
Chapter 8
Introduction to Yasuura’s Method of
Modal Expansion with Application to
Grating Problems

Akira Matsushima, Toyonori Matsuda and Yoichi Okuno

Abstract In this chapter we introduce the theory of the Yasuura’s method based
on modal expansion and explain the methods of numerical computation in detail
for several grating problems. After a sample problem we discuss the methods for
solving two types of problems that require additional knowledge and steps, that
is, scattering by a dielectric cylinder and diffraction by a grating. Some numerical
results are shown to give an evidence of an experimental rule for the number of linear
equations in formulating the least-squares problem that determines the modal coeffi-
cients. After confirming the rule we show a couple of examples of practical interest,
i.e., scattering by a relatively deep metal grating, plasmon surface waves on a metal
grating placed in conical mounting, scattering by a metal surface modulated in two
directions, and scattering by periodically located dielectric spheres. To provide sup-
plementary explanations of particular problems, four appendices are given; H-wave
scattering from a cylinder, the normal equation and related topics, conical diffraction
by a dielectric grating, and comparison of modal functions and the algorithm of the
smoothing procedures.
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8.1 Introduction

In Chap.6 of the last edition [27] we have introduced Yasuura’s method of modal
expansion from two main points of view: one was the relation with the fictitious
or equivalent source methods; and another was the employment of smoothing pro-
cedures (SP’s) [10, 24, 25, 31, 41, 42] to obtain rapidly converging solutions. We
needed the first point to have the method recognized as one of the modal expansion
methods having firm theoretical foundations and a wide range of application. While
in the second point we tried to explain our tool to cope with the problem of slow
convergence. Because we had been working with the separated solutions as modal
functions, we were often troubled by their poor approximation power. Accordingly,
Yasuura et al. hit upon an idea of the SP, whichworks to accelerate the convergence of
solutions by reducing the higher-order oscillations on the boundary. The SP, hence, is
an important step in solving a 2-D problem1 where the cross section of the obstacle is
strongly deformed from the coordinate curves of a separable system of coordinates.

In the last edition we have included: (1) the theory and the method of numerical
execution of the original form of Yasuua’s method, which we call the conventional
Yasuura’smethod (CYM) today; (2) Yauura’smethodwith a smoothing or a singular-
smoothing procedure (YMSP or YMSSP); and (3) numerical examples obtained
mainly by the YMSP and YMSSP. In the present chapter, however, we decided to
omit a greater part of SP-related topics in view of the recent trend in computational
electromagnetics. That is, the methods for 3-D as well as 2-D analysis of structures
made of a dielectric are required in various areas. Instead of removing the SP, we
include a detailed explanation on the solution process by the CYM. We hope this
helps those who are interested in solving their problems by using Yasuura’s methods,
CYM, YMSP, and YMSSP. Because the process with the SP’s are almost in common
with that of the CYM, the detailed introduction of the CYM execution process would
be useful not only for the CYM users but also for those who intend to employ the
YMSP or YMSSP.

The contents of this chapter are as follows: In Sect. 8.2 we first introduce the
theory of the CYMbriefly and explain the method of numerical computation in detail
taking a sample problem. Then, we move on to the methods for solving two types of
problems that require additional knowledge and steps: (1) scattering by a dielectric
cylinder; and (2) diffraction by a grating. In Sect. 8.3we show somenumerical results.
The aim of Sect. 8.3.1 is to give an evidence of an experimental rule for the number
of sampling points or, in general, the number of linear equations in formulating
the least-squares problem that determines the modal coefficients. Computational
results show the number should be twice as many as the number of unknown modal
coefficients. After confirming the rule we show a couple of examples of practical
interest in Sects. 8.3.2–8.3.5: Scattering by a relatively deep metal grating, Plasmon
surface waves on a metal grating placed in conical mounting, Scattering by a metal
surface modulated in two directions, and Scattering by periodically located dielectric

1The reason why we set a limit “2-D” is that the SP, in the present form, is available only in 2-D
problems. This is because we employ an indefinite integral to realize a low-pass spatial filter.
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spheres. Section8.4 is a conclusion where we state some additional remarks. Finally,
four appendices follow mainly providing supplementary explanations of particular
problems: 1 H-wave scattering from a cylinder; 2 The normal equation and related
topics; 3 Conical diffraction by a dielectric grating; and 4 Comparison between two
types of modal functions and a brief introduction to the algorithm with the SP.

8.2 Yasuura’s Method of Modal Expansion

In this sectionwe introduce the foundations ofYasuura’smethod ofmodal expansion.
We start by formulating a sample problem: plane wave scattering by a perfectly-
conducting (PC) cylinder, the problem from which we can learn the essential part of
the method together with important concepts and ideas in Yasuura’s method.

8.2.1 Scattering by a Perfectly-Conducting Cylinder

The geometry of the sample problem is shown in Fig. 8.1. The closed curve C is the
cross section and Se is the exterior infinite region of C. We denote a point in Se by
r (r, θ); and one on C by an arc-length s along C measured counterclockwise from
a fixed point s0. Se0 is an arbitrary closed region that is entirely inside Se. Let the
incident plane wave be polarized in z and

Ei(r) = uz F(r) = uz exp[−ikr cos(θ − ι)], (8.1)

where uz is a unit vector in z-direction, ι is the angle of incidence shown in Fig. 8.1,
and k = 2π/λ = ω/c is the wavenumber of the incident field. The eiωt time depen-
dence is assumed. This case of polarization is called E-wave,2 which is one of the
two basic polarizations. We will deal with an E-wave problem in this section and
summarize important results of an H-wave case, which is another basic polarization,
in Appendix 1.

In the present problema surface current flows in the z-direction exciting a scattered
wave polarized in z again:

Es(r) = uzΨ (r). (8.2)

Other non-zero components of the scatteredwave,Hs(r) = ux H s
x (r) + uy H s

y(r), can
be obtained by3

2It is also termed Transverse-Electric (TE) wave, which means the electric field is orthogonal to the
xy-plane. While in the H-wave (or TM-wave) the magnetic field has the z-component alone.
3The component is called a leading field if it gives other nonzero components as in (8.3). Note
that the derivation of Hs by (8.3) is a proper procedure because the sequence of our approximate
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Fig. 8.1 Geometry of the
sample problem. C is a
closed curve of length C
representing the cross section
of a cylindrical obstacle. Se
is the exterior infinite region
of C; and Si is the interior
region, which we need in
Sects. 8.2.2.1 and 8.2.4

Hs(r) = i

ωμ0
∇Ψ (r) × uz, (8.3)

where ∇ = (∂/∂x, ∂/∂y, 0) is the 2-D nabla operator. Hence, our target is Ψ (r) and
we can state our sample problem as:

Problem 1 E-wave, PC. Find the scattered electric field Ψ (r) that satisfies:

(D1) The 2-D Helmholtz equation in Se

∇2Ψ (r) + k2Ψ (r) = 0 (r ∈ Se), (8.4)

(D2) The 2-D radiation condition at infinity

√
r

(
∂Ψ (r)

∂r
+ ikΨ (r)

)
→ 0 (r → ∞), (8.5)

(D3) The boundary condition

Ψ (s) = f (s) ≡ −F(s) (s ∈ C, i.e., 0 ≤ s ≤ C). (8.6)

Here, ∇2 = ∂2/∂x2 + ∂2/∂y2 denotes the 2-D Laplacian. The condition given by
(8.6) is called Dirichlet’s or the first-kind boundary condition.

solutions converges to the true solution uniformly in wider sense in the exterior region Se as we
will see later.
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8.2.2 Modal Functions, Approximate Solution, and
Least-Squares Boundary Matching

Here we introduce the analytical part of Yasuura’s method [38–40]. Because it is one
of the modal expansion methods, we need: (i) definition of a set of modal functions;
(ii) a method to construct an approximate solution; and (iii) the sense in which the
solution approximates the boundary condition. Let us see these points below.

8.2.2.1 Definition of the Set of Modal Functions

Modal functions for the sample problem are solutions of Helmholtz’s equation (8.4)
satisfying some additional requirements. Here, we define a set of modal functions
{ϕm(r) : m = 1, 2, . . .} as a countable set that satisfy the following three require-
ments:

(M1) Each ϕm(r) satisfies the Helmholtz equation in Se;
(M2) Each ϕm(r) meets the 2-D radiation condition;
(M3) Both the set of boundary values {ϕm(s) : m = 1, 2, . . .} and the set of normal

derivatives {∂ϕm(s)/∂ν : m = 1, 2, . . .} are complete (or total)4 in the function
space H = L2(C) consisting of all the square-integrable functions defined on the
boundary C.

The first two requirements are natural and easy to understand; but the third is rather
complicated and needs explanation. Here, we would like to call readers’ attention to
the fact that (M3) is a little different from the original requirement given in [39],which
seems to be lacking in concreteness than the statement above. We have modified the
original statement to require completeness of the boundary values.

Now, let us see a couple of examples first to facilitate the understanding. Then,
we will give additional explanations for this issue throughout this section.

Example 1 The set of radiative separated solutions

ϕm(r) = H (2)
m (kr) exp(imθ) (m = 0,±1,±2, . . .), (8.7)

where H (2)
m (kr) is the second kind Hankel function of order m and the coordinate

origin should be inside Si, the complimentary region of Se.5

4We hope the readers consult a treatise on Functional Analysis, e.g. [14], in case of need.
5If C is a circle centered at the origin, it is apparent that the sets of boundary values and normal
derivatives are both complete because the members of each set are nothing other than the Fourier
bases. Even in case if C is not a circle, the sets are still complete because of Example 2: let L be
a circle centered at the origin and take the Fourier bases for fm(t) in (8.8), then we get a set of
separated solutions.



174 A. Matsushima et al.

Fig. 8.2 Relevant to
definition of the set of modal
functions. The cross section
C is shown by a dashed
curve; L is another closed
curve inside C

Example 2 Let L be a smooth closed curve that is entirely inside Si and De be an
exterior infinite region of L. As shown in Fig. 8.2, Se is a subregion of De; and Di,
the complementary region of De, is a subregion of Si. Now, let an enumerable set of
functions { fm(s) : m = 1, 2, . . .} be complete in the function space L2(L). Then, the
set of potential functions defined in De with fm(t)’s as double-layer density func-
tions on L

ϕm(r) = −
∫
L

fm(t)
∂ψ(kR)

∂νt
dt (r ∈ De; R = tr; m = 1, 2, . . .) (8.8)

is a set of modal functions in De provided that k does not coincide with a member of
{kH(Di)}, the set of eigenvalues of the homogeneous H-wave (Neumann) problem in
Di.6 Here, R is the distance between t and r,ψ(kR) = H (2)

0 (kR)/4i is the free-space
Green’s function, and ∂/∂νt denotes normal derivative at t . Note that the ensemble of
single-layer potentials can also be the set of modal functions provided k /∈ {kE(Di)},
the set of eigenvalues of homogeneous E-wave (Dirichlet) problem in Di.

Example 3 Monopole fields whose poles pm are located on L

ϕm(r) = H (2)
0 (kRm) (r ∈ De; Rm = pmr; m = 1, 2, . . . , M) (8.9)

form a set of modal functions in De when we let M → ∞while letting pmpm+1 → 0
provided there is no internal resonance in Di [26, 30].

Example 4 The set of multiple-multipole fields whose poles pm are on L

ϕmn(r) = H (2)
n (kRm) exp(inθm)

(r ∈ De; Rm = pmr; m = 1, 2, . . . , M; n = 0,±1,±2, . . .)
(8.10)

is also an example of modal functions.

6This is not a strong exception because we can modify the contour L (and hence Di) slightly to
avoid the coincidence. Example 2 is a key theorem of generation of complete sets, which has been
proven by Yasuura and Itakura [39] as an analogy of Runge’s (or Runge-Walsh’s) theorem known
in Theory of Complex Functions.
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8.2.2.2 Construction of an Approximate Solution

To define an approximate solution, we first choose a set of modal functions from
among possible candidates. Let us take the set of separated solutions in the follow-
ing analysis. This is because the set of separated solutions is one of the most familiar
functions and each member has physical meaning.7 Thus we can define an approx-
imate solution as a finite summation of the outgoing separated solutions (8.7) with
unknown coefficients:

ΨN (r) =
N∑

m=−N

Am(M) ϕm(r). (8.11)

Here, Am(M) means that the Am coefficient depends on M = 2N + 1, the num-
ber of modal functions employed.8 Because of the definition of modal functions,
the approximate solution already satisfies the requirements (D1) and (D2). The Am

coefficients, hence, should be determined so that the solution meets the boundary
condition in a sense of approximation. Let us call this procedure boundary matching
and keep in mind that the sense of approximation in boundary matching determines
a method of solution.

We employ the least-squares approximation in Yasuura’s method, i.e., minimiza-
tion of mean-squares boundary residual. We will see in Sect. 8.2.2.3 that this is
a promising way in boundary matching provided the completeness of the set of
boundary values (M3) is guaranteed.

8.2.2.3 Least-Squares Boundary Matching

We employ integral representations of the solutions to explain the method of solution
including convergence of the approximate solutions. For this purpose let us define
the Green’s function of our problem,G(r, r′), satisfying Helmholtz’s equation with a
unit source at r, radiation condition with respect to r′, and a homogeneous boundary
condition9

7Unfortunately, separated solutions are not very efficient in a problemwhereC is stronglymodulated
from a circle (or, in general, a coordinate surface of the system of coordinates employed). As an
example, we show a comparison between types of modal functions: the separated solutions (8.7)
and monopole fields (8.9) in Appendix 4.
8This dependence is natural because the boundary values ofmodal functions, in general, do not form
an orthogonal set in H. This type of summation is usually called a flexible summation. Note that the
approximate solution is defined in a finite summation ofmodal functions. By considering a sequence
of finite-sum solutions, we can avoid the constraint of the convergence area of an infinite series
solution. Yasuura’s original papers [38–40] has been written from this point of view. Reference [9]
includes an interpretation of the difference between series and sequence solutions.
9G(r, r′) is a total electric field observed at r′ (
= r)when a unit line source is placed at r in Fig. 8.1.
Note that employment of the Green function satisfying (8.12) is for convenience and is not essential:
The whole theory has been established in [38–40], where the free-space Green function alone was
used.
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G(r, s) = 0 (r ∈ Se; s ∈ C). (8.12)

Using the Green’s formula to Ψ (r′) and G(r, r′), we have

Ψ (r) = −
C∫

s=0

∂νG(r, s)Ψ (s) ds = −
C∫

s=0

∂νG(r, s) f (s) ds (r ∈ Se). (8.13)

Here, ∂ν denotes the normal derivative at s and the second equality comes from
(D3). Besides, we get a similar representation for the approximate solution ΨN (r).
Subtracting (8.13) from the representation of ΨN (r) side by side, we have

ΨN (r) − Ψ (r) = −
C∫

s=0

∂νG(r, s)[ΨN (s) − f (s)] ds (r ∈ Se). (8.14)

Although (8.14) is a formal representation, we can deduce useful results starting
from it.

Let the observation point r be inside the closed region Se0 in Fig. 8.1. Then,
∂νG(r, s) is a continuous function of s because there is a non-zero distance between
s and r. Taking the absolute value of both sides of (8.14) and applying Cauchy–
Schwarz’s inequality to the right-hand side, we obtain

∣∣ΨN (r) − Ψ (r)
∣∣ ≤
√√√√√

C∫
s=0

|∂νG(r, s)|2 ds ∥∥ΨN − f
∥∥ (r ∈ Se). (8.15)

Here, ‖ f ‖ stands for the Euclidean norm of a function f (s) defined by

‖ f ‖ =
⎡
⎣

C∫
s=0

| f (s)|2 ds
⎤
⎦

1/2

. (8.16)

Because the integrand on the right of (8.15) is a continuous function of r, the integral,
as a function of r, has a maximum inside the closed region Se0:

G(Se0) = max
r∈ Se0

√√√√√
C∫

s=0

|∂νG(r, s)|2 ds (Se0 ⊂ S). (8.17)

Thus we have an estimation

|ΨN (r) − Ψ (r)| ≤ G(Se0)
∥∥ΨN − f

∥∥ (r ∈ Se0 ⊂ Se), (8.18)

which means that the maximal absolute error in Se0 cannot exceed the product of the
mean-squares boundary residual and a factor of proportionality G(Se0). Note that
the latter depends on the region Se0 but does not depend on r.
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Now, let us remember the completeness (M3) of the set of boundary values of
modal functions. Because the given boundary value f (s) is a member ofH = L2(C),
for given any positive number ε, there is a positive integer N0 such that

∥∥ΨN − f
∥∥ < ε (N > N0). (8.19)

That is, there exists a sequence of boundary values of the approximate solutions
{Ψ0(s), Ψ1(s), Ψ2(s), . . .} that converges to the true boundary value f (s) in themean-
squares sense: ∥∥ΨN − f

∥∥→ 0 (N → ∞). (8.20)

Referring to (8.18), we can conclude that the corresponding sequence of approximate
solutions {Ψ0(r), Ψ1(r), Ψ2(r), . . .} converges toΨ (r) uniformly in the closed region
Se010: for given any positive number ε, there is a positive integer N0(Se0, ε) such that

|ΨN (r) − Ψ (r)| < ε (r ∈ Se0 ⊂ Se; N > N0(Se0, ε)). (8.21)

Wecanget such a sequence by solving repeatedly the following least-squares problem
(LSP) stated in the function space H.

LSP 1: E-wave, PC. Find the coefficients Am(M) (m = 0,±1, . . . ,±N ; M =
2N + 1) that minimize the normalized mean-squares boundary residual

EN =
∥∥ΨN − f

∥∥2
‖ f ‖2 = 1

‖ f ‖2
∥∥∥∥∥

N∑
m=−N

Am(M)ϕm − f

∥∥∥∥∥
2

. (8.22)

Note that the least-squares boundarymatchingmeans a relaxation of the boundary
condition because (8.6) implies ‖Ψ − f ‖ = 0; but the converse is not always true.
The smoothing procedure (SP), which we mentioned in Introduction, is an exten-
sion of the relaxation idea: we minimize ‖ ∫ (Ψ − f ) ds‖ instead of ‖Ψ − f ‖; and
extinction of the latter is stronger than vanishing of the former [10, 24, 31, 41, 42].
Although the Yasuura’s method with the SP is a strong tool for 2-D problems, we
shall not get deeply in this subject.

8.2.3 Method of Numerical Solution

Because computers cannot handle continuous functions, we need (i) method of dis-
cretization of LSP 1 and (ii) method of solution to the discretized problem.11

10This kind of convergence is called uniform convergence in wider sense in Se.
11Until the middle of 80s we employed normal equations (NE) in solving LSP 1. Now we solve the
problem using the method in Sect. 8.2.3.2. We state the reason why we stopped using the NE and
attach some comments in Appendix 2.
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8.2.3.1 Method of Discretization

To discretize the problem we first locate J (≥ M) sampling points on C, assign a
set of integers from 0 through J to them, and get a numbered set of sampling points
{s0, s1, . . . , sJ }. Because C is a closed curve, we give two numbers, 0 and J , to the
point s = 0. Two methods are usually used in locating the points:

1. An equal division of the boundary C: In most applications we can recommend to
use the points given by

s j = jC

J
( j = 0, 1, 2, . . . , J ) (8.23)

without any reservation in theory. If we take this method, we may have to solve
an (transcendental) (8.23) in locating the points.

2. An equal division with respect to a coordinate variable: For example, if C is
represented as r = r(θ), it must be convenient to use the discretization

θ j = j2π

J
( j = 0, 1, 2, . . . , J ). (8.24)

This choice, however, means a variable transformation in (8.13) and in other inte-
grals onCandwill lead us solving aweighted least-squares problemunexpectedly.
Users should notice this and be careful in applying this method of location in a
problem where the boundary C is strongly deformed from a circle.12

Having located the sampling points on C, we can define discretized forms of the
functions f (s), ϕm(s), and so on:

f = [ f (s1) f (s2) · · · f (sJ )]
T (8.25)

and
ϕm = [ϕm(s1) ϕm(s2) · · · ϕm(sJ )]

T . (8.26)

Here, the superscript T denotes a transposed vector or matrix and the discretized
forms are J -dimensional complex-valued column vectors. Next, we define a J × M
matrix by

Φ = [ϕ−N ϕ−N+1 · · · ϕN

] =
⎡
⎢⎢⎢⎣

ϕ−N (s1) ϕ−N+1(s1) · · · ϕN (s1)
ϕ−N (s2) ϕ−N+1(s2) · · · ϕN (s2)

...
...

. . .
...

ϕ−N (sJ ) ϕ−N+1(sJ ) · · · ϕN (sJ )

⎤
⎥⎥⎥⎦ (8.27)

12On the other hand, there is a possibility to make possible use of the weighting function accompa-
nying the variable transformation. For example, a Schwarz–Christoffel-type transformation works
to remove the singularity of Green’s function in a problem of an edged cross section [23].
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which is usually termed a Jacobian matrix. Finally, defining an M-dimensional solu-
tion vector

A = [A−N (M) A−N+1(M) · · · AN (M)
]T

, (8.28)

we can represent a discretized form of an approximate solution on C in vector-matrix
notation

Ψ N =
N∑

m=−N

Am(M)ϕm = ΦA. (8.29)

Thus, we have an approximation to the mean-squares boundary residual in (8.22):

EN J = ‖ΦA − f‖2
‖f‖2 . (8.30)

Here, ‖f‖ denotes a Euclidean norm of a J -dimensional complex-valued vector f.
Because C is a closed curve and f (s0) = f (sJ ), etc., (8.30) can be understood as
a trapezoidal-rule approximation of (8.22). Now, we can state a discretized form of
LSP 1 as follows:

DLSP 1: E-wave, PC. Find the solution vector A that minimizes the numerator of
(8.30).

Here arises an important issue of the number of sampling points13: How many J
do we need? If we answer to this question in generality, we should say: It depends.
However, employing the results of examination in Sect. 8.3.1, we can state an exper-
imental rule:

J
.= 2(2N + 1) = 2M. (8.31)

Here, the symbol
.=means that the number on the right-hand side is usually sufficient

in finding the scattered field. This might be considerably smaller than what unini-
tiates expect because DLSP 1 with the number J of (8.31) does not seem to be a
good approximation of LSP 1. This is because an inner product (C/J )f†g implicitly
included in the norm on the right of (8.30) cannot be a precise approximation of
( f, g) in (8.22) if either f (r) or g(r) is a higher-order space harmonic. Nevertheless,
DLSP 1 with (8.31) gives an approximate solution having converged with respect
to J . We know this welcome nature of DLSP 1 since we started solving the scat-
tering problem on a computer in early 70s. At that time the method in Sect. 8.2.3.2
was not known widely and we solved the problem using a normal equation (NE;
see Appendix 2). We found (8.31) was effective even in using the NE where the
inner products (C/J )f†g appeared explicitly as the matrix elements. In the method
of solution that we introduce next, we do not have to calculate these inner products.
That is one of the advantages of the method.

13It is more reasonable to ask “How many linear equations do we need?” This is because (i) we
get two equations at one sampling point in a 2-media problem (see Sect. 8.2.4); and (ii) we should
understand (8.31) as a relation between the numbers of equations J and unknowns M .
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8.2.3.2 Solution Method to the Discretized Problem

To solve the least-squares problem in the J -dimensional vector space, we employ
orthogonal decomposition of the Jacobian matrix: the singular-value decomposition
(SVD) and the QR decomposition (QRD) [15]. They have the following features:

• The SVD informs us of the character of the Jacobian matrix through singular
values. This is helpful in designing and testing a process of numerical solution,
in particular, choice of modal functions, number and location of sampling points,
etc. Instead, the computational complexity, in both memory and time, is bigger
than that of the QRD.

• The QRD needs less computation than the SVD and solves the problem provided
no rank deficiency occurs.14

Hence, we recommend the use of the SVD for designing and testing the discretized
least-squares problem. After the problem is established, application of the QRD is
appropriate. Let us see how to use these decompositions in examining and solving
DLSP 1.

Utilization of the SVD

Applying the SVD, we get a decomposition of the Jacobian matrix in the form

Φ = UΣV†, (8.32)

where U (J × J ) and V (M × M) are unitary matrices, and † denotes Hermitian
conjugation: V† = V̄T. Σ is a stack of an M × M diagonal matrix and a (J − M) ×
M zero matrix. The diagonal elements of Σ , σm , are non-negative and are called the
singular values of Φ. Arranging the M singular values in the order of decreasing
magnitude, we have σ1 ≥ σ2 ≥ · · · ≥ σM (M = 2N + 1). Let us call σ1 and σM by
σmax and σmin because this order of σm does not necessarily agree with the order of
modal functions. The following items are widely known and accepted:

• The singular values are non-negative square roots of the eigenvalues of a posi-
tive semidefinite Hermitian matrix Φ†Φ: σm(Φ) = √λm(Φ†Φ). And, vanish of
the smallest singular value, σmin = 0, means detΦ†Φ = 0. Because Φ†Φ is the
coefficient matrix of the NE (8.106) in Appendix 2, this is a serious problem: the
least-squares problem does not have a unique solution. Although σmin = 0 in strict
sense seldom occurs in practice, very tiny σmin is not rare and causes substantial
rank deficiency.

• The ratio of the maximum singular value to the minimum

cond(Φ) = σmax

σmin
(8.33)

14In addition, the solution by a QRD program, usually, is not inferior in accuracy to one by an SVD
program. This may be because of the greater computational complexity of the SVD.
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defines the condition number ofΦ, which shows the degree of numerical difficulty
in solving the least-squares problem with the Jacobian matrix Φ. In general, a
problem with a small cond(Φ) is easy to solve and is termed well-conditioned;
while one with a huge cond(Φ) is difficult and called ill-conditioned. In this
connection an empirical rule is known: if the reciprocal of cond(Φ) is of the same
order as or smaller than the machine epsilon15 of the system of floating-point
numbers, effective rank ofΦ might be less than M and DLSP 1 may not be solved
properly.

Although our main purpose to employ the SVD is to check the nature of Φ, we
can solve DLSP 1 in the following way:

(a) Modifying ‖ΦA − f‖2 by insertion of (8.32), we have

‖ΦA − f‖2 = ‖U†(ΦA − f)‖2 = ‖ΣV†A − U†f‖2 = ‖ΣB − d‖2. (8.34)

Here, we have used that the matrices U and V are unitary and that a unitary
transformation does not change the norm of a vector. Also, note that the last
equal sign defines the vectors B and d.

(b) We get the solution to DLSP 1 from

Bm = dm
σm

(m = 1, 2, . . . , M (= 2N + 1)) (8.35)

and the squared norm by

‖ΦA − f‖2 =
J∑

j=M+1

|d j |2. (8.36)

Utilization of the QRD

Employment of the QRD leads us to a decomposition of the form

Φ = QR̃ = Q

[
R
0

]
, (8.37)

where Q is a J × J unitary matrix and R̃ is a stack ofM × M upper triangular matrix
R and a (J − M) × M zero matrix. Having the decomposition (8.37), we can solve
DLSP 1 by the following procedure:

(a) Inserting (8.37) into ‖ΦA − f‖2, we have

15The machine epsilon, EPS, is the minimum positive number that satisfies 1 + EPS > 1 in the
floating-point system employed.
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‖ΦA − f‖2 = ‖Q†(ΦA − f)‖2 = ‖R̃A − Q†f‖2 ≡
∥∥∥∥
[
RA
0

]
−
[

d
z

]∥∥∥∥
2

,

(8.38)
where the last equality defines the vectors d and z.

(b) We obtain the solution by solving

RA = d. (8.39)

Because R is triangular, we need only back substitution to solve (8.39). The
residual norm is given by

‖ΦA − f‖2 = ‖z‖2. (8.40)

8.2.4 Application to Dielectric or Metal Obstacles

This section introduces the Yasuura’s method applied to problems with dielectric or
metal obstacles [35, 43–45]. Although metals have unique nature, we here regard
a metal as a dielectric with a complex permittivity depending on the frequency.
Therefore we consider a material whose permittivity and refractive index are given
by complex numbers ε and n = √

ε/ε0. Usually thematerial is penetrable and there is
a non-zero transmitted field in Si, the complementary region of Se. Thus we have two
unknown functions Ψ i(r) (r ∈ Si) and Ψe(r) (r ∈ Se); and we need two boundary
conditions to determine the two unknown functions. The continuity of tangential
components of the electric and magnetic field satisfies the necessity.

8.2.4.1 E-Wave Scattering by a Cylindrical Obstacle Made of a
Dielectric

Let us assume that the obstacle in Fig. 8.1 is made of a dielectric and that an E-
wave is incident. The electric field in Se is a sum of the incident and the scattered
wave: uz(F + Ψe)(r); while the field in the interior region Si is the transmitted field
uzΨ i(r). They are the solutions of Helmholtz’s equation in each region:

{(∇2 + k2
)
Ψe(r) = 0 (r ∈ Se),(∇2 + (nk)2
)
Ψ i(r) = 0 (r ∈ Si).

(8.41)

The exterior solution, in addition, should meet the radiation condition (8.5). The con-
tinuity of tangential components of electric andmagnetic fields requires the boundary
conditions16

16To get the latter we set uν × (He − Hi) = 0. Insertion of He = (i/ωμ)∇Ee × uz etc. finds the
desired relation. Here, Ee = F + Ψe stands for the total electric field in Se.
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{
Ψe(s) − Ψ i(s) = f (s) ≡ −F(s),
∂Ψe(s)

∂ν
− ∂Ψ i(s)

∂ν
= g(s) ≡ −∂F(s)

∂ν
.

(8.42)

Thus we get a boundary-value problem for Ψe(r) and Ψ i(r):

Problem 2 E-wave, dielectric. Find the electric fields Ψe(r) and Ψ i(r) that satisfy
(8.41), (8.5), and (8.42).

Note that in dealingwith anH-wave problem, the second line of (8.42) should include
the refractive index n or permittivity ε (see (8.100) in Appendix 1).

8.2.4.2 Modal Functions and Approximate Solutions

We need two sets of modal functions to solve the problem, one is for Ψe(r) and
another is for Ψ i(r). Let us call them the exterior and interior modal functions and
represent them as {ϕem(r)} and {ϕ im(r)}. They should satisfy the requirements below,
which are almost in common with the conditions from (M1) through (M3) given in
Sect. 8.2.2.1

(MD1) Each member of the set of exterior modal functions satisfies the Helmholtz
equation in Se and meets the radiation condition at infinity.

(MD2) Each member of the set of interior modal functions satisfies the Helmholtz
equation in Si.

(MD3) The sets of boundary values {ϕem(s)} and {ϕ im(s)}, and the sets of nor-
mal derivatives {∂ϕem(s)/∂ν} and {∂ϕ im(s)/∂ν} are all complete in the function
space H.

Here, we take the sets of separated solutions again because they are familiar to many
people working with boundary-value problems. Then, the exterior and interior modal
functions are:

{
ϕem(r) = H (2)

m (kr) exp(imθ), ϕ im(r) = Jm(nkr) exp(imθ)

(m = 0,±1,±2, . . .).
(8.43)

Here, Jm(nkr) stands for the Bessel function of orderm. Then, we can define approx-
imate solutions in Se and Si as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ΨeN (r) =
N∑

m=−N

Aem(M)ϕem(s) (r ∈ Se),

ΨiN (r) =
N∑

m=−N

Aim(M)ϕ im(s) (r ∈ Si).

(8.44)

They satisfy the Helmholtz equation in each region and ΨeN meets the radiation
condition.
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8.2.4.3 Error Estimation and Least-Squares Boundary Matching

After some analytical work we get error estimations similar to (8.18)17:

|ΨeN (r) − Ψe(r)| ≤ Ge1(Se0)

∥∥∥∥∂ΨeN

∂ν
− ∂ΨiN

∂ν
− g

∥∥∥∥
+ Ge2(Se0) ‖ΨeN − ΨiN − f ‖ (r ∈ Se0 ⊂ Se)

(8.45)

and

|ΨiN (r) − Ψ i(r)| ≤ G i1(Si0)

∥∥∥∥∂ΨeN

∂ν
− ∂ΨiN

∂ν
− g

∥∥∥∥
+ G i2(Si0) ‖ΨeN − ΨiN − f ‖ (r ∈ Si0 ⊂ Si).

(8.46)

Here, Se0 and Si0 are arbitrary closed regions in Se and Si, and Gpq (p = e, i; q = 1,
2) are positive constants depending on Se0 and Si0.

We can prove that: provided the sets of modal functions satisfy the requirement
(MD3), there exists a sequence of pairs of approximate solutions

[
Ψe0(r)
Ψi0(r)

]
,

[
Ψe1(r)
Ψi1(r)

]
, . . . ,

[
ΨeN (r)
ΨiN (r)

]
, . . . (8.47)

whose boundary values and normal derivatives satisfy

EN ≡
∥∥ΨeN − ΨiN − f

∥∥2
‖ f ‖2 +

∥∥∂ΨeN/∂ν − ∂ΨiN/∂ν − g
∥∥

‖g‖2 → 0 (N → ∞).

(8.48)
The sequence (8.47), hence, converges to the true solutions of the problem uniformly
in wider sense in Se and Si:

ΨpN (r) → Ψp(r) (N → ∞; p = 1, 2; uniformly in Sp0). (8.49)

Members of such a sequence can be found by solving the least-squares problem:

LSP 2: E-wave, dielectric. Find the modal coefficients {Apm(M) : m = 0,±1,
. . . ,±N } (p = e, i) that minimize the normalized mean-square error EN defined in
(8.48).

It is worth to note the following matters: Because the convergence in (8.48) is
a consequence of completeness of the four sets of boundary functions in a product
space H × H, the choice of denominators in (8.48), ‖ f ‖2 and ‖g‖2, is no more than a

17We cannot include the derivation of equations from (8.45) through (8.49) because it takes much
space. Interested readers can find the details in [35, 43–45]. The paper by Petit and Cadilhac [33]
is also helpful.
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convention to get non-dimensional quantities or to unify the units.18 Speaking from a
computational point of view, however, the ratio ‖ f ‖2/‖g‖2 may have an effect on the
condition number of LSP 2 and, sometimes it is effective to introduce a parameter
γ (0 < γ < 1) to modify the definition of EN as

EN ≡ γ

∥∥ΨeN − ΨiN − f
∥∥2

‖ f ‖2 + (1 − γ )

∥∥∂ΨeN/∂ν − ∂ΨiN/∂ν − g
∥∥2

‖g‖2 . (8.50)

The parameter should be determined by optimization to get a permissible condition
number.

8.2.4.4 Notes on the Method of Numerical Computation

In above formulation we have 2M = 2(2N + 1) unknowns. If we apply the rule in
Sect. 8.3.1 (and also in Sect. 8.2.3.1), we need 2 × 2M = 4M linear equations. The
number of sampling points required for the 4M equations, however, is 2M again.
This is becausewe have two equations at each sampling point: the first and the second
equation of (8.42).

Let us follow the method of discretization in Sect. 8.2.3.1. Locating J (= M =
2(2N + 1)) sampling points on C, we define J -dimensional vectors

{
f = [ f (s1) f (s2) · · · f (sJ )]

T ,

g = [g(s1) g(s2) · · · g(sJ )]
T ,

(8.51)

{
ϕem = [ϕem(s1) ϕem(s2) · · · ϕem(sJ )]

T ,

ϕim = [ϕ im(s1) ϕ im(s2) · · · ϕ im(sJ )]
T (8.52)

and {
∂νϕem = [∂νϕem(s1) ∂νϕem(s2) · · · ∂νϕem(sJ )]

T ,

∂νϕim = [∂νϕ im(s1) ∂νϕ im(s2) · · · ∂νϕ im(sJ )]
T ,

(8.53)

where the mode-number m runs from −N to N .
Next, we construct four J × M matrices

{
Φ11 = [ϕe,−N ϕe,−N+1 · · · ϕe,N

]
,

Φ12 = [ϕi,−N ϕi,−N+1 · · · ϕi,N

] (8.54)

and {
Φ21 = [∂νϕe,−N ∂νϕe,−N+1 · · · ∂νϕe,N

]
.

Φ22 = [∂νϕi,−N ∂νϕi,−N+1 · · · ∂νϕi,N

]
.

(8.55)

18Theuse of intrinsic impedance is also possible and iswidely employed.That is: find the coefficients
by minimization of |error in E|2 + Z2

0 |error in H|2. Here, Z0 is the intrinsic impedance of vacuum
or surrounding material. We use this formulation in Appendix 3.
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Arranging the four matrices, we get a 2J × 2M Jacobian matrix

Φ =
[
pΦ11 pΦ12

qΦ21 qΦ22

]
. (8.56)

Here,

p = γ

f †f
, q = 1 − γ

g†g
(8.57)

are normalizing constantswith the parameter γ appeared in (8.50).19 Finally, defining
a 2M-dimensional solution vector

A =
[

Ae

Ai

]
, (8.58)

where {
Ae = [Ae,−N (M) Ae,−N+1(M) · · · Ae,N (M)

]T
,

Ai = [Ai,−N (M) Ai,−N+1(M) · · · Ai,N (M)
]T (8.59)

are M (= 2N + 1) dimensional column vectors. Thus, we can state a discretized
problem as:

DLSP 2: E-wave, dielectric. Find the solution vector A that minimizes the dis-
cretized form of normalized boundary residual

EN J =
∥∥∥∥ΦA −

[
p f
q g

]∥∥∥∥
2

=
∥∥∥∥ pΦ11Ae + pΦ12Ai − pf
qΦ21Ae + qΦ22Ai − qg

∥∥∥∥
2

. (8.60)

8.2.5 Application to Gratings

Here we consider the problem of plane-wave diffraction by a grating and state the
points of difference from scattering by a cylindrical obstacle. The book edited by Petit
[32] includes a nice introduction to Yasuura’s method applied to grating problems
as of late 70s.

8.2.5.1 Diffraction by a PC Grating

Figure8.3 shows the cross section of a grating, an incident wave, and the system of
coordinates. The cross section C is periodic in X with a period d and the surface is

19If the compensation by γ is not necessary, we can set p = 1/f †f and q = 1/g†g or use the
intrinsic impedance.
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Fig. 8.3 Diffraction by a PC
grating

uniform in Z . The semi-infinite region S over C is a vacuum and the region below C
is occupied by a PC.We assume C is represented by a single-valued smooth function

C : y = η(x), (8.61)

where η(x) is periodic in x , η(x + d) = η(x), and (x, y) denotes a point on C.
Let an electromagnetic wave having an electric field

uZ F(r) = uZ exp(−ikX sin θ + ikY cos θ) (8.62)

is incident on the grating. This case of polarization is termed E-wave, TE wave, or
s-polarization.20 Here, r = (X,Y ) is a point in S, uZ is a unit vector in Z , and θ

is the angle of incidence shown in Fig. 8.3. The diffracted electric field has only a
Z -component, which we describe by Ψ (r). Ψ (r) is the solution of the following
problem.

Problem 3 E-wave, PC grating. Find Ψ (r) that satisfies the conditions below:

(GD1) The 2-D Helmholtz equation in S;
(GD2) A radiation condition in Y that Ψ (r) propagates or attenuates in positive

Y ;
(GD3) A periodicity condition

Ψ (X + d,Y ) = exp(−ikd sin θ) Ψ (X,Y ); (8.63)

(GD4) The boundary condition

Ψ (x, η(x)) = f (x) ≡ −F(x, η(x)). (8.64)

20s stands for senkrecht (German), which means the electric field is perpendicular to the plane of
incidence, the plane spanned by uY (grating normal) and the incident wavevector.
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Conditions (GD1) and (GD4) are common to the case of cylindrical obstacle in
Sect. 8.2.1, while (GD2) is quite different from (D2) and (GD3) is a new requirement.
These differences come from the pseudo-periodic nature of the problem. Because a
grating has a periodic structure, and because we have assumed a plane-wave inci-
dence, the phenomena at (X,Y ) and (X + d,Y ) are almost the same; the only dis-
crepancy can be seen in the phase difference (8.63). Hence, if we divide S by vertical
lines X = 0,±d,±2d, . . . as shown in Fig. 8.3, the diffracted fields in neighboring
strip regions are the same except for the phase shift. This is a characteristic fea-
ture of a grating problem called quasi- or pseudo-periodicity and explains why the
1-D radiation condition appears in (GD2). In solving a grating problem, hence, we
can assume that the observation point r = (X,Y ) is inside the first strip region S1
(0 < X ≤ d; Y ≥ η(X)) shown in Fig. 8.3.

8.2.5.2 Modal Functions, Approximate Solution, and Key Points
in the Solution Method

Here againwe choose separated solutions asmodal functions. The separated solutions
satisfying the periodicity are known as Floquet modes. We take the Floquet modes
satisfying the radiation condition (GD2)

ϕm(r) = exp(−iαm X − iβmY ) (m = 0,±1,±2, . . .) (8.65)

as the set of modal functions, where

αm = k sin θ + 2mπ

d
, βm =

√
k2 − α2

m (Reβm ≥ 0, Imβm ≤ 0). (8.66)

The term k sin θ inαm is for the periodicity, the definition ofβm implies theHelmholtz
equation, and the sign of βm (positive or negative imaginary) is for the radiation
condition.

We construct an approximate solution following the way we took in Sect. 8.2.2.2:

ΨN (r) =
N∑

m=−N

AE
m(M) ϕm(r). (8.67)

This solution satisfies conditions (GD1), (GD2), and (GD3). Hence, the AE
m coeffi-

cients21 should be determined so that the solution satisfies the boundary condition
(GD4) approximately. Let us see briefly the least-squares boundary matching works
to yield a sequence of solutions converging to the true solution.

Some analysis starting from an assumption that r is inside a closed region S10 (⊂
S1) leads us to an estimation

21The superscript E denotes that the coefficients concern the E-wave. Later we will also use the
superscripts H, TE, and TM in accordance with polarizations.
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|ΨN (r) − Ψ (r)| ≤ G(S10)‖Ψ̃N − f̃ ‖ (r ∈ S10 ⊂ S1). (8.68)

Here, G is a positive constant depending on the closed region S10 and the quanti-
ties with tildes, e.g. f̃ , mean periodic functions derived from the pseudo-periodic
functions:

f̃ (s) = exp(iα 0x) f (x, y) = − exp(−iβ 0y), (8.69)

Ψ̃N (s) = exp(iα 0x)ΨN (x, y) =
N∑

m=−N

AE
m(M) ϕ̃m(x, y), (8.70)

and

ϕ̃m(x, y) = exp(iα 0x)ϕm(x, y) = exp

(
−2mπ ix

d
− iβm y

)
. (8.71)

The norm of a function g(s) defined on C1, the first period of C, is defined by

‖g‖ =
⎡
⎣

C∫
s=0

|g(s)|2ds
⎤
⎦

1/2

, (8.72)

where C denotes the length of C1. Thus we have a least-squares problem:

LSP 3: E-wave, PC grating. Find the AE
m coefficients that minimize the numerator

of the normalized mean-square error

EN =
∥∥∥Ψ̃N − f̃

∥∥∥2∥∥∥ f̃
∥∥∥2

. (8.73)

The modification of the boundary values to define the periodic functions is the
key point in the solution of grating problems. Introducing the modification, we can
establish a correspondence between one period of the grating surface C1 and the
cross section of a cylindrical obstacle C in Sect. 8.2.1.22 The method of numerical
solution for LSP 3 is similar to that in Sect. 8.2.3. To solve the problem of diffraction
by a grating made of dielectric or metal we can combine the method in this section
with that in Sect. 8.2.4. Guidance to the problem of conical diffraction can be found
in Appendix 3.

22If we employ the SP, this correspondence is essentially important because we need periodicity
of the functions defined on the boundary. In using Yasuura’s method without the SP, we can say
the following points: (1) If we get the solution through the NE, this modification is not necessary
because it is done automatically in calculating the inner products; (2) While if we employ the
QRD or SVD: (2.i) The modification may accelerate the convergence of the solutions because
the target function and the modal functions are periodically continuous after modification; (2.ii)
And, a quadrature by parts (or rectangular-rule) approximation is equivalent to a trapezoidal-rule
in numerical integrations.
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8.3 Numerical Examples

In this section we show some results of numerical computations obtained by the
methods in the last section. First, we examine the nature of the Jacobian matrices
taking grating problems as examples to show the validity of the experimental rule
(8.31). Meanwhile we add some comments that are useful in applying the method.
Then we give the results of four problems of practical interest.

8.3.1 Rule on the Number of Sampling Points

We have solved the problem of diffraction by a grating made of PC and by one made
of BK7 optical glass varying the number of sampling points or of linear equations.
The results support our experimental rule. In addition, we have made a comparison
between the two methods of locating the sampling points, (8.23) and (8.24), intro-
duced in Sect. 8.2.3.1 and found little difference in the rage J ≥ 2M for the problem
parameters employed in numerical analysis.

8.3.1.1 A PC Grating

We consider the grating shown in Fig. 8.3 and assume that the cross section C is
given by23

C : y = H

(
cos

2πx

d
− 1

)
. (8.74)

Weassume also that anE- orH-polarized planewave is incident at θ = 0 (normal inci-
dence). Other physical parameters are: d = 556nm, H/d = 0.15, andλ = 500nm.24

The computational parameters are: the number of truncation N = 20; the total num-
ber of modal functions M = 41; and the number of sampling points J is in the range
M ≤ J ≤ 4M . This means that the number of unknown coefficients is M and the
number of linear equations is between M and 4M .

The first example, Fig. 8.4, shows the convergence of the solution and related
parameters in the E-wave. The curves in Fig. 8.4a includes the maximum and mini-
mum singular value, the condition number cond(Φ), E20 J of (8.30), and an error on
the power balance

eN J = 1 −
∑
prop

ρm = 1 −
∑
βm>0

βm

β 0
|AE

m(M, J )|2, (8.75)

23Note that the bias setting (we used−1 here) has an effect on the accuracy of numerical computation
when the grating is deep.
24Although the use of normalization bywavelength (i.e., kd = 2πd/λ etc.) is convenient in handling
a problem with a PC obstacle, we employ real length here.
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Fig. 8.4 Convergence of the solutions with respect to J for a PC grating in the E-wave. θ = 0,
d = 556nm, H/d = 0.15, and λ = 500nm: a Cond(Φ) and errors; b AE

0 (20, J ) and AE
10(20, J )

where
∑

prop and
∑

βm>0 mean the summation in respect to the propagating orders.25

We observe these quantities are approaching final values with increasing J ; and
have converged for J ≥ 2M .26 Figure8.4b illustrates the convergence of AE

0 (20, J )

and AE
10(20, J ) coefficients. The former has converged before reaching J = 2M ;

while the latter is with small ripples until J = 2.2M . We, however, can neglect this
oscillation in finding the diffractedwave because themodewithm = 10 is evanescent
and cannot be observed at a point apart from the grating surface.

The second set of figures, Fig. 8.5, displays the same thing for the H-wave. The
curves in Fig. 8.5a show the max and min singular value, cond(Φ), E20 J , and e20 J .
While in Fig. 8.5b we show the convergence of AH

0 (20, J ) and AH
10(20, J ). We

observe all the quantities have converged substantially in the range J ≥ 2M .
The third example, Fig. 8.6, shows the convergence of solutions: N dependence

of the normalized mean-square error EN and energy error eN of E- and H-wave
solutions. The rule J = 2M is applied. Because the surfacemodulation ismoderate in
the problem,weget precise solutionswith 10−6 or 10−4 percent energy error easily for
both E- and H-wave problem.27 It is worth to mention that a modal coefficient—e.g.
AE
m(M), as a function of M , converges to a final value: AE

m(M) → AE
m (M → ∞).

This convergence, however, is not uniform with respect to m.

25ρm is referred to as the (reflection) efficiency of the mth order.
26When the number of truncation is small (e.g., N ≤ 10), we sometimes observe a phenomenon
that the condition number continues to decrease slightly beyond J = 2M due to tiny increment of
σmin.
27We should notice, however, that the accuracy of an H-wave solution is lower than that of an
E-wave solution by one or two digits. This is observed generally; and was Yasuura’s motivation
of introducing the SP. His idea came from the fact that a Neumann problem for an electrostatic
potential is equivalent to a Dirichlet problem for a stream function. The prototype of the SP, hence,
was called an algorithm using the stream function in a wave field.
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Fig. 8.5 Convergence of the solutions with respect to J for a PC grating in the H-wave. Optical
parameters are the same as those in Fig. 8.4: a Cond(Φ) and errors; b AH

0 (20, J ) and AH
10(20, J )

Fig. 8.6 Convergence of the solutions with respect to N for a PC grating. Optical parameters are
the same as those in Fig. 8.4: a E-wave; b H-wave

8.3.1.2 A BK7 Optical Glass Grating

Here we examine the case of a dielectric grating made of an optical glass BK7 whose
refractive index is 1.5139 [1]. Other parameters are the same as in Sect. 8.3.1.1. In
the present problem we have transmitted fields (Et and Ht) in the region V2 below
the grating surface in addition to the reflected fields (Er and Hr) over the grating V1.
We, hence, define approximate solutions following (8.44) in Sect. 8.2.4. That is, we
employ Floquet modes in V1 and V2 and construct approximations of leading fields
in each region in the form of finite linear combinations of the Floquet modes. Let the
number of truncation be N . Then, we have 2(2N + 1) = 2M unknown coefficients
in total.



8 Introduction to Yasuura’s Method of Modal Expansion … 193

Fig. 8.7 Convergence of the solutions with respect to J for a BK7 grating in the E-wave. θ = 0,
d = 556nm, H/d = 0.15, and λ = 500nm: a Cond(Φ) and errors; b AE

0 (20, J ) and AE
10(20, J )

Fig. 8.8 Convergence of the solutions with respect to J for a BK7 grating in the H-wave. Optical
parameters are the same as those in Fig. 8.7: a Cond(Φ) and errors; b AH

0 (20, J ) and AH
10(20, J )

Figure8.7 shows the convergence of the solution and related parameters as func-
tions of the number of sampling points J in the E-wave and N = 20.We observe that
all the errors and the parameters have converged in the range J ≥ 2M = 2(2N + 1)
except for small ripples. Figure8.8 shows the same thing in the H-wave. This means
that the number of linear equations in the least-squares problem can be twice as many
as the number of unknowns (2 × 2M = 4(2N + 1); see Sect. 8.2.4.4).

Figure8.9 illustrates the N dependence of the errors of the solutions. We get
precise solutions with 10−5 percent energy error easily on a personal computer.
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Fig. 8.9 Convergence of the solutions with respect to N for a BK7 grating. Optical parameters are
the same as those in Fig. 8.7: a E-wave; b H-wave

8.3.2 Scattering by Relatively Deep Gratings

Yasuura’s method, when combined with the partition of the groove region, can solve
the problem of diffraction from a deep grating with a depth-to-period ratio beyond
unity. In the conventional Yasuura’s method without partition, this ratio is said to
be about 0.5 and a little less than 0.4 in the E- and H-wave cases, respectively.
In the present subsection, some numerical results are given for the scattering by
relatively deep gratings using a combination of up-and down-going Floquet modal
functions [22].

Theperiod andheight of the sinusoidal profile ared and2H , respectively, as shown
in Fig. 8.10. At first we deal with a perfectly conducting grating as a fundamental
problem where the electromagnetic fields exist only in the vacuum region. The semi-
infinite region over the grating surface is divided into an upper half plane U0 and a
groove region a fictitious boundary (a horizontal line). The latter is further divided
into shallow horizontal layers U1,U2, . . . ,UQ again by fictitious boundaries.

An approximate solution in U0, that is Ψ0N (r), is defined in a usual manner as
(8.67), while the solutions in Uq (q = 1, 2, . . . , Q) include not only the up-going
but also the down-going modal functions as

ΨqN (r) =
N∑

m=−N

[
A+
qm(N ) ϕ+

m (r − uY yq) + A−
qm(N ) ϕ−

m (r − uY yq−1)
]
, (8.76)

where ϕ±
m (r) = exp(iαm X ± iβmY ), and the plane Y = yq is the boundary between

Uq and Uq+1. Thus the total number of unknown coefficients is (2N + 1)(2Q + 1).
These coefficients should be determined in order that the solutionsmeet the boundary
condition (GD4) and an additional set of boundary conditions on the Q fictitious
boundaries:
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Fig. 8.10 Cross section of a
perfectly conducting (PC) or
dielectric sinusoidal grating.
In the case of PC grating,
partition into Q + 1 layers is
done only in the vacuum
region

⎧⎪⎪⎨
⎪⎪⎩

(
Fδq0 + Ψq

)∣∣
Y=yq+0 = Ψq+1

∣∣
Y=yq−0 ,

∂
(
Fδq0 + Ψq

)
∂Y

∣∣∣∣∣
Y=yq−0

= ∂Ψq+1

∂Y

∣∣∣∣
Y=yq−0

,
(8.77)

where δq0 is Kronecker’s delta. The mean-square error is defined in the same form as
(8.73), but the integration range in the norm (8.72) must include not only the grating
surface but also the fictitious boundaries.

Let us check the convergence of the results obtained by the present method.
Figure8.11 shows the variation of the normalized mean-square error and the energy
error as functions of the number of truncation N for both E- and H-wave incidence.
As is observed in these figures, the mean-square error decreases as N increases. An
approximate solution with 0.1 percent energy error is accomplished at N = 14 for an
E-wave. In the H-wave case convergence of solutions is not so fast as in the E-wave
case. We attain to one percent energy error at N = 23 in that case of polarization.

Figure8.12 shows comparison of reflection efficiency for a perfectly conducting
grating as functions of the incident angle at E-wave incidence. The numbers (N , Q)

are (15, 4), (15, 5), and (30, 20) as H/d = 0.31, 0.4, and 1.066, respectively. The
curves and symbols represent the present results and the results by the integral equa-
tionmethod [46].Wefindgood agreement between the results. For dielectric gratings,
partitionmust bemade not only in the vacuum region but also in the dielectric one. As
a result, numbers of unknown modal coefficients and boundary conditions become
doubled compared with the previous case.

Figure8.13 shows comparison of transmission efficiency for a dielectric grating
as functions of the incident angle at H-wave incidence. The numbers (N , Q) are
(11,4). The curves and symbols represent the present results and the results by the
finite element method [20]. We find that the results agree with each other except for
the grazing limit.
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Fig. 8.11 Normalized
mean-square error EN and
energy error eN as functions
of the truncation number N
for a PC grating with
2H/d = 1, d/λ = 0.5, and
θ = 30◦

Fig. 8.12 Reflection
efficiency in percent for a PC
grating with d/λ = 0.75 at
E-wave incidence.
Comparison with the integral
equation method [46]

Fig. 8.13 Transmission
efficiency in percent for a
dielectric grating with
εr = 4, 2H/d = 1, and
d/λ = 0.6 at H-wave
incidence. Comparison with
the finite element method
[20]
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Fig. 8.14 Diffraction by a dielectric grating: a Conical mounting; b Definition of δ

Although there are a couple of methods that are capable of solving the problems
of extremely deep gratings, the present results make sense because they show a limit
of a conventional modal-expansion approach when using the Floquet modes as basis
functions.

8.3.3 Plasmon Surface Waves Excited on a Metal Grating
Placed in Conical Mounting

We show some numerical results in regard to plasmon surface waves excitation on
a metal grating placed in conical mounting [29]. Conical mounting is an optical
arrangement in which the plane of incidence is not perpendicular to grooves of a
grating as shown in Fig. 8.14. Readers can find detailed description of problem in
Appendix 3. We here illustrate the results obtained by the method explained there.

We deal with a sinusoidal silver grating whose surface profile is given by z =
H sin(2πx/d). The upper regionV1 over the grating surface is assumed to be vacuum
with a refractive index n1 = 1 and the grating is made of silver with a complex
refractive index n2. As an incident light we consider an electromagnetic plane wave,
which is specified by the wavenumber in vacuum (k = 2π/λ), the polar angle (θ )
between the wavevector and the grating normal, and the azimuthal angle (φ) between
the X axis and the plane of incidence.

The diffracted fields in the conical mounting are decomposed into a TE and a TM
componentwhichmean that the relevant electric andmagnetic field are perpendicular
to the plane of incidence. The efficiency of the mth-order diffracted mode in V1,
hence, is represented as ρm = ρTE

m + ρTM
m . Here, ρTE

m or ρTM
m is the efficiency of the
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Fig. 8.15 ρ0 and ρTotal as
functions of wavelength λ

TE- orTM-component of themth-order diffractedmode.28 In the numerical examples
below we deal with a shallow grating made of silver with a period d = 0.556µm
and an amplitude H = 0.0278µm. Yasuura’s method provides sufficiently reliable
results for the problem of such a grating at the truncation number of the approximate
solutions N = 10.

Figure8.15 shows the efficiency of the 0th-order diffracted mode ρ0 and the total
diffraction efficiency ρTotal as functions of wavelength λ.29 The incident light is in
the TM incidence—a polarization angle δ = π/2 in (8.114) of Appendix 3—where
the magnetic field is perpendicular to the plane of incidence. The polar angle and the
azimuthal angle are chosen as θ = 9.2◦ and φ = 30◦. As a complex refractive index
of silver n we take the interpolated values for the experimental data in the literature
[8]. In the figure we observe partial absorption of incident light at λ = 0.515µm and
λ = 0.650µm as dips in the total efficiency curve.30 As we will see later, the dips
are associated with plasmon resonance absorption, which is caused by coupling of
surface plasmons with an evanescent mode diffracted by the grating [21, 34].

Figure8.16 shows the 0th-order efficiency ρ0 and the TE and TM component ρTM
0

and ρTE
0 as functions of θ with a fixed azimuthal angle φ = 30◦. The wavelength

is chosen as λ = 0.650µm and a refractive index is n2 = 0.07 − i4.2. Remaining
parameters are the same as those of Fig. 8.15. We observe in Fig. 8.16 partial absorp-
tion of incident light at θ = 9.2◦, we call it a resonance angle, as a dip in the ρ0 curve.
In addition we notice that ρTM

0 takes a minimal value at the resonance angle, but ρTE
0

increases there to the contrary. This illustrates the enhancement of TM-TE mode
conversion [5] that a TM component of the incident light is strongly converted into a
TE component of the 0th-order diffracted light when plasmon resonance absorption
occurs in a metal grating in conical mounting.

28The efficiencies are given by ρTE
m = (γ1m/γ10) |ATE

1m |2 and ρTM
m = (γ1m/γ10) |ATM

1m |2 where γ1m
is the propagation constant in the Z -direction of the mth-order propagating mode (Re (γ1m) ≥ 0)
concerning the upper regionV1, and ATE

1m and ATM
1m are the expansion coefficients of the approximate

solutions defined in (8.120) of Appendix 3.
29ρTotal is a summation of ρm over the propagating orders.
301 − ρTotal represents the ratio of the absorbed light power by a metal grating to the incident light
power.
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Fig. 8.16 ρ0, ρTE
0 and ρTM

0
as functions of θ

Fig. 8.17 ATM
1−1 as functions

of θ

In Fig. 8.17 we show the expansion coefficient of the−1st-order TM vector modal
function ATM

1−1 defined in (8.120) of Appendix 3 as a function of θ . The parameters in
the figure are the same as those of Fig. 8.16where the−1st-order mode is evanescent.
The solid curve inFig. 8.17 represents the real part of the expansion coefficient and the
dashed curve is the imaginary part. From this resultweobserve the resonanceproperty
of the expansion coefficient ATM

1−1 at the angle of incidence θ = 9.2◦ and confirm that
theTMcomponent of the−1st-order evanescentmode coupleswith surface plasmons
at the resonance angle. We thus demonstrate that plasmon resonance absorption is
associated with coupling of surface plasmons with an evanescent mode diffracted by
a metal grating.

We note that the excitation of surface plasmons is largely affected by the azimuthal
angle φ. Figure8.18 shows the plasmon resonance absorption for several φ’s under
the same parameters as those of Fig. 8.16. We observe that the resonance angle
varies with φ as shown in Fig. 8.18. This means direction of propagation depends
on φ, the direction in which the plasmon surface wave propagates. The azimuthal
angle φ has also large influence on the enhancement of TM-TE mode conversion
through plasmon resonance absorption. For example, a TM component of the 0th-
order diffracted mode almost vanishes at the resonance absorption at φ = 45◦, but a
TE component becomes to be 0.7 there.
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Fig. 8.18 Dependence of
TE-TM mode conversion
on φ

8.3.4 Scattering by a Metal Bigrating

In this subsection we deal with a 3-D problem: diffraction by ametal bigrating whose
surface profile is periodically corrugated in two directions. We briefly describe the
formulation of Yasuura’s method for solving the problem by a metal bigrating and
then show numerical results of plasmon resonance absorption in the grating [16].

We consider a bisinusoidal metal grating shown in Fig. 8.19. The surface profile
of the grating is given by

η(x, y) = H

[
sin

(
2πx

d

)
+ sin

(
2πy

d

)]
. (8.78)

The upper region V1 over the grating surface S0 is vacuum with a refractive index
n1 = 1 and the region V2 below the grating surface consists of a lossy metal with a
complex refractive index n2. The permeability of the metal is assumed to be μ0.

The incident light is an electromagnetic plane wave

[
Ei

Hi

]
(r) =

[
ei

hi

]
exp(−iki · r). (8.79)
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Fig. 8.19 A bisinusoidal
grating and coordinate
system

Here, r is the position vector for an observation point, ki is the wavevector of the
incident wave, and hi = (1/ωμ0) ki × ei. The wavevector is given by

ki = (α, β,−γ ) (8.80)

with α = n1k sin θ cosφ, β = n1k sin θ sin φ, and γ = n1k cos θ . Here, k (= 2π/λ)

is the wavenumber in vacuum, and θ is the polar angle between the Z axis and the
incident wavevector, and φ is the azimuthal angle between the X axis and the plane
of incidence.

We denote the diffracted electric and magnetic fields by Ed
�(P), Hd

�(P) in the
regions V� (� = 1, 2). Here we explain briefly Yasuura’s method for finding the
diffracted fields. We first introduce TE and TM vector modal functions defined in
the region V� (� = 1, 2):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕTE
�mn(r) = eTE�mn exp(−ik�mn · r), eTE�mn = k�mn × uZ

|k�mn × uZ | ,

ϕTM
�mn(r) = eTM�mn exp(−ik�mn · r), eTM�mn = eTE�mn × k�mn∣∣eTE�mn × k�mn

∣∣
(m, n = 0,±1,±2, . . .).

(8.81)

Here, uZ is a unit vector in the Z -direction and k�mn (� = 1, 2) is the wavevector of
the (m, n)th-order diffracted wave:

k1mn = (αm, βn, γ1mn), k2mn = (αm, βn,−γ2mn) (8.82)

with

{
αm = α + 2mπ

d
, βn = β + 2nπ

d
, γ�m =

√
(n�k)2 − (α2

m + β2
n )

(Re γ�mn ≥ 0, Im γ�mn ≤ 0).
(8.83)
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We form approximate solutions for the diffracted electric and magnetic fields:

[
Ed

�N
Hd

�N

]
(r) =

N∑
m,n=−N

ATE
�mn

[
ϕTE

�mn

ψTE
�mn

]
(r) +

N∑
m,n=−N

ATM
�mn

[
ϕTM

�mn

ψTM
�mn

]
(r) (� = 1, 2)

(8.84)
with

ψ
q
�mn(r) = 1

ωμ0
k�mn × ϕ

q
�mn(r) (q = TE,TM). (8.85)

The expansion coefficients ATE
�mn , A

TM
�mn are determined so that the approximate

solutionsEd
�N (P),Hd

�N (P) satisfy the boundary conditions in aweighted least-squares
sense. To do this, we minimize the mean-square error

EN =
∫
S

∣∣ν × (Ed
1N + Ei − Ed

2N

)
(s)
∣∣2 dS

+ Z2
0

∫
S

∣∣ν × (Hd
1N + Hi − Hd

2N

)
(s)
∣∣2 dS,

(8.86)

where S is one period cell of the grating surface S0, ν is a unit normal vector to the
grating surface, and Z0 is an intrinsic impedance of the medium of V1.

The mean-square error EN is discretized by applying a two-dimensional trape-
zoidal rule where the number of divisions in the X - and Y -directions is chosen to be
J = 2(2N + 1). The discretized LSP with 24(2N + 1)2 × 4(2N + 1)2 Jacobian is
solved by QRD.

The diffraction efficiency ρmn of the (m, n)th-ordermode (γ1m ≥ 0) in V1 is given
by

ρmn = ρTE
mn + ρTM

mn , (8.87)

where the efficiency of the (m, n)th-order TE or TM mode is given by

ρTE
mn = γ1m

γ
|ATE

1mn|2, ρTM
mn = γ1m

γ
|ATM

1mn|2. (8.88)

We show the plasmon resonance absorption in a bisinusoidal grating made of
silver [12]. We consider a shallow bisinusoidal grating with a corrugation depth
H = 0.0075µm and a period d = 0.556µm. The wavelength of the incident light is
chosen as λ = 0.650µm where only the (0, 0)th-order diffracted mode propagates.
We take n2 = 0.07 − i4.2 as the refractive index of silver at this wavelength.

Figure8.20 shows the diffraction efficiency of the (0, 0)th-order diffracted mode
ρ00 as functions of the polar angle θ when the azimuthal angle φ = 30◦ is fixed. In the
efficiency curve we observe four dips A, B, C, and D at which incident light power
is strongly absorbed by the grating. The dips are associated with absorption that is
caused by the coupling of surface plasmons with an evanescent mode diffracted by
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Fig. 8.20 ρ00 as functions
of θ

Fig. 8.21 Expansion
coefficients as functions of θ :
a ATM+

1−10; b ATM+
10−1

a bisinusoidal silver grating. This is confirmed from Fig. 8.21 where the expansion
coefficients (a) ATM

1−10 and (b) ATM
10−1 are plotted as functions of θ under the same

parameters as in Fig. 8.20. The solid curves in Fig. 8.21 represent the real part of the
expansion coefficient and the dashed curves are the imaginary part. In Fig. 8.21a, a
resonance property of the ATM

1−10 curve at θ = 9.5◦, i.e., a dip A, illustrates that the
TM component of the (−1, 0) evanescent mode couples with surface plasmons at
a dip A. From the resonant property of the ATM

10−1 curve in Fig. 8.21b we confirm
that dips B and D are associated with the coupling of the (0,−1) evanescent mode
with surface plasmons. Similarly, we can show a dip C is caused by coupling of the
(−1,−1) evanescent mode.
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Fig. 8.22 Simultaneous
resonance absorption in a
bisinusoidal silver grating

Fig. 8.23 Power flows of the
total field when simultaneous
resonance absorption occurs

When an incident light with φ = 45◦ illuminates a bisinusoidal grating at the
specific angle of θ , i.e., the resonance angle, two surface plasmon waves are excited
and propagate in directions symmetric with respect to the plane of incidence. The
absorption associated with the two surface plasmon waves is called simultaneous
resonance absorption [12]. Figure8.22 shows an example of the simultaneous reso-
nance absorption where the (−1, 0)th- and (0,−1)st-order evanescent modes couple
simultaneously with two surface plasmon waves at the same polar angle θ = 12.2◦.
The two surface plasmon waves excited simultaneously on the grating surface inter-
act with each other and the interference of the surface plasmon waves causes the
standing wave in the vicinity of the grating surface. This is confirmed in Fig. 8.23,
where the X and Y components of Poynting’s vector S on the surface 0.01d above
the one-unit cell of the grating surface are plotted as the vector (SX , SY ).
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Fig. 8.24 Scattering by
dielectric spheres. The
structure is periodic both
parallel to and
perpendicularly to the page

8.3.5 Scattering by Periodically Located Spheres

Some numerical results are given for the scattering by dielectric spheres located
periodically in three directions [17]. This kind of structure is a fundamental model
of photonic crystals having properties of electromagnetic or optical band gaps.

As shown in Fig. 8.24, the structure is composed by stacking cubic unit cell regions
with a volume d3, each of which includes a sphere with radius a and relative per-
mittivity εr . The number of spheres is infinity along the both X and Y axes, and the
two-dimensionally infinite periodic structures are stacked to compose finite Q layers
in the Z direction. At present we limit ourselves to the case where either electric or
magnetic field of the incident plane wave is perpendicular to the page, allowing us
to use only one incident angle θ .

In the upper and lower semi-infinite spaces, the approximate wave functions
(E0N (r), H0N (r)) and (EQ+1 N (r), HQ+1 N (r)) are expressed in terms ofmodal coef-
ficients ATE,TM

0mn (N ) and ATE,TM
Q+1mn(N ), respectively. The set of modal functions here is

the same as that employed in Sect. 8.3.4 for the two-dimensional periodic structures.
On the other hand, for the fields in the areas of periodically distributed spheres, a set
of vector spherical wave functions

{
me,h

mn(r), ne,h
mn(r)

}
is used towrite the approximate

wave functions. In the cube region of the layer �q, they are expressed by

⎧⎪⎨
⎪⎩
[

EqN (r)
Z0HqN (r)

]
=

3N∑
n=1

n∑
m=−n

[
me

mn(rq) ne
mn(rq)

−inh
mn(rq) −imh

mn(rq)

] [
ATE
qmn(N )

ATM
qmn(N )

]

(q = 1, 2, . . . , Q),

(8.89)
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where Z0 is the intrinsic impedance of vacuum and rq = (rq , θq , φq) is a position
vector with its origin placed at the center of the qth sphere on the Z axis. Note that
the truncation number is selected as 3N in order to maintain the balance with the
half spaces from the viewpoint of the degree of approximation. The spherical wave
functions

{
me,h

mn(rq), ne,h
mn(rq)

}
are written by combination of the spherical Bessel

functions of the nth order, the associated Legendre functions P |m|
n (cos θq), and the

exponential (trigonometric) functions exp(imφq).31 The functions with respect to rq
are constructed beforehand so that they automatically satisfy the continuity condi-
tions for Eθ , Eφ , Hθ , and Hφ over the spherical surfaces rq = a [17]. As a result, the
present problem is reduced to the determination of the modal coefficients such that
the remaining boundary conditions on the horizontal planes

{
uZ × (Eq , Hq

) = uZ × (Eq+1, Hq+1
)

(between the layers �q and �q + 1; q = 0, 1, 2, . . . , Q)
(8.90)

and the periodicity conditions on the vertical planes

⎧⎪⎨
⎪⎩

uX × (Eq , Hq
)
exp(ikd sin θ)

∣∣
X=−d/2+0 = uX × (Eq , Hq

)∣∣
X=d/2−0 ,

uY × (Eq , Hq
)∣∣

Y=−d/2+0 = uY × (Eq , Hq
)∣∣

Y=d/2−0

(q = 1, 2, . . . , Q)

(8.91)

should be satisfied on the faces of the unit cells in the sense of least-squares. In the
boundary conditions (8.91), we count the upper and lower half spaces by the numbers
�0 and �Q + 1, respectively.

Figure8.25 shows the normalizedmean-square error and energy error as functions
of the truncation number N . We find that both errors decrease monotonically when
N increases. The period d is 0.8 times as the wavelength of the incident wave λ

(=2π/k). Since the wavelength in dielectric material is shorter than that in the air,
we need large N for big spheres. However, even at a/d = 0.3, these errors become
less than 1% if N ≥ 4.

Figure8.26 is drawn to observe the effect of increasing the layer number on the
band of total transmission and total reflection. For the single layer at Q = 1, we
find two reflection points at d/λ ≈ 0.77 and 0.91. When the layer is increased, these
points are changed to reflection bands.

Figure8.27 presents the reflected power for each mode as a function of incident
angle for a 4-layered structure. We observe the power is totally reflected when θ is
less than about 40◦. This property disappears for larger θ due to the emergence of
the (−1, 0)th higher order modes having a cutoff angle θ = 46◦.

31The vector me,h
mn(rq ) is perpendicular to the rq axis, whereas ne,h

mn(rq ) has an rq component. That
is, the superscript TE (TM) in (8.89) means transverse electric (transverse magnetic) with respect
to rq .
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Fig. 8.25 Normalized
mean-square error EN and
energy error eN as functions
of truncation number N ;
Q = 2, εr = 10, d/λ = 0.8,
and θ = 0

Fig. 8.26 Normalized
transmitted powers as
functions of wavelength;
a/d = 0.25, εr = 12, and
θ = 0

We should note that introduction of sequential accumulation in the process of QR
decomposition reduces the computation time from O(Q3) to O(Q1) and thememory
requirement from O(Q2) to O(Q1), with Q being a number of sphere layers. See
[17] for the detailed data.
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Fig. 8.27 Normalized
reflected powers as functions
of θ ; Q = 4, a/d = 0.25,
εr = 12, and d/λ = 0.58

8.4 Conclusions

Because of the reasons we have stated in Sect. 8.1, we reviewed Yasuura’s method
of modal expansion attaching importance to the process of solution by the CYM:
choice ofmodal functions; a finite-sumapproximate solution; least-squares boundary
matching; location and number of sampling points; and solution method for the LSP.
In addition, we included guidances for handling dielectric obstacles and gratings
placed in planer or conical mounting. Still more, we gave a comparison between
separated solutions and monopole fields in approximation power.

As for applications to 3D, we have only two grating problems in Sects. 8.3.4 and
8.3.5. Because we have been working in diffraction gratings, we do not have appro-
priate examples that show the effectiveness of the CYM in 3D scattering problems.
However, our former colleagues have solved the problems using the CYM and pub-
lished their results [11, 13]. Speaking from a theoretical point of view, they have
employed the set of multipole functions as the modal functions whose completeness
has been proven by Calderón [6].

We hope that the contents of this chapter would be useful for researchers and
engineers who need reliable methods for solving electromagnetic boundary-value
problems.
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Appendix 1: H-Wave Scattering by a PC Cylinder

Let us consider a problem where an H-wave (TM-wave) is incident to the obstacle
shown in Fig. 8.1. That is, the incident wave is polarized in the xy-plane so that the
incident magnetic field has only a z-component

Hi(r) = uz F(r) = uz exp[−ikr cos(θ − ι)]. (8.92)

The scattered magnetic field has only a z-component

Hs(r) = uzΨ (r) (8.93)

which is a leading field of the problem. Thus, we have

Problem 1’: H-wave, PC. Find Ψ (r) that satisfies:

(N1) The 2-D Helmholtz equation in Se;
(N2) The 2-D radiation condition at infinity;
(N3) The boundary condition

∂νΨ (s) = g(s) ≡ −∂νF(s) (s ∈ C). (8.94)

Here, ∂ν denotes a normal derivative at s. Equation (8.94) is called Neumann’s or
the second-kind boundary condition.

Employing the Green’s (or Neumann’s) function of this boundary-value problem
satisfying a homogeneous boundary condition

∂νN (r, s) = 0 (r ∈ S; s ∈ C), (8.95)

we get a formal representation similar to (8.13)

ΨN (r) − Ψ (r) = −
C∫

s=0

N (r, s) [∂νΨN (s) − g(s)] ds (r ∈ S). (8.96)

Here, ΨN denotes an approximate solution defined by

ΨN (r) =
N∑

m=−N

Bm(M)ϕm(r). (8.97)



210 A. Matsushima et al.

After a discussion similar to that in Sect. 8.2.2.3, we have a least-squares problem
for the H-wave problem:

LSM 1’: H-wave, PC. Find the coefficients Bm(M) (m = 0,±1, . . . ,±N ) that
minimize the mean-squares boundary residual

EN = ‖∂νΨN − g‖2
‖g‖2 = 1

‖g‖2
∥∥∥∥∥

N∑
m=−N

Bm(M)∂νϕm − g

∥∥∥∥∥
2

. (8.98)

We can solve this problem on a computer following the procedure in Sect. 8.2.3.
Approximations to other nonzero components can be found by

Es
N (r) = 1

iωε0
∇ΨN (r) × uz . (8.99)

It is worth noting that in an H-wave scattering from a dielectric obstacle, the
boundary condition (8.42) should be altered slightly. Let Hs(r) = uzΨe(r), and
Ht(r) = uzΨ i(r), then we have

{
Ψe(s) − Ψ i(s) = f (s) ≡ −F(s)
∂νΨe − n−2∂νΨ i(s) = g(s) ≡ −∂νF(s),

(8.100)

where the second line means the electric-field continuity and n2 = ε/ε0.

Appendix 2: Solution of LSP 1 by a Normal Equation and
Related Topics

Although we do not use a normal equation in numerical analysis, we look over the
solutionmethod by the equation because it is an important theoretical tool in working
with a least-squares problem. Let us define an inner product between two functions
in H = L2(0,C) by

( f, g) =
C∫

s=0

f (s)g(s) ds, (8.101)

then we find that ‖ f ‖ = √
( f, f ). Employing these relations, we modify (8.22) to

obtain

EN =
N∑

m=−N

N∑
n=−N

Am(ϕm, ϕn)An −
N∑

m=−N

Am(ϕm, f ) −
N∑

n=−N

( f, ϕn)An + ‖ f ‖2.
(8.102)

The predictable M is not shown.
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Now we define a subspace of H, ΦN , spanned by the boundary values of a finite
number of modal functions {ϕ0(s), ϕ±1, . . . , ϕ±N }. An element of ΦN can be repre-
sented as

ΨN (s) =
N∑

n=−N

An ϕn(s). (8.103)

Apparently, there is a minimum value of EN , which is a squared distance between
f (s) and a point in ΦN .32 The minimum is achieved when (8.103) agrees with the
foot of a perpendicular line from f (s) to the surface of ΦN . The necessary and
sufficient condition for this is that: The Am coefficients are the solutions of the set
of linear equations

N∑
n=−N

(ϕm, ϕn) An = (ϕm, f ) (m = 0,±1, . . . ,±N ). (8.104)

This is referred to as the normal equation (NE) of LSP 1 and is a formal solution to
the problem.33

Next, let us consider the minimization from a computational point of view. That
is, we try to find the Am coefficients using the sampled values of boundary functions;
and the functions are represented by J -dimensional complex-valued vectors f , ϕm ,
and Ψ N as in Sect. 8.2.3. This leads us to DLSP 1. We know the orthogonal decom-
positions are useful tools for solving the problem. However, setting them aside, we
here consider a NE based on DLSP 1. Because the Jacobian matrix Φ is J × M
(J > M), the set of linear equations

ΦA = f (8.105)

is over-determined and does not have a usual solution. However, if we multiply
(8.105) by Φ† from the left, we have

HA = b, (8.106)

where
H = Φ†Φ (8.107)

is an M × M positive-definite Hermitian matrix provided Φ is full rank. And,

b = Φ†f (8.108)

32If f ∈ ΦN , then EN = 0. This, however, cannot occur in practice: For example, even in the case
of scattering from a circular cylinder made of a PC, we need an infinite series to represent a rigorous
solution because the boundary value has a form exp[−ika cos(θs − ι)]. In addition, note that ΦN is
closed.
33We get (8.104) by setting (ϕm , ΨN − f ) = 0 (m = 0,±1, . . . ,±N ); or from ∂EN /∂Am = 0.
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is an M-dimensional right-hand side. Usually, (8.106) is referred to as the NE of
DLSP 1 and has been employed as a standard method of solution for a long time.

Obviously, (8.106) is an approximation of (8.104). For example, an (m, n)th
element of the coefficient matrix of (8.104) can be represented as

(ϕm, ϕn) =
C∫

s=0

ϕm(s)ϕn(s) ds � C

J

J∑
j=1

ϕm(s j )ϕn(s j ) = C

J
ϕ†
mϕn. (8.109)

The right-hand side of (8.109) is the (m, n)th entry of H multiplied by the line
elementC/J . Hence, (8.104) and (8.106) are essentially the same thing, and they have
common weak points in numerical computations. Widely-accepted key observations
are:

• TheNE is rigorous, in principle, and can be employed in theoretical considerations;
• TheNEcombinedwithGaussian elimination (diagonal pivoting assumed) is equiv-
alent to the (modified) Schmidt QRD except for the next two items;

• The NE may lose information in constructing H = Φ†Φ, and this process is time
consuming usually;

• The NE is dominated by the condition number of H that is square of the original
condition number: cond(H) = [cond(Φ)]2.

The last item means (8.104) and (8.106) are more sensitive to computational errors
thanLSP 1 andDLSP 1. Therefore, theNE’s aremore difficult to solve on a computer
than the original least-squares problems. We, hence, do not recommend the use of
(8.104) or (8.106). Even if we are working in the case where the inner products in
(8.104) can be calculated analytically, we should not employ (8.104) because of the
last item.

Before closing this Appendix, we would like to state a couple of comments on
(8.105). Apparently, J cannot be less than M because (8.105) is indeterminate for
J < M . If we set J = M , we have a point-matching method (PMM) or a collocation
method. The method is known to be effective if the contour C coincides with a part
of a coordinate curve of a system of coordinates in which Helmholtz’s equation is
separable; and that the modal functions are the separated solutions in that system.
Convergence of the PMMsolution is related to the validity of theRayleigh hypothesis
[2, 3, 18].

In Yasuura’s method we usually set J = 2M as we see in Sect. 8.3.1. That is,
we employ 2M linear equations to determine M unknown coefficients. This may be
understood as a small device or improvement of the PMM. However, this produces
good results such as proof of convergence, wide range of application, and so on with
little increase of computational complexity as a reasonable cost.
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Appendix 3: Conical Diffraction by a Grating

In Sect. 8.2.5 we dealt with diffraction by a grating, where all the field components
were functions of two variables (X and Y ) and two independent cases of polarization
[E-wave (TE, s) and H-wave (TM, p)] existed. In addition, the directions of propa-
gating diffraction-orders were parallel to the plane of incidence. These were possible
because: (1) the grating surface was uniform in Z ; and (2) the plane of incidence
was in parallel to the direction of periodicity uX . Here, we concisely examine the
problem of a lossless dielectric grating in which the second condition is not satisfied,
i.e., the plane of incidence makes a nonzero angle φ with the positive X -direction as
shown in Fig. 8.14a. We will see that

• The field components are functions of X , Y , and Z , but the dependence on Y—the
direction of uniformity—is limited;

• The two cases of polarization are not independent, i.e., both TE and TM diffracted
waves exist for TE (or TM) incidence34;

• The direction of propagating orders lie on the surface of a conewhose vertex agrees
with the coordinate origin O; the direction of the zeroth mode is on the plane of
incidence at the same time.

Because of the third characteristic, this arrangement (φ 
= 0) is called conical mount-
ing and the term conical diffraction is used. In this connection, the arrangement in
Sect. 8.2.5 is termed planar mounting.

Let the incident wave be
[

Ei

Hi

]
(r) =

[
ei

hi

]
exp(−iki · r). (8.110)

Here, ei and hi are electric- and magnetic-field amplitude, which are related by

hi = 1

ωμ0
ki × ei (8.111)

and ki is the incident wavevector defined by

ki = (n1k sin θ cosφ, n1k sin θ sin φ,−n1k cos θ) ≡ (α, β,−γ ) (8.112)

with θ being the polar angle between the wavevector ki and the grating normal uZ .
We decompose the incident wave into a TE(s)- and a TM(p)-component, where TE
(or TM) means that the electric (or magnetic) field of the relevant incident wave is
perpendicular to the plane of incidence. To do this, we define two unit vectors that
span a plane orthogonal to the incident wavevector

34Assume a PC surface-relief grating with a TE-wave incidence, for simplicity, and imagine the
surface current induced. It apparently has a Z -oriented ingredient, which excites a TM-wave com-
ponent.
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eTE = (sin φ,− cosφ, 0), eTM = (cos θ cosφ, cos θ sin φ, sin θ). (8.113)

They give the directions of the incident electric fields that are in the TE- and TM-
polarization.35 Thus the decomposition is

ei = eTE cos δ + eTM sin δ, (8.114)

where δ is a polarization angle shown in Fig. 8.14b. δ = 0 and π/2 mean TE- and
TM-incidence. Hence, an incident wave has three angular parameters: φ, θ , and δ.

We consider the problem to seek the diffracted electric and magnetic field in the
semi-infinite regions V1 and V2 over and below the grating surface SG.

Problem 4 conical, dielectric grating. Find the solutions that satisfy the following
requirements:

(CD1) The Helmholtz equation in V1 and V2;
(CD2) Radiation conditions in the positive and negative Z -direction;
(CD3) Aperiodicity condition that: the relation f (X + d,Y, Z) = eiαd f (X,Y, Z)

holds for any component of the diffracted wave, and the phase constant in Y is β;
(CD4) The total tangential component of electric and magnetic field must be con-

tinuous across the grating surface SG.

Dealing with a problem of conical diffraction, we should keep in mind the unique
nature of the problem. First, because every field component has a common phase
constant β in Y , it is sufficient to match the boundary condition on a cross section
between the grating surface and a plane Y = const. The conically-mounted gratings,
hence, belong to the class of quasi-3-D structures. Second, because the TE- and TM-
wave are not independent, we always need both TE and TM vector modal functions
in constructing approximate solutions.

We define the modal functions satisfying (CD1)–(CD3) by

{
ϕTE

�m(r) = eTE�m exp(−ik�m · r), ϕTM
�m (r) = eTM�m exp(−ik�m · r)

(� = 1, 2; m = 0,±1,±2, . . .).
(8.115)

Here,

eTE�m = k�m × uZ

|k�m × uZ | , eTMpm = eTE�m × k�m

|eTE�m × k�m | (� = 1, 2), (8.116)

k1m = (αm, β, γ1m), k2m = (αm, β,−γ2m), (8.117)

and {
αm = α + 2mπ

d
, γ�m =

√
(n�k)2 − (α2

m + β2)

(Re γ�m ≥ 0, Im γ�m ≤ 0).
(8.118)

35eTE is perpendicular to the plane of incidence; the fact that the magnetic field accompanying eTM

is orthogonal to the plane can be seen by manipulation.
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Note that the functions in (8.115) are for constructing electric fields. For themagnetic
fields we get

ψ
q
�m(r) = 1

ωμ0
k�m × ϕ

q
�m(r) (� = 1, 2; q = TE,TM) (8.119)

through Maxwell’s equations. Finite linear combinations of the modal functions
define approximate solutions:

[
E�N

H�N

]
(r) =

N∑
m=−N

ATE
�m

[
ϕTE

�m
ψTE

�m

]
(r) +

N∑
m=−N

ATM
�m

[
ϕTM

�m
ψTM

�m

]
(r) (� = 1, 2)

(8.120)
Here, the number of modal functions M is neglected.

The unknown coefficients in (8.120) should be determined in order that the solu-
tions satisfy the boundary condition (CD4) approximately in themean-squares sense.
For this purpose we first consider the cross section C between the grating surface SG
and a plane Y = 0. This is the same thing as the periodic curve C in Sect. 8.2.5. In a
similar way to one in Sect. 8.2.5, we define the primary period S1, whose boundary C1

(⊂ C), the function space H consisting of all the square integrable functions on C1,
and the norm ‖ f ‖ of a function f (s). Then, we can state the least-squares problem
that determines the unknown coefficients:

LSP 4: conical, dielectric grating. Find the coefficients ATM
�m and ATM

�m (� =
1, 2; m = 0,±1, . . . ,±N ) that minimize the mean-square error

EN =
∥∥∥ν ×

(
Ẽ1N + Ẽi − Ẽ2N

)∥∥∥2 + Z2
0

∥∥∥ν ×
(

H̃1N + H̃i − H̃2N

)∥∥∥2 . (8.121)

Here, Z0 denotes the intrinsic impedance of vacuum and Ẽi etc. mean periodic
functions with respect to x defined in the same way as one in (8.69)–(8.71). The
method of discretization and the solution method are found in Sect. 8.2.4.

Appendix 4: Comparison of Modal Functions and Algorithm
of the SP

Herewe show some results of effectiveness comparison between three kinds ofmodal
functions in solving a sample problem36: E-wave scattering fromaPCcylinderwhose

36We can use monopole fields also in the grating problems discussed in Sect. 8.2.5. A countably
infinite set of monopoles located periodically in x—i.e., the location is given by (x1 + �d, y1)
(0 < x1 ≤ d; y1 < η(x1); � = 0,±1,±2, . . .)—radiates a plane wave [4, 36] satisfying (GD1)
and (GD2). If we let the monopoles be accompanied by phase factors exp(i�kd sin θ), the plane
wave meets the periodicity (GD3). Increasing the number of monopoles in the first strip region to
M , i.e., (x, y) = (x1, y1), (x2, y2), (x3, y3), . . . , (xM , yM ), and repeating the same procedure, we
have a set of M plane waves, which is the desired set of modal functions [28, 37].
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cross section is given by37

C : rs = a(1 + 0.2 cos 3θs). (8.122)

Let us normalize every quantity having dimension of length by the total length of
C. And, we assume the incident wave comes along the x-axis from the negative
x-direction (i.e., ι = 0).

The modal functions considered here are: (a) the separated solutions, which we
defined by (8.7) in Sect. 8.2.2; (b) monopole fields defined by (8.9); (c) monopole
fields whose poles are located densely near the convex part of C. Because the sepa-
rated solutions are known widely, we explain the monopole fields below:

(b) Equally spaced poles. Let L be a similar curve to C with the ratio of similitude
d (0 < d < 1).38 We arrange M poles on L at regular intervals. Then, the distance
between two poles is L/M where L is the length of L.

(c) Concentration of poles near the convex parts of L. (i) First, we draw the simi-
lar curve L. (ii) Next,we calculate the curvature κ(t) of L as a function of t (∈ L),
and add some positive bias c in order that the biased curvature (BC) be no less than
0: κ̃(t) = κ(t) + c (≥ 0). (iii) Thirdly, we define a probability density function
by normalizing the BC.39

f (t) =

t∫
0

κ̃(t ′) dt ′

L∫
0

κ̃(t ′) dt ′

. (8.123)

Thus we get the number of poles between t1 and t2 by

n(t1, t2) = M

t2∫
t1

f (t) dt. (8.124)

We have solved the problem using the method explained in Sects. 8.2.2 and 8.2.3.
We used three kinds of modal functions (a), (b), and (c); and tried at two frequencies:
ka = 10 and 30. The parameter d was set to be 0.87. To see the accuracy of a solution
we calculated two kinds of errors: the normalized mean-square error EM(m) and

37Although the employment of polyphase wave functions is effective because of the periodicity, we
do not use them for simplicity.
38According to the result of numerical computation, an optimum d was in the rage [0.85, 0.90]
when the total number of poles was between 40 and 120. If we increased (or decreased) the number
of poles, the optimum d approached 0.90 (or 0.85). Note, however, that the trends were observed in
solving a particular problemwith specific computational parameters and are no more than reference
data.
39The result of sample calculation has shown that the use of |BC|α (α > 1) instead of BC (i.e.,
further emphasis of the convex part in locating poles) gives better solutions.
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the error on energy balance (or on the optical theorem) eM(m). The former is the
same thing as one defined in (8.22) and (8.30)40 except that the subscript shows the
total number of modal functions. The latter shows the deviation from a proportional
relation between the forward scattering amplitude and total cross section.41 The
argument m shows the type of modal functions: m = sep, esp, and pcc, which mean
(a) separated solutions, (b) equally-spaced poles, and (c) poles concentrated near the
convex parts.

Results at ka = 10. Because the obstacle size is handy, the EM errors fall off
rapidly: E45(sep), E35(esp), and E31(pcc) are below1%.As for the eM errors of the
solutions, the situation is different. The solutions with esp or pcc modal functions
converge rapidly as eM(esp) and eM(pcc) are below 1% at M � 30. On the other
hand, e31(sep) is about 10%. IncreasingM to 70,we have: e70(esp) = 9 × 10−5%;
e70(pcc) = 1 × 10−5%; and e71(sep) = 4%.

Results at ka = 30. The advantage of the monopole fields is clear in this range
of frequency. Setting M � 100, we have E101(sep) = 4%, E100(esp) = 2 ×
10−1%, E100(pcc) = 2 × 10−3%, e101(sep) = 7%, e100(esp) = 2 × 10−1%, and
e100(pcc) = 5 × 10−3%. The pcc modal functions seems to be the best choice in
solving the problem. In fact, we can find an accurate solution with a 10−5% eM
error by setting m = pcc and M = 120.

These results mean that the potential of a combination of separated solutions is
not so strong in describing scattered fields from obstacles deformed strongly from a
circle. We have two ways to cope with this issue: (i) employment of a set of modal
functions other than the separated solutions42; and (ii) employment of the SP.

The Algorithm of the SP

Here we include a guidance how to apply the SP in the boundary-matching process
based onYasuura’smethod ofmodal expansion for convenience.We start fromDLSP
1, i.e., minimization of the numerator of (8.30), ‖ΦA − f‖2. Instead of minimizing
it directly, we force a constraint

(1, ΦA − f) = 0 (8.125)

on the M-dimensional solution vector A, where the parentheses mean an inner prod-
uct and 1 = [1 1 · · · 1]T is a J -dimensional constant vector.

An operator of the smoothing procedure (in a discretized form) is a J × J matrix
given by

K(p) =
[
K (p)

j�

]
, (8.126)

40We have applied the rule J = 2M and have omitted J .
41The relation is referred to as the optical theorem, which implies energy conservation.
42We have employed the monopole fields and have seen their effectiveness [30]. It is worth noting
that inclusion of a few dipoles located near the convex part of L in addition to the monopoles
improves the efficiency greatly. This might be related to Cadilhac-Petit’s opinion [7] in locating the
poles near an internal focus.
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where p means the order of the SP. The explicit forms of the matrix elements for
p = 1, 2, and 3 are43:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K (1)
j� = u( j − �) − j − �

J
− 1

2
,

K (2)
j� = −1

2

[
( j − �)2

J 2
− | j − �|

J
+ 1

6

]
,

K (3)
j� = 1

6

[ | j − �|3
J 3

− 3( j − �)2

2J 2
+ | j − �|

2J
+ 1

6

]
.

(8.127)

Thus we can state a method of solution with the SP as follows:

DLSP 3: E-wave, PC, SP. Find the solution vector A that minimizes the discretized
mean-square error

EMJ = ‖K(p)(ΦA − f)‖2
‖K(p)f ‖2 (8.128)

under the constraint (8.125).
Twoways are possible to solve this conditioned least-squares problem: (i) employ-

ment of Lagrange’s multiplier; and (ii) elimination of a modal coefficient by using
the constraint. Although (i) is a standard way in handling a constraint, we take (ii)
because our constraint is simple and can eliminate one of the M unknowns to deduce
a least-squares problem with M − 1 unknowns.
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