3i : ai ∈ {0, 2} ∀ i ∈ N} is

C =
⋂

n∈N
ψ−n([0, 1/3] ∪ [2/3, 1])

where ψ : [0, 1/3] ∪ [2/3, 1] → [0, 1] is given by

ψ(x) =
{

3x, if 0 � x � 1/3
3x− 2, if 2/3 � x � 1

2
3 11

3

1

C standard Cantor
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Remark 14.43 A dynamical Cantor set is called affine when ψ|Ij is affine for all j.
In this language, Cantor’s middle-third set is an affine dynamical Cantor set.

Example 14.4 Given A � 2, let C(A) := {[0; a1, a2, . . . ] : 1 � ai � A ∀ i ∈ N}.
This is a dynamical Cantor set associated to Gauss map: for example,

C(2) =
⋂

n∈N
G−n(I1 ∪ I2)

where I1 and I2 are the intervals depicted below.

Remark 14.44 Hensley [10] showed that

HD(C(A)) = 1− 6

π2A
− 72 log A

π4A2
+ O(

1

A2
) = 1− 1+ o(1)

ζ(2)A

and Jenkinson-Pollicott [13, 14] used thermodynamical formalism methods to
obtain that

HD(C(2)) = 0.53128050627720514162446864736847178549305910901839 . . . ,

HD(C(3)) � 0.705 . . . , HD(C(4)) � 0.788 . . .

14.2.3 Gauss-Cantor Sets

The set C(A) above is a particular case of Gauss-Cantor set:
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Definition 14.45 Given B = {β1, . . . , βl}, l � 2, a finite, primitive14 alphabet of
finite words βj ∈ (N∗)rj , the Gauss-Cantor set K(B) ⊂ [0, 1] associated to B is

K(B) := {[0; γ1, γ2, . . . ] : γi ∈ B ∀ i}

Example 14.5 C(A) = K({1, . . . ,A}).
Exercise 14.46 Show that any Gauss-Cantor set K(B) is dynamically defined.15

From the symbolic point of view, B = {β1, . . . , βl} as above induces a subshift

Σ(B) = {(γi)i∈Z : γi ∈ B ∀ i} ⊂ Σ = (N∗)Z = Σ− ×Σ+ := (N∗)Z− × (N∗)N

Also, the corresponding Gauss-Cantor is K(B) = {[0; γ ] : γ ∈ Σ+(B)} where
Σ+(B) = π+(Σ(B)) and π+ : Σ → Σ+ is the natural projection (related to local
unstable manifolds of the left shift map on Σ).

For later use, denote by BT = {βT : β ∈ B} the transpose of B, where βT :=
(an, . . . , a1) for β = (a1, . . . , an).

The following proposition (due to Euler) is proved in Appendix 2:

Proposition 14.47 (Euler) If [0; β] = pn
qn

, then [0; βT] = rn
qn

.

A striking consequence of this proposition is:

Corollary 14.48 HD(K(B)) = HD(K(BT)).

Proof (Sketch of Proof) The lengths of the intervals I(β) = {[0; β, a1, . . . ] : ai ∈
N ∀ i} in the construction of K(B) depend only on the denominators of the partial
quotients of [0; β]. Therefore, we have from Proposition 14.47 that K(B) and K(BT)

are Cantor sets constructed from intervals with same lengths, and, a fortiori, they
have the Hausdorff dimension.

Remark 14.49 This corollary is closely related to the existence of area-preserving
natural extensions of Gauss map (see [1]) and the coincidence of stable and unstable
dimensions of a horseshoe of an area-preserving surface diffeomorphism (see [20]).

14.2.4 Non-essentially Affine Cantor Sets

We say that

K =
⋂

n∈N
ψ−n(I1 ∪ · · · ∪ Ir)

14I.e., βi doesn’t begin by βj for all i = j.
15Hint: For each word βj ∈ (N∗)rj , let I(βj) = {[0;βj, a1, . . . ] : ai ∈ N ∀ i} = Ij and ψ |Ij := Grj

where G(x) = {1/x} is the Gauss map.
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is non-essentially affine if there is no global conjugation h ◦ ψ ◦ h−1 such that all
branches

(h ◦ ψ ◦ h−1)|h(Ij), j = 1, . . . , r

are affine maps of the real line.
Equivalently, if p ∈ K is a periodic point of ψ of period k and h : I → I is a

diffeomorphism of the convex hull I of I1∪ · · ·∪ Ir such that h ◦ψk ◦ h−1 is affine16

on h( J) where J is the connected component of the domain of ψk containing p, then
K is non-essentially affine if and only if (h ◦ ψ ◦ h−1)′′(x) = 0 for some x ∈ h(K).

Proposition 14.50 Gauss-Cantor sets are non-essentially affine.

Proof The basic idea is to explore the fact that the second derivative of a non-affine
Möbius transformation never vanishes.

More concretely, let B = {β1, . . . , βm}, βj ∈ (N∗)rj , 1 � j � m. For each βj, let

xj := [0; βj, βj, . . . ] ∈ Ij = I(βj) ⊂ {[0; βj, α] : α � 1}

be the fixed point of the branch ψ|Ij = Grj of the expanding map ψ naturally17

defining the Gauss-Cantor set K(B).

By Corollary 14.16, ψ|Ij(x) =
q( j)

rj−1x−p( j)
rj−1

p( j)
rj −q( j)

rj x
where

p( j)
k

q( j)
k

= [0; b( j)
1 , . . . , b( j)

k ] and

βj = (b( j)
1 , . . . , b( j)

rj ).
Note that the fixed point xj of ψ|Ij is the positive solution of the second degree

equation

q( j)
rj

x2 + (q( j)
rj−1 − p( j)

rj
)x− p( j)

rj−1 = 0

In particular, xj is a quadratic surd.
For each 1 � j � k, the Möbius transformation ψ|Ij has a hyperbolic fixed

point xj. It follows (from Poincaré linearization theorem) that there exists a Möbius
transformation

αj(x) = ajx+ bj

cjx+ dj

linearizing ψ|Ij , i.e., αj(xj) = xj, α′(xj) = 1 and αj ◦ (ψ|Ij) ◦ α−1
j is an affine map.

Since non-affine Möbius transformations have non-vanishing second derivative,
the proof of the proposition will be complete once we show that α1 ◦ (ψ|I2) ◦ α−1

1

16Such a diffeomorphism h linearizing one branch of ψ always exists by Poincaré’s linearization
theorem.
17Cf. Exercise 14.46.
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is not affine. So, let us suppose by contradiction that α1 ◦ (ψ|I2) ◦ α−1
1 is affine. In

this case, ∞ is a common fixed point of the (affine) maps α1 ◦ (ψ|I2) ◦ α−1
1 and

α1 ◦ (ψ|I1) ◦ α−1
1 , and, a fortiori, α−1

1 (∞) = −d1/c1 is a common fixed point of
ψ|I1 and ψ|I2 . Thus, the second degree equations

q(1)
r1

x2 + (q(1)
r1−1 − p(1)

r1
)x− p( j)

r1−1 = 0 and q(2)
r2

x2 + (q(2)
r2−1 − p(2)

r2
)x− p(2)

r2−1 = 0

would have a common root. This implies that these polynomials coincide (because
they are polynomials in Z[x] which are irreducible18) and, hence, their other roots
x1, x2 must coincide, a contradiction.

14.2.5 Moreira’s Dimension Formula

The Hausdorff dimension of projections of products of non-essentially affine Cantor
sets is given by the following formula:

Theorem 14.51 (Moreira) Let K and K′ be two C2 dynamical Cantor sets. If K is
non-essentially affine, then the projection f (K × K′) = K + K′ of K × K′ under
f (x, y) = x+ y has Hausdorff dimension

HD( f (K + K′)) = min{1,HD(K)+ HD(K′)}

Remark 14.52 This statement is a particular case of Moreira’s dimension formula
(which is sufficient for our current purposes because Gauss-Cantor sets are non-
essentially affine).

The proof of this result is out of the scope of these notes: indeed, it depends on the
techniques introduced in two works (from 2001 and 2010) by Moreira and Yoccoz
[24, 25] such as fine analysis of limit geometries and renormalization operators,
“recurrence on scales”, “compact recurrent sets of relative configurations”, and
Marstrand’s theorem. We refer the reader to [22] for more details.

Remark 14.53 Moreira’s dimension formula is coherent with Hall’s Lemma 14.33:
in fact, since HD(C(4)) > 1/2, it is natural that HD(C(4)+ C(4)) = 1.

18Thanks to the fact that their roots x1, x2 /∈ Q.
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14.2.6 First Step Towards Moreira’s Theorem 14.36:
Projections of Gauss-Cantor Sets

Let Σ(B) ⊂ (N∗)Z be a complete shift of finite type. Denote by �(Σ(B)), resp.
m(Σ(B)), the pieces of the Lagrange, resp. Markov, spectrum generated by Σ(B),
i.e.,

�(Σ(B)) = {�(θ) : θ ∈ Σ(B)}, resp. m(Σ(B)) = {m(θ) : θ ∈ Σ(B)}

where �(θ) = lim sup
n→∞

f (σ n(θ)), m(θ) = sup
n∈Z

f (σ n(θ)), f ((θi)i∈Z) = [θ0; θ1, . . . ] +
[0; θ−1, . . . ] and σ((θi)i∈Z) = (θi+1)i∈Z is the shift map.

The following proposition relates the Hausdorff dimensions of the pieces of the
Langrange and Markov spectra associated to Σ(B) and the projection f (K(B) ×
K(BT)):

Proposition 14.54 One has HD(�(Σ(B))) = HD(m(Σ(B))) = min{1, 2 ·
HD(K(B))}.
Proof (Sketch of Proof) By definition,

�(Σ(B)) ⊂ m(Σ(B)) ⊂
R⋃

a=1

(a+ K(B)+ K(BT))

where R ∈ N is the largest entry among all words of B.
Thus, HD(�(Σ(B))) � HD(m(Σ(B))) � HD(K(B)) + HD(K(BT)). By

Corollary 14.48, it follows that

HD(�(Σ(B))) � HD(m(Σ(B))) � min{1, 2 ·HD(K(B))}

By Moreira’s dimension formula (cf. Theorem 14.51), our task is now reduced
to show that for all ε > 0, there are “replicas” K and K′ of Gauss-Cantor sets such
that

HD(K),HD(K′) > HD(K(B))− ε and f (K × K′) = K + K′ ⊂ �(Σ(B))

In this direction, let us order B and BT by declaring that γ < γ ′ if and only if
[0; γ ] < [0; γ ′].

Given ε > 0, we can replace if necessary B and/or BT by Bn = {γ1 . . . γn : γi ∈
B ∀ i} and/or (BT)n for some large n = n(ε) ∈ N in such a way that

HD(K(B∗)),HD(K((BT)∗)) > HD(K(B))− ε
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where A∗ := {min A,max A}. Indeed, this holds because the Hausdorff dimension of
a Gauss-Cantor set K(A) associated to an alphabet A with a large number of words
does not decrease too much after removing only two words from A.

We expect the values of � on ((BT)∗)Z− ×(B∗)N to decrease because we removed
the minimal and maximal elements of B and BT (and, in general, [a0; a1, a2, . . . ] <
[b0; b1, b2, . . . ] if and only if (−1)k(ak − bk) < 0 where k is the smallest integer
with ak = bk).

In particular, this gives some control on the values of � on ((BT)∗)Z− × (B∗)N,
but this does not mean that K(B∗)+ K((BT)∗) ⊂ �(Σ(B)).

We overcome this problem by studying replicas of K(B∗) and K((BT)∗). More
precisely, let θ̃ = (. . . , γ̃0, γ̃1, . . . ) ∈ Σ(B), γ̃i ∈ B for all i ∈ Z, such that

m(θ̃ ) = max m(Σ(B))

is attained at a position in the block γ̃0.
By compactness, there exists η > 0 and m ∈ N such that any

θ = (. . . , γ−m−2, γ−m−1, γ̃−m, . . . , γ̃0, . . . , γ̃m, γm+1, γm+2, . . . )

with γi ∈ B∗ for all i > m and γi ∈ (BT)∗ for all i < −m satisfies:

• m(θ) is attained in a position in the central block (γ̃−m, . . . , γ̃0, . . . , γ̃m);
• f (σ n(θ)) < m(θ)− η for any non-central position n.

By exploring these properties, it is possible to enlarge the central block to get
a word called τ # = (a−N1, . . . , a0, . . . , aN2) in Moreira’s paper [21] such that the
replicas

K = {[a0; a1, . . . , aN2, γ1, γ2, . . . ] : γi ∈ B∗ ∀ i > 0}

and

K′ = {[0; a−1, . . . , a−N1, γ−1, γ−2, . . . ] : γi ∈ (BT)∗ ∀ i < 0}

of K(B∗) and K((BT)∗) have the desired properties that

K + K′ = f (K × K′) ⊂ �(Σ(B))

and

HD(K) = HD(K(B∗)) > HD(K)−ε,HD(K′) = HD(K((BT)∗)) > HD(K(BT))−ε

This completes our sketch of proof of the proposition.
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14.2.7 Second Step Towards Moreira’s Theorem 14.36: Upper
Semi-continuity

Let Σt := {θ ∈ (N∗)Z : m(θ) � t} for 3 � t < 5.
Our long term goal is to compare Σt with its projection K+t := {[0; γ ] :

γ ∈ π+(Σt)} on the unstable part (where π+ : (N∗)Z → (N∗)N is the natural
projection).

Given α = (a1, . . . , an), its unstable scale r+(α) is

r+(α) = �log 1/(length of I+(α))�

where I+(α) is the interval with extremities [0; a1, . . . , an] and [0; a1, . . . , an + 1].
Denote by

P+r := {α = (a1, . . . , an) : r+(α) � r, r+(a1, . . . , an−1) < r}

and

C+(t, r) := {α ∈ P+r : I+(α) ∩ K+t = ∅}.

Remark 14.55 By symmetry (i.e., replacing γ ’s by γ T ’s), we can define K−t , r−(α),
etc.

For later use, we observe that the unstable scales have the following behaviour
under concatenations of words:

Exercise 14.56 Show that r+(αβk) � r+(α) + r+(β) for all α, β finite words and
for all k ∈ {1, 2, 3, 4}.

In particular, since the family of intervals

{ I+(αβk) : α ∈ C+(t, r), β ∈ C+(t, s), 1 � k � 4}

covers K+t , it follows from Exercise 14.56 that

#C+(t, r + s) � 4#C+(t, r)#C+(t, s)

for all r, s ∈ N and, hence, the sequence (4#C+(t, r))r∈N is submultiplicative.
So, the box-counting dimension (cf. Remark 14.38) Δ+(t) of K+t is

Δ+(t) = inf
m∈N

1

m
log(4#C+(t,m)) = lim

m→∞
1

m
log #C+(t,m)

An elementary compactness argument shows that the upper-semicontinuity of
Δ+(t):

Proposition 14.57 The function t 	→ Δ+(t) is upper-semicontinuous.
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Proof For the sake of contradiction, assume that there exist η > 0 and t0 such that
Δ+(t) > Δ+(t0)+ η for all t > t0.

By definition, this means that there exists r0 ∈ N such that

1

r
log #C+(t, r) > Δ+(t0)+ η

for all r � r0 and t > t0.
On the other hand, C+(t, r) ⊂ C+(s, r) for all t � s and, by compactness,

C+(t0, r) = ⋂
t>t0

C+(t, r). Thus, if r →∞ and t → t0, the inequality of the previous

paragraph would imply that

Δ+(t0) > Δ+(t0)+ η,

a contradiction.

14.2.8 Third Step Towards Moreira’s Theorem 14.36: Lower
Semi-continuity

The main result of this subsection is the following theorem allowing us to
“approximate from inside” Σt by Gauss-Cantor sets.

Theorem 14.58 Given η > 0 and 3 � t < 5 with d(t) := HD(L ∩ (−∞, t)) > 0,
we can find δ > 0 and a Gauss-Cantor set K(B) associated to Σ(B) ⊂ {1, 2, 3, 4}Z
such that

Σ(B) ⊂ Σt−δ and HD(K(B)) � (1− η)Δ+(t)

This theorem allows us to derive the continuity statement in Moreira’s Theo-
rem 14.36:

Corollary 14.59 Δ−(t) = Δ+(t) is a continuous function of t and d(t) = min{1, 2·
Δ+(t)}.
Proof By Corollary 14.48 and Theorem 14.58, we have that

Δ−(t − δ) � HD(K(BT)) = HD(K(B)) � (1− η)Δ+(t).

Also, a “symmetric” estimate holds after exchanging the roles of Δ− and Δ+.
Hence, Δ−(t) = Δ+(t). Moreover, the inequality above says that Δ−(t) = Δ+(t)
is a lower-semicontinuous function of t. Since we already know that Δ+(t) is
an upper-semicontinuous function of t thanks to Proposition 14.57, we conclude
that t 	→ Δ−(t) = Δ+(t) is continuous. Finally, by Proposition 14.54, from
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Σ(B) ⊂ Σt−δ , we also have that

d(t− δ) � HD(�(Σ(B))) = min{1, 2 ·HD(K(B))} � (1− η)min{1, 2Δ+(t)}

Since d(t) � min{1,Δ+(t)+Δ−(t)} (because Σt ⊂ π−(Σt)× π+(Σt)), the proof
is complete.

Let us now sketch the construction of the Gauss-Cantor sets K(B) approaching
Σt from inside.

Proof (Sketch of Proof of Theorem 14.58) Fix r0 ∈ N large enough so that

∣∣∣∣
log #C+(t, r)

r
−Δ+(t)

∣∣∣∣ <
η

80
Δ+(t)

for all r � r0.
Set B0 := C+(t, r0), k = 8(#B0)

2)80/η* and

B̃ := {β = (β1, . . . , βk) : βj ∈ B0 and I+(β) ∩ K+t = ∅} ⊂ Bk
0

It is not hard to show that B̃ has a significant cardinality in the sense that

#B̃ > 2(#B0)
(1− η

40 )k

In particular, one can use this information to prove that HD(K(̃B)) is not far from
Δ+(t), i.e.

HD(K(̃B)) � (1− η

20
)Δ+(t)

Unfortunately, since we have no control on the values of m on Σ(̃B), there is no
guarantee that Σ(̃B) ⊂ Σt−δ for some δ > 0.

We can overcome this issue with the aid of the notion of left-good and right-good
positions. More concretely, we say that 1 � j � k is a right-good position of β =
(β1, . . . , βk) ∈ B̃ whenever there are two elements β(s) = β1 . . . βjβ

(s)
j+1 . . . β

(s)
k ∈ B̃,

s ∈ {1, 2} such that

[0; β(1)
j ] < [0; βj] < [0; β(2)

j ]

Similarly, 1 � j � k is a left-good position β = (β1, . . . , βk) ∈ B̃ whenever there
are two elements β(s) = β1 . . . βjβ

(s)
j+1 . . . β

(s)
k ∈ B̃, s ∈ {3, 4} such that

[0; (β(3)
j )T ] < [0; βT

j ] < [0; (β(2)
j )T ]
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Furthermore, we say that 1 � j � k is a good position of β = (β1, . . . , βk) ∈ B̃
when it is both a left-good and a right-good position.

Since there are at most two choices of βj ∈ B0 when β1, . . . , βj−1 are fixed and j
is a right-good position, one has that the subset

E := {β ∈ B̃ : β has 9k/10 good positions (at least)}

of excellent words in B̃ has cardinality

#E >
1

2
#B̃ > (#B0)

(1− η
40 )k

We expect the values of m on Σ(E) to decrease because excellent words have
many good positions. Also, the Hausdorff dimension of K(E) is not far from Δ+(t)
thanks to the estimate above on the cardinality of E. However, there is no reason for
Σ(E) ⊂ Σt−δ for some δ > 0 because an arbitrary concatenation of words in E
might not belong to Σt.

At this point, the idea is to build a complete shift Σ(B) ⊂ Σt−δ from E with the
following combinatorial argument. Since β = (β1, . . . , βk) ∈ E has 9k/10 good
positions, we can find good positions 1 � i1 � i2 � · · · � i)2k/5* � k − 1
such that is + 2 � is+1 for all 1 � s � )2k/5* − 1 and is + 1 are also good
positions for all 1 � s � )2k/5*. Because k := 8(#B0)

2)80/η*, the pigeonhole
principle reveals that we can choose positions j1 � · · · � j3(#B0)2 and words
β̂j1, β̂j1+1, . . . , β̂j3(#B0)

2 , β̂j3(#B0)
2+1 ∈ B0 such that js + 2)80/η* � js+1 for all

s < 3(#B0)
2 and the subset

X = {(β1, . . . , βk) ∈ E : js, js + 1 are good positions and

βjs = β̂js, βjs+1 = β̂js+1 ∀ s � 3(#B0)
2}

of excellent words with prescribed subwords β̂js , β̂js+1 at the good positions js, js+1
has cardinality

#X > (#B0)
(1− η

20 )k

Next, we convert X into the alphabet B of an appropriate complete shift with the help
of the projections πa,b : X → Bjb−ja

0 , πa,b(β1, . . . , βk) = (βja+1, βja+2, . . . , βjb).
More precisely, an elementary counting argument shows that we can take 1 � a <

b � 3(#B0)
2 such that β̂ja = β̂jb , β̂ja+1 = β̂jb+1, and the image πa,b(X) of some

projection πa,b has a significant cardinality

#πa,b(X) > (#B0)
(1−η

4 )( jb−ja)
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From these properties, we get an alphabet B = πa,b(X) whose words concatenate in
an appropriate way (because β̂ja = β̂jb , β̂ja+1 = β̂jb+1), the Hausdorff dimension of

K(B) is HD(K(B)) > (1− η)Δ+(t) (because #B > (#B0)
(1−η

4 )( jb−ja) and jb − ja >

2) 80
η
*), and Σ(B) ⊂ Σt−δ for some δ > 0 (because the features of good positions

forces the values of m on Σ(B) to decrease). This completes our sketch of proof.

14.2.9 End of Proof of Moreira’s Theorem 14.36

By Corollary 14.59, the function

t 	→ d(t) = HD(L ∩ (−∞, t))

is continuous. Moreover, an inspection of the proof of Corollary 14.59 shows that
we have also proved the equality HD(M ∩ (−∞, t)) = HD(L ∩ (−∞, t)).

Therefore, our task is reduced to prove that d(3 + ε) > 0 for all ε > 0 and
d(
√

12) = 1.
The fact that d(3 + ε) > 0 for any ε uses explicit sequences θm ∈ {1, 2}Z such

that lim
m→∞m(θm) = 3 in order to exhibit non-trivial Cantor sets in M∩ (−∞, 3+ ε).

More precisely, consider19 the periodic sequences

θm := 2 1 . . . 1︸ ︷︷ ︸
2mtimes

2

where a1 . . . ak := . . . a1 . . . ak a1 . . . ak . . . . Since the sequence θ∞ = 1, 2, 2, 1 has
the property that m(θ∞) = [2; 1] + [0; 2, 1] = 3, and |[a0; a1, . . . , an, b1, . . . ] −
[a0; a1, . . . , an, c1, . . . ]| < 1

2n−1 in general,20 we have that the alphabet Bm

consisting of the two words 2 1 . . .1︸ ︷︷ ︸
2mtimes

2 and 2 1 . . .1︸ ︷︷ ︸
2m+2times

2 satisfies

Σ(Bm) ⊂ Σ3+ 1
2m

Thus, d(3+ 1
2m ) = HD(M ∩ (−∞, 3+ 1

2m )) � HD(Σ(Bm)) = 2 ·HD(K(Bm)) > 0
for all m ∈ N.

Finally, the fact that d(
√

12) = 1 follows from Corollary 14.59 and
Remark 14.44. Indeed, Perron showed that m(θ) �

√
12 if and only if θ ∈ {1, 2}Z

(see the proof of Lemma 7 in Chapter 1 of Cusick-Flahive book [3]). Thus,

19This choice of θm is motivated by the discussion in Chapter 1 of Cusick-Flahive book [3].
20See Lemma 2 in Chapter 1 of [3].
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K+√
12
= C(2). By Corollary 14.59, it follows that

d(
√

12) = min{1, 2 ·Δ+(√12)} = min{1, 2 ·HD(C(2))}

Since Remark 14.44 tells us that HD(C(2)) > 1/2, we conclude that d(
√

12) = 1.

Appendix 1: Proof of Hurwitz Theorem

Given α /∈ Q, we want to show that the inequality

∣∣∣∣α −
p

q

∣∣∣∣ �
1√
5q2

has infinitely many rational solutions.
In this direction, let α = [a0; a1, . . . ] be the continued fraction expansion of α

and denote by [a0; a1, . . . , an] = pn/qn. We affirm that, for every α /∈ Q and every
n � 1, we have

∣∣∣∣α −
p

q

∣∣∣∣ <
1√
5q2

for some p
q ∈ { pn−1

qn−1
,

pn
qn
,

pn+1
qn+1

}.
Remark 14.60 Of course, this last statement provides infinitely many solutions to

the inequality
∣∣∣α − p

q

∣∣∣ � 1√
5q2 . So, our task is reduced to prove the affirmation

above.

The proof of the claim starts by recalling Perron’s Proposition 14.20:

α − pn

qn
= (−1)n

(αn+1 + βn+1)q2
n

where αn+1 := [an+1; an+2, . . . ] and βn+1 = qn−1
qn
= [0; an, . . . , a1].

For the sake of contradiction, suppose that the claim is false, i.e., there exists
k � 1 such that

max{(αk + βk), (αk+1 + βk+1), (αk+2 + βk+2)} �
√

5 (14.7)

Since
√

5 < 3 and am � αm + βm for all m � 1, it follows from (14.7) that

max{ak, ak+1, ak+2} � 2 (14.8)
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If am = 2 for some k � m � k + 2, then (14.8) would imply that αm + βm �
2+ [0; 2, 1] = 2+ 1

3 >
√

5, a contradiction with our assumption (14.7).
So, our hypothesis (14.7) forces

ak = ak+1 = ak+2 = 1 (14.9)

Denoting by x = 1
αk+2

and y = βk+1 = qk−1/qk ∈ Q, we have from (14.9) that

αk+1 = 1+ x, αk = 1+ 1

1+ x
, βk = 1

y
− 1, βk+2 = 1

1+ y

By plugging this into (14.7), we obtain

max

{
1

1+ x
+ 1

y
, 1+ x+ y,

1

x
+ 1

1+ y

}
�
√

5 (14.10)

On one hand, (14.10) implies that

1

1+ x
+ 1

y
�
√

5 and 1+ x �
√

5− y.

Thus,

√
5

y(
√

5− y)
= 1√

5− y
+ 1

y
� 1

1+ x
+ 1

y
�
√

5,

and, a fortiori, y(
√

5− y) � 1, i.e.,

√
5− 1

2
� y �

√
5+ 1

2
(14.11)

On the other hand, (14.10) implies that

x �
√

5− 1− y and
1

x
+ 1

1+ y
�
√

5.

Hence,

√
5

(1+ y)(
√

5− 1− y)
= 1√

5− 1− y
+ 1

1+ y
� 1

x
+ 1

1+ y
�
√

5,

and, a fortiori, (1+ y)(
√

5− 1− y) � 1, i.e.,

√
5− 1

2
� y �

√
5+ 1

2
(14.12)
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It follows from (14.11) and (14.12) that y = (
√

5−1)/2, a contradiction because
y = βk+1 = qk−1/qk ∈ Q. This completes the argument.

Appendix 2: Proof of Euler’s Remark

Denote by [0; a1, a2, . . . , an] = p(a1,...,an)
q(a1,...,an)

= pn
qn

. It is not hard to see that

q(a1) = a1, q(a1, a2) = a1a2 + 1,

q(a1, . . . , an) = anq(a1, . . . , an−1)+ q(a1, . . . , an−2) ∀ n � 3.

From this formula, we see that q(a1, . . . , an) is a sum of the following products
of elements of {a1, . . . , an}. First, we take the product a1 . . . an of all ai’s. Secondly,
we take all products obtained by removing any pair aiai+1 of adjacent elements.
Then, we iterate this procedure until no pairs can be omitted (with the convention
that if n is even, then the empty product gives 1). This rule to describe q(a1, . . . , an)

was discovered by Euler.
It follows immediately from Euler’s rule that q(a1, . . . , an) = q(an, . . . , a1).

This proves Proposition 14.47.
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Chapter 15
On the Missing Log Factor

Olivier Ramaré

15.1 Introduction

The Möbius function has attracted lots of attention in the last few years. As is
classical in Analytic Number Theory, we are trying to estimate sums of the form∑

n�x μ(n)g(x, n) for various and usually regular functions g(x, n).
There are essentially three definitions of the Möbius function:

• It is the multiplicative fonction with μ(p) = −1 and μ(pk) = 0 (k � 2),
• It is the convolution inverse of 1,
• It appears as the coefficients of the Dirichlet series of 1/ζ(s).

All three are of course linked,1 but this list enables a rough and empirical
classification of proofs. In this talk, we concentrate on the second definition, and
we shall often add an explicit angle to our looking glass. We will in particular see
that this combinatorial definition leads to functional analysis problems.

1If only by the fact that they define the same function!
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15.2 Meissel and Gram

Let us start our journey by an identity due the German mathematician Ernst Meissel2

in 1854 which is equation (6) of [27]. Thanks to the DigiZeitschriften project hosted
by the university of Göttingen, we can have access to this text online, though some
knowledge of Latin is required. The classical reference book [10] on history of
numbers of L.E. Dickson may serve as a first guide, and for instance, the paper [27]
is mentioned in Chapter XIX of this series of three books. In modern notation, the
identity in question reads

∑

n�x

μ(n)[x/n] = 1 (15.1)

where [ y] denotes the integer part of the real number y, while { y} denotes its
fractional part. This is established by noticing that [ y] =∑1�m�y 1 when y is non-
negative and on using the property that

∑
mn=� μ(n) = 1�=1. Now let us replace [ y]

by y− { y} in the above; we get

∑

n�x

μ(n){x/n} = −1+ x
∑

n�x

μ(n)

n
. (15.2)

We stop to emphasize three surprising aspects of this equation:

1. Error term treatment: On the left-hand side, the summand μ(n) is contaminated
by the error term {x/n} while the contamination disappears on the right-hand
side! The Prime Number Theorem thus implies that the left-hand side is indeed
o(x).

2. Identity: We have used an identity, and the question arises is naturally to know
whether it is an accident or a feature.

3. Log-factor: When we bound |μ(n)| and {x/n} by 1, we see that the trivial bound
for the left-hand side is x, while the trivial bound for the right-hand side is
. . . O(x log x)! As a consequence, the Danish mathematician Jørgen Pedersen
Gram showed in [17, pp. 196–197]3 that

∣∣∣
∑

n�x

μ(n)/n
∣∣∣ � 1 (15.3)

2His full name is Daniel Friedrich Ernst Meissel. This student of Carl Gustav Jacob Jacobi and
Johann Peter Gustav Lejeune Dirichlet was born in 1826 and passed away in 1895. His full
biography can be found in [29].
3This reference has been kindly provided to us by M. Balazard. The reader is referred to the
MacTutor archive maintained by the University of Saint Andrew, in Scotland for the biography
of J.-P. Gram. We just mention here that Meissel travelled to Denmark in 1885 to meet the 23 years
old Gram who had just won the Gold Medal of the Royal Danish Academy of Sciences for the
memoir we refer to. The inequality we extract from this memoir is not its main matter but rather a
pleasant side dish.
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for every positive x. It is of course a consequence of the Prime Number Theorem
that this sum goes to zero, but this partial result is striking.

The identity angle leads to more curious identities. Here is another one obtained
much later by the Canadian mathematician Robert Allister MacLeod in [26]:

∑

n�x

μ(n)
{x/n}2 − {x/n}

x/n
= x

∑

n�x

μ(n)

n
−
∑

n�x

μ(n)− 2+ 2

x
.

In fact, MacLeod exhibits a full family of similar identities, all valid for any x � 1.
Yet again, the reader can see that the left-hand side is contaminated by an “error
term”-like function, while this contamination is absent from the right-hand side.

I am showing you this identity to insist on the strange aspect these relations may
take. Are these identities just curiosities or is a better understanding possible? Can
we give some order to these facts?

15.3 Generalizing Meissel’s Proof, I

While trying to shed some light on Meissel’s identity I devised the next theorem
that shows that, under rather general conditions, we always save a log factor. More
refined version are possible, but this simplistic one captures the main power of
Gram’s statement. We first need two general lemmas.

Lemma 15.1 When Q � 0, we have

∑

pν�Q

ν2 log p � 3Q,

the sum being over every prime powers pν .

Proof We first use GP/Pari [44] to establish the claimed inequality when Q is below
106. Then we express our sum, say S, in the following manner:

S =
∑

pν�Q

log p+
∑

pν�Q

(ν2 − 1) log p � ψ(Q)+
∑

p�√Q

(
log Q

log p

)2

log Q

� ψ(Q)+ π(
√

Q)
log3 Q

log2 2

with the usual Tchebyshev function ψ and π . We recall that ψ(x) � 1.04 x for
every x > 0 by Rosser and Schoenfeld [39, (3.35)] and that π(Q) � 1.26x/ log x
by Rosser and Schoenfeld [39, (3.6)]. A numerical application ends the proof of the
lemma.
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The next lemma follows the path initiated by Levin and Fainleib in [25], and
trodden by several authors, like in [19].

Lemma 15.2 Let h be a non-negative multiplicative function for which there exists
a parameter H such that

∣∣h
(
pν
)∣∣ � Hν for every prime power pν . Then we have

∑

n�x

h(n) � 3H x

log x

∑

n�x

h(n)

n
.

Proof We start by

∑

n�x

h(n) log x =
∑

n�x

h(n) log n+
∑

n�x

h(n) log
x

n

�
∑

n�x

h(n) log n+ x
∑

n�x

h(n)

n
.

Concerning the sum with h(n) log n, we write

log n =
∑

pν‖n
log
(

pν
)

where the summation ranges over every prime power pν dividing n and such that
pν+1 does not divides n. In other words, ν is the proper power of p that divides n.
We infer from this identity that:

∑

n�x

h(n) log n =
∑

pν�x

log
(

pν
) ∑

pν‖n�x

h(n) �
∑

pν�x

log
(

pν
)
h
(

pν
) ∑

n�x/pν,
(n,p)=1

h(n)

� H
∑

pν�x

ν log
(

pν
) ∑

n�x/pν

h(n)

� H
∑

n�x

h(n)
∑

pν�x/n

ν log
(

pν
)
.

To conclude, we use Lemma 15.1 above.

Theorem 15.3 Let K be some real parameter and let g be a multiplicative function
such that

∣∣g
(
pν
)∣∣ � K for every prime power pν . Then we have

∣∣∣∣
∑

n�x

g(n)

n

∣∣∣∣ �
9K

log x

∑

n�x

|g(n)| + |(1 # g)(n)|
n

On taking g = μ, and K = 1, we recover the fact that the partial sum
∑

n�x μ(n)/n
is bounded.
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Proof We consider the sum S =∑n�x(1 # g)(n) which we write in the form

S =
∑

m�x

g(m)[x/m] = x
∑

m�x

g(m)

m
−
∑

m�x

g(m){x/m}.

We deduce from the above that
∣∣∣∣
∑

n�x

g(n)

n

∣∣∣∣ �
1

x

∑

n�x

(|g| + |1 # g|)(n).

We next notice that both functions |g| and |1#g| are multiplicative and non-negative.
Furthermore

∣∣g
(
pν
)∣∣ � K � Kν by hypothesis, while the reader will readily check

that
∣∣(1#g)

(
pν
)∣∣ � K(ν+1) � 2Kν. We are thus in a position to apply Lemma 15.2

twice, namely to the two multiplicative functions |g| and |1 # g|. Completing the
proof of the theorem is then straightforward.

15.3.1 An Intriguing Example

Seeing the appearance of |g| and |1 # g|, one may want to balance the effect of
both factors; this almost happens when one selects g(d) = μ(d)/2ω(d). This case
has in fact been considered long ago by Sigmund Selberg, a mathematician like his
more famous brother Atle Selberg, in his 1954 paper [41] where he used Meissel’s
approach in a very careful manner to show the next theorem.

Theorem 15.4 (Selberg [41]) We have, for every x > 0,

0 �
∑

n�x

μ(n)

2ω(n)n
� 1.

Proof Let us denote by f the function that associates μ(n)/2ω(n) to the integer n.
The reader will readily check that (1 # f )(n) = 1/2ω(n). We thus get

∑

n�x

1

2ω(n)
=
∑

��x

μ(�)

2ω(�)

[
x

�

]
= x

∑

��x

μ(�)

�2ω(�)
−
∑

��x

μ(�)

2ω(�)

{
x

�

}

from which we deduce that

x
∑

��x

μ(�)

�2ω(�)
=
∑

n�x

1

2ω(n)

(
1+ μ(n)

{
x

n

})
.
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This astounding equation immediately implies that the left hand side is non-negative
and bounded above. To prove the more precise bound 1, we first notice that it is
enough to prove it for positive integers x, in which case we first find that

1

2ω(1)

(
1+ μ(1)

{
x

1

})
= 1

and then that, as soon as n � 2, we have 2ω(n) � 2, hence

1

2ω(n)

(
1+ μ(n)

{
x

n

})
� 2

2
= 1.

It is straightforward to conclude from these two inequalities.

A consequence of Theorem 15.3 is also that, when x � 2, we have

∑

n�x

μ(n)

2ω(n)n
� 1/

√
log x. (15.4)

This is for instance a consequence of the following theorem that we infer from the
more precise [33, Theorem 21.1]. This theorem is in essence the one of Levin and
Fainleib [25] we referred to above.

Theorem 15.5 Let g be a non-negative multiplicative function. Let κ be a non-
negative real parameter such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

p�2,ν�1
pν�Q

g
(

pν
)

log
(

pν
) = κ log Q+ O(1) (Q � 1),

∑

p�2

∑

ν,k�1

g
(

pk)g
(

pν
)

log
(

pν
)� 1.

Then, we have

∑

d�D

g(d) = (log D)κ

Γ (κ + 1)

∏

p�2

{(
1− 1

p

)κ ∑

ν�0

g
(

pν
)}

(1+ O(1/ log D)) .

To infer (15.4) from Theorem 15.3, we use Theorem 15.5 twice with κ = 1/2. We
leave the details to the reader.

We are thus in a position to prove elementarily and with no use of the Prime
Number Theorem that the sum

∑
n�x

μ(n)
2ω(n)n

goes to 0! So why not try to reconstruct
the Möbius function from this? This is easily achieved by employing Dirichlet’s
series. We first define the multiplicative function f0 by f0(pν) = −(ν − 1)/2 and
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then find that

∑

n�1

μ(n)

ns
=
(∑

n�1

μ(n)

2ω(n)ns

)2∑

n�1

f0(n)

ns
. (15.5)

The abscissa of absolute convergence of D( f0, s) =∑n�1 f0(n)/ns is 1/2.

Proof All the implied functions being multiplicative, it is enough to check this
identity on each local p-factor, i.e. that

1− 1

ps
=
(

1− 1

2ps

)2(
1−

∑

ν�1

ν − 1

2νpνs

)
.

This comes from the following formal identity, with Y = X/2:

1− X

(1− X
2 )

2
= 1

1− Y
− Y

(1− Y)2 =
∑

k�0

Yk −
∑

k�1

kYk.

To get the abscissa of absolute convergence we consider, with σ =�s,

Δ =
∑

p�2

∣∣∣∣
∑

ν�2

ν − 1

2νpνs

∣∣∣∣ �
∑

p�2

1

4p2σ

∣∣∣∣
∑

k�0

k + 1

(2pσ )k

∣∣∣∣

�
∑

p�2

1

4p2σ

1

(1− 1/(2pσ ))2
�
∑

p�2

1

p2σ
.

This is bounded when σ > 1/2, showing that the product

∏

p�2

∑

ν�0

f0( pν)

pνs

is absolutely convergent when �s > 1/2. An immediate consequence is that the
series is absolutely convergent in the same half-plane at least. The reader will readily
see that the series of | f0(n)|/ns diverges when s = 1/2, thus establishing that the
half-plane�s = 1/2 is the actual half-plane of absolute convergence of D( f0, s).

The function f0(n)/n being much smaller than the function μ(n)2−ω(n)/n, a first
goal before finding bounds for

∑
n�x μ(n)/n from bounds on μ(n)2−ω(n)/n is to

estimate the quantity

∑

�m�x

μ(�)μ(m)

2ω(�)+ω(m)�m
.
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The Dirichlet hyperbola formula is made for that, i.e. we write

∑

�m�x

μ(�)μ(m)

2ω(�)+ω(m)�m
= 2

∑

��√x

μ(�)

2ω(�)�

∑

m�x/�

μ(m)

2ω(m)m
−
( ∑

��√x

μ(�)

2ω(�)�

)2

.

The second term is O(1/ log x) while the first one is

�
∑

��√x

|μ(�)|
2ω(�)�

1√
log x

� 1

because we are losing the sign of the Möbius factor μ(�). The bound (15.4) fails
to improve on (15.3)! The reader may want to use the non-negativity bound and
distinguish as to whether � has an even or an odd number of prime factors. . . And for
instance aim at a lower estimate: when μ(�) = 1, we use the fact that the summand
is non-negative, and otherwise that it is O(1/

√
log x). We have then to estimate

∑

��√x

1+ μ(�)

2

|μ(�)|
2ω(�)�

= 1

2

∑

��√x

|μ(�)|
2ω(�)�

+ 1

2

∑

��√x

μ(�)

2ω(�)�

= 1

2

∑

��√x

|μ(�)|
2ω(�)�

+ O

(
1√

log x

)

and so, we have only saved a factor 1/2.
Yet a third path opens before us: we may want to use the non-negativity of the

sum
∑

n�x
μ(n)

2ω(n)n
in a stronger manner via Landau’s Theorem on Mellin transform of

non-negative functions, and maybe derive a stronger estimate! Indeed, the integral

∫ ∞

1

∑

n�x

μ(n)

2ω(n)n

dx

xs+1

represents the function (1/s)
∑

n�1
μ(n)

2ω(n)ns+1 . Hence the abscissa of convergence of
the integral should be a pole of the function represented. Can we show in this fashion
that the integral converges for �s > −1/2 hence improving on (15.4)? This is
tempting, but does not work: the series

∑
n�1

μ(n)
2ω(n)ns+1 behaves like 1/

√
ζ(s+ 1),

i.e. like
√

s next to s = 0, and the innocent looking factor (1/s) in front of the series
above shows that the integral has a polar contribution at s = 0. In fact, S. Selberg
already showed in [41] that

∑
n�x

μ(n)
2ω(n)n

is equivalent to C/
√

log x, where C is some
well-defined and non-zero constant.

The purpose of this digression was to show the reader that the results we are
looking at are tight. Any improvement would have acute consequences.
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15.4 The Axer-Landau Equivalence Theorem

We have studied the situation from the angle of general multiplicative functions;
let us now restrict more closely our attention to the case of the Möbius function.
Here is an enlightening result in this direction. We first recall how the van Mangoldt
function Λ is defined:

Λ(n) =
{

log p when n = pν

0 else.
(15.6)

Theorem 15.6 (Axer-Landau, 1899-1911) The five following statements are
equivalent:

(S1) The number of primes up to x is asymptotic to x/ log x.
(S2) M(x) =∑n�x μ(n) is o(x).
(S3) m(x) =∑n�x μ(n)/n is o(1).
(S4) ψ(x) =∑n�x Λ(n) is asymptotic to x.

(S5) ψ̃(x) =∑n�x Λ(n)/n is log x− γ + o(1).

In fact, proving that (S3) implies (S2) or that (S5) implies (S4) is a simple matter of
summation by parts, as is the equivalence of (S1) and (S4). Edmund Landau in 1899
in [22] was the first to investigate this kind of result: he showed that (S1) implies
(S3). The Viennese mathematician A. Axer continued in 1910 in [3] by establishing
that (S2) implies (S3). Landau immediately applied Axer’s method to prove that
(S4) and (S5) are equivalent and concluded in [23] essentially by showing that (S3)
implies (S4). See also [4] and [24].

Concerning our question, this theorem shows that we clearly need to save the
logarithm factor over the trivial estimate for m(x), as well as for ψ̃ . A second aspect
arises from this theorem: the call for an quantitative version of it. If one follows
the proofs of Axer and Landau, the saving is essentially limited at O(1/

√
log x),

though some later authors, like the Swiss mathematician Alfred Kienast in [21],
went further.

15.4.1 A Related Problem

In [34] and more fully in [31] with David Platt from Bristol, I investigated the
problem of deriving quantitatively (near) optimal results on ψ̃(x) once one supposes
results for ψ(x). This implication has been shown to be false in the general context
of Beurling integers4 by Harold Diamond and Wen-Bin Zhang in [9]. They even

4The Beurling integers are the multiplicative semi-group built on a family of “primes” to be chosen
real numbers from (1,∞).
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exhibit a Beurling system B where one has ψB(x) ∼ x while ψ̃B(x) − log x �
log log x, with obvious notation. This means in particular that something special
linked with the nature of the integers is required. It took us quite a while to
understand what was happening, though I had essentially settled the problem in
the q-aspect several years ago in [32]: instead of looking at primes, I was looking at
primes in some arithmetic progression, say modulo some q; the error term has then
a dependence in q and in x. In the mentioned paper, I resolved this question provided
the question for q = 1 was solved! I thought that I had reduced the problem to a
simpler one, but it is more correct to say that the x-aspect is the one that leads to real
difficulties.

The first idea is of course to use a summation by parts, i.e. to write

ψ̃(x)− log x = ψ(x)− x

x
+ 1+

∫ x

1

ψ(t) − t

t2
dt. (15.7)

A careful look at this equation will in fact be enough to solve the question. We can
understand on it the idea of Diamond and Zhang: they built a Beurling system where
the integral above does not converge. A different approach from this same starting
point leads to the next theorem we proved with D. Platt.

Theorem 15.7 (Platt and Ramaré [31]) There exists c > 0 such that, when x �
10, we have:

ψ̃(x)− log x+ γ � max
x�y�2x

|ψ( y)− y|
y

+ exp

(
− c

log x

log log x

)
.

A similar statement for primes in arithmetic progressions holds true. This theorem
is very efficient to compare ψ̃ together with ψ , and is in fact nearly optimal from
a quantitative viewpoint. We are almost saving a power of x; a look at the proof
discloses that the zero-free region for the Riemann-zeta function is used only up to
the height log x. This has the consequence that numerically, verifying the Riemann
Hypothesis up to the height H gives control for x roughly up to eH! And since
X. Gourdon and P. Demichel [16] have checked this Riemann Hypothesis5 up to
height 2.445 · 1012, we can assume the Riemann Hypothesis is available when
x � e1012

, which is enormous! Practically, this discussion shows that the factor
exp(−c(log x)/log log x) can be replaced by a very small quantity. We shall see
below some very explicit consequences of this fact, but let us start by a rough
explanation of the proof. This is not the way the proof appeared at first, but how
I now understand it. We first note that

1+
∫ ∞

1

ψ(t) − t

t2
dt = −γ. (15.8)

5This computation has not been the subject of any published paper. D. Platt in [30] has checked
this hypothesis up to height 109 by with a very precise program using interval arithmetic.
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This is highly non-obvious if seen like that. The Prime Number Theorem with a
remainder term ensures that the integral converges, but the full proof requires the
limited development ζ(s) = (s− 1)−1 + γ +O(s− 1) around s = 1 which implies
that −(ζ ′/ζ )(s) = (s − 1)−1 − γ + O(s − 1). We leave the details to the reader.
What is really important for us is that this quantity is indeed a constant so that we
can rewrite (15.7) in

ψ̃(x)− log x = ψ(x) − x

x
− γ −

∫ ∞

x

ψ(t) − t

t2
dt. (15.9)

This formula is not enough to conclude but a very small modification of it will
suffice: let F : [1,∞) → R be a smooth function such that F(y) = 1 when y � 2.
We have

ψ̃(x)− log x = ψ(x) − x

x
− γ −

∫ 2x

x
(1− F(t/x))

ψ(t) − t

t2
dt

+
∫ ∞

x
F(t/x)

ψ(t) − t

t2
dt. (15.10)

The integral over [x, 2x] can be controlled by maxx<y<2x |ψ(y) − y|/x, but what
about the last integral? In short: we express it in terms of the zeros of the Riemann
zeta-function and get in this manner a fast convergent sum. Why is that so? The
reader may think it is because of the smoothing and the involvement of Mellin
transforms. . . And would be right! A fact that had escaped my attention so long,
and not only mine, is that this argument works for the point at infinity. Repeated
integrations by parts for instance, when assuming F smooth enough, show that the
corresponding Mellin transform decays vary rapidly in vertical strips.

Here are two very explicit consequences that we promised earlier.

Theorem 15.8 We have

∣∣∣
∑

n�x

Λ(n)/n− log x+ γ

∣∣∣ �
1

149 log x
(x � 23).

The previous result is due to J. Rosser and L. Schoenfeld in [39] and had a 2 instead
of 149.

Theorem 15.9 We have

∣∣∣
∑

n�x

Λ(n)/n− log x+ γ

∣∣∣ �
2

(log x)2 (x > 1).

This result has no ancestor that I know of. There are related work by P. Dusart [13],
[12], L. Faber and H. Kadiri, H. Kadiri and A. Lumley [20] (and more to come), C.
Axler [5], L. Panaitopol [28], R. Vanlalnagaia [45], etc.
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The sketch I propose above is the manner I now explain the proof, but the two
initial papers, [34] and [31] proceeded in a very different manner: the integral∫∞

x (ψ(t) − t)dt/t2 was expressed in terms of the zeros of zeta and the relevant
expression was compared with another one more convergent. The better understood
scheme above will have an interesting consequence we shall see later.

15.4.2 The Horizon

It is time to set the horizon! Here are three conjectures.

Conjecture C There exists a constant A > 0 such that

m(x)
?� max

x/A<y�xA
|M( y)|/y+ x−1/4.

And since we would like to have control of M(x) via6 ψ(x), I also believe the
following.

Conjecture D There exists a constant A > 0 such that

m(x)
?� max

x/A<y�xA
|ψ( y)− y|/y+ x−1/4.

And we recall the conjecture of [34].

Conjecture A There exists a constant A > 0 such that

ψ̃(x)
?� max

x/A<y�xA
|ψ( y)− y|/y+ x−1/4.

These three conjectures are trivially true under the Riemann Hypothesis, even
with the x−1/4 replaced by x−1/2+ε. This exponent 1/4 is not particularly relevant,
the saving of any power of x would be a true achievement. These three conjectures
are obvious if we allow a factor log x in front of the maxima, simply by using
integration by parts, but even if we allow a factor between 1 and log x, like

√
log x

for instance, the answer is not known.

6I formulated a more precise conjecture, say Conjecture B, in [35].
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15.5 From M to m

The proof we presented of Theorem 15.7 allows one to dispense with the notion of
zeros, though introducing them is numerically much more efficient. We can however
express the function F in (15.10) in terms of its Mellin transform. This Mellin
transform decreases fast in vertical strips7 and this is enough to get the result! We
provide a full proof in [38].

Theorem 15.10 There exists c > 0 such that, when x � 10, we have:

m(x)� max
x�y�2x

|M( y)|
y

+ exp

(
− c

log x

log log x

)
.

The difference with the case of ψ̃ is that we do not have any efficient version of this
theorem.

15.6 Generalizing Meissel’s Proof, II

M. Balazard took another path to understand Meissel’s formula. He rewrote this
identity in the form:

1

x

∫ x

1
M(x/t)

{t}
t

dt = m(x)− M(x)

x
− log x

x
(15.11)

and did the same for the MacLeod identity:

1

x

∫ x

1
M(x/t)

(2{t} − 1)t + {t} − {t}2
t2

dt = m(x)− M(x)

x
− 2

x
+ 2

x2 .

Some order emerges in this manner, but the question remains as to whether these
identities are oldies to be thrown in the wastebasket or not. The situation has been
further cleared by F. Daval8 (2016, private communication) in the next theorem.

Theorem 15.11 (Daval, 2016) Let h : [0, 1] → C be a continuous function
normalized by

∫ 1
0 h(u)du = 1. When x � 1, we have

1

x

∫ x

1
M(x/t)

(
1− 1

t

∑

n�t

h(n/t)

)
dt = m(x)− M(x)

x
− 1

x

∫ 1

1/x

h( y)

y
dy.

7As already stated, we show that by classically repeated integrations by parts.
8F. Daval was at the time a PhD student of mine.
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Like many identities, once it is written, it is not very difficult to establish. On
selecting h = 1, we recover the Meissel identity, and on selecting h(t) = 2t,
the MacLeod identity I showed is being recovered. We thus see that a “Riemann
integral-remainder” appears; functional analysis is coming in! Among the natural
questions, let us mention this one: given a function f over [0, 1], can it be approx-
imated by such a Riemann-remainder term? If not what is the best approximation?
Before continuing, let us mention that there are some other identities in this area,
and for instance, following J.-P. Gram [17], R. MacLeod [26] and M. Balazard [6],
here is, in Balazard’s form, a typical identity I obtained in [37, Lemma 3.2]:

∑

n�x

μ(n)

n
log
( x

n

)
− 1 = 6− 8γ

3x
− 5− 4γ

x2 + 6− 4γ

3x4 − 1

x

∫ x

1
M(x/t)h′(t)dt

where9 the function h is differentiable except at integer points where it has left and
right-derivative, and satisfies 0 � t2|h′(t)| � 7

4 − γ . The function h is this time
linked with the error term

∑
n�t 1/n − log t. Similar identities have been proved

with logk(x/n) instead of log(x/n), for any positive integer k. The theory of F. Daval
can most probably be adapted to these cases. One striking consequence is the next
result.

Theorem 15.12 ([37, Theorem 1.5]) When x � 3155, we have

∣∣∣∣
∑

n�x

μ(n)

n
log(x/n)− 1

∣∣∣∣ �
1

389 log x
.

Note that one could try to derive such an estimate by writing

∑

n�x

μ(n)

n
log(x/n) = (log x)

∑

n�x

μ(n)

n
−
∑

n�x

μ(n)

n
log n

and using estimates for both. But to attain the accuracy level of our theorem, one
would need to prove at least that

∑
n�x μ(n)/n = O∗(1/(389 log2 x)), and we are

rather far from having this kind of results!

15.6.1 The Problem at Large

Let us try to formalize the problem. We start from a regular function F : [1,∞)→
C, for instance F(t) = 1 or F(t) = log t. The question is to find two functions H and

9As a matter of fact, the mentioned lemma is slightly different, but a corrigendum is on its way.
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G and a constant C such that

∑

n�x

μ(n)

n
F(x/n)− C

M(x)

x
= 1

x

∫ x

1
M(x/t)G(t)dt + H(x).

To avoid trivial solutions, we assume that
∫ ∞

1
|F(t)|dt/t = ∞,

∫ ∞

1
|G(t)|dt/t <∞,

and that H is smooth and “small”. This looks like a functional transform from F to
G, but there is a lot of slack! Indeed, when F = 1 or when F(t) = log t, there are
several solutions.

15.6.2 Beginning of a Theory When F = 1

We start from Theorem 15.11 and, remembering the identities of MacLeod in
Balazard’s form, we aim at writing the integral with M in the form

∫
M(x/t)f ′(t)dt.

With this goal in sight we note that

∫ x

0

(
1− 1

t

∑

n�t

h(n/t)

)
dt =

∫ 1

0
{ux}h(u)

u
du.

So, given f : [1,∞) → C, we want to solve f (x) = ∫ 1
0 {ux} h(u)

u du. The change
of variable y = 1/x leads to the problem: given g : [0, 1] → C, solve g(y) =∫ 1

0
{u/y}
u/y h(u)du. We see another appearance of functional analysis! The operator T

over the Hilbert space L2([0, 1]) which associates
∫ 1

0
{u/y}
u/y h(u)du to h is a Hilbert-

Schmidt, compact and contracting operator. Indeed, we readily check that the kernel
(u, y) 	→ {u/y}

u/y belongs to L2([0, 1]2) and then, we for instance use [15] (around
Eqs. (9.6)–(9.8)). Since

∫ 1

0

∫ 1

0

∣∣∣∣
{u/y}
u/y

∣∣∣∣
2

dudy =
∫ 1

0

∫ 1/y

0

∣∣∣∣
{z}
z

∣∣∣∣
2

dz ydy

�
∫ 1

0

(
1+

∫ ∞

1

{z}
z2 dz

)
ydy = 2(1− γ ) < 1

we readily see by invoking the Cauchy-Schwarz inequality that T is strictly
contracting. The general theory tells us that there exist a sequence of complex
numbers (λn)n and two orthonormal sequences of functions (ψn)n and (ϕn)n such
that

∫ 1

0
{u/y}h(u)

u
du =

∑

n�1

λn

∫ 1

0
h(u)ψn(u)duϕn( y)
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for every y ∈ [0, 1]. By Swann [42], this operator to be of Shatten class p for
every p > 1, and I suspect it is not of trace class. The above decomposition is a
consequence of the general theory of integral operator and a more specific study
should be able to disclose arithmetical properties. For instance, the presence of the
fractional part is not without recalling the Nyman-Beurling criteria. This is work in
progress.

15.6.3 The Localization Problem, Case F = 1

We are here going back to what has been done rather than guessing what could
be happening in the future! It is easier to first state a result and then describe the
problem at hand from there. We start with a lemma.

Lemma 15.13 (F. Daval, 2016, private communication) Let h : [0, 1] 	→ C be
a Ck-function for some k � 2, normalized with

∫ 1
0 h(u)du = 1. We further assume

that

• h(0) = h′(0) = 0,
• When 3 � 2i+ 1 � k − 1, we have h(2i+1)(0) = 0,
• When 0 � � � k − 2, we have h(�)(1) = 0.

Then we have, for t � 1,

∣∣∣∣1−
1

t

∑

n�t

h(n/t)

∣∣∣∣� 1/tk.

Given an integer k � 2, let us call Hk the class of functions h described above.
Then, for any h ∈Hk, there exists a constant Ck(h) such that

∣∣∣∣
∫ x

1
M(x/t)

(
1− 1

t

∑

n�t

h(n/t)

)
dt

∣∣∣∣ �
Ck(h)

x

∫ x

1
M(t)(t/x)k−2dt.

F. Daval (2016, private communication) has obtained the following table:

k = 3 4 5 6 7

minh Ck(h) � 1.05 1.44 2.52 5.9 13.2

This improves of earlier values of M. Balazard in [6]. It would be interesting to
determine numerically these minima with more accuracy. The value for k = 5 has
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been obtained with the highly non-obvious choice h5(t) = 2t2(1− t)4(120t2+52t+
13). As a consequence, one can get for instance the following inequality:

∣∣∣∣m(x)− M(x)

x

∣∣∣∣ �
33/13

x4

∫ x

1
|M(t)|t3dt + 19/7

x

and such an inequality should give improvements for many of the results I obtained
in [37]. We call this problem the “localization problem” because a high power of t
in the integral above means that the values of M(t) for t close to x have more weight
than the lower ones. We recall that conjecture C claims that one can use only the
values of t that are a constant multiple of x.

All in all, a lot remains to be understood in this area. I for instance wonder
whether functions like {t2 + 1} could appear in these identities rather than {t}. . . I
thought at first that the answer should be no but I am not so sure anymore.

15.6.4 From Λ to μ/From ψ to M

Let us continue our journey around the Axer-Landau Equivalence Theorem. We
first notice that Wen-Bin Zhang has exhibited in [46] a Beurling system of integers
where one have MP(x) = o(x) without ψP(x) ∼ x. Our final destination being
numerical estimates, we are however more interested in the reverse implication, i.e.
to derive bounds for M from bounds for the primes. This problem has been studied
by A. Kienast in [21] and by L. Schoenfeld [40], and they proceeded as I later did
in [35] by using some combinatorial identities. The family of identities I produced
is simply more efficient. It is better to refer the reader to the cited paper but let us
give the general flavour. The first interesting case reads

∑

��x

μ(�) log2 � =
∑

d��x

μ(�)
(
Λ # Λ(d)−Λ(d) log d

)
. (15.12)

It is worth mentioning that the Selberg10 identity that is used for proving elemen-
tarily the Prime Number Theorem is Λ # Λ(d) + Λ(d) log d = (μ # log2)(d) and
that, assuming this Prime Number Theorem, both factors Λ # Λ(d) and Λ(d) log d
contribute equally to the average. In particular, the function Λ # Λ(d)−Λ(d) log d
should be looked upon as a remainder term. We get information of its average order
by using the Dirichlet hyperbola formula; it would most probably be better to use
an explicit expression in terms of the zeros directly, but this involves the residues
of (ζ ′/ζ )2 and there lacks a control of those, while the residues of ζ ′/ζ are well
understood. Some more thought discloses that we need essentially the L1-norm of
such residues, and since they are non-negative integers for ζ ′/ζ , we may as well

10This one is Atle Selberg!
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compute their simple average, which is readily achieved by a contour integration
that has most of its path outside the critical strip. No such phenomenon is known
to occur for (ζ ′/ζ )2! The reader may be wary of the Möbius factor that appears on
the right-hand side of (15.12), but only one such factor appears. It is maybe more
apparent in the next identity of this series:

∑

��x

μ(�) log3 � =
∑

d��x

μ(�)
(
Λ # Λ # Λ(d)− 3Λ # (Λ log)(d)+Λ(d) log2 d

)
.

When starting with the last identity with k = 3, one can expect to save a log3 x on
the trivial estimate x, but the presence of the Möbius factor on the right-hand side
reduces that to a saving of one log x less, so log2 x. This is because the Dirichlet
hyperbola method is not used, though one may employ a recursion process: indeed,
L. Schoenfeld does that, followed by H. Cohen, F. Dress and M. El Marraki in [7],
[11] and [14]. I did not introduce such a step as it is numerically costly, but a more
careful treatment is here possible.

15.7 Generalizing Meissel’s Proof, III

We now turn towards the third aspect of Meissel’s identity, which is to provide a
simple proof of

∑
n�x μ(n)/n � 1. Here is a theorem I proved a long time back

with Andrew Granville in [18, Lemma 10.2].

Theorem 15.14 For x � 1 and q � 1, we have

∣∣∣∣
∑

n�x,
gcd(n,q)=1

μ(n)

n

∣∣∣∣ � 1.

This result belongs to the family of the eternally-reproved lemmas! In fact, I
discovered much later than it appeared already in an early paper of Harold
Davenport as [8, Lemma 1]! The precise upper bound by 1 is not given, but the
proof is already there. And Terence Tao reproved this result in [43], in a larger
context, but the proof is again the same! We cannot even say that Davenport’s paper
or the one I co-authored are forgotten: they are simply cited for other reasons.

The main theme is the handling of the coprimality condition. Since we mentioned
the investigations of Sigmund Selberg, it is worthwhile stating a surprising lemma
that one finds in [41, Satz 4].

Theorem 15.15 For x � 1 and d, q � 1, with d|q, we have

0 �
∑

n�x,
gcd(n,d)=1

μ(n)

2ω(n)n
�

∑

n�x,
gcd(n,q)=1

μ(n)

2ω(n)n
� 1.
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We should make a stop here; indeed the reader may think that removing the
coprimality condition is an easy task. The standard manner goes by using the
Möbius function and the identity:

∑

d|n,
d|q

μ(d) =
∑

d| gcd(n,q)

μ(d) =
{

1 when gcd(n, q) = 1

0 else.
(15.13)

However, here is what happens in our case:

∑

n�x,
gcd(n,q)=1

μ(n)

n
=
∑

n�x

∑

d| gcd(n,q)

μ(d)
μ(n)

n
=
∑

d|q
μ(d)

∑

d|n�x

μ(n)

n

=
∑

d|q

μ2(d)

d

∑

m�x/d,
gcd(m,d)=1

μ(m)

m
(15.14)

and thus a coprimality condition comes back in play! E. Landau has devised a
long time ago a manner to go around this problem: it consists in comparing the
multiplicative function f (n) = 1(n,q)=1μ(n) with the function μ, i.e. to find a
function g such that f = μ # gq, where # is the arithmetical convolution product.
Determining gq is an exercise resolved by comparing the Dirichlet series. Once
the reader has found the expression for gq, he or she will find that it is somewhat
unwieldy. The foremost problem is that it has an infinite support and thus, when we
write

∑

n�x,
gcd(n,q)=1

μ(n)

n
=
∑

��1

gq(�)
∑

m�x/�

μ(m)/m

one has to handle the case when � is large, i.e. when x/� is small. This leads to
difficulties, for instance when one wants explicit estimates. But even if one aims
only at theoretical results, difficulties appear: for instance, if one wants to bound∑

n�x,
gcd(n,q)=1

μ(n)
n from the estimate |∑n�x

μ(n)
n | � 1 and the function gq, the

resulting bound is O(q/φ(q)), which can be infinitely larger than O(1).
I devised in [36] and [37] a workaround to handle this question. The two remarks

needed are first that the Liouville function11 λ is rather close to the Möbius function,
and second that the Liouville function being completely multiplicative, the proof
above (leading to (15.14)) would this time succeed. This implies a process in three

11The Liouville function is the completely multiplicative function defined by λ(n) = (−1)Ω(n) ,
where Ω(n) is the number of prime factors of n, counted with multiplicity, so that Ω(12) = 3.
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steps:

1. Go from μ to λ.
2. Get rid of the coprimality with the Möbius function.
3. Study the resulting sum by comparing λ to μ and by using results on μ.

In the second paper, I noticed that it is possible to combine steps 1 and 3, hence
gaining in efficiency. This process is however only half a cure: one indeed avoids
short sums, and this is numerically important, but the factor q/φ(q) we talked about
earlier still arises! Here is a typical result I obtained in this fashion.

Theorem 15.16 When 1 � q < x, we have

∣∣∣∣
∑

d�x,
(d,q)=1

μ(d)/d

∣∣∣∣ �
4q/5

φ(q) log(x/q)
.

Similar results with μ(d) log(x/d)/d and μ(d) log(x/d)2/d are also presented. Let
me end this section with a methodological remark: Theorem 15.14 does not contain
in its statement a natural restriction of q with respect to x, and as such is hard to
improve upon. Indeed q could be the product of all the primes below x, in which
case the bound is optimal. The factor 1/ log(x/q) in Theorem 15.16 avoids this fact,
which is why I believe it can be largely improved. The removal of the factor q/φ(q)
would be a interesting step.

15.7.1 A Related Problem

Meissel’s identity leads to an excellent handling of the coprimality condition, and
we saw at the beginning of this section that it was not obvious to generalize. In
another paper [1] with Akhilesh P. concerning the Selberg sieve density function,
we encountered the problem of bounding the sum

∑

k>K,
gcd(k,q)=1

μ(k)

kφ(k)
(15.15)

uniformly in q. We were only able at the time to get a better than trivial estimate,
but recently, together with Akhilesh P. in [2], we proved the next result by
again employing the Liouville trick described above to which we added a sieving
argument.

Theorem 15.17

lim sup
K→∞

K max
q

∣∣∣∣
∑

k>K,
gcd(k,q)=1

μ(k)

k2

∣∣∣∣ = 0.
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Our result is more general and encompasses the sum (15.15). In essence, the proof
runs as follows: when q has many prime factors, use a sieve bound; when q has few
prime factors, remove the coprimality condition with Möbius. This time coprimality
with

∏
p�K,p�q p comes into play. Both arguments take care of extremal ranges of q

(i.e. when q as many or few prime factors). These ranges do not overlap: there is a
middle zone where this time, the oscillation of μ comes into play, and it is where
we use the λ-trick to get rid of the coprimality condition.

The rate of convergence is however unknown to us. Under the Riemann
Hypothesis, our proof gives a rate of convergence in 1/(log K)1/3−ε for any ε > 0
but the best we have been able to prove concerning an Omega-result is that

lim sup
K→∞

K log K max
q

∣∣∣∣
∑

k>K,
(k,q)=1

μ(k)

k2

∣∣∣∣ � 1.

We have not even been able to improve on this last constant 1, which we got by
considering q =∏p�K p. Our journey ends here!
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Chapter 16
Chowla’s Conjecture: From the Liouville
Function to the Moebius Function

Olivier Ramaré

16.1 Historical Setting

In Problem 57 of the book [1] (see equation (341) therein), S. Chowla formulated the
following conjecture, where, by “integer polynomial”, we understand “an element
of Z[X]”.

Conjecture 16.1 (Chowla’s Conjecture for the Liouville Function) For any integer
polynomial f (x) that is not of the form cg(x)2 for some integer polynomial g(x), one
has

∑

n�x

λ( f (n)) = o(x)

where λ is the Liouville function.

This conjecture has then been stated and formulated in many different forms, very
often by restricting f to be a product of linear factors as by T. Tao in [5], and
even more often to be a product of monic linear factors. Furthermore, the Liouville
function λ is sometimes replaced by the Möbius function μ as by P. Sarnak in [4].
The aim of this note is to establish some links between these conjectures.
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We should also mention that some authors, like A. Hildebrand in [2] or K.
Matomäki, M. Radziwiłł and T. Tao in [3], refer to another closely connected
conjecture of Chowla that states that the sequence (λ(n), λ(n + 1), · · · , λ(n + k))
may take any value in {±1}k. This is indeed Problem 56 of [1].

Here are different forms that can be called “Chowla’s conjecture”.

Conjecture 16.2 For any finite tuple ((ai, bi))i∈I of positive integers such that aibj−
ajbi = 0 as soon as i = j, we have

∑

n�x

∏

i∈I

λ(ain+ bi) = o(x).

Remark 16.1 Note that when the condition of the ((ai, bi))i∈I is verified, it is also
verified for the coefficients after the substitution n 	→ pn+ q.

Conjecture 16.3 For any positive integer a and any strictly increasing finite
sequence (bi)i∈I of non-negative integers, we have

∑

n�x

∏

i∈I

λ(an+ bi) = o(x).

Conjecture 16.4 For any finite tuple ((ai, bi))i∈I of positive integers such that aibj−
ajbi = 0 as soon as i = j, we have

∑

n�x

∏

i∈I

μ(ain+ bi) = o(x).

Conjecture 16.5 For any positive integer a and any strictly increasing finite
sequence (bi)i∈I of non-negative integers, we have

∑

n�x

∏

i∈I

μ(an+ bi) = o(x).

Conjecture 16.6 For any finite tuple ((ai, bi))i∈I of positive integers such that aibj−
ajbi = 0 as soon as i = j, and any additional finite tuple ((ck, dk))k∈K we have

∑

n�x

∏

i∈I

μ(ain+ bi)
∏

k∈K

μ2(ckn+ dk) = o(x)

provided the set I be non-empty.
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Conjecture 16.7 For any positive integer a and any strictly increasing finite
sequences (bi)i∈I and (dk)k∈K of non-negative integers, we have

∑

n�x

∏

i∈I

μ(an+ bi)
∏

k∈K

μ2(an+ dk) = o(x)

provided the set I be non-empty.

In the ergodic context, the hypothesis
∑

n�x
∏

i∈I μ(n+ bi)
∏

k∈K μ2(n+ dk) =
o(x) is often seen, with some natural conditions on the parameters. Since it is applied
to powers Ta of a same operator T, the proper statements are really Conjectures 16.2,
16.4 and 16.6.

The reader may wonder whether the non-negativity condition concerning the
parameters bi is restrictive or not. It is not and we can reduce to this case by a
suitable shift of the variable n. This would implies discarding finitely many terms is
the diverse sums we consider and increase the initial bi by bi+ (N0−1)ai, assuming
we replace n by n+N0−1; there clearly exists an N0 for which all the bi+(N0−1)ai

are positive.

Theorem 16.8

• Conjecture 16.2 implies Conjecture 16.4.
• Conjecture 16.4 implies Conjecture 16.6.
• Conjecture 16.3 implies Conjecture 16.5.
• Conjecture 16.5 implies Conjecture 16.7.
• Conjecture 16.6 implies Conjecture 16.2.

Note that we have not been able to prove that Conjecture 16.7 implies Conjec-
ture 16.3.

16.2 Lemmas

Lemma 16.9 Let ( f (n))n be a complex sequence such that | f (n)| � 1, let a and b
be fixed and assume that, for every u and w, one has

∑

n�y

λ(a(u2n+ w)+ b)f (u2n+ w) = ou,w( y). (16.1)

Then
∑

n�x μ(an+ b)f (n) = o(x).

Proof We readily check on the Dirichlet series that

μ(m) =
∑

u2v=m

μ(u)λ(v) (16.2)
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We define X = ax+ b. We infer from this identity that, for any positive integer U,
one has

∑

n�x

μ(an+ b)f (n) =
∑

m�ax+b

μ(m)f
(m− b

a

)
1m≡b[a]

=
∑

u�√ax+b

μ(u)
∑

v�(ax+b)/u2

λ(v)f
(u2v − b

a

)
1u2v≡b[a]

=
∑

u�U

μ(u)
∑

v�(ax+b)/u2

λ(v)f
(u2v − b

a

)
1u2v≡b[a] + O∗(

∑

u>U

X/u2)

since

∣∣∣∣
∑

v�(ax+b)/u2

λ(v)f
(u2v − b

a

)
1u2v≡b[a]

∣∣∣∣ �
∑

v�X/u2

1 � X/u2.

We next recall that a comparison to an integral ensures us that
∑

u>U u−2 � 1/U
(since U is an integer). Since we want the reader to follow as closely as possible
the argument, we also use the notation f = O∗(g) to mean that | f | � g. We have
reached

∑

n�x

μ(an+ b)f (n) =
∑

u�U

μ(u)
∑

v�(ax+b)/u2

λ(u2v)f
(u2v − b

a

)
1u2v≡b[a] + O∗(X/U)

=
∑

u�U

μ(u)
∑

m�x,
am+b≡0[u2]

λ(am+ b)f (m)+ O∗(X/U)

(with am = u2v − b) from which we infer that

∣∣∣∣
∑

n�x

μ(an+ b)f (n)

∣∣∣∣ �
∑

u�U

∣∣∣∣
∑

m�x,
am+b≡0[u2]

λ(am+ b)f (m)

∣∣∣∣+
X

U
.

The set {m/am+ b ≡ 0[u2]} is a finite union of arithmetic progressions modulo u2,
sayW, hence

∑

m�x,
am+b≡0[u2]

λ(am+ b)f (m) =
∑

0�w<u2,
w∈W

∑

k� ax+b−w
u2

λ(a(u2k + w)+ b)f (u2k + w).
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Our hypothesis applies to the inner sum. The remainder of the proof is mechanical.
First note that X � (a+ b)x. Let ε > 0 be fixed. We select

U =
[

2

(a+ b)ε

]
+ 1 � 3

(a+ b)ε
.

There exists y0(a, b, ε) such that, for every u � U, every w ∈ W and every y �
y0(a, b, ε), one has

∣∣∣
∑

n�y

f (a2n)
∣∣∣ � 1

6ε
2y.

We thus assume that x � y0(a, b, ε)/(a+ b) and get, for such an x that

∣∣∣
∑

n�x

μ(an+ b)f (n)
∣∣∣ � x

(
1

6

3

ε
ε2 + ε

2

)
� εx

(where we have bounded above |W| by u2) as required.

Lemma 16.10 Let ( f (n))n be a sequence sur that | f (n)| � 1, let a and b be fixed
and, assume that, for every u and w, one has

∑

n�y

f (u2n+ w) = ou,w( y). (16.3)

Then
∑

n�x μ
2(an+ b)f (n) = o(x).

Proof We use the identity

μ2(n) =
∑

d2|n
μ(d).

After this initial step, the proof runs as the one of Lemma 16.9.

Lemma 16.11 Let ( f (n))n be a sequence sur that | f (n)| � 1, let a and b be fixed
and, assume that, for every u and c such that cu2 ≡ b[a], one has

∑

n�y

μ(an+ c)f
(

u2n+ cu2 − b

a

)
= ou,w( y). (16.4)

Then
∑

n�x λ(an+ b)f (n) = o(x).
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Proof We readily check on the Dirichlet series that

λ(m) =
∑

u2v=m

μ(v) (16.5)

We infer from this identity that, for any positive integer U, one has

∑

n�x

λ(an+ b)f (n) =
∑

m�ax+b

λ(m)f
(m− b

a

)
1m≡b[a]

=
∑

u�√ax+b

∑

v�(ax+b)/u2

μ(v)f
(u2v − b

a

)
1u2v≡b[a]

=
∑

u�U

∑

v�(ax+b)/u2

μ(v)f
(u2v − b

a

)
1u2v≡b[a] + O∗(X/U)

again with X = ax + b. Once u is fixed, the set {v/u2v ≡ b[a]} is a finite union of
arithmetic progressions modulo a, sayW, hence

∑

v�(ax+b)/u2

μ(v)f
(u2v − b

a

)
1u2v≡b[a] =

∑

0�v0<a,
v0∈W

∑

k� ax+b
au2 − v0

a

μ(ak+v0)f
(

u2k+u2v0 − b

a

)
.

Our hypothesis applies to the inner sum. The remainder of the proof is mechanical.

16.3 Proof of the Theorem 16.8

Proof To prove that Conjecture 16.2 implies Conjecture 16.4, we prove that,
assuming Conjecture 16.2 and following its notation and hypotheses, we have (with
the shortcut ai0 = a and bi0 = b)

∑

n�x

μ(an+ b)
∏

i∈I′
μ(ain+ bi)

∏

i∈I′′\{ i0}
λ(ain+ bi) = o(x)

assuming that

∑

n�x

λ(an+ b)
∏

i∈I′
μ(Ain+ Bi)

∏

i∈I′′\{ i0}
λ(Ain+ Bi) = o(x)

where none of the vectors (Ai,Bi) and (a, b) are colinear. We use a recursion on the
cardinality of I′ to do so. Lemma 16.9 is tailored for this purpose, the only part that
needs checking is that no two vectors of new set of parameters (au2, aw + b) and
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(aiu2, aiw+ bi) are colinear, which is immediate:

∣∣∣∣
au2 aiu2

aw+ b aiw+ bi

∣∣∣∣ = au2(aiw+ bi)− aiu
2(aw+ b) = u2

∣∣∣∣
a ai

b bi

∣∣∣∣ = 0.

The same proof shows that Conjecture 16.3 implies Conjecture 16.5: we simply
have to note that the required coefficients a and ai’s remain the same.

The same proof again shows that Conjecture 16.4 implies Conjecture 16.6, we
simply have to replace λ by 1, and Lemma 16.9 by Lemma 16.10, in its proof and
similarly that Conjecture 16.5 implies Conjecture 16.7.

Let us finally turn towards the proof that Conjecture 16.4 implies Conjec-
ture 16.2, a task for which we will use Lemma 16.11. We aim at proving that (again
with the shortcut ai0 = a and bi0 = b)

∑

n�x

λ(an+ b)
∏

i∈I′
λ(ain+ bi)

∏

i∈I′′\{ i0}
μ(ain+ bi) = o(x)

assuming that

∑

n�x

μ(an+ b)
∏

i∈I′
λ(Ain+ Bi)

∏

i∈I′′\{ i0}
μ(Ain+ Bi) = o(x)

where none of the vectors (Ai,Bi) and (a, b) are colinear. We use a recursion on
the cardinality of I′ to do so. The only part that needs checking is the hypothesis
in Lemma 16.11, namely that no two vectors of new set of parameters (a, c) and

(aiu2, ai
cu2−b

a + bi) are colinear, which is immediate:

∣∣∣∣∣
a aiu2

c ai
cu2−b

a + bi

∣∣∣∣∣ = a
(

ai
cu2 − b

a
+ bi

)
− aiu

2c =
∣∣∣∣
a ai

b bi

∣∣∣∣ = 0.

This concludes the proof of our Theorem.
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Part III
Selected Topics in Dynamics



Chapter 17
Weak Mixing for Infinite Measure
Invertible Transformations

Terrence Adams and Cesar E. Silva

17.1 Historical Perspective

Ergodic theory is a relatively modern branch of mathematics that studies statistical
properties of time-varying systems. The term “ergodic” was coined by Ludwig
Boltzmann while doing foundational work in statistical mechanics. The field
of ergodic theory continues to see applications in areas as diverse as billiard
dynamics, geodesic flows, smooth dynamics, group actions, combinatorial number
theory and operator theory. At its core, ergodic theory focuses on properties of a
single invertible transformation T that preserves an invariant measure μ. Statistical
analysis for the transformation T entails a study of ergodic components (i.e., sets of
positive measure X such that μ(TX \ X) = 0). The case where X has finite measure,
or equivalently can be scaled to a probability space, is the most tractable case,
and enjoys many significant advances. In particular, many problems studied today
from statistical learning theory can be modeled in the general setting of a process
f (x), f (Tx), f (T2x), . . . where T is an invertible measure-preserving transformation,
and f maps into a compact metric space.1

1While the area of smooth dynamics is an important area for ergodic theory, we will not impose
differentiability constraints in this survey. In practical terms, non-differentiable dynamical systems
are seeing rapid applications as recurrent neural networks with programmed non-differentiable
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The study of infinite measure-preserving transformations dates back to the early
days of ergodic theory, as one can see mentions of it in Hopf’s 1937 book [65],
where an example of a transformation, later called Krickeberg mixing [4, 72],
is constructed. Also, Hopf proved a ratio ergodic theorem for infinite measure-
preserving transformations, extending the Birkhoff ergodic theorem.

The weak mixing condition is a notion in ergodic theory that lies between
ergodicity and mixing. In the case of finite invariant measure, which is the main case
that has been traditionally considered in ergodic theory, weak mixing has several
equivalent formulations, many of which on a first look seem quite different; this is
one of the reasons why the weak mixing property has had many applications. We
know, since the work of Kakutani and Parry in 1963 [68], that in infinite invariant
measure the situation is quite different and that many of these equivalences do not
hold.

In this article we survey several weak mixing-type notions and discuss their
equivalence, or counterexamples showing that they are different. We are mainly
concerned with measure-preserving integer actions (i.e., invertible transformations),
where we already can see different behavior in the finite and infinite cases; the
questions have been studied for nonsingular actions of more general groups and
we provide some references to that work. Our counterexamples are in the class of
rank-one transformations, so we first discuss this class in some detail.

17.2 Preliminary Definitions

We will let (X,B, μ) be a standard σ -finite measure space, i.e., (X,B) is Borel
isomorphic to the unit interval (or the real line) and μ is a σ -finite measure on
(X,B). Furthermore, we will assume μ is nonatomic, i.e., if μ(A) > 0 then there
exists a measurable set B ⊂ A such that 0 < μ(B) < μ(A). By an invertible
measurable transformation T on X we mean a map T : X → X such that A is
measurable if and only if T−1(A) is measurable, and there exists a measure zero set
N so that T : X \ N → X \ N is a bijection. It follows that for every measurable
set A and all n ∈ Z, the set TnA is measurable. All transformations will be assumed
to be invertible measurable transformations. A transformations T is nonsingular if
for all measurable sets A, μ(A) = 0 if and only if μ(TA) = 0, and it is measure-
preserving if or all measurable sets A, μ(A) = μ(TA). All transformations will be
assumed measure-preserving unless we explicitly say they are nonsingular; they are
finite measure-preserving when μ(X) <∞, in which case we will always assume
μ(X) = 1 and call them probability-preserving.

We say that transformation T is ergodic if whenever μ(A , TA) = 0 we have
that μ(A) = 0 or μ(Ac) = 0 (where Ac = X \ A), and is totally ergodic if

properties such as rectified linear units and max pooling. Also, neurological spiking is naturally
modeled as a discontinuous process.
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Tn is ergodic for all n ∈ Z \ {0}. A transformation T is conservative if for all
sets A of positive measure there exists n > 0 such that μ(TnA ∩ A) > 0. All
finite measure-preserving transformations are conservative, a fact equivalent to the
Poincaré recurrence theorem (see, e.g., [80, 87]), but there exist non-conservative
transformations in infinite measure; for example T(x) = x+ 1 on R with Lebesgue
measure is measure-preserving but not conservative. On the other hand, as our
measure is nonatomic, an ergodic invertible transformation is conservative. To see
this suppose that μ(A ∩ TnA) = 0 for all n = 0. There exists B such that
0 < μ(B) < μ(A). Then if we let B∗ = ∪n∈ZTnB, it follows that μ(B∗) > 0
and μ(B∗c) > 0, so T would not be ergodic, a contradiction. We also have that T is
ergodic if and only if for all sets A and B of positive measure, there exists n ∈ Z such
that μ(TnA ∩ B) > 0. Then T is conservative and ergodic if and only if for all sets
A and B of positive measure, there exists n ∈ Z, n > 0, such that μ(TnA ∩ B) > 0.

A transformation T is partially rigid if there exists a constant c > 0 such that
for all sets A of finite measure

lim supμ(TnA ∩ A) � cμ(A).

The transformation T is rigid if there exists an increasing sequence (ni) such that
limi→∞ μ(TniA,A) = 0 for all sets A of finite measure; this is equivalent to partial
rigidity with constant c = 1, see e.g., [23, 2.6].

Lemma 17.1 If a transformation T is partially rigid, with partial rigidity constant
c > 0, then for any n = 0, Tn is partially rigid with partial rigidity constant (at
least) cn. In particular, if T is rigid, then Tn is rigid.

Proof The case n = 2 illustrates the main idea. (Of course, when n = 0 we obtain
the identity, which is rigid.) Assume c > 0 is the partial rigidity constant for T. Let
A be a set of finite measure. We know there is an increasing sequence (ni) such that,
for i > 0,

μ(TniA ∩ A) � cμ(A).

Write ni = 2ki + ri, where ri ∈ {0, 1}. If for infinitely may i we have that ri = 0,
then μ(T2kiA ∩ A) � cμ(A) and we are done. If for infinitely may i we have that
ri = 1, then there is a (say first) integer k1 such that μ(T2k1+1A ∩ A) � cμ(A).
Then using the partial rigidity of T with the set T2k1+1A ∩ A, we have that there is
an infinite sequence (2mi + qi), qi ∈ {0, 1}, such that

μ(T2mi+qiA ∩ T2k1+1A ∩ A) � cμ(T2k1+1A ∩ A) � c2μ(A).

If for infinitely many i we have that qi = 0, then μ(T2miA ∩ A) � c2μ(A), and we
are done. If for infinitely many i we have that qi = 1, then

μ(T2mi+1A ∩ T2k1+1A) � c2μ(A),

so μ(T2(mi−k1)A ∩ A) � c2μ(A), completing the proof.
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A similar argument can be used to give a proof of the result of Halmos [63] that
if T is conservative then Tn is conservative for all n ∈ Z.

When (X,B, μ) is a probability space we let G1 be the group of invertible
measure-preserving transformations on (X,B, μ) (where transformations are iden-
tified if they differ on a null set), and when (X,B, μ) is an infinite, σ -finite measure
space, we let G∞ be the group of invertible measure-preserving transformations on
(X,B, μ). Then G1 and G∞ can be endowed with a complete separable metric (see
[61, 64] for the probability case and [3, 86] for the infinite case). Under this metric
a sequence of transformations Tn converges to T if and only if

μ(TnA, TA)→ 0 for all finite measure A.

Also, under this topology, called the weak topology, the ergodic transformations
are generic, or typical, (i.e., residual in the group of invertible measure-preserving
transformations); this was shown by Halmos [61] in the finite case, and Sachdeva
[86] in the infinite case. These results were extended to the nonsingular case in [27].
Genericity of the rigid transformations in the finite case is well known, see e.g.,
[23]; the infinite case is in [17].

17.3 Mixing Properties for Probability-Preserving
Transformations

A probability-preserving transformation T is strong mixing2 if for all measurable
sets A and B,

lim
n→∞μ(A ∩ TnB) = μ(A)μ(B).

Probably the best known mixing transformations are Bernoulli shifts. Projection
onto a single coordinate produces an independent identically distributed (i.i.d.)
process. These are arguably the oldest studied mixing processes, dating back to “I
Ching” (1150 B.C.) in terms of coin flips, and again to Cardano, Pascal, Fermat and
Huygens for dice rolling.

However, zero entropy mixing transformations were not known until Ornstein
constructed a rank-one mixing transformation using random spacers [78]. An
explicit rank one transformation known as the staircase transformation, was con-
jectured by Smorodinsky to be mixing, and shown in [11] to be strong mixing.

While strong mixing has been observed for centuries, there is a sense in which
it is not typical: the collection of strong mixing transformations is meager in this
collection, see e.g., [82]. However, if the property of strong mixing is weakened

2Strong mixing is often referred to as mixing.
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to the following characterization, then this property is typical [62, 64]: for all
measurable sets A,B,

lim
n→∞

1

n

n−1∑

i=0

|μ(A ∩ TiB)− μ(A)μ(B)| = 0. (17.1)

This is known as weak mixing.
Another characterization of strong mixing uses the Koopman operator. Let

< ·, · > denote the inner product in L2(X, μ) given by < f , g >= ∫ f ḡ dμ. Then T
is strong mixing if and only if for all f , g in L2(X, μ)

lim
n→∞ < Unf , g >=< f , 1 >< g, 1 > .

This can be shown equivalent to the fact that Unf converges weakly to 0 for all f in
the orthogonal complement of the constants, C⊥, see e.g., [80].

17.3.1 Mixing Property Potpourri

Many other weaker variants of strong mixing were introduced during the study
of probability-preserving transformations. These include topological mixing, mild
mixing, light mixing and partial mixing. We will not go into details on these
properties, but provide definitions below, and point out the relationship among these
properties.

A transformation T is topologically mixing, if given open sets U and V , there
exists N ∈ N such that for n � N,

μ(U ∩ TnV) > 0. (17.2)

A transformation T is lightly mixing if given sets A and B of positive measure,

lim inf
n→∞ μ(A ∩ TnB) > 0. (17.3)

Given open sets have positive measure, then light mixing implies topological
mixing. A transformation T is partially mixing if there exists α > 0 such that
for all sets A and B of positive measure,

lim inf
n→∞ μ(A ∩ TnB) � αμ(A)μ(B). (17.4)

Clearly, strong mixing implies partial mixing, and partial mixing implies light
mixing, but one can have a countable product of partially mixing transformations
that is not partially mixing but is lightly mixing [69]. Partial mixing does not imply
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strong mixing [49]. A transformation T is mildly mixing if for every set A of
positive measure,

lim inf
n→∞ μ(Ac ∩ TnA) > 0. (17.5)

Note Ac = X\A is the complement of A. So light mixing implies mild mixing, but the
classic Chacón transformation [46] is mildly mixing but not lightly mixing [48] (but
the two-subintervals at each stage Chacón transformation is lightly mixing [48]).
Mild mixing implies weak mixing, but there are weakly mixing transformations that
are not mildly mixing [51]. Furthermore, a probability-preserving transformation
T is mildly mixing if and only if for all ergodic infinite measure-preserving
transformations S, the transformation T × S is ergodic.

17.3.2 Weak Mixing Equivalences

In the probability-preserving scenario, there are several well known conditions that
are equivalent to the weak mixing formulation given in (17.1). We now state those
conditions, noting that they can be stated both when T is probability-preserving, or
infinite measure-preserving. We remark, though, that while here we are interested
in infinite measure-preserving transformations, these conditions can also be stated
in the nonsingular case, and for actions of more general groups.

(WM) A transformation T is said to be weakly mixing if for all ergodic finite
measure-preserving transformations S, the product transformation T × S
is ergodic.

(DE) A transformation T is said to be doubly ergodic, or Cartesian square
ergodic, if the product transformation T × T is ergodic.

(SWM) A transformation T is said to be spectrally weak mixing, if for all f ∈
L∞, whenever f ◦ T = zf , for some z ∈ C, then f is constant a.e.

(WDE) A transformation T is weakly doubly ergodic if for all sets A,B of
positive measure there exists an integer n > 0 such that μ(TnA ∩ A) > 0
and μ(TnA ∩ B) > 0.

(EIC) A transformation T is ergodic with isometric coefficients, or EIC, if
whenever φ : X → Z is a factor map where Z is a metric space and the
factor transformation is an isometry for the metric, then φ is constant,
where the factor map is considered in the nonsingular sense.

(EUC) A transformation T is ergodic with unitary coefficients, or EUC, if
whenever φ : X → H is a factor map where H is a separable Hilbert space
and the factor transformation is a unitary operator, then φ is constant,
where the factor map is considered in the nonsingular sense.

(k-EI) A transformation is said to have ergodic index k, for some positive
integer k, if the k-fold Cartesian product of T with itself, denoted by T(k),
is ergodic but the k + 1-fold product is not.
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(IEI) T(k) is ergodic for all k > 0; such a transformation is said to be of infinite
ergodic index.

(PWM) A transformation T is power weakly mixing if for all nonzero
k1, . . . , kk, the transformation Tk1 × · · · × Tkr is ergodic.

Here we discuss the equivalence of these notions only in the probability-
preserving case. The infinite measure-preserving case, as well as additional defini-
tions, are discussed in Sect. 17.6. The equivalence of condition (17.1) with WM and
SWM is standard and can be found in e.g., [64, 80]. WM clearly implies DE as one
can take S = T, and thus it also implies IEI and PWM. It is clear that DE implies
SWM; the converse usually uses the Spectral Theorem, [80]. The equivalence of
WM with WDE is in [50], though the WDE property is not given a name. EIC
and EUC are in [41], and discussed in [53], and references therein, for nonsingular
actions of more general groups. For other equivalences in the probability-preserving
case, and other group actions, see [22].

17.4 The Terrain of Infinite Rank-One

We describe an important class of transformations that has been used as a source
of examples and counterexamples. There are many equivalent definitions of this
notion and we refer the reader to [45] for a survey of rank-one transformations
in finite measure. Here we will mainly be concerned with infinite measure rank-
one transformations. As before, (X,B, μ) will be a standard nonatomic, σ -finite
measure space. The reader could think of X as the unit interval or the positive real
line, and μ Lebesgue measure.

Many of the examples in this survey are rank-one transformations. We start with
the abstract definition, which is similar to the finite case. We use the notion of a
column, or Rohlin column, or Rohlin tower, which consists of a finite sequence
disjoint measurable sets B,T(B), . . . ,Th−1(B) of the same measure; here h is said
to be the height of the column. We say that T is rank-one if there exists a sequence
of columns Cn = {Bn, . . . , Thn−1(Bn)} such that for any measurable set A ⊂ X of
finite measure and ε > 0, there exists an integer N such that for all n � N, we have
that

μ(A,Cn(A)) < ε,

where Cn(A) is a union of levels of Cn with minimal μ(A,Cn(A)). It can be shown
that we can assume the base of {Cn} is a union of elements of Cn+1 and Bn+1 ⊂ Bn;
see [20, Lemma 9] for finite measure, and [25] for a verification that essentially
the same proof works in infinite measure. Under the weak topology, the infinite
measure-preserving rank-one transformations are generic [25].

There is also a constructive definition of rank-one transformations; see [25] for
the infinite measure case. A column in this case consists of a finite sequence of
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intervals of the same length, sometimes also called levels, that we usually take left-
closed and right-open; its height is the number of intervals in the column. A column
C defines a column map TC so that each interval is sent to the interval right above
it by translation; so TC is defined on every interval of the column except the top.
It is clear that on the intervals where it is defined, TC is measurable and measure-
preserving with respect to Lebesgue measure. To specify a rank-one construction
we are given a sequence of positive integers (rn)n�0, rn � 2, and a doubly indexed
sequence of nonnegative integers (sn,i), n � 0, i = 0, . . . , rn − 1. We start with
column C0 consisting of a single finite interval, so its height is h0 = 1. In all
of our infinite measure-preserving constructions we will take C0 = {[0, 1)}. For
the inductive step, suppose we are given column Cn of height hn. Then cut each
interval of column Cn into rn subintervals of equal length to obtain rn subcolums of
equal measure. For each i = 0, . . . , rn − 1, place sn,i new intervals, called spacers,
above the ith subcolumn. Then Cn+1 is constructed by stacking each subcolumn,
right over left, with its associated spacers under the next subcolumn. The example
below shows this in more detail. Thus Cn+1 will consist of rn copies of Cn possibly
separated by spacers. From the construction is it clear that TCn+1 agrees with TCn

wherever TCn is defined. We let X be the union of the levels in the columns and
T(x) = limn→∞ TCn . The height of TCn+1 is given by

hn+1 = rnhn +
rn−1∑

i=0

sn,i.

As an example of an infinite measure-preserving rank-one construction we give
the Hajian-Kakutani transformation [59], an early example of a rank-one infinite
measure-preserving transformation; see also [40]. We start with a column C0
consisting of the unit interval [0, 1). For the inductive step, given a column Cn of
hn intervals or levels, of the same length, cut each interval in half to obtain two
subcolumns Cn,0 and Cn,1. Create a new column Sn consisting of 2hn new intervals,
each half the length of the intervals in Cn, so each of the same length as the intervals
in Cn,0 and Cn,1. The intervals in Sn are chosen disjoint from the intervals in Cn.
To form column Cn+1 place Cn,1 on top of Cn,0, and Sn on top of Cn,1. So the top
interval in Cn,0 is sent to the bottom interval of Cn,1, and the top interval in Cn,1
is sent to the bottom interval of Sn. In this case rn = 2 and sn,0 = 0, sn,1 = 2hn

for all n � 0. It follows that hn+1 = 4hn. Figure 17.1 illustrates this step of the
construction. The resulting transformation T is defined on [0,∞).

All rank-one transformations invertible measure-preserving, and ergodic; for the
finite case see [45] for this and other properties, and for the infinite case see [88],
and where other examples can also be found. It follows that the Hajian-Kakutani
transformation is ergodic and infinite measure-preserving (it is conservative as well
since it is invertible). If one takes a set E consisting of the even levels of every
column, we find a set that is invariant for T2, so T2 is not ergodic, so the Hajian-
Kakutani transformation is not totally ergodic.
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Fig. 17.1 Construction of the
Hajian-Kakutani transformation

Cn → Cn+1 Cn+1

17.5 Swimming in Infinite Measure

17.5.1 Weakly Wandering Sets and Obstacles to Strong Mixing

We state a special case of the ergodic theorem, which is all that we need, see e.g.,
[80, 87].

Theorem 17.2 (Birkhoff Ergodic Theorem–Infinite Measure Case) Let
(X,B, μ) be a σ -finite measure space with μ(X) = ∞ and let T : X → X be
an ergodic measure-preserving transformation. If A is a measurable set of finite
measure, then there exists a null set N so that for all x ∈ X \ N,

lim
n→∞

1

n

n−1∑

i=0

IA(T
ix) = 0.

Then we have the following interesting consequence.

Corollary 17.3 Let (X,B, μ) be a σ -finite infinite measure space and T : X → X
be an ergodic measure-preserving transformation. If A,B are measurable sets of
finite measure, then

lim
n→∞

1

n

n−1∑

i=0

μ(TiA ∩ B) = 0. (17.6)

Proof By Theorem 17.2, there exists a null set N ⊂ X so that for all x outside N,

lim
n→∞

1

n

n−1∑

i=0

IB(T
ix) = 0.
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After multiplying both sides by IA and integrating, the reader can verify that we
obtain

lim
n→∞

1

n

n−1∑

i=0

μ(T−iB ∩ A) = 0,

which is equivalent to (17.6).

It follows from (17.6) that there exists a sequence (nk) so that

lim
k→∞μ(Tnk A ∩ B) = 0.

A consequence is that the standard definition of mixing behavior does not extend to
infinite measure. Also, an ergodic infinite measure-preserving transformation cannot
satisfy the light mixing condition in (17.3). We will, instead, explore conditions
related to the weak mixing notion. As our measure spaces have a countable subset
that approximates the measurable sets, one can in fact choose the sequence to work
for all finite measure sets A,B.

Some authors have looked for conditions that hold in infinite measure and
resemble mixing properties in finite measure. One such condition is already
suggested by our discussion and is called Koopman mixing, and was investigated
further by Krengel and Sucheston [71] and is mentioned below. Another condition
was considered by Friedman [47], but because of the existence of weakly wandering
sets, that condition is required to hold only for a dense family of sets, as it cannot
hold for all measurable sets. Both of these conditions do not imply ergodicity, for
example. A different definition has been proposed in [73].

Another important consequence of (17.6) is the following. For any set A of finite
positive measure, one can further choose a strictly increasing sequence (ni), n0 = 0,
so that for 0 � j < i,

μ(Tni−njA ∩ A) <
μ(A)

2i+j+2 .

It follows that if we set

W = A \
⋃

i =j

(TniA ∩ TnjA),

then

μ(W) > 0 and TniW ∩ TnjW = ∅, for i = j.

Such a set W is called a weakly wandering set of positive measure, and they
were proved to exist for every ergodic infinite measure-preserving transformation
by Hajian and Kakutani [58]. The existence of weakly wandering sets of positive
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measure causes some obstructions when trying to generalize notions from the finite
to the infinite case. See [44] for a discussion of extensions and related properties.

In the non-invertible case there are some notions, such as complete mixing, that
do not hold for invertible transformations and the reader is referred to [3].

The notion of rank-one has been extended to other group actions; see [32]
and references therein. Also, while the infinite measure-preserving case is already
significantly different from the finite case, many of the properties we consider have
been studied in the nonsingular case, and for actions of more general groups; the
reader may refer to [30, 32, 37, 53, 54].

17.6 The Many Islands of Weak Mixing Notions

From now on we only consider invertible infinite measure-preserving transforma-
tions.

17.6.1 Conditions Weaker then Cartesian Square Ergodic

17.6.1.1 Weak Mixing and Spectral Weak Mixing

The equivalence of WM and SWM was proved in [9] (see below). WM transforma-
tions that are not DE were first constructed in [9] using Markov shifts; rank-one
examples were constructed in [16]. SWM is also equivalent to no nonzero T
invariant finite dimensional subspaces of L∞.

If T is SWM, then Tn, n = 0 is SMW [77]; so if T is WM, then it must be totally
ergodic. A totally ergodic infinite measure-preserving transformation that is not WM
can be obtained by taking T × R, where T is infinite measure-preserving WM and
R is a probability-preserving irrational rotation. Then nontrivial eigenvalues of R
give L∞ eigenvalues for T × R. As Tn, n = 0 is WM, so Tn × Rn is ergodic for all
n = 0. The Hajian-Kakutani transformation gives an example of an ergodic, as it
is rank-one, non-rigid, that is not totally ergodic, so not WM. A rank-one example
that is rigid and not totally ergodic, so not WM, can be obtained as follows. Let
rn = 2n, sn,0 = · · · = sn,rn−2 = 0 and sn,rn−1 = 2nhn; then the rigidity sequence is
(hn) and T2 is not ergodic.

If z satisfies f ◦T = zf for some nonnull f ∈ L∞ we say it is an L∞ eigenvalue of
T and denote by e(T) the set of all L∞ eigenvalues of T. This set is a multiplicative
Borel subgroup of the unit circle that has Lebesgue measure zero but can be
uncountable, see e.g. [3]. The following theorem is very useful in understanding
the SWM property; the analogue for probability-preserving transformations is well
known, [83].
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Theorem 17.4 (Keane, See [3]) Let T be a conservative, ergodic infinite measure-
preserving transformation and let S be an ergodic probability-preserving transfor-
mation. Then T × S is ergodic if and only if σ0(e(T)) = 0, where σ0 is the reduced
maximal spectral type of S.

A direct consequence is the following equivalence in infinite measure, first shown
in [9].

Corollary 17.5 T is WM if and only if it is SWM.

The equivalence of WM with EUC is in [53].

17.6.1.2 Weakly Doubly Ergodic

The WDE property implies higher version of it as the following lemma shows.

Lemma 17.6 ([24]) If T is weakly doubly ergodic, then for all sets Ai,Bi, i =
1, . . . , k of positive measure, there exists an integer n > 0 such that μ(TnAi∩Ai) >

0 and μ(TnAi ∩ Bi) > 0 for all i ∈ {1, . . . , k}.
If T is WDE, then so is Tk for all k = 0 [24]. If T × T is ergodic it is easy

to see that T is WDE, and if T is WDE, then T is WM [24]. The WDE property
for infinite measure (and nonsingular transformations) was defined in [24], where
it was called doubly ergodic. We have already mentioned that this property, in the
probability-preserving case and without a specific name, already appeared in [50],
where it was shown equivalent to weak mixing. The property of having T×T ergodic
has also been called doubly ergodic (see [53]), so to differentiate it, the property of
[24] has been called weak doubly ergodic since [74]. A topological version of weak
doubly ergodic was considered in [81]. A version of weak doubly ergodic for pairs
of nonsingular transformations was considered in [42].

A modification of the Hajian-Kakutani transformation, called the HK+1 trans-
formation, was constructed and shown to be SWM in [16]; it is clearly partially
rigid, so it has infinite conservative index, but is it not WDE as shown in [24]. The
construction of this transformation is similar to the Hajian-Kakutani transformation,
except that at the nth stage the column of spacers Sn is chosen of height 2hn + 1
instead of height 2hn. A rigid SWM transformation that is not WDE is constructed
in [21].

Infinite staircase transformations that are WDE but with T × T not conservative,
hence not ergodic, are constructed in [24]. In [74], WDE rigid transformations (so
with T × T conservative) but not DE are constructed. Weak double ergodicity for
powers is studied in [56].
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17.6.1.3 Ergodic with Isometric Coefficients

In the definition of EIC, the metric space can be assumed to be separable [53]. In
[53], it is shown that EIC implies WM, and in [74] it is shown that WDE implies
EIC. We do not know about the converses of these implications. We already know
that WDE does not imply DE.

Thus far we have shown the following. For illustration purposes we write p -⇒
q when p implies q and we know the converse does not hold, and write p → q when
p implies q and the converse is open.

DE⇒WDE→ EIC→WM⇔ SWM⇔ EUC⇒ TE⇒ E

17.6.2 Conditions Stronger than Cartesian Square Ergodic

17.6.2.1 Ergodic Index k

The fact that weak mixing conditions in infinite measure are different from the
analogue conditions in finite measure was first shown by Kakutani and Parry [68]
when they constructed infinite measure-preserving transformations T such that T×T
is ergodic but T × T × T is not conservative, hence not ergodic. The examples of
Kakutani and Parry [68] were infinite measure-preserving Markov shifts. They also
constructed Markov shifts T such that T(k) is ergodic but T(k+1) is not conservative,
hence not ergodic, and such that T(k) is ergodic for all k > 0.

Rank-one transformations that are rigid and of ergodic index k, for each fixed
k ∈ N ∪ {∞}, were constructed in [14].

17.6.2.2 Infinite Ergodic Index

In [16], an infinite version of the classic Chacón transformation is constructed, and
now called the infinite Chacón transformation; it is a rank-one construction that has
rn = 3 and sn,0 = 0, sn,1 = 1, sn,2 = 3hn + 1 (the classic Chacón transformation is
probability-preserving and has rn = 3 and sn,0 = 0, sn,1 = 1, sn,2 = 0).

The infinite Chacón transformation has IEI and is partially rigid [16]. A transfor-
mation T is said to be of infinite conservative index, ICI, if T(k) is conservative for
all k, similarly one defines conservative index k. If T is partially rigid, in particular
if it is rigid, then it has infinite conservative index [16]. Clearly, IEI implies ICI.
More generally, a transformation of positive type has infinite conservative index [7].
It is clear that a partially rigid transformation is of positive type.

In [56], it is shown that the infinite Chacón transformation is not PWM, and not
multiply recurrent (see definition below), so it cannot be rigid; another proof that it
is not rigid is given in [21], where there is also an example of a rigid transformation
that is WM but not WDE.
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17.6.2.3 Power Weakly Mixing

A rank-one transformation that is power weakly mixing was constructed in [38]; it
is partially rigid, so not Koopman mixing (see definition below). In [13], the authors
constructed a rank-one transformation T that has infinite ergodic index but such
that T × T2 is not conservative, hence not ergodic. Thus IEI does not imply PWM.
Bergelson asked if there exists a transformation that has IEI but such that T × T−1

is not ergodic. In [28], a rank-one transformation T is constructed such that T ×
T is ergodic but T × T−1 is not ergodic, but Bergelson’s question remains open,
see also [33]. It is also shown in [28] that when T is rank-one, the product T ×
T−1 is always conservative. There exist rank-one transformations such that T × T
is not conservative [16]; and there exist Markov shifts such that T × T−1 is not
conservative [28, 33]. A transformation is power product conservative, PPC, if
all finite Cartesian products of all its powers are conservative. The infinite Chacón
transformation is not PPC [56]. There exist transformations that are IEI and PPC but
not PWM [31].

17.6.2.4 R-set Weak Mixing

T is R-set weak mixing, R-sWM, if for some nonempty R ⊂ Q ∩ (0, 1), Tp × Tq

is ergodic if and only if p/q ∈ R. It is shown in [14], that R-set WM implies WM,
and that if R1 ⊂ R2 ⊂ Q ∩ (0, 1), then there exists an infinite Lebesgue measure-
preserving transformation T such that Tp × Tq is conservative ergodic for p

q ∈ R1,

Tp × Tq is conservative, but not ergodic for p
q ∈ R2 \ R1, and Tp × Tq is not

conservative for p
q ∈ Q

1
0 \R2. This definition can be applied to transformations such

that T × T is ergodic. For non-rational directions see [34].
We have the following implications, with the same convention as above.

PWM ⇒∞-EI⇒ k+ 1-EI⇒ k-EI⇒ DE

17.6.3 Conditions Independent of Cartesian Square Ergodic

17.6.3.1 Koopman Mixing

A transformation T is Koopman mixing if Un( f ) → 0 weakly for all f in L2 that
are orthogonal to the constants. As we have mentioned, in the probability-preserving
case this is equivalent to strong mixing, [80]. This condition is a spectral property;
we note that Parry [79] showed that in infinite measure, ergodicity is not a spectral
property, while it is known to be a spectral property in finite measure [80].
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In the infinite measure-preserving case, as the only constant in L2 is 0, Koopman
mixing is equivalent to

lim
n→∞μ(TnA ∩ B) = 0, (17.7)

for all A,B of finite measure.
Condition (17.7) is equivalent to

lim
n→∞μ(TnA ∩ A) = 0, (17.8)

for all A of finite measure. (This follows by applying (17.8) to the set A∪B to obtain
(17.7).) Condition (17.8) was defined by Hajian and Kakutani and called zero type.
It was shown by Hajian and Kakutani, see [43], that if T is conservative, ergodic
then it is either of zero type (Koopman mixing), or it is of positive type:

lim supμ(TnA ∩ A) > 0

for all A of positive finite measure.
One could argue that Koopman mixing is a possible notion of mixing in infinite

measure, and in fact it is called mixing in [71], where it is also shown equivalent
to another condition that turns out to be mixing when interpreted in finite measure.
On the other hand, Koopman mixing does not even imply ergodic (just consider
two disjoint copies of a transformation that is Koopman mixing). It is clear from
the definition that if T is Koopman mixing, then for every S, the product T × S is
Koopman mixing. If T is partially rigid, it cannot be Koopman mixing, and there
are rigid, infinite ergodic index rank-one transformations [14]; in fact, rigid, PWM
and rank-one are generic [17, 25]. There are Koopman mixing, PWM rank-one
transformations [35]. If T is Koopman mixing and WM and R is a probability-
preserving irrational rotation, then T × R is ergodic and Koopman mixing but not
WM; rank-one examples are in [74]. The PWM example in [38] is partially rigid, so
not Koopman mixing.

17.6.3.2 K-automorphisms

A transformation T is a K-automorphism if there exists a σ -finite subsigma-algebra
F with T−1F ⊂ F and such that

⋂
n�0 T−nF = ∅ and

∨
n�0 TnF = B. Parry [79]

showed that if a K-automorphism is conservative, then it is ergodic, and that there
are dissipative K-automorphisms. A conservative K-automorphism is Koopman
mixing [71]. Examples of K-automorphisms are given by irreducible, recurrent
aperiodic Markov shifts [3]. A conservative K-automorphism is WM [3, 89], and
there are examples of K-automorphisms with nonergodic Cartesian square [68].
Rank-one transformations are not K-automorphisms as K-automorphisms have
positive Krengel entropy [70].
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17.6.3.3 Rational Weak Mixing

If T is infinite measure-preserving and ergodic, for all sets A,B of finite measure,
the ergodic theorem implies that

lim
n→∞

1

n

n−1∑

i=0

μ(TiA ∩ B) = 0,

thus the ergodic average does not give us quantitative information depending on the
measure of A and B.

A definition that gives a quantitative estimate for some classes of sets was
introduced by Aaronson in [1]. A transformation T is weak rationally ergodic, WRE
[1], if it is ergodic (and conservative) and there exists a distinguished set F of finite
positive measure, such that for all measurable A, B in F, we have

1

an(F)

n−1∑

i=0

μ(TiA ∩ B)→ μ(A)μ(B) (17.9)

where

an(F) =
n−1∑

i=0

μ(TiF ∩ F)

μ(F)
.

Note that when the measure of X is 1, letting F = X gives an(F) = n, and the limit
in (17.9) is the usual ergodic limit.

Many examples have been shown to be WRE, [3, 15]. In [29], it is shown
rank-one transformations with bounded cuts are boundedly rationally ergodic [2],
a condition that implies WRE. So for example the PWM transformation of
Sect. 17.6.2.3 is WRE. Extensions have appeared in [8, 25].

There is a notion of subsequence weak rational ergodicity. It was shown in
[25, 29] that rank-one transformations are subsequence weakly rationally ergodic.
A consequence of this was that a class of transformations called Maharam transfor-
mations are not rank-one.

More recently, a stronger version of weak rational ergodicity was defined by
Aaronson in [4]. A transformation T is rational weak mixing, RWM, if it is
conservative, ergodic and there exists a set of finite measure F, such that for all
A,B ⊂ F,

1

an(F)

n−1∑

i=0

|μ(TiA ∩ B)− μ(A)μ(B) · μ(TiF ∩ F)

μ(F)
| → 0.
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When T is probability-preserving, letting F = X one can check that this condition
is equivalent to weak mixing. If T is RWM, then it is WRE and WM [4]. Aaronson
asked if WRE and WM implies RWM; it was shown independently in [5] and [29]
that this is not the case. In [29], it was shown that RWM implies WDE. It would
be very interesting to know what condition is needed, in addition to WRE, to imply
RWM. It is open whether WRE and PWM imply RWM.

The notions of RWM and Koopman mixing are independent. That is, there exist
transformations that are rationally weakly mixing but not Koopman mixing, and
vice-versa [29]. All early examples of RWM transformations were of product form
with a Markov shift, until one was constructed in rank-one [29].

There are subsequence versions of RWM that we have not discussed [5], as well
as power versions of them [5, 12].

17.6.3.4 Multiple Recurrence

As is well known, in the mid 1970s Furstenberg used ergodic theory to give a new
proof of Szemerédi’s theorem on arithmetic progression, starting a fruitful area
of applications of ergodic theory to Ramsey theory. He did this by formulating a
correspondence that associates, to a set of positive upper density set in the positive
integers, a probability-preserving transformation, so that arithmetic progressions in
the number set can be related to a property on the measurable set that he called
multiple recurrence, see [50]. Multiple recurrence is a generalization of Poincaré
recurrence. A transformation T is said to be d-recurrent if for all sets A of positive
measure there exists a positive integer n so that

μ(A ∩ TnA ∩ T2nA ∩ · · · ∩ TdnA) > 0.

The transformation is multiply recurrent, or MR, if it is d-recurrent for all d.
Furstenberg then proved that all probability-preserving transformations are multiply
recurrent, and used this to obtain Szemeredi’s theorem, see [50]. It was natural to
then ask if multiple recurrence still holds in infinite measure. Eigen, Hajian and
Halverson showed that there exist infinite transformations that are not 2-recurrent,
see [44]. These transformations, however, are not WM. As is well-known, the proof
of multiple recurrence for weakly mixing transformations is different and easier than
the proof for the general case, so it is of interest to know what happens when one
assumes a property such as WM or PWM. In [7], Aaronson and Nakada showed
that for a Markov shift T, T is d-recurrent if and only if the d-fold Cartesian product
T(d) is conservative. In Gruher et al. [56], it was shown that in infinite measure, even
PWM does not imply multiple recurrence. Multiple recurrence in infinite measure
remains mysterious. Other examples are in [36]; in particular, while it is clear that
rigid implies MR, there are rigid that are not polynomially multiply recurrent [36].
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17.6.3.5 Measurable Sensitivity

Sensitive dependence on initial conditions is now a central notion in the standard
characterizations of chaos, [19, 39, 52, 57, 85]. It is a topological notion but it has
also been considered in a measurable context by several authors, see e.g., [10, 26,
66] for finite measure, and [67, 76] for the nonsingular case. Sensitive dependence
essentially says that every point of the space has another point arbitrarily close to
it such that at some future time the two points are significantly far apart. It needs a
metric to make the notion precise.

More precisely, a transformation T on a metric space (X, d) is said to exhibit
sensitive dependence with respect to d if there exists a number δ > 0 such that for
all ε > 0 and x ∈ X, there exists n ∈ N and y ∈ Bε(x) such that d(Tn(x),Tn(y)) > δ.

Given a measure space (X,B, μ), consider metrics d defined on X such that the
balls defined by the metric are measurable and have positive μ-measure.

It was shown in [67] that if (X,S(X), μ,T) is a WDE nonsingular transforma-
tion, then one has a measurable version of sensitive dependence for all such metrics
d: there exists a δ > 0 such that for a.e. x ∈ X and all ε > 0 there exists an n such
that

μ{ y ∈ Bε(x) : d(Tnx,Tny) > δ} > 0,

i.e., there is a set of positive measure of points close to x that are δ-apart at some
future time.

It does make a difference to require that sensitivity hold for all such metrics. For
example, while irrational rotations are far from chaotic in any reasonable definition
of chaos, they have a metric for which they are sensitive. In fact, it can be shown
every ergodic T has a (compatible) metric for which it is sensitive [60].

There is a stronger notion of sensitivity. That is, there exists δ > 0 such that for all
x ∈ X and all ε > 0 there exists N ∈ N such that for all integers n � N it is the case
that μ{ y ∈ Bε(x) : d(Tn(x),Tn(y)) > δ} > 0. When T is probability-preserving,
light mixing implies this stronger condition [67]; however it is interesting that in
infinite measure if T is ergodic, conservative, and infinite measure-preserving, then
there is a compatible metric d such there is a ball B(x, ε) of positive measure and
a sequence {nk} so that the diameter of Tnk B(x, ε) tends to 0, so points in this ball
cannot stay separated, [67].

Again this kind of strong measurable sensitivity can happen for a particular
measure, for example it is shown in [67] that the Hajian-Kakutani ergodic infinite
measure-preserving transformation, which is not even totally ergodic, admits a
metric with this strong version of sensitivity. On the other hand, it is not clear
if WM in infinite measure implies basic measurable sensitivity. Grigoriev et al.
showed in [55] that for conservative ergodic nonsingular transformations there is
a dichotomy so that a transformation is either measurably sensitive or is isomorphic
to a minimal uniformly rigid isometry. Various notions of sensitivity for dynamical
systems have been studied extensively and we end with a stronger notion studied in
[18]. In the standard definition there is no restriction on the time n when points have
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to be separated. A definition is introduced in [18] where one puts a quantitative,
asymptotic bound on the sensitive time, restricting the first sensitive time of a
point x to be at most asymptotically logarithmic in the measure of the ε-ball where
candidate points are chosen. It is shown that in the probability-preserving case this
is related to the entropy of the transformation, and it would be very interesting to
explore this further for infinite measure.

We end with some implications.

RWM →WDE, RWM � DE, RWM ⇒WRE and WM
PWM � MR

17.7 Open Questions

Several questions have been mentioned earlier, and there are some implications
whose converses remain open. In [9], the authors ask for a condition that implies
the following property for T: if whenever T × S is conservative (for a conservative,
ergodic S), then T × S is ergodic. Partial results are in [9, 89].

The following question is from [53] (see [6, 84] for related questions). Suppose
that T has no non-trivial factor, in the nonsingular sense, that has discrete spectrum
and is measure-preserving. Is it WM? The converse is clear.

Notions that have been proposed for mixing, such as Koopman mixing, do not
imply ergodic; in rank-one (which is ergodic), Koopman mixing does not imply
WM. It would be interesting to have a condition that implied PWM.

In finite measure, when T×T is ergodic, then T×T is WM. Is this true in infinite
measure? (By Aaronson et al. [9], if T×T×T is ergodic, then T×T is WM.) Other
questions related to ergodicity and conservative of products are in [33]; Question 1
from [33, Section 4] has been answered in [75].

Acknowledgements We would like to thank the referee and Isaac Loh for suggestions and
corrections.
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29. I. Dai, X. Garcia, T. Pădurariu, C.E. Silva, On rationally ergodic and rationally weakly mixing
rank-one transformations. Ergod. Theory Dyn. Syst. 35 (4), 1141–1164 (2015). https://doi.org/
10.1017/etds.2013.96

30. A.I. Danilenko, Funny rank-one weak mixing for nonsingular abelian actions. Israel J. Math.
121, 29–54 (2001). https://doi.org/10.1007/BF02802494

31. A.I. Danilenko, Infinite rank one actions and nonsingular Chacon transformations. Ill. J. Math.
48(3), 769–786 (2004)

32. A.I. Danilenko, (C, F)-Actions in Ergodic Theory. Geometry and Dynamics of Groups and
Spaces (Springer Science and Business Media, Berlin, 2008), pp. 325–351

33. A.I. Danilenko, Finite ergodic index and asymmetry for infinite measure preserving actions.
Proc. Am. Math. Soc. 144(6), 2521–2532 (2016). https://doi.org/10.1090/proc/12906

34. A.I. Danilenko, Directional recurrence and directional rigidity for infinite measure preserving
actions of nilpotent lattices. Ergod. Theory Dyn. Syst. 37 (6), 1841–1861 (2017). https://doi.
org/10.1017/etds.2015.127

35. A.I. Danilenko, V.V. Ryzhikov, Mixing constructions with infinite invariant measure and
spectral multiplicities. Ergod. Theory Dyn. Syst. 31 (3), 853–873 (2011). https://doi.org/10.
1017/S0143385710000052

36. A.I. Danilenko, C.E. Silva, Multiple and polynomial recurrence for abelian actions in
infinite measure. J. Lond. Math. Soc. (2) 69 (1), 183–200 (2004). https://doi.org/10.1112/
S0024610703004885

37. A.I. Danilenko, C.E. Silva, Ergodic Theory: Non-Singular Transformations (Springer,
New York, 2012)

38. S.L. Day, B.R. Grivna, E.P. McCartney, C.E. Silva, Power weakly mixing infinite transforma-
tions. New York J. Math. 5, 17–24 (1999) (electronic)

39. R.L. Devaney, An Introduction to Chaotic Dynamical Systems. Addison-Wesley Studies in
Nonlinearity, 2nd edn. (Addison-Wesley Publishing Company Advanced Book Program,
Redwood City, CA, 1989)
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Chapter 18
More on Tame Dynamical Systems

Eli Glasner and Michael Megrelishvili

18.1 Introduction

Tame dynamical systems were introduced by Köhler [51] in 1995 and their theory
developed during the last decade in a series of works by several authors (see e.g.
[23, 24, 27, 29, 41, 50, 67]). Recently, connections to other areas of mathematics like:
Banach spaces, circularly ordered systems, substitutions and tilings, quasicrystals,
cut and project schemes and even model theory and logic were established (see e.g.
[3, 11, 42] and the survey [32] for more details).

Recall that for any topological group G and any dynamical G-system X (defined
by a continuous homomorphism j : G → H(X) into the group of homeomorphisms
of the compact space X) the corresponding enveloping semigroup E(X) was defined
by Robert Ellis as the pointwise closure of the subgroup j(G) of H(X) in the
product space XX . E(X) is a compact right topological semigroup whose algebraic
and topological structure often reflects properties of (G,X) like almost periodicity
(AP), weak almost periodicity (WAP), distality, hereditary nonsensitivity (HNS)
and tameness, to mention a few. In the domain of symbolic dynamics WAP (and
even HNS) systems are necessarily countable, and in these classes minimal tame
subshifts are necessarily finite. In contrast there are many interesting symbolic (both
minimal and non-minimal) tame systems which are not HNS. Sturmian subshifts is
an important class of such systems.
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A metric dynamical G-system X is tame if and only if every element p ∈ E(X)

of the enveloping semigroup E(X) is a limit of a sequence of elements from G,
[27, 40], if and only if its enveloping semigroup E(X) has cardinality at most 2ℵ0

[27, 31]. For example, the enveloping semigroup of a Sturmian system has the form
E(X) = TT ∪ Z, the union of the “double-circle” TT and Z. Thus its cardinality is
2ℵ0 . Another interesting property of a Sturmian system X is that both X and E(X) are
circularly ordered dynamical systems. As it turns out all circularly ordered systems
are tame [34].

Another characterization of tameness of combinatorial nature, via the notion of
independence tuples, is due to Kerr and Li [50]. Finally, the metrizable tame systems
are exactly those systems which admit a representation on a separable Rosenthal
Banach space [29] (a Banach space is called Rosenthal if it does not contain an
isomorphic copy of l1). As a by-product of the latter characterization we were able
in [29] to show that, e.g. for a Sturmian system, the corresponding representation
must take place on a separable Rosenthal space V with a non-separable dual,
thereby proving the existence of such a Banach space. The question whether such
Banach spaces exist was a major open problem until the mid of 70s (the first
counterexamples were constructed independently by James, and Lindenstrauss and
Stegall). For a survey of Banach representation theory for dynamical systems we
refer the reader to [32].

In Sects. 18.2 and 18.3 we review and amplify some basic results concerning
tame systems, fragmentability, and independent families of functions. In Sect. 18.4
we provide a new characterization of tame symbolic dynamical systems, Theo-
rem 18.22, and a combinatorial characterization of tame subsets D ⊂ Z (i.e., subsets
D such that the associated subshift XD ⊂ {0, 1}Z is tame), Theorem 18.25. In
Sect. 18.5 we briefly review results relating tameness to independence and entropy.

In Sect. 18.6 we study coding functions that yield tame dynamical systems. A
closely related task is to produce invariant families of real valued functions which
do not contain independent infinite sequences (tame families). Theorem 18.38 gives
some useful sufficient conditions for the tameness of families. For instance, as a
corollary of this theorem, we show that if X is a compact metric equicontinuous G-
system and f : X → R is a bounded function with countably many discontinuities,
then fG is a tame family. We also describe some old and new interesting examples of
symbolic tame systems. E.g. in Theorem 18.44 we present a Sturmian-like extension
of a rotation on T

d whose enveloping semigroup has the form E(X) = Z∪(Td×F ),
where F is the collection of ordered orthonormal bases for Rd.

In Sect. 18.7 we consider dynamical properties which are related to order
preservation. If X is a compact space equipped with some kind of order �, then
subgroups of H+(X,�), the group of order preserving homeomorphisms of X,
often have some special properties. E.g. H+(T), the group of orientation preserving
homeomorphisms of the circle T, is Rosenthal representable, Theorem 18.55, and
we observe in Theorem 18.53 that it is Roelcke precompact. The recipe described
in Theorem 18.58 yields many tame coding functions for subgroups of H(T).
Considering Z

k or PSL2(R) as subgroups of H(T) we obtain in this way tame
Sturmian like Zk and PSL2(Z) dynamical systems.
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Every topological group G has a universal minimal system M(G), a universal
minimal tame system Mt(G), which is the largest tame G-factor of M(G), and also
a universal irreducible affine G-system IA(G). In the final Sect. 18.8 we discuss
some examples, where M(G) and IA(G) are tame. When M(G) is tame, so that
M(G) = Mt(G), we say that G is intrinsically tame. Of course every extremely
amenable group (i.e. a group with trivial M(G)) is intrinsically tame, and in
Theorem 18.63 we show that the Polish groups G = H+(T) as well as the groups
Aut (S(2)) and Aut (S(3)), of automorphisms of the circular directed graphs S(2)
and S(3) respectively, are all intrinsically tame (but have nontrivial M(G)). When
the universal system IA(G) is tame we say that the group G is convexly intrinsically
tame. Trivially every amenable group is convexly intrinsically tame, and every
intrinsically tame group is convexly intrinsically tame. We show here that the group
H+(T) is a nonamenable convexly intrinsically tame topological group. Also, every
semisimple Lie group G with finite center and no compact factors (e.g., SLn(R)) is
convexly intrinsically tame (but not intrinsically tame).1

18.2 Preliminaries

By a topological space we mean a Tychonoff (completely regular Hausdorff) space.
The closure operator in topological spaces will be denoted by cls . A function f :
X → Y is Baire class 1 function if the inverse image f−1(O) of every open set
O ⊂ Y is Fσ in X [46]. For a pair of topological spaces X and Y, C(X,Y) is the set
of continuous functions from X into Y. We denote by C(X) the Banach algebra of
bounded continuous real valued functions even when X is not necessarily compact.

All semigroups S are assumed to be monoids, i.e., semigroups with a neutral
element which will be denoted by e. A (left) action of S on a space X is a map
π : S× X → X such that π(e, x) = x and π(st, x) = π(s, π(t, x)) for every s, t ∈ S
and x ∈ X. We usually write simply sx for π(s, x).

An S-space is a topological space X equipped with a continuous action π : S ×
X → X of a topological semigroup S on the space X. A compact S-space X is called
a dynamical S-system and is denoted by (S,X). Note that in [29] and [31] we deal
with the more general case of separately continuous actions. We reserve the symbol
G for the case where S is a topological group. As usual, a continuous map α : X → Y
between two S-systems is called an S-map or a homomorphism when α(sx) = sα(x)
for every (s, x) ∈ S × X. For every function f : X → R and s ∈ S denote by fs the
composition f ◦ s̃. That is, ( fs)(x) := f (sx).

For every S-system X we have a monoid homomorphism j : S → C(X,X),
j(s) = s̃, where s̃ : X → X, x 	→ sx = π(s, x) is the s-translation (s ∈ S). The
action is said to be effective (topologically effective) if j is an injection (respectively,
a topological embedding).

1An earlier version of this work is posted on the Arxiv (arXiv:1405.2588).
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The enveloping semigroup E(S,X) (or just E(X)) for a compact S-system X is
defined as the pointwise closure cls ( j(S)) of S̃ = j(S) in XX . Then E(S,X) is a right
topological compact monoid; i.e. for each p ∈ E(X) right multiplication by p is a
continuous map.

By a cascade on a compact space X we mean a Z-action Z × X → X. When
dealing with cascades we usually write (T,X) instead of (Z,X), where T is the
s-translation X → X corresponding to s = 1 ∈ Z (0 acts as the identity).

18.2.1 Background on Fragmentability and Tame Families

The following definitions provide natural generalizations of the fragmentability
concept [43].

Definition 18.1 Let (X, τ ) be a topological space and (Y, μ) a uniform space.

1. [44, 54] X is (τ, μ)-fragmented by a (typically, not continuous) function
f : X → Y if for every nonempty subset A of X and every ε ∈ μ there exists
an open subset O of X such that O ∩ A is nonempty and the set f (O ∩ A) is ε-
small in Y. We also say in that case that the function f is fragmented. Notation:
f ∈ F (X,Y), whenever the uniformity μ is understood. If Y = R then we write
simply F (X).

2. [27] We say that a family of functions F = { f : (X, τ )→ (Y, μ)} is fragmented
if condition (1) holds simultaneously for all f ∈ F. That is, f (O ∩ A) is ε-small
for every f ∈ F.

3. [29] We say that F is an eventually fragmented family if every infinite subfamily
C ⊂ F contains an infinite fragmented subfamily K ⊂ C.

In Definition 18.1(1) when Y = X, f = idX and μ is a metric unifor-
mity, we retrieve the usual definition of fragmentability (more precisely, (τ, μ)-
fragmentability) in the sense of Jayne and Rogers [43]. Implicitly it already appears
in a paper of Namioka and Phelps [60].

Lemma 18.2 ([27, 29])

1. It is enough to check the conditions of Definition 18.1 only for ε ∈ γ from a
subbase γ of μ and for closed nonempty subsets A ⊂ X.

2. If f : (X, τ ) → (Y, μ) has a point of continuity property PCP (i.e., for every
closed nonempty A ⊂ X the restriction f|A : A → Y has a continuity point)
then it is fragmented. If (X, τ ) is hereditarily Baire (e.g., compact, or Polish) and
(Y, μ) is a pseudometrizable uniform space then f is fragmented if and only if f
has PCP. So, in particular, for compact X, the set F (X) is exactly B′r(X) in the
notation of [71].

3. If X is Polish and Y is a separable metric space then f : X → Y is fragmented iff
f is a Baire class 1 function (i.e., the inverse image of every open set is Fσ ).

4. Let (X, τ ) be a separable metrizable space and (Y, ρ) a pseudometric space.
Suppose that f : X → Y is a fragmented onto map. Then Y is separable.
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For other properties of fragmented maps and fragmented families we refer to
[27, 29, 33, 44, 48, 54, 55, 59]. Basic properties and applications of fragmentability
in topological dynamics can be found in [29, 32, 33].

18.2.2 Independent Sequences of Functions

Let { fn : X → R}n∈N be a uniformly bounded sequence of functions on a set X.
Following Rosenthal [68] we say that this sequence is an l1-sequence on X if there
exists a real constant a > 0 such that for all n ∈ N and choices of real scalars
c1, . . . , cn we have

a ·
n∑

i=1

|ci| � ||
n∑

i=1

cifi||∞.

A Banach space V is said to be Rosenthal if it does not contain an isomorphic
copy of l1, or equivalently, if V does not contain a sequence which is equivalent to
an l1-sequence.

A Banach space V is an Asplund space if the dual of every separable Banach
subspace is separable. Every Asplund space is Rosenthal and every reflexive space
is Asplund.

A sequence fn of real valued functions on a set X is said to be independent (see
[68, 71]) if there exist real numbers a < b such that

⋂

n∈P

f−1
n (−∞, a) ∩

⋂

n∈M

f−1
n (b,∞) = ∅

for all finite disjoint subsets P,M of N.

Definition 18.3 We say that a bounded family F of real valued (not necessarily,
continuous) functions on a set X is tame if F does not contain an independent
sequence.

Every bounded independent sequence is an l1-sequence [68]. The sequence of
projections on the Cantor cube

{πn : {0, 1}N → {0, 1}}n∈N
and the sequence of Rademacher functions

{rn : [0, 1] → R}n∈N, rn(x) := sgn(sin(2nπx))

both are independent (hence, nontame).
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The following useful theorem synthesizes some known results. It mainly is based
on results of Rosenthal and Talagrand. The equivalence of (1), (3) and (4) is a
part of [71, Theorem 14.1.7] For the case (1) ⇔ (2) note that every bounded
independent sequence { fn : X → R}n∈N is an l1-sequence (in the sup-norm), [68,
Prop. 4]. On the other hand, as the proof of [68, Theorem 1] shows, if { fn}n∈N
has no independent subsequence then it has a pointwise convergent subsequence.
Bounded pointwise-Cauchy sequences in C(X) (for compact X) are weak-Cauchy as
it follows by Lebesgue’s theorem. Now Rosenthal’s dichotomy theorem [68, Main
Theorem] asserts that { fn} has no l1-sequence. In [29, Sect. 4] we show why eventual
fragmentability of F can be included in this list (item (5)).

Theorem 18.4 Let X be a compact space and F ⊂ C(X) a bounded subset. The
following conditions are equivalent:

1. F does not contain an l1-sequence.
2. F is a tame family (does not contain an independent sequence).
3. Each sequence in F has a pointwise convergent subsequence in R

X.
4. The pointwise closure cls (F) of F in R

X consists of fragmented maps, that is,
cls (F) ⊂ F (X).

5. F is an eventually fragmented family.

Let X be a topological space and F ⊂ l∞(X) be a norm bounded family. Recall
that F has Grothendieck’s Double Limit Property (DLP) on X if for every sequence
{ fn} ⊂ F and every sequence {xm} ⊂ X the limits

lim
n

lim
m

fn(xm) and lim
m

lim
n

fn(xm)

are equal whenever they both exist.
The following examples are mostly reformulations of known results; the details

can be found in [29, 33, 57].

Example 18.5

1. A Banach space V is Rosenthal iff every bounded subset F ⊂ V is tame (as a
family of functions) on every bounded subset Y ⊂ V∗ of the dual space V∗, iff F
is eventually fragmented on Y.

2. A Banach space V is Asplund iff every bounded subset F ⊂ V is a fragmented
family of functions on every bounded subset Y ⊂ V∗.

3. A Banach space is reflexive iff every bounded subset F ⊂ V has DLP on every
bounded subset X ⊂ V∗.

4. ((DLP) ⇒ Tame) Let F be a bounded family of real valued (not necessarily
continuous) functions on a set X such that F has DLP. Then F is tame.

5. The family Homeo [0, 1], of all self homeomorphisms of [0, 1], is tame (but does
not have the DLP on [0, 1]).

6. Let X be a circularly (e.g., linearly) ordered set. Then any bounded family F of
real functions with bounded total variation is tame.
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Note that in (1)–(3) the converse statements are true; as it follows from results of
[33] every bounded tame (DLP) family F on X can be represented on a Rosenthal
(Asplund, reflexive) Banach space. Recall that a representation of F on a Banach
space V consists of a pair (ν, α) of bounded maps ν : F → V, α : X → V∗ (with
weak-star continuous α) such that

f (x) = 〈ν( f ), α(x)〉 ∀ f ∈ F, ∀ x ∈ X.

In other words, the following diagram commutes

18.2.3 More Properties of Fragmented Families

Here we discuss a general principle: the fragmentability of a family of continuous
maps defined on a compact space is “countably-determined”.The following theorem
is inspired by results of Namioka and can be deduced, after some reformulations,
from [59, Theorems 3.4 and 3.6]. See also [9, Theorem 2.1].

Theorem 18.6 Let F = { fi : X → Y}i∈I be a bounded family of continuous maps
from a compact (not necessarily metrizable) space (X, τ ) into a pseudometric space
(Y, d). The following conditions are equivalent:

1. F is a fragmented family of functions on X.
2. Every countable subfamily K of F is fragmented.
3. For every countable subfamily K of F the pseudometric space (X, ρK,d) is

separable, where ρK,d(x1, x2) := supf∈K d( f (x1), f (x2)).

Proof (1)⇒ (2) is trivial.
(2)⇒ (3): Let K be a countable subfamily of F. Consider the natural map

π : X → YK, π(x)( f ) := f (x).

By (2), K is a fragmented family. This means (see [27, Def. 6.8]) that the map π

is (τ, μK)-fragmented, where μK is the uniformity of d-uniform convergence on
YK := { f : K → (Y, d)}. Then the map π is also (τ, dK)-fragmented, where dK is
the pseudometric on YK defined by

dK(z1, z2) := sup
f∈K

d(z1( f ), z2( f )).
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Since d is bounded, dK(z1, z2) is finite and dK is well-defined. Denote by (XK, τp)

the subspace π(X) ⊂ YK in pointwise topology. Since K ⊂ C(X), the induced map
π0 : X → XK is a continuous map onto the compact space (XK, τp). Denote by
i : (XK, τp) → (YK, dK) the inclusion map. So, π = i ◦ π0, where the map π is
(τ, dK)-fragmented. This easily implies (see [29, Lemma 2.3.5]) that i is (τp, dK)-
fragmented. It immediately follows that the identity map id : (XK, τp)→ (XK, dK)

is (τp, dK)-fragmented.
Since K is countable, (XK, τp) ⊂ YK is metrizable. Therefore, (XK, τp) is second

countable (being a metrizable compactum). Now, since dK is a pseudometric on YK ,
and id : (XK, τp)→ (XK, dK) is (τp, dK)-fragmented, we can apply Lemma 18.2(4).
It directly implies that the set XK is a separable subset of (YK , dK). This means that
(X, ρK,d) is separable.

(3) ⇒ (1) : Suppose that F is not fragmented. Thus, there exists a non-empty
closed subset A ⊂ X and an ε > 0 such that for each non-empty open subset O ⊂ X
with O ∩ A = ∅ there is some f ∈ F such that f (O ∩ A) is not ε-small in (Y, d). Let
V1 be an arbitrary non-empty relatively open subset in A. There are a, b ∈ V1 and
f1 ∈ F such that d( f1(a), f1(b)) > ε. Since f1 is continuous we can choose relatively
open subsets V2,V3 in A with cls (V2 ∪ V3) ⊂ V1 such that d( f1(x), f1(y)) > ε for
every (x, y) ∈ V2 × V3.

By induction we can construct a sequence {Vn}n∈N of non-empty relatively open
subsets in A and a sequence K := { fn}n∈N in F such that:

(i) V2n ∪ V2n+1 ⊂ Vn for each n ∈ N;
(ii) d( fn(x), fn(y)) > ε for every (x, y) ∈ V2n × V2n+1.

We claim that (X, ρK,d) is not separable, where

ρK,d(x1, x2) := sup
f∈K

d( f (x1), f (x2)).

In fact, for each branch

α := V1 ⊃ Vn1 ⊃ Vn2 ⊃ · · ·

where for each i, ni+1 = 2ni or 2ni + 1, by compactness of X one can choose an
element

xα ∈
⋂

i∈N
cls (Vni).

If x = xα and y = xβ come from different branches, then there is an n ∈ N such
that x ∈ cls (V2n) and y ∈ cls (V2n+1) (or vice versa). In any case it follows from
(ii) and the continuity of fn that d( fn(x), fn(y)) � ε, hence ρK,d(x, y) � ε. Since
there are uncountably many branches we conclude that A and hence also X are not
ρK,d-separable.
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Definition 18.7 ([16, 55]) Let X be a compact space and F ⊂ C(X) a norm bounded
family of continuous real valued functions on X. Then F is said to be an Asplund
family for X if for every countable subfamily K of F the pseudometric space
(X, ρK,d) is separable, where

ρK,d(x1, x2) := sup
f∈K
| f (x1)− f (x2)|.

Corollary 18.8 Let X be a compact space and F ⊂ C(X) a norm bounded family
of continuous real valued functions on X. Then F is fragmented if and only if F is
an Asplund family for X.

Theorem 18.9 Let F = { fi : X → Y}i∈I be a family of continuous maps from
a compact (not necessarily metrizable) space (X, τ ) into a uniform space (Y, μ).
Then F is fragmented if and only if every countable subfamily A ⊂ F is fragmented.

Proof The proof can be reduced to Theorem 18.6. Every uniform space can be
uniformly approximated by pseudometric spaces. Using Lemma 18.2(1) we can
assume that (Y, μ) is pseudometrizable; i.e. there exists a pseudometric d such that
unif(d) = μ. Moreover, replacing d by the uniformly equivalent pseudometric d

1+d
we can assume that d � 1.

18.3 Classes of Dynamical Systems

Definition 18.10 A compact dynamical S-system X is said to be tame if one of the
following equivalent conditions are satisfied:

1. for every f ∈ C(X) the family fS := { fs : s ∈ S} has no independent subsequence.
2. every p ∈ E(X) is a fragmented map X → X.
3. for every p ∈ E(X) and every f ∈ C(X) the composition fp : X → R has PCP.

The following principal result is a dynamical analog of the Bourgain-Fremlin-
Talagrand dichotomy [8, 72].

Theorem 18.11 ([27] A Dynamical Version of BFT Dichotomy) Let X be a
compact metric dynamical S-system and let E = E(X) be its enveloping semigroup.
Either

1. E is a separable Rosenthal compact space (hence E is Fréchet and card E �
2ℵ0); or

2. the compact space E contains a homeomorphic copy of βN (hence card E =
22ℵ0 ).

The first possibility holds iff X is a tame S-system.
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Thus, a metrizable dynamical system is tame iff card(E(X)) � 2ℵ0 iff E(X) is
a Rosenthal compactum (or a Fréchet space). Moreover, by Glasner et al. [40] a
metric S-system is tame iff every p ∈ E(X) is a Baire class 1 map p : X → X.

The class of tame dynamical systems is quite large. It is closed under subsystems,
products and factors. Recall that an S-dynamical system X is weakly almost periodic
(WAP) if and only if every p ∈ E(X) is a continuous map. As every continuous map
X → X is fragmented it follows that every WAP system is tame. A metrizable S-
system X is WAP iff (S,X) is representable on a reflexive Banach space. The class
of hereditarily nonsensitive systems (HNS) is an intermediate class of systems [32].
The property HNS admits a reformulation in terms of enveloping semigroup: (S,X)

is HNS iff E(S,X) (equivalently, S̃) is a fragmented family. Of course, this implies
that every p ∈ E(X) is fragmented. So, indeed, WAP ⊂ HNS ⊂ Tame. A metrizable
S-system X is HNS iff E(X) is metrizable iff (S,X) is Asplund representable (RN,
in another terminology) [27, 40].

18.3.1 Some Classes of Functions

A compactification of X is a continuous map γ : X → Y with a dense range where
Y is compact. When X and Y are S-spaces and γ is an S-map we say that γ is an
S-compactification.

A function f ∈ C(X) on an S-space X is said to be Right Uniformly Continuous if
the induced right action C(X)× S → C(X) is continuous at the points ( f , s), where
s ∈ S. Notation: f ∈ RUC(X). If X is a compact S-space then RUC(X) = C(X).
Note that f ∈ RUC(X) if and only if there exists an S-compactification γ : X → Y
such that f = f̃ ◦ γ for some f̃ ∈ C(Y). In this case we say that f comes from the
S-compactification γ : X → Y.

The function f is said to be: (a) WAP; (b) Asplund; (c) tame if f comes from an
S-compactification γ : X → Y such that (S,Y) is: WAP, HNS or tame respectively.
For the corresponding classes of functions we use the notation: WAP(X), Asp(X),

Tame(X), respectively. Each of these is a norm closed S-invariant subalgebra of the
S-invariant algebra RUC(X) and WAP(X) ⊂ Asp(X) ⊂ Tame(X). For more details
see [31, 32]. As a particular case we have defined the algebras WAP(S), Asp(S),
Tame(S) corresponding to the left action of S on itself.

The S-invariant subalgebra Tame(S) of RUC(S) induces an S-compactification
of S which we denote by S → STame. Recall that it is a semigroup compactification
of S and that STame is a compact right topological semigroup [31]. Similarly, one
defines the compactifications SAP, SWAP, SAsp. Here AP means almost periodic. AP
compact G-systems (for groups S := G) are just equicontinuous systems.
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18.3.2 Cyclic S-compactifications

Let X be an S-space. For every f ∈ RUC(X) define the following pointwise
continuous natural S-map

δf : X → RUC(S), δf (x)(g) := f (gx).

It induces an S-compactification δf : X → Xf , where Xf is the pointwise
closure of δf (X) in RUC(S). Denote by Af := 〈 fS〉 the smallest S-invariant unital
Banach subalgebra of RUC(X) which contains f . The corresponding Gelfand S-
compactification is equivalent to δf : X → Xf . Let f̃ := ê|Xf , where ê is
the evaluation at e functional on RUC(S). Then f comes from the S-system Xf .
Moreover, f̃ S separates points of Xf .

We call δf : X → Xf the cyclic compactification of X (induced by f ) [5, 27, 31].

Definition 18.12 ([27, 31]) We say that a compact dynamical S-system X is cyclic
if there exists f ∈ C(X) such that (S,X) is topologically S-isomorphic to the Gelfand
space Xf of the S-invariant unital subalgebraAf ⊂ C(X) generated by the orbit fS.

Lemma 18.13 Let γ : X → Y be an S-compactification and f ∈ C(X).

1. f comes from γ (i.e., f = f̄ ◦ γ for some f̄ ∈ C(Y)) if and only if there exists a
continuous onto S-map q : Y → Xf such that f̄ = f̃ ◦q and the following diagram
is commutative

2. q : Y → Xf in (1) is an isomorphism of S-compactifications if and only if f̄ S
separates points of Y (where, as before, f̄ = f̃ ◦ q).

Proof Use Gelfand’s description of compactifications in terms of the corresponding
algebras and the Stone-Weierstrass Theorem.

Remark 18.14 Let X be a (not necessarily compact) S-space and f ∈ RUC(X).
Then, as was shown in [31], there exist a cyclic S-system Xf , a continuous S-
compactification πf : X → Xf , and a continuous function f̃ : Xf → R such that
f = f̃ ◦πf ; that is, f comes from the S-compactification πf : X → Xf . The collection
of functions f̃ S separates points of Xf .

Theorem 18.15 Let X be a compact S-space and f ∈ C(X). The following
conditions are equivalent:

1. f ∈ Tame(X) (i.e. f comes from a tame dynamical system).
2. fS is a tame family.
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3. cls p( fS) ⊂ F (X).
4. fS is an eventually fragmented family.
5. For every countable infinite subset A ⊂ S there exists a countable infinite subset

A′ ⊂ A such that the corresponding pseudometric

ρf ,A′(x, y) := sup{| f (gx)− f (gy)| : g ∈ A′}
on X is separable.

6. The cyclic S-space Xf is Rosenthal representable (i.e., WRN).

Proof The equivalence of (1)–(4) follows from Theorem 18.4. For (4) ⇔ (5) use
Theorem 18.6. For (4)⇔ (6) we refer to [29, 33].

18.4 A Characterization of Tame Symbolic Systems

18.4.1 Symbolic Systems and Coding Functions

The binary Bernoulli shift system is defined as the cascade (Ω, σ), where Ω :=
{0, 1}Z. We have the natural Z-action on the compact metric space Ω induced by
the σ -shift:

Z×Ω → Ω, σm(ωi)i∈Z = (ωi+m)i∈Z ∀(ωi)i∈Z ∈ Ω, ∀m ∈ Z.

More generally, for a discrete monoid S and a finite alphabet A := {0, 1, . . . , n}
the compact space Ω := AS is an S-space under the action

S×Ω → Ω, (sω)(t) = ω(ts), ω ∈ AS, s, t ∈ S.

A closed S-invariant subset X ⊂ AS defines a subsystem (S,X). Such systems are
called subshifts or symbolic dynamical systems.

Definition 18.16

1. Let S× X → X be an action on a (not necessarily compact) space X, f : X → R

a bounded (not necessarily continuous) function, and z ∈ X. Define a coding
function as follows:

ϕ := m( f , z) : S → R, s 	→ f (sz).

2. When f (X) ⊆ {0, 1, . . . , d} every such code generates a point transitive subshift
Sϕ of AS, where A = {0, 1, . . . , d} and

Sϕ := cls p{gϕ : g ∈ S} ⊂ AS (where gϕ(t) = ϕ(tg))

is the pointwise closure of the left S-orbit Sϕ in the space {0, 1, · · · , d}S.
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When S = Z
k we say that f is a (k, d)-code. In the particular case of the

characteristic function χD : X → {0, 1} for a subset D ⊂ X and S = Z we
get a (1, 1)-code, i.e. a binary function m(D, z) : Z → {0, 1} which generates a
Z-subshift of the Bernoulli shift on {0, 1}Z.

Regarding some dynamical and combinatorial aspects of coding functions see
[7, 17].

Among others we will study the following question

Question 18.17 When is a coding ϕ function tame? Equivalently, when is the
associated transitive subshift system Sϕ ⊂ {0, 1}Z with ϕ = m(D, z) tame?

Some restrictions on D are really necessary because every binary bisequence
ϕ : Z→ {0, 1} can be encoded as ϕ = m(D, z).

It follows from results in [29] that a coding bisequence c : Z→ R is tame iff it
can be represented as a generalized matrix coefficient of a Rosenthal Banach space
representation. That is, iff there exist: a Rosenthal Banach space V , a linear isometry
σ ∈ Iso(V) and two vectors v ∈ V , ϕ ∈ V∗ such that

cn = 〈σ n(v), ϕ〉 = ϕ(σ n(v)) ∀n ∈ Z.

Let, as above, AS be the full symbolic shift S-system. For a nonempty L ⊆ S
define the natural projection

πL : AS → AL.

The compact zero-dimensional space AS is metrizable iff S is countable (and, in this
case, AS is homeomorphic to the Cantor set).

It is easy to see that the full shift system Ω = AS (hence also every subshift) is
uniformly expansive. This means that there exists an entourage ε0 ∈ μ in the natural
uniform structure of AS such that for every distinct ω1 = ω2 in Ω one can find s ∈ S
with (sω1, sω2) /∈ ε0. Indeed, take

ε0 := {(u, v) ∈ Ω ×Ω : u(e) = v(e)},

where e, as usual, is the neutral element of S.

Lemma 18.18 Every symbolic dynamical S-system X ⊂ Ω = AS is cyclic
(Definition 18.12).

Proof It suffices to find f ∈ C(X) such that the orbit fS separates the points of
X since then, by the Stone-Weierstrass theorem, (S,X) is isomorphic to its cyclic
S-factor (S,Xf ). The family

{πs : X → A = {0, 1, . . . , n} ⊂ R}s∈S
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of basic projections clearly separates points on X and we let f := πe : X → R. Now
observe that fS = {πs}s∈S.

A topological space (X, τ ) is scattered (i.e., every nonempty subspace has an
isolated point) iff X is (τ, ξ)-fragmented, for arbitrary uniform structure ξ on the
set X.

Proposition 18.19 ([55, Prop. 7.15]) Every scattered compact jointly continuous
S-space X is RN (that is, Asplund representable).

Proof A compactum X is scattered iff C(X) is Asplund [60]. Now use the canonical
S-representation of (S,X) on the Asplund space V := C(X).

The following result recovers and extends [27, Sect. 10] and [55, Sect. 7].

Theorem 18.20 For a discrete monoid S and a finite alphabet A let X ⊂ AS be a
subshift. The following conditions are equivalent:

1. (S,X) is Asplund representable (that is, RN).
2. (S,X) is HNS.
3. X is scattered.

If, in addition, X is metrizable (e.g., if S is countable) then each of the conditions
above is equivalent also to:

4. X is countable.

Proof (1)⇒ (2): It was proved in [27, Lemma 9.8].
(2) ⇒ (3): Let μ be the natural uniformity on X and μS the (finer) uniformity

of uniform convergence on X ⊂ XS (we can treat X as a subset of XS under the
assignment x 	→ x̂, where x̂(s) = sx). If X is HNS then the family S̃ is fragmented.
This means that X is μS-fragmented. As we already mentioned, every subshift X is
uniformly S-expansive. Therefore, μS coincides with the discrete uniformity μΔ on
X (the largest possible uniformity on the set X). Hence, X is also μΔ-fragmented.
This means that X is a scattered compactum.

(3)⇒ (1): Use Proposition 18.19.
If X is metrizable then
(4)⇔ (3): A scattered compactum is metrizable iff it is countable.

Every zero-dimensional compact Z-system X can be embedded into a product∏
Xf of (cyclic) subshifts Xf (where, one may consider only continuous functions

f : X → {0, 1}) of the Bernoulli system {0, 1}Z.
For more information about countable (HNS and WAP) subshifts see [2, 10, 70].

Problem 18.21 Find a nice characterization for WAP (necessarily, countable) Z-
subshifts.

Next we consider tame subshifts.

Theorem 18.22 Let X be a subshift of Ω = AS. The following conditions are
equivalent:

1. (S,X) is a tame system.
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2. For every infinite subset L ⊆ S there exists an infinite subset K ⊆ L and a
countable subset Y ⊆ X such that

πK(X) = πK( Y).

That is,

∀x = (xs)s∈S ∈ X, ∃y = ( ys)s∈S ∈ Y with xk = yk ∀k ∈ K.

3. For every infinite subset L ⊆ S there exists an infinite subset K ⊆ L such that
πK(X) is a countable subset of AK.

4. (S,X) is Rosenthal representable (that is, WRN).

Proof (1)⇔ (2): As in the proof of Lemma 18.18 define f := πe ∈ C(X). Then X
is isomorphic to the cyclic S-space Xf . (S,X) is a tame system iff C(X) = Tame(X).
By Lemma 18.18, C(X) = Af , so we have only to show that f ∈ Tame(X).

By Theorem 18.15, f := πe : X → R is a tame function iff for every
infinite subset L ⊂ S there exists a countable infinite subset K ⊂ L such that the
corresponding pseudometric

ρf ,K(x, y) := sup
k∈K
{|(πe)(kx)− (πe)(ky)|} = sup

k∈K
{|xk − yk|}

on X is separable. The latter assertion means that there exists a countable subset
Y which is ρf ,K-dense in X. Thus for every x ∈ X there is a point y ∈ Y with
ρf ,K(x, y) < 1/2. As the values of the function f = π0 are in the set A, we conclude
that πK(x) = πK(y), whence

πK(X) = πK( Y).

The equivalence of (2) and (3) is obvious.
(1) ⇒ (4): (S,X) is Rosenthal-approximable (Theorem 18.15(1)). On the other

hand, (S,X) is cyclic (Lemma 18.18). By Theorem 18.15(7) we can conclude that
(S,X) is WRN.

(4)⇒ (1): Follows directly by Theorem 18.15(1).

Remark 18.23 From Theorem 18.22 we can deduce the following peculiar fact. If
X is a tame subshift of Ω = {0, 1}Z and L ⊂ Z an infinite set, then there exist an
infinite subset K ⊂ L, k � 1, and a ∈ {0, 1}2k+1 such that X ∩ [a] = ∅ and ∀x, x′ ∈
X ∩ [a] we have x|K = x′|K . Here [a] = {z ∈ {0, 1}Z : z( j) = a( j), ∀| j| � k}. In
fact, since πK(X) is a countable closed set it contains an isolated point, say w, and
then the open set π−1

K (w) contains a subset [a] ∩ X as required.
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18.4.2 Tame and HNS Subsets of Z

We say that a subset D ⊂ Z is tame if the characteristic function χD : Z → R is
a tame function on the group Z. That is, when this function comes from a pointed
compact tame Z-system (X, x0). Analogously, we say that D is HNS (or Asplund),
WAP, or Hilbert if χD : Z → R is an Asplund, WAP or Hilbert function on Z,
respectively. By basic properties of the cyclic system XD := cls {χD ◦ Tn : n ∈
Z} ⊂ {0, 1}Z (see Remark 18.14), the subset D ⊂ Z is tame (Asplund, WAP) iff the
associated subshift XD is tame (Asplund, WAP).

Surprisingly it is not known whether Xf := cls { f ◦Tn : n ∈ Z} ⊂ R
Z is a Hilbert

system when f : Z → R is a Hilbert function (see [38]). The following closely
related question from [56] is also open: Is it true that Hilbert representable compact
metric Z-spaces are closed under factors?

Remark 18.24 The definition of WAP sets was introduced by Ruppert [69]. He has
the following characterisation [69, Theorem 4]:

D ⊂ Z is a WAP subset if and only if every infinite subset B ⊂ Z contains a finite
subset F ⊂ B such that the set

⋂

b∈F

(b+ D) \
⋂

b∈B\F
(b+ D)

is finite. See also [25].

Theorem 18.25 Let D be a subset of Z. The following conditions are equivalent:

1. D is a tame subset (i.e., the associated subshift XD ⊂ {0, 1}Z is tame).
2. For every infinite subset L ⊆ Z there exists an infinite subset K ⊆ L and a

countable subset Y ⊆ βZ such that for every x ∈ βZ there exists y ∈ Y such that

n+ D ∈ x ⇐⇒ n+ D ∈ y ∀n ∈ K

(treating x and y as ultrafilters on the set Z).

Proof By the universality of the greatest ambit (Z, βZ) it suffices to check when
the function

f = χD : βZ→ {0, 1}, f (x) = 1 ⇔ x ∈ D,

the natural extension function of χD : Z → {0, 1}, is tame (in the usual sense, as
a function on the compact cascade βZ), where we denote by D the closure of D
in βZ (a clopen subset). Applying Theorem 18.15 to f we see that the following
condition is both necessary and sufficient: For every infinite subset L ⊆ Z there
exists an infinite subset K ⊆ L and a countable subset Y ⊆ βZ which is dense in
the pseudometric space (βZ, ρf ,K). Now saying that Y is dense is the same as the
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requiring that Y be ε-dense for every 0 < ε < 1. However, as f has values in {0, 1}
and 0 < ε < 1 we conclude that for every x ∈ βZ there is y ∈ Y with

x ∈ n+ D ⇐⇒ y ∈ n+ D ∀n ∈ K,

and the latter is equivalent to

n+ D ∈ x ⇐⇒ n+ D ∈ y ∀n ∈ K.

Theorem 18.26 Let D be a subset of Z. The following conditions are equivalent:

1. D is an Asplund subset (i.e., the associated subshift XD ⊂ {0, 1}Z is Asplund).
2. There exists a countable subset Y ⊆ βZ such that for every x ∈ βZ there exists

y ∈ Y such that

n+ D ∈ x ⇐⇒ n+ D ∈ y ∀n ∈ Z.

Proof (Sketch) One can modify the proof of Theorem 18.25. Namely, if in assertion
(4) of Theorem 18.15 eventual fragmentability of F is replaced by fragmentability
then this characterization of Asplund functions, [27] follows.

Example 18.27 N is an Asplund subset of Z which is not a WAP subset. In fact,
let XN be the corresponding subshift. Clearly XN is homeomorphic to the two-point
compactification of Z, with {0} and {1} as minimal subsets. Since a transitive WAP
system admits a unique minimal set, we conclude that XN is not WAP (see e.g. [22]).
On the other hand, since XN is countable we can apply Theorem 18.20 to show that
it is HNS. Alternatively, using Theorem 18.26, we can take Y to be Z∪{ p, q}, where
we choose p and q to be any two non-principal ultrafilters such that p contains N

and q contains−N.

18.5 Entropy and Null Systems

We begin by recalling the basic definitions of topological (sequence) entropy. Let
(X,T) be a cascade, i.e., a Z-dynamical system, and A = {a0 < a1 < . . .} a
sequence of integers. Given an open coverU define

hA
top(T,U) = lim sup

n→∞
1

n
N(

n−1∨

i=0

T−ai(U))

The topological entropy along the sequence A is then defined by

hA
top(T) = sup{hA

top(T,U) : U an open cover of X}.
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When the phase space X is zero-dimensional, one can replace open covers by clopen
partitions. We recall that a dynamical system (T,X) is called null if hA

top(T) = 0 for
every infinite A ⊂ Z. With A = N one retrieves the usual definition of topological
entropy. Finally when Y ⊂ {0, 1}Z, and A ⊂ Z is a given subset of Z, we say that Y
is free on A or that A is an interpolation set for Y, if { y|A : y ∈ Y} = {0, 1}A.

By theorems of Kerr and Li [49, 50] every null Z-system is tame, and every tame
system has zero topological entropy. From results of Glasner-Weiss [35] (for (1))
and Kerr-Li [50] (for (2) and (3)), the following results can be easily deduced. (See
Propositions 3.9.2, 6.4.2 and 5.4.2 of [50] for the positive topological entropy, the
untame, and the nonnull claims, respectively.)

Theorem 18.28

1. A subshift X ⊂ {0, 1}Z has positive topological entropy iff there is a subset A ⊂ Z

of positive density such that X is free on A.
2. A subshift X ⊂ {0, 1}Z is not tame iff there is an infinite subset A ⊂ Z such that

X is free on A.
3. A subshift X ⊂ {0, 1}Z is not null iff for every n ∈ N there is a finite subset

An ⊂ Z with |An| � n such that X is free on An.

Proof We consider the second claim; the other claims are similar.
Certainly if there is an infinite A ⊂ Z on which X is free then X is not tame

(e.g. use Theorem 18.22). Conversely, if X is not tame then, by Propositions 6.4.2
of [50], there exists a non diagonal IT pair (x, y). As x and y are distinct there
is an n with, say, x(n) = 0, y(n) = 1. Since Tn(x, y) is also an IT pair we can
assume that n = 0. Thus x ∈ U0 and y ∈ U1, where these are the cylinder sets
Ui = {z ∈ X : z(0) = i}, i = 0, 1. Now by the definition of an IT pair there is an
infinite set A ⊂ Z such that the pair (U0,U1) has A as an independence set. This is
exactly the claim that X is free on A.

The following theorem was proved (independently) by Huang [41], Kerr and Li
[50], and Glasner [24]. See [26] for a recent generalization of this result.

Theorem 18.29 (A Structure Theorem for Minimal Tame Dynamical Systems)
Let (G,X) be a tame minimal metrizable dynamical system with G an abelian group.
Then:

1. (G,X) is an almost one to one extension π : X → Y of a minimal equicontinuous
system (G,Y).

2. (G,X) is uniquely ergodic and the factor map π is, measure theoretically, an
isomorphism of the corresponding measure preserving system on X with the Haar
measure on the equicontinuous factor Y.

Example 18.30

1. According to Theorem 18.29 the Morse minimal system, which is uniquely
ergodic and has zero entropy, is nevertheless not tame as it fails to be an almost 1-
1 extension of its adding machine factor. We can therefore deduce that, a fortiori,
it is not null.
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2. Let L = IP{10t}∞t=1 ⊂ N be the IP-sequence generated by the powers of ten, i.e.

L = {10a1 + 10a2 + · · · + 10ak : 1 � a1 < a2 < · · · < ak}.

Let f = 1L and let X = Ōσ ( f ) ⊂ {0, 1}Z, where σ is the shift on Ω = {0, 1}Z.
The subshift (σ,X) is not tame. In fact it can be shown that L is an interpolation
set for X.

3. Take un to be the concatenation of the words an,i0n, where an,i, i =
1, 2, 3, . . . , 2n runs over {0, 1}n. Let vn = 0|un|, wn = unvn and w∞ the infinite
concatenation {0, 1}N # w∞ = w1w2w3 · · · . Finally define w ∈ {0, 1}Z by
w(n) = 0 for n � 0 and w(n) = w∞(n). Then X = Ōσ (w) ⊂ {0, 1}Z is
a countable subshift, hence HNS and a fortiori tame, but for an appropriately
chosen sequence the sequence entropy of X is log 2. Hence, X is not null. Another
example of a countable nonnull subshift can be found in [41, Example 5.12].

4. In [50, Section 11] Kerr and Li construct a Toeplitz subshift ( = a minimal almost
one-to-one extension of an adding machine) which is tame but not null.

5. In [39, Theorem 13.9] the authors show that for interval maps being tame is the
same as being null.

Remark 18.31 Let T : [0, 1] → [0, 1] be a continuous self-map on the closed
interval. In an unpublished paper [52] the authors show that the enveloping
semigroup E(X) of the cascade (an N ∪ {0}-system) X = [0, 1] is either metrizable
or it contains a topological copy of βN. The metrizable enveloping semigroup case
occurs exactly when the system is HNS. This was proved in [40] for group actions
but it remains true for semigroup actions [31]. The other case occurs iff σ is Li-
Yorke chaotic. Combining this result with Example 18.30(5) one gets: HNS = null
= tame, for any cascade (T, [0, 1]).

18.6 Some Examples of Tame Functions and Systems

In this section we give some methods for constructing tame systems and functions.
It is closely related to the question whether given family of real (not necessarily,
continuous) functions is tame.

Recall (see for example [7]) that a bisequence Z → {0, 1} is Sturmian if it is
recurrent and has the minimal complexity p(n) = n+ 1.

Example 18.32

1. (See [27]) Consider an irrational rotation (Rα,T). Choose x0 ∈ T and split each
point of the orbit xn = x0 + nα into two points x±n . This procedure results is
a Sturmian (symbolic) dynamical system (σ,X) which is a minimal almost 1-1
extension of (Rα,T). Then E(X, σ )\{σ n}n∈Z is homeomorphic to the two arrows
space, a basic example of a non-metrizable Rosenthal compactum. It follows that
E(σ,X) is also a Rosenthal compactum. Hence, (σ,X) is tame but not HNS.



370 E. Glasner and M. Megrelishvili

2. Let P0 be the set [0, c) and P1 the set [c, 1); let z be a point in [0, 1) (identified
with T) via the rotation Rα we get the binary bisequence un, n ∈ Z defined
by un = 0 when Rn

α(z) ∈ P0, un = 1 otherwise. These are called Sturmian
like codings. With c = 1 − α we retrieve the previous example. For example,

when α :=
√

5−1
2 the corresponding sequence, computed at z = 0, is called the

Fibonacci bisequence.

Example 18.33

1. In his paper [15] Ellis, following Furstenberg’s classical work [18], investigates
the projective action of GL(n,R) on the projective space P

n−1. It follows from
his results that the corresponding enveloping semigroup is not first countable.
However, in a later work [1], Akin studies the action of G = GL(n,R) on the
sphere Sn−1 and shows that here the enveloping semigroup is first countable (but
not metrizable). It follows that the dynamical systems D1 = (G,Pn−1) and D2 =
(G,Sn−1) are tame but not HNS. Note that E(D1) is Fréchet, being a quotient of
a first countable compact space, namely E(D2).

2. (Huang [41]) An almost 1-1 extension π : X → Y of an equicontinuous metric
Z-system Y with X \ X0 countable, where X0 = {x ∈ X : |π−1π(x)| = 1}, is
tame.

We will see that many coding functions are tame, including some multidimen-
sional analogues of Sturmian sequences. The latter are defined on the groups Z

k

and instead of the characteristic function f := χD (with D = [0, c)) one may
consider coloring of the space leading to shifts with finite alphabet. We give a
precise definition which (at least in some partial cases) was examined in several
papers. Regarding some dynamical and combinatorial aspects of coding functions
see for example [6, 17, 65], and the survey paper [7].

Definition 18.34 Consider an arbitrary finite partition

T = ∪d
i=0[ci, ci+1)

of T by the ordered d-tuple of points c0 = 0, c1, . . . , cd, cd+1 = 1 and any coloring
map

f : T→ A := {0, . . . , d}.

Now for a given k-tuple (α1, . . . , αk) ∈ T
k and a given point z ∈ T consider the

corresponding coding function

m( f , z) : Zk → {0, . . . , d} (n1, . . . , nk) 	→ f (z+ n1α1 + · · · + nkαk).

We call such a sequence a multidimensional (k, d)-Sturmian like sequence.
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Lemma 18.35

1. Let q : X1 → X2 be a map between sets and { fn : X2 → R}n∈N a bounded
sequence of functions (with no continuity assumptions on q and fn). If { fn ◦ q} is
an independent sequence on X1 then { fn} is an independent sequence on X2.

2. If q is onto then the converse is also true. That is { fn ◦ q} is independent if and
only if { fn} is independent.

3. Let { fn} be a bounded sequence of continuous functions on a topological space
X. Let Y be a dense subset of X. Then { fn} is an independent sequence on X if
and only if the sequence of restrictions { fn|Y} is an independent sequence on Y.

Proof Claims (1) and (2) are straightforward.
(3) Since { fn} is an independent sequence for every pair of finite disjoint sets

P,M ⊂ N, the set

⋂

n∈P

f−1
n (−∞, a) ∩

⋂

n∈M

f−1
n (b,∞)

is non-empty. This set is open because every fn is continuous. Hence, each of them
meets the dense set Y. As f−1

n (−∞, a) ∩ Y = fn|−1
Y (−∞, a) and f−1

n (b,∞) ∩ Y =
fn|−1

Y (b,∞), this implies that { fn|Y} is an independent sequence on Y.
Conversely if { fn|Y} is an independent sequence on a subset Y ⊂ X then by (1)

(where q is the embedding Y ↪→ X), { fn} is an independent sequence on X.

Below we will sometimes deal with (not necessarily continuous) functions f :
X → R such that the orbit fS of f in R

X is a tame family (Definition 18.3). An
example of such Baire 1 function (which is not tame, being discontinuous), is the
characteristic function χD of an arc D = [a, a + s) ⊂ T defined on the system
(Rα,T), where Rα is an irrational rotation of the circle T. See Theorem 18.40.

Lemma 18.36 Let S be a semigroup, X a (not necessarily compact) S-space and
f : X → R a bounded (not necessarily continuous) function.

1. Let f ∈ RUC(X); then f ∈ Tame(X) if and only if fS is a tame family. Moreover,
there exists an S-compactification ν : X → Y where the action S × Y → Y is
continuous, Y is a tame system and f = f̃ ◦ ν for some f̃ ∈ C(Y).

2. Let G be a topological group and f ∈ RUC(G). Then f ∈ Tame(G) if and only if
fG is a tame family.

3. Let L be a discrete semigroup and f : L → R a bounded function. Then f ∈
Tame(L) if and only if fL is a tame family.

4. Let h : L → S be a homomorphism of semigroups, S × Y → Y be an
action (without any continuity assumptions) on a set Y and f : Y → R be a
bounded function such that fL is a tame family. Then for every point y ∈ Y
the corresponding coding function m( f , y) : L → R is tame on the discrete
semigroup (L, τdiscr).

Proof For (1) consider the cyclic S-compactification ν : X → Y = Xf (see
Definition 18.12). Since f ∈ RUC(X) the action S× Xf → Xf is jointly continuous
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(Remark 18.14). By the basic property of the cyclic compactification there exists
a continuous function f̃ : Xf → R such that f = f̃ ◦ ν. The family fS has
no independent sequence. By Lemma 18.35(3) we conclude that also f̃ S has no
independent sequence. This means, by Theorem 18.15, that f̃ is tame. Hence (by
Definition) so is f . The converse follows from Lemma 18.35(1).

(2) and (3) follow easily from (1) (with X = G = L) taking into account that on
a discrete semigroup L every bounded function L → R is in RUC(L).

(4) By (3) it is enough to show for the coding function f0 := m( f , y) that the
family f0L has no independent subsequence. Define q : L → Y, s 	→ h(s)y.
Then f0t = ( ft) ◦ q for every t ∈ L. If f0tn is an independent sequence for some
sequence tn ∈ L then Lemma 18.35(1) implies that the sequence of functions ftn
on Y is independent. This contradicts the assumption that fL has no independent
subsequence.

Let f : X → R be a real function on a topological space X. We denote by cont( f )
and disc( f ) the sets of points of continuity and discontinuity for f respectively.

Definition 18.37 Let F be a family of functions on X and Y ⊂ X. We say that
F is:

1. Strongly almost continuous on Y if for every x ∈ Y we have x ∈ cont( f ) for
almost all f ∈ F (i.e. with the exception of at most a finite set of elements which
may depend on x).

2. Almost continuous if for every infinite (countable) subset F1 ⊂ F there exists an
infinite subset F2 ⊂ F1 and a countable subset C ⊂ X such that F2 is strongly
almost continuous on the complement X \ C.

For example, if
⋃{disc( f ) : f ∈ F} is countable then F is almost continuous.

Theorem 18.38 Let X be a compact metric space and F a bounded family of real
valued functions on X such that F is almost continuous. Further assume that:

(∗) for every sequence { fn}n∈N in F there exists a subsequence { fnm}m∈N and a
countable subset C ⊂ X such that { fnm}m∈N pointwise converges on X \ C to a
function φ : X \ C → R where φ ∈ B1(X \ C).

Then F is a tame family.

Proof Assuming the contrary let { fn} be an independent sequence in F. Then, by
assumption, there exists a countable subset C ⊂ X and a subsequence { fnm} such
that { fnm : X \ C → R} pointwise converges on X \ C to a function φ : X \ C → R

such that φ ∈ B1(X \ C).
Independence is preserved by subsequences so this subsequence { fnm} remains

independent. For simplicity of notation assume that { fn} itself has the properties
of { fnm}. Moreover we can suppose in addition, by Definition 18.37 with the same
C ⊂ X, that { fn} is strongly almost continuous. That is, for every x ∈ X \C we have
x ∈ cont( fn) for almost all fn.
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By the definition of independence, there exist a < b such that for every pair of
disjoint finite sets P,M ⊂ N we have

⋂

n∈P

An ∩
⋂

n∈M

Bn = ∅,

where An := f−1
n (−∞, a) and Bn := f−1

n (b,∞). Now define a tree of nested sets as
follows:

Ω1 := X
Ω2 := Ω1 ∩ A1 = A1 Ω3 := Ω1 ∩ B1 = B1

Ω4 := Ω2 ∩ A2 Ω5 := Ω2 ∩ B2 Ω6 := Ω3 ∩ A2 Ω7 := Ω3 ∩ B2,
and so on. In general,

Ω2n+1+2k := Ω2n+k ∩ An+1, Ω2n+1+2k+1 := Ω2n+k ∩ Bn+1

for every 0 � k < 2n and every n ∈ N.
We obtain a system {Ωn}n∈N which satisfies:

Ω2n ∪Ω2n+1 ⊂ Ωn and Ω2n ∩Ω2n+1 = ∅ for each n ∈ N.

Since {(An,Bn)}n∈N is independent (in the sense of [68]), every Ωn is nonempty.
For every binary sequence u = (u1, u2, . . . ) ∈ {0, 1}N we have the corresponding

uniquely defined branch

αu := Ω1 ⊃ Ωn1 ⊃ Ωn2 ⊃ · · ·

where for each i ∈ N with 2i−1 � ni < 2i we have

ni+1 = 2ni iff ui = 0 and ni+1 = 2ni + 1 iff ui = 1.

Let us say that u, v ∈ {0, 1}N are essentially distinct if they have infinitely many
different coordinates. Equivalently, if u and v are in different cosets of the Cantor
group {0, 1}N with respect to the subgroup H consisting of the binary sequences with
finite support. Since H is countable there are uncountably many pairwise essentially
distinct elements in the Cantor group. We choose a subset T ⊂ {0, 1}N which
intersects each coset in exactly one point. Clearly, card(T) = 2ω. Now for every
branch αu where u ∈ T choose one element

xu ∈
⋂

i∈N
cl(Ωni).

Here we use the compactness of X which guarantees that
⋂

i∈N cl(Ωni) = ∅. We
obtain a set XT := {xu : u ∈ T} ⊂ X and an onto function T → XT , u 	→ xu.
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Define also T0 := {u ∈ T : xu ∈ XT ∩ C} which is at most countable (possibly
empty).

Claim

1. The restricted function T \T0 → XT \C, u 	→ xu is injective. In particular, XT \C
is uncountable.

2. |φ(xu)− φ(xv)| � ε := b− a for every distinct xu, xv ∈ XT \ C.

Proof of the Claim (1) Let u = (ui) and v = (vi) are distinct elements in T \ T0.
Denote by αu := {Ωni}i∈N and αv := {Ωmi}i∈N the corresponding branches. Then,
by the definition of XT , we have the uniquely defined points xu ∈ ⋂i∈N cl(Ωni) and
xv ∈ ⋂i∈N cl(Ωmi) in XT \ C. Since u, v ∈ T \ T0 are essentially distinct they have
infinitely many different indices. As { fn} is strongly almost continuous on X \ C
there exists a sufficiently large t0 ∈ N such that the points xu and xv are both points
of continuity of fn for every n � t0.

Now note that if ui = vi then the sets Ωni+1 and Ωmi+1 are contained
(respectively) in a pair of disjoint sets Ak := f−1

k (−∞, a) and Bk := f−1
k (b,∞)

with k � 2i. Since u and v are essentially distinct we can assume that i is sufficiently
large in order to ensure that k � t0. We necessarily have exactly one of the cases:

(a) Ωni+1 ⊂ Ak, Ωmi+1 ⊂ Bk

or

(b) Ωni+1 ⊂ Bk, Ωmi+1 ⊂ Ak.

For simplicity we only check the first case (a). For (a) we have

xu ∈ cls (Ωni+1) ⊂ cls ( f−1
k (−∞, a)) and xv ∈ cls (Ωni+1) ⊂ cls ( f−1

k (b,∞)).

Since {xu, xv} ⊂ cont( fn) are continuity points for every n � t0 and since k � t0
by our choice, we obtain fk(xu) � a and fk(xv) � b. So, we can conclude that
| fk(xu)− fk(xv)| � ε := b− a for every k � t0. In particular, xu and xv are distinct.
This proves (1).

(2) Furthermore, for our distinct xu, xv ∈ XT \ C by (*) we have lim fk(xu) =
φ(xu) and lim fk(xv) = φ(xv). It follows that |φ(xu)− φ(xv)| � ε and the condition
(2) of our claim is also proved.

Define

Q := {x ∈ XT \ C : there exists a countable open nbd Ox of x in the space XT \ C}.

Observe that Q = ⋃{Ox : x ∈ Q}. Since Q is second countable, by Lindelof
property there exists a countable subcover. Hence, Q is at most a countable subset
of XT \ C and any point y ∈ Y := (XT \ C) \ Q is a condensation point.
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Now, it follows by assertion (2) of the Claim that for every open subset U in X
with U ∩ Y = ∅ we have diam(φ(U ∩ Y)) � ε. This means that φ : X \ C → R is
not fragmented. Since C is countable and X is compact metrizable the subset X \ C
is Polish. On Polish spaces fragmentability and Baire 1 property are the same for
real valued functions (Lemma 18.2(3)). So, we obtain that φ : X \ C → R is not
Baire 1. This contradicts the assumption that φ ∈ B1(X \ C).

Theorem 18.39 Let X be a compact metric tame G-system and f : X → R be a
bounded function such that:

p−1(disc( f )) is countable for every p ∈ E(X).

Then fG is a tame family.

Proof Assuming the contrary let {gn}n∈N be a sequence in G such that F :=
{ fgn}n∈N is independent. Since X is a tame metric system there exists a subsequence
of {gn}n∈N which converges to some p ∈ E(X). For simplicity of the notation we
assume that { fgn}n∈N is independent and also p is the pointwise limit of {gn}n∈N (in
fact, of { j(gn)}n∈N), where j : G → E(X) ⊂ XX is the Ellis compactification).

C :=
⋃
{t−1(disc( f )) : t ∈ { p, gn}n∈N} is countable

In particular, since g−1
n cont( f ) = cont( fgn), this implies that F is almost

continuous. Indeed, there exists the pointwise limit of the sequence { fgn}n∈N on
X \C and it equals to fp. Since every fgn is continuous on the Polish space X \C we
obtain that fp ∈ B1(X). Now Theorem 18.38 applies.

Corollary 18.40 Let X be a compact metric equicontinuous G-system and f : X →
R be a bounded function with countably many discontinuities. Then fG is a tame
family.

Proof Since disc( f ) is countable and every p ∈ E(X) is reversible (since X is a
distal G-system) p−1(disc( f )) remains countable.

Remark 18.41 As a consequence of previous results (Theorems 18.39, 18.40 and
Lemma 18.36) coding functions m( f , z) : G0 → R are tame on every subgroup G0
of G where G0 is endowed with the discrete topology (for every given point z ∈ X).
So, the corresponding cyclic system (G0,Xf ) is tame. Moreover, if m( f , z)(G0) = A
is finite we get a tame symbolic system on the alphabet A (see Definition 18.16).

Example 18.42

1. For every irrational rotation α of the circle T and an arc D := [a, b) ⊂ T the
following classical coding function is tame.

ϕD := Z→ R, n 	→ χD(nα)
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2. More generally, the multidimensional Sturmian (k, d)-sequences Z
k →

{0, 1, . . . , d} (Definition 18.34) are tame.

Proof In terms of Definition 18.34 consider the homomorphism

h : Zk → T, (n1, . . . , nk) 	→ n1α1 + · · · + nkαk.

Then any coloring function f : T → A := {0, . . . , d}, has only finitely many
discontinuities. Now Corollary 18.40 guarantees that the corresponding (k, d)-
coding function m( f , z) : Zk → A ⊂ R is tame for every z ∈ T.

Note that the tameness of the functions on Z
k from Example 18.42 follows also

by results from [34]. In fact, such functions come from circularly ordered metric
dynamical Zk-systems. See also Theorem 18.58 below.

18.6.1 A Special Class of Generalized Sturmian Systems

Let Rα be an irrational rotation of the torus Td . In many cases a reasonably chosen
subset D ⊂ T

d will yield a generalized Sturmian system.

Example 18.43 Let α = (α1, . . . , αd) be a vector in R
d, d � 2 with 1, α1, . . . , αd

independent over Q. Consider the minimal equicontinuous dynamical system
(Rα,Y), where Y = T

d = R
d/Zd (the d-torus) and Rαy = y + α. Let D be a

small closed d-dimensional ball in T
d and let C = ∂D be its boundary, a (d − 1)-

sphere. Fix y0 ∈ intD and let X = X(D, y0) be the symbolic system generated by
the function

x0 ∈ {0, 1}Z defined by x0(n) = χD(Rn
αy0), X = Oσ x0 ⊂ {0, 1}Z,

where σ denotes the shift transformation. This is a well known construction and it is
not hard to check that the system (σ,X) is minimal and admits (Rα,Y) as an almost
1-1 factor:

π : (σ,X)→ (Rα,Y).

Theorem 18.44 There exists a ball D ⊂ T
d as above such that the corresponding

symbolic dynamical system (σ,X) is tame. For such D we then have a precise
description of E(σ,X) \ Z as the product set Td × F , where F is the collection
of ordered orthonormal bases for Rd.

Proof

1. First we show that a sphere C ⊂ [0, 1)d ∼= T
d can be chosen so that for every

y ∈ T
d the set (y + {nα : n ∈ Z}) ∩ C is finite. We thank Benjamin Weiss for

providing the following proof of this fact.



18 More on Tame Dynamical Systems 377

(a) For the case d = 2 the argument is easy. If A is any countable subset of
the square [0, 1) × [0, 1) there are only a countable number of circles that
contain three points of A. These circles have some countable collection of
radii. Take any circle with a radius which is different from all of them and
no translate of it will contain more than two points from the set A. Taking
A = {nα : n ∈ Z} we obtain the required circle.

(b) We next consider the case d = 3, which easily generalizes to the general
case d � 3. What we have to show is that there can not be infinitely many
points in

A = {(nα1 − [nα1], α2 − [nα2], α3 − [nα3]) : n ∈ Z}

that lie on a plane. For if that is the case, we consider all 4-tuples of elements
from the set A that do not lie on a plane to get a countable set of radii for the
spheres that they determine. Then taking a sphere with radius different from
that collection we obtain our required sphere. In fact, if a sphere contains
infinitely many points of A and no 4-tuple from A determines it then they all
lie on a single plane.

So suppose that there are infinitely many points in A whose inner product
with a vector v = (z, x, y) is always equal to 1. This means that there are
infinitely many equations of the form:

zα1 + xα2 + yα3 = 1/n+ z[nα1]/n+ x[nα2]/n+ y[nα3]/n. (∗)

Subtract two such equations with the second using m much bigger than n so
that the coefficient of y cannot vanish. We can express y = rz + sx + t with
r, s and t rational. This means that we can replace (∗) by

zα1 + xα2 + yα3 = 1/n+ t[nα3]/n+ z([nα1]/n+ r[nα3]/n)

+ x([nα2]/n+ s[nα3]/n). (∗∗)

Now r, s and t have some fixed denominators and (having infinitely many
choices) we can take another equation like (∗∗) where n (and the correspond-
ing r, s, t) is replaced by some much bigger k, then subtract again to obtain an
equation of the form x = pz+ q with p and q rational. Finally one more step
will show that z itself is rational. However, in view of (∗), this contradicts
the independence of 1, α1, α2, α3 over Q and our proof is complete.

2. Next we show that for C as above

for every converging sequence niα, say niα → β ∈ T
d ∼= E(Rα,T

d), there exists a
subsequence {nij } such that for every y ∈ T

d, y+ nijα is either eventually in the interior
of D or eventually in its exterior.
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Clearly we only need to consider points y ∈ C − β. Renaming we can now
assume that niα → 0 and that y ∈ C. Passing to a subsequence if necessary we
can further assume that the sequence of unit vectors niα‖niα‖ converges,

niα

‖niα‖ → v0 ∈ S
d−1.

In order to simplify the notation we now assume that C is centered at the origin.
For every point y ∈ C where 〈y, v0〉 = 0 we have that y+ niα is either eventually
in the interior of D or eventually in its exterior. On the other hand, for the points
y ∈ C with 〈y, v0〉 = 0 this is not necessarily the case. In order to deal with these
points we need a more detailed information on the convergence of niα to β. At
this stage we consider the sequence of orthogonal projections of the vectors niα

onto the subspace V1 = {u ∈ R
d : 〈u, v0〉 = 0}, say ui = proj v0

(niα) → u =
proj v0

(β). If it happens that eventually ui = 0, this means that all but a finite
number of the niα’s are on the line defined by v0 and our required property is
certainly satisfied.2 Otherwise we choose a subsequence (again using the same
index) so that

ui

‖ui‖ → v1 ∈ S
d−2.

Again (as we will soon explain) it is not hard to see that for points y ∈ C ∩ V1
with 〈y, v1〉 = 0 we have that y + niα is either eventually in the interior of D
or eventually in its exterior. For points y ∈ C ∩ V1 with 〈y, v〉 = 0 we have to
repeat this procedure. Considering the subspace V2 = {u ∈ V1 : 〈u, v1〉 = 0},
we define the sequence of projections u′i = proj v1

(ui) ∈ V2 and pass to a further
subsequence which converges to a vector v2

u′i
‖u′i‖

→ v2 ∈ S
d−3.

Inductively this procedure will produce an ordered orthonormal basis
{v0, v1, . . . , vd−1} for R

d and a final subsequence (which for simplicity we
still denote as ni) such that

for each y ∈ T
d, y+ niα is either eventually in the

interior of D or it is eventually in its exterior.

This is clear for points y ∈ T
d such that y+β ∈ C. Now suppose we are given

a point y with y + β ∈ C. We let k be the first index with 〈y + β, vk〉 = 0. As
{v0, v1, v2, . . . , vd−1} is a basis for Rd such k exists. We claim that the sequence
y + niα is either eventually in the interior of D or it is eventually in its exterior.
To see this consider the affine hyperplane which is tangent to C at y+ β (which

2Actually this possibility can not occur, as is shown in the first step of the proof.



18 More on Tame Dynamical Systems 379

contains the vectors {v0, . . . , vk−1}). Our assumption implies that the sequence
y + niα is either eventually on the opposite side of this hyperplane from the
sphere, in which case it certainly lies in the exterior of D, or it eventually lies on
the same side as the sphere. However in this latter case it can not be squeezed in
between the sphere and the tangent hyperplane, as this would imply 〈y+β, vk〉 =
0, contradicting our assumption. Thus it follows that in this case the sequence
y+ niα is eventually in the interior of D.

3. Let now p be an element of E(σ,X). We choose a net {nν} ⊂ Z with σ nν → p.
It defines uniquely an element β ∈ E(Y) ∼= T

d so that π(px) = π(x) + β for
every x ∈ X. Taking a subnet if necessary we can assume that the net β−nνα

‖β−nνα‖
converges to some v0 ∈ Sd−1. And, as above, proceeding by induction we assume
likewise that all the corresponding limits {v0, . . . , vk−1} exist.

Next we choose a sequence {ni} such that niα → β, β−niα
‖β−niα‖ → v0 etc. We

conclude that σ ni → p. Thus every element of E(σ,X) is obtained as a limit of a
sequence in Z and is therefore of Baire class 1.

4. From the proof we see that the elements of E(σ,X) \ Z can be parametrized by
the set Td × F , where F is the collection of ordered orthonormal bases for Rd ,
p 	→ (β, {v0, . . . , vd−1}).

18.6.2 Strong Almost 1-1 Equivalence and Tameness

Recall that a G-factor π : X → Y is said to be an almost one-to-one extension if

X0 := {x ∈ X : |π−1(π(x))| = 1}

is a residual subset of X. We will say that π : X → Y is a strongly almost 1-1
extension if X \ X0 is at most countable.

We say that compact dynamical G-systems X,Y are strongly almost 1-1 equiv-
alent if there exist a continuous G-map π : X → Y and two countable subsets
X1 ⊂ X,Y1 ⊂ Y such that the restriction π : X \ X1 → Y \ Y1 is bijective. One
may show that a surjective strongly almost 1-1 equivalence π : X → Y is exactly a
strongly almost 1-1 extension.

Remark 18.45 In [45, p. 30] Jolivet calls a strong almost 1-1 equivalence “semi-
conjugation”. However, the name semi-conjugation is often used as a synonym to
factor map; so we use “strong almost 1-1 equivalence” instead.

The next lemma is well known; for completeness we provide the short proof.

Lemma 18.46 Let π : X → Y be a continuous onto G-map of compact metric
G-systems. Set

X0 := {x ∈ X : |π−1(π(x))| = 1}.
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Then the restriction map π : X0 → Y0 is a topological homeomorphism of G-
subspaces, where Y0 := π(X0).

Proof Since G is a group X0 and Y0 are G-invariant. The map π : X0 → Y0 is
a continuous bijection. For every converging sequence yn → y, where yn, y ∈ Y0
the preimage π−1({ y} ∪ { yn}n∈N) is a compact subset of X. On the other hand,
π−1({ y} ∪ { yn}) ⊂ X0 by the definition of X0. It follows that the restriction of π to
π−1({ y} ∪ { yn}) is a homeomorphism and π−1(yn) converges to π−1(y).

As a corollary of Theorem 18.38 one can derive the following result which
generalizes the above mentioned result of Huang [41] from Example 18.33(2).

Theorem 18.47 ([33]) Let π : X → Y be a strongly almost 1-1 extension of
compact metric G-systems. Assume that the dynamical system (G,Y) is tame and
that the set p−1(y) is (at most) countable for every p ∈ E(Y) and y ∈ Y,3 then
(G,X) is also tame.

Proof We have to show that every f ∈ C(X) is tame. Assuming the contrary,
suppose fG contains an independent sequence fsn. Since Y is metrizable and tame,
one can assume (by Theorem 18.11) that the sequence sn converges pointwise to
some element p of E(G,Y). Consider the set Y0 ∩ p−1Y0, where Y0 = π(X0).
Since p−1(y) is countable for every y ∈ Y \ Y0 it follows that Y \ (Y0 ∩ p−1Y0) is
countable. Therefore, by the definition of X0 and the countability of X \ X0, we see
that X \π−1(Y0 ∩ p−1Y0) is also countable. Now observe that the sequence ( fsn)(x)
converges for every x ∈ π−1(Y0 ∩ p−1Y0). Indeed if we denote y = π(x) then sny
converges to py in Y. In fact we have py ∈ Y0 (by the choice of x) and sny ∈ Y0.
By Lemma 18.46, π : X0 → Y0 is a G-homeomorphism. So we obtain that snx
converges to π−1(py) in X0. Since f : X → R is continuous, ( fsn)(x) converges to
f (π−1(py)) in R. Each fsn is a continuous function, hence so is also its restriction to
π−1(Y0 ∩ p−1Y0). Therefore the limit function φ : π−1(Y0 ∩ p−1Y0)→ R is Baire
1. Since C:=X \ π−1(Y0 ∩ p−1Y0) is countable and fsn is an independent sequence
and Theorem 18.38 provides the sought-after contradiction.

Corollary 18.48 (Huang [41] for Cascades) Let π : X → Y be a strong almost
1-1 equivalence of compact metric G-systems, where Y is equicontinuous. Then X
is tame.

Proof Consider the induced factor X → f (X) ⊂ Y and apply Theorem 18.47.

Recall the following:

Problem 18.49 (A Version of Pisot Conjecture [45, page 31]) Is it true that every
(unimodular) irreducible Pisot substitution dynamical system is semi-conjugate to a
toral translation?

3E.g., this latter condition is always satisfied when Y is distal. Another example of such (non-distal)
system is the Sturmian system.
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By Corollary 18.48 a related question is:

Problem 18.50 (A Weaker Form of Pisot Conjecture) Is it true that every
substitutional symbolic dynamical system with Pisot conditions above is always
tame?

Remark 18.51 Jolivet [45, Theorem 3.1.1], in the context of Pisot conjecture, dis-
cusses some (substitution) dynamical systems which semi-conjugate to a translation
on the two-dimensional torus. In particular:

(a) (Rouzy) Tribonacci 3-letter substitution.
(b) Arnoux-Rouzy substitutions.
(c) Brun substitution.
(d) Jacobi-Perron substitution.

By Corollary 18.48 all these systems are tame.

18.7 Remarks About Order Preserving Systems

18.7.1 Order Preserving Action on the Unit Interval

Recall that for the group G = H+[0, 1] comprising the orientation preserving self-
homeomorphisms of the unit interval, the G-system X = [0, 1] with the obvious G-
action is tame [31]. One way to see this is to observe that the enveloping semigroup
of this dynamical system naturally embeds into the Helly compact space (and hence
is a Rosenthal compact space). By Theorem 18.11, (G,X) is tame. We list here some
other properties of H+[0, 1].
Remark 18.52 Let G := H+[0, 1]. Then

1. (Pestov [63]) G is extremely amenable.
2. [28] WAP(G) = Asp(G) = SUC(G) = {constants} and every Asplund

representation of G is trivial.
3. [31] G is representable on a (separable) Rosenthal space.
4. (Uspenskij [74, Example 4.4]) G is Roelcke precompact.
5. UC(G) ⊂ Tame(G), that is, the Roelcke compactification of G is tame.
6. Tame(G) = UC(G).
7. Tame(G) = RUC(G), that is, G admits a transitive dynamical system which is

not tame.
8. [58] H+[0, 1] and H+(T) are minimal topological groups.

In properties (5) and (6) we answer two questions of Ibarlucia which are related
to [42]. For the details see [33].

Theorem 18.53 The Polish group G = H+(T) is Roelcke precompact.
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Proof First a general fact: if a topological group G can be represented as G = KH,
where K is a compact subset and H a Roelcke-precompact subgroup, then G is also
Roelcke-precompact. This is easy to verify either directly or by applying [66, Prop.
9.17]. As was mentioned in Theorem 18.52(4), H+[0, 1] is Roelcke precompact.
Now, observe that in our case G = KH, where H := St(1) ∼= H+[0, 1] is the
stability group of 1 ∈ T and K ∼= T is the subgroup of G consisting of the rotations
of the circle. Indeed, the coset space G/H is homeomorphic to T and there exists a
natural continuous section s : T→ K ⊂ G.

18.7.2 Circularly Ordered Systems

In [34] we introduce the class of circularly ordered (c-ordered) dynamical systems
which naturally generalizes the class of linearly ordered systems. A compact S-
system X is said to be c-ordered (notation (S,X) ∈ CODS) if the topological space
X is c-ordered and every s-translation X → X is c-order preserving.

Example 18.54

1. With every c-ordered compact space there is the associated topological group
H+(X) of c-order preserving homeomorphisms. Certainly, X is a c-ordered
H+(X)-system. Every linearly ordered G-system is c-ordered.

2. The Sturmian like Z
k-subshifts from Example 18.42 admit a circular order.

Moreover, their enveloping semigroups also are c-ordered systems [34].
3. Every element g of the projective group PGL(2,R) defines a homeomorphism

on the circle T→ T which is either c-order preserving or c-order reversing.

Theorem 18.55 ([34])

1. Every c-ordered compact, not necessarily metrizable, S-space X is Rosenthal
representable (that is, WRN), hence, in particular, tame. So, CODS ⊂ WRN ⊂
Tame.

2. The topological group H+(X) (with compact open topology) is Rosenthal
representable for every c-ordered compact space X. For example, this is the case
for H+(T).

The Ellis compactification j : G → E(G,T) of the group G = H+(T)
is a topological embedding. In fact, observe that the compact open topology on
j(G) ⊂ C+(T,T) coincides with the pointwise topology. This observation implies,
by [32, Remark 4.14], that Tame(G) separates points and closed subsets. For any
group G having sufficiently many tame functions the universal tame semigroup
compactification G → GTame is a topological embedding.
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Remark 18.56

1. Regarding Theorem 18.52(2) we note that recently Ben-Yaacov and Tsankov [4]
found some other Polish groups G for which WAP(G) = {constants} (and which
are therefore also reflexively trivial).

2. Although G = H+(T) is representable on a (separable) Rosenthal Banach
space, the group H+(T) is Asplund-trivial. Indeed, it is algebraically simple [19,
Theorem 4.3] and contains a copy of H+[0, 1] = St(z) (a stabilizer group of some
point z ∈ T) which is Asplund-trivial [28]. Now, as in [28, Lemma 10.2], use an
observation of Pestov, which implies that any continuous Asplund representation
of H+(T) is trivial.

Question 18.57 Is it true that the universal tame compactification ut : G → GTame

is an embedding for every Polish group G?

The universal Polish group G = H[0, 1]N is a natural candidate for a
counterexample.

18.7.3 Noncommutative Sturmian Like Symbolic Systems

The following construction yields many tame coding functions for subgroups of
H+(T), and via any abstract homomorphism h : G → H+(T), we obtain coding
functions on G.

Theorem 18.58 Let h : G → H(T) be a group homomorphism and let

f : T→ A := {0, . . . , d}

be a finite coloring map induced by a finite partition of the circle T comprising
disjoint arcs.

Then, for any given point z ∈ T we have:

1. the coding function ϕ = m( f , z) : G → {0, . . . , d} is tame on the discrete copy
of G.

2. the corresponding symbolic G-system Gϕ ⊂ {0, 1, · · · , d}G is tame.
3. if the action of G on T is minimal then, in many cases, the G-system Gϕ is minimal

and circularly ordered.

Proof (A Sketch) The coloring map f : T → A := {0, . . . , d} has bounded
variation. Every circle homeomorphism g ∈ H(T) is either circular order preserving
or reversing. This implies that the orbit fG = { fg : g ∈ G}, as a bounded family
of real (discontinuous) functions on T, has bounded total variation. As we know by
Megrelishvili [57] and Glasner and Megrelishvili [34] any such family on T (or, on
any other circularly ordered set) is tame. From Lemma 18.36(4) we conclude that
ϕ = m( f , z) is a tame function. This yields (1) and (2). For (3) we use some results
from [34].
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Remark 18.59 Some particular cases of this construction (for a suitable h) are as
follows:

1. Sturmian and Sturmian like multidimensional symbolic Z
k-systems (Exam-

ple 18.42).
2. Consider a subgroup G of PSL2(R), isomorphic to F2, which is generated by

two Möbius transformations as in [30], say an irrational rotation and a parabolic
transformation. When d = 1 (two colors) we get the corresponding minimal tame
subshift X ⊂ {0, 1}F2 .

3. One can consider coding functions on any Fuchsian group G. E.g., for the
noncommutative modular group G = PSL2(Z) � Z2 ∗ Z3.

4. More generally, at least in the assertions (1) and (2) of Theorem 18.58, one may
replace the circle T by any circularly ordered set.

18.8 Tame Minimal Systems and Topological Groups

Recall that for every topological group G there exists a unique universal minimal G-
system M(G). Frequently M(G) is nonmetrizable. For example, this is the case for
every locally compact noncompact G. On the other hand, many interesting massive
Polish groups are extremely amenable that is, having trivial M(G). See for example
[62–64, 74]. The first example of a nontrivial yet metrizable M(G) was found by
Pestov. In [63] he shows that for G := H+(T) the universal minimal system M(G)

can be identified with the natural action of G on the circle T. Glasner and Weiss
[36, 37] gave an explicite description of M(G) for the symmetric group S∞ and
for H(C) (the Polish group of homeomorphisms of the Cantor set C). Using model
theory Kechris, Pestov and Todorc̆ević gave in [47] many new examples of various
subgroups of S∞ with metrizable (and computable) M(G).

Note that the universal almost periodic factor MAP(G) of M(G) is the Bohr
compactification b(G) of G. When the induced homomorphism G → Homeo b(G)

is injective (trivial) the topological group G is called maximally (resp., minimally)
almost periodic. Every topological group G has a universal minimal tame system
Mt(G) which is the largest tame G-factor of M(G). It is not necessarily AP (in
contrast to the HNS and WAP cases). There are (even discrete) minimally almost
periodic groups which however admit effective minimal tame systems, or in other
words, groups for which the corresponding homomorphism G → Homeo (Mt(G)) is
injective. For example, the countable group PSL2(Q) is minimally almost periodic
(von Neumann and Wigner) even in its discrete topology. It embeds densely into
the group PSL2(R) which acts effectively and transitively on the circle. Thus, the
circle provides a topologically effective minimal action for every dense subgroup G
of PSL2(R). In particular, it is effective (though not topologically effective) for the
discrete copy of PSL2(Q).



18 More on Tame Dynamical Systems 385

Question 18.60 Which Polish groups (e.g., discrete countable groups) G have
effective tame minimal actions? Equivalently, when is the homomorphism G →
Homeo (Mt(G)) injective?

Next we will discuss in more details the question “when is M(G) tame?”.

Definition 18.61 We say that a topological group G is intrinsically tame if one of
the following equivalent conditions is satisfied:

1. every continuous action of G on a compact space X admits a G-subsystem Y ⊂ X
which is tame.

2. any minimal compact G-system is tame.
3. the universal minimal G-system M(G) is tame.
4. the natural projection M(G)→ Mt(G) is an isomorphism.

The G-space Mt(G) can also be described as a minimal left ideal in the universal
tame G-system GTame. Recall that G → GTame is a semigroup G-compactification
determined by the algebra Tame(G). The latter is isomorphic to its own enveloping
semigroup and thus has a structure of a compact right topological semigroup.
Moreover, any two minimal left ideals there, are isomorphic as dynamical systems.

In [27] we defined, for a topological group G and a dynamical property P, the
notion of P-fpp (P fixed point property). Namely G has the P-fpp if every G-
system which has the property P admits a G fixed point. Clearly this is the same
as demanding that every minimal G-system with the property P be trivial. Thus for
P = Tame a group G has the tame-fpp iff Mt(G) is trivial.

We will need the following theorem which extends a result in [24].

Theorem 18.62 Let (G,X) be a metrizable minimal tame dynamical system and
suppose it admits an invariant probability measure. Then (G,X) is point distal. If
moreover, with respect to μ the system (G, μ,X) is weakly mixing then it is a trivial
one point system.

Proof With notations as in [24] we observe that for any minimal idempotent v ∈
E(G,X) the set Cv of continuity points of v restricted to the set vX, is a dense Gδ

subset of vX and moreover Cv ⊂ vX [24, Lemma 4.2.(ii)]. Also, by [24, Proposition
4.3] we have μ(vX) = 1, and it follows that vX = X. The proof of the claim that
(G,X) is point distal is now finished as in [24, Proposition 4.4].

Finally, if the measure preserving system (G, μ,X) is weakly mixing it follows
that it is also topologically weakly mixing. By the Veech-Ellis structure theorem
for point distal systems [14, 75], if (G,X) is nontrivial it admits a nontrivial
equicontinuous factor, say (G,Y). However (G,Y), being a factor of (G,X), is at
the same time also topologically weakly mixing which is a contradiction.

Theorem 18.63

1. Every extremely amenable group is intrinsically tame.
2. The Polish group H+(T) of orientation preserving homeomorphisms of the circle

is intrinsically tame.
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3. The Polish groups Aut (S(2)) and Aut (S(3)), of automorphisms of the circular
directed graphs S(2) and S(3), are intrinsically tame.

4. A discrete group which is intrinsically tame is finite.
5. For an abelian infinite countable discrete group G, its universal minimal tame

system Mt(G) is a highly proximal extension of its Bohr compactification GAP

(see e.g. [24]).
6. The Polish group H(C), of homeomorphisms of the Cantor set, is not intrinsically

tame.
7. The Polish group G = S∞, of permutations of the natural numbers, is not

intrinsically tame. In fact Mt(G) is trivial; i.e. G has the tame-fpp.

Proof

(1) Is trivial.
(2) Follows from Pestov’s theorem [63], which identifies (G,M(G)) for G =

H+(T) as the tautological action of G on T, and from Theorem 18.55 which
asserts that this system is tame (being c-ordered).

(3) The universal minimal G-systems for the groups Aut (S(2)) and Aut (S(3)) are
computed in [61]. In both cases it is easy to check that every element of the
enveloping semigroup E(M(G)) is an order preserving map. As there are only
2ℵ0 order preserving maps, it follows that the cardinality of E(M(G)) is 2ℵ0 ,
whence, in both cases, the dynamical system (G,M(G)) is tame.

In order to prove Claim (4) we assume, to the contrary, that G is infinite and
apply a result of Weiss [76], to obtain a minimal model, say (G,X, μ), of the
Bernoulli probability measure preserving system (G, {0, 1}G, ( 1

2 (δ0 + δ1))
G).

Now (G,X, μ) is metrizable, minimal and tame, and it carries a G-invariant
probability measure with respect to which the system is weakly mixing.
Applying Theorem 18.62 we conclude that X is trivial. This contradiction
finishes the proof.4

(5) In [41, 50] and [24] it is shown that a metric minimal tame G-system is an almost
one-to-one extension of an equicontinuous system. Now tameness is preserved
under sub-products, and because our group G is countable, it follows that Mt(G)

is a minimal sub-product of all the minimal tame metrizable systems. In turn this
implies that Mt(G) is a (non-metrizable) highly proximal extension of the Bohr
compactification GAP of G.

(6) To see that G = H(C) is not intrinsically tame it suffices to show that the
tautological action (G,C), which is a factor of M(G), is not tame. To that end
note that the shift transformation σ on X = {0, 1}Z is a homeomorphism of
the Cantor set. Now the enveloping semigroup E(σ,X) of the cascade (σ,X), a
subset of E(G,X), is homeomorphic to βN.

4Modulo an extension of Weiss’ theorem, which does not yet exist, a similar idea would work for
any locally compact group. The more general statement would be: A locally compact group which
is intrinsically tame is compact.
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(7) To see that G = S∞ is not intrinsically tame we recall first that, by Glasner
and Weiss [35], the universal minimal dynamical system for this group can
be identified with the natural action of G on the compact metric space X =
LO(N) of linear orders onN. Also, it follows from the analysis of this dynamical
system that for any minimal idempotent u ∈ E(G,X) the image of u contains
exactly two points, say uX = {x1, x2}. A final fact that we will need concerning
the system (G,X) is that it carries a G-invariant probability measure μ of full
support [35]. Now to finish the proof, suppose that (G,X) is tame. Then there is
a sequence gn ∈ G such that gn → u in E(G,X). If f ∈ C(X) is any continuous
real valued function, then we have, for each x ∈ X,

lim
n→∞ f (gnx) = f (ux) ∈ { f (x1), f (x2)}.

But then, choosing a function f ∈ C(X) which vanishes at the points x1 and x2
and with

∫
f dμ = 1, we get, by Lebesgue’s theorem,

1 =
∫

f dμ = lim
n→∞

∫
f (gnx) dμ =

∫
f (ux) dμ = 0.

Finally, the property of supporting an invariant measure, as well as the fact
that the cardinality of the range of minimal idempotents is � 2, are inherited by
factors and thus the same argument shows that M(G) admits no nontrivial tame
factor. Thus Mt(G) is trivial.

We will say that G is intrinsically c-ordered if the G-system M(G) is circularly
ordered. Using this terminology Theorem 18.63 says that the Polish groups G =
H+(T), Aut (S(2)) and Aut (S(3)) are intrinsically c-ordered. Note that for G =
H+(T) every compact G-space X contains a copy of T as G-subspace or a G-fixed
point.

The (nonamenable) group G = H+(T) has one more remarkable property.
Besides M(G), one can also effectively compute the affine analogue of M(G).
Namely, the universal irreducible affine system of G (we denote it by IA(G)) which
was defined and studied in [20, 21]. It is uniquely determined up to affine iso-
morphisms. For any topological group G the corresponding affine compactification
G → IA(G) coincides with the affine compactification G → P(Msp(G)), where,
Msp(G) is the universal strongly proximal minimal system of G and P(Msp(G)) is the
space of probability measures on the compact space Msp(G). For more information
regarding affine compactifications of dynamical systems we refer to [31].

Definition 18.64 We say that G is convexly intrinsically tame if one of the
following equivalent conditions is satisfied:

1. every compact affine dynamical system (G,Q) admits an affine tame G-
subsystem.

2. every compact affine dynamical system (G,Q) admits a tame G-subsystem.
3. every irreducible affine G-system is tame.
4. the universal irreducible affine G-system IA(G) is tame.
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Note that the G-system P(X) is affinely universal for a G-system X; also, P(X)

is tame whenever X is [29, 31, Theorem 6.11]. In particular, it follows that any
intrinsically tame group is convexly intrinsically tame.

It is well known that a topological group G is amenable iff Msp(G) is trivial (see
[21]). Thus G is amenable iff IA(G) is trivial and it follows that every amenable
group is trivially convexly intrinsically tame.

Thus we have the following diagram which emphasizes the analogy between the
two pairs of properties:

Remark 18.65 Given a class P of compact G-systems which is stable under
subdirect products, one can define the notions of an intrinsically P group and a
convexly intrinsically P group in a manner analogous to the one we adopted for
P = Tame. We then note that in this terminology a group is convexly intrinsically
HNS (and, hence, also conv-int-WAP) iff it is amenable. This follows easily from the
fact that the algebra Asp(G) is left amenable [30]. This “collapsing effect” together
with the special role of tameness in the dynamical BFT dichotomy 18.11 suggest
that the notion of convex intrinsic tameness is a natural analogue of amenability.

At least for discrete groups, if G is intrinsically HNS then it is finite. In fact, for
any group, an HNS minimal system is equicontinuous (see [27]), so that for a group
G which is intrinsically HNS the universal minimal system M(G) coincides with its
Bohr compactification GAP. Now for a discrete group, it is not hard to show that an
infinite minimal equicontinuous system admits a nontrivial almost one to one (hence
proximal) extension which is still minimal. Thus M(G) must be finite. However, by
a theorem of Ellis [13], for discrete groups the group G acts freely on M(G), so that
G must be finite as claimed. Probably similar arguments will show that a locally
compact intrinsically HNS group is necessarily compact.

Theorem 18.66

1. S∞ is amenable (hence convexly intrinsically tame) but not intrinsically tame.
2. H(C) is not convexly intrinsically tame.
3. H([0, 1]N) is not convexly intrinsically tame.
4. H+(T) is a (convexly) intrinsically tame nonamenable topological group.
5. SLn(R), n > 1 (more generally, any semisimple Lie group G with finite center

and no compact factors) is convexly intrinsically tame nonamenable topological
group.

Proof

(1) S∞ is amenable [12]. It is not intrinsically tame by Theorem 18.63(7).
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(2) Natural action of H(C) on the Cantor set C is minimal and strongly proximal,
but this action is not tame; it contains, as a subaction, a copy of the full shift
(Z,C) ∼= (σ, {0, 1}Z).

(3) The group H([0, 1]N) is a universal Polish group (see Uspenskij [73]). It is not
convexly intrinsically tame. This can be established by observing that the action
of this group on the Hilbert cube is minimal, strongly proximal and not tame.
The strong proximality of this action can be easily checked. The action is not
tame because it is a universal action (see [53]) for all Polish groups on compact
metrizable spaces.

(4) The (universal) minimal G-system T for G = H+(T) is strongly proximal.
Hence, IA(G) in this case is easily computable and it is exactly P(T) which,
as a G-system, is tame (by Theorem 18.63(4)). Thus, H+(T) is a (convexly)
intrinsically tame.

(5) By Furstenberg’s result [18] the universal minimal strongly proximal system
Msp(G) is the homogeneous space X = G/P, where P is a minimal parabolic
subgroup (see [21]). Results of Ellis [15] and Akin [1] (Example 18.33(1)) show
that the enveloping semigroup E(G,X) in this case is a Rosenthal compact
space, whence the system (G,X) is tame by the dynamical BFT dichotomy
(Theorem 18.11).

In particular, for G = SL2(R) note that in any compact affine G-space we can
find either a 1-dimensional real projective G-space (a copy of the circle) or a fixed
point. For general SLn(R), n � 2—flag manifolds and their G-quotients.
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Chapter 19
A Piecewise Rotation of the Circle, IPR
Maps and Their Connection with
Translation Surfaces

Kae Inoue and Hitoshi Nakada

19.1 Introduction

In the authors’ paper [3], we extended Cruz and da Rocha’s idea [2] and gave a
continuum version of castles arising from a piecewise rotation map of the circle
and defined a map, which gives an inverse of the invertible Rauzy-Veech induction
[7, 9], on a suitable set of castles. Moreover we showed that from every interval
exchange map one can construct a piecewise rotation which produces the same
Rauzy class arising from the given interval exchange map. This Rauzy class depends
on the choice of the discontinuous point of the piecewise rotation map of the circle.
However, in [3], it was not clear that which Rauzy class we can get when we
choose a different discontinuous point of the same piecewise rotation map. Indeed
we left this problem as an open question. Also there was no discussion of translation
surfaces from piecewise rotation maps. In this paper, we show that we can get
any Rauzy class in the same extended Rauzy class by choosing an appropriate
discontinuous point. In other words, we see that each Rauzy class from the same
extended Rauzy class appears by the choice of the discontinuous point. This result
is shown by the construction of the translation surface with fixed of the singularities.
Here the construction gives a dynamic point of view for the structure of translation
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surfaces. We recall [1, 6, 9] that

s∑

j=1

dj = 2g− 2 (19.1)

is the only restriction for translation surfaces where (d1, . . . , ds)’s components are
the orders of singularities with the translation surface.

We start with the definition of interval exchange maps and the Rauzy induction.
To make it simpler, we use Keane’s definition (see [4, 5, 8, 9]) rather than Viana [10]
and Yoccoz [11].

We fix an integer d > 1 and π is a permutation of {1, . . . , d} such that
π{1, . . . , k} = {1, . . . , k} implies k = d. We call such π an irreducible
permutation. We consider I = [0, 1) and its partition { I1, . . . , Id} where Ij =
[βj−1, βj) with 0 = β0 < β1 < · · · < βd . We put λj = |Ij| = βj − βj−1 and
define βπ

j =
∑

k� j λπ−1(k) for 1 � j � d. Then the interval exchange Tπ is defined
by

Tπ (x) = x− βj−1 + βπ
π( j)−1

for x ∈ Ij, 1 � j � d. We call (λ1, . . . , λd) the length data and π the combinatorial
data of T.

The Rauzy-Veech induction R (or Rauzy induction) is defined as follows: there
are two cases.

(Case i) λd > λπ−1(d)
(Case ii) λd < λπ−1(d)

We consider the induced map of T to [0, βd−1) or [0, βπ
d−1), denoted by T[0,βd−1)

and T[0,βπ
d−1)

, respectively, and define RT by

RT(x) =
{

T[0,βπ
d−1)

(βπ
d−1x) if Case i

T[0,βd−1)(βd−1x) if Case ii

for x ∈ I. Here we note the these two induced maps are also d-interval exchange
maps. We exclude the case λd = λπ−1(d) for the discussion of R.

Since RT is also an interval exchange, there exists an irreducible permutation
π ′ associated to RT. The Rauzy class of π is the set of irreducible permutations
associated to RnTπ for all n � 0 with all possible choices of β1, . . . , βd−1.

Next we consider a permutation σ on {0, 1, . . . , d} defined as follows,

σπ ( j) =

⎧
⎪⎪⎨

⎪⎪⎩

π−1(1)− 1 j = 0

d j = π−1(d)

π−1(π( j)+ 1)− 1 otherwise.
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It turns out later that this gives the order of a singularity of a translation surface
arising from π . To construct a translation surface, we consider h, a ∈ R

d such that

hj − aj = hσπ( j)+1 − aσπ ( j) (19.2)

for 0 � j � d, where a0 = h0 = hd+1 = 0. We put some additional condition on h
and a, see [9]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

hj � 0 1 � j � d

aj � 0 1 � j � d − 1

−hπ−1(d) � ad � hd

aπ−1(d) � hπ−1(d)+1

aj � min(hj, hj+1) 0 � j < d, j = π−1(d).

(19.3)

Then we can construct “zippered rectangles” [9]. However, here, we directly
construct a translation surface. The definition of the zippered rectangles will be
given later in Sect. 19.5.

For each 1 � j � d, we define

{
ξj = βj + aji

ξ∗j = βπ
j − i(hπ−1( j) − aπ−1( j)−1)

(19.4)

Here we also put ξ0 = ξ∗0 = 0. We note that ξd = ξ∗d holds.
Then, under an additional condition, we can construct a polygon by the set of

vertices {ξj, ξ∗j : 0 � j � d} and sides are determined by (ξj−1, ξj) and also
(ξ∗j−1, ξ∗j ), 1 � j � d. For every 1 � j � d, two sides (ξπ−1( j)−1, ξπ−1( j)) and
(ξ∗j−1, ξ∗j ) are parallel from (19.2) and have the same length.

Hence we can identify (ξπ−1( j)−1, ξπ−1( j)) and (ξ∗j−1, ξ∗j ), we get a Riemann
surface which is called a translation surface. Here two sides (ξd−1, ξd) and
(ξ∗d−1, ξ∗d ) may intersect. In this case we can reform the figure given by {ξj, ξ∗j :
0 � j � d} to get a polygon with 2d sides (see Viana [10] for example).

The map T to RT is extended to a map R̂ of a set of (h, a) satisfying (19.2)
and (19.3) to itself by (h, a) to (h′, a′):

(Case i) λd > λπ−1(d)

h′j =
{

hπ−1(d) + hd if j = π−1(d)

hj otherwise,

a′j =
{
−(hπ−1(d) − aπ−1(d)−1) if j = d

aj otherwise.
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(Case ii) λd < λπ−1(d)

h′j =

⎧
⎪⎪⎨

⎪⎪⎩

hj if 1 � j � π−1(d)

hπ−1(d) + hd if j = π−1(d)+ 1

hj−1 otherwise,

a′j =

⎧
⎪⎪⎨

⎪⎪⎩

aj if 1 � j < π−1(d)

hπ−1(d) + ad−1 if j = π−1(d)

aj−1 otherwise.

We see that R̂ is bijective. We note that even if two sides (ξd−1, ξd) and
(ξ∗d−1, ξ∗d ) intersect, we always have a polygon (i.e. no intersection) by iterations

of R̂.
Now we consider the orders of singularities of the translation surface given in the

above. For j and j′, 0 � j, j′ � d, if there exists n ∈ Z such that σ n
π( j) = j′, then ξj

and ξj′ , denote the same branch point. Then #{ j′ : 1 � j′ � d − 1, j′ = σ n
π( j), n ∈

Z}−1 is the order of a singularity of branch point with respect to j. Let s � 1 be the
number of branch points and d1, . . . , ds be their orders of singularities. For a branch
point arising from 0(= 0 + ia0) (the σπ -equivalence class of ξj, ξ∗j , 0 � j � d,
including ξ0) is said to be the marked singularity. For (d1, . . . , ds) satisfies (19.1),
g is the genus of the translation surface. For any j, 1 � j � s, there exists an interval
exchange map which produces a translation surface with the vector (d1, . . . ds)

which consists of a given order of a singularity and the marked singularity of order
dj. The set of irreducible d-permutations which appears in the combinatorial data of
the interval exchange map associated to (d1, . . . , ds) (satisfying (19.1)) is called the
extended Rauzy class and the number of Rauzy classes in the extended Rauzy class
is the number of different values of (d1, . . . ds), see [1].

In this paper, we show that for any (d1, . . . , ds) satisfying (19.1), there exists a
piecewise rotation map S of the circle with d− 1 =∑s

j=1 dj + s− 1 discontinuous
points such that the induced equivalence relation of the discontinuous points induces
m disjoint classes and given by (d1, . . . , ds). Moreover we construct translation
surfaces with its vector (d1, . . . ds) and a given marked singularity order dj, 1 �
j � s.

The main purpose of this paper is to show that a construction of translation
surfaces from a piecewise rotation of the circle based on the idea by Cruz and
da Rocha [2] is equivalent to the construction of translation surfaces stated in the
above. Moreover, we give the map of a translation surface to a translation surface
(a castle to a castle) which is gives the inverse of R̂. Concerning this map, we give
a sufficient condition on our construction being a translation surface. This process
naturally induces the inverse of the Zorich map (e.g. [10, 12]). Most of results extend
the authors’ previous paper [3] in terms of translation surfaces. The introduction of
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the equivalence relation to the set of discontinuous points of a piecewise rotation
map (in Sect. 19.2) is crucial in this paper.

In Sect. 19.2, we give the explicit definition of the piecewise rotation map Sα

and introduce an equivalence relation on the set of discontinuous points of Sα. Then
we show that for any positive integer vector (d1, d2, . . . , ds) such that

∑s
j=1 dj is

even, there exists a piecewise rotation map Sα with
∑s

j=1 dj + s − 1 discontinuous
points such that the equivalence relation of the set of discontinuous points defined
by Sα consists of s classes Λj, 1 � j � s, such that Λj has dj points. In Sect. 19.3,
we recall the notions of the critical iterates, IPR maps (Induced Piecewise Rotation
maps) induced in [3], and (discrete) castles following Cruz and da Rocha [2]. As an
application, we construct a translation surface from a castle arising from a castle
defined by an critical iterate. In Sect. 19.4, we recall the notion of (continuum)
castles associated to IPR maps. This is a simple generalization of castles defined in
Sect. 19.3. Then we construct a translation surface from a castle and show that there
is a natural correspondence between this translation surface and a translation surface
defined by (19.4) in the above. We also show that the equivalence relation introduced
σ̂π introduced in Sect. 19.2 corresponds to the equivalence relation σπ in the above
as the singularities of the translation surface. Finally, we give a brief explanation
between castles and zippered rectangles and between the invertible extension of
Rauzy-Veech induction and a map defined on castles reforming [3]. We also remark
one simple condition (inducing a jump of the transformation) on which a castle gives
a translation surface. This condition leads us the inverse of the Zorich map as stated
in the above.

19.2 Piecewise Rotation of the Circle

We consider T = [0, 1) (= R/Z) as the unit circle. For a given positive integer
d � 4, we give

0 = δ1 < δ2 < · · · < δd−1

and a permutation p of {0, 1, . . . , d−1}. We consider the partition {I1, . . . , Id−1},
which consists of intervals (arcs), generated by δj, 1 � j � d − 1, i.e.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I1 = [δ1, δ2)

I2 = [δ2, δ3)

...

Id−1 = [δd−1, δ1)
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and we put

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�1 = δ2 − δ1

�2 = δ3 − δ2
...

�d−1 = 1− δd−1.

For x ∈ T, we define

S(x) = x− δj +
∑

k:p(k)<p( j)

�k (19.5)

for x ∈ Ij, 1 � i < d and

Sα(x) = S(x)+ α (mod 1) (19.6)

for 0 � α < 1. We assume that {Sn
α(x)} = T for any x ∈ T and that each δj,

1 � j � d − 1, is a discontinuous point.
From the permutation p of {1, 2, . . . , d − 1}, we define a map σ̂p of

{1, 2, . . . , d − 1} onto itself by

σ̂p( j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if 2 � p( j) and p−1( p( j)− 1) = d − 1

1 if p( j) = 1 and p−1(d − 1) = d − 1

p−1(d − 1)+ 1 if p( j) = 1 and p−1(d − 1) = d − 1

p−1( p( j)− 1)+ 1 if 2 � p( j) and p−1( p( j)− 1) = d − 1.

(19.7)

We consider the equivalence relation “∼” of {δj : 1 � j � d − 1} defined by σ̂p,
i.e. δj ∼ δj′ if and only if there exists n ∈ Z such that σ̂ n

p ( j) = j′. We denote by
Λk, 1 � k � s, its equivalence class i.e. δj and δj′ are in the same Λk if and only if
δj ∼ δj′ . The number of classes s is determined by p.

Lemma 19.1 For any j, 1 � j � d − 1,

σ̂p( j) = j′

if and only if

lim
ε↘0

Sα(δj′ − ε) = Sα(δj)
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Fig. 19.1 S(δj) and S(δj′−1)

Proof We show the assertion of this lemma. Because x ∈ Ij′−1, from (19.6) and
(19.5) (Fig. 19.1),

lim
ε↘0

Sα(δj′ − ε) = lim
ε↘0

Sα(δσ̂p( j) − ε)

= lim
ε↘0

S(δσ̂p( j) − ε)− δσ̂p( j)−1 +
∑

k:p(k)<p(σ̂p( j)−1)

�k + α.

As σ̂p( j) = p−1(p( j)− 1)+ 1, where we read 1− 1 = d− 1 and d− 1+ 1 = 1
if necessary,

p(σ̂p( j)− 1) = p( p−1( p( j)− 1)+ 1− 1)

= p( j)− 1.

Then,

lim
ε↘0

S(δσ̂p( j) − ε)− δσ̂p( j)−1 +
∑

k:p(k)<p(σ̂p( j)−1)

�k + α

= lim
ε↘0

S(δσ̂p( j) − ε)− δσ̂p( j)−1 +
∑

k:p(k)<p( j)−1

�k + α

=
∑

k:p(k)<p( j)

�k + α

= Sα(δj).

23
We consider the partition {Λ1, . . . , Λs} of {1, . . . , d − 1} given by periodic orbits
of σ̂p.
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We define the order of Λk by

ordσ̂p(Λk) = |Λk| − 1 (19.8)

for 1 � k � s, where |Λk| denotes the cardinality of Λk. We note that if Λk = 1,
then there exists a δj such that σ̂p(δj) = δj which means the map Sα is continuous
at δj. Since we assumed that δj, 1 � j � d − 1 are discontinuous points, this is not
possible. Consequently we have ordσ̂p(Λk) > 0.

From this lemma, one can show that j ∼ j′ if and only if there exist j =
k1, . . . , kn = j′ ∈ {1, . . . , d − 1} such that

Sα(δkt) = lim
ε↘0

Sα(δkt+1 − ε) (19.9)

for 1 � t < n.
Suppose that {d1, . . . , ds}, dj > 0 such that

∑s
j=1 dj is even. We will show that

there exists a piecewise rotation map Sα such that the partition generated by σ̂p

consists of s elements {Λ1, . . . , λs} and ordσ̂p(λk) = dk for every 1 � k � s.

Theorem 19.2 For any positive integer valued vector (d1, . . . , ds) such that∑s
j=1 dj is even, there exists a piecewise rotation map Sα such that the equivalence

relation of the set of discontinuous points arising from the associated permutation
p consists of s classes Λ1, . . . , Λs and each Λj consists of dj + 1 discontinuous
points, 1 � j � s. Moreover {Sn

α(x) : n � 0} = T for any x ∈ T.

We show this theorem in the following steps:

Step 1 d1, . . . , ds are all odd (and consequently s is even.)
Step 2 d1, . . . , ds are all even.
Step 3 d1, . . . , ds, ds+1, . . . , ds+t : d1, . . . , ds are odd with even s and

ds+1, . . . , ds+t are even.

Idea of the Proof We construct an Sα for the case of Step 1 (Proposition 19.3). Then
we use Propositions 19.6 and 19.8 to construct an Sα for the case of Step 2. Finally
we use Proposition 19.8 again to combine Steps 1 and 2 for the case of Step 3.

Proposition 19.3 (Step 1) Suppose d1, . . . , d2s are all positive and odd. Then there
exists Sα such that the equivalence relation of the set of discontinuous points arising
from the associated permutation p consists of 2s classes Λ1, . . . , Λ2s and each Λj

consists of dj + 1 discontinuous points, 1 � j � 2s.

Proof We show this proposition by constructing such an Sα. We fix pos-
itive real numbers �1 1, �1 2, . . . , �1 d1+1, �2 1, �2 2, . . . , �2 d2+1, �3 1, . . . ,

�2s 1, . . . , �2s d2s+1 and α such that
∑

1�j�2s 1�k�dj+1 �j k = 1 and �1 1, . . . ,

�2s d2s+1 and α are independent over rational numbers. The latter assures that Sα

constructed below satisfies the condition {Sn
α(x) : n � 0} = T.
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We divide T into
∑2s

j=1 dj+2s arcs Ij k of length �j k, 1 � j � 2s, 1 � k � dj+1,
respectively so that the right side of Ij k is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ij k+1 if 1 � j � 2s and 1 � k < dj

Ij+1 1 if 1 � j < 2s and k = dj

I1 d1+1 if j = 2s and k = d2s

Ij+1 dj+1+1 if 1 � j < 2s and k = dj + 1

I1 1 if j = 2s and k = d2s + 1.

(19.10)

We denotes by δj k the left end point of Ij k. Then the right end point of Ij k is
determined by the above order of the arcs. We assume that δ1 1 = 0.

We put S(δ1 1) = S(0) = 0 and define S by permutation of arcs Ij k such that

S(δ1 1) < S(δ1 3) < · · · < S(δ1 d1) < S(δ2 2) < S(δ2 4) < · · · < S(δ2 d2+1)

< S(δ3 1) < S(δ3 3) < · · · < S(δ3 d3) < S(δ4 2) < S(δ4 4) < · · ·
< S(δ2s d2s+1) < S(δ1 2) < S(δ1 4) < · · · < S(δ1 d1+1) < S(δ2 1)

< S(δ2 3) < · · · < S(δ3 2) < S(δ3 4) < · · · < S(δ2s 1) < · · ·
< S(δ2s d2s) < 1.

With this definition of Sα, (19.7) can be rewritten in terms of ( j, k) by using
Lemma 19.1. Indeed, we see the following. We use bwd( j, k) and fwd( j, k) instead
of −1 and +1.

By (19.10), we have

p−1(bwd( p( j, k))) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
(2s, d2s) j = 1

( j− 1, dj−1 + 1) otherwise
k = 1

{
(2s, d2s + 1) j = 1

( j− 1, dj−1) otherwise
k = 2

( j, k− 2) otherwise,

then,

σ̂p( j, k) = fwd( p−1(bwd( p( j, k))))
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
(1 d1 + 1) j = 1

( j, dj + 1) otherwise
k = 1

{
(1, 1) j = 1

( j, 1) otherwise
k = 2

( j, k − 1) otherwise.

Hence, σ̂p( j, ·) is the cyclic permutation on {( j, 1), ( j, 2), . . . , ( j, dj + 1)}:

σ̂p( j, k) =
{
( j, k − 1) if 2 � k � dj + 1

( j, dj + 1) if k = 1

and thus we conclude that

Λj = {δj 1, . . . , δj dj+1}

is an equivalence class of arising from σ̂p for 1 � j � 2s. This shows the assertion
of this proposition since the translation by α does not change σ̂p. 23
Remark 19.4 To adjust the index notation, we can put as follows. If j is odd,

p( j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+ 1

2
if 1 � j �

∑2
k=1 dk − 1

j+ 2k′ − 1

2
if
∑2k′

k=1 dk + 1 � j �
∑2k′+2

k=1 dk − 1,

1 � k′ � s− 1
∑2s

k=1 dk + 2s+∑2k′−1
k=1,odd dk + 2k′ − 1

2
if j =∑2s

k=1 dk + 2k′ − 1, 1 � k′ � s.

If j is even,

p( j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑2s
k=1 dk + 2sj

2
if 1 < j < d1

∑2s
k=1 dk + 2s+ k′

2
if
∑2k′−1

k=1 dk + 1 � j <
∑2k′+1

k=1 dk − 1,

1 � k′ � s− 1
∑2k′

k=1 dk

2
+ k′ if j =∑2s

k=1 dk + 2k′, 1 � k′ � s,
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and

Sα(x) = S(x)+ α mod 1 for x ∈ T.

Example 19.5

(1) Suppose that s = 2, d1 = d2 = 1 and we put

p :
(

1 2 3 4
1 3 4 2

)
.

Then we have

σ̂p :
(

1 2 3 4
2 1 4 3

)

and choose suitable 0 � δ1 < δ2 < δ3 < δ4 < 1 and α. In this case, we have
Λ1 = {δ1, δ2} and Λ2 = {δ3, δ4} (Fig. 19.2).

(2) Suppose that s = 2, d1 = 3, d2 = 5 and we put

p :
(

1 2 3 4 5 6 7 8 9 10
1 6 2 8 3 9 4 10 7 5

)
.

Then we have

σ̂p :
(

1 2 3 4 5 6 7 8 9 10
9 1 2 10 4 5 6 7 3 8

)
.

We have Λ1 = {δ1, δ2, δ3, δ9} and Λ2 = {δ4, δ5, δ6, δ7, δ8, δ10} (Fig. 19.3).

To show Step 2, we start with following.

Fig. 19.2 s = 2, d1 = d2 = 1
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Fig. 19.3 s = 2, d1 = 3, d2 = 5

Proposition 19.6 Suppose that d1 is positive and even. Then there exists Sα such
that the equivalence of the set of discontinuous points arising from the associated
permutation p consists of only one class which is the set of discontinuous points
{d1, . . . , dd1+1}.
Proof As the proof of the previous proposition, we fix positive real numbers
�1, . . . , �d1+1 and α such that

∑d1+1
j=1 �j = 1 and �1, . . . , �d1+1 and α arc

independent over rational numbers. We divide T into d1 + 1 arcs Ij of length �j,
1 � j � d1 + 1 such that the right side of Ij is Ij+1 if 1 � j � d1 and I1 if
j = d1 + 1. We denote by δj the left end point of Ij and assume δ1 = 0. We put
S(δ1) = S(0) = 0 and define S by a permutation of arcs Ij so that

0 = S(δ2) < S(δ4) < · · · < S(δd1) < S(δ1) < S(δ3) < S(δd1+1) < 1

and define Sα as

Sα(x) = S(x)+ α mod 1 for x ∈ T.

Then we see

σ̂p( j) =
{

d1 + 1 for j = 1

j− 1 for 2 � j � d1 + 1.

Thus it turns out that σ̂p induces the cyclic permutation on the set of discontinuous
points, which shows the assertion of this proposition. 23
Example 19.7 Suppose that s = 1, d1 = 4 and we put

p :
(

1 2 3 4 5
3 1 4 2 5

)
.
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Fig. 19.4 s = 1, d1 = 4

Then we have

σ̂p :
(

1 2 3 4 5
5 1 2 3 4

)
,

We have Λ1 = {δ1, δ2, δ3, δ4, δ5} (Fig. 19.4).

Proposition 19.8 Suppose that Sα induces the equivalence classes Λ1, . . . , Λs of
the set of discontinuous points {δ1, . . . , δk}. Then for any odd integer 2t + 1, there
exists a piecewise rotation of the circle Ŝα with k + 2t + 1 discontinuous points
such that the associated equivalence classes are Λ1, . . . , Λs, Λs+1 with Λs+1 =
{δk+1, . . . , δk+2t+1}.
Proof We assume that 0 = δ1 < δ2 < · · · < δk < 1. We put δk+1, . . . , δk+2t+1 as

δk < δk+1 < · · · < δk+2t+1 < 1

keeping independence over rational numbers for length of arcs and α. Then Ŝα can
be defined as follows,

• Ŝα(x) = Sα(x) for x ∈ T \ [δk, 1)
• for x ∈ [δk, 1), Ŝα(x) is given by the permutation of arcs [δk, δk+1), [δk+1, δk+2),
· · · , [δk+2t, δk+2t+1), [δk+2t+1, 1) determined by

Ŝα(δk) < Ŝα(δk+2) < Ŝα(δk+4) < · · · < Ŝα(δk+2t) < Ŝα(δk+1)

< Ŝα(δk+3) < · · · < Ŝα(δk+2t+1).

We see that this Ŝα gives the desired map. 23
As mentioned before, we get the assertion of Theorem 19.2 from Proposi-
tions 19.3, 19.6, and 19.8.
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Example 19.9 We start with Sα constructed in Example 19.5 (2) i.e. the equivalence
classes of discontinuous points are

Λ1 = {δ1, δ2, δ3, δ9} and Λ2 = {δ4, δ5, δ6, δ7, δ10}.

We construct Ŝα by adding five discontinuous points

{δ11, δ12, δ13, δ14, δ15}.

so that

⎧
⎨

⎩

Λ1 = {δ1, δ2, δ3, δ9}
Λ2 = {δ4, δ5, δ6, δ8, δ9, δ10}
Λ3 = {δ11, δ12, δ13, δ14, δ15}.

are the equivalence classes. We put

p :
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 11 2 13 3 14 4 15 12 5 8 6 9 7 10

)
.

Then we have

σ̂p :
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
9 1 2 10 4 5 6 7 3 8 15 11 12 13 14

)

and get the desired map Ŝα (Fig. 19.5).

Fig. 19.5 s = 3, d1 = 3, d2 = 5, d3 = 4
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19.3 IPR Map

In the sequel, we assume that {Sn
α(δj) : n � 0} is an infinite set for 1 � j � d − 1

and {Sn
α(δj) : n � 0} ∩ {Sn

α(δk) : n � 0} = ∅ for any 1 � j < k � d − 1.
This assumption corresponds to the i.d.o.c. for interval exchange maps. Hereafter,
[−−→u, v) denotes the arc from u to v in natural order of T. We consider the orbit of
one fixed discontinuous point which we call the marked discontinuous point. Also
we call the equivalence class Λj of the set of discontinuous point which includes the
marked fixed point the marked equivalence class. For simplicity, we choose j = 1.
A positive integer N0 is said to be a critical iterate (associated with δ1) if

1. {Sα(δ1), S2
α(δ1), . . . , SN0

α (δ1)} ∩ Ij = ∅ for 1 � j � d − 1
and either

2. (i) SN0
α (δ1) ∈ Ij0 , #({Sα(δ1), S2

α(δ1), . . . , SN0
α (δ1)} ∩ Ij0) � 2,

and

{Sα(δ1), S2
α(δ1), . . . , SN0

α (δ1)} ∩ [
−−−−−−→
δj0, SN0

α (0)) = ∅,
or,

(ii) SN0
α (δ1) ∈ Ij0−1, #({Sα(δ1), S2

α(δ1), . . . , SN0
α (δ1)} ∩ Ij0−1) � 2,

and

{Sα(δ1), S2
α(δ1), . . . , SN0

α (δ1)} ∩ [
−−−−−−−→
SN0
α (δ1), δj0) = ∅

for some 1 � j0 � d − 1 where we read Id−1 for Ij0−1 if j0 = 1
(Fig. 19.6).

Now we consider the partition V0 generated by {Sα(δ1), S2
α(δ1), . . . , SN0−1

α (δ1)},
which consists of N0−1 arcs. Each element of V0 is of the form [

−−−−−−−−−→
Sn
α(δ1), Sn′

α (δ1)) for
some n, n′, 1 � n, n′ < N0, by the definition. Then for each j, 1 � j � d − 1, there

exist nj and n′j such that [
−−−−−−−−−−→
S

nj
α (δ1), S

n′j
α (δ1)) # δj is an element of V0. We consider

the induced transformation of Sα to J = ∪d−1
j=1 Jj where Jj = [

−−−−−−−−−−→
S

nj
α (δ1), S

n′j
α (δ1)).

This map is called an IPR map and denoted by Sα,N0 . We note that the IPR map

Fig. 19.6 An interval from a circle
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is determined by Sα , the choice of the marked discontinuous point (here, we have
chosen δ1), and the critical iterate N0. We will see that for any piecewise rotation
map of the circle with a given (d1, . . . , ds) in Theorem 19.2 and a critical iterate
N0, the IPR map induces a translation surface with the vector (d1, . . . , ds) of the
orders of singularities, where the marked singularity is determined by the choice of
the marked equivalence class (equivalently the marked discontinuous point).

Since δj, 1 � j � d − 1, is a discontinuous point, SαJj is not an arc, however,

[
−−−−−−−−−−−→
Sα(δj), S

n′j+1
α (δ1)) is a sub-arc of [

−−−−−−−−−−−−−→
Snl+1
α (δ1), S

n′j+1
α (δ1)) for some l, 1 � l � d − 1.

Also [
−−−−−−−−−−−→
S

nj+1
α (δ1), Sα(δj)) is a sub arc of [

−−−−−−−−−−−−−→
S

nj+1
α (δ1), S

n′
l′+1

α (δ1)) for some l′, 1 � l′ �

d − 1. This shows that if [
−−−−−−−−−−−−−→
Snl+1
α (δ1), S

n′j+1
α (δ1)) is an element of V0, then

[
−−−−−−−−−−−−−→
Snl+1
α (δ1), S

n′j+1
α (δ1)) = [

−−−−−−−−−−−→
Snl+1
α (δ1), Sα(δl)) ∪ [

−−−−−−−−−−−→
Sα(δj), S

n′j+1
α (δ1)) (19.11)

holds for some j and l, 2 � j, l � d − 1, see Fig. 19.7. From Lemma 1, we see
σ̂p( j) = l. If j = 1 or l = 1, then we have

[Sα(δ1), S
n′1+1
α (δ1)) ∈ V0 or [Sn1+1

α (δ1), Sα(δ1)) ∈ V0

respectively. In these cases, we regard that one of two terms of the right hand side
of (19.11) is empty. It is also possible that

[
−−−−−−−−−−−→
Snl+1
α (δ1), Sα(δl)) ∪ [

−−−−−−−−−−−→
Sα(δj), S

n′j+1
α (δ1)) /∈ V0.

holds. This happens only at j with Jj # SN0
α (δ1). To distinguish the special case, we

denote by j∗ such a j i.e. Jj∗ = [
−−−−−−−−−−−→
S

nj∗
α (δ1), S

n′j∗
α (δ1)) # SN0

α (δ1).

Fig. 19.7 J and V0
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Here are two cases.

• j = j∗
We put

n( j) = max{n � 0 : [
−−−−−−−−−−−−−→
S

nj−n
α (δ1), S

n′j−n
α (δ1)) is an element of V0}.

Lemma 19.10 For j = j∗,

Jj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sn( j)
α [

−−−−−−−−−−−−−→
S

nσ̂p(1)+1
α (δ1), Sα(δ1)) if S

n′j−n( j)
α (δ1) = Sα(δ1)

Sn( j)
α [

−−−−−−−−−−−→
Sα(δ1), S

n′1+1
α (δ1)) if S

nj−n( j)
α (δ1) = Sα(δ1)

Sn( j)
α [

−−−−−−−−−−−−−−−−→
S

nσ̂p(k)+1
α (δ1), S

n′k+1
α (δ1)) if S

n′j−n( j)
α (δ1), S

nj−n( j)
α (δ1) = Sα(δ1).

Proof This follows from the fact that if j = j∗, then there is no point of the form

Sn
α(δ1), 1 � n < N0 in (

−−−−−−−−−−−−−−→
S

nj−m
α (δ1), S

n′j−m
α (δ1)), 0 � m � n( j). Then the assertion

of the lemma follows from (19.11). 23
• j = j∗

Since [
−−−−−−−−−−−→
S

nj∗
α (δ1), S

n′j∗
α (δ1)) # SN0

α (δ1), we divide

[
−−−−−−−−−−−→
S

nj∗
α (δ1), S

n′j∗
α (δ1)) = [

−−−−−−−−−−−→
S

nj∗
α (δ1), SN0

α (δ1)) ∪ [
−−−−−−−−−−−→
SN0
α (δ1), S

n′j∗
α (δ1))

and define

n( j∗, l) = max{n � 0 : [
−−−−−−−−−−−−−−→
S

nj∗−n
α (δ1), SN0−n

α (δj)) is an element of V0}

n( j∗, r) = max{n � 0 : [
−−−−−−−−−−−−−−→
SN0−n
α (δj), S

n′j∗−n
α (δ1)) is an element of V0}.

Lemma 19.11 We have

[
−−−−−−−−−−−−−−−−−−−−→
S

nj∗−n( j∗,l)
α (δ1), SN0−n( j∗,l)

α (δ1))

= [
−−−−−−−−−−−−−−−−→
S

nσ̂p(k)+1
α (δ1), S

n′k+1
α (δ1)) or [

−−−−−−−−−−−→
Sα(δ1), S

n′k+1
α (δ1))
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and

[
−−−−−−−−−−−−−−−−−−−−−→
SN0−n( j∗,r)
α (δ1), S

n′j∗−n( j∗,r)
α (δ1))

= [
−−−−−−−−−−−−−−−−→
S

nσ̂p(k′)+1
α (δ1), S

n′
k′+1

α (δ1)) or [
−−−−−−−−−−−−−−→
S

nσ̂p(k′)+1
α (δ1), Sα(δ1))

for some k and k′, 1 � k, k′ � d − 1.

Proof From the definition of the critical iterate, we see SN0−n( j∗,l)
α (δ1) = Sα(δ1)

and SN0−n( j∗,r)
α (δ1) = Sα(δ1) (equivalently, N0 − n( j∗, l) and N0 − n( j∗, r) � 2.

This shows the assertion of this lemma. 23
These two lemmas give us the tower representation of Sα and show the behavior

of the induced transformation Sα,N0 defined on J.
We put

θ l
j = |[

−−−−−−→
S

nj
α (δ1), δj)|

and

θ r
j = |[

−−−−−−→
δj, S

n′j
α (δ1))|

for 1 � j � d − 1, where | · | denotes the length of an arc or an interval.

Proposition 19.12

(i) If j = j∗, then we have

|Jj| =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ l
σ̂p(k)

+ θ r
k if k = 1, σ̂p(1), j∗

θ l
σ̂p(1)

if S
n′j−n( j)
α (δ1) = Sα(δ1)

θ r
σ̂1

if S
nj−n( j)
α (δ1) = Sα(δ1),

(19.12)

where k is chosen so that Sα(δk) ∈ [
−−−−−−−−−−−−−−−−→
S

nj−n( j)
α (δ1), S

n′j−n( j)
α (δ1)).

(ii) If j = j∗, then we have

|Jj∗| = θ l
σ̂p(k)

+ θ r
k + θ l

σ̂p(k′) + θ r
k′, (19.13)

where k and k′ are chosen so that

Sα(δk) ∈ [
−−−−−−−−−−−−−−−−−→
S

nj−n( j)
α (δ1),

N0−n( j∗,l)
α (δ1))
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Fig. 19.8 The tower without a balcony

Fig. 19.9 (a) Balcony at the right side. (b) Balcony at the left side

and

Sα(δk′) ∈ [
−−−−−−−−−−−−−−−−−−−−→
SN0−n( j∗,r)
α (δ1), S

n′j∗−n( j∗,r)
α (δ1)),

otherwise, |Jj∗ | = θ l
1 + θ l

σ̂p(k′) + θ r
k′ or = θ l

σ̂p(k)
+ θ r

k + θ r
1 .

Proof This is a direct consequence of Lemmas 19.10 and 19.11 with the definitions
of θ l

j and θ r
j , see Figs. 19.8 and 19.9. 23

There are two natural orders ρr and ρl, which are called the right order and the
left order, respectively. These are given by

0 < n′
ρ−1

r (1)
< n′

ρ−1
r (2)

< · · · < n′
ρ−1

r (d−1)

and

0 < n
ρ−1

l (1) < n
ρ−1

l (2) < · · · < n
ρ−1

l (d−1).
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In connection with n( j), j = j∗, n( j∗, l), n( j∗, r), we have the following:
We see ρr( j) = 1 if

n′j − n( j) = 1, j = j∗

or

n′j∗ − n( j∗, r) = 1,

equivalently,

S
n′j−n( j)
α (δ1) = Sα(δ1) when j = j∗

or

S
n′j∗−n( j∗,r)
α (δ1) = Sα(δ1).

Then we see ρr inductively by

ρr( j) = ρr(k)+ 1 if n′j − n( j) = n′k + 1, j = j∗.

or

ρr( j∗) = ρr(k)+ 1 if n′j∗ − n( j∗, r) = n′k + 1.

We continue this process until we get ρr( j) = d − 1 for some 1 � j � d − 1. On
the other hand, we see ρl = 1 if

nj − n( j) = 1, j = j∗

or

nj∗ − n( j∗, l) = 1,

equivalently,

S
nj−n( j)
α (δ1) = Sα(δ1)when j = j∗

or

S
nj∗−n( j∗,l)
α (δ1) = Sα(δ1).
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Then we see ρl inductively by

ρr(l) = ρl(k)+ 1 if nj − n( j) = nk + 1, j = j∗.

or

ρ( j∗) = ρl(k)+ 1 if nj∗ − n( j∗, l) = nk + 1.

Again we continue this process until we get ρl( j) = d − 1 for some 1 � j � d − 1.

Proposition 19.13 We have

θ l
j + θ r

j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ l
ρ−1

l (ρl( j)−1)
if ρr( j) = 1

θ r
ρ−1

r (ρr( j)−1)
if ρl( j) = 1

θ l
ρ−1

l (d−1)
+ ρr

ρ−1
r (d−1)

+θ l
ρ−1

l (ρl( j)−1)
+ θ r

ρ−1
r (ρr( j)−1)

if j = j∗

θ l
ρ−1

l (ρl( j)−1)
+ θ r

ρ−1
r (ρr( j)−1)

otherwise.

(19.14)

Proof This follows from (19.12) and (19.13) with the definitions of ρr and ρl. 23
If j = j∗, the tower concerning δj is simple. Indeed, the tower consists of

[Snj−n( j)
α (δ1), S

n′j−n( j)
α (δ1)), [Snj−n( j)+1

α (δ1), S
n′j−n( j)+1
α (δ1)), . . . , [Snj

α (δ1), S
n′j
α (δ1))

(hight n( j)+ 1), see Fig. 19.8. However, the tower concerning δj∗ is different from
other j’s. For further discussion, we need an information on n( j∗, l) and n( j∗, r).
There are three possibilities:

Case (a) n( j∗, l) > n( j∗, r)
Case (b) n( j∗, l) < n( j∗, r)
Case (c) n( j∗, l) = n( j∗, r)

Here Case (c) occurs only a special case which we never discuss (the minimum
critical iterate under a special condition, see Lemma 19.14 below). In the sequel we
only consider the Case (a) and Case (b), see Fig. 19.9.

We call the right (or the left) part of the tower the “balcony” in Case

(a) (or in Case (b), respectively), i.e. from [SN0−n( j∗,r)
α (δ1), S

n′j∗−n( j∗,r)
α (δ1))

to [SN0
α (δ1), S

n′j∗
α (δ1)) or [SN0−n( j∗,l)

α (δ1), S
nj∗−n( j∗,l)
α (δ1)) to [SN0

α (δ1), S
nj∗
α (δ1)),

respectively. The tower J
∗ on the top is called the tower with balcony. Then the

set of d − 1 towers (one has the balcony) is called a castle. We denote by Kj

each tower such that Jj on the top, 1 � j � d − 1, and by K the castle (i.e.
K = {Kj : 1 � j � d − 1}). We note that a castle is defined by the choice of the
marked discontinuous point (here, δ1) and the critical iterate N0.
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Lemma 19.14 If we choose N0 not the minimum critical iterate, then either Case
(a) or Case (b) holds always.

Proof We consider the critical iterate N1 > N0 such that there is no critical iterate
in (N0, N1). Each Case (a) or Case (b) has two sub-cases;

Case (a-i) (a) holds and SN0
α (δ1) ∈ [Snj∗

α (δ1), δj∗)

Case (a-ii) (a) holds and SN0
α (δ1) ∈, [δj∗, S

n′j∗
α (δ1))

Case (b-i) (b) holds and SN0
α (δ1) ∈ [Snj∗

α (δ1), δj∗)

Case(b-ii) (b) holds and SN0
α (δ1) ∈, [δj∗, S

n′j∗
α (δ1)).

Suppose that (a-i) holds. In this case, the balcony is at the right side. If ρl( j∗) =
d − 1, then there exists j∗∗ = j∗ such that ρl( j∗∗) = ρl( j∗)+ 1. Then we see

S
nj∗+n( j∗∗)+1
α (δ1) = S

nj∗∗
α (δ1)

and

SN0+1+n( j∗∗)
α (δ1) ∈ [Snj∗∗

α (δ1), S
n′j∗∗
α (δ1)).

This implies that N1 = N0 + n( j∗∗)+ 1 and the tower δj∗∗ on the top is changed to
the tower with balcony (at the right side) with

n( j∗∗, l) = nj∗∗ + n( j∗, l)+ 1 and n( j∗∗, r) = nj∗∗

for the new critical iterate N1 after cutting the left (main tower) part of the tower
associated to δj∗ and connecting it to the bottom of the tower associated to δj∗∗ . As a
consequence, the balcony part of the tower associated to δj∗ is a new tower (without
balcony) with respect to N1. If (a-ii) holds, then we see that N1 is the same but the
balcony is the left side for the tower associated to δj∗∗ with

n( j∗∗, l) = nj∗∗ and n( j∗∗, r) = nj∗∗ + n( j∗, r)+ 1.

The same holds for the cases (b-i) and (b-ii), where we choose j∗∗ so that ρr( j∗∗) =
ρr( j∗) + 1. If ρl( j∗) = d − 1 in Cases (a-i) and (a-ii) or ρr( j∗) = d − 1 in Cases
(b-i) and (b-ii)), we put j∗∗ = j∗. Consequently, n( j∗∗, l) = n( j∗∗, r) holds in any
cases. 23

The proof of this lemma also shows the following whose idea we use in
Sect. 19.5.

Proposition 19.15 If N1 is the next critical iterate after a critical iterate N0, i.e.
any N, N0 < N < N1 is not a critical iterate, then

N1 = N0 + n( j∗∗)+ 1
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Fig. 19.10 a-i

Fig. 19.11 a-ii

Fig. 19.12 b-i

if j∗∗ = j∗ and

N1 =
{

N0 + n( j∗, r)+ 1 when Cases (a-i), (b-i)

N0 + n( j∗, l)+ 1 when Cases (a-ii), (b-ii)

if j∗∗ = j∗, see Figs. 19.10, 19.11, 19.12 and 19.13.

The rest of this section, we construct a translation surface from an IPR map (a
discrete type construction).

Case (a) We put ζ0 = ζ ∗0 = 0,

ζk = n′
ρ−1

r (k)
+ iθ r

ρ−1
r (k)
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Fig. 19.13 b-ii

Fig. 19.14 Translation surface (discrete type) for Case (a)

for 1 � k � d − 1, and

ζ ∗k =

⎧
⎪⎪⎨

⎪⎪⎩

n
ρ−1

l (k) − iθ l
ρ−1

l (k)
if 1 � k < ρl( j∗)

nj∗ − n( j∗, r)− 1− i(θ l
j∗ + θ r

j∗ − θ r
ρ−1

l (d−1)
) if ρ−1

l (k) = j∗

n
ρ−1

l (k−1) − iθ l
ρ−1

l (k−1)
if ρl( j∗) < k � d

for 1 � k � d, and ζd = ζ ∗d (Fig. 19.14).
Case (b) We put ζ0 = ζ ∗0 = 1,

ζk =

⎧
⎪⎪⎨

⎪⎪⎩

n′
ρ−1

r (k)
+ iθ r

ρ−1
r (k)

if 1 � k < ρr( j∗)
n′j∗ − n( j∗, l)− 1+ i(θ l

j∗ + θ r
j∗ − θ l

ρr−1(d−1)
) if ρ−1

r (k) = j∗

n′
ρ−1

r (k−1)
+ iθ r

ρ−1
r (k−1)

if ρr( j∗) < k � d

for 1 � k � d, and

ζ ∗k = n
ρ−1

l (k) − iθ l
ρ−1

l (k)

for 1 � k � d − 1 and ζd = ζ ∗d (Fig. 19.15).
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Fig. 19.15 Translation surface (discrete type) for Case (b)

Fig. 19.16 No intersection and self intersection

Then we consider 2d line segments �(ζj−1, ζj), �(ζ ∗j−1, ζ
∗
j ), 1 � j � d where we

by denote �(z,w) the line segment from complex numbers z to w. Here we have to be
careful that the line segments by (ζd−1, ζd) or (ζ ∗d−1, ζ

∗
d ) may intersect to (ζ ∗k−1, ζ

∗
k )

or (ζk−1, ζk), respectively, for some 1 � k � d − 1. However, if we choose the
critical iterate in proper way, then they do not intersect and these 2d line segments
are sides of a 2d-polygon F, see Fig. 19.16.

Theorem 19.16 The sets of line segments {�(ζj−1, ζj)} and {�(ζ ∗j−1, ζ ∗j )} are
pairwise parallel by the following correspondence and have the same length. In
particular, if the figure F is a 2d-polygon, then it is a translation surface.

Case (a)

�(ζk−1, ζk) ↔ �(ζ ∗
ρl(ρ

−1
r (k))−1

, ζ ∗
ρl(ρ

−1
r (k))

) if 1 � k < d − 1,

�(ζd−1, ζd)↔ �(ζ ∗ρr( j∗)−1, ζ
∗
ρr( j∗)) if k = d.

Case (b)

�(ζ ∗k−1, ζ
∗
k ) ↔ �(ζ

ρl(ρ
−1
r (k))−1, ζρl(ρ

−1
r (k))) if 1 � k < d − 1,

�(ζ ∗d−1, ζ
∗
d )↔ �(ζρr( j∗)−1, ζρr( j∗)) if k = d.
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Proof From the definition of nj, n′j, and n( j), we see that

nj − n( j) = n′j − n( j)

always holds when j = j∗. Thus, in the case (a), we see

Re(ζk − ζk−1) = Re(ζ ∗
ρl(ρ

−1
r (k))

− ζ ∗
ρl(ρ

−1
r (k))−1

)

if 1 � k < d − 1. On the other hand, from (19.14), we see

Im(ζk − ζk−1) = θ r
j − θ r

ρ−1
r (ρr( j)−1)

= θ l
ρ−1

l (ρl( j)−1)
− θρl( j)

= Im(ζ ∗ρl( j) − ζ ∗
ρ−1

l (ρl( j)−1)
)

for j = ρ−1
r (k) with j = j∗, ρr( j) = 1, and ρl( j) = 1. Thus two line segments

�(ζk−1, ζk) and �(ζ ∗
ρ−1

l (ρl( j)−1)
, ζ ∗ρl( j)) are parallel and have the same length when

1 � k < ρr( j∗), k = 1, and ρl(ρ
−1
r (k)) = 1. When 1 � k < ρr( j∗) and k = 1, we

have

Im(ζ1 − ζ0) = θ r
j = θ l

ρ−1
l (ρl( j)−1)

− θ l
j = Im(ζ ∗ρl( j) − ζ ∗

ρ−1
l (ρl( j)−1)

).

for j = ρ−1
r (1). When 1 � k < ρr( j∗ and ρl( j) = 1, we have

Im(ζk − ζk−1) = θ r
j − θρ−1(ρr( j)−1) = −θ l

j = Im(ζ ∗1 − ζ ∗0 ).

For k = d and ρl( j∗) = 1,

Re(ζd − ζd−1) = n( j∗, r)− n( j∗, l) = Re(ζ ∗ρr( j∗−1), ζ
∗
ρr( j∗)).

Moreover, since

Im(ζd − ζd−1) = −θ l
ρr(d−1) − θ l

ρr(d−2)

= θ l
ρ−1

l
(d − 1)+ θ r

ρ−1
r (ρr( j∗)−1)

− θ l
j∗ − θ r

j∗

= Im(ζ ∗ρr( j∗−1), ζ
∗
ρr( j∗))

Thus we have the same conclusion. The other cases also follow by the same way.
23
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We should note that ζ0 = 0 comes from the marked discontinuous point δ1 (but
δ1 itself appears in J1) and Re(ζj) denotes the number of iterations of Sα to get the
nearest visit along the orbit of δ1 to δj. Then,

Case (a) Each ζj, 1 � j � d − 1, corresponds to the discontinuous point δj which
is on the top of the tower Kj and ζd is a sort of virtual discontinuous
point along the right order of the castle;

Case (b) Each ζ ∗j , 1 � j � d− 1, corresponds to the discontinuous point δj which
is on the top of the tower Kj and ζ ∗d is a sort of virtual discontinuous
point the left order of the castle.

In this point of view, we can induce the equivalence relation among ζj, 0 � j � d,
from σ̂p with Lemma 19.1. We denote by Θ = {Θt, : 1 � t � s} the set of the
equivalence classes. It is easy to see that ζj∗ is equivalent to ζd in this equivalence
relation. Now we put

Θ̃t = Θt \ {ζ0, ζd}, 1 � t � s.

Then by a suitable indexing, we see

(|Θ̃1|, |Θ̃2|, . . . , |Θ̃s|} = (d1, d2, . . . , ds).

Moreover, if ζ0 ∈ Θt0 for 1 � t0 � s, then Θt0 gives the marked singularity. Thus
we have the following.

Theorem 19.17 Suppose that the piecewise rotation map of the circle Sα is the
one constructed in Sect. 19.2 with (d1, d2, . . . , ds). If the figure F constructed in
the above is a translation surface, then its orders of singularities are given by
(d1, d2, . . . , ds) and the order of the marked singularity is dt0 with t0 defined in
the above.

In the above construction, only information we need are: (θ l
j , θ

r
j ), 1 � j � d −

1 with j∗, (ρl, ρr), and “Case (a) or Case (b)”, i.e. (a) n( j∗, l) > n( j∗, r) or (b)
n( j∗, l) < n( j∗, r) holds. Thus we extend the idea in the above to the continuous
parameters of the size of length. We will see it in the next section.

19.4 σ̂p and σπ via {ζj, ζ ∗
j } and {ξj, ξ∗

j }

In this section, we give ηk > 0 for 1 � k � d. We start with θ = {(θ l
j , θ r

j ) : 1 �
j � d − 1}, ρ = {ρl, ρr}, j∗ , 1 � j∗ � d − 1.

Moreover, either Case (a) or Case (b) is indicated. We use {ηk} instead of
{n( j), n( j∗, l), n( j∗, r)} in the definition of ζj and ζ ∗j .
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We give ηk > 0 for all 1 � k � d.

Case (a) We put

ζ
ρ−1

r ( j) =
j∑

k=1

η
ρ−1

r (k) + iθ
ρ−1

r ( j) if 1 � j � d − 1, (19.15)

ζ ∗j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j∑

k=1

η
ρ−1

l (k) − iθ l
ρ−1

l ( j)
if 1 � j � ρl( j∗)− 1

ρl( j∗)−1∑

k=1

η
ρ−1

l (k) + ηd − i(θ l
j∗ + θ r

j∗ + θ
ρ−1

l (d−1))

if j = ρl( j∗)
k′∑

k=1

η
ρ−1

l (k) + ηd − iθ r
ρ−1

l (k′) if ρl( j∗) � k′ � d − 1, j = k′ + 1.

(19.16)

Case (b) We put

ζj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j∑

k=1

η
ρ−1

r (k) + iθ r
ρ−1

r ( j)
if 1 � j � ρr( j∗)− 1

ρr( j∗)−1∑

k=1

η
ρ−1

r (k) + ηd + i(θ l
j∗ + θ r

j∗ + θ
ρ−1

r (d−1))

if j = ρr( j∗)
k′∑

k=1

η
ρ−1

r (k) + ηd + iθ r
ρ−1

r (k′) if ρr( j∗) � k′ � d − 1, j = k′ + 1,

(19.17)

ζ ∗
ρ−1

l ( j)
=

j∑

k=1

η
ρ−1

l (k) − iθ
ρ−1

l ( j) if 1 � j � d − 1. (19.18)

Both cases, we put ζ0 = ζ ∗0 = 0 and ζ ∗d = ζd.
Then, the same as the previous section, we construct a figure F by concatenating

�(ζj−1, ζj) and �(ζ ∗j−1, ζ ∗j ), 1 � j � d.
Here we have the following.

Theorem 19.16′ The sets of line segments {�(ζj−1, ζj)} and {�(ζ ∗j−1, ζ ∗j )} are
pairwise parallel by the following correspondence and have the same length. In
particular, if the figure F is a 2d-polygon, then it is a translation surface.
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Case (a)

�(ζk−1, ζk) ↔ �(ζ ∗
ρl(ρ

−1
r (k))−1

, ζ ∗
ρl(ρ

−1
r (k))

) if 1 � k < d − 1

�(ζd−1, ζd)↔ �(ζ ∗ρr( j∗)−1, ζ
∗
ρr( j∗)) if k = d

Case (b)

�(ζ ∗k−1, ζ
∗
k ) ↔ �(ζ

ρl(ρ
−1
r (k))−1, ζρl(ρ

−1
r (k))) if 1 � k < d − 1

�(ζ ∗d−1, ζ
∗
d )↔ �(ζρr( j∗)−1, ζρr( j∗)) if k = d

Theorem 19.17′ Suppose that the piecewise rotation map of the circle Sα is the
one constructed in Sect. 19.2 with (d1, d2, . . . , ds). If the figure F constructed in
the above is a translation surface, then its orders of singularities are given by
(d1, d2, . . . , ds) and the order of the marked singularity is dt0 defined in the previous
section.

The proofs of these theorems are the same as those of Theorems 19.16 and 19.17.
Now we identify {ζj, ζ ∗j : 0 � j � d} with {ξj, ξ∗j : 0 � j � d} in (19.4).

Theorem 19.18 For any {ζj, ζ
∗
j : 0 � j � d} arising from Sα, N0, and {ηj : 1 �

j � d}, there exist an interval exchange map T with the length data (λ1, . . . λd) and
the combinatorial data π and {hj, aj : 0 � j � d} which satisfies (19.2) and (19.3)
such that ξj = ζj and ξ∗j = ζ ∗j for 0 � j � d, where {ξj, ξ

∗
j } is given in (19.4).

Proof We define (λ1, . . . , λd), π , and {hj, aj} as follows. Then it is easy to check
the assertion of the theorem.

Case (a)

λk =
{
η
ρ−1

r (k) 1 � k � d − 1

ηd k = d,

π(k) =

⎧
⎪⎪⎨

⎪⎪⎩

ρl ◦ ρ−1
r (k) if 1 � k < ρr( j∗)

ρl ◦ ρ−1
r (k)+ 1 if ρr( j∗) � k � d − 1

ρl ◦ ρ−1
r ( j∗) if k = d,

ak =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if j = 0

θ r
ρ−1

r (k)
if 1 � k � d − 1

−θ l
ρ−1

l (ρl( j∗)−1)
if j = d,

and then hj is given by (19.2) inductively with h0 = hd+1 = 0.
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Case (b)

λk =

⎧
⎪⎪⎨

⎪⎪⎩

η
ρ−1

r (k) 1 � k � ρr( j∗)
ηd k = ρr( j∗)
η
ρ−1

r (k−1) ρr( j∗) < k � d,

π(k) =

⎧
⎪⎪⎨

⎪⎪⎩

ρl ◦ ρ−1
r (k) if 1 � k < ρr( j∗)

d if k = ρr( j∗

ρl ◦ ρ−1
r (k − 1) if ρr( j∗) � k � d

ak =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if j = 0

θ r
ρ−1

r (k)
if 1 � k < ρr( j∗)

θ l
ρ−1

l (ρl( j∗)−1)
+ θ r

ρ−1
r (ρr( j∗)−1)

+ θ r
ρ−1

r (d−1)
if k = ρr( j∗)

θ r
ρ−1

r (k−1)
if ρr( j∗) � d,

and again hj is given by (19.2) inductively with h0 = hd+1 = 0. 23
Now we suppose that an interval exchange map Tπ with (λj : 1 � j � d) is

given. Moreover, suppose that {hj, aj : 0 � j � d}, which satisfies (19.2) and (19.3),
is given. Then we consider {ξj, ξ

∗
j } is defined by (19.4).

Theorem 19.19 There exist a piecewise rotation map Sα of the circle, a critical
iterate N0, and {ηj : 1 � j � d} such that ζj = ξj and ζ ∗j = ξ∗j for 0 � j � d
where {ξj, ξ

∗
j : 0 � j � d} is given by (19.4) and {ζj, ζ

∗
j : 0 � j � d} is given by

either (19.15) and (19.16) or (19.17) and (19.18).

Sketch of the Proof If ad < 0 (or ad > 0), then we consider Case (a) (or Case
(b)), respectively. In Case (a), we construct a castle with d − 1 towers by making
correspondent:

⎧
⎪⎪⎨

⎪⎪⎩

βj −→ δj

θ l
j = hj − aj

θ r
j = aj

for 1 � j � d − 1. Then π−1(π(d)+ 1) plays the role of j∗. We define

ρr( j) = j for 1 � j � d − 1
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and

ρl( j) =
{
π( j) if 1 � ρl( j) � π−1(π(d)+ 1)

π( j)− 1 if π−1(π(d)+ 1) � ρl( j) � d − 1.

If ad > 0, then we put

ρl( j) = j for 1 � j � d − 1

with

βπ−1( j) −→ δj for 1 � j � d − 1

and

ρr( j) =
{
π( j) if 1 � j � π−1(d)

π( j+ 1) if π−1(d) < j � d − 1.

Consequently we have θ , ρ and j∗. To construct Sα and find the critical iterate
N0, we need the nearest return of the orbit 0 by Tπ . We refer to [I-N] the detail of
the construction. 23

Thus, we have a piecewise rotation map Sα which gives the same equivalence
relation. However, the permutation p associated to S is not the same as one give in
Sect. 19.2, in general.

As mentioned Θ = {Θt : 1 � t � s} arising from σ̂p determined (d1, . . . , ds)

which comes from {Λt : 1 � t � s}. More precisely, j ∈ Θt if and only if δj ∈ Λt

for 1 � j � d−1. On the other hand, the equivalence relation on {ζj : 1 � j � d−1}
is the same as the equivalence relation on {ξj : 1 � j � d − 1} determined by σπ .
Indeed, we have the following

Theorem 19.20 In the above correspondence between {ζj, ζ
∗
j } and {ηj, η

∗
j }, we

have

σ̂p( j) =
{
σπ ( j) if σπ ( j) = 0, d

σ 2
π ( j) if σπ ( j) = 0 or d

19.5 Castles and Zippered Rectangles

In this section, we give a new definition of IPR maps (without piecewise rotation
maps) and define a (continuum) castle without the critical iterate. Suppose that θ =
{(θ l

j , θ r
j ) : 1 � j � d − 1}, ρ = (ρr, ρl) and j∗, (1 � j∗ � d − 1) are given. We

assume that (19.14) holds.
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We choose δj ∈ R such that

δj − δj−1 > max |θ l
j | +max |θ r

j |

and define

Jj = [δj − θ l
j , δj + θ r

j ) and J =
d−1⋃

j=1

Jj

for 1 � j � d − 1. The condition on δj implies that Jj is disjoint. We define S as
follows. For x ∈ [δj − θ l

j , δj),

S(x) =
⎧
⎨

⎩
δ
ρ−1

l (ρl( j)+1) − θ
ρ−1

l (ρl( j)+1) + x− (δj − θ l
j ) if ρl( j) = d − 1

δj∗ + θ r
j∗ − θ r

ρ−1
r (ρr( j∗)−1)

− (δj − x) if ρl( j) = d − 1.

For x ∈ [δj, δj + θ r
j ),

S(x) =
⎧
⎨

⎩
δ
ρ−1

r (ρr( j)+1) − θ
ρ−1

r (ρr( j)+1) + x− (δj − θ r
j ) if ρr( j) = d − 1

δj∗ + θ l
j∗ − θ l

ρ−1
l (ρl( j∗)−1)

− (δj − x) if ρr( j) = d − 1.

For a given {ηj > 0 : 1 � j � d}, we define a castle associated toS as follows.

• jth tower for j = j∗,

Kj = {(x, y) : x ∈ Jj, 0 � y � ηj}.

For j∗, there are two choices.
• j∗th tower with balcony at the right side

Kj∗ = {(x, y) : x ∈ Jj∗, 0 � y � ηj∗ + ηd

if x ∈ [δj∗ − θ l
j∗, δj∗ − θ l

j∗ + θ l
ρ−1

l (ρl( j∗)−1)
+ θ r

ρr(d−1)),

ηd � y � ηd + ηj∗ otherwise.}

• j∗th tower with balcony at the left side

Kj∗ = {(x, y) : x ∈ Jj∗, ηj∗ � y � ηj∗ + ηd

if x ∈ [δj∗ − θ l
j∗, δj∗ − θ l

j∗ + θ l
ρ−1

l (ρl( j∗)−1)
+ θ r

ρr(d−1)),

0 � y � ηd + ηj∗ otherwise.}
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Then K = {Kj : 1 � j � d − 1} is said to be a castle. Here we note that
Lemma 19.14 explains the reason that we need ηd.

Now we consider a map from an IPR map to an IPR map and also a castle to
a castle (continuum case). For this reason, we explain the idea introduced by Cruz
and da Rocha [2] for the discrete case.

Let N0 < N1 < N2 < · · · be a sequence of critical iterates for a piecewise
rotation map Sα such that any integer N ∈ (Nk−1,Nk) is not a critical iterate for any
k � 1. The correspondence Sα,Nk−1 → Sα,Nk (and also a (discrete) castle K arising
from Nk−1 to that arising from Nk) is said to be the Cruz-da Rocha induction.

Since the critical iterate is not fixed in the discussion below, we denote by nk,j,
n′k,j, n(k, j), jk,∗, n(k, jk,∗, l), and n(k, jk,∗, r) instead of nj, n′j, n( j), j∗, n( j∗, l), and
n( j∗, r), respectively, if these are determined by the critical iterate Nk. We also
denote by Kk,j a tower with δj on the top with respect to Nk and by Fk the figure F
constructed in Sect. 19.3 with respect to the critical iterate Nk.

Proposition 19.21 If the balcony sides of Kk−1,jk−1,∗ and Kk,jk,∗ are different to
each other (i.e. one is on the left and the other on the right), then Fk constructed in
Sect. 19.3 is a translation surface.

Proof We denote simply by ζj and ζ ∗j for vertices of Fk. It is enough to consider the
caseKk−1,jk−1,∗ has a balcony at the right side andKk,jk,∗ at the left side, respectively.
This means

S
njk−1,∗
α (δ1) < δjk−1,∗ < SNk−1

α (δ1) < S
n′

jk−1,∗
α (δ1)

and

S
njk,∗
α (δ1) < SNk

α (δ1) < S
n′

jk,∗
α (δ1)

with

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n(k, jk,∗, r) = nk−1,jk,∗ + n(k− 1, jk−1,∗, r)

n(k, jk−1,∗) = n(k − 1, jk−1,∗, l)

n(k, jk,∗, l) = n(k− 1, jk,∗)
n(k− 1, jk−1,∗, l) > n(k− 1, jk−1,∗, r).

This implies that Kk,jk−1,∗ is the final tower in the left order at the kth level, i.e.

ρl( jk−1,∗) = d − 1, where ρl is the left order with respect to Nk. Then it turns out
that the size of the Re(ζd − ζd−1) is equal to n(k − 1, jk−1,∗, r) and the size of the
Re(ζ ∗d − ζ ∗d−1) is equal to n(k − 1, jk−1,∗, l). From the last inequality in the above,
we see that two line segments �(ζd, ζd−1) and �(ζ ∗d , ζ ∗d−1) never intersect to each
other, see Fig. 19.16. 23
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Proposition 19.22 The change of the balcony side occurs infinitely often along the
sequence N0,N1,N2, . . ..

Proof Suppose that the balcony side with respect to Nk−1 and Nk are on the same
side. Then it is easy to see that the width of the bottom of the main part of the tower
Kk−1,jk−1,∗ is the same as the width of the bottom of the main part of the towerKk,jk,∗
i.e. the width of the bottoms of the main part of the towers with balcony with respect
to Nk−1 and Nk are is the same. On the other hand, the width ofKk,jk−1,∗ (no balcony
anymore) is equal to the width of the balcony part of Kk−1,jk−1,∗ . This shows

∣∣∣∣

(
S

nk−1,jk−1,∗
α (δ1), S

n′
k−1,jk−1,∗

α (δ1)

)∣∣∣∣−
∣∣∣∣

(
S

nk,jk−1,∗
α (δ1), S

n′
k,jk−1,∗

α (δ1)

)∣∣∣∣

=
∣∣∣∣

(
S

nk,jk,∗
α (δ1), S

n′
k,jk,∗

α (δ1)

)∣∣∣∣−
∣∣∣∣

(
S

nk+1,jk,∗
α (δ1), S

n′
k+1,jk,∗

α (δ1)

)∣∣∣∣

holds whenever the balcony side (of three towers with balcony) stays at the same
side from Nk−1 to Nk and Nk to Nk+1, in other words, we cut the same size when we
move the balcony to the balcony of the next step unless we change the balcony side.
Since there are d − 1 towers in the castle, at some l � 0, the balcony side has to be
changed at the change of the critical iterates Nk−1+l to Nk+l. 23
Now we return to our new IPR maps. For a given S, we define a new IPR maps
FS as follows. This is certainly a generalization of the above step from Sα,k to
Sα,k+1. We consider two cases: (Case A) θ l

ρ−1
l (ρl(j∗)−1)

+ θ r
ρ−1

r (d−1)
< θ l

j∗ and (Case

B) θ l
ρ−1

l (ρl( j∗)−1)
+ θ r

ρ−1
r (d−1)

> θ l
j∗ .

(Case A): We define

θ̂ l
j∗ = θ l

j∗ − (θ l
ρ−1

l (ρl( j∗)−1)
+ θ r

ρ−1
r (d−1)

) and θ̂ r
j∗ = θ r

j∗

and the marked index j∗ is changed for

ĵ∗ =
{
ρ−1

l (ρl( j∗)+ 1) if ρl( j∗) < d − 1

j∗ if ρl( j∗) = d − 1.

We also define ρ̂l by

ρ̂l =

⎧
⎪⎪⎨

⎪⎪⎩

ρl( j) if ρl( j) < ρl( j∗)
d − 1 if j = j∗

ρl( j)− 1 if ρl( j) > ρl( j∗)

and ρ̂r = ρr .
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(Case B) We define

θ̂ r
j∗ = θ r

j∗ − (θ r
ρ−1

r (ρr( j∗)−1)
+ θ l

ρ−1
l (d−1)

) and θ̂ l
j∗ = θ l

j∗

and the marked index j∗ is changed for

ĵ∗ =
{
ρ−1

r (ρr( j∗)+ 1) if ρr( j∗) < d − 1

j∗ if ρr( j∗) = d − 1.

Either cases, we put we put θ̂ l
j = θ l

j for j = j∗ and ĵ∗. We also define ρ̂r by

ρ̂r =

⎧
⎪⎪⎨

⎪⎪⎩

ρr( j) if ρr( j) < ρr( j∗)
d − 1 if j = j∗

ρr( j)− 1 if ρr( j) > ρr( j∗)

and ρ̂l = ρl.

Both cases, it is easy to see that the above {(θ̂ l
j , θ̂

r
j ) : 1 � j � d−1}, ρ̂ = (ρ̂l, ρ̂r),

and ĵ∗ satisfy (19.14) and then we define FS by these θ̂ , ρ̂, and ĵ∗.
It is not so hard to see the following.

Proposition 19.23 The induced map of S to Ĵ = ∪[δj − θ̂ l
j , δj + θ̂ r

j ) is also an IPR
map and it is FS.

With the above {(θ̂ l
j , θ̂

r
j )}, ρ̂, and ĵ∗, we can also define a map a castle K to a

castle F̂K generalizing the correspondence from {Kk,j} to {Kk+1,j} i.e.

(Case A-i) θ l
ρ−1

l (ρl( j∗)−1)
+ θ r

ρ−1
r (d−1)

< θ l
j∗ and Kj∗ has a balcony at the right side:

We define

η̂j∗ = ηj∗ and η̂d = ηj∗ + ηd.

(Case A-ii) θ l
ρ−1

l (ρl( j∗)−1)
+ θ r

ρ−1
r (d−1)

< θ l
j∗ and Kj∗ has a balcony at the left side:

We define

η̂j∗ = ηj∗ + ηd and η̂d = ηj∗ .

(Case B-i) θ l
ρ−1

l (ρl( j∗)−1)
+ θ r

ρ−1
r (d−1)

> θ l
j∗ and Kj∗ has a balcony at the right side:

We define

η̂j∗ = ηj∗ + ηd and η̂d = ηj∗ .
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(Case B-ii) θ l
ρ−1

l (ρl(j∗)−1)
+ θ r

ρ−1
r (d−1)

> θ l
j∗ and Kj∗ has a balcony at the left side:

We define

η̂j∗ = ηj∗ and η̂d = ηj∗ + ηd.

In all four cases, we put η̂j = ηj for j = j∗.
Now we can generalize these proposition to the (continuum) castles by the similar

way.

Proposition 19.22′ If the balcony sides of Kj∗ of a castle K and the balcony side of
Kĵ∗ of the castle FK are different to each other (i.e. one is on the left and the other

on the right), then F constructed from θ̂ , η̂, and ρ̂ by (19.15) and (19.16) or (19.17)
and (19.18) is a translation surface.

Proposition 19.23′ The change of the balcony side occurs infinitely often along the
sequence arising from the iterations of F , i.e. K, FK, F 2

K, . . ..
Now we define the notion of zippered rectangles. For a given (h, a) which

satisfies (19.2) and (19.3), we define

Rj = {x+ iy : βj−1 � x < βj, 0 � y � hj} for 1 � j � d

and

R+ =
d⋃

j=1

Rj.

We cut and glue vertical sides of Rj in the following way. We cut (βj, y), aj � y �
min(hj, hj+1) in Rj∪Rj+1, 1 � j � d−1 except for the case ad > 0 and j = π−1(d)
where min(hj, hj+1) > aj holds. Except for the case ad > 0 and j = π−1(d), Rj and
Rj+1 are connected at (βj, y), 0 � y � aj. We glue Rj and Rπ−1(π( j)+1), 1 � j � d,

j = π−1(d) by identifying

βj + iy and βπ−1(π( j)+1)−1 + i
(
hπ−1(π( j)+1) − aπ−1(π( j)+1)−1 + y

)
(19.19)

for 0 � y � hj − aj. Here we recall that β0 = h0 = a0 = 0. Concerning j = d,
there are two cases. First we consider the case ad > 0. Here Rπ−1(d) and Rπ−1(d)+1
are connected at βπ−1(d) + iy, 0 � y � hπ−1(d). Then we glue Rd and Rπ−1(d)+1 by
identifying

βd + iy and βπ−1(d) + iy (19.20)

for 0 � y � ad. On the other hand, Rd is also glued to Rπ−1(π(d)+1) by identifying

βd + i(ad + y) and βπ−1(π(d)+1)−1 + i
(
hπ−1(π(d)+1) − aπ−1(π(d)+1)−1 + y

)

(19.21)



19 A Piecewise Rotation of the Circle, IPR Maps and Their Connection with. . . 429

for 0 � y � hd−ad ((19.21) is a special case of (19.19)). Next we consider the case
ad < 0. In this case, we glue Rd and Rπ−1(π(d)+1) by identifying

βd + iy and βπ−1(π(d)+1)−1 + i
(
hπ−1(π(d)+1) − hd + y

)
(19.22)

for 0 � y � hd. Then we glue Rπ−1(d) and Rπ−1(π(d)+1)−1 by identifying

βπ−1(d)+i
(
aπ−1(d) + y

)
and

βπ−1(π(d)+1)−1 + i
(
hπ−1(π(d)+1) − aπ−1(π(d)+1)−1 + y

) (19.23)

for 0 � y � hπ−1(d) − aπ−1(d) ((19.23) is also a special case of (19.19)). For
horizontal sides, we glue x + hj and (Tπ(x), 0) for βj−1 � x < βj. Together
with (19.19), (19.20), (19.21) (or with (19.19), (19.22), (19.23)) and this horizontal
glueing, we have a Riemann surface. In this point of view Rj, 1 � j � d, are called
zippered rectangles originally see [9].

Now we define

R− =
d⋃

j=1

R′j

where R′j is the translation of Rj by

(x, y) −→ (Tπ(x), y− hj).

By the construction of R+ and R−, we have the following.

Proposition 19.24 R+ ∪ R− is a double cover of the translation surface defined
by (19.4)

For a given (h, a), we introduced (h′, a′) at the introduction as a correspondence
between a translation surface to a new “translation surface”. Here, it is clear that
R̂ which maps (h, a) to (h′, a′) is a map from zippered rectangles to zippered
rectangles. Recall that, for a fixed irreducible permutation π , Rauzy class is a set
of permutations, which is a connected component of permutations which are the
combinatorial data of all interval exchange maps appeared in {RnTπ : n � 0} with
all possible length data. It is known that for the set of all possible combinatorial
data in the Rauzy class arising from π and all combinatorial data λ, R is two-to-
one map and then with all possible (π, λ) with (h, a), R̂ is one-to-one. From the
discussion in this paper, it is not so hard to see that there is a natural correspondence
“zippered rectangles” R+ or R− and a castle, where R+ (or R−) corresponds to a
castle with a tower with balcony on the left side (or on the right side) if ad > 0
(or ad < 0, respectively). The former case, the tower with balcony corresponds
to the concatenation of Rπ−1(d) and Rπ−1(d)+1, on the other hand, the latter case,
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it corresponds to the concatenation of Rd and Rπ−1(π(d)+1). The correspondence is
simply made by the rotation of π

2 . We refer [3] the detail of this correspondence.
The main point, here, is that since {ξj, ξ∗j } and {ζj, ζ ∗j } may not produce a

translation surfaces. So it is natural to define R̂ and F̂ on the set of zippered
rectangles and the set of castles.

Theorem 19.25 The extension of Rauzy induction R̂ induces F̂ −1 by the natural
correspondence stated in the above.

Proof The natural correspondence comes from the identification between {ξj, ξ∗j :
0 � j � d} and {ζj, ζ ∗j : 0 � j � d}. Then it is easy to see the assertion of this

theorem from the definitions of R̂ and F̂ . 23
Suppose that

nZ = minn>0{F̂ n
K : the discontinuous point δj∗ is on the top

of the main part of the tower with balcony}.

Then we define ZK = F̂ nZ+1
K.

Theorem 19.26 If the map Z maps {ξj, ξ∗j : 0 � j � d} to {ξ̂j, ξ∗j : 0 � j � d},
then {ξ̂j, ξ∗j : 0 � j � d} produces a translation surface (i.e. 2d polygon).

Proof This follows from Proposition 19.22. 23
Remark 19.27 If we define

K0 = {K : castle such that the balcony side of K

is not the same side with F̂ −1
K}.

Then Z is a bijective map of K0 and it gives the inverse of the Zorich map (see [12])
on a set of zippered rectangles.

Remark 19.28 There are two natural normalizations. The first one is βd = 1 with
the sum of the area size of Rj associated zippered rectangles R+ equals to 1. The
second is |J| = | ∪d−1

j=1 Jj| = 1 with the sum of the area size of Kj of a castle K

equals to 1. The first case is well discussed in many literatures. Indeed, it is known
that the renormalized map of R̂ is ∞ measure preserving and ergodic. Moreover,
the Zorich map is finite measure preserving and ergodic. Consequently, the second
case, the same result holds since it is the inverse of map in a different projection.
We denote Z the renormalized map of Z on the set of castles with |J| = 1 and the
area size of K equals to 1. Then this is a two-points extension of the generalized
Gauss map G defined by Cruz-da Rocha [2]. In [2], the density of the absolutely
continuous invariant measure (w.r.t. the Lebesgue measure on the parameter space
of θ ) for G is given. We will discuss the related subject in a different occasion.
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Remark 19.29 For given (d1, d2, . . . , ds), the vector of the orders of singularities,
Boissy [1] showed that two choices of the marked singularities make the Rauzy class
if the orders of singularities are the same. So far, the authors do not know there is a
proof of this result only by properties of a piecewise rotation with the equivalence
relation of discontinuous points associated to (d1, . . . , ds).
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