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Preface

Computational electromagnetics is a very rapidly developing field that developed
many theoretical approaches and computational tools. Over the years, it has
extended its range of application from microwave, light scattering to nanophotonics
and even electron energy loss spectroscopy. The Generalized Multipole Technique
(GMT) is a surface-based theory which is not that well known but there are a couple
of researchers continuously developing and extending the method such that it has
reached some kind of maturity over the years.

In 1998, we arranged a workshop [1] in Bremen, Germany supported by the
Volkswagen Foundation which had a focus on the Generalized Multipole
Technique to document the state of the method at that time and to especially initiate
discussion between the different research groups. Following the workshop, an
edited volume [2] was published with contributions by major researchers in the
field. Out of this workshop, a number of international collaborations arose which
continued to work on different variants of the Generalized Multipole method.

The name Generalized Multipole Technique (GMT) was coined by Art Ludwig
[3] for a number of related methods to solve the electromagnetic boundary value
problem, which were developed independently by a number of research groups
distributed all over the world. The common feature of these methods consists in
field expansion by a number of multipoles positioned away from the boundary
surface. Commonly, some kind of generalized point matching scheme is applied to
find the expansion coefficient of the multipoles.

Over the years, research in the GMT continued and many new advances in
theory, programming, and application have been achieved such that after 20 years,
we think it is the right time to have another close look at the current state of the
method. The edited book compiles a couple of chapters on various concepts related
to the General Multipole Technique to demonstrate the progress achieved over the
last two decades and show the new ideas developed during the last 10 years.

In Chap. 1, it is shown that the theory of principal modes can be derived for any
smooth particle starting from a set of distributed electric and magnetic multipoles.
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An important field of development is hybrid methods. That the invariant
imbedding approach can be combined with the null-field method is demonstrated in
Chap. 2.

The Null-field Method with Discrete Sources (NFM-DS) makes use of field
expansion using multiple multipoles. Recent progress to compute light scattering by
large axisymmetric particles using NFM-DS is presented in Chap. 3.

Some practical applications in nanotechnology require light scattering simula-
tion by a particle partly embedded in an infinite stratified medium. How this
problem can be handled using the Discrete Sources Method is investigated in
Chap. 4.

Chapter 5 is an overview of the recent works in the Method of Auxiliary
Sources.

Chapter 6 presents a novel numerical approach to investigate the resonance
behavior of plasmonic particles on a substrate under electron beam illumination
based on the Multiple Multipole Program.

Low-Loss Electron Energy Loss Spectroscopy is currently a hot research topic.
How the Generalized Multipole Technique (GMT) can be used in this field is
addressed in Chap. 7.

Yasuuras Method of Modal Expansion has been developed in Japan. In Chap. 8,
this method is applied to investigate scattering by gratings.

An important aspect of the Generalized Multipole Technique is the suitable
choice of locations for the sources. This topic is treated in Chap. 9 by James E.
Richie.

We hope that these chapters give a fresh look at the evolution and development
of the Generalized Multiple Technique. Of course in such a book, the fundaments
needed cannot be fully covered. For this, the interested reader is referred to the book
by Doicu et al. [4].

As no book can be published without some assistance, we have to thank all
contributors who send their text on time. We especially like to thank Prabhan
Vishwanath who helped with latex compilation.

Bremen, Germany Thomas Wriedt
Moscow, Russia Yuri Eremin
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Chapter 1
Principal Modes of Maxwell’s Equations

Ben Hourahine, Duncan McArthur and Francesco Papoff

Abstract This chapter reviews the use of principal modes—states which are max-
imally correlated between two subspaces and hence form pairs unique up to phase
factors—in solving Maxwell’s equations and analysing these solutions for nanopar-
ticles and structures. The mathematical structure of this method allows a computa-
tionally efficient generalisation of Mie’s analytical approach for the sphere to obtain
semi-analytical solutions for general geometries with smooth interfaces. We apply
this method to investigate a range of single and multiple particle metallic structures
in the linear, non-linear and non-local response regimes outside of the quasi-static
limit.

1.1 Introduction

The interaction of light with particles with similar or smaller dimensions than the
incident wavelength has been intensely investigated formore than a century. New and
interesting results continue to be discovered in this regime. This coupling is crucial
in the spectroscopy of single molecules and for single and multi-photon processes
[1, 2], while interferences between different scattering channels give classical ana-
logues of quantum processes [3, 4], and carefully designed particles are the building
blocks of several classes of metamaterial [5–7]. All these effects are due to particle-
light interaction, which depends on both the particle’s shape and composition and
also the properties of the incident light. This interaction can become very strong, par-
ticularly around resonances. Understanding and controlling fundamental elements
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of this interaction are essential to design nanostructures with desirable near as well
as far field optical responses.

In this chapter we review the theory of principal modes that we have developed
over the last 10 years to describe single and multiple particle systems with smooth
interfaces. We use the mathematical theory developed by Jordan [8] for the angles
between subspaces of functions [9] to highlight the profound relation between reso-
nances and the geometry of function spaces inMaxwell’s equations. With this theory
we can: predict resonances of particles, independently of the particular exciting field;
calculate the near and far field properties of optical modes of a system since it gives
efficient access to the electromagnetic field at arbitrary spatial locations; and opti-
mise the excitation of the system with appropriately chosen incident fields. We can
also find optimal excitation conditions for the coherent control of near or far field
emission for elastic (single photon) or for inelastic (multi-photon) processes. In the
latter case, we assume that the non-linear processes are sufficiently weak that the
pump light at the driving frequency is not depleted. More recently, we have applied
this method to modally decompose the local optical density of states, giving insight
into Purcell and Lamb factors in the near ultraviolet [10].

1.2 Principal Modes of Single Particles

The theory of principal modes can be applied to general particles and structures
without sharp edges, this includes both metallic and dielectric particles. When all the
characteristic dimensions of the particle (and the skin depth in the case ofmetallic par-
ticles) are larger than the free propagation length of charges, then in this regime local
macroscopic permittivities and susceptibilities can describe the interaction between
light and the matter inside the particle.

The wave energy scattered by a particle propagates outward towards infinity [11],
and the tangential components of electric and magnetic fields E, H are continuous
at the bounding surface of the particle. Hence, for any incident field, the internal and
scattered fields are determined by finding the solutions ofMaxwell’s equations in the
internal and the external media that satisfy the boundary conditions and meet at the
interface of the particle. We use vectors F = [ET, HT ]T with six components for the
full electromagnetic fields [12]; in the case of a local macroscopic permittivity and
susceptibility, the tangential components, together with the radiation condition then
fully determine the boundary conditions for valid solutions to Maxwell’s equations.
Hence only the projections, f , of the six components of the field onto the boundary
of the particle are required, since by construction the internal and external fields are
regular and radiating Maxwell solutions. These surface fields have four components,
two electric and two magnetic, and form a space, H , with defined scalar products
in terms of the overlap integrals on the surface of the particle,

f · g =
∫
S
f ∗
j g jds, (1.1)
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where f ∗ is the complex conjugate of field f , j labels the individual components
and we sum over repeated indexes. In this notation the boundary conditions become

f 0 = f i − f s, (1.2)

which can be interpreted geometrically in the Hilbert space H : the projection, f 0,
of the incident field, F0(x) at point x , onto the surface of the particle is equal to the
difference between the projections of the internal and scattered fields, f i and f s .
Therefore, an incident field having small values of the tangential components can
then excite large amplitude internal and scattered surface fields, provided that both
of these two fields closely match (i.e. they are nearly cancelling each other at the
surface). This happens when the difference between these two fields, and therefore
the “angle” between them, is small. These angles are rigorously defined as being
between solutions of Maxwell’s equations for the internal and external media; where
these solutions are themselves standing and outgoing waves, respectively, and form
two subspaces of H . The electromagnetic response of each particle is completely
characterised by these angles and their associated waves, which can be calculated
with arbitrary precision from any complete set of solutions of Maxwell’s equations
for the internal and external media.

Several sets of exact solutions of the Maxwell equations are linearly independent
and complete [11, 13] on Lyapunov surfaces. Such surfaces are mathematically
characterised by the following three conditions: (1) the surface normal is well defined
at every point; (2) the angle between the normals at any two points on the surface
is bounded from above by a function of the distance between these points; (3) all
the lines parallel to a normal at an arbitrary point on the surface intercept only once
the patches of surface contained in balls centred at that point and which are smaller
than a critical value [14]. These surfaces, along with C2 continuous interfaces define
normal domains [15] for which Gauss’ theorem applies.

We use two sets of electric and magnetic multipoles, {ĩn}∞n=1 and {s̃n}∞n=1 for
the internal and scattered fields respectively. These are centred at points within the
particle [16, 17]. It is known that any function inH can be approximated to arbitrary
precision by a finite but sufficiently large number of such multipoles [18]. In other
words, {ĩn}∞n=1 ∪ {s̃n}∞n=1 is complete and no function in this set is the closure of the
linear combinations of all the remaining functions. We note that both the internal
and scattered fields exist at the surface of real metallic and dielectric particles, i.e.
the union of internal and scattered fields provides completeness in the space H of
surfacefields of the type towhich f belongs.Neither the scatteredor the internal fields
separately are complete. An example of this property is given by spherical particles,
where both internal and scattered modes are necessary to form the complete basis of
functions that underpins Mie theory.

For numerical applications, we could use any set of solutions for the Maxwell
equationswhich satisfy the Silver-Müller radiation conditions [19, 20] in the external
region and form standing waves in the interior. The numerical results shown here are
derived specifically by using distributed multipoles [11].
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One can show [18] that the coefficients of the internal and scattered fields, {ãin, ãsn},
that minimise the discrepancy between an incident field and the expansion of internal
and scattered fields, ∣∣∣∣∣ f 0 +

N∑
n=1

ãsn s̃n − ãin ĩn

∣∣∣∣∣ , (1.3)

are the solutions to
[

Υ̃ †Υ̃ Υ̃ †Ξ̃

Ξ̃ †Υ̃ Ξ̃ †Ξ̃

] [
ãi

−ãs

]
=

[
Υ̃ † f 0

Ξ̃ † f 0

]
, (1.4)

where ãi/s = [ãi/s1 , . . . , ãi/sN ]T and Υ̃ , Ξ̃ are the matrices whose columns are the
functions {ĩn}Nn=1 and {s̃n}Nn=1. The Gram matrix on the left of (1.4), i.e. the matrix
of all possible inner products, can always be inverted because the functions used are
linearly independent and complete. However, the inversion is numerically challeng-
ing [17] and for this reason this approach has received little attention. Instead, by
using principal modes we can exploit the block structure of the matrix in (1.4) to
give a complete characterisation of the geometry of the internal and scattered fields
and analytical expressions for the expansion coefficients of the fields.

First, we find orthogonal modes for the scattering and internal basis fields: for any
number, N , of multipoles, we obtain surface orthogonal modes through the matrix
decompositions

Υ̃ = Ui Qi , (1.5)

Ξ̃ = UsQs, (1.6)

where Qi and Qs are invertible matrices determined through singular value decom-
position (SVD) or QR factorisation [21, 22] and Ui ,Us are unitary matrices whose
columns are the orthogonal internal and scattering modes respectively.

The scalar products between internal and scattering modes then form a matrix
which has the decomposition

Ui †Us = V iCV s†, (1.7)

whereC is a diagonal matrix with positive elements, and V i , V s are unitary matrices
acting respectively on the internal and scattered fields. We simplify the Gram matrix
using these identities and the unitary transformation

[
V i †Qi †

−1
0

0 V s†Qs†−1

]
, (1.8)
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which leads to the matrix equation (1.4) becoming

[
1 C
C† 1

] [
ai

−as

]
=

[
Υ † f 0

Ξ † f 0

]
. (1.9)

On the left hand side of (1.9), 1 is the identity matrix and Υ = UiV i and Ξ =
UsV s are matrices whose columns are formed by the so called principal internal and
scattering modes, {in} and {sn}, which are one of the main tools in this theory. The
coefficients of the principal modes in the fields’ expansions in the orthogonal modes
Ui/sof (1.5) (1.6) are ai and as . The essential feature of our theory is that, because
C is a diagonal matrix, the principal modes are coupled pairwise, i.e. each mode
is orthogonal to all but at most one mode in the other space. This is also the main
property of the Mie modes of spheres. The principal angles, ξn , between sn and in
are defined in terms of the positive diagonal elements of C as

in · sn = cos (ξn). (1.10)

The terms on the right-hand side of (1.10) are the principal cosines [8]: cos (ξn) and
sin (ξn) are the statistical correlation [23] and the orthogonal distance between sn
and in respectively. Note that the spatial correlation of two modes is defined by an
integral over the particle surface for the scalar product of their projections. In other
words, each scattering mode, sn , is spatially correlated to only one internal mode,
in , and vice versa at the particle boundary (being orthogonal to all other internal and
scattered modes).

The set of angles, {ξn}, are invariant under unitary transformation [9] and com-
pletely characterise the geometry of the subspaces consisting of the internal and
scattered solutions inH . This geometry is generated by the specific scattering par-
ticle, through the surface integrals of the scalar products between the functions in
these two sub-spaces. Principal cosines are important for two reasons: they provide
analytic equations for the coefficients of the internal and scattered principal modes,
generalising the Mie formulae and clarifying the nature of all scattering channels
of a particle; they allow us to reduce large matrices to their sub-blocks and elimi-
nate the need for numerical inversion in the determination of the mode coefficients.
We give more details for the numerical process of calculating the principal modes
in Sect. 1.7, comparing the stability and performance of the discrete source method
solved by QR factorisation against two numerical schemes to form the unitary trans-
formations required to obtain the scattering problem in the form of (1.9).

For spherical particles, each pair of modes can be divided into two categories,
the electric multipoles (transverse magnetic modes) having magnetic fields with
null radial components, and the magnetic multipoles (transverse electric modes)
having electric fields with null radial components. As a consequence of the spherical
symmetry, modes for each of these sets can be labelled with two discrete indices, l
and m, which are related to the eigenvalues of the total angular momentum and of
the angular momentum along z, respectively. Electric and magnetic multipoles are
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divergence free, i.e. the condition∇ · E = 0 applies. FromMaxwell’s equations [24],
one can find that this condition has two physical consequences: these modes cannot
produce a charge density inside themedium inwhich they are supported; furthermore,
at each point in space the electric fields of these modes are orthogonal to the local
wave vector. When the response of the system is local, for example in the case
that the current density at any point inside a metallic particle depends only on the
electric field at that point, the interaction of the particle with light is fully described
by these electric and magnetic multipoles. More specifically, internal and scattering
electromagnetic fields are expanded in terms of electric and magnetic multipoles:
in spherical coordinates the internal and external electric (magnetic) multipoles of
indexes l,m have the same angular dependence, while the radial dependence is a
function of the medium in which the multipole is defined. As a result of the spherical
symmetry, the surface integral of the scalar product of a mode with the complex
conjugate of another mode, i.e. the spatial correlation at the surface, is non null only
if the two modes are both transverse electric or transverse magnetic and also have
the same values of l and m. This property can be used to find the amplitudes of
the modes by imposing the continuity of the tangent components of the electric and
magnetic fields at the surface of the sphere and identifying the principal modes for
the internal and scattered fields that are correlated at the surface. For non-spherical
particles, instead, principal modes are linear superpositions of multipoles (although
in some cases one multipole can be dominant) and again form unique internal and
scattered mode pairings.

We can now interpret the interaction of particles with light in terms of eigen-
values and orthogonal eigenvectors, w±

n = (in ± sn)/
√
2, of the Hermitian operator

in (1.9). This provides useful analogies between the electromagnetic response of
classical particles and the quantum-mechanical response of atoms or molecules. In
experiments however, one typically observes only either the internal or scattered field
in some way, so transforming the eigenfunctions, {w±

n }, we find the principal modes’
coefficients:

ain = in − cos (ξn)sn
sin2 (ξn)

· f 0 = i ′n
i ′n · in · f 0, (1.11)

asn = − sn − cos (ξn)in
sin2 (ξn)

· f 0 = − s ′
n

s ′
n · sn · f 0. (1.12)

Here i ′n = in − cos (ξn)sn , s ′
n = sn − cos (ξn)in are biorthogonal to in, sn (i ′n · sn =

s ′
n · in = 0) with i ′n · in = s ′

n · sn = sin2 (ξn). Either the principal or the biorthogonal
modes fully specify the response of the particle at any point inside, on the surface and
outside the particle. A graphical representation of the principal and the biorthogonal
modes is shown in Fig. 1.1. This is shown by recasting the expansions of internal
and scattered field as
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(a) (b)

Fig. 1.1 A schematic for a pair of principal modes showing their relative geometry and interaction
with incident fields. All of themodes and incident fields have been normalised to unit magnitude (the
marked circle). Figure a shows the orientation of the internal and scattered (sn , in) modes and the
directions of the orthogonal eigenvectors w±

n ∝ (in ± sn). Figure b demonstrates the orientation of
the biorthogonal modes (s′

n , i
′
n) and the inducedmode amplitudes caused by different incident fields.

We can see that a field of magnitude 1 with fn parallel to sn induces amplitudes asn = 1, ain = 0—
shown in red, corresponding to (1.18)—while a unit field with fn parallel to s′

n (and orthogonal
to in)—shown in blue, induces the largest amplitude possible from a unit magnitude incident field
together with a non-vanishing internal amplitude ain (corresponding to (1.19)). Equivalently [25],
the amplitudes are proportional to the scalar products of the incident field with the biorthogonal
modes i ′n and s′

n

Fs/ i (x) =GS(x, s) · f 0(s),

=
(
T i (x)In(x)i ′n(s)

i ′n · in − T s(x)Sn(x)s ′
n(s)

s ′
n · sn

)
· f 0(s), (1.13)

where GS(x, s) is the surface Green’s function [12, 18] of the particle and the indi-
cator function T i (x) (T s(x)) is 1 inside (outside) the particle and null elsewhere.
In numerical calculations, the propagation of fields away from the surface (I (x) and
S(x)) is performed as per (1.13) at a very low computational cost by evaluation
of known solutions of Maxwell’s equations, i.e. of Bessel or Hankel functions and
vector spherical harmonics. From (1.13) one can see that the convergence of princi-
pal modes and principal angles as N → ∞ is a consequence of the convergence of
the surface Green’s function [18] for any complete set of solutions of the Maxwell
equations. We can monitor this convergence with the surface residual

∣∣∣∣∣ f 0 +
N∑

n=1

asnsn − ainin

∣∣∣∣∣ , (1.14)

which provides an upper bound for the maximum error in the scattered and internal
fields that decreases with the distance from the surface [11, 26]. Furthermore, the
form of (1.11), (1.12) remains unchanged as N → ∞, even if ξn, in, sn themselves
change. The angles relevant to this work are the point angles 0 < ξ < π/2 of the infi-
nite dimensional theory [9], together with the corresponding subspaces (the principal
modes) and their orthogonal complements (the biorthogonal modes).
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The modal decomposition in (1.13) has several unique advantages. The left-hand
terms in the scalar products depend exclusively on the particle, i.e. are independent of
the particular incident field, which enables us to strongly reduce the number ofmodes
used in the calculations by finding which couple to a given exciting field and discard-
ing the others. Similarly, this also allows optimisation of an incident field to excite a
specific principalmode, or combination ofmodes.We remark that ain, a

s
n in (1.11) and

(1.12) are calculated by projecting the incident field f 0 onto non-orthogonal vectors,
in and sn , while sin (ξn) is defined as the Petermann factor in unstable optical cavi-
ties [27], which gives the order of magnitude of transient gain and excess noise for
these systems. Therefore the existence of strongly aligned vectors with sin (ξn) 
 1
determines large surface fields in nanoparticles as well as large transient gain and
excess noise [28] in macroscopic unstable cavities and dissipative systems governed
by non-Hermitian operators [29], demonstrating an analogy between optical cavities
and nanoparticles. Macroscopic cavities and scattering particles are both open sys-
tems in which the internal and external modes are together necessary to provide a full
description of the interaction with the environment: reducing the theory to one set of
modes implies a loss of information, and this is the origin of the similarities of these
systems. Mathematically, as a consequence of oneness and losses, internal and scat-
tered principal modes are not themselves modes of a Hermitian operator and their
optimal excitation is given by the corresponding biorthogonal modes. Physically,
the biorthogonal modes are surface fields that are either totally reflected or totally
absorbed. The experimental realisations of these surface fields may be challenging,
but they can be used theoretically to find and optimise incident fields able to couple
to the principal modes. For well aligned mode pairs (having a small value of ξn), the
coefficient ain, a

s
n are of the same order, but this is not the case for weakly aligned

pairs (ξn → π/2), which can have qualitatively different absorption and scattering
cross sections. Furthermore, modes can have null amplitudes for specific incident
fields but couple well to other incident fields, see (1.11) and (1.13).

To completely determine the response of particles to electromagnetic fields, we
need also to assess the ability of the principal modes to transport energy. This is
determined by the integral of the Poynting vector of each mode over the surface of
the particle,

Φs/ i
n =

∫
s
Re

(
n̂s/ i · Es/ i

n × Hs/ i∗
n

)
ds, (1.15)

where n̂s/ i is the outward (inward) pointing normal of the surface for scattered (inter-
nal) modes and Es/ i

n , Hs/ i
n are the electric and magnetic components of the principal

mode with |ai/sn | = 1. Radiative modes that are very effective at transporting energy
from the particle surface to infinity are identified by large values of this “intrinsic”
mode flux,Φs

n , while small values correspond tomodes that can only transport energy
effectively in close vicinity to the surface. Similarly, strongly (weakly) absorbing
modes are identified by large (small) values of Φ i

n .
This theory generalises the definition of Mie resonances to any particle without

sharp edges and it is computationally efficient. Principal modes and their scalar
products depend on geometric properties such as the size parameters of the particle
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and also the frequency dependent permittivity and susceptibility of the particle; as
a consequence, the principal angles, {ξn}, vary with the frequency of incident light.
The mode coefficients diverge when the denominators of (1.11) and (1.12) vanish.
This happens when a pair of normalised internal and scattering modes are perfectly
parallel. For a sphere it can be shown by factoring out the angular dependence of
the modes that this is an example of the usual Mie resonance condition, which can
be interpreted geometrically in terms of alignment between internal and scattered
modes [30]. For spheres, the resonance in = sn occurs at complex wavelengths; for
realwavelengths, resonances correspond tominima of the principal angles, and hence
maxima in the excitability of themodes. This holds true for any smooth non-spherical
particle, because perfect alignment is impossible with the linear independence and
completeness of the principal modes. Therefore, as with spherical particles [31],
physical resonances correspond to minimum angles (ξn �= 0) of pairs in H , which
are also minima of the eigenvalues of the Hermitian operator in (1.9).

We also need to consider the energy transported by resonances. A resonant pair of
modes can have very different values ofΦs

n andΦ i
n , whichmeans that the effect of the

resonance can be strong or weak depending on whether the detection is made in the
near or far field, or if scattering or absorption are measured. Note that the total flux
of energy scattered or absorbed by non-spherical particles (integrals of the Poynt-
ing vector over all directions) is given by the sum of principal mode contributions
plus interference terms between modes, which are absent for spherical particles by
symmetry. The interference terms are absent in spheres because both surface fields
and power fluxes of Mie modes are orthogonal. Hence for non-spherical particles,
interference effects can lead to strong efficiency peaks or to sharp asymmetric fea-
tures resulting, for example, from Fano-like interference between broad and narrow
resonances. Examples of these phenomena are given in the following.

In terms of numerical calculations this approach is a surface method that relies
on the convergence of {

N∑
n=1

ain In,
N∑

n=1

asn Sn

}
(1.16)

to the exact electromagnetic fields at any point inside and outside the particle [12, 18]
as N → ∞. Equation (1.14) gives the numerical error in the evaluation of the surface
fields; in practice the scattered power is calculated both at infinity and on the surface
of the particle to estimate the error in the field propagation, i.e. in the evaluation of
the special functions used for expanding the Maxwell solutions. The Stratton-Chu
relations [32] can also be used to test both the propagation of the scattered light and
also the reliability of the internal [22] field.

We have compared our calculations withMie theory [33] for metallic spheres [34]
and demonstrated that thismethod is numerically very accurate for particleswith radii
between 10−2 and 4 × 100 times the wavelength of light.
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1.3 Optical Resonances of Single Particles

As the size of the particle becomes comparable to, or smaller than, the wavelength
of light, the geometric description of resonances as closed orbits of light rays [35]
becomes less and less effective, eventually requiring the solution of Maxwell’s equa-
tions. Analytical solutions [36, 37], based on symmetry and separation of coordi-
nates, provide exact results for a few specific shapes of particle. For spheres, electric
and magnetic multipoles are used to expand internal and scattered fields and each
multipole in one field is correlated only to the corresponding multipole in the other
field. Resonances depend on the size of the particle and on the dielectric permittivity
and magnetic permeability of the internal and external media and occur when the
correlation of one pair of modes reaches a maximum. However, it is important to
realise that a resonance can be observed only if the incident light has the appropriate
frequency and spatial structure on the surface of the particle, otherwise the incident
field does not couple to the resonant modes of the internal and scattered fields.

For particles of arbitrary shape, resonances are often defined empirically by the
appearance of maxima in properties such as the far field extinction or scattering
efficiency spectra. While there are several methods that can find spectra and their
maxima [38], this approach to resonances is unsatisfying because it fails to disen-
tangle the intrinsic properties of the resonance from those of the incident field. It
also depends on an arbitrary choice of the property which is monitored to determine
the resonance. For instance, a resonance of a surface mode that does not efficiently
transport energy to infinity, would not be distinguishable in any far field measure;
these resonances, however, can be extremely important in near field applications or
through interference with radiative modes able to transport energy into the far field.
We use the principal modes of Sect. 1.2 to define field expansions and resonances
for any smooth particle, where Mie’s treatment of the sphere is a special case of this
more general theory.

For all particles presented in this section we use a fitted dielectric function
[39, 40] for gold.

1.3.1 Gold Nanorods

We examine here light interaction with a type of particle that is extensively used in
experiments, gold nanorods. For simplicity, we consider these particles in vacuum
without considering any supporting substrates.

As a consequence of the axial symmetry of these particles, all fields in the problem
can be decomposed into components demonstrating a well defined azimuthal angular
dependence, exp imφ, where m is an integer. In the case of axially incident plane
wave light, functions transforming as m = ±1 fully describe the incident light and
the optical response of the particle (other channels being ‘dark’ to this excitation).
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(a) (b)

Fig. 1.2 a The scattering, absorption and extinction efficiencies of a small gold rod, showing a
205nmmode and a weaker absorption peak at 486 nm. Other resonances can be excited for different
angles of incidence (since the incident light should couple with the structure of the mode to excite
it). b The DSCS, showing that this particle has strong forward scattering for plane wave exciting
light

Figure1.2a, b show the calculated optical efficiencies and differential scattering
cross section (DSCS) of a 480nm long rod with diameter 40 nm, which is illumi-
nated with plane-wave light incident along its axis. There is a strong resonance at a
wavelength of 205nm with a weaker absorption peak at ∼515 nm. The DSCS shows
that the incident light is strongly scattered forward, particularly at short wavelengths.

We see from Fig. 1.3a, d that most mode pairs are either strongly radiative or
absorbing, with the exception of one weakly aligned pair that is able to be both
absorbing and radiating. The peak at 205nm results from the constructive interfer-
ence of several weakly aligned principal mode pairs as shown by Fig. 1.3c. Most
of these mode pairs are weakly radiating into the far field and collectively they can
very efficiently extract energy from the incident field. Interference between scat-
tering modes leads to enhanced sensitivity to perturbations near to the scattering
surface, therefore these multi-mode resonances can be very advantageous in sensing
applications. Additionally, the effects of entropy associatedwith thesemultiplemode
features [41] can be significant.

A few modes cause the absorption feature at ∼515 nm. Two of these modes
are weakly aligned and absorb comparable amounts of energy; they become more
strongly aligned at around this resonance. The scattering mode of the pair with the
weakest alignment is instead dominant, as shown in Fig. 1.3c, where the resonance
at ∼515 nm is enhanced, but in absolute terms this resonance is barely observable
in the far field scattering efficiency of Fig. 1.2a at that wavelength.

Figure 1.4 shows the same particle, now illuminated equatorially with an incident
light polarisation of 45◦ with respect to its long axis, where now modes with m = 0
character dominate the response of the system. The broad feature at around 200–
450nm, containing structures similar to the compositemodes ofFig. 1.2, is insensitive
to the particle length, as shown by examining particles with varying length and the
same diameter. No clear hot or cold spots can be observed on the particle surface,
see Fig. 1.5a. The sharp resonance at 676nm shifts with rod length, and its surface
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(a)

(d) (e) (f)

(b) (c)

Fig. 1.3 The principal angle landscapes of a rounded nanorod: mode pairs are plotted according
to their principal cosines (mode index), the wavelength of the incident light, with the height of the
landscape as sin−1(ξ), the largest possible values of |ai/sn | for | f 0| = 1. Landscapes are overlaid
with traces that are colour coded according to: a the intrinsic mode fluxes, Φs

n , normalised at each
wavelength to the range [0, 1], b the amplitudes |asn | of the scattered field, c the mode fluxes |asn |2Φs

n
again normalised to [0, 1]. d–f as a–c but for internal modes. Discontinuities in the traces are due to
crossings between different modes which occur when the values of their principal cosines become
degenerate, leading to a change in ordering of the mode indices. b and c show that a multi-mode
resonance produces the peak at 205 nm, with several principal modes contributing similarly to the
scattered power. A group of internal modes, which become more aligned at 515 nm, determine the
weak absorption peak around this wavelength. In these pairs internal and scattering modes couple
differently to the incident field and the radiative mode with the weakest alignment dominates the
far field, as shown in c

(a) (b)

Fig. 1.4 The particle from Fig. 1.2, but now illuminated from the side with an incident light
polarisation of 45◦ with respect to its long axis. a The spectra show the presence of both a broad
feature similar to Fig. 1.2 at around 200–450 nm and also a sharp resonance at 676 nm. Note the
strongly asymmetric Fano-like resonance (sharper than the resonance in the extinction spectrum)
in the scattering efficiency at this wavelength. b The DSCS for equatorial illumination
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(a) (b)

Fig. 1.5 Near field intensity for the 480nm length rod, shown at the a broad feature (207 nm) and
at the b “waveguide” Mie-like mode at 676nm of Fig. 1.4a

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 1.6 Principal angle landscapes for the rounded nanorod for modes able to couple to illumi-
nation from the side of the rod, with resulting spectral properties shown in Fig. 1.4. The feature at
676 nm is due to a single well aligned pair of modes. The landscapes are colour coded and have the
same axes as Fig. 1.3. c Shows that the energy is transported into the far field by the resonant mode
and by a weakly aligned, non-resonant, scattering mode. These modes also interfere to give the
total scattering cross section and produce the characteristic asymmetric and sharpened Fano-like
resonance shown in the scattering efficiencies of Fig. 1.4a

field as shown in Fig. 1.5b, has the strong nodal local structure of a “waveguide”
mode on the long axis, remarkably similar to the experimental results of [42].

Figure 1.6 shows only mode pairs that cannot be excited by axially incident
light, primarily being in the m = 0 channels; multi-mode resonances similar to the
one discussed for axial incidence originate the broad features at short wavelength;
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most of the corresponding modes are not shown. Figure 1.6 show that for most
principal mode pairs of this particle, excitation occurs only for either the absorbing
(internal) or radiating (scattering) member of the pair, and all the three resonances
at around 550–700 nm are absorbing. The excitation paths in Fig. 1.4b, e show that
only the best aligned of the three resonant pairs is excited for this particular field.
This resonance is undetectable for incident light propogating along the axis, but it is
observable as the angle of incidence is rotated towards the equator at 90◦, Fig. 1.4; at
∼600 nm the more weakly aligned mode pair becomes excited for incident angles of
∼50◦. Near the sharp resonance at 676 nm, the resonant mode and a weakly aligned,
non-resonant, scattering mode transport the energy into the far field, see Fig. 1.4d.
Interference between these two modes gives a Fano-like asymmetric feature in the
total scattering cross-section that is sharper and more asymmetric than the single
pair resonance. On the contrary, only the resonant mode determines the absorption,
producing a symmetric feature in the absorption cross-section, with its maximum
coinciding with only the largest alignment of the mode pair.

1.3.2 Supershapes

We can also use the principal modes approach to examine particles with more com-
plex shapes. For example “peanut” shaped gold particles with a length of 80 nm.
These are an extreme case of a family of geometries from a spheroidal particle, via
cylinder to composites of two spheroids connected together. To describe this range
of geometries a “superformula” [43],

r(φ) = [∣∣a−1 cosμφ/4
∣∣ν2 + ∣∣b−1 cosμφ/4

∣∣ν3]−ν1
, (1.17)

can be used to produce all the cross sections in Fig. 1.7. Equation (1.3) is used to give
an error measure for the internal and scattered field solutions. Normalised optical
cross-sections are shown in Fig. 1.8 for different incident angles of plane wave light

Fig. 1.7 Generatrices of 10 axially symmetric particles, labelled A–J, ordered by depth of the
indentation and being between spherical (J), through a rounded cylinder (F) to two merged spheres
(A). The superformula with parameters μ = 2, a = b = 1 and ν1 = 0.1, ν2 = 0.1ν3 [43] is used to
describe all of these shapes
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(a) (b)

Fig. 1.8 The calculated cross sections for particles A–J. The light is polarised parallel to the long
axis and its incident directions are chosen along (a) and across (b) the symmetry axis. Particularly in
the case of axial light, there is a rapid decrease in extinction and absorption by the surface plasmon
on distorting away from a spherical symmetry. The plasmon feature also shows a strong red-shift
for equatorial incident light and is lost at the “peanut” shaped limit

(at 0 and π/2 rad. with respect to the particle axis). In all cases absorption is stronger
than optical scattering for these particles and is seen to dominate their extinction;
for both angles of incidence that have been considered, the smoother shaped ellip-
soid show pronounced resonances, but these become almost indistinguishable when
moving to particles with a deeper indentation. For axial incident light, a broad res-
onance near 510nm is apparent: this resonance becomes weaker if the indentation
is increased, but its wavelength location remains the same. For light with an equato-
rial incidence direction another resonance becomes apparent, that for the ellipsoidal
particles, is present at ≈530 nm. Here, on indenting the shape, this feature moves to
lower energy, again becoming weaker and finally is lost for the deepest indentations.
A simple explanation for this behaviour would be that shape change perturbs the
surface field, moving the resonance to longer wavelengths where the geometrical
distortion is less significant and is averaged out, but finally the indentation is suf-
ficiently strong as a perturbation and the feature disappears from the investigated
spectral range.

To confirm this simple picture, the principal modes [44] of the system demonstrate
that the 510nm feature is due to a weak resonance of onemode pair, while the 530nm
feature is due to another more strongly aligned mode pair. In the case of the most
indented particles, the mode landscapes show that while there are several modes of
the particles which can strongly couple with the incident light, these are not efficient
at absorbing or scattering being generally poor at transporting energy (low mode
fluxes). However these modes may be apparent, for example to methods such as
surface enhanced spectroscopies, since they are strongly excited but could easily be
overlooked by measurements in the far field.



16 B. Hourahine et al.

1.3.3 Scanning Near-Field Optical Microscopy of Gold
Nanodiscs

Principal modes have also been applied to explain Scanning Near-Field Optical
Microscopy (SNOM) measurements performed on gold nanodiscs [45]. Here the
experiments were performed in collection mode, scanning the tip of an optical fibre
in close proximity to the particle, and collecting light via a large numerical aperture
in the far field.

Measured and simulated images of an 800nm diameter, 30 nm thick disc, are
shown in Fig. 1.9 at two wavelengths. The theoretical model neglects back-coupling
from the disc onto the tip, but yields good qualitative agreement with the measured
images. The change in the images of Fig. 1.9 is mainly due to which principal modes
of the disc are dominant at the twowavelengths. At 705 nm, anm = 1 charactermode
is near to its resonance, while at 765nm instead it is an m = 0 mode responsible for
the image. The excitability of these two modes is shown in Fig. 1.10, these are the
two relevant modes from the the full landscape, for example in Fig. 1.11 we show
the rest of the m = 1 character modes.

Fig. 1.9 a Experimental (left) and theoretical (right, with the particle shape marked with a fine
white dotted line) images of near-field transmission with incident light at 705 nm. b The same disc
illuminated instead at 765 nm. The exciting beam is unpolarised, while the far field collection is
linearly polarised in the vertical page direction

Fig. 1.10 The m = 1 and
m = 0 resonant principal
modes that dominate the
experimental SNOM images
shown in Fig. 1.9
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Fig. 1.11 Landscape of the
m = 1 modes, including the
mode shown in Fig. 1.10
which is responsible for the
observed SNOM image at
705 nm. The colour of the
landscape corresponds to
energy transported to the
collection optics from each
mode when excited by an
unpolarised light source
located above a point at 75%
of the disc radius

We note that the effect of multiple scattering of light between the particle and
the tip may have to be included for more complex particles. In that case, we should
consider the principal supermodes of the whole system, as discussed in Sect. 1.5,
consisting of both the SNOM tip and the particle.

1.4 Coherent Control

Several approaches for nonlinear [46] and linear control of light have been suggested
based on pulse shaping [47, 48], application of learning algorithms [49], coherent
absorption mechanisms [50] and time reversal of an outgoing field [51]. In quan-
tum optics the interference between fields has been proposed as a way to remove
beam splitter losses [52] and for control of light by light in graphene [53] or inside
plasmonic metamaterials in the linear regime [54].

Using the principal modes decomposition [30], general analytical control of both
internal and scattered fields can be achieved, either enhancing or suppressing the
internal and/or the scattered fields for general structures at arbitrary wavelengths.
It is also, for example, possible to induce narrow features in the spectral responses
of systems by, for example, converting phase control into amplitude modulation. In
order to control N modes of the system, this approach requires control of the relative
phases and amplitudes of N + 1 independent exciting light fields. Depending on the
modes being controlled, the flow of energy out from a particle (or structure) can be
adjusted in the near and/or in the far field, similarly absorption can be changed by
controlling the internal fields of the particle in a similar manner.
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1.4.1 Elastic Scattering

A constraint on the control approach should be that the fields required are of types
that are commonly available. Fortunately it is possible to apply both monochromatic
or broad band light sources, provided there is a reasonable degree of coherence. This
should be on a length scale of at least the order of the particle size, so can even be
from conventional lamps in some case, as long as the differences in optical paths are
within the coherence length.

To be practical, simple control of the relative phase of the incident optical sources
would be preferred since this then requires only one source of light and can be
achieved with standard optical bench technology (splitters, phase modulators, etc.).
Alternatively, more complex approaches including mixtures of internal and external
sources, such as embedded impurities or quantum dots can be used (see Sect. 1.4.2
for how to apply non-linear effects in a similar role). Figure 1.12 shows some ide-
alised conditions to achieve this type of source control. We have previously demon-
strated [30] that simple scanning of parameters can be used to locate conditions that
control scattering responses. This can be achieved without detailed information on
the optical modes of the system, making it practical to be experimentally applied.

The correlation between the internal and scattered modes in the nth pair (i.e. the
non-orthogonal basis of vectors [25]) gives a simple geometry which can be used to
determine exciting surface fields which project onto sn but not in (or in and not sn).
Similarly, fields that produce a maximum amplitude for modes sn or in , see Fig. 1.1.

To construct a field which couples in these specific ways, we note that incident
fields can generally be decomposed as f = fn + f ∨

n , i.e. the components co-planar
with the nth mode pair ( fn) and that lies outside of the plane ( f ∨

n ).

(a) (b)

Fig. 1.12 Some potential set ups to control optical channels of nanostructures. a Using monochro-
matic light fields, the relative amplitudes A1 and A2 and phase difference 	Φ specified. b More
generally, a spatial-light modulator is deployed to modify both phase and/or the amplitude over a
range of frequencies from a coherent broad-band or pulsed source of light. By splitting the light pulse
(P) along two paths, reference (R) and modified (M) pulses are recombined at the nanostructure



1 Principal Modes of Maxwell’s Equations 19

fn = sn → asn = 1, ain = 0, (1.18)

fn = s ′
n → asn = 1

sin (ξn)
, ain = −cos (ξn)

sin (ξn)
. (1.19)

Equation (1.18) then gives conditions for fields that excite only the scatteringmode of
the pair (independent of the f ∨

n component), i.e. does not couple to the paired internal
mode. Equivalently, the largest conversion factor into scattered intensity, |asn/ fn|,
occurs for the field given in (1.19). Both types of incident field and the resulting
induced scattered mode amplitude are shown in Fig. 1.1. The corresponding fields
to induce equivalent amplitudes for the internal mode in is obtained by exchanging
s and i in (1.18), (1.19).

These are exact conditions, valid for any frequency. Possible applications are to the
control of one or more modes over a range of frequencies, or to introduction narrow
band features in the spectral response. It is noteworthy that the largest excitation of
a mode is not caused by a single mode, parallel in the sense of Fig. 1.1, excitation.
Instead optimal amplitude is obtained by producing amplitude in the two principal
modes of the pair.

Physical fields with tangent components according to (1.18), or (1.19) can be
produced by several methods. The mode parallel f = sn case could be produced via
a time reversal for a lasing mode from a similar shaped particle having gain opposite
to the target particles’ loss [50] but only at the resonant frequency. This can be chal-
lenging to achieve experimentally, requiring convergence from all directions for the
radiation. Instead interference can be used to construct such surface fields. A field
F(x) having tangent components of f = in or f = sn cannot in general be realised
by common external radiation sources or by purely internal sources (for example
fluorescence). The reason being that sources purely in one region do not simulta-
neously contain components that are both outgoing radiating waves (as required to
couple to the scattered modes) and standing internal waves (required to couple to the
internal mode). Instead, linear combinations of two or more sources having appro-
priate amplitudes and phases provide a simple way to construct exciting fields for (a
few) dominant interaction channels of general particles. The necessary fields which
realise (1.18) or (1.19) can be constructed from two linearly independent fields A1 f 1,
and A2 f 2,

sn · f 1

sn · f 2
�= in · f 1

in · f 2
, (1.20)

both with a component projecting into the nth channel. To suppress in ,

A2 = −A1
i ′n · f 1

i ′n · f 2
, (1.21)

while to maximise the amplitude of sn

A2 = −A1
in · f 1

in · f 2
, (1.22)
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where A1 and A2 are complex amplitudes. Figure 1.12a presents a simple setup for
constructing these fields. Generalisation of (1.22) to larger numbers of modes and
for control of internal modes is discussed in [30].

Using Stratton-Chu representations [32] it can be shown [30] that for particles
such as spheres and infinite cylinders, (1.20) is always violated for exciting sources
all located on the same side of the particle boundary. This is due to the common
dependence of the components of in , sn and fn with respect to surface components.
The ratios given in (1.20) then depend on the flux of incident energy into the particle.
For the example of spherical particles, any external source can be expanded as a set
of regular multipoles, while any internal source is representable by radiating multi-
poles [30]. Hence internal and scattering modes cannot be independently addressed
by purely internal—or external—sources and (1.22), (1.21) become equivalent. For
mixed internal and external sources, maximal excitation (1.22) or mode suppression
(1.21) can be fulfilled.

For non-spherical particles, for example a rounded gold disc, sharp spectral fea-
tures can be induced, as shown in Fig. 1.13, using simple interference. A setup similar
to Fig. 1.12b might be the basis of producing the necessary phase changes over a
narrow wavelength range.

Fig. 1.13 A rounded gold disc (20 nm thick and r = 60 nm) and axial plane wave light, with a
broad feature in extinction (red) and scattering (blue) cross sections. Mixing independent plane
waves from three directions (axial, 45 and 90◦) with specified relative phases (but not amplitudes)
causes constructive interference only at a chosen wavelength. By rotating the phase to become
destructive between the sources, specified line width features within the original feature envelope
can be induced
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1.4.2 Inelastic Scattering: Multiphoton Processes

Numerical examples of control of coherent second-harmonic generationhave recently
been described using an extra pump beam in cylindrical symmetry [55]. In the case
of spherical particles the emission direction when combining two pump beams is
controlled by selection rules depending on particles size and the specific order of the
process [56]. Instead, by using the same pump beam to drive two copies of the same
type of non-linear process, we can use the ideas of Sect. 1.4.1 to control both internal
and external multipolar waves at the driven frequency. This is possible provided the
strength of the non-linearity is insufficient to deplete the pump beam [57]. Since
one non-linear process is inside the particle while the other is outside, this can be
applied to nanospheres since (1.20) holds. Schematically this process is depicted in
Fig. 1.14.

This control is also extremely sensitive to phase variations, since these reduce
absorption and/or change the scattered energy by several orders of magnitude. This
can enable detection of strongly subwavelength scale changes in the position of the
particle or sensitivity to changes in surrounding electric permittivity, ε, or magnetic
permeability [57].

The nonlinear response can be described by introducing bulk and surface ten-
sors [58, 59], or alternatively the polarisation modelled using a hydrodynamical
description [60–65]. In the latter case, transverse and longitudinal waves in a metal
are described as occurring in a fluid with a pressure term of quantum origin and
proportional to the Fermi velocity. The hydrodynamical model displays non-local
response, hence a third type of mode is present—irrotational solutions which fulfil
the condition ∇ × E = 0. These purely electric modes are non-radiative but have
associated charge density fluctuations which penetrate into the metal. This leads to

Fig. 1.14 Schematic, not to scale, that shows an implementations of the control scheme of
Sect. 1.4.2. The pump beam is divided (BS) to drive equivalent nonlinear processes, converting
light at frequency ωp to ω. This is then collected (C) and directed to the particle (S) along the
direction where the controlled multipole is at a maximum. The output is then received at detector D
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revised boundary conditions where the normal components of the electric fields are
considered, leading to new types of responses to light [60–65].

Internal media Maxwell solutions which include a nonlinear bulk polarisation,
PB , then can written in the form

EB(x) =
∫
V
GE (ω; x, x ′) · PB(x ′)dx ′, (1.23)

where GE is the electric dyadic Green’s function and for the hydrodynamical model
include longitudinal terms [66].

Formanycommonparticles, non-locality is relevant only in the surface region [67],
hence EB(x) can be approximated by a Green’s function lacking the longitudinal
terms. Such a function can also be relevant when PB is due to the products of tensors
and the electric field (and its derivatives) such that linear response is local [68]. In
these cases, surface nonlinearities are confined to a thin layer, and PS is well rep-
resented by an infinitesimal polarisation sheet outside the particle (if the external
medium supports interface charges). Surface [69, 70] and also volume nonlinearities
then are contained in the boundary conditions:

εin Ei
⊥ − εex Es

⊥ = −εin E B
⊥ + εex Ec

⊥ − ∇‖ · PS, (1.24)

Ei
‖ − Es

‖ = −EB
‖ + Ec

‖ − (εex )−1∇‖PS⊥, (1.25)

Hi
‖ − Hs

‖ = −HB
‖ + Hc

‖ + iω(n̂ × PS), (1.26)

with i, s, c being labels for internal, scattered and external control fields. The internal
and external regions are labelled as the subscripts in and ex . The electric fields at the
boundary are then defined as E⊥ = n̂(n̂ · E), E‖ = −n̂ × (n̂ × E) and similarly for
other fields. Unlike in Sect. 1.2, the additional boundary condition for E⊥ becomes
necessary due to the presence of longitudinal electricwaves.Amplitudes of themodes
depend upon the left of (1.24) and (1.26). This enables us, for any EB, HB and PS

fields, to obtain Ec and Hc to control the interaction of light with the particle via
amplitudes of the internal and scattering modes, and this control is independent of
the nature of the underlining nonlinear processes.

Again, to focus on experimentally realisable situations,we nowdescribe control of
twomodes of a sphere. These are labelled by the index of angular momentum, l (total
angular momentum) and m (angular momentum projected onto z). By symmetry,
only modes with the same l,m values can be spatially correlated on a spherical
surface. In our notation the control field and the nonlinear sources in (1.24)–(1.26)
are:

f c =(εex Ec
⊥, Ec

‖, H
c
‖ ), (1.27)

f N L = − (εin E B
⊥ + ∇‖ · PS, EB

‖ + (εex )−1∇‖PS⊥, HB
‖ − iωn̂ × PS). (1.28)

The component εE⊥ in the surface field is included due to the required longitudinal
wave boundary condition. The amplitude and phase of f c are given by the complex
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Fig. 1.15 Here and in Fig. 1.16, the pump amplitude, a p = 1. This drives the nonlinearity of
a 50 nm radius gold sphere, with dielectric response from the Lorentz-Drude model [71]. The
internal and scattered l = 1,m = 0 modes are controlled to give perfect absorption of incident light
of intensity |ac| = 1.47 × 10−12 (arbitrary units) and phase of π/2 compared to the pump beam at
ω = 563.52 THz. The scattered intensity, |Es |, is measured in a direction orthogonal to both the
pump and control beams. The use of the secondary axis is indicated by arrows in the key

Fig. 1.16 The relative phase and intensity of the pump and control beams are optimised to suppress
a s10 electric dipole mode at 	εex = 0, as with Fig. 1.15. The directed scattered intensity is very
sensitive to small dielectric changes in the external medium (blue-dashed curve). This enables a
sensitive measurement of the surrounding environment. When |ac| changes by±20%, since control
is no longer optimised for 	εex = 0, the scattered intensity curve moves (black-solid/red-dotted
curves) but sharp features are still observed

amplitude ac. Amplitudes of the internal and scattered pair, ailm and aslm are, in this
notation, [

ailm
−aslm

]
=

[
i ′lm · f c i ′lm · f N L

s ′
lm · f c s ′

lm · f N L

] [
ac

1

]
. (1.29)
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Figure 1.15 shows control of the relative amplitudes of the i10 and s10 electric
dipole modes. The control is chosen so that amplitudes of these modes can vanish
for an appropriate phase ([57] demonstrates absorption control in this way). The
phase sensitivity of this control, Fig. 1.15, shows that changes in the position of the
particle on the scale	λ/λ = 	Φ/2π , whereλ is thewavelength of the control beam,
can be resolved. Similarly Fig. 1.16 shows how small variations in the surrounding
permittivity can be monitored again due to the phase sensitivity.

1.5 Supermodes of Multiple Particles

We now consider a collection of r particles at arbitrary positions. The full Hilbert
space of this aggregate is the direct sum of the Hilbert spaces of each particle; we
again have two distinct subspaces of solutions of Maxwell’s equations, the internal
solutions and the external solutions. For each particle we can either use sets of elec-
tric and magnetic multipoles, as in Sect. 1.2, or the resulting internal and scattering
principal modes of the single particles to expand the solutions of the system. The
internal fields of each particle are identically null on the surfaces of the other particles
in the system, while scattering fields have singularities only inside the originating
particle itself but are non null on all other particles’ surfaces. Using the single particle
principal modes of each of the particles as a basis, the resulting multi-particle Gram
operator is structurally the same as the single particle case, i.e.

[
1 I †S
S† I S†S

]
, (1.30)

so we can again define principal modes and resonances. Labelled by particle, the
sub-matrices of (1.30) become

I †S = diag{C1, . . . ,Cr } +
⎡
⎢⎣

0 . . . I †1 Sr
...

. . .
...

I †r S1 . . . 0

⎤
⎥⎦ , (1.31)

and

S†S = 1 +
⎡
⎢⎣
Ŝ†1 Ŝ1 . . . S†1 Sr

...
. . .

...

S†r S1 . . . Ŝ†r Ŝr

⎤
⎥⎦ , (1.32)

and analogously for the other blocks. The subscript identifies the particle fromwhich
the fields arise, the caret on a matrix indicates integrals are calculated on the surfaces
of the system’s other particles and Cr is a diagonal block of the particles’ principal
cosines. In order to implement the principal mode theory, the first step is to transform
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thematrix in (1.32) into an identity matrix. This can be done using the block structure
of the matrix, in analogue to the single particle case of Sect. 1.2. This results in a set
of supermodes for the composite system, which are again pairwise coupled at the
interface between the external medium and the internal space of all of the particles.

Analogous to the problem [72, 73] of treating a sub-region of electronic states of
a crystal, one can also define an embedding operator, Σ , for the multiple scattering
effects to all orders from the other particles on the i th particle of the system, leading
to a matrix problem in the form of (1.9),

[
1 C − Σ Ŝi

(C − Σ Ŝi )† 1

] [
ai

−as

]
=

⎡
⎣Υ †

(
f 0 − Σ f̂ 0

)

Ξ †
(
f 0 − Σ f̂ 0

)
⎤
⎦ , (1.33)

where again the matrix C − Σ Ŝi is diagonal, and the incident field at the particle
surface is augmented by the light scattered from the other particles in the system.
Similarly, an optical analogue of the Dyson equation for the surface Green function
of the composite system can be derived, Gs = G0

s + G0
sΣ

′Gs . Equivalently, using
functions to expand the scattered space of the single particle which are themselves
exact solutions of Maxwell’s equations for an external region which includes all of
the other particles in the system, can be applied. Embedding the particle next to a
layered material, [74] or a more complex geometry such as a photonic crystal, results
in equivalent expressions.

As the distances among the particles increase, the particles become independent
from one another. This means that the off diagonal terms in (1.30) and the terms
with the hats in (1.31) will vanish, so perturbative schemes for resolvent operators,
(1 + A)−1, could be used to provide approximate solutions. These are based on the
binomial expansion and are convergent if the eigenvalues of A are

1 ≥ λ(A)1 � . . . λ(A)n � −1.

Metallic dimers are particularly interesting from the point of view of sensing
applications, as a strong enhancement of the electromagnetic field can be achieved in
the gap regionbetweenparticles.However, ametallic dimerwill always beonly oneof
the elements to be considered in a sensing configuration, the other being themolecules
to be detected, a point often overlooked. As a matter of fact, any type of sensing
in which one uses metallic nanoparticles will detect a signal that results from the
optical interaction, induced by the incident field, between the nanoparticle(s) and the
molecule, assuming that these are not adsorbedby the particles. For instance, the basic
model of an aperture-less SNOMused to study the near field of complexmolecules of
biological interest near metallic nanoparticles, consists of a dimer of metallic spheres
with a nearby dielectric particle. The detected SNOM signal is due to the collective
response of all the particles interacting through light. In this section we are interested
in studying theoretically how the linear response of the complex system formed by
the molecules and the metallic nanoparticles emerges from the optical interaction
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Fig. 1.17 Geometry of the
three nanoparticle system,
for two gold spheres of
radius r1 and separation d1
with a smaller dielectric
particle d2 away from the
second sphere. The incident
orientation and polarisation
directions (θ and γ ) of the
exciting light is also shown

of its constituent parts and depends on their geometrical and material properties.
We analyse the simplest configuration relevant for experiments, which consists of
a homogeneous medium containing two gold nanospheres and a smaller dielectric
sphere representing a simplified small globular protein. The metallic spheres have a
radius of 50 nm; the variations of the fields over spheres of this size, also known as
retardation effects, are too large for the quasi-static approximation, but for this case
could be taken into account exactly using the electromagnetic modes for the spheres,
the Mie modes. For a given incident field and configuration of the spheres, internal
and scattered fields can then be found using the Generalised Mie Theory [75], with
each configuration of the spheres and each incident field requiring a new calculation.

We study instead how the collective response and resonances of this system of
particles depends on the frequency of the incident field and the relative positions of
the particles by forming, out of the modes of each particle, internal and scattered
modes of the whole system that are coupled pairwise over all the surfaces of the
particles using the multi-particle Gram matrix defined in (1.30).

The geometry of the system is shown in Fig. 1.17. The extinction and scattering
cross sections of the metallic dimer as a function of the frequency for various values
of the gap and for both local and non-local permittivity are shown in Fig. 1.18 for
light with an incident electric field parallel to the dimer axis (the perpendicular case
closely resembles the isolated sphere, since modes associated with the inter-particle
gap cannot be strongly excited in this case). With the incident electric field parallel to
the axis, extinction and scattering cross sections show a collective dipolar resonance
at longwavelengths that moves towards longer wavelengths as the gap increases until
it disappears, similar to that seen for the supershapes of Sect. 1.3.2; while the gap
has no significant effect for incident electric field perpendicular to the dimer axis.
A comparison of the scattering and extinction cross-sections for local and non-local
responses is shown in Fig. 1.18b. As already noted by other authors [76, 77], the
non-local permittivity affects the behaviour of the dimer most strongly for (very)
small gaps when the incident electric field is parallel to the axis. We then add a small
(10 nm radius) dielectric sphere of similar size and dielectric properties (εr = 3.0)
to a globular protein [78], close to the outside of the dimer at a distance of d2 ∼
1–4 nm. The isolated dielectric particle does not exhibit any resonances in the range
of 400–800 nm, and its addition does not visibly change the optical cross sections
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(a)

(b)

Fig. 1.18 50 nm radius gold sphere dimer in vacuum a Optical Spectra of metallic particles for a
range of d1 gaps, and the isolated sphere. b Effect of non-locality (dotted lines) on resonant features
in the spectra compared to a local dielectric model (solid lines) for a range of inter-particle gaps, d1

of the resulting three particle system from those of Fig. 1.18b for either local or
non-local response models of the gold particles.

Figure 1.19a shows the mode landscape for the principal supermodes of the dimer
with incident field consisting of a linearly polarised plane wave with electric field
parallel the axis of symmetry and incident at 90◦ to the axis. From these two figures
one can see how the presence of the small dielectric particle modifies the structure
of the supermodes, even if the extinction cross section of the dielectric particle on
its own is much smaller than the extinction cross section of the metallic dimer: the
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Fig. 1.19 a Principle modes
of the metallic dimer. b
Anti-crossing induced by the
small neighbouring dielectric
particle of Fig. 1.17

dominant supermode of the metallic dimers is replaced by a combination of three
supermodes for the three-particle system, two of these modes showing an avoided
crossing.

1.6 Conclusion

In this chapter we have reviewed the theory of principal modes that can be derived for
any smooth particle starting froma set of distributed electric andmagneticmultipoles.
We have shown how this theory can be used to identify resonances in nanoparticles
and to explain the metamorphosis of SNOM images when the frequency of the
incident field is changed. The theory can also be extended to collective principal
modes, or supermodes, of several nanoparticles interacting through light. This has
shown that supermodes that efficiently transport energy in the far field can emerge
from combination of principal modes of different particles that do not transport much
energy into the far field individually. This is relevant for all types of microscopy that
require the interaction of the object investigatedwith nearbymetallic particles of tips,
such as, for instance, SNOM and aperture less SNOM. We have also used principal
modes to find how to control the internal and scattered fields on a particle, including
those arising from inelastic multiphoton transition when the energy transferred from
the pump frequency to the other frequencies by the non linear process is negligible.
We are currently extending the numerical codes which implement this theory to deal
with particles with lower or no symmetry.
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1.7 Appendix

In this appendix we compare the validity of the numerical solutions to the scattering
problem calculated via three different methods: the discrete source method using QR
decomposition to solve (1.4) in a least squares sense (hereafter referred to as QR);
construction of the principal modes by

1. UsingQRdecompositions to find orthonormal bases corresponding to (1.5), (1.6),
2. Forming the scalar product between the unitary matrices, Ui and Us ,
3. Finding the paired sets of principal modes via a singular value decomposition

corresponding to (1.7),
4. Analytically solving for the ai and as coefficients,

(this approach being referred to as the QR+SVD method); and finally, purely using
singular value decompositions to find the orthonormal bases and then the principal
modes (referred to as SVD+SVD). In all cases, standard linear algebra routines were
used to perform the decompositions and matrix products [79].

To provide a fair comparison between the algorithms we limit the rank of the
output spaces for each method, via regularisation, to be the same for all methods and
then study the effect of incrementing this limit. Simulations were run for two distinct
particle types, a nanodisc of radius 400nm and depth 35nm and a nanorod of length
400nm and diameter 35 nm, both with rounded edges. Other than their geometries,
the two particles differ in the type of sources used to represent the fields. For the rod,
multipole sources are distributed along the symmetry axis in the real space, whereas
for the disc the sources are located in the complex space—effectively making these

Fig. 1.20 Sampling points of near field excitation for a rounded gold nanodisc and nanorod. The
red points indicate the approximate location of the near field source as it was scanned above the
gold nanoparticles at a height of 50nm, for a rod with dimensions (l = 400 nm, d = 35 nm) and a
disc (d = 800 nm, z = 35 nm). The blue circles indicate the location of the near field source used
for the DSCS calculations. There are 15 sampling points for each particle (the centre of the disc
was sampled with 3 different polarisations.) All of the following simulations were performed using
these particles
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Fig. 1.21 Convergence of the DSCS along the generatrix line with increasing rank. The DSCS, in
arbitrary units, for the three different algorithms plotted against the far field angle θ , varied incre-
mentally between 0 and π between the poles of the particle’s symmetry axis showing convergence
with increasing rank of the solution matrices for a (a) disc and (b) rod

ring sources distributed concentrically along the particle radius. The particles were
illuminated by a near field source of wavelength 720nm comprised of a combination
of electric and magnetic point dipoles located 50nm above the particle surface. The
approximate locations of the near field source, which is moved to obtain average
values for some tests by using different locations and polarisations of the source, are
highlighted in Fig. 1.20.

Firstly, we compare the convergence of the solutions by plotting the DSCS, i.e.
the angular variation of the electric field intensity in the far field, for each of the
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Table 1.1 Average total computational time for a full solution of the scattering problem at unre-
stricted rank for a single wavelength near-field excitation of the disc shaped particle using an AMD
Opteron 6344 processor with a 2.6GHz clock speed. Timings are averaged over 5 runs. For the
QR+SVD and purely SVD methods we highlight the time taken for the initial calculation and also
the subsequent calculations for the same particle where the principal modes are read back in from
disc storage

Algorithm Time (s)

QR 102

SVD+SVD 260

QR+SVD 194

Using stored modes 36

three methods by increasing the rank from an effective minimum. These results were
obtained by calculating the light scattered by the excited particles into the far field
along the generatrix line, φ = 0, and sampling θ at equal intervals between the poles
of the symmetry axis for the two particles at 0 and π , as shown in Fig. 1.21. We
observe that for minimal rank there is an obvious advantage to the principal mode
methods, which while not fully converged show the main features of the spectrum
at the correct angles. The QR solution however, for both the rod and disc particles,
fails to even approximately produce these features of the solution when the rank
is minimal. As the rank is increased both Principal Mode methods converge more
rapidly than the pure QR solution, which requires the maximum rank considered to
show full convergence for the disc, and only an approximate convergence for the
rod. Note that with these particular source configurations, the upper bound on the
rank obtainable for SVD+SVD and QR+SVD when no limit is imposed is almost
half that observed for the QR algorithm.

We have observed that for low rank solutions there is a clear advantage to using a
method which splits the space into two subspaces, not only for the extra information
about the system which this gives, but also for the accuracy of the calculations.
There is also another advantage to using the principal mode methods, due to the
sequential way in which the surface fields are calculated using SVD+SVD they can
be stored to be used again for a different excitation of the same particle. While, for
the initial calculation QR proves to be slightly quicker, as shown in Table1.1, for
multiple calculations the SVD+SVD and QR+SVDmethods need only calculate the
principal mode fields once and the subsequent calculations are then significantly
faster by factors of ∼5 for QR+SVD and ∼7 for SVD+SVD.
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Chapter 2
The Invariant Imbedding T Matrix
Approach

Adrian Doicu and Thomas Wriedt

Abstract The theoretical foundation of the invariant imbedding T-matrix method
is revised. We present a consistent analysis of the method, show the connection
with the superposition T-matrix method, and derive new recurrence relations for
T-matrix calculation. The first recurrence is a numerical method for integrating the
Riccati equations by using the Pade approximation to the matrix exponential, while
the second one relies on an integral-matrix approach.

2.1 Introduction

At the present time, the invariant imbedding T-matrix method seems to be the most
efficient tool for analyzing the electromagnetic scattering by large and highly asphe-
rical particles. The method initially proposed by Johnson [4], is based on an electro-
magnetic volume integral equation in spherical coordinates and iteratively computes
the T matrix along the radial coordinate. To initialize the iterative procedure, the
separation of variables method [1] or the null-field method [2] are used. In the first
case, the initial T matrix corresponds to a sphere enclosed in the particle, while
in the second case, the initial T matrix corresponds to a partial volume of the par-
ticle generated by the intersection between a sphere and the particle. Because the
size parameter of the partial volume of the particle is larger than the size param-
eter of the sphere enclosed in the particle, the second combined approach is more
efficient than the first one. As the volume integral equation is a Fredholm integral
equation of the second kind, the method does not suffer from ill-posedness, and its
performances are really remarkable. Excellent numerical results have been obtained
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for large spheroids and cylinders (size parameters up to 300), cylinders with large
aspect ratios (20:1), inhomogeneous particles, and two-particle systems [1]. The in-
variant imbedding T-matrix method is not very efficient because a fine discretization
along the radial coordinate has to be considered. To increase the numerical efficiency
of the method and to reduce the computational burden, (I) the symmetry relations
of the T matrix, such as, mirror and point-group symmetries have been exploited,
and (II) parallelizations of the code based on the Message Passing Interface (MPI)
technology and OPENMP have been used [1, 2].

This chapter which is merely of theoretical nature revised the fundamentals of the
invariant imbedding T-matrix method. Our goal is to present a consistent analysis of
the method, and to derive new recurrence relations for T-matrix calculation.

2.2 Mathematical Foundations

Consider a particle which is entirely contained within a sphere of radius R and
interior D. Assume that for r ∈ D, the particle is completely described through the
relative refractive index mr(r), while for r /∈ D, we have mr(r) = 1. The invariant
imbedding T matrix approach involves the following steps:

1. Derive an ordinary Fredholm integral equation for the radial amplitude vector by
making use on a volume integral equation for the electric field and a spherical
wave expansion of the free-space dyadic Green’s function.

2. Derive a two-terms recurrence relation for the T matrix by discretizing the Fred-
holm integral equation with respect to the radial coordinate and by applying the
invariant imbedding procedure to the discretized equation.

3. Derive a matrix Riccati equation for theTmatrix by passing to the limit�R → 0
in the T-matrix recurrence relation, where �R is the radial grid spacing.

In the following we will derive the matrix Riccati equation for the T matrix by
applying the invariant imbedding procedure on the continuous form of the Fredholm
integral equation rather than on its discrete form. We will then derive two new
recurrence relations for the T matrix, by using a numerical scheme for integrating
the matrix Riccati equation and an integral-matrix approach.

2.2.1 The Volume Integral Equation in Spherical
Coordinates

For the assumed geometry, the total field electric field E solves the volume integral
equation

E(r) = E0(r) +
∫
D

χ(r′)G(r, r′) · E(r′) dV ′, (2.1)
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where E0 is the incident field,G(r, r′) is the free-space dyadic Green’s function and
χ(r) = k2s(m

2
r(r) − 1). The dyadic G can be expressed as [3]

G(r, r′) = G0(r, r′) − 1

k2s
δ(r − r′)er ⊗ er , (2.2)

where

G0(r, r′) = jks
π

∑
α

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M3
α(ksr) ⊗ M1

ᾱ(ksr′)
+N3

α(ksr) ⊗ N1
ᾱ(ksr′), r > r ′

M1
α(ksr) ⊗ M3

ᾱ(ksr′)
+N1

α(ksr) ⊗ N3
ᾱ(ksr′), r < r ′

. (2.3)

Here,α is amultiindex incorporating the azimuthal-mode indexm and the expansion-
order index n, i.e., α = (m, n), while α = (−m, n). In the following it is conve-
nient to represent the vector X = Xrer + Xθeθ + Xϕeϕ by the column vector X =
[Xr , Xθ , Xϕ]T . In this context, the column vector representation of the electric field
expansion E(r) = ∑

α aαM1,3
α (kr) + bαN1,3

α (kr) is E (r) = ∑
α Yα(Ω)X1,3

α (r)cα ,
where Ω = (θ, ϕ), Yα is a 3 × 3 matrix depending on the angular functions, X1,3

α

are 3 × 2 matrices depending on the spherical Bessel and Hankel functions, and
cα = [aα, bα]T is a 2 × 1 matrix depending on the expansion coefficients of the elec-
tric field. For regular and radiating spherical vector wave functions, we will write
X1

α(r) = Jα(r) and X3
α(r) = Hα(r), respectively, where the expressions of Jα , Hα

and Yα can be found in [4]. Inserting (2.2) into (2.1) yields the matrix form repre-
sentation of the volume integral equation

E (r) = E0(r)

+
∑

α

Yα(Ω)

∫
V

χ(r′)gα(r, r ′)YT
ᾱ (Ω ′)Z(r′)E (r′) dV ′, (2.4)

where E is defined by E (r) = Z(r)E (r) with Z(r) = diag[1/m2
r(r), 1, 1], E0 and E

are the column vector representation of E0 and E, respectively, and gα is the 3 × 3
radial Green’s function matrix given by [4]

gα(r, r ′) = jks
π

⎧⎨
⎩
Hα(r)JTᾱ (r ′), r > r ′

Jα(r)HT
ᾱ (r ′), r < r ′

. (2.5)

The column vector representation of the scattered field

Es(r) =
∫
D

χ(r′)G0(r, r′) · E(r′) dV ′ (2.6)
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reads as
Es(r) =

∑
α

Yα(Ω)Hα(r)csα, (2.7)

where, for E0(r) = ∑
α Yα(Ω)Jα(r)c0α , the expansion coefficients of the scattered

field

csα = jks
π

∫
D

χ(r)JTᾱ (r)YT
ᾱ (Ω)Z(r)E (r) dV (2.8)

are related to the expansion coefficients of the incident field by theT-matrix equation

csα =
∑

β

Tαβc0β. (2.9)

2.2.2 An Ordinary Integral Equation

The volume integral equation (2.4) can be transformed into an ordinary integral
equation for the radial amplitude vector

Fα(r) = r2
∫

Ω

χ(r)YT
ᾱ (Ω)Z(r)E (r) dΩ, (2.10)

which is the analog of the scalar amplitude density function in the quantum mechan-
ical scattering theory [4]. Inserting (2.4) into (2.10) gives the desired equation

Fα(r) =
∑

β

Uαβ(r)Jβ(r)c0β

+
∫ R

0

∑
β

Uαβ(r)gβ(r, r ′)Fβ(r ′) dr ′, (2.11)

where the 3 × 3 matrix Uαβ is defined by

Uαβ(r) = r2
∫

Ω

χ(r)YT
ᾱ (Ω)Z(r)Yβ(Ω) dΩ. (2.12)

The scattered field coefficients (2.8) can be also expressed in terms of Fα , and the
result is

csα = jks
π

∫ R

0
JTᾱ (r)Fα(r) dr. (2.13)

Now, let the 3 × 2 matrix Fαβ be the solution of the integral equation
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Fαβ(r) = Uαβ(r)Jβ(r)

+
∫ R

0

∑
γ

Uαγ (r)gγ (r, r ′)Fγβ(r ′) dr ′. (2.14)

Obviously, Fα and Fαβ solve a Fredholm integral equation with the same kernel but
with different forcing (matrix) functions. The forcing function of (2.14) is Aαβ =
UαβJβ , while the forcing function of (2.11) is Aα = ∑

β Aαβc0β . Consequently, we
have Fα(r) = ∑

β Fαβ(r)c0β , and from (2.13) we obtain

csα = jks
π

∑
β

[∫ R

0
JTᾱ (r)Fαβ(r) dr

]
c0β. (2.15)

Finally, in view of (2.9) and (2.15), we infer that

Tαβ = jks
π

∫ R

0
JTᾱ (r)Fαβ(r) dr. (2.16)

Thus, the computation of the 2 × 2 block matrix elements of the transition matrix
requires first, the solution of the Fredholm integral equation (2.14) for Fαβ , and
second, the integration of Fαβ by using (2.16).

Defining the global matrices (or supermatrices) U = [Uαβ], F = [Fαβ], J =
[Jαδαβ], H = [Hαδαβ], g = [gαδαβ], and T = [Tαβ], we express (2.14), (2.16) and
(2.5) as

F(r, R) = U(r)J(r) +
∫ R

0
U(r)g(r, r ′)F(r ′) dr ′, (2.17)

T(R) = jks
π

∫ R

0
JT (r)F(r, R) dr, (2.18)

and

g(r, r ′) = jks
π

⎧⎨
⎩
H(r)JT (r ′), r > r ′

J(r)HT (r ′), r < r ′
, (2.19)

respectively, where the transposed matrices JT and HT should be understood as
JT = [JTᾱ δαβ] and HT = [HT

ᾱ δαβ], respectively.

2.2.3 The Matrix Riccati Equation

In (2.17) and (2.18) we indicated the dependency of F and T on the length of the
integration interval R. The reason is that the Fredholm integral equation (2.17) will
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be solved by using the invariant imbedding procedure, in which the interval length
is parametrized.

Taking the derivative of (2.17) with respect to R, and using g(r, R) = (jks/π)

J(r)HT (R) gives

∂F
∂R

(r, R) = jks
π

U(r)J(r)HT (R)F(R, R)

+
∫ R

0
U(r)g(r, r ′)

∂F
∂R

(r ′, R) dr ′. (2.20)

Because the Fredholm integral equations (2.17) and (2.20) have the same kernel but
different forcing functions, we deduce that

∂F
∂R

(r, R) = jks
π

F(r, R)HT (R)F(R, R). (2.21)

Taking the derivative of (2.18) with respect to R, and using (2.21) yields

dT
dR

(R) = jks
π

JT (R)F(R, R) + jks
π

T(R)HT (R)F(R, R). (2.22)

To find a representation for F(R, R) we set r = R in (2.17) and use g(R, r ′)
= ( jks/π)H(R)JT (r ′); the result is

F(R, R) = U(R)J(R) + U(R)H(R)T(R). (2.23)

Combining (2.22) and (2.23) we are led to the following matrix Riccati equation for
the T matrix

dT
dR

(R) = Q11(R) + Q12(R)T(R)

+ T(R)Q21(R) + T(R)Q21(R)T(R), (2.24)

where

Q11(R) = jks
π

JT (R)U(R)J(R),

Q12(R) = jks
π

JT (R)U(R)H(R),

Q21(R) = jks
π

HT (R)U(R)J(R), (2.25)

Q22(R) = jks
π

HT (R)U(R)H(R).

Substantial attention has been paid in the literature to the numerical integration of
Riccati equations. Most of the numerical methods are based on the transformation of
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the matrix quadratic equation into a system of linear first-order differential equations
by using Bernoulli substitution [5–7]. A stable numerical algorithm for this linear
differential system is the modified Davison-Maki method of Kenney and Leipnik
[6] also known as the Möbius scheme [8]. The algorithm is based on the following
two-term recurrence relation with the radial step �R:

T(R) = [(I + �RQ12)T(R − �R) + �RQ11]

× [(I − �RQ21) − �RQ22T(R − �R)]−1 , (2.26)

where the matrices Q11, Q12, Q21 and Q22 are evaluated at R − �R.

2.2.4 A Recurrence Relation for the T matrix

A two-term recurrence relation for theTmatrix, which can be regarded as an efficient
algorithm for generating numerical solutions to the matrix Riccati equation (2.24),
has been proposed by Johnson [4]. In this sectionwe establish this recurrence relation
by employing slightly different arguments as in [4]. We choose �R sufficiently
small and approximate the integral of a function f over the interval [R − �R, R] by
the right-endpoint quadrature formula

∫ R
R−�R f (r) dr ≈ �R f (R). For F(R, R), we

have

F(R, R) = U(R)J(R)

+ jks
π

U(R)H(R)

∫ R−�R

0
JT (r)F(r, R) dr

+ �RU(R)g(R, R)F(R, R), (2.27)

and further

F(R, R) = 1

�R
Q(R)

[
J(R) + H(R)q(R)

]
, (2.28)

where the matrices Q and q are given by

Q(R) = �R
[
I − �RU(R)g(R, R)

]−1
U(R) (2.29)

and

q(R) = jks
π

∫ R−�R

0
JT (r)F(r, R) dr, (2.30)

respectively. For T(R), we proceed similarly and obtain

T(R) = Q11(R) + [
I + Q12(R)

]
q(R), (2.31)
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where here and in the following, the matrices Q11, Q12, Q21 and Q22 are given by
(2.25) but with Q in place of U.

Let us define the matrix p by the relation

p(R) = jks
π

�RHT (R)F(R, R), (2.32)

which in view of (2.28), can be expressed as

p(R) = Q21(R) + Q22(R)q(R). (2.33)

As F(r, R) and F(r, R − �R) solve the same Fredholm integral equation but with
different forcing functions, i.e.,

F(r, R) = U(r)J(r)
[
I + jks

π
�RHT (R)F(R, R)

]

+
∫ R−�R

0
U(r)g(r, r ′)F(r ′, R) dr ′ (2.34)

and

F(r, R − �R) = U(r)J(r)

+
∫ R−�R

0
U(r)g(r, r ′)F(r ′ − �R) dr ′ (2.35)

respectively, we infer that

F(r, R) = F(r, R − �R)
[
I + p(R)

]
. (2.36)

Multiplying the equation for T(R − �R),

T(R − �R) = jks
π

∫ R−�R

0
JT (r)F(r, R − �R) dr (2.37)

from the right by I + p(R), and using (2.30) and (2.36) yield

T(R − �R)
[
I + p(R)

] = q(R). (2.38)

Solving (2.33) and (2.38) with respect to q gives

q(R) = [
I − T(R − �R)Q22(R)

]−1

× T(R − �R)
[
I + Q21(R)

]
, (2.39)
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whence from (2.31), the desired recurrence relation

T(R) = Q11 + (
I + Q12

) [
I − T(R − �R)Q22

]−1

× T(R − �R)
(
I + Q21

)
(2.40)

readily follows. It should be pointed out that in contrast to (2.26), the matrices Q11,
Q12, Q21 and Q22 are evaluated at R.

2.2.5 An Integral-Matrix Approach

In this section we describe a combined integral and matrix approach to analyze the
scattering by two concentric inhomogeneous spheres. This method, which is similar
to the superposition T-matrix method, will enable us to derive a recurrence relation
for the T matrix, without invoking the invariant imbedding procedure. Let us con-
sider two concentric spheres of radii R1 and R2 > R1, enclosing an inhomogeneous
region. The interior of the sphere of radius R1 is denoted by D1, while the domain
corresponding to the spherical shell is denoted by D2. For D = D1 ∪ D2, the matrix
form representation of the volume integral equation read as

E (r) = E0(r)

+
∑

α

Yα(Ω)

∫
D1

χ(r′)gα(r, r ′)YT
ᾱ (Ω ′)Z(r′)E (r′) dV ′

+
∑

α

Yα(Ω)

∫
D2

χ(r′)gα(r, r ′)YT
ᾱ (Ω ′)Z(r′)E (r′) dV ′. (2.41)

The field scattered by the inhomogeneous spherical shell in D1 is given by (r ∈ D1)

Es2(r) =
∑

α

Yα(Ω)

∫
D2

χ(r′)gα(r, r ′)YT
ᾱ (Ω ′)Z(r′)E (r′) dV ′

=
∑

α

Yα(Ω)Jα(r)c02α, (2.42)

where

c02α = jks
π

∫ R2

R1

HT
α (r)Fα(r) dr, (2.43)

while, the field scattered by the inhomogeneous sphere of radius R1 in D2 is given
by (r ∈ D2)
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Es1(r) =
∑

α

Yα(Ω)

∫
D1

χ(r′)gα(r, r ′)YT
ᾱ (Ω ′)Z(r′)E (r′) dV ′

=
∑

α

Yα(Ω)Hα(r)cs1α, (2.44)

where

cs1α = jks
π

∫ R1

0
JTα (r)Fα(r) dr. (2.45)

By virtue of (2.44), the integral equation (2.41) inside the spherical shell can be
written as (r ∈ D2)

E (r) =
∑

α

Yα(Ω) [Jα(r)c0α + Hα(r)cs1α]

+
∑

α

Yα(Ω)

∫
D2

χ(r′)gα(r, r ′)YT
ᾱ (Ω ′)Z(r′)E (r′) dV ′. (2.46)

It is easy to see that the scattering problem requires the solution of the following
integral and matrix equations:

Fα(r) =
∑

β

Uαβ(r)
[
Jβ(r)c0β + Hβ(r)cs1β

]

+
∫ R2

R1

∑
β

Uαβ(r)gβ(r, r ′)Fβ(r ′) dr ′,

cs1α =
∑

β

T1
αβ

(
c0β + c02β

)
, (2.47)

c02α = jks
π

∫ R2

R1

HT
α (r)Fα(r) dr,

where T1
αβ is the transition matrix of the inhomogeneous sphere of radius R1. The

field scattered by the inhomogeneous sphere of radius R2 is given by

Es(r) =
∑

α

Yα(Ω)Hα(r)cs1α

+ jks
π

∑
α

Yα(Ω)Hα(r)
∫ R2

R1

JTα (r ′)Fα(r ′) dr ′

=
∑

α

Yα(Ω)Hα(r)csα, (2.48)

with

csα = cs1α + jks
π

∫ R2

R1

JTα (r)Fα(r) dr. (2.49)
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The integral equation in (2.47) describes the scattering by the inhomogeneous spheri-
cal shell, while theT-matrix equation describes the scattering by the inhomogeneous
sphere of radius R1. The third equation in (2.47) gives the expansion coefficients of
the field scattered by the inhomogeneous spherical shell and exciting the inhomoge-
neous sphere of radius R1. Finally, the scattered field (2.48) is a superposition of the
fields that are scattered from the individual particles (the inhomogeneous sphere of
radius R1 and the spherical shell).

In terms of global matrices, (2.47) and (2.49) read as

F(r) = U(r)J(r)c0 + U(r)H(r)cs1

+
∫ R2

R1

U(r)g(r, r ′)F(r ′) dr ′,

cs1 = T1 (c0 + c02) , (2.50)

c02 = jks
π

∫ R2

R1

HT (r)F(r) dr,

and

cs = cs1 + jks
π

∫ R2

R1

JT (r)F(r) dr (2.51)

respectively, while the T-matrix equation takes the form cs = Tc0.
In (2.50)we choose R1 = R − �R and R2 = R, set r = R andT1 = T(R − �R),

and apply the right-endpoint quadrature formula to compute the integrals∫ R
R−�R · · · dr . Solving the resulting matrix equations yields the following represen-

tation for the T matrix of the inhomogeneous sphere of radius R:

T(R) = T(R − �R)

+ jks
π

�R
[
T(R − �R)HT + JT

]

×
[
I − �RUg − jks

π
�RUHT(R − �R)HT

]−1

× U [J + HT(R − �R)] . (2.52)

In terms of the matrix Q defined in (2.29), the recurrence relation (2.52) becomes

T(R) = T(R − �R) + jks
π

[
T(R − �R)HT + JT

]

×
[
I − jks

π
QHT(R − �R)HT

]−1

× Q [J + HT(R − �R)] . (2.53)
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In the following we will show that the recurrences (2.40) and (2.53) are identical,
which in turn implies, that the recurrences (2.40) and (2.52) are identical. Setting
T = T(R), T1 = T(R − �R), and

(
I − T1Q22

)−1 = I + A, (2.54)

where
A = T1Q22

(
I − T1Q22

)−1
, (2.55)

and performing the matrix multiplications in (2.40) we obtain

T = T1 + Q11 + T1Q21 + Q12T1 + Q12T1Q21

+ AT1 + AT1Q21 + Q12AT1 + Q12AT1Q21. (2.56)

Similarly, setting α = jks/π , and

(
I − αQHT1HT

)−1 = I + B, (2.57)

where
B = αQHT1HT

(
I − αQHT1HT

)−1
, (2.58)

we express the recurrence relation (2.53) as

T = T1 + Q11 + T1Q21 + Q12T1 + T1Q22T1

+ αT1HTBQJ + αT1HTBQHT1

+ αJTBQJ + αJTBQHT1. (2.59)

Using the matrix identity

X (I − YX)−1 = (I − XY)−1 X, (2.60)

where X and Y are rectangular matrices, but XY and YX are square matrices, and
taking into account the definition of the matricesQ11,Q12,Q21 andQ22, we find the
following identities:

αT1HTBQJ = AT1Q21,

αT1HTBQHT1 = AT1 − T1Q22T1,

αJTBQJ = Q12T1Q21 + Q12AT1Q21,

αJTBQHT1 = Q12AT1. (2.61)

Substituting (2.61) into (2.59) yields (2.56), and the proof is finished.
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From a practical point of view, the main results of our analysis are the recurrence
relations (2.26), (2.40) and (2.52) for computing theTmatrix. The recurrences (2.26)
and (2.40) have been established by using an integral approach in conjunction with
the invariant imbedding procedure, while the recurrence (2.52) has been derived
by using an integral-matrix approach. The recurrence (2.40) requires two matrix
inversions because the computation of the matrixQ demands an additional inversion
step, while the recurrences (2.26) and (2.52) requires only one matrix inversion.
Thus, (2.52) is more efficient than (2.40) in terms of the computational speed.

2.3 Conclusions

In this chapter, we revised the theoretical foundation of the invariant imbedding
T-matrix method and established the connection with the superposition T-matrix
method. Moreover, we derived two new recurrence relations for the T matrix: re-
currence (2.26) which is essentially the modified Davison-Maki method with Pade
approximation to the matrix exponential for solving Riccati differential equations,
and recurrence (2.52) which has been obtained by using an integral-matrix approach.
Although recurrence (2.52) will not dramatically increase the computation speed (as
compared to Johnson’s recurrence (2.40)), it appears to be of beneficial use for par-
ticles with very large size parameters. As a matter of fact, any numerical method
for solving Riccati differential equations can be used to design new recurrence re-
lations. Here we think about methods which transform Riccati differential equation
into two coupled nonlinear equations (Chandrasekhar system), methods based on the
superposition property of the Riccati solutions, and matrix versions of the ordinary
differential equations methods.
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Chapter 3
Methods for Electromagnetic Scattering
by Large Axisymmetric Particles
with Extreme Geometries

Adrian Doicu, Yuri Eremin, Dmitry S. Efremenko and Thomas Trautmann

Abstract Several methods for electromagnetic scattering by large axisymmetric
particles with extreme geometries are analyzed. These include the discrete sources
method and the null-fieldmethodwith distributed andmultiple spherical vector wave
functions, as well as, a single spherical coordinate-based null-field method equipped
with an analytical approach for computing the elements of the transition matrix.
The numerical performances of the methods with distributed and multiple spherical
vector wave functions are illustrated through simulations for spheroids and cylinders.

3.1 Introduction

Accurate computation of electromagnetic scattering by large axisymmetric parti-
cles with extreme geometries is needed in atmospheric radiative transfer and remote
sensing to analyze the parameters of radiation scattered by aerosols, clouds, and pre-
cipitations. In the last years, the discrete sources method and the null-field method
have become efficient and powerful tools for rigorously computing the electromag-
netic scattering by such kind of scatterers.

1. In the discrete sourcesmethod, the approximate solution to the scattering problem
iswritten as a superposition of fields of elementary (discrete) sources. The discrete
sources, consisting of localized, distributed and multiple spherical vector wave
functions, magnetic and electric dipoles, and systems of vector Mie potentials,
are placed on a certain support, while the unknown amplitudes of the discrete
sources are determined from the boundary conditions [1–4].
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2. In the null-field method (originally proposed by Watermann [5, 6] and later
developed by Barber and Hill [7], andMishchenko et al. [8]), the transitionmatrix
relating the expansion coefficients of the scattered and incident field is comput-
ed. A number of modifications to the conventional null-field method have been
proposed, especially to improve the numerical stability in computations for large
particles with extreme geometries. These techniques include methods (I) deal-
ing with the numerical stability of the inversion process [6, 9–12], (II) based on
accurate computations of the T-matrix elements [13–20], (III) relying on formal
modifications of the single spherical coordinate-based null-field method [21–
24], and (IV) using discrete sources [1, 25]. The fundamentals of the null-field
method with discrete sources have been presented in [1], while convergent results
for prolate axisymmetric particles with a size parameter of about 100, and oblate
axisymmetric particles with a size parameter of about 30 have been reported in
[25].

In the first step of our analysis we focus on the discrete sources method and the
null-field method with distributed and multiple spherical vector wave functions, and
discuss the numerical and theoretical improvements, which are required to handle
large and highly aspherical axisymmetric particles. In a second step we present an
analytical method for computing the T-matrix elements, which may presumably
improve the numerical stability of the null-field method with localized spherical
vector wave functions.

3.2 Discrete Sources

We consider the scattering by a homogeneous and isotropic particle embedded in a
homogeneous, isotropic and nonabsorbing medium. Let Di be the domain occupied
by the particle, Ds the exterior of Di, S the boundary of Di (the particle surface),
and n the unit normal vector to S directed into Ds. The wave number in the free space
is k0, while the wave number in domain Dt, t = s, i, is kt = k0

√
εtμt. Here, εt and

μt are the relative permittivity and permeability of the domain Dt, respectively. The
particle is illuminated by an incident field E0 andH0, representing an entire solution
to the Maxwell equations. The transmission boundary-value problem to be solved
consists in the computation of the vector fields Es, Hs and Ei, Hi satisfying the
Maxwell equations

∇ × Et = jk0μtHt, ∇ × Ht = −jk0εtEt, (3.1)

in Dt, t = s, i, the two transmission conditions

n × Ei − n × Es = n × E0,

n × Hi − n × Hs = n × H0, (3.2)



3 Methods for Electromagnetic Scattering … 51

on S, and the Silver-Miller radiation condition for the scattered field

r
r

× √
μsHs + √

εsEs = o

(
1

r

)
, as r → ∞, (3.3)

uniformly for all directions r/r .
As discrete sources, denoted byΦq

α(kr) and Ψ q
α(kr), with q = 1, 3, we consider

different types of spherical vector wave functions (SVWF). In particular, Φq
α and

Ψ q
α , having the properties:

1. ∇ × Φq
α = kΨ q

α and ∇ × Ψ q
α = kΦq

α ,
2. Φ1

α and Ψ 1
α are finite at the origin,

3. Φ3
α and Ψ 3

α satisfy the radiation condition,

stand for

1. the localized SVWF (localized multipoles) Φq
α(kr) = Mq

mn(kr) and Ψ q
α(kr) =

Nq
mn(kr), where α = (m, n) for m ∈ Z and n ≥ max(1, |m|),

2. the distributed SVWF (lowest-ordermultipoles)Φq
α(kr)=Mq

m,|m|+l(k(r − znez))
and Ψ q

α(kr) = Nq
m,|m|+l(k(r − znez)), where {zn | n ≥ 1} is a dense set of points

situated on the z-axis, ez is the unit vector in the direction of the z-axis, l = 1 if
m = 0 and l = 0 if m �= 0, and α = (m, n) for m ∈ Z and n ≥ 1,

3. the multiple SVWF (multiple multipoles) Φq
α(kr) = Mq

mn(k(r − z pez)) and
Ψ q

α(kr) = Nq
mn(k(r − z pez)), where {z p | p = 1, 2, . . . , Np} is a finite set of

points (poles) situated on the z-axis, Np is the number of poles, and α = (m, n)

for m ∈ Z and n ≥ max(1, |m|).
The explicit expressions of the spherical vector wave functions with an orgin at ẑ
along the z-axis read as [25]

M1,3
mn(k(r − ẑez)) = cnz

1,3
n (kR)

[
jmπ |m|

n (θ̂)(sin(θ − θ̂ )er

+ cos(θ − θ̂ )eθ ) − τ |m|
n (θ̂)eϕ

]
ejmϕ (3.4)

and

N1,3
mn(k(r − ẑez)) = cn

{
n(n + 1)

z1,3n (kR)

kR
P |m|
n (cos θ̂ )

× (cos(θ − θ̂ )er − sin(θ − θ̂ )eθ ) + (kRz1,3n (kR))′

kR
× [

τ |m|
n (θ̂)(sin(θ − θ̂ )er + cos(θ − θ̂ )eθ )

+ jmπ |m|
n (θ̂)eϕ

]}
ejmϕ, (3.5)

where cn = 1/
√
2n(n + 1), z1n and z3n are the spherical Bessel functions jn and

the spherical Hankel functions of the first kind hn , respectively, P |m|
n (cos θ) the

normalized associated Legendre functions, τ |m|
n (θ) = dP |m|

n (cos θ)/dθ , π |m|
n (θ) =

P |m|
n (cos θ)/ sin θ , (er , eθ , eϕ) the unit vectors in spherical coordinates, (r, θ, ϕ) and
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(ρ, ϕ, z) the spherical and the cylindrical coordinates of the field point r, respectively,
and

R2 = ρ2 + (z − ẑ)2, sin θ̂ = ρ

R
, cos θ̂ = z − ẑ

R
.

The localized SVWF correspond to ẑ = 0 in (3.4) and (3.5), in which case, R = r
and θ̂ = θ .

3.2.1 Discrete Sources Method for the Transmission
Boundary-Value Problem

The discrete sources method uses the completeness of the systems of tangential
vector functions

{(
n × Φqt

α (ktr)

−j
√

εt
μt
n × Ψ qt

α (ktr)

)
,

(
n × Ψ qt

α (ktr)

−j
√

εt
μt
n × Φqt

α (ktr)

)}

on the surface S, i.e., for any tangential field (e0,h0) and any δ > 0, there exists
N0 = N0(δ), such that for all N > N0,

∥∥e0 + eNs − eNi
∥∥
2S + ∥∥h0 + hN

s − hN
i

∥∥
2S ≤ δ, (3.6)

where e0 = n × E0, h0 = n × H0, and

(
eNt (r)
hN
t (r)

)
=

N∑
α=1

atα

(
n × Φqt

α (ktr)

−j
√

εt
μt
n × Ψ qt

α (ktr)

)

+ btα

(
n × Ψ qt

α (ktr)

−j
√

εt
μt
n × Φqt

α (ktr)

)
, (3.7)

with et = n × Et, ht = n × Ht, t = s, i, qs = 3 and qi = 1. In view of (3.6), the
amplitudes of the discrete sources, encapsulated in the 4N -dimensional vector x =
[aiα, biα, asα, bsα]T , can be computed by solving the minimization problem

x = argmin
(∥∥e0 + eNs − eNi

∥∥2

2S + ∥∥h0 + hN
s − hN

i

∥∥2

2S

)
. (3.8)

However, this procedure leads to a normal system of equations which is fundamen-
tally unstable for amplitudes determination. To deal with this problem, the point
matching method is used instead. Essentially, for a set of P matching points on
the particle surface {rp}Pp=1, with P > N , we compute the least squares solution
x = argminy ‖Ay − b‖2, where A is a 4P × 4N overdetermined matrix, and b is a
4P-dimensional vector specified by the values of the incident field at the matching
points.
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3.2.2 Null-Field Method with Discrete Sources
for the Transmission Boundary-Value Problem

In the null-fieldmethodwith discrete sources, the internal surface fields ei and hi are
approximated by (3.7), while the expansion coefficients aiα and biα are computed
from the null-field equations

jk2s
π

∫
S

[
(eNi (r) − e0(r)) ·

(
Ψ 3

ᾱ(ksr)
Φ3

ᾱ(ksr)

)

+ j

√
μs

εs
(hN

i (r) − h0(r)) ·
(

Φ3
ᾱ(ksr)

Ψ 3
ᾱ(ksr)

)]
dS(r) = 0, (3.9)

for ᾱ = (−m, n) and ᾱ = 1, 2, . . . , N . Making use on the vector spherical wave
expansion of the incident field,

E0(r) =
N∑

α=1

a0αM1
α(ksr) + b0αN1

α(ksr), (3.10)

yields

Q31(ks, ki)

[
aiβ

biβ

]
= −Q31

0 (ks, ks)

[
a0β
b0β

]
, (3.11)

where the entries of the matrix Q31(ks, ki),

Q31(ks, ki) =
[

(Q31)11αβ (Q31)12αβ

(Q31)21αβ (Q31)22αβ

]
(3.12)

are given by

(Q31)11αβ = jk2s
π

∫
S

[
(n × Φ1

β(kir)) · Ψ 3
ᾱ(ksr)

+ jmr(n × Ψ 1
β(kir)) · Φ3

ᾱ(ksr)
]
dS(r),

(Q31)12αβ = jk2s
π

∫
S

[
(n × Ψ 1

β(kir)) · Ψ 3
ᾱ(ksr)

+ jmr(n × Φ1
β(kir)) · Φ3

ᾱ(ksr)
]
dS(r),

(3.13)
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(Q31)21αβ = jk2s
π

∫
S

[
(n × Φ1

β(kir)) · Φ3
ᾱ(ksr)

+ jmr(n × Ψ 1
β(kir)) · Ψ 3

ᾱ(ksr)
]
dS(r),

(Q31)22αβ = jk2s
π

∫
S

[
(n × Ψ 1

β(kir)) · Φ3
ᾱ(ksr)

+ jmr(n × Φ1
β(kir)) · Ψ 3

ᾱ(ksr)
]
dS(r), (3.14)

with mr = √
εi/εs being the relative refractive index of the particle. The matrix

Q31
0 has the same structure as the matrix Q31, but it contains as columns the vectors

M1
β(ksr) and N1

β(ksr) in place of the vectors Φ1
β(kir) and Ψ 1

β(kir), respectively.
The expansion coefficients of the scattered field

Es(r) =
N∑

α=1

asαM3
α(ksr) + bsαN3

α(ksr), (3.15)

are computed from Huygens principle in conjunction with the surface fields approx-
imation (3.7). The result is

[
asα

bsα

]
= Q11(ks, ki)

[
aiβ

biβ

]
, (3.16)

where the matrix Q11 has the same structure as the matrix Q31, but it contains as
rows the vectorsM1

ᾱ(ksr) andN1
ᾱ(ksr) in place of the vectorsΦ3

ᾱ(ksr) andΨ 3
ᾱ(ksr),

respectively.Combining (3.11) and (3.16)wefind that the transitionmatrixT, relating
the scattered field coefficients to the incident field coefficients, is given by

T = −Q11(ks, ki)(Q31(ks, ki))
−1Q31

0 (ks, ks). (3.17)

For localized SVWF, Q31
0 is the identity matrix, and (3.17) gives the standard form

representation of the transition matrix.

3.2.3 Algorithm Details

For axisymmetric particles, the scattering problem is solved independently for each
azimuthal modes m. The system of SVWF {Φq

mn(kr),Ψ
q
mn(kr)} is truncated at an

appropriate expansion order Nrank with the following meaning:

1. for the localized SVWF

{Mq
mn(kr), N

q
mn(kr) | n = max(1, |m|), . . . , Nrank},

Nrank is the order of the localized pole,
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Fig. 3.1 The complex plane
(Rêz, Im̂z), the generatrix Σ

of an oblate spheroid, and
the image Σ̂ of Σ in the
complex plane. The dotted
circles represent the areas of
influence of the poles O1,
O2, and O3 situated on the
imaginary axis

2. for the distributed SVWF

{Mq
m,|m|+l(k(r − znez)), N

q
m,|m|+l(k(r − znez))

| n = 1, . . . , Nrank},

Nrank is number of lowest-order multipoles (discrete sources),
3. for the multiple SVWF

{Mq
mn(k(r − z pez)), Nq

mn(k(r − z pez)) | p = 1, . . . , Np,

n = max(1, |m|), . . . , Nrankp},

Nrank = ∑
p Nrankp, where Nrankp is the order of the pole p.

The poles are distributed in the complex plane (Rêz, Im̂z), which is the dual of the
azimuthal plane ϕ = const, i.e., (ρ, z)with ρ ≥ 0 and z ∈ R (Fig. 3.1). In the discrete
sourcesmethod, only lowest-order multipoles are used. For oblate particles, the poles
for internal field representation are distributed on the imaginary axis in the interior
and exterior of Σ̂ (the image of the generatrix Σ in the complex plane), while the
poles for scattered field representation are distributed on both the real and imaginary
axis in the interior of Σ̂ . In the null-field method, all types of spherical vector wave
functions are considered, and the same poles are used for representing the radiating
and the regular system of vector functions in (3.14). For oblate particles, the pole
with the largest order is placed at the origin and is called the dominant pole, while
the rest of the poles are distributed on the imaginary axis in the interior of Σ̂ . In both
methods, a uniform distribution of the poles along the real axis is used for prolate
particles.
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In the discrete sources method, the least squares problem x = argminy ‖Ay − b‖2
is solved bymeans of Tikhonov regularization using (I) the QR factorization, (II) the
identity matrix as regularization matrix, and (III) an a priori regularization parameter
choice method based on the size parameter and particle eccentricity. In the null-field
method, the matrix inversion is performed by the Gauss elimination method with
back-substitution [10], or alternatively, by the block matrix inversion method [11].
To increase the accuracy and efficiency of the Gauss elimination method, the routine
has been modified to work in multiple-precision arithmetic with the Multiprecision
System (MPFUN90) package [26], and parallelized with OpenMP API.

3.2.4 Convergence Analysis

In the null-field method we choose the incident direction along the axis of symmetry
of the particle and perform a convergence test over the expansion order Nrank.
Essentially, we solve the scattering problem for a reference and a lower-order system
of SVWF, and check the convergence of the differential scattering cross-sections at
a number of scattering angles [7]. The lower-order system of SVWF is chosen as
follows: (I) for localized SVWF, the lower-order system is the reference system in
which the order of the localized pole is reduced from Nrank to Nrank − 1, (II) for
distributed SVWF, the lower-order system is the reference system in which the pole
placed at the origin is omitted, and finally, (III) for multiple SVWF, the lower-order
system is the reference system in which the order of the dominant pole is reduced
from Nrank1 to Nrank1 − 1. In the discrete sources method we estimate the residual
field at the particle surface for a given configuration of poles. This test which does
not require the solution of two scattering problems can be regarded an “internal
convergence criterion”.

In our analysis we consider spheroids and cylinders, and in order to reduce the nu-
merical instability, we perform the computations using extended- instead of double-
precision floating-point variables. For spheroids, we denote by a and b the polar
radius and the equatorial radius, respectively, while for cylinders a and b stand for
the half-length and the cylinder radius, respectively.

In the first test casewe consider a prolate spheroid and a prolate cylinderwith a size
parameter of ksa = 80 and an aspect ratio of a/b = 8. The normalized differential
scattering cross-sections are illustrated in Fig. 3.2. In the null-field method with
multiple SVWF, the parameters of calculation are Np = 31, Nrank = 101, Nrank1 =
11 and Nrankp = 3 for p �= 1 in the case of the spheroid, and Np = 31, Nrank = 131,
Nrank1 = 11 and Nrankp = 4 for p �= 1 in the case of the cylinder, while in the null-
field method with distributed SVWF, the parameters of calculation are Nrank = 101
for the spheroid, and Nrank = 131 for the cylinder. As it can be seen from Fig. 3.2,
the agreement between the discrete sources method and the null-field method with
discrete sources is excellent.

In a second test case we consider an oblate spheroid and an oblate cylinder
with a size parameter of ksb = 50 and an aspect ratio of a/b = 1/5. Because the
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Fig. 3.2 Normalized differential scattering cross-sections computed with the discrete sources
method (DSM), and the null-field method with multiple (MSVWF), and distributed (DSVWF)
spherical vector wave functions. The results correspond to a prolate spheroid (top panels) and a
prolate cylinder (bottom panels) with mr = 1.5 + 0.02j, ksa = 80 and ksb = 10



58 A. Doicu et al.

extended-precision versions of null-field method with localized and distributed
SVWF fail to converge for ksb > 30, the results reported here correspond to the
discrete sources method, the null-field method with multiple SVWF, and a multiple-
precision version of the null-fieldmethodwith localized SVWF. In the latter case, the
calculation of theQ-matrix elements and the inversion are performed with multiple-
precision arithmetic. The normalized differential scattering cross-sections are illus-
trated in Fig. 3.3. In the null-field method with multiple SVWF, the parameters of
calculation are Np = 3, Nrank = 96, Nrank1 = 60, Nrank2,3 = 18, ksImz1 = 0.0,
and ksImz2,3 = ±42 for the spheroid, and Np = 3, Nrank = 130, Nrank1 = 90,
Nrank2,3 = 20, ksImz1 = 0.0, and ksImz2,3 = ±45 for the cylinder. From Fig. 3.3
we may conclude that the agreement between the different methods is quite good.
Coming to the computational efficiency, we mention that for the oblate cylinder,
(I) the computational time of the discrete sources method is 7:51 (min:s), (II) the
computational times of the null-field method with multiple SVWF are 3:42 (min:s)
for the Gauss elimination routine working in extended precision, 3:16 (min:s) for
the block matrix inversion routine working in extended precision, and 5:24 (min:s)
for the Gauss elimination routine working in multiple precision, and finally, (III)
the computational time of the multiple-precision version of the null-field method
with localized SVWF is 58:33 (min:sec). Thus, the use of the multiple-precision
Gauss elimination routine increases the computational time by a factor of 2, while
the multiple-precision version of the null-field method with localized SVWF is
extremely inefficient.

In the final test case we consider an oblate spheroid with a size parameter of
ksb = 80 and an aspect ratio of a/b = 1/8, as well as an oblate cylinder with
a size parameter of ksb = 70 and an aspect ratio of a/b = 1/7. The results in
Fig. 3.4 correspond to the null-field method with multiple SVWF working with
a multiple-precision version of the Gauss elimination routine. It should be point-
ed out that for this test case only this method converges. The parameters of cal-
culation are Np = 7, Nrank = 264, Nrank1 = 112, Nrank2,3 = 40, Nrank4,5 = 20,
Nrank6,7 = 16, ksImz1 = 0.0, ksImz2,3 = ±55, ksImz4,5 = ±65, and ksImz6,7 =
±75 for the spheroid, and Np = 7, Nrank = 268, Nrank1 = 108, Nrank2,3 = 40,
Nrank4,5 = 20, Nrank6,7 = 20, ksImz1 = 0.0, ksImz2,3 = ±45, ksImz4,5 = ±55,
and ksImz6,7 = ±65 for the cylinder. The use of the multiple-precision version of
the Gauss elimination routine leads to a relatively high computational times: 86 min
for the spheroid and 93 min for the cylinder.

The conclusion of our numerical analysis is that the null-field method with mul-
tiple SVWF is superior to the null-field method with distributed SVWF considered
in [25]. Another method for improving the numerical stability of the conventional
null-field method relies on an analytic computation of the Q-matrix elements. This
method, which is rather technical, is described in the next section.
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Fig. 3.3 Normalized differential scattering cross-sections computed with the discrete sources
method (DSM), and the null-field method with multiple (MSVWF) and localized (LSVWF) spher-
ical vector wave functions. The results correspond to an oblate spheroid (top panels) and an oblate
cylinder (bottom panels) with mr = 1.5 + 0.02j, ksa = 10 and ksb = 50
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Fig. 3.4 Normalized differential scattering cross-sections computed with the null-field method
with multiple spherical vector wave functions. The results correspond to an oblate spheroid with
mr = 1.5 + 0.02j, ksa = 10 and ksb = 80 (top panels) and an oblate cylinder with mr = 1.311,
ksa = 10 and ksb = 70 (bottom panels)
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3.3 An Analytical Method for Computing the Q-Matrix
Elements

In this section we sketch the main ideas of an analytical method for computing the
Q-matrix elements in the framework of the null-field method with localized SVWF.

For axisymmetric particles, Somerville et al. [27] have shown that the Q-matrix
elements can be expressed in terms of six types of integrals. The integrands depend
on the regular Riccati-Bessel functions ψn = ψn(mrx) = mrx jn(mrx) and their
derivatives ψ ′

n , the Riccati-Hankel functions of the first kind ξn = ξn(x) = xhn(x)
and their derivatives ξ ′

n , the unnormalized associated Legendre functions P |m|
n =

P |m|
n (cos θ), satisfying

π∫
0

P |m|
n (cos θ)P |m|

n′ (cos θ) sin θ dθ

= 2

2n + 1

(n + |m|)!
(n − |m|)!δnn′ , (3.18)

and the angular functions τ |m|
n = τ |m|

n (θ). The argument of the Riccati functions is
x = x(θ) = ksr(θ),where r(θ)describes the generatrix in polar coordinates.Assum-
ing that x can be written as x = x(z(θ)), where z = cos θ , using the decomposition
ξn = ψn + jχn , whereχn(x) = xyn(x) are the irregular Riccati-Bessel functions, and
the representations

sin θτ |m|
n = n (n − |m| + 1)

2n + 1
P |m|
n+1

− (n + 1)(n + |m|)
2n + 1

P |m|
n−1, (3.19)

and

X ′
n = n + 1

2n + 1
Xn−1 − n

2n + 1
Xn+1, (3.20)

where Xn stands for ψn and χn , it can be shown that the computation of the six
integrals simplifies to the computation of the generic integrals

Alnkn′k ′ =
∫ 1

−1
χn′ψk ′ P |m|

n P |m|
k xlz dz, (3.21)

Blnkn′k ′ =
∫ 1

−1
ψn′ψk ′ P |m|

n P |m|
k xlz dz, (3.22)

where xz = dx/dz. The indices n′ and k ′ are defined by n′ = n + n ≥ 0 and k ′ =
k + k ≥ 0, respectively, andwe have (1) l = 0, 1, (2) n, k ∈ {−2,−1, 0, 1, 2}, n + k
is odd, and (3) n, k = max(1, |m|), . . . , Nrank + 2.
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A dramatic loss of precision may occur during the computation of the integral
Alnkn′k ′ by a numerical scheme [13]. For large size parameters and large values of n −
k, the integrand oscillates around zero and its magnitude varies significantly across
the range of integration. Consequently, severe cancellations can occur during the
summation step of a Gauss–Legendre quadrature method. To overcome this problem

1. we may perform the computation with increased precision, or we may use the
algorithm for summation of floating point numbers as in K -foldworking precision
developed by Ogita et al. [28],

2. we may remove analytically the terms causing the source of cancellation [14], or
finally,

3. we may compute analytically the integral Alnkn′k ′ .

In the following we will be concerned with an analytical computation of the integral
Alnkn′k ′ by using the Gaunt formula for the integral of triple products of associated
Legendre functions as suggested in [13]. Other techniques for computing the Q-
matrix elements can be found in [16–19].

Assuming the representation x = Xx , where X is the size parameter, and making
use on the power series representations of the Riccati–Bessel functions

ψn(x) =
∞∑
s=0

1

s!
(

−1

2

)s

αsnx
2s+n+1 (3.23)

and

χn(x) = −
∞∑
s=0

1

s!
(

−1

2

)s

βsnx
2s−n, (3.24)

where

αsn = 1

(2n + 2s + 1)!! (3.25)

and

βsn =
{

(−1)s (2n − 2s − 1)!!
(−1)n/(2s − 2n − 1)!!

for s ≤ n
for s > n

, (3.26)

we obtain

Alnkn′k ′ = −mk ′+1
r

∞∑
q=0

γqn′k ′(mr)
1

q!
(

−1

2

)q

× X2q+k ′−n′+l+1
∫ 1

−1
P |m|
n P |m|

k x2q+k ′−n′+1xlz dz, (3.27)

with

γqnk(mr) =
q∑

s=0

q!
s!(q − s)!αq−s,kβsnm

2(q−s)
r . (3.28)



3 Methods for Electromagnetic Scattering … 63

An efficient method for computing the coefficients γqnk without loss of precision
has been described in [14]. The method uses a recursion scheme and avoids severe
cancellations which may occur when the relative refractive index mr is close to 1.
Setting s = 2q + k ′ − n′ + 1 in (3.27) yields

Alnkn′k ′ = −mk ′+1
r

∞∑
s=k ′−n′+1;2

γqn′k ′(mr)
1

q!
(

−1

2

)q

Xs+l Ilsnk, (3.29)

with q = q(s) and

Ilsnk =
∫ 1

−1
P |m|
n P |m|

k xs xlz dz. (3.30)

In (3.29), the notation
∑s1

s=s0;2 means that the index s increases from s0 to s1 in steps
of 2. To compute Alnkn′k ′ we split the infinite series into a finite series involving
negative powers of x , and an infinite series involving positive powers of x , i.e.,

∞∑
s=k ′−n′+1;2

=
s0∑

s=k ′−n′+1;2
+

∞∑
s=s0+2

, (3.31)

where s0 = −1 if k ′ − n′ is even, and s0 = −2 if k ′ − n′ is odd.
The integrals Ilsnk depend only on the particle shape, and therefore, they need to

be computed only once for a class of particles of similar shapes, but having different
sizes and refractive indices. The connection to the shape matrix approach, which is
based onpower series representations of the sphericalBessel andNeumann functions,
and the multiplication theorem

jn(Xx) = Xn
∞∑
k=0

(−1)k(X2 − 1)k

k!
(
x

2

)k

jn+k(x),

yn(Xx) = 1

Xn+1

∞∑
k=0

(X2 − 1)k

k!
(
x

2

)k

yn−k(x), (3.32)

is apparent. Although, from a theoretical point of view, the design of the shape
matrix approach by using the multiplication theorem is elegant and ingenious, the
final computational relations for the Q-matrix elements are identical.

The key point in computing Ilsnk is the integral of triple products of associated
Legendre functions

∫ 1

−1
Pm
n Pm

k Pp dz = (−1)m
2

2p + 1
a(m, n, k, p), (3.33)

where the coefficients a(m, n, k, p) are proportional to the Gaunt coefficients
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a(m, n,m ′, k, p)

= 2p + 1

2

(p − m − m ′)!
(p + m + m ′)!

∫ 1

−1
Pm
n Pm ′

k Pm+m ′
p dz (3.34)

in the particular case m ′ = −m and m ≥ 0, i.e.,

a(m, n, k, p) = (k + m)!
(k − m)!a(m, n,−m, k, p). (3.35)

The coefficients a(m, n, k, p) are nonzero for p = |n − k|, |n − k| + 2,…, n + k,
and can be computed by using the downward recurrence relation

ςp+1a(·, p) − (
4m2 + ςp+2 + ςp+3

)
a(·, p + 2) + ςp+4a(·, p + 4) = 0, (3.36)

with the starting values

a(·, n + k) = (2n − 1)!!(2k − 1)!!
(2n + 2k − 1)!!

(n + k)!
(n − m)!(k − m)! ,

a(·, n + k − 2) = (2n + 2k − 3)

(2n − 1)(2k − 1)(n + k)

× [
nk − m2(2n + 2k − 1)

]
a(·, n + k), (3.37)

where a(·, p) stands for a(m, n, k, p) and

ςp =
[
4p2 − (n + k + 1)2

] [
p2 − (n − k)2

]
4p2 − 1

. (3.38)

The three-term recurrence formula (3.36) is due to Bruning and Lo [29], and it
provides accurate numerical results for all low- and high-degree coefficients.

Let us assume that x can be expressed as a finite Legendre series, which approxi-
mates a real shape function xr with a truncation error ε, i.e., xr ≈ x = ∑N01

p=0 a01p Pp,
where

a01p = 2p + 1

2

∫ 1

−1
xr(z)Pp(z) dz, (3.39)

and

ε =
∫ 1

−1
(x(z) − xr(z))

2dz/
∫ 1

−1
xr(z)

2dz. (3.40)

In other words, we replace the real shape xr by a pseudo-shape x , which we then
use to compute the Q-matrix elements. The same technique has been employed by
Petrov et al. in [19]. In Table3.1we list the number of terms N01 in the finite Legendre
series for the superellipse
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Table 3.1 The number of
terms N01 in the finite
Legendre series for a
superellipse of eccentricity e
and exponent n. The results
correspond to the truncation
errors ε = 10−6

e

n 0.5 0.25 0.125

2 10 20 42

4 14 24 48

6 16 32 64

∞ 96 166 306

xr(θ) = (cosn θ + en sinn θ)−1/n

and the truncation error ε = 10−6. The case n = 2 corresponds to an ellipse, the
cases n = 4 and n = 6 correspond to a rectangle with rounded corners, and the case
n → ∞ corresponds to a rectangle. From this table we see that N01 increases with
increasing the eccentricity e and the exponent n, and that the method is especially
efficient for particles with smooth surfaces.

The computation of Ilsnk depends on the sign of s, and we distinguish two cases:
A. Case s < 0. As any continuous function defined in the interval [−1, 1] can

be expanded in a Legendre series, we set, for any negative s in the finite range
k ′ − n′ + 1, k ′ − n′ + 3,…,s0,

xs xlz =
∞∑
p=0

alsp Pp, (3.41)

where

alsp = 2p + 1

2

∫ 1

−1
xs(z)xlz(z)Pp(z) dz, (3.42)

and xz = ∑N01
p=0 a01p P

′
p. We then obtain

Ilsnk =
n+k∑

p=|n−k|;2
(−1)|m| 2

2p + 1
alspa(|m| , n, k, p). (3.43)

From (3.43) we see that the vanishing property of Gaunt coefficients implies that
only the first n + k terms in expansion (3.41) are required for computing Ilsnk .

B. Case s ≥ 0. Setting f01 = x , and making use on the representation of x , it is
apparent that the product fls = xs xlz can be expressed as a finite Legendre expansion
of the form

fls =
Nls∑
p=0

alsp Pp, (3.44)

yielding
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Ilsnk =
min(Nls ,n+k)∑
p=|n−k|;2

(−1)|m| 2

2p + 1
alspa(|m| , n, k, p). (3.45)

The process of computing the expansion coefficients of fls is based on the following
results:

1. The derivative of the finite Legendre series

x(z) =
N∑
p=0

ap Pp(z)

is given by xz(z) = ∑N−1
p=0 bp Pp(z), where in view of the recurrence rela-

tion P ′
p+1 − P ′

p−1 = (2p + 1)Pp, the coefficients bp are computed as b2p−1 =
(4p − 1)

∑K
k=p a2k , p = 1, . . . , K for N = 2K and N = 2K + 1, and as b2p =

(4p + 1)
∑K−1

k=p a2k+1, p = 0, . . . , K − 1 for N = 2K , and b2p = (4p + 1)∑K
k=p a2k+1, p = 0, . . . , K for N = 2K + 1.

2. The product of the finite Legendre series x = ∑N
n=0 an Pn and y = ∑K

k=0 bk Pk
is given by xy = ∑N+K

p=0 cp Pp, where in view of (3.33) and the orthogonality
relation of the Legendre polynomials, the coefficients cp are computed as cp =∑N

n=0

∑n+p
k=|p−n| anbka(0, n, k, p).

The computational process is then organized as follows:

1. compute the expansion coefficients of xz = f10 = d f01/dz = ∑N10
p=0 a10p Pp,

with N10 = N01 − 1, by applying the derivative rule to f01,
2. compute the expansion coefficients of f0s , s ≥ 2, by using the product rule and

the recurrence f0s = f0,s−1 f01, and the expansion coefficients of f1s , s ≥ 1, by
using the product rule and the recurrence f1s = f1,s−1 f01.

Note that in the case s = 0 and l = 0 (the case f00 = 1), we have, N00 = 0 and
a000 = 1. The numbers of terms in the finite series are N0s = sN01 and N1s = (s +
1)N01 − 1.

In the proposed method, the set of expansion coefficients defined by (3.39), i.e.,
{a01p|p = 0, . . . , N01}, and the set of expansion coefficients defined by (3.42), i.e.,

{alsp|l = 0, 1; s = −(Nrank + 3), . . . ,−1; p = 0, . . . , 2Nrank + 4},

describe the particle geometry. They can be computed in the preprocessing step with
a desired accuracy, or they can be stored in a database and used as input parameters
of the algorithm.

In summary, the analytical method for computing theQ-matrix elements involves
the following steps:
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1. Express the Q-matrix elements as integrals of products of Riccati-Bessel func-
tions, and use the power series representations of these functions to obtain a
Laurent series representation of the integrands.

2. Approximate the real shape function xr by a finite Legendre series representing
a pseudo-shape function x .

3. For negative s, expand the product xs xlz in an infinite series of Legendre functions,
while for non-negative s, linearize xs xlz by using the product and derivative rule
for finite Legendre series.

4. Integrate the linearized terms by using the Gaunt formula for the integral of triple
products of associated Legendre functions.

Other techniques for computing Ilsnk are summarized below:

1. Assuming that a Taylor expansion of the product xs(z)xlz(z) around z = 0 is

available, wemay compute the integrals of the form
∫ 1
−1 P

m
n (z)Pm

k (z)zs dz, s ≥ 0,
by applying the recurrence relation

zPm
n (z) = n − m + 1

2n + 1
Pm
n+1 + n + m

2n + 1
Pm
n−1 (3.46)

and the orthogonality relation of the associated Legendre functions, or alterna-
tively, by using the representation

zs =
∑

p=s,s−2,...

(2p + 1)s!
2(s−p)/2 ((s − p) /2)!(s + p + 1)!! Pp(z) (3.47)

and the integral of triple products of associated Legendre functions.
2. If r(θ) has a simple representation in terms of trigonometric functions, we may

use the relation

Pm
n (cos θ) =

n−m∑
k=0

(−1)k
n!(n + m)!

k!(n − k)!(n − m − k)!(m + k)!

×
(
cos

θ

2

)2n−2k−m (
sin

θ

2

)2k+m

, m ≥ 0, (3.48)

to reduce the computation of Ilsnk to the computation of trigonometric integrals.
It seems that this technique has been used by Petrov et al. in [16, 17].

The same approach can be used to compute the Q-matrix elements of a non-
axisymmetric particle. In this case, the Gaunt coefficients of any degree and order
can be computed by using, for example, the recursion scheme developed by Xu [30].
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3.4 Conclusions

In the first part of this chapter we proved through a numerical analysis that the
discrete sources method and the null-field method with distributed and multiple
SVWF can be applied to electromagnetic scattering by large axisymmetric particles
with extreme geometries. By an appropriate distribution of the poles in the complex
plane, the condition number of the matrix to be inverted is decreased, and so, the
stability of the computational scheme is increased. In particular, the null-fieldmethod
with multiple SVWF enabled us to compute the scattering characteristics of oblate
particles with a size parameter of 80 and an aspect ratio of 1/8. A drawback of
the method is its reduced efficiency; the multiple-precision version of the Gauss
elimination routine increases the computational time by a factor of 2 as compared to
an extended-precision version. In this regard, we plan to analyze the applicability of
an inversion algorithm using floating-point format and a multiplicative correction as
described in [31].

In the second part of this chapter we sketched the main ideas of an analytical
method for computing the Q-matrix elements in the framework of the null-field
method with localized SVWF. In summary, the Q-matrix elements are expressed as
integrals of products of Riccati-Bessel functions, the power series representations of
these functions are used to obtain a Laurent series representation of the integrands,
and finally, the integrals are computed by using the Gaunt formula for the integral of
triple products of associated Legendre functions. Although not yet proved, we expect
that this method will avoid the dramatic loss of precision when the integrals in the
expressions of theQ-matrix elements are computed by a Gauss-Legendre quadrature
method.
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Chapter 4
Fictitious Particle Approach for Light
Scattering Investigation from the Line
Features of a Substrate Based on the
Discrete Sources Method

Yuri Eremin and Thomas Wriedt

Abstract Computer simulation of light scattering from features on plane inter-
faces is of interest in the semiconductor and nanoelectronic industry. Submicrometer
defects on silicon substrates are detected and characterized by in-line laser scan-
ning surface inspection systems. A reliable computer model for predicting this light
scattering would provide a flexible and efficient tool for efficient surface features
detection and discrimination. Based on the Discrete Sources Method (DSM) a new
fictitious particle concept has been elaborated and realized. Based on this concep-
tion an updated DSM computer model enables to analyze light scattering from line
defects of a plane silicon substrate such as a line bump and a pit. Computer simu-
lation results corresponding to the Scattering Cross-Section (SCS) for P/S polarized
excitation are presented. It was found that the Total Scattering Cross-Section (TSC)
can be change by an order of magnitude depending on the orientation of the linear
feature with respect to the plane wave incident direction.

4.1 Introduction

Many practical applications in nanotechnology require considering a particle embed-
ded in an infinite stratified medium. Biosensors, optical antennas, solar cells, UV
lithography and silicon wafer purification are examples of the topics of interest
[1–6]. In the semiconductor industry, submicrometer particle contaminants and
defects on silicon wafers are detected and characterized by optical inspection sys-
tems. These systems use a focused laser beam striking a surface and thus creating a
field of scattered light which is registrated by a photodetector. The resulting scattered
field is sampled and quantified with the use of a system of photodetectors, which
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enables to detect the defects and the contaminants. As design sizes of structures on
silicon wafers continue to decrease, the importance of proper detection and charac-
terization of such detects grows. The design of more sensitive inspection systems
require a fundamental predictive capability for light scattering from nanosized struc-
tures [6]. A reliable computermodel for predicting this light scatteringwould provide
a flexible and efficient way to understand scattering processes and would increase
the resolution ability of the inspection tools. So the importance in a sophisticated
computer model which is based on rigorous mathematical statement of the scattering
problem and which enables to predict light scattering from nanofeatures of silicon
substrate seems to be highly required.

Various technique have been used so far for light scattering simulation. Direct
methods solve Maxwell’s equations in their differential form. They rely on a volume
discretization in a finite computational domain. A first approach consists of directly
discretizingMaxwell’s equations in time and space using finite differences: this is the
core of the so called Finite Difference Time Domain (FDTD) method [7] The FDTD
method is one of the most popular methods in nanooptics because of its ability to
handle a large variety of the scattering problems. FDTD is a simple technique, which
can be effectively implemented on a computer or a graphics processing unit (GPU).
Unfortunately, these models might not be accurate enough in some interesting cases
[8]. Besides, the conventional FDTD numerical scheme does not incorporate an
infinite interface in its theoretical model and it is required to apply special near to
far field transformation to take into account it [9].

The Finite ElementMethod (FEM) [10] consists of expanding the electromagnetic
fields as local functions in elements, which results in higher accuracy in the frequency
domain. Their advantage as compared to FDTD is their higher accuracy,which comes
at the price of amore challenging implementation andgenerally higher computational
cost. Application of the FEM to surface features of a plane interface can create
problems related to a truncation of the simulation domain [11]. Besides, FDTD
and FEM have the disadvantage that they require both the local feature and the
surrounding space to be discretized, leading to higher volume of the simulation
domain.

For our particular case the most suitable and fast numerical approach seems to be
a semi-analytical method. Such a method applies the Green’s theorem to the system
of Maxwell equations [12] to reduce the scattering problem formulated in the whole
of 3D space to the impurity domain. Incorporation of the Green Tensor of the half-
space enables to account for multiple scattering interactions between impurity and
the plane interface [13]. Let us mainly focus on the methods that enable to treat an
inhomogeneity located near an infinite plane interface.

There are volume-based methods, similar to the Discrete Dipole Approximation
(DDA) [14, 15] and the Volume Integral Equation (VIE) [16, 17], which are suitable
for modeling of light scattering by arbitrary impurities. Additionally the surface
based methods, such as the T-matrix method [18], the Surface Integral Equation
(SIE) [19], the Multiple MultiPole Technique (MMP) [20] and the Discrete Sources
Method (DSM) [21] are applicable. While VIE and DDA can handle any kind of
inhomogeneity, they are pretty time consuming, especially if it is required to account
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for strong scattering interaction between cells of mesh attaching the interface and the
infinite interface itself. Besides, the volume-based methods might require different
discretization for different parts of an embedded particle because of the essential
difference in the refractive indexes of the upper and lower half spaces. This results
into switching from a propagating plane wave in the upper half space to a damped
wave inside the substrate. So surface-based methods seem to be more appropriate
for the treatment of a homogeneous particle partially embedded into a plane infinite
substrate. A detail description of the current status of the main numerical methods
can be found in reviews [22, 23] as well.

Among the other surface-based methods mentioned above, the MMP and the
DSM have several advantages. First of all they are semi-analytical meshless methods
that do not require any mesh generation or integration procedure over the impurity
domain. They enables to obtain the far field directly for multiple external excitations
and will account for the interaction between the impurity and the plane interface
in an analytical way. Besides, MMP and DSM provide the unique opportunity for a
reliable validation of the numerical results obtained because the errors of the solution
obtained can be evaluated explicitly by computation of the surface residual over the
surface of the impurity [24, 25]. While in MMP models, dipoles and multipoles are
placed on an auxiliary surface inside a scatterer [24] DSM can use complex valued
discrete sources (DS) for each DS coordinate [25]. Employing complex DS allows
to get a compromise between a resultant matrix condition number and the accuracy
of the results in accordance with the so called “uncertainty principle” [26]. The
uncertainty principle can be formulated in a brief way as “the worse the condition
number the better the results”.

In this paper we present a new scheme of the DSM [27, 28] that enables inves-
tigation of polarized light scattering from a penetrable particle partially embedded
into a plane substrate. In contrast to the axial-symmetric case examined in [7], the
new DSM scheme allows to consider particles, which together with the substrate,
does not form an axial-symmetric structure. The DSM developed is a semi-analytical
surface based meshless method, which requires neither mesh generation, nor an inte-
gration procedure over the particle surface. In the present realization of the DSM the
scattered field everywhere outside a particle is represented as a finite linear com-
bination of electromagnetic fields originated by electric dipoles distributed over an
auxiliary surface deposited inside the particle. The field of each dipole is constructed
incorporating the Green’s Tensor of half-space. Thus, the DSM solution analyti-
cally satisfies Maxwell’s equations, the radiation or attenuation conditions in the
far zone and the transmission conditions established at the infinite plane interface.
The unknown amplitudes of the DS are to be determined from the boundary con-
ditions enforced at the particle surface only. For the examination of scattering by
nano-dimensional line pit and line bump we employ the “fictitious particle” concept
which already has successfully been used for the investigation of axial-symmetrical
features on a plane substrate [7]. A fictitious particle means a virtual particle that is
partially embedded into a substrate that has a refractive index which coincides with
the air in case of a scratch or with the substrate index in case of a bump.
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The paper is organized as follows. In the next section we consider the statement
of the scattering problem and then describe the new mathematical formalism of the
DSM. In the following section a detailed description of the corresponding numerical
scheme of the DSM is provided. In the final section of the paper some numerical
results are presented and discussed.

4.2 Discrete Sources Method for Non-axial Symmetric Case

Let us consider the case of a penetrable particle partially embedded into an infinite
plane substrate. Choose a Cartesian coordinate system with its origin O at the plane
interface -Ξ (z = 0) assuming that theOz axis is perpendicular toΞ and directed into
the upper half-space. Consider the substrate domain being D1 (half-space z < 0), and
the rest of R3 space corresponds to air D0 (z > 0). We denote the particle’s internal
domain as Di and will refer to its surface as ∂Di . The external excitation {E0, H 0}
is the electromagnetic field of linearly polarized plane wave propagating at an angle
of π − θ0 with respect to the Oz axis and the plane of wave incidence is determined
by the azimuth angle ϕ0. Then the mathematical statement of the scattering problem
can be written in the form including the time harmonic Maxwell equations

∇ × Hζ = jkεζ Eζ ; ∇ × Eζ = − jkμζ Hζ in Dζ , ζ = 0, 1, i ,
the transmission conditions enforced at the particle surface and plane interface

n p × (Ei (p) − E0,1(p)
) = 0,

n p × (Hi (p) − H0,1(p)
) = 0,

p ∈ ∂ Di ,
ez × (E0(p) − E1(p)) = 0,
ez × (H0(p) − H1(p)) = 0,

p ∈ Ξ,

(4.1)

the Silver–Muller radiation conditions for all radial directions defined by the er vector

lim
r→∞ r · (√ε0E

s
0 × ez − √

μ0H
s
0

) = 0, r = |M | → ∞, z > 0,

attenuation conditions inside the substrate

(∣∣Es
1

∣∣ ,
∣∣Hs

1

∣∣) = o ( exp{− |Im(k1)| r}), z < 0.

Let {Eζ , Hζ } stand for the total field in the domains Dζ , ζ = 0, 1, and {Es
ζ , Hs

ζ } -
for the scattered field, k = ω/c, np is the outward unit normal to the surface ∂ Di , ez is
the unit vector directed along the Oz axis, kζ = k

√
εζ μζ . |M | is denoted as a distance

from the origin O to M point. Let the particle surface ∂ Di belong to the Hölder
space ∂ Di ⊂ C (2,υ), the relative permittivity and permeability are chosen such, that
the following conditions are valid: Im(ε0), Im(μ0) = 0, Im(ε1), Im(μ1) < 0. Time
dependence is expected to be exp { jωt}. Then, the boundary scattering problem (4.1)
has a unique solution.

Following the basic DSM scheme described in [7] we construct the external
excitation field {E0

ζ , H 0
ζ } in each domain Dζ , ζ = 0, 1 solving the reflecting and
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transmiting problem for the exciting plane wave {E0, H 0} at the plane interface
Ξ [29]. The constructed field should satisfy the transmission conditions have been
installed at the plane interface Ξ . Let us introduce the following notations

ψ±
ζ = exp

{− jkζ

(
x sin θζ cosϕ0 + y sin θζ sin ϕ0 ± z cos θζ

)}

e±,P
ζ = (∓ex cos θζ cosϕ0 ∓ ey cos θζ sin ϕ0 + ez sin θζ

)

h±,P
ζ = (ex sin ϕ0 − ey cosϕ0

)

e±,S
ζ = (−ex sin ϕ0 + ey cosϕ0

)

h±,S
ζ = (∓ex cos θζ cosϕ0 ∓ ey cos θζ sin ϕ0 + ez sin θζ

)

ζ = 0, 1. (4.2)

where ex , ey, ez areCartesian basis, θ1 is the angle atwhich the transmitted planewave
penetrates into the substrate, according to Snell’s law. For P-polarized excitation the
incoming, outgoing and transmitting plane waves are

EP(±)
ζ = e±,P

ζ · ψ±
ζ ; HP(±)

ζ = h±,P
ζ · nζ · ψ±

ζ

and similar to for S-polarization

ES(±)
ζ = e±,S

ζ · ψ±
ζ ; HS(±)

ζ = h±,S
ζ · nζ · ψ±

ζ .

Here nζ = √
εζ μζ is the refractive index in the corresponding half-space D0,1. Then

the fields of the external excitation can be written as

E0(P,S)
0 = EP,S(−)

0 + RP,S · EP,S(+)
0 ; H 0(P,S)

0 = HP,S(−)
0 + RP,S · HP,S(+)

0 ; z ≥ 0

E0(P,S)
1 = TP,S · EP,S(−)

1 ; H 0(P,S)
1 = TP,S · HP,S(−)

1 ; z < 0 (4.3)

and the corresponding Fresnel coefficients RP,S; TP,S [29], are given by

RP = n1 cos θ0 − n0 cos θ1

n1 cos θ0 + n0 cos θ1
; TP = 2n0 cos θ0

n1 cos θ0 + n0 cos θ1

RS = n0 cos θ0 − n1 cos θ1

n0 cos θ0 + n1 cos θ1
; TS = 2n0 cos θ0

n0 cos θ0 + n1 cos θ1

while E (−)
0 = E0; H (−)

0 = H 0 coincide with the original exciting plane wave
{E0, H 0}. Thus, we have obtained the field of external excitation in entire space
(4.3) which satisfies the transmission conditions at the plane interface.

Let us now specify the definition of the scattered field. We define in each
domainDζ , ζ = 0, 1 the scattered field as Es

ζ = Eζ − E0
ζ , Hs

ζ = Hζ − H 0
ζ . The

scattered field should satisfy the infinity conditions and the transmission conditions
enforced at the plane interface Ξ . Thus, the transmission conditions imposed at the
particle surface accept the following form
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np × (Ei − Es
0,1) = np × E0

0,1; np × (Hi − Hs
0,1) = np × H 0

0,1 (4.4)

We construct an approximate solution of problem (4.1) based on the DSM concept
[30]. The main idea of the DSM is to represent the scattered field as a finite linear
combination of elementary DS, which in this particular case are electric dipoles
distributed over an auxiliary surface, located inside the particle. To construct the
dipoles field satisfying the transmission conditions at the infinite plane interface we
incorporate the Green Tensor (GT) of the half-space. Such a representation should
satisfy Maxwell equations, the infinity conditions and transmission conditions at
interface Ξ . In this case, the solution to the scattering problem (4.1) is reduced to
the problem of approximating the fields of external excitation (4.3) on the surface
of the embedded particle ∂Di . Thus, the unknown amplitudes of the dipoles will
be determined from the matching transmission conditions imposed on the particle
surface ∂Di (4.4).

To construct the fields of DS, which fit the transmission conditions at the plane Ξ

we incorporate the GT. This enables to analytically fulfill the transmission conditions
enforced at the plane (z = 0). The electric GT can be written in the following form
[31]

↔
G

e
(M, M0) =

⎡

⎣
Ge

11 0 0
0 Ge

11 0
∂G31

/
∂xM ∂G31

/
∂yM Gh

11

⎤

⎦

The components of the tensor can be represented in the formof Sommerfeld integrals:

Ge,h
11 (M, M0) =

∞∫

0

J0(λr) v
e,h
11 (λ, z, z0)λdλ,G31(M, M0) =

∞∫

0

J0(λr) v31(λ, z, z0)λdλ.

(4.5)

Here R2
MM0

= r2 + (z − z0)2, r2 = ρ2 + ρ2
0 − 2ρρ0 cos(ϕ − ϕ0), J0(.) is the Bessel

function of zero order, and (ρ0, ϕ0, z0) are the cylindrical coordinates of a DS located
at M0. The corresponding spectral functions ve,h11 , v31 ensure the satisfaction of the
transmission conditions at the plane interface z = 0. For this case, they are written
as

ve,h11 (λ, z, z0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp{−η0|z−z0|}
η0

+ Ae,h
11 (λ) · exp{−η0(z+z0)}

η0
, z0 > 0, z ≥ 0,

Be,h
11 (λ) · exp{η1z−η0z0}

η0
, z0 > 0, z ≤ 0,

Ce,h
11 (λ) · exp{−η0z+η1z0}

η1
, z0 < 0, z ≥ 0,

exp{−η1|z−z0|}
η1

+ De,h
11 (λ) · exp{η1(z+z0)}

η1
, z0 < 0, z ≤ 0,

(4.6)

Let us emphasize that the first term in the first and last lines of (4.6) are associated
with singular part of the GT corresponding to DS location inside D0,1.
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v31(λ, z, z0) =

⎧
⎪⎪⎨

⎪⎪⎩

A31(λ) · exp {−η0(z + z0)} , z0 > 0, z ≥ 0,
B31(λ) · exp {η1z − η0z0} , z0 > 0, z ≤ 0,
C31(λ) · exp {−η0z + η1z0} , z0 < 0, z ≥ 0,
D31(λ) · exp {η1(z + z0)} , z0 < 0, z ≤ 0,

(4.7)

here η2
ζ = λ2 − k2ζ . The spectral coefficients A, B,C , and D are determined from

the following jump conditions enforced at z = 0

[ve11] =
[
1

μ

∂ve11
∂z

]
= 0;

[
1

μ
ve31

]
= 0;

[
1

εμ

∂ve31
∂z

]
= −

[
1

εμ

]
ve11

[vh11] =
[
1

ε

∂vh11
∂z

]
= 0;

[
1

ε
vh31

]
= 0;

[
1

εμ

∂vh31
∂z

]
= −

[
1

εμ

]
vh11

Using these conditions leads to the following expressions for the corresponding
coefficients A, B,C, D

Ae,h
11 (λ) = χ

e,h
0 − χ

e,h
1

χ
e,h
0 + χ

e,h
1

; Be,h
11 (λ) = 2χ e,h

0

χ
e,h
0 + χ

e,h
1

;

Ce,h
11 (λ) = 2χ e,h

1

χ
e,h
0 + χ

e,h
1

; De,h
11 (λ) = χ

e,h
1 − χ

e,h
0

χ
e,h
0 + χ

e,h
1

·;

A31(λ) = 2δ
(
χ e
0 + χ e

1

) (
χh
0 + χh

1

) ; B31(λ) = μ1

μ0
A31(λ);

C31(λ) = μ0

μ1
A31(λ); D31(λ) = A31(λ).

where χ e
ζ = ηζ

μζ
, χh

ζ = ηζ

εζ
, δ = 1

ε0μ0
− 1

ε1μ1
.

We start to construct the approximate solution for the scattered field in D0,1 based
on the system of electric dipoles localized on the set of points {Mn}∞n=1. Let the
points Mn belong to an auxiliary surface S0 ∈ C (1,υ), located inside the particle Di .
Assume that in each point Mn there are three orthogonal dipoles {em}3m=1 and they
are directed along the basic vectors of the cylindrical coordinate system (ρ, ϕ, z).
Then the vector potential of the DS system can be written as

A1
n = {Ge

11(M, Mn) cos(ϕ − ϕn); − Ge
11 sin(ϕ − ϕn);

∂G31(M, Mn)

∂ρ
cos(ϕ − ϕn) − 1

ρ

∂G31

∂ϕ
sin(ϕ − ϕn)

}
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A2
n = {Ge

11(M, Mn) sin(ϕ − ϕn); Ge
11 cos(ϕ − ϕn);

∂G31(M, Mn)

∂ρ
sin(ϕ − ϕn) + 1

ρ

∂G31

∂ϕ
cos(ϕ − ϕn)

}
(4.8)

A3
n = {0; 0; Gh

11(M, Mn)}

Here A1
n corresponds to dipoles located in Mn with coordinates (ρn, ϕn, zn)

directed along the basis vector eρ , A2
n − eϕ and A3

n − ez . Thus, for the scattered
field in the domains D0,1 satisfying the transmission conditions at Ξ the following
representation holds

EN
ζ (M) =

N0∑

n=1

3∑

m=1

p0nm ∇ × ∇ × Am
n (M),

HN
ζ (M) = j

kμζ

∇ × EN
ζ (M), ζ = 0, 1; M ∈ D0,1 (4.9)

We would like to emphasize that the electromagnetic fields both in D0 and in D1

are defined by the unified set of amplitudes
{
{p0nm}N0

n=1

}3

m=1
. This is a consequence

of incorporating the GT for the scattered field representation. The main difference
between the representation (4.9) and the field representation for axial symmetric
structures [7] consists in that (4.9) is valid for non-axial symmetric geometries and
for any kind of excitation regardless of its polarization.

Let us construct the representation for the field inside the penetrable particle Di .
Choose an auxiliary surface S1 ∈ C (1,υ), enclosing the scattering surface ∂Di and
consider the following vector potential system

Am
ni (M) = h(2)

0 (ki RMM1
n
)em; M1

n ∈ S1 . (4.10)

Here h(2)
0 is spherical Hankel function and em - are basic vectors of the cylindri-

cal coordinate system. Then the representation for the total field inside the particle
accepts the following form

EN
i (M) =

Ni∑

n=1

3∑

m=1

pinm ∇ × ∇ × Amni (M), HN
i (M) = j

kμi
∇ × EN

i (M), M ∈ Di

(4.11)
The approximate solutions (4.9)–(4.11) satisfy all conditions of the scattering prob-
lem (4.1) except the transmission conditions enforced at the particle surface (4.4).
Therefore by matching these conditions one can determine the set of DS amplitudes{{

p0,inm

}3
m=1

}N0,i

n=1
.

The completeness of the system of the distributed electricmultipoles used in (4.8),
(4.10) distributed over the auxiliary surfaces S0,1 guarantees the convergence of the



4 Fictitious Particle Approach for Light Scattering Investigation … 79

approximate solutions (4.9) and (4.11) to the exact ones [30]. Thus, the following
result can be formulated:

TheoremLet the penetrable particle Di with smooth surface ∂ Di ⊂ C (2,υ) be embed-
ded into a plane substrate and the DS origins

{
Mn, M1

n

}∞
n=1 form dense sets at S0,1,

then for any external excitation
{
E0
0,1, H

0
0,1

} ∈ L2
τ (∂Di ) and any δ > 0 there exist

such numbers N0,i and the sets of amplitudes
{{

p0,inm

}3
m=1

}N0,i

n=1
that the following

result holds ∥∥
∥∥ np×

{
EN
i − EN

e − E0
0,1

HN
i − HN

e − H 0
0,1

}∥∥
∥∥
L2

τ (∂Di )

< δ.

The latter result means convergence of the approximate solution to the exact one in
any closed subset in D0, that is

lim
N0,i→∞

{
EN
0 , HN

0

} = {Es
0, H

s
0

}
, in D0.

4.3 Numerical Scheme of the DSM

In this section the numerical scheme of the DSM will be described in detail. As
outlined above the representations (4.9), (4.11) satisfy all conditions of the scatter-
ing problem (4.1) except the transmission conditions (4.4) at the particle’s surface
∂Di . These last conditions (4.4) are used to determine the unknown amplitudes of

the DS
{{

p0,inm

}3
m=1

}N0,i

n=1
. The computational algorithm is based on the Generalized

Point Matching Technique (GPMT) [32]. Choose a set of matching points (MPs)
distributed over the whole particle surface {Ql}Ll=1 ∈ ∂Di , then the DS amplitudes
can be evaluated as

p0,inm := argmin

∥∥∥∥np×
{

EN
i − EN

e − E0
0,1

HN
i − HN

e − H 0
0,1

}∥∥∥∥
L2

τ (∂Di )

(4.12)

Application of GPMT is followed by the pseudo solution of the corresponding over-
determined system of linear algebraic equations [33]. Tikhonov’s regularization in
the l2 sense is applied [34]. Adjusting the regularization parameter to the computa-
tional errors of the Sommerfeld integrals ensures stable and convergent results with
increasing number of MPs and DS. As mentioned above, calculation of the surface
residual of the boundary conditions (4.4) at intermediate points with respect to the
MPs, we obtain a posteriori error estimate for the approximate solution (4.9), (4.11).

The unknown vector of amplitudes
{{

p0,inm

}3
m=1

}N0,i

n=1
of dimension 3(N0 + Ni )

can be computed as a pseudo solution of the following over-determined system of
linear equation

Φp = f (4.13)
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Here Φ is a rectangular matrix having a dimension of 4L × 3(N0 + Ni ), 4L ≥
3(N0 + Ni ) and the vector f : (4.13) can be represented as the following 4L vector:
f = (E0

ζ · τ 1, E0
ζ · τ 2, H 0

ζ · τ 1, H 0
ζ · τ 2

)T
, where L is the number of the MPs and

τ 1,2 are orthogonal vectors tangential to the surface ∂Di corresponding to each MP
Ql ∈ ∂Di and

{
E0

ζ , H
0
ζ

}
, ζ = 0, 1.

Let MPs and tangential vectors, which are defined by their Cartesian coordinates
as Ql = (ρl cosϕl , ρl sinϕl , zl); τ

1,2
l = (α

1,2
l , β

1,2
l , γ

1,2
l ). Then

ψ±
ζ (Pl) = exp

{− jkζ

(
ρl sin θζ cos(ϕl − ϕ0) ± zl cos θζ

)}

e±,P
ζ · τ

1,2
l =

(
∓α

1,2
l cos θζ cosϕ0 ∓ β

1,2
l cos θζ sin ϕ0 + γ

1,2
l sin θζ

)

h±,P
ζ · τ

1,2
l =

(
α
1,2
l sin ϕ0 − β

1,2
l cosϕ0

)

e±,S
ζ · τ

1,2
l =

(
−α

1,2
l sin ϕ0 + β

1,2
l cosϕ0

)

h±,S
ζ · τ

1,2
l =

(
∓α

1,2
l cos θζ cosϕ0 ∓ β

1,2
l cos θζ sin ϕ0 + γ

1,2
l sin θζ

)

here
{
e±,P,S
ζ ; h±,P,S

ζ

}
- notations introduced in (4.2), Following the notations above

the components of vector f relevant to P/S polarization accept the following form

E0(P,S)
ζ · τ

1,2
l =

⎡

⎣

(
e−(P,S)
0 · τ

1,2
l

)
ψ−

0 (Ql) + RP ·
(
e+(P,S)
0 · τ

1,2
l

)
ψ+

0 (Ql), z ≥ 0

TP ·
(
e−(P,S)
1 · τ

1,2
l

)
ψ−

1 (Ql), z < 0

H0(P,S)
ζ · τ

1,2
l =

⎡

⎣

(
h−(P,S)
0 · τ

1,2
l

)
ψ−
0 (Ql ) + RP ·

(
h+(P,S)
0 · τ

1,2
l

)
ψ+
0 (Ql ), z ≥ 0

TP ·
(
h−(P,S)
1 · τ

1,2
l

)
ψ−
1 (Ql ), z < 0

(4.14)

The solution of the linear system (4.13) is performed for P and S polarized excita-
tion and all incident planes ϕ0 and incident angles θ0 at once. First we make a QR
factorization of the Φ matrix and then calculate pseudo solutions for the whole set
of the right hand parts [32].

Three columns of theΦ matrix (4.13) relating to the scattered field representation
(4.9) can be written as

−→
Φ m

ζ =
{
Wm

ζ , Ym
ζ ,

j

kμζ

Vm
ζ ,

j

kμζ

Um
ζ

}T
,m = 1, 2, 3 (4.15)

The rows associate to the following sequence of the field’s components E · τ 1, E ·
τ 2, H · τ 1, H · τ 2. So for the field the matrix elements can be evaluated as W ⇒
τ 1 · ∇ × ∇×, Y ⇒ τ 2 · ∇ × ∇×, and for H field as follows V ⇒ τ 1 · ∇×, U ⇒
τ 2 · ∇×.
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In eachMP there are three electric dipoles oriented in accordance with cylindrical
coordinate system. Specific expressions for the matrix elements corresponding to the
scattered fields are:
[
Wm

ζ (Ql )
]

= α1
l (wm

ζ,ρ cosϕl − wm
ζ,ϕ sin ϕl ) + β1

l (wm
ζ,ρ sin ϕl + wm

ζ,ϕ cosϕl ) + γ 1
l w

m
ζ,z;

[
Ym
ζ (Ql )

]
= α2

l (wm
ζ,ρ cosϕl − wm

ζ,ϕ sin ϕl ) + β2
l (wm

ζ,ρ sin ϕl + wm
ζ,ϕ cosϕl ) + γ 2

l w
m
ζ,z;

[
Vm

ζ (Ql)
] = α1

l (v
m
ζ,ρ cosϕl − vmζ,ϕ sin ϕl) + β1

l (v
m
ζ,ρ sin ϕl + vmζ,ϕ cosϕl) + γ 1

l v
m
ζ,z;

(4.16)[
Um

ζ (Ql)
] = α2

l (v
m
ζ,ρ cosϕl − vmζ,ϕ sin ϕl) + β2

l (v
m
ζ,ρ sin ϕl + vmζ,ϕ cosϕl) + γ 2

l v
m
ζ,z;

where the following notations have been introduced

w1
ζ,ρ = k2ζ cos (ϕl − ϕn)

∫∞
0 J0 (λr) ve11λdλ − cos(ϕl−ϕn)

r

∫∞
0 J1 (λr) λ

[
ve11 + ∂v31

∂z

]
λdλ−

− ρn−ρl cos(ϕl−ϕn)
r

ρl−ρn cos(ϕl−ϕn)
r

∫∞
0

[
2J1(λr)λ

r − J0 (λr) λ2
] [

ve11 + ∂v31
∂z

]
λdλ;

w1
ζ,ϕ = −k2ζ sin (ϕl − ϕn)

∫∞
0 J0 (λr) ve11λdλ + sin(ϕl−ϕn)

r
∫∞
0 J1 (λr) λ

[
ve11 + ∂v31

∂z

]
λdλ

− ρn−ρl cos(ϕl−ϕn)
r

ρn sin(ϕl−ϕn)
r

∫∞
0

[
2J1(λr)λ

r − J0 (λr) λ2
] [

ve11 + ∂v31
∂z

]
λdλ;

w1
ζ,z = ρ0 − ρ cos (ϕl − ϕn)

r

∞∫

0

J1 (λr) λ

[
∂ve11
∂z

+ v31λ
2

]
λdλ;

w2
ζ,ρ = k2ζ sin (ϕl − ϕn)

∫∞
0 J0 (λr) ve11λdλ − sin(ϕl−ϕn)

r
∫∞
0 J1 (λr) λ

[
ve11 + ∂v31

∂z

]
λdλ

+ ρl sin(ϕl−ϕn)
r

ρl−ρn cos(ϕl−ϕn)
r

∫∞
0

[
2J1(λr)λ

r − J0 (λr) λ2
] [

ve11 + ∂v31
∂z

]
λdλ;

w2
ζ,ϕ = k2ζ cos (ϕl − ϕn)

∫∞
0 J0 (λr) ve11λdλ − cos(ϕl−ϕn )

r

∫∞
0 J1 (λr) λ

[
ve11 + ∂v31

∂z

]
λdλ−

+ ρl sin(ϕl−ϕn)
r

ρn sin(ϕl−ϕn )
r

∫∞
0

[
2J1(λr)λ

r − J0 (λr) λ2
] [

ve11 + ∂v31
∂z

]
λdλ;

(4.17)

w2
ζ,z = −ρl sin (ϕl − ϕn)

r

∞∫

0

J1 (λr) λ

[
∂ve11
∂z

+ v31λ
2

]
λdλ

w3
ζ,ρ = −ρl − ρn cos (ϕl − ϕn)

r

∞∫

0

J1 (λr) λ
∂vh11
∂z

λdλ
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w3
ζ,ϕ = −ρl − ρn sin (ϕl − ϕn)

r

∞∫

0

J1 (λr) λ
∂vh11
∂z

λdλ,

w3
ζ,z =

∞∫

0

J0 (λr) vh11λ
2λdλ

and

v1ζ,ρ = sin (ϕl − ϕn)
∫∞
0 J0 (λr) ∂ve11

∂z λdλ + sin(ϕl−ϕn)

r

∫∞
0 J1 (λr) λv31λdλ−

− ρn−ρl sin(ϕl−ϕn)

r
ρn sin(ϕl−ϕn)

r

∫∞
0

[
2J1(λr)λ

r − J0 (λr) λ2
]
v31λdλ

v1ζ,ϕ = cos (ϕl − ϕn)
∫∞
0 J0 (λr) ∂ve11

∂z λdλ + cos(ϕl−ϕn)

r

∫∞
0 J1 (λr) λv31λdλ+

+ ρn−ρl cos(ϕl−ϕn)

r
ρl−ρn cos(ϕl−ϕn)

r

∫∞
0

[
2J1(λr)λ

r − J0 (λr) λ2
]
v31λdλ

v1ζ,z = ρl
sin (ϕl − ϕn)

r

∞∫

0

J1 (λr) λve11λdλ

v2ζ,ρ = − cos (ϕl − ϕn)
∫∞
0 J0 (λr) ∂ve11

∂z λdλ − cos(ϕl−ϕn)

r

∫∞
0 J1 (λr) λv31λdλ+

+ ρl sin(ϕl−ϕn)

r
ρn sin(ϕl−ϕn)

r

∫∞
0

[
2J1(λr)λ

r − J0 (λr) λ2
]
v31λdλ

(4.18)
v2ζ,ϕ = sin (ϕl − ϕn)

∫∞
0 J0 (λr) ∂ve11

∂z λdλ + sin(ϕl−ϕn)

r

∫∞
0 J1 (λr) λv31λdλ−

− ρl sin(ϕl−ϕn)

r
ρl−ρn cos(ϕl−ϕn)

r

∫∞
0

[
2J1(λr)λ

r − J0 (λr) λ2
]
v31λdλ

v2ζ,z = ρn − ρl cos (ϕl − ϕn)

r

∞∫

0

J1 (λr) λve11λdλ,

v3ζ,ρ = −ρn sin (ϕl − ϕn)

r

∞∫

0

J1 (λr) λvh11λdλ

v3ζ,ϕ = −ρ − ρ0 cos (ϕl − ϕn)

r

∞∫

0

J1 (λr) λvh11λdλ, v3ζ,z = 0

We emphasize that we removed the singular part from the first and last lines of the
spectral functions ve,h11 representation (4.6). Next we would like to consider the eval-
uation of the GT components (4.5). There are two possible singularities associated
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with the first line in (4.6)

exp {−η0 |z − z0|}
η0

+ Ae,h
11 (λ) · exp {−η0(z + z0)}

η0
, z0 > 0, z ≥ 0, .

under λ = k0. The first singularity corresponds to the GT of the ambient space and it
can be represented in clear analytic form. The other one is associated with the second
term, which can be evaluated in the following way:

1. extract the vicinity of the singularity λ = k0 and consider the integral I (δ) =
k0+δ∫

k0−δ

F(λ)dλ√
λ2−k20

. The latter integral can be estimated as I (δ) ≈
√

2δ
k0
F(k0), δ → 0.

2. for the residual of the Sommerfeld integral in the infinite domain we compute
using double-exponential code [35] that enables to evaluate the integral with
any desired accuracy degree. When this accuracy has been assigned as ε one can
estimate the δ value so that I (δ) ≤ ε. We prefer not use the integral path transition
to a complex plane because DS coordinates Mn can be complex valued. DSM can
also be applied to analyze light scattering by a particle located at a stratified
medium (see for example [36]).

The matrix elements related to the internal field representation (4.11) look similar to
(4.16) where

w1
ζ,ρ = k2ζ cos (ϕl − ϕn) X

0
ζ − kζ

cos (ϕl − ϕn)

r
X1

ζ

− ρn − ρl cos (ϕl − ϕn)

r

ρl − ρn cos (ϕl − ϕn)

r
X2

ζ ;

w1
ζ,ϕ = −k2ζ sin (ϕl − ϕn) X

0
ζ + kζ

sin (ϕl − ϕn)

r
X1

ζ

− k2ζ
ρn − ρl cos (ϕl − ϕn)

r

sin (ϕl − ϕn)

r
X2

ζ ;

w1
ζ,z = −k2ζ

ρn − ρl cos (ϕl − ϕn)

r

zl − zn
r

X2
ζ ;

w2
ζ,ρ = k2ζ sin (ϕl − ϕn) X

0
ζ − kζ

sin (ϕl − ϕn)

r
X1

ζ

+ k2ζ
ρl − ρn cos (ϕl − ϕn)

r

sin (ϕl − ϕn)

r
ρl X

2
ζ ;

w2
ζ,ϕ = k2ζ cos (ϕl − ϕn) X

0
ζ − kζ

cos (ϕl − ϕn)

r
X1

ζ + k2ζ

(
sin (ϕl − ϕn)

r

)2

ρlρn X
2
ζ ;

(4.19)
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w2
ζ,z = k2ζ

sin (ϕl − ϕn)

r

zl − zn
r

ρl X
2
ζ ;

w3
ζ,ρ = k2ζ

ρl − ρn cos (ϕl − ϕn)

r

zl − zn
r

X2
ζ ;

w3
ζ,ϕ = k2ζ

sin (ϕl − ϕn)

r

zl − zn
r

ρn X
2
ζ ;

w3
ζ,z = k2ζ X

0
ζ − kζ

1

r
X1

ζ + k2ζ

(
zl − zn

r

)2

X2
ζ ;

and
v1ζ,ρ = −kζ

zl − zn
r

sin(ϕl − ϕn)X
1
ζ ;

v1ζ,ϕ = −kζ

zl − zn
r

cos(ϕl − ϕn)X
1
ζ ;

v1ζ,z = kζ

sin (ϕl − ϕn)

r
ρl X

1
ζ ;

v2ζ,ρ = kζ

zl − zn
r

cos(ϕl − ϕn)X
1
ζ ;

v2ζ,ϕ = −kζ

zl − zn
r

sin(ϕl − ϕn)X
1
ζ ; (4.20)

v2ζ,z = kζ

ρn − ρl cos (ϕl − ϕn)

r
X1

ζ ;

v3ζ,ρ = −kζ

sin (ϕl − ϕn)

r
ρn X

1
ζ ;

v3ζ,ϕ = kζ

ρl − ρn cos (ϕl − ϕn)

r
X1

ζ ;

v3ζ,z = 0.

where ζ = i, M1
n = (ρn, ϕn, zn) ∈ S1.

The singular part of thematrix elements related to the scattered field representation
(4.9) can written in the same manner as (4.19) and (4.20) assuming that Xm

ζ =
kζ

j h
(2)
m (kζ RQlMn ), ζ = 0, 1, Mn ∈ S0 are used.

The main differences between the present numerical scheme and the one used for
the axial-symmetric case [7] consist in following:
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1. The approximate solution (4.9), (4.11) does not depend on the polarization of the
external excitation and can be directly applied for all available polarizations at
once.

2. The numerical scheme enables rotation of the incident plane by varying ϕ0.
3. The representation for the scattered field (4.9) contains dipolesDSonly in contrast

to the axial-symmetric scheme which involves multipoles as well. This circum-
stance makes the computation of Sommerfeld integrals (4.5) much easier, less
time consuming and more accurate.

To compute the scatteredfield intensity,we need the corresponding far field pattern
F(θ, ϕ) [12]. In the case under consideration, the far field pattern is determined only
in the upper half space D0 as

E(r)
/ ∣∣E0(z = 0)

∣∣ = exp{− jk0r}
r

F(θ, ϕ) + O(1/r2), r = |M | → ∞, z > 0.

(4.21)
The far field pattern in the frame of the DSM is obtained using the asymptotic
representations of the Sommerfeld integrals as described in [27, 37]. Then, the (θ, ϕ)-
components of the scattering diagram, can be written in the following form

Fθ (θ0, θ;ϕ, ϕ0) = jk
Ne∑

n=1

{p0n1 fθ1 + p0n2 fθ2 − p0n3 fθ3}

Fϕ(θ0, θ;ϕ, ϕ0) = jk
Ne∑

n=1

{−p0n1 fϕ1 + p0n2 fϕ2} (4.22)

where

fθ1 = {ψ+δ0ζ + [v̄11(θ) + v̄31(θ) sin2 θ ] · ψ−} cos θ cos(ϕ − ϕn)

fθ2 = {ψ+δ0ζ + [v̄11(θ) + v̄31(θ) sin2 θ ] · ψ−} cos θ sin(ϕ − ϕn);

fθ3 = {ψ+δ0ζ + v̄33(θ) · ψ−} sin θ (4.23)

fϕ1 = {ψ+δ0ζ + v̄11(θ) · ψ−} sin(ϕ − ϕn);

fϕ2 = {ψ+δ0ζ + v̄11(θ) · ψ−} cos(ϕ − ϕn)

Here (ρn, ϕn, zn) are cylindrical coordinates of Mn ∈ S0, δ0ζ - Kronecker delta ζ =
0, 1, ψ± and spectral functions accept the following expressions

ψ+ = exp{ik0(ρn sin θ cos(ϕ − ϕn) + zn cos θ)};
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ψ− =
[
exp{ jk0(ρn sin θ cos(ϕ − ϕn) − zn cos θ)}, zn ≥ 0
exp{ jk0(ρn sin θ cos(ϕ − ϕn) + znκ(θ))}, zn < 0

v11(θ) =
[

μ1 cos θ−μ0κ(θ)

μ1 cos θ+μ0κ(θ)
, zn ≥ 0

2μ0 cos θ

μ1 cos θ+μ0κ(θ)
, zn < 0

, v33(θ) =
[

ε1 cos θ−ε0κ(θ)

ε1 cos θ+ε0κ(θ)
, zn ≥ 0

2ε0 cos θ
ε1 cos θ+ε0κ(θ)

, zn < 0
, (4.24)

v31(θ) = 2(μ1ε1 − μ0ε0)

(μ1 cos θ + μ0κ(θ)) · (ε1 cos θ + ε0κ(θ))
, κ(θ) =

√
ε1 − sin2 θ.

Thus, the components of far field pattern do not contain any integrals. After determin-

ing of the unknownDS amplitudes
{
{p0nm}N0

n=1

} 3

m=1
the scattering characteristics are

obtained by computing finite linear combinations of elementary functions (4.23)–
(4.24). As a result, we can analyze all scattering characteristics in detail, such as the
Differential Scattering Cross-Section (DSC)

DSC(θ0, θ;ϕ, ϕ0) = |Fθ (θ0, θ;ϕ, ϕ0)|2 + ∣∣Fϕ(θ0, θ;ϕ, ϕ0)
∣∣2 (4.25)

where FP,S
θ,ϕ (θ0, θ, ϕ) are the corresponding components of the scattering diagram

(4.22), or the Total Scattering Cross-Section (TSC), i.e., the intensity of the scattered
field integrated over a given solid angle Ω (response):

σ(θ0;ϕ0) =
∫

Ω

DSC (θ0, θ;ϕ, ϕ0) dω, (4.26)

Via the definition of far field pattern (4.21), the unit of DSC and TSC is µm2.
In our case we will use Ω = {89◦ ≥ θ ≥ 0◦; 360◦ ≥ ϕ ≥ 0◦} which belongs to the
upper unit hemi-sphere.

Summarising, the computation scheme of the non-axial symmetric version of the
DSM can be described as consisting of the following steps:

1. Estimation of the numbers of matching points L distributed over the whole scat-
tering surface ∂Di accounting for the value of the exciting wavelength λ, corre-
sponding to the surface area of the particle and the particle refractive index;

2. The number of DS needed for the internal Ni and external fields N0 depends on
the refractive indices of the particle and the substrate, their numbers should follow
the rule 3(N0 + Ni ) ≤ 4L;

3. Complete matrix Φ: (4.13) computation and extension of the matrix by applying
regularization in the l2sense and adding an associating regularization parameter
adjusted to the errors of Sommerfeld integrals evaluation;

4. Extended matrix factorization using the QR algorithm;
5. Computing the corresponding right hand parts according to (4.14) and evaluation

of the pseudo solution for all the incident planes 0 ÷ ϕ0, incident angles 0 ÷
θ0 and both polarizations P/S simultaneously after the matrix QR resolution was
determined;
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6. Determination of the DS amplitudes for the all incident planes, angles and both
polarizations.

7. For some particular incidence, checking the relative surface residual at the testing
points distributed over the whole particle surface ∂Di employing transmission
conditions (4.4).

8. Computation of the scattering characteristics required: DSC (4.25) and TSC
(4.26).

4.4 Simulation Results

The verification of the non-axial symmetric version of the DSM computer model
has been performed in [38]. In all our computations the relative surface residual
corresponding to (4.4) did not exceed 0.6% in mean square norm with respect to the
incident field and the convergence test showed that this is enough to guarantee two
valid digits of the computed DSC.

Similar to [38] we consider a P/S-polarized plane wave of wavelength λ = 196nm
as an external excitation. For this wavelength, the corresponding refractive index of
Si substrate was chosen equal to n1 = 1.004 − 2.14 j [39]. For simulation of the line
bump and line pit we choose a prolate spheroid as a fictitious particle which has larger
axis a = 120nm parallel to the 0x axis and its aspect ratio is a/b = 4. This fictitious
spheroid was embedded into the substrate with a depth of 15nm. So the length of the
feature was 120nm, width 30nm and height 15nm. To simulate scattering different
kinds of the line features we vary the corresponding selecting refractive index of the
substrate for the bump and air refractive index for the pit.

The behavior of P/S-polarized TSC: (4.26) - σ P,S(θ0, ϕ0) versus the incident
angle θ0 in two incident planes ϕ0 = 90◦; 180◦ are depicted in Fig. 4.1 for the line
bump and in Fig. 4.2 for the line pit. At the same figure the TSC corresponding to a

Fig. 4.1 TSC: -
σ P,S(θ0, ϕ0): (4.26) for the
line bump versus incident
angle θ0 in two incident
planes ϕ0 = 90◦; 180◦.
Results for PSL sphere D =
35nm, P-polarized excitation
are shown as well
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Fig. 4.2 Similar results:
σ P,S(θ0, ϕ0) versus θ0 for
the line pit

Fig. 4.3 σ P,S(θ0, ϕ0) versus
incident plane ϕ0 for the line
bump under oblique
incidence θ0 = 50◦. σ P for
PSL D = 35nm is depicted
as a level of defects visibility

Polystyrene Latex (PSL) sphere (ni = 1.62) of diameter D = 35nm is shown. This
PSL sphere diameter corresponds to the limit of resolution ability of some surface
scanners was are used for substrate examination [40]. We remind that the larger
axis of the spheroid belongs to the plane ϕ0 = 180◦ and that the ϕ0 = 90◦ plane is
perpendicular to the larger axis. The behavior of the curves in Fig. 4.1 demonstrates
that almost all TSCs decrease versus the incident angle except σ P(θ0, 180◦) for a
line bump which increases. Nevertheless the TSCs for the line bump exceed the PSL
TSC in the whole range of incident angles. Similar style of the TSCs corresponding
to the line pit can be observed in Fig. 4.2. But in contrast to Fig. 4.1 all curves drop
down versus the incident angle. Besides some TSCs for the line pit exceed the TSC
for PSL only at the incidence behind 30◦.

Figure4.3 demonstrates TSCs for the line bump under the incident angle θ0 = 50◦
versus the incident plane ϕ0 variation from 90◦ to 180◦. As it is clear that the integral
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Fig. 4.4 Similar results:
σ P,S(θ0, ϕ0) versus ϕ0 for
the line pit

Fig. 4.5 σ P,S(θ0, ϕ0) versus
incident plane ϕ0 for a line
bump under small angle of
incidence θ0 = 10◦. σ P for
PSL D = 35nm is depicted
as a level of defects visibility

responses both for P and S-polarized light surpass the response for the PSL sphere in
the whole range of the incident planes. Similar results are depicted in Fig. 4.4 for the
line pit. In contrast to the line bump for line pit P-polarized response decreases versus
the incident plane while S-polarized increases. Besides the most parts of the integral
responses for P/S polarized excitation corresponding to the incident directions are
less then the responses for the PSL particle. The latter means that it is possible tomiss
a line pit defect during the substrate examination via the optical scanner employing
[40].

In Figs. 4.5 and 4.6 one can see the results for σ P,S(θ0, ϕ0) versus the incident
plane corresponding to an incident angle θ0 = 10◦. If for the line bump the TSCs
exceed the integral response for PSL in the whole range of incidences for the line
pit the situation it is just the opposite. The PSL response is much higher than the
response for the line pit.
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Fig. 4.6 Similar results:
σ P,S(θ0, ϕ0) versus ϕ0 for
the line pit

4.5 Conclusion

A new fictitious particle concept has been realized based on the Discrete Sources
Method (DSM) to analyze polarized light scattering by line features on a plane
substrate. We demonstrated that this extension enables to calculate light scattering
by nano-dimensional line defects. This approach makes it possible to perform a
comparative analysis of the scattering properties of a line bump, a line pit and standard
PSLparticles. TheTotal ScatteringCross-Section versus incident angle and incidence
plane of exciting field have been examined and discussed. It was found that the total
scattering intensity can be changed by an order of magnitude depending on the
orientation of the linear defects with respect to the plane of external excitation.

Acknowledgements Wegratefully acknowledge funding of this research byDeutsche Forschungs-
gemeinschaft (DFG) and Russian Foundation for Basic Research (RFBR).
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Chapter 5
Convergent Fields Generated by
Divergent Currents in the Method of
Auxiliary Sources

George Fikioris and Nikolaos L. Tsitsas

Abstract A very simple scattering problem is considered, together with its solution
obtained via the Method of Auxiliary Sources (MAS). We show that it is possible to
concurrently have divergence of the auxiliary currents together with convergence of
the scattered field generated by these divergent currents. The divergence manifests
itself as rapid, unphysical oscillations in the auxiliary currents. It is stressed that the
oscillations are not due to effects such as roundoff, matrix ill-conditioning, or to
the well-studied phenomenon of internal resonances. We arrive at our conclusions
using a number of means including asymptotic methods and a thorough discussion
of the singularities of the analytic continuation of the scattered field. We also make a
detailed comparison to corresponding discretizations of the Extended Integral Equa-
tion (EIE), in which similar phenomena do not occur. Analogies to superdirectivity
and extensions to more complicated geometries are pointed out.

5.1 Introduction

Dealing theoretically with an electromagnetic or light-scattering problem is today
often a routine task. With an abundance of numerical techniques to choose from,
solving a problem frequently reduces simply to a choice between numerical methods,
or between computer codes that implement themethods. As a consequence, it is usual
to forget or ignore fundamental aspects of the numerical technique we use.

This chapter is an overview of the recent works [1–9]. It discusses a certain
difficulty—whichweconsider fundamental andoftenoverlookedormisunderstood—
within certain types of Generalized Multipole Techniques (GMT). While intrinsic
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to these techniques, the difficulty is nonetheless subtle because, even when it does
occur, we can frequently obtain correct final results.

For definiteness, we discuss the difficulty within theMethod of Auxiliary Sources
(MAS). MAS is, in its simplest version, a particular implementation of GMT where
we first seek electric currents that lie on a closed auxiliary surface within an impene-
trable scatterer. These currents (we will call them “MAS currents”) are such that the
proper boundary conditions are satisfied. TheMAS currents are intermediate results:
after we find them (typically as the solution of an N × N linear algebraic system,
where N is the number of MAS currents), we subsequently determine the field they
generate. This field (“MAS field”) is the MAS approximation to the true scattered
field, and is usually the quantity we finally desire.

The difficulty to be discussed is easily visualized through example: Figs. 5.1 and
5.2 show the MAS currents and MAS field obtained for a certain two-dimensional
scattering problem. The N = 60 MAS currents are numbered consecutively as
we move around the auxiliary surface, and the abscissa in Fig. 5.1 is the index �

(� = 0, 1, . . . , N − 1) of the MAS current I� (the real and imaginary part of this cur-
rent appears as the ordinate of the figure). In Fig. 5.2, the abscissa is the azimuthal
observation angle φobs . More details (a description of the particular scattering prob-
lem and of the specific way we implemented the MAS, problem dimensions, oper-
ating frequency, etc.) will be given later (in Sects. 5.2 and 5.3).

TheMAS field shown in Fig. 5.2 is smooth and, one might suspect, free of serious
difficulties. In fact, a comparison with the true scattered field shows excellent agree-
ment: at least at the scale of the figure, the two fields coincide. Thus, the results in
Fig. 5.2 are correct. In stark contrast, the MAS currents in Fig. 5.1 (more precisely,
their real parts in the top Fig. 5.1) are certainly problematic, as they exhibit rapid
and abnormal oscillations. Amplitudes vary rapidly across the figure; larger ampli-
tudes occur at the figure’s leftmost and rightmost parts; and there, adjacent currents
alternate in sign.

How can such oscillating currents generate a field pattern as smooth as the one
in Fig. 5.2? One might be reminded of antenna superdirectivity (whether in the
microwave [10] or optical [11] frequency domain)—is this analogy useful? If yes,
how do the well-known pitfalls of superdirectivity carry over to the MAS? More
generally, under what conditions do MAS currents exhibit oscillations like those in
Fig. 5.1? Larger values of N are generally associated with solution convergence1; the
field values in Fig. 5.2 have already converged, but what happens to the top Fig. 5.1
if we increase N? Do we get less rapid oscillations? What happens if we use better
software and hardware? In particular, what is the effect of using longer computer
wordlength? The phenomenon of internal resonances has been well-studied in the
literature (see, e.g., [12])—are the oscillations in Fig. 5.1 an effect due to an internal
resonance? Are the oscillations related to the usual difficulties that arise when we
discretize Fredholm integral equations of the first kind (see e.g. [13, 14] and Chap.15
of [15])? Finally, why is the difficulty (i.e., the oscillations in Fig. 5.1) important in

1The value N = 60 in Figs. 5.1 and 5.2 roughly amounts to 46 points per wavelength on the auxiliary
surface.
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Fig. 5.1 Real (a) and
imaginary (b) parts of the
normalized MAS currents
N I�/(2πρaux) as functions
of the index �
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the first place?—after all, the final results (i.e., the field values in Fig. 5.2) are correct
despite the oscillations of their generating currents.

These are the main questions investigated in this chapter. For the most part, we
address the questions using tools of asymptotic analysis. Specifically, we pick an
exactly solvable scattering problem that is simple enough for us to develop an asymp-
totic formula ((5.33) below) for the oscillating currents. The mere existence of such a
formula already answers one of the questions we posed: Since the oscillations can be
predicted by asymptotic methods, they cannot be due to short computer wordlength
nor, in particular, to roundoff error.

Our scattering problem’s simplicity further enables us to analytically demonstrate
that the large-N limit of the MAS field is the true scattered field. Therefore, the
aforementioned correctness of the MAS field of Fig. 5.2 cannot be coincidental. And
(at least for our simple scattering problem) theMAS field will remain correct even in
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Fig. 5.2 Real (a) and
imaginary (b) parts of the
MAS field EMAS as
functions of φobs
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cases where the oscillations are stronger and more rapid. As we will elaborate below
(and as already suggested by the analogy with superdirectivity), obtaining MAS
fields from yet-more-rapidly-oscillating MAS currents is a process that becomes
increasingly susceptible to roundoff; this underscores the importance of showing
convergence analytically.

The scattering problemwe consider is simple, and this does present disadvantages;
one might prefer to understand the oscillations and their consequences in the context
of a real-life problem he or she is actually trying to solve. However, our main goal is
to pinpoint and comprehend a difficulty. Choosing a simple problem as a means of
doing so is advantageous for at least three reasons: First, a difficulty occurring in a
simple problem—especially one that is not perplexed by shape-elongation effects—
must also occur in more complicated ones. Second, a thorough study of a simple
case can always help us understand more complicated ones—this is especially true
here, where the difficulty we are interested in is clouded by the undesired effect of
roundoff. Third, our simple problem enables an analytical comparison of MAS to
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certain discretizations of the Extended Integral Equation (EIE): as we will see, these
discretizations do not present the aforementioned difficulties. Thismarked difference
helps us better understand both MAS and the EIE.

A pioneering work, in Russian, that noted an analogy between MAS and superdi-
rectivity appeared in 1981 [16]. Relations between [16] and our own work [6] have
been recently discussed in [17]. Another work, also in Russian, that recently came
to our attention is [18]; this important 1995 work discusses some relevant topics
within the context of acoustics, with emphasis on the acoustic analogue of what we
call the “continuous version of MAS” (Sect. 5.3.3). Apart from [16, 18], the first
detailed discussions of the phenomena examined in this chapter are, to the best of
our knowledge, the 2006 and 2007works [1, 2], which are the first of the papers [1–9]
overviewed in this chapter. Certain independent discussions can also be found in the
2008 work [19]. In this overview, we especially stress that the oscillations described
herein are not related to roundoff, nor to internal resonances—and we do so using a
number of different viewpoints, the comparison with the EIE being one. That is to
say, oscillations, roundoff, and internal resonances are three separate effects, and it
is easy to confuse them. Furthermore, it is also natural to try to avoid oscillations
and to focus on cases where oscillations do not occur. These are, perhaps, the main
reasons why such oscillations and their consequences are frequently not mentioned
in the MAS-related literature.

5.2 Description of the Scattering Problem and Exact
Solution

Our simple scattering problem is depicted in Fig. 5.3. An infinitely long (along the z-
axis), perfect electric conducting (PEC) circular cylinder of radius ρcyl is illuminated
by an external electric current filament I that lies on the x-axis. Let (ρcyl, φcyl) and
(ρobs, φobs) denote the polar coordinates of a point on the PEC surface and of the
observation point, respectively. The polar coordinates of the source are (ρfil, 0) with
ρfil > ρcyl. The PEC cylinder is located in free-space, characterized by dielectric
permittivity ε0 and magnetic permeability μ0.

In the sequel, we will use the notation RA,B to denote the distance from the point
(ρA, φA) to the point (ρB, φB); for example

Rfil,cyl =
√

ρ2
fil + ρ2

cyl − 2ρfilρcyl cosφcyl.

The electric field is z-directed, E = ẑEz , and the exact solution outside the PEC
cylinder is (assuming an e−iωt time dependence, withω being the angular frequency)
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Fig. 5.3 Geometrical configuration of the three regions of the scattering problem

Ez = H0(kRobs,fil) −
∞∑

n=−∞

Jn(kρcyl)Hn(kρfil)

Hn(kρcyl)
Hn(kρobs) e

inφobs , ρobs > ρcyl,

(5.1)

where Jn and Hn ≡ H (1)
n denote, respectively, the cylindrical Bessel and first kind

Hankel functions of (integer) order n, while k = ω/c = ω
√

ε0μ0 is the free-space

wavenumber. In the right-hand side of (5.1), we have omitted the overall factor− k2 I
4ωε0

,
which is unimportant for our purposes; we do this to be consistent with [1]. In the
RHS of (5.1), the first term is the incident field. The second term is the scattered field
and is expressed as a Fourier series whose terms satisfy the wave equation (in the
cylindrical coordinate system (ρobs, φobs, z)), as well as the outgoing-wave condition.

By using the addition theorem

H0

(√
x21 + x22 − 2x1x2 cos θ

)
=

∞∑
n=−∞

Jn (min{x1, x2}) Hn (max{x1, x2}) einθ ,

(5.2)
(where x1 > 0, x2 > 0, θ real), (5.1) takes the form

Ez =
∞∑

n=−∞
Hn(kρfil)

Jn(kρobs)Hn(kρcyl) − Jn(kρcyl)Hn(kρobs)

Hn(kρcyl)
einφobs , ρobs < ρfil,

(5.3)
from which it is readily verified that the total field Ez vanishes on the PEC surface,
i.e. for ρobs = ρcyl.
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The derivative of Ez with respect to ρobs is

∂Ez

∂ρobs
= ∂

∂ρobs
H0(kRobs,fil) −

∞∑
n=−∞

Jn(kρcyl)Hn(kρfil)

Hn(kρcyl)

∂

∂ρobs
Hn(kρobs) e

inφobs

(5.4)
and, by Faraday’s law, is proportional to Hφ , the φ-component of the magnetic field.
By differentiating (5.3) and using the familiar Wronskian relation (see e.g. (10.5.2)
of [20]), we get, for (ρobs, φobs) = (ρcyl, φcyl),

∂Ez

∂ρobs
= − 2i

πρcyl

∞∑
n=−∞

Hn(kρfil)

Hn(kρcyl)
einφcyl , (ρobs, φobs) = (ρcyl, φcyl), (5.5)

which is proportional to the z-directed surface current density on the exterior surface
of the PEC cylinder.

Convergence of the exact scattered field series in (5.1) can be examined by using
the well-known, large-|n| asymptotic approximations of Jn and Hn [20]

Jn(x) = (−1)n J−n(x) ∼ 1√
2πn

(ex
2n

)n
, n → +∞, (5.6)

Hn(x) = (−1)nH−n(x) ∼ −i

√
2

πn

( ex
2n

)−n
, n → +∞. (5.7)

For large |n|, it follows that the nth term of this series behaves like

1

n

(
ρcri

ρobs

)|n|
ei |n|φobs ,

with the distance ρcri defined by

ρcri = ρ2
cyl

ρfil
. (5.8)

This critical radius ρcri is smaller than the radius ρcyl of the PEC cylinder.
The nth term of the series in the RHS of (5.1) thus behaves like the nth term of

the Taylor series for ln(1 + x) (see e.g. (4.6.1) of [20]), a series which converges
for |x | < 1 and diverges for |x | > 1. Therefore, the series in (5.1) converges for all
ρobs > ρcri, and diverges for all ρobs < ρcri; this is a well-known result found e.g. in
[21–23].

By using (5.6) and (5.7), aswell as the corresponding large-|n| asymptotic approx-
imations of the derivatives of the Bessel and Hankel functions, we conclude that the
nth term of the scattered electric field’s derivative series in (5.4) behaves like
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Fig. 5.4 Locations of the
primary filamentary source
(grey bullet), the auxiliary
sources (black bullets) and
the collocation points (white
bullets) for N = 8

(
ρcri

ρobs

)|n|
ei |n|φobs ,

i.e. like a geometric series. Therefore, this series also converges when ρobs > ρcri,
and diverges when ρobs < ρcri.

The series solution (5.1), originally found for points ρobs > ρcyl (Region 3 of
Fig. 5.3), is thus also convergent and meaningful inside the PEC surface, until the
critical radius (ρobs > ρcri). We have thus extended our solution (5.1) to Region 2 of
Fig. 5.3. Since we found that the derivative (5.4) of (5.1) is also well-defined until the
critical radius, the extended solution is in fact the analytic continuation (with respect
to the single complex variable ρobs) of the original solution.

5.3 Application of the MAS to the Scattering Problem

5.3.1 MAS Currents and Their Large-N Limit

In this section, we apply the MAS to the scattering problem of Sect. 5.2. Our N
auxiliary sources are discrete electric current filaments that lie on a fictitious auxil-
iary surface of radius ρaux in the interior of the PEC cylinder (i.e. 0 < ρaux < ρcyl).
Filament #� is located at (ρaux,

2π�
N ); thus, the N sources are equispaced, see Fig. 5.4.

The symbol I� will denote the current on filament #� (� = 0, . . . , N − 1). The quan-
tities I0, I1, . . . , IN−1 will be referred to asMAS currents and will be determined by
approximately satisfying the PEC boundary condition as described below.
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The distance between the �thMAS current and the observation point is denoted by

R�,obs =
√

ρ2
aux + ρ2

obs − 2ρauxρobs cos

(
φobs − 2π�

N

)
, � = 0, 1, . . . , N − 1,

(5.9)
while the total electric field (adopting the same normalization as in the previous
section) is

EN
z = H0(kRfil,obs) +

N−1∑
�=0

I� H0(kR�,obs), (5.10)

where the summation in the RHS is the scattered field that has been written as a sum
over the N MAS currents. The superscript on EN

z emphasizes the N -dependence of
the quantity in (5.10), which is theMAS field.

Next, we take N equispaced collocation points on the PEC cylinder, with collo-
cation point #p located at (ρcyl,

2πp
N ); see Fig. 5.4. By enforcing the PEC boundary

condition EN
z = 0 for (ρobs, φobs) = (ρcyl,

2πp
N ), (5.10) gives

N−1∑
�=0

H0(kbp,�)I� = −H0(kdp), p = 0, 1, . . . , N − 1, (5.11)

where

bp,� = b�,p =
√

ρ2
aux + ρ2

cyl − 2ρauxρcyl cos
2π(p − �)

N
(5.12)

is the distance between auxiliary filament � and collocation point p, and

dp =
√

ρ2
fil + ρ2

cyl − 2ρfilρcyl cos
2πp

N
(5.13)

is the distance between primary filament I and collocation point p.
Equation (5.11) constitutes a N × N system of linear algebraic equations with

unknowns the MAS currents I�. These currents can be directly determined via stan-
dard linear-equation solvers. Still,weproceed to give a secondmethod for the solution
of (5.11); this will enable us to investigate MAS currents and fields analytically and,
also, to have an independent method of solution that can help detect effects due to
roundoff.

Specifically, the matrix in (5.11) is circulant due to bp,� = b0,�−p and b0,�+qN =
b0,�, q ∈ Z and hence the system (5.11) can be solved in closed form using the
Discrete Fourier Transform (DFT). The relevant procedure and formulas are given
in detail in Appendix B of [1] (see also [24–26]), where the solution is found to be

I� =
N−1∑
m=0

I (m)ei2π�m/N , � = 0, 1, . . . , N − 1, (5.14)
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where the DFT I (m) of I� is given by

I (m) = 1

N

D(m)

B(N−m)
, m = 0, 1, . . . , N − 1, (5.15)

with

B(m) = 1

N

N−1∑
�=0

H0(kb0,�)e
−i2π�m/N , (5.16)

and

D(m) = − 1

N

N−1∑
p=0

H0(kdp)e
−i2πpm/N , (5.17)

being the DFT’s of the first row of the system’s matrix and the RHS vector, respec-
tively.

By substituting (5.12) and (5.13) into (5.16) and (5.17), applying the addition
theorem (5.2) to the Hankel functions, and interchanging the order of summation,
we obtain

B(m) =
∞∑

q=−∞
JqN+m(kρaux)HqN+m(kρcyl), (5.18)

D(m) = −
∞∑

q=−∞
JqN+m(kρcyl)HqN+m(kρfil). (5.19)

It follows that D(m) = D(N−m) and B(m) = B(N−m), so that (5.15) implies

I (m) = I (N−m) = 1

N

D(m)

B(m)
. (5.20)

In the sequel we assume for simplicity that N is odd, so that (5.14) takes the form

I� = I (0) + 2
(N−1)/2∑
m=1

I (m) cos

(
2π�m

N

)
, � = 0, 1, . . . , N − 1. (5.21)

Equations (5.14) and (5.21) are exact. Now,we determine the asymptotic behavior
of I�, given by (5.21), in the limit N → ∞; in this limit, the discrete MAS currents
become a surface current density J s

limit(φaux). For φaux = 2π�/N , J s
limit(φaux) equals

the limit of the ratio of theMAS current I� to the arc-length distance between adjacent
currents, i.e.

J s
limit(φaux) = lim

N→∞
N I�

2πρaux
. (5.22)
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The quantities N I�
2πρaux

(� = 0, 1, . . . , N − 1) will be referred to as normalized MAS
currents.

By using (5.6) and (5.7) and taking into account the fact that 0 ≤ m ≤ (N − 1)/2
in the RHS of (5.21), in the limit N → ∞, only the q = 0 term in each sum (5.18)
and (5.19) needs to be retained, and hence (5.20) gives the asymptotic relation

I (m) ∼ − 1

N

Jm(kρcyl)Hm(kρfil)

Jm(kρaux)Hm(kρcyl)
, m = 0, 1, . . . ,

N − 1

2
(N → ∞). (5.23)

By combining (5.21) and (5.23), we find that the limit of (5.22) is the following
series,

J slimit(φaux) = − 1

2πρaux

[
J0(kρcyl)H0(kρfil)

J0(kρaux)H0(kρcyl)
+ 2

∞∑
m=1

Jm(kρcyl)Hm(kρfil)

Jm(kρaux)Hm(kρcyl)
cos(mφaux)

]
.

(5.24)
Using (5.6) and (5.7), it is easy to see that J s

limit(φaux)

Case 1 exists when the discrete sources lie within Region 2 of Fig. 5.3 (ρcri <

ρaux < ρcyl)
Case 2 diverges when the discrete sources lie within Region 1 (ρaux < ρcri).

The aforementioned convergence/divergence is consistent with Theorem 2.4
(p. 79) of [27], which holds for general geometries.

Besides being divergent in Case 2, the series in (5.24) is also meaningless in
another case, when Jm(kρaux) = 0 for some integerm. These discrete values of kρaux

correspond to the internal resonances of the auxiliary surfaces, and we will return to
them shortly.

5.3.2 Large-N Limit of MAS Field

We now determine the large-N behavior of the MAS field that we defined in (5.10).
For this purpose, we use the DFT relation [1]

I (m) = 1

N

N−1∑
�=0

I�e
−i2π�m/N , (5.25)

which is the inverse of (5.21). Applying (5.2) to the secondHankel function in (5.10),
interchanging the order of summation, and introducing I (n) through (5.25) we obtain

EN
z = H0(kRfil,obs) + N

∞∑
n=−∞

I (n) Jn(kρaux)Hn(kρobs)e
inφobs (ρobs > ρaux).

(5.26)
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Equation (5.26) is exact. We now determine its asymptotic behavior as N → ∞,
irrespective of whether ρaux < ρcri or not. For this purpose, we replace all the I (n) in
(5.26) by their large-N forms in (5.23). Then, the factor Jn(kρaux) cancels out, and
the result is

EN
z ∼ H0(kRfil,obs) −

∞∑
n=−∞

Jn(kρcyl)Hn(kρfil)

Hn(kρcyl)
Hn(kρobs)e

inφobs (N → ∞),

(5.27)
which is precisely (5.1).

As discussed in Sect. 5.2, the series in (5.27) converges when ρobs > ρcri, and
diverges when ρobs < ρcri. Our findings in this section can be conveniently summa-
rized as follows:

Case 1 (ρcri < ρaux < ρcyl): We have found the expected result that the limit as
N → ∞ of the MAS field is the true field (5.1) outside the PEC cylinder (ρobs >

ρcyl), and its analytic continuation between the auxiliary surface and the PEC
cylinder (ρaux < ρobs < ρcyl).

Case 2 (ρaux < ρcri): If the MAS currents are placed within Region 1 of Fig. 5.3
(ρaux < ρcri), then the limit of the MAS field

Case 2.1 exists and is the true field, in Region 3 of Fig. 5.3 (ρobs > ρcyl)
Case 2.2 exists and is the analytic continuation of the true field, in Region 2 of

Fig. 5.3 (ρcri < ρobs < ρcyl)
Case 2.3 does not exist, in the portion of Region 1 exterior to the auxil-

iary sources (ρaux < ρobs < ρcri). (Only in this case does the series in (5.27)
diverge.)

For Case 2, we found in Sect. 5.3.1 that the limit of the normalized MAS currents
does not exist. Case 2.1 thus shows that it is possible, in the limit, to obtain the true
electric field without having the normalized MAS currents converge to a surface
current density. The explicit, analytical demonstration of this phenomenon is one
of the central themes of this chapter. It explains why the numerically-obtained field
values of Fig. 2 are the correct ones.

It is well known that fields behave smoothly away from their sources, so it may
seem peculiar that the “field” in Case 2 behaves abruptly across the critical surface,
i.e. during the transition fromCase 2.2 toCase 2.3, asρobs crosses the threshold atρ =
ρcri. But this “field” is not a field produced by a current; it is merely a mathematical
limit, as N → ∞, of the field of N sources. There is no reason for this “field” to
obey Maxwell’s equations. For any finite N (however large), the field is a true field
satisfying Maxwell’s equations and does not behave abruptly.



5 Convergent Fields Generated by Divergent Currents … 105

5.3.3 Continuous Version of MAS

It is not hard to see that the system of linear equations (5.11) coincides with a certain
discretization of the following Fredholm integral equation

∫ π

−π

H0(kRaux,cyl)J
s(φaux)dφaux = − 1

ρaux
H0(kRfil,cyl), −π < φcyl < π. (5.28)

This discretization is, specifically, Nyström’s method with the trapezoidal rule for
quadrature (see e.g. Sect. 12.2 of [15]). In other words, (5.11) can be viewed as a
result of applying the following procedure to the integral equation (5.28): (i) choose
quadrature points φaux located at integer multiples of 2π/N ; (ii) approximate the
integral on the left-hand side (LHS) of (5.28) by the composite rectangular rule
[28] (which, because the integrand is periodic, coincides with the composite trape-
zoidal rule [28]); and then (iii) satisfy the resulting equation at the previously used
quadrature points (i.e., at points φcyl = 2πp/N , p = 0, 1, . . . , N − 1). A similar
observation is made in p. 95 of [29].

The physical meaning of (5.28) is obvious: It is an integral equation whose
unknown is an electric surface current density J s(φaux), located at ρ = ρaux, that
is required to exactly satisfy the boundary condition at ρ = ρcyl. In this sense, (5.28)
implements what we call the “continuous version of MAS,” and will be referred to
as the Continuous MAS Integral Equation (CMASIE).

It is shown in [1] (see also [18]) that we can formally solve (5.28) explicitly using
Fourier series, and that the solution is

J s(φaux) = − 1

2πρaux

∞∑
m=−∞

Jm(kρcyl)Hm(kρfil)

Jm(kρaux)Hm(kρcyl)
eimφaux . (5.29)

This formal solution coincides with (5.24). It follows that, when ρcri < ρaux < ρcyl,
the CMASIE is solvable. It also follows that, in Case 1 of Sect. 5.3.1, the large-N limit
of the currents in the discrete version of MAS is the correct one. This correctness
was to be expected, as it simply states that Nyström’s method converges.

We can now further comprehend the exceptional case Jm(kρaux) = 0: It is natural
that Jm(kρaux) appears in the denominators of (5.29) and (5.24), because the cor-
responding continuous surface current density J s(φaux) = eimφaux is non-radiating
[30–32]. In other words, the field external to the density J s(φaux) = eimφaux is iden-
tically zero.

Viewing (5.11) as a discretization of the CMASIE (5.28) is useful for yet another
reason: (5.28) is a first-kind integral equation, and such integral equations are ill-
posed [13–15]. Therefore, any discretization of the CMASIE will be plagued by
ill-conditioning and will be highly susceptible to effects such as roundoff. This is
increasingly true as ρaux decreases, because the kernel of the CMASIE becomes
smoother.
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5.3.4 More on the Nonsolvable Case; Oscillations, Roundoff,
and Internal Resonances

In the case of magnetostatics and Laplace’s equation, it is well known that the scatter-
ing problem can be solved exactly bymeans of an image located at (ρ, φ) = (ρcri, 0),
where ρcri is the critical distance given in (5.8) (for the corresponding electrostatic
problem see [33]). Therefore, the position of the image is a singularity of the analytic
continuation of the solution to the Laplace problem. It is alsowell-known [19, 34, 35]
that the singularities for the Laplace case coincide with those of the Helmholtz case
(but in the latter case, the singularity has no meaning as the position of an image).

The above assertions allow us to shed more light on Case 2 of Sects. 5.3.1 and
5.3.2, in which ρaux < ρcri. Exterior fields due to smooth surface current densities are
analytic functions of the space variables, so that no smooth surface current density
can produce a field that exhibits a singularity at a point exterior to this current
density, something that also holds for smooth noncircular shapes. Consequently, a
smooth current density located at ρ = ρaux < ρcri cannot cause the singularity at
(ρ, φ) = (ρcri, 0). It follows that, in Case 2, no smooth current can produce the
desired field. This is why, in Case 2, there is no solution to the CMASIE (5.28); it is
also why the discrete currents of Sect. 5.3.1 have no large-N limit.

Since the discrete currents cannot converge, they must behave in an unphysical
and abrupt manner when N is large. This a priori reasoning is consistent with the
oscillations shown in Fig. 5.1.

The correctness of the field, demonstrated in Sect. 5.3.2, already strongly indicates
that the oscillations of Fig. 5.1 are not due to roundoff. As discussed in Sect. 5.3.3,
however, roundoff error is generally a very important effect. Can the oscillations in
Fig. 1 be due to roundoff and/or matrix ill-conditioning? We also solved the system
using (5.14)–(5.17), which form a completely independent method. As it turned out,
those results coincide (at least at the scale of the figure) with the ones in Fig. 1. This
provides a very strong indication that the oscillations are not due to roundoff/matrix
ill-conditioning: solving ill-conditioned systems with independent solvers generally
produces different results.

Are the oscillations in Fig. 5.1 associated with internal resonances? Clearly, the
answer is no: As is well-known, and as we saw in Sects. 5.3.1 and 5.3.2, the phe-
nomenon of internal resonances occurs at discrete values of ρaux or, equivalently, at
discrete frequencies. This is different from the phenomenon of oscillations, which
occurs for all ρaux < ρcri. In terms of the formal Fourier-series solution in (5.29),
internal resonances occur when a single term in the series becomes infinite. By con-
trast, oscillations occur when the series for the continuous auxiliary source diverges
because of the rapid growth of its terms (for large values of the summation indexm).
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5.3.5 Asymptotic Formula for the Oscillating MAS Currents

We now provide yet further—and, in our opinion, conclusive—evidence that the
oscillations are not due to roundoff, by providing a large-N asymptotic formula for
the oscillating values. In addition to

N >> 1, (5.30)

and the nonsolvability condition

ρaux < ρcri, (5.31)

we further assume

kρcyl = O(1), kρfil = O(1), kρaux = O(1). (5.32)

Subject to the above conditions, in Appendix D of [2], the following asymptotic
formula is derived (for even N )

I� ∼ I

N
(−1)�+1t N/2 t + 1

t − 1
D� (5.33)

where
t = ρcri

ρaux
(t > 1), (5.34)

while

D� = (t − 1)2

t2 − 2t cos( 2π�
N ) + 1

(5.35)

is a correction factor in the sense that it equals 1 when � = 0 and decreases mono-
tonically away from 1 when � grows. For the validity of (5.33) it is required [2] that
t is not very close to 1, and that � is not too large. A similar equation to (5.33) can
also be derived for odd N [2]. In the asymptotic formula (5.33), it is worth pointing
out that the various radii do not appear separately, but only through the ratio t .

Equation (5.33) reveals a number of properties of the oscillating values: TheMAS
current I0 (which is the MAS current closest to the original filament I ) is real and,
because of the factor t N/2, exponentially large in N . Because of the factor (−1)�+1,
adjacent currents have different signs. The correction factor D�, which is real, is the
envelope of the oscillating values. There is less tapering when t grows, so that the
oscillations spread around as one moves the auxiliary source closer to the origin and
away from the critical radius ρcri (for the related details see Fig. 7 of [2]).

Good agreement is observed when the asymptotic formula (5.33) is compared
to results obtained by directly applying the MAS, that is by solving the N × N
system (5.11). For example, for the parameter values N = 70, kρcyl = 2.1, kρfil = 3,
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kρaux = 1.3 (which give kρcri = 1.47 and t 	 1.131) the error between Re{I�/I } and
(5.33) is 3.2% when � = 0, and 19% when � = 7. Also, errors generally decrease
with increasing N , e.g. the error for � = 7 decreases to 15% when N is increased
from 70 to 100.

Such good agreement occurs in the absence of roundoff errors. A separate asymp-
totic formula, that we will not give here, has been derived for the matrix condition
number [36]; that formula shows that condition numbers also grow exponentially
with N . Therefore, roundoff error will quickly become dominant (for example, if
one increases N , leaving the other parameters fixed), and will mask the true behavior
of theMAS currents. The true behavior, by contrast, is well-predicted by the formula
(5.33). The distinction is important because effects due to roundoff are hardware and
software dependent, and can possibly be overcome by using more powerful com-
puters and algorithms, e.g., longer computer wordlengths and better system-solving
routines. By contrast, the discussed oscillations can never be avoided in this manner.

5.3.6 Analogies with Superdirectivity

In the context of antenna arrays, superdirectivity is typically accomplished by small
inter-element spacings and large oscillating currents [10]. Thus, there are obvious par-
allels between the oscillations discussed herein and themore familiar phenomenon of
array superdirectivity. Reference [6] (see also [17]) goes beyond this, performing an
asymptotic study that focuses on similarities between the corresponding near fields.
In both cases, this field decays rapidly within a small distance from the oscillating
sources. Furthermore, the great importance of roundoff to MAS is analogous to the
high sensitivity (e.g., to mechanical tolerances) of superdirective arrays.

Whenwe applyMAS,we are attempting to obtain the field scattered by the perfect
conductor by using a current-carrying region (the auxiliary surface) that is smaller
in size than the actual scatterer. This, also, is true of superdirective antennas, where
one attempts to obtain a field produced by a “normal” antenna by using an antenna
that is smaller in size.

5.4 Comparisons with the Extended Integral Equation
(EIE)

Our previous discussions concern nonsolvability of the CMASIE (5.28) and the
ensuing oscillations in solutions of the system (5.11), which is a discretized version
of the CMASIE. In the present section, we perform a detailed comparison to the so-
called Extended Integral Equation (EIE) and its corresponding discretized version.
In the EIE, the unknown is the actual surface current on the PEC; this unknown
is required to cancel the incident field on an auxiliary surface inside the PEC. By
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contrast, the unknown of the CMASIE is an auxiliary surface current inside the PEC,
required to cancel the incident field on the PEC. In other words, both the EIE and
the CMASIE use two surfaces (namely, the PEC surface and an auxiliary surface),
but interchange the roles of the two.

Because of this similarity, one might surmise that the EIE gives rise to oscillations
like those in Fig. 5.1. In this section, for the simple scattering problem of Sect. 5.2,
we demonstrate analytically that this is not true. In particular, we show irrespective
of the auxiliary surface’s position that the EIE is a solvable equation and that, when
normalized, the solution to the discrete version of the EIE converges, as N → ∞, to
the correct solution. Therefore, any oscillations that do occur when discretizing the
EIE are likely to be caused by matrix ill-conditioning, an effect magnifying errors
that would normally be negligible.

The EIE implements the well-known Extended Boundary Condition (EBC): For
external illumination of closed and smooth PEC scatterers, the familiar boundary
condition requires a total tangential electric field that is zero on the PEC surface.
The EBC requires cancellation in this surface’s interior. The EIE (also called null-
field integral equation) amounts to satisfying the EBC in a proper closed interior
auxiliary surface [37–40]. The EIE is the first step of many techniques including (i)
the Null-Field Method (NFM) [37–42], (also known as the T-matrix method [43]
or the Extended Boundary Condition Method [44, 45]; see also the review papers
[46, 47]), (ii) the Dual-Surface Integral Equations Method (DSIEM) [48], (iii) the
CombinedHelmholtz Integral Equation Formulation (CHIEF) [49], and (iv) theNull-
Field Method with Discrete Sources (NFM-DS) [29, 50].

5.4.1 Solvability of the EIE

We consider the same scattering problem with Sect. 5.2. The exact surface current
Js = Jsz ẑ on the PEC surface ρ = ρcyl is given by the convergent series

Jsz(φcyl) = − I

2πρcyl

+∞∑
n=−∞

Hn(kρfil)

Hn(kρcyl)
einφcyl . (5.36)

In order to be consistent with the notations and conventions of [4] (and, also [3]),
here and throughout Sect. 5.4, we have restored the multiplicative factor omitted in
(5.5).

At an observation point (ρobs, φobs), the total field is written as the incident plus
the scattered fields according to

Ez(ρobs, φobs) = − k2

4ωε0

⎡
⎣I H0(kRfil,obs) + ρcyl

π∫

−π

H0(kRcyl,obs)Jsz(φcyl)dφcyl

⎤
⎦

(5.37)
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TheEIE results heuristically from (5.37) by demanding that Ez = 0 for (ρobs, φobs) =
(ρaux, φaux), where ρaux < ρcyl. It is

π∫

−π

H0(kRcyl,aux)Jsz(φcyl)dφcyl = − I

ρcyl
H0(kRfil,aux), −π < φaux < π. (5.38)

For the special case of our simple scattering problem, (5.38) is the 2-D analogue
of the integral equation due to Waterman [37], who seems to first have used the
term “extended integral equation” (see also the discussion in [39]). A more rigorous
statement and derivation of the EIE can be found in [39, 41]. Note that the EIE
(5.38) is very similar to the CMASIE (5.28); in particular, the two equations have
the same kernel H0(kRcyl,aux). (Recall that the missing factor I in the RHS of (5.28)
is due to the different notation employed in Sect. 5.3.) Since Rcyl,aux 
= 0, the kernel
H0(kRcyl,aux) is analytic and defines a compact integral operator [15].

We can solve the EIE explicitly just as before (see Appendix A of [1]): By the
addition theorem, the Fourier series of the right-hand side (RHS) and the kernel are,
respectively,

− I

ρcyl
H0(kRfil,aux) = − I

ρcyl

+∞∑
n=−∞

Jn(kρaux)Hn(kρfil)e
inφaux , (5.39)

H0(kRcyl,aux) =
+∞∑

n=−∞
Jn(kρaux)Hn(kρcyl)e

in(φcyl−φaux). (5.40)

The Fourier coefficients of the solution to (5.38) are proportional to the ratio of the
Fourier coefficients in (5.39) and (5.40). Thus, the factors Jn(kρaux) cancel and the
solution is

Jsz(φcyl) = − I

2πρcyl

+∞∑
n=−∞

Hn(kρfil)

Hn(kρcyl)
einφcyl . (5.41)

Hence, the EIE (5.38) is solvable irrespective of the position of the auxiliary surface,
and its solution (5.41) equals the true surface current (5.36). Using ρcyl < ρfil and
(5.7), it is easy to show that Jsz(φcyl) belongs to L2[−π, π ]. Thus, Picard’s criterion
[15]—which is a necessary and sufficient condition for L2-solvability—must be
satisfied for the EIE (5.38), and this can indeed be verified directly (see Sect. IV of
[3]).

By contrast, the CMASIE (5.28) is nonsolvable when ρaux is smaller than the crit-
ical value ρcri = ρ2

cyl/ρfil because the series (5.29), corresponding to (5.41), diverges
when ρaux < ρcri (but converges otherwise). To be more precise, when ρaux < ρcri

Picard’s criterion is not satisfied (see Sect. IV of [3]), meaning that there is no L2-
solution.

Another important difference between the solution (5.29) of the CMASIE and
(5.41) is that (5.41) is well defined for all values of kρaux (as opposed to (5.41),
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(5.29), as discussed previously, is not well-defined at the eigenvalues of the interior
problem). This indicates that (5.41) is the unique solution of (5.38). A rigorous
discussion of unique solvability of the null-field equations—which stem from the
EIE—can be found in [39, 41].

5.4.2 Discretization of the EIE

We discretize the EIE (5.38) just as we discretized the CMASIE (Sect. 5.3.3), by
applying Nyström’s method with quadrature points (ρaux, 2πp/N ), and with the
composite trapezoidal rule for quadrature. In this way, we obtain the linear system

N−1∑
�=0

I�H0(kbp,�) = −I H0(kdp), p = 0, . . . , N − 1, (5.42)

where bp,� is the distance between (ρcyl, 2π�/N ) and (ρaux, 2πp/N ), dp is the dis-
tance between (ρfil, 0) and (ρaux, 2πp/N ), and I� = 2πρcyl Jsz(2π�/N )/N . Equation
(5.42) is identical to (5.11) except for the definition of dp. We can also arrive at (5.42)
independently of the EIE (5.38), by defining the unknowns I� as N discrete currents
on the PEC surface that must exactly cancel the incident field at the N auxiliary
points.

In view of the solvability of (5.38), it is natural to expect Nyström’s method to
converge.We can verify this by exploiting the fact that thematrix in (5.42) is circulant
and, as in Sect. 5.3.1, solving (5.42) using the DFT. We get (for odd N )

I�
I

= I (0) + 2
(N−1)/2∑
m=1

I (m) cos

(
2π�m

N

)
, � = 0, . . . , N − 1, (5.43)

where

I (m) = 1

N

D(m)

B(m)
(5.44)

B(m) = Jm(kρaux)Hm(kρcyl) +
( −1∑
n=−∞

+
∞∑
n=1

)
JnN+m(kρaux)HnN+m(kρcyl)

(5.45)

D(m) = −Jm(kρaux)Hm(kρfil) −
( −1∑
n=−∞

+
∞∑
n=1

)
JnN+m(kρaux)HnN+m(kρfil)

(5.46)
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The terms for n = 0 are independent ofN and have been written separately. Using
(5.6) and (5.7) we see that the nth term in the second series in (5.45) is of the order
of (ρaux/ρcyl)

nN/(nN ) for large n. Since ρaux < ρcyl, this behaves like the nth term
of the uniformly convergent Taylor series for ln(1 + x) (|x | < 1). We can thus find
the limit of the series as N → ∞ term-by-term, and the limit is zero. Similarly, the
limit of the other three series in (5.45) and (5.46) is also zero. Consequently, in the
large-N limit, we keep only the n = 0 (separate) terms in (5.45) and (5.46), and thus
(5.44) reduces to

I (m) ∼ − 1

N

Hm(kρfil)

Hm(kρcyl)
(N → ∞), (5.47)

which is independent of ρaux. By (5.43) and (5.47), the limit

lim
N→∞

N I�
2πρcyl

(
φcyl = 2π�

N

)
(5.48)

exists irrespective of the position of the auxiliary surface and equals the Jsz(φcyl) in
(5.41). Hence, the discretization method converges. This implies that—as opposed
to MAS—there are no oscillations.

5.4.3 Analytic Continuation of the Scattered Field

For the CMASIE to be solvable and for the MAS solution to be oscillation-free, the
auxiliary surface must enclose the singularity of the analytic continuation of the scat-
tered field (i.e., (ρ, φ) = (ρcri, 0) in the cylindrical problem). A similar restriction
must also hold for more complicated scattering problems. By contrast, our discus-
sions of the EIE brought out no restrictions of this type. Thus, the singularity of the
analytic continuation, while important for MAS, is not relevant to the EIE. This is
logical, as the analytic continuation of Ez (Ez is the total exterior field) does not
vanish in the interior–if it did, it would vanish everywhere [39].

Nonetheless, issues of this sort have raised controversy in recent publications [51–
56]. In particular, A.G. Kyurkchan writes, “the surface where null field condition is
set has to include the set of singularities of analytical continuation of the wave field
into non-physical area” [53]. The opposite point of view can be found in works
by Yu.A. Eremin, A.G. Sveshnikov, and S.P. Skobelev, who in [55] (see also [54])
write, “The equivalence of the NFM to the original diffraction problem has been
unquestionable for a long time,” and “an internal surface can be chosen arbitrarily,
provided that it is nonresonant.” Here, NFMmeans null-field method. In this section,
we provide a detailed explanation [4] (see also [8]) to why the analytic continuation
is irrelevant to the EIE for the cylindrical problem. Our explanation focuses on
differences between (i) the analytic continuation of the interior field due to Jsz(φcyl);
and (ii) the exterior field due to Jsz(φcyl).

We specifically show that the incident field (which is well-defined in the interior)
is not cancelled by the analytic continuation of Es

z , i.e., the analytic continuation of
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B = −k2ρcyl

4ωε0

π∫

−π

H0(kRcyl,obs)Jsz(φcyl)dφcyl (ρobs > ρcyl) (5.49)

to points (ρobs, φobs) with ρobs < ρcyl. Rather, it is cancelled by the interior field due
to Jsz(φcyl), which is

A = −k2ρcyl

4ωε0

π∫

−π

H0(kRcyl,obs)Jsz(φcyl)dφcyl (ρcyl > ρobs). (5.50)

We accomplish this by explicitly calculating A and B (whose definitions appear
very similar) and showing that they are indeed different: To find B, we use the
addition theorem

H0(kRcyl,obs) =
+∞∑

n=−∞
Jn(kρcyl)Hn(kρobs)e

in(φobs−φcyl) (ρobs > ρcyl), (5.51)

in (5.49), interchange the orders of integration and summation, and introduce the
Fourier-series coefficients of Jsz(φcyl) from (5.41) to get, for ρobs > ρcyl,

B = k2 I

4ωε0

+∞∑
n=−∞

Jn(kρcyl)Hn(kρobs)
Hn(kρfil)

Hn(kρcyl)
einφobs . (5.52)

The latter series is convergent, not only when ρobs > ρcyl, but in the extended
region ρobs > ρcri. Moreover, the series for the derivative ∂B/∂ρobs also converges
in ρobs > ρcri. Hence, the series in (5.52) is analytic and can be used to define the
analytic continuation of Es

z to the interior, at least when ρcri < ρobs < ρcyl.
On the other hand, to find A we use the addition theorem

H0(kRcyl,obs) =
+∞∑

n=−∞
Jn(kρobs)Hn(kρcyl)e

in(φobs−φcyl) (ρcyl > ρobs) (5.53)

in order to finally obtain

A = k2 I

4ωε0

+∞∑
n=−∞

Jn(kρobs)Hn(kρfil)e
inφobs . (5.54)
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Clearly, A differs from B.2 Furthermore, use of the addition theorem and com-
parison with the first term in the RHS of (5.37) shows that A is minus the incident
field, just as expected.

We have thus explained that, from the point of view of solvability and oscillations,
the analytic continuation of the scattered field is not relevant to the EIE. This is true,
at least, for our simple scattering problem.

5.4.4 More on the Effects of Roundoff; Relevance to More
Complicated Problems

As we have seen, oscillations such as those arising in the MAS do not occur in EIE
(at least for the “sufficiently simple” problem we have examined). Hence, any oscil-
lations appearing in EIE solutions are probably due to matrix ill-conditioning, which
can greatly amplify errors due to both software and hardware. For EIE solutions, the
cause of such errors is finite computer wordlength and imperfect special-function
computation. The fact that effects such as roundoff can result in oscillations that
resemble the MAS-type ones has been pointed out in the context of wire-antenna
integral equations [3, 57], where matrix condition numbers increase exponentially
withmatrix size, as they do in our problem (see Sect. 5.3.5). Further instances of first-
kindFredholm integral equations that are solvable and that haveoscillatingdiscretiza-
tions can be found in [58–61]. For Hermitian kernels (the kernel of CMASIE/EIE
is non-Hermitian), the solution can be written as a series involving eigenvalues and
eigenfunctions, and this leads to the following observation [61]: “Changes in the
eigenvalues due to rounding and truncation errors can radically alter the coefficients
of the higher eigenfunctions and cause characteristic spurious oscillations in numer-
ical results.” With the aid of Picard’s theorem [15], the above observation can be
extended to other compact operators. As it turns out, for the simple cylindrical prob-
lem, the high-order singular functions are highly oscillatory (see also [3]).

Since oscillations appearing in the solutions of the EIE can be similar in their
form to the MAS-type ones, it is important to distinguish the origin of the oscilla-
tions and not to confuse the two different types. To this end, we performed careful
numerical experiments (for details, see [4]) for an elliptical 2-D PEC scatterer illu-
minated by a plane wave. It was found that the real and imaginary parts of the
numerically-obtained normalized currents I�/I (solved via a standard Matlab rou-
tine that explicitly computes matrix inverses) indeed present oscillations with respect
to source index � (see Fig. 2 of [4]). These oscillations resemble the MAS-type ones
of Fig. 5.1a. However, we verified that these EIE oscillations are of a very different
nature. We did this by using a better system solver, namely the Matlab Gaussian-
elimination routine. For this routine the curves of I�/I barely present oscillations at

2They are equal, however, in the limit ρobs → ρcyl. This is apparent from (5.52) and (5.54), and
explained by the continuity of the electric field across the surface current density Jsz(φcyl) at
ρ = ρcyl.



5 Convergent Fields Generated by Divergent Currents … 115

the scale of the aforementioned figure. Hence, at least in this case, the oscillations
are due to the original solver, which magnifies finite-computer-wordlength errors
and imperfections in special-function calculations. In other words, in conjunction
with the original solver the discretization method satisfactorily converges, and gives
correct results, before the occurrence of noticeable oscillations. However, extensive
experiments with larger values of N resulted in larger condition numbers and more
serious oscillations; such problems eventually appear even when the original solver
is used.

In cases more complicated than the simple one discussed herein, it may be hard
to correct the problematic results. Still, understanding why they occur is of impor-
tance: it may eventually help one correct, or make one certain that using better
hardware/software cannot lead to correction (as is the case with the MAS-type oscil-
lations). Besides computing condition numbers, one should check whether the oscil-
lations depend on the particular hardware and software. For example, if changing
the system-solving and quadrature routines leads to the same results, then one can
deduce that the oscillations are probably similar in nature to those in MAS. But if the
results differ (without necessarily becoming better), then EIE-type effects are surely
present.

5.5 Selected Conclusions; Additional Remarks

In this concluding section, we do not attempt to summarize all our findings onMAS-
type oscillations. Rather, we selectively emphasize certain results that are expected to
carry over to more complicated problems. We then explain, in detail, whyMAS-type
oscillations should generally be avoided.

1. It is expected that MAS-type oscillations will occur in more complicated prob-
lems, e.g., noncircular or non-PEC scatterers. This has already been demonstrated
for a dielectric circular cylindrical scatterer in [5] and a PEC 2-D scatterer of ellip-
tical shape in [2].

2. For sufficiently smooth 2-D PEC scatterers, oscillations in the MAS currents will
occur if the auxiliary surface does not enclose all singularities of the scattered
field’s analytic continuation.

3. When oscillations do occur, they increase sharply in magnitude when the number
N of auxiliary sources increases.

4. In the oscillating case, and for sufficiently smooth geometries, the true field is
still obtained despite the auxiliary-current oscillations.

Why should oscillations, in general, be avoided? If we were not to assume 4, this
would be a trivial question.But even in problems inwhich 4 is true (so that the currents
are intermediate results, not useful for applications), it ismisguided—at least for large
N—to believe that oscillations do not matter. As stressed by Higham [62], the design
of stable algorithms involves: (i) avoiding subtractions of quantities contaminated
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by error; (ii) minimizing the size (in comparison to the finally-desired solution) of
intermediary results; and (iii) looking for formulations that aremathematically but not
numerically equivalent. Higham also suggests looking at the numbers generated by
the computer (a commonpractice during thefirst generation of electronic computing).

Since the scattered electric field is expected to be small while (at least some of) the
intermediate quantities I� are very large, subtractive cancellation is bound to occur.
And because the I� have arisen by solving a highly ill-conditioned system, they are
sensitive to roundoff and highly likely to be corrupted by error. Increasing N will
cause a great increase in both I� and the matrix condition number. As a result, the
computed electric field will deteriorate rapidly as N increases.

It is thus desirable to follow Higham’s third guideline and to enclose all singu-
larities. In complicated practical problems, however, the singularities are difficult to
determine beforehand (but for some work toward this end, see [12, 21, 63]). When
this is the case, looking at the generated numbers is probably the best we can do. In
particular, we should scrutinize the I�—experimenting, when possible, with N and
the shape of the auxiliary surface.

Since we analyzed a difficulty that is generally to be avoided, this chapter has
an outlook that is, to some extent, negative. Although negative scientific results in
general are often useful [64], one might be led to think that all results in this chapter
are negative. This, however, is not true. In fact, our result that is most worthy of
further exploration undoubtedly has a positive twist. This result is the MAS field’s
convergence (in spite of the MAS currents’ divergence and oscillations). Here, we
are specifically referring to the convergence of the field obtained via the solutions I�
of the system (5.11), which implements what we called the discrete version of MAS
and which has a straightforward and widely used extension to more complicated
geometries.

The aforementioned MAS-field convergence occurs, at least, in the circular
geometries discussed herein.Does it occur inmore general ones? If yes, forwhat class
of noncircular geometries? Is it possible to analytically demonstrate MAS-field con-
vergence (regardless of the divergence or convergence of the auxiliary I�) for some
practically interesting class of scatterers? This would be a very interestingmathemat-
ical and theoretical finding and would have positive consequences for applications.
Here, we are not only referring to “one-shot” applications of the MAS (where one
does not or cannot experiment with the shape and size of the auxiliary surface); more
generally, such a finding would allow us to view oscillations in MAS currents as a
drawbackwhich does not automatically invalidate aMAS solution. Rather, wewould
balance this drawback against possible benefits associated with the particular MAS
solution. It is even plausible to find MAS solutions, with not-too-rapidly-oscillating
MAS currents, in which some instability due to oscillations is outweighed by advan-
tages such as a rapidity of convergence. The potential benefit of such solutions can
be viewed as an analogue to practical superdirective antennas (whose difficulties are
mild enough to be outweighed by advantages such as increased directivity).
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Chapter 6
MMP Simulation of Plasmonic Particles
on Substrate Under E-Beam Illumination

Ueli Koch, Jens Niegemann, Christian Hafner and Juerg Leuthold

Abstract Anovel numerical approach to investigate the resonance behavior of plas-
monic particles on a substrate under e-beam illumination is presented. The method
is based on the Multiple Multipole Program (MMP), a generalized point matching
technique, and is augmented by the ability to compute layered media and electron
energy loss spectroscopy (EELS) measurements. Furthermore, the whole framework
is complemented by a mesh-based method that automatically places the multipole
expansions and matching points for arbitrary three-dimensional geometries. The
performance of our technique is analyzed by a series of numerical experiments. The
EELS responses of a plasmonic split-ring resonator in free space and a plasmonic
disk dimer on a membrane, as well as the resonant modes, are simulated. Finally, our
implementation is compared to the established discontinuous Galerkin time domain
(DGTD) method with respect to its computational efficiency. We show significantly
improved performance especially for the computation of EELS resonance maps.
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6.1 Introduction

With the progress in nanofabrication over the past decades, metallic nanostructures
with feature sizes well below 100nm can today be produced routinely and reliably.
This ability to structure metals on the nanoscale was instrumental in enabling the
field of plasmonics, where the interaction between light and such tailored metallic
nanostructures is studied and exploited for a variety of applications (e.g., see [1] and
references therein). Despite the tremendous progress in the field, plasmonic nanos-
tructures still present a significant challenge for both experimental and numerical
characterization. Since the size of the particles is often well below the diffraction
limit, one typically has to rely on electron microscopy to image the structures under
investigation. A particularly interesting technique in this regard is to employ scan-
ning transmission electron microscopy (STEM) in conjunction with electron energy
loss spectroscopy (EELS) [2]. In this approach, fast electrons are passing nearby or
through the plasmonic structure. Due to their local electric field, the electrons can
excite plasmonic modes of the system and therefore lose a corresponding amount
of kinetic energy. By performing spectroscopy on the transmitted electrons, one can
therefore locally measure the excitation spectrum of the plasmonic structure. By
raster-scanning over the sample, one can obtain EELS maps, showing such a spec-
trum at every point in a plane. One advantage of EELS over optical spectroscopy lies
in its much better spatial resolution which is not limited by the diffraction of light.
In addition, EELS allows to excite resonances that are optically dark due to their
vanishing electric dipole moments.

In order to better understand experimental measurements and to properly inter-
pret the EELS results, reliable EELS simulations play an important role. Tradition-
ally, either the Finite Element Method (FEM) [3] or the Boundary Element Method
(BEM) [4] were used to model EELS experiments. More recently, other numerical
methods such as the Discrete Dipole Approximation (DDA) [5] and the Discontin-
uous Galerkin Time-Domain (DGTD) [6] approach were also shown to be suitable
methods.

Since the computation of EELSmaps requires a large number of calculations with
identical geometry but different excitations (electron beams at different positions),
numerical methods with multiple right-hand-sides features (multiple excitations) are
favorable. The Multiple Multipole Program (MMP) [7, 8] supported multiple right-
hand-sides already in early implementations. The latest implementation of MMP
contained in the OpenMaXwell package [9] contains many additional advanced fea-
tures for modeling and efficiently solving 2D and 3D electrodynamic problems,
including eigenvalue problems (computation of resonators and of guided waves) and
scattering problems in presence of strongly dispersive materials such as metals at
optical frequencies. MMP provides built-in error estimates and a fast convergence if
the interfaces of all objects are sufficiently smooth. As a consequence, MMP is very
attractive for plasmonics and for EELS simulations in particular.

In the following, we will describe how to perform realistic EELS simulations with
MMP. To this end, we first propose a novel method to automatically place the mul-



6 MMP Simulation of Plasmonic Particles … 123

tipole expansions and matching points for arbitrary three-dimensional geometries.
Since the dielectric properties of the substrate strongly influence the measurements,
we also give details of how to properly handle substrates and stratified media in the
MMP context. Finally, we provide the explicit expressions to include a relativistic
electron beam as a source of excitation. To demonstrate the efficiency of our novel
MMP approach, we perform a series of numerical experiments and compare the
performance of our implementation to the established DGTD method.

6.2 Generic MMP Simulation

Although MMP is a flexible and powerful method for electromagnetic simulations,
it also has some disadvantages. Probably the biggest inconveniences are the manual
selection and placement of expansions and matching points. Even for an experienced
user, this step can be time consuming when modeling complex three-dimensional
geometries. To mitigate this problem, we have developed a novel generic approach
which places the expansions and matching points automatically. Similarly to the
classical boundary element method, it is based on a surface mesh. In the following,
we will focus on triangular meshes, but our method is readily extended to any kind
of surface discretization.

For a given mesh, we first compute the center cE and the outward pointing normal
vector nE of each surface element E . Then, we place our expansions e at a distance
d both inwards and outwards from the center, so the positions are

re,in = cE + dnE , (6.1a)

re,out = cE − dnE . (6.1b)

The distance d still remains to be defined. A first idea would be to choose d based on
the area of the respective element. However, we found that this approach can lead to
poor conditioning and therefore reduces the robustness of our method. Instead, we
employ an even simpler choice for d, namely a constant for the entire mesh. As we
will demonstrate in Sect. 6.5.2.4, a distance of approximately 90% of the minimal
curvature radius of the geometry usually produces good results while still remaining
numerically stable.

In a second step, the matching points and their weights need to generated. For
this, an idea from the finite element method is adapted. Since the error is distributed
over the entire surface, it makes sense to use a two-dimensional quadrature rule on
the surface elements. Generally, any order of quadrature rule could be chosen, but
we found that only a second order rule provides a good balance between accuracy
and computational effort (see Sect. 6.5.2.2). The locations of the matching points
are exactly on the quadrature nodes. The corresponding weights for all boundary
conditions of a single matching point (m) are then given by wm = √

AEwquad, where
AE and wquad are the element area and the quadrature weight, respectively.
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Expansions for Free Space
Expansions for Sphere
Matching Points on Sphere

Fig. 6.1 Surface mesh with curvilinear elements generated by Netgen [10] and the generated
distribution of the expansions and matching points for a floating sphere

With this simple procedure, the user only needs to provide a surface mesh and a
distance parameter d instead of spending a lot of time on the three-dimensionalMMP
modeling. To illustrate this generic process, we model a basic sphere. The surface
mesh and the resulting distribution of expansions and matching points are shown in
Fig. 6.1.We shouldmention that a sphere could probably bemodeledmore efficiently
by manually placing higher order spherical expansions in the center. However, for
more complex geometries the placement is usually not as obvious and a manual
placement becomes time-consuming and inefficient.

6.3 Dipoles in Layered Media

Thegeneric approach, presented in the previous section, allows us to efficientlymodel
complex three-dimensional geometries with MMP. However, it does not make sense
to also use this method to discretize infinitely extended structures such as substrates
or membranes. We therefore need an alternative way to incorporate the effect of a
substrate into our calculations. At this point, the flexibility of MMP with respect
to the expansions comes into play. Instead of using standard dipoles (or higher-
order multipoles), we can also employ layered dipoles which directly incorporate
the effect of the substrate into the basis functions. The electromagnetic fields caused
by dipoles in stratified media are a well-studied subject [11–13]. We took advantage
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of this knowledge and implemented the layered dipole expansion in MMP [14]
which saves us from explicitly discretizing the boundaries of layers and therefore
reduces the memory requirements and the computational cost significantly. Since the
computation of such a layered dipole expansion is fairly involved, we now present
the most important steps in more detail.

6.3.1 Layered Media

In general, we follow the procedure and notation used in [11, Chap. 2] with some
minor deviations. The basic idea consists of writing the field as an infinite superpo-
sition of plane waves,

E = E0e
ik·r , (6.2a)

H = H0e
ik·r , (6.2b)

where k = (
kx , ky, kz

)T
is the wave vector. Due to the continuity of the tangential

component, kρ =
√
k2x + k2y is identical in all layers and it suffices to derive the

reflections and transmissions for all kz-values using the continuity conditions at the
material interfaces.

The reader should be aware of the different ways of numbering the layers. Here,
we count the layers from bottom to top as sketched in Fig. 6.2. This is opposite to
the numbering used in [11].

6.3.1.1 Reflection Coefficients

Starting with the simple case of two half-spaces, reflections and transmissions are
occurring at a single layer interface. This directly implies that no multiple reflections
need to be considered leading to the Fresnel reflection coefficients R. When splitting

Fig. 6.2 Planar structure of
a layered medium



126 U. Koch et al.

the field into transverse electric (TE) and transverse magnetic (TM) modes, one
obtains for the two half-spaces i and j

RTE
i, j = μ j kz,i − μi kz, j

μ j kz,i + μi kz, j
, (6.3a)

RTM
i, j = ε j kz,i − εi kz, j

ε j kz,i + εi kz, j
, (6.3b)

where ε, μ and kz are the permittivity, permeability and the normal component of
the wave vector, respectively. For better readability the superscripts TE and TM
will be omitted, if the equation holds for both cases. From the definitions (6.3), the
antisymmetric property R j,i = −Ri, j of Fresnel reflection coefficients can be easily
extracted.

Once we introduce finite layers, multiple reflections start occurring and the reflec-
tion coefficients need to be generalized. For the interface between layers i and j we
then use

R̃i, j = Ri, j + R̃ j,ke2ikz, j d j

1 + Ri, j R̃ j,ke2ikz, j d j
, (6.4)

where d j is the thickness of layer j and the index k represents the other layer next
to layer j (opposite to layer i). In (6.4), the two uppermost and the two lowermost
layers are special cases. The topmost layer N is a half-space and therefore has no
reflections from above, so R̃N ,N+1 = 0. The second uppermost layer N − 1 has
no transmitted waves from top layer reflections (i.e. R̃N ,N+1e2ikz,N dN = 0 although
dN → ∞). This implies that the generalized reflection coefficient is equal to the
Fresnel coefficient, R̃N−1,N = RN−1,N . For all other layers, the relation (6.4) can be
applied from top to bottom to get all reflection coefficients of the form R̃i,i+1. An
equivalent procedure from bottom to top holds for the coefficients of the form R̃i,i−1

where the two lowermost layers are special cases.
Equation (6.4) only holds in the case of a sourceless layer. Dipole sources in

layered media are covered in Sect. 6.3.2, but nonetheless an additional term for the
source layer s has to be defined first. It reads

M̃s =
[
1 − R̃s,s+1 R̃s,s−1e

2ikz,s ds
]−1

(6.5)

and describes the magnitude enhancement or attenuation by reflection and trans-
mission. There is no common name for this term, but in this work we will call it
generalized source magnitude factor.

6.3.1.2 Continuity at Layer Interfaces

This last part about layered structures covers the propagation of waves through layers
(cf. [11]). Again, they should be separated in TE- and TM-waves, but most equa-
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tions are valid for both modes. For a complete coverage, four different cases must
be considered due to upward (↑) and downward (↓) propagation and positive (+)
and negative (−) superposition with reflected waves. First, we discuss a positive
superposition and start with upward propagation. The wave in layer i is then given
by

A+
i,↑

[
eikz,i z + R̃i,i+1e

−ikz,i zeikz,i2zi,i+1

]
, (6.6)

where A+
i,↑ is the unknown amplitude and zi,i+1 is the z-position of the boundary

between layers i and i + 1. Assuming we know the amplitude A+
i−1,↑, we can enforce

equality at the layer boundary zi−1,i to determine the amplitude in layer i . This results
in the recursion

A+
i,↑ = A+

i−1,↑
1 + Ri−1,i

1 + Ri−1,i R̃i,i+1eikz,i2di
ei(kz,i−1−kz,i)zi−1,i . (6.7)

For downward propagating waves with field

A+
i,↓

[
e−ikz,i z + R̃i,i−1e

ikz,i ze−ikz,i2zi−1,i

]
, (6.8)

the derivation is very similar and only the direction of propagation as well as the
signs in the subscripts need to be flipped. After exploiting the antisymmetry of the
Fresnel coefficients, the amplitude transfer factor reads

A+
i,↓ = A+

i+1,↓
1 − Ri,i+1

1 − Ri,i+1 R̃i,i−1eikz,i2di
e−i(kz,i+1−kz,i)zi,i+1 . (6.9)

The same can also be done for waves with negative reflection superposition. The
fields now have the form

A−
i,↑

[
eikz,i z − R̃i,i+1e

−ikz,i zeikz,i2zi,i+1

]
(6.10)

for upward propagation and

A−
i,↓

[
e−ikz,i z − R̃i,i−1e

ikz,i ze−ikz,i2zi−1,i

]
(6.11)

for downward propagation. Assuming that the neighboring amplitude is known, the
current one can be computed in a similar manner as above. Finally, this leads to the
amplitude transfer factors

A−
i,↑ = A−

i−1,↑
1 − Ri−1,i

1 + Ri−1,i R̃i,i+1eikz,i2di
ei(kz,i−1−kz,i)zi−1,i , (6.12)
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A−
i,↓ = A−

i+1,↓
1 + Ri,i+1

1 − Ri,i+1 R̃i,i−1eikz,i2di
e−i(kz,i+1−kz,i)zi,i+1 , (6.13)

for upward and downward propagation, respectively.
Similarly to (6.5), starting equations in the source layer can be defined. They

are then used for the above iterative amplitude computation for all other layers. For
TE-waves and a horizontally (h) oriented source at distance h from the lower layer
boundary, they read as:

ATE
s,↑,h =

(
1 + R̃TE

s,s−1e
ikz,s2h

)
M̃TE

s , (6.14a)

ATE
s,↓,h =

(
1 + R̃TE

s,s+1e
ikz,s2(ds−h)

)
M̃TE

s , (6.14b)

whereas for TM-waves, they are given by

ATM
s,↑,h =

(
−1 + R̃TM

s,s−1e
ikz,s2h

)
M̃TM

s , (6.15a)

ATM
s,↓,h =

(
−1 + R̃TM

s,s+1e
ikz,s2(ds−h)

)
M̃TM

s . (6.15b)

In the case of a vertically (v) oriented source, only TM-waves need to be considered
and the starting amplitudes can be written as

ATM
s,↑,v =

(
1 + R̃TM

s,s−1e
ikz,s2h

)
M̃TM

s , (6.16a)

ATM
s,↓,v =

(
1 + R̃TM

s,s+1e
ikz,s2(ds−h)

)
M̃TM

s . (6.16b)

6.3.2 Layered Dipole

With the reflection coefficients at hand, we can now proceed to compute the emission
of a dipole in a stratified medium. As before, we refrain from giving a full derivation
and only present themain steps. To obtain the physical fields, all propagating (k2z > 0)
and evanescent (k2z < 0) contributions have to be properly summed up. One therefore
has to evaluate Sommerfeld integrals of the form [11–13]

Fi j = 1

4π

∞∫

0

GF
i j J0

(
kρρ

)
kρ dkρ . (6.17)
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Fig. 6.3 Schematic of the Sommerfeld integration path to avoid singularities on the real axis

Here, Jν (·) is the Bessel function of first kind of order ν and GF
i j is the Green’s

function operator for a field component F in coordinate direction i of a dipole with
axis in direction j . An additional factor 1/2 was already pulled out for a simplification
of the Green’s functions later in this section. The integrand contains singularities
along the real axis, so one typicallymoves the integration path into the complex plane.
In our case, we employ a sinusoidal path as sketched in Fig. 6.3, where kL ,max and
kL ,min denote the largest and smallestwavenumber in the layermaterials, respectively.
As an additional complication, the integration along the tail can be highly oscillatory.
This is why the integration is often converging slowly when the observation point is
close to the source. There are several methods proposed in literature (e.g. see [15]) to
accelerate convergence in such cases. Here, for the numerical integration, we simply
subtract the direct term, which can be computed analytically. The analytic result is
then added afterwards.

The fields F = (Ex , Ey, Ez, Hx , Hy, Hz)
T of the layered dipole expansion e can

be written as
F = Ae,rxe , (6.18)

where xe = (xe,x , xe,y, xe,z)T is the expansion strength and Ae,r is the layered dipole
matrix for observation location r with radial distance ρ. The full layered dipole
matrix reads

Ae,r = Wbc

4π

∞∫

0

⎡

⎢⎢⎢⎢⎢⎢
⎣

GE
xx GE

xy GE
xz

GE
yx GE

yy GE
yz

GE
zx GE

zy GE
zz

GH
xx GH

xy GH
xz

GH
yx GH

yy GH
yz

GH
zx GH

zy GH
zz

⎤

⎥⎥⎥⎥⎥⎥
⎦

e,r

J0
(
kρρ

)
kρ dkρ , (6.19)

where the row-weights Wbc = diag (1, 1, εs/εo, 1, 1, μs/μo) for source layer s and
observation layer o were introduced to ensure that the continuity conditions are
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fulfilled at the material interfaces. The integration in (6.19) is meant to be computed
element-wise and the Green’s functions act as operators in space.

To compute the Green’s functions in (6.19), we first derive them from Green’s
functions for the vector potential A and the scalar potential φ [16] as

GE
xi x j

= iωGA
xi x j

− 1

iω

∂2

∂xi∂x j
Gφ

x j
, (6.20a)

GH
xi x j

= 1

μ

(
∂

∂xi+
GA

xi− x j
− ∂

∂xi−
GA

xi+ x j

)
. (6.20b)

Here, GH
xi x j

results from a curl operation, so xi− and xi+ represent the previous and
next coordinate direction relative to xi , respectively. Since the layers are stacked in
vertical direction, the Green’s functions are only dependent on z, while the horizontal
dependence comes from the Bessel function J0

(
kρρ

)
. Therefore, all derivatives with

respect to x and y do not affect the Green’s functions. Furthermore, some of the
vector potential Green’s functions are zero, namely GA

xy = GA
yx = GA

xz = GA
yz = 0.

Others are identical due to symmetry, such as GA
xx = GA

yy , G
φ
x = Gφ

y . To derive the
final expressions, three cases must be distinguished:

• observation in source layer,
• observation above source layer,
• observation below source layer.

6.3.2.1 Observation in Source Layer

For the case when the source and the observation point lie in the same layer, only the
indirect terms originating from reflections are integrated. To do so, we first specify
the amplitude coefficients [13] for horizontal dipoles

Ah = eikz,s (ds−h) R̃TE
s,s+1

[
eikz,s (ds−h) + R̃TE

s,s−1e
ikz,s (ds+h)

]
M̃TE

s , (6.21a)

Bh = eikz,s (ds−h) R̃TM
s,s+1

[
eikz,s (ds−h) − R̃TM

s,s−1e
ikz,s (ds+h)

]
M̃TM

s , (6.21b)

Ch = eikz,s h R̃TE
s,s−1

[
eikz,s h + R̃TE

s,s+1e
ikz,s (2ds−h)

]
M̃TE

s , (6.21c)

Dh = eikz,s h R̃TM
s,s−1

[
eikz,s h − R̃TM

s,s+1e
ikz,s (2ds−h)

]
M̃TM

s . (6.21d)

Similarly, for vertical dipoles

Av = eikz,s h R̃TM
s,s−1

[
eikz,s h + R̃TM

s,s+1e
ikz,s (2ds−h)

]
M̃TM

s , (6.22a)

Bv = eikz,s (ds−h) R̃TM
s,s+1

[
eikz,s (ds−h) + R̃TM

s,s−1e
ikz,s (ds+h)

]
M̃TM

s , (6.22b)
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where the naming conventions from Sect. 6.3.1.1 were adopted. With these coeffi-
cients at hand, we can explicitly state the Green’s functions as

GA
xx = GA

yy = − μs

ikz,s

[
Ahe

−ikz,s z + Che
ikz,s z

]
, (6.23a)

GA
zz = − μs

ikz,s

[
Ave

ikz,s z + Bve
−ikz,s z

]
, (6.23b)

GA
zx = −μs

k2ρ

[
(Ah + Bh) e−ikz,s z − (Ch + Dh) eikz,s z

] ∂

∂x
, (6.23c)

GA
zy = −μs

k2ρ

[
(Ah + Bh) e−ikz,s z − (Ch + Dh) eikz,s z

] ∂

∂y
, (6.23d)

Gφ
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Inserting these expressions into (6.20), evaluating the derivatives and integrating the
result yields the full indirect electromagnetic field matrix. Afterwards, the contribu-
tion of an identical dipole in a homogeneous medium needs to be added to obtain
the final result.

6.3.2.2 Observation Above Source Layer

When the observation point is in layer o above the source, the amplitude transitions
from Sect. 6.3.1.2 are required. To find the Green’s functions in this case, multiple
steps need to be performed. First, the Green’s functions for the source layer (6.23) are
evaluated at the upper layer boundary of the source layer. They can be reformulated
such that their amplitudes have the form of the factors As,↑ in (6.14a) and (6.15a) or
(6.16a), depending on orientation and wave type. The propagation through the layers
can then be computed by the expressions given in Sect. 6.3.1.2. To simplify the
computation, it is helpful to split the amplitude into a source term and a propagation
factor. The missing propagation factor is retrieved by starting with a unit amplitude
factor in the source layer and iteratively applying (6.7) or (6.12) until the observation
layer has been reached. With the amplitudes given, the Green’s functions for the
potentials can be stated as

GA
xx = GA

yy = − μs

ikz,s

[
ATE
s,↑,h A

+,TE
o,↑

(
eikz,oz + R̃TE

o,o+1e
ikz,o(2zo,o+1−z)

)]
, (6.24a)
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o,o+1e
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)]
, (6.24b)
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GA
zy = −μs

k2ρ

[
− ATE

s,↑,h A
−,TE
o,↑

(
eikz,oz − R̃TE

o,o+1e
ikz,o(2zo,o+1−z)

)
−

− ATM
s,↑,h A

+,TM
o,↑

(
eikz,oz + R̃TM

o,o+1e
ikz,o(2zo,o+1−z)

) ] ∂

∂y
, (6.24d)

Gφ
x = Gφ

y = − 1

εs ikz,s

[
k2s
k2ρ

ATE
s,↑,h A

+,TE
o,↑

(
eikz,oz + R̃TE

o,o+1e
ikz,o(2zo,o+1−z)

)
+

+ k2z,s
k2ρ

ATM
s,↑,h A

−,TM
o,↑

(
eikz,oz − R̃TM

o,o+1e
ikz,o(2zo,o+1−z)

) ]
,

(6.24e)
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From here, the same steps as discussed in the previous section must be carried out
to obtain the final matrix. In this case, no direct term needs to be added.

6.3.2.3 Observation Below Source Layer

The case when the observation layer o is located below the source layer is very
similar to the one above, but requires a change in the propagation direction. Hence,
the final formulas read
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Again, the final matrix is found by transformation and integration and no direct term
needs to be added.

6.4 Electron Energy Loss Spectroscopy

As discussed in the introduction, electron energy loss spectroscopy (EELS) is a
technique to experimentally determine optical excitation spectra using a scanning
transmission electron microscope (STEM). To simulate the physical processes in an
EELS measurement requires a few extensions to MMP which will be discussed in
the following.

6.4.1 Electron Beam Expansion

First, the electromagnetic fields caused by a relativistic electron beam must be com-
puted. Here, the only free parameters are the position and the velocity v of the
electrons. Assuming a propagation along the z-axis, the electric and magnetic field
can be written as in [2]

Ex = − 2eω

v2γ ε
eiω

z
v K1

(
ωρ

vγ

)
x

ρ
, (6.26a)

Ey = − 2eω

v2γ ε
eiω

z
v K1

(
ωρ

vγ

)
y

ρ
, (6.26b)
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eiω

z
v K0

(
ωρ
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)
i

γ
, (6.26c)
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(
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ρ
, (6.26d)

Hy = −2eω

vγ
eiω

z
v K1

(
ωρ

vγ

)
x

ρ
, (6.26e)

Hz = 0 . (6.26f)
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Here, we introduced

• the elementary charge e,

• the Lorentz contraction factor γ =
(√

1 − v2/c2
)−1

,

• the speed of light in dielectric material c,
• the modified Bessel function of second kind Kν (·) of order ν,
• the distance to the beam ρ = √

(x − x0)2 + (y − y0)2.

The electric and magnetic field caused by an electron beam are decaying exponen-
tially from the center and have amainly radial and azimuthal orientation, respectively.
They are therefore similar to the fields generated by a line current but include a retar-
dation effect.

6.4.2 Electron Energy Loss Computation

With the source terms at hand, we use MMP to compute the scattering caused by a
structure close to the electron beam. To then obtain an actual loss spectrum, some
further post-processing is required. The frequency-dependent total energy loss P (ω)

can be computed by integration of the energy loss along the electron path [2] as

P (ω) = 1

π�ω

∞∫

−∞
� {

e−iωt vE scat
z (z (t) , ω)

}
dt , (6.27)

where the electron beam direction is again chosen to be in local z-direction with-
out loss of generality. By inserting the transformation t = z(t)−z0

v and using setting
z0 = 0, the integration can be performed over space instead of time. Thus, we need
to evaluate

P (ω) = 1

π�ω

∞∫

−∞
�

{
e−iω z

v E scat
z (z, ω)

}
dz , (6.28)

which can be done using an appropriate numerical quadrature rule.

6.5 Numerical Experiments

In the following, we present a series of numerical experiments to demonstrate the
convergence behavior and performance of ourMMP implementation. For the numer-
ical quadrature, we implemented a routine similar to the one proposed in [17]. For
the evaluation of Bessel functions with complex arguments, the Fortran library of
D.E. Amos [18] was ported to C++, giving highly accurate values at the cost of
somewhat limited performance. As the main parts of MMP contain linear algebra,
the versatile and powerful library Eigen [19] was used for all vector or matrix algebra
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functions. To accelerate the computation, a basic parallelization was implemented
using IntelsMath Kernel Library (MKL) [20] and Threading Building Blocks (TBB)
[21] library.

6.5.1 Plane Wave Excitation of a Dielectric Sphere

The first example serves solely to test the convergence of our mesh-based MMP
approach. To this end, we model a dielectric sphere with relative permittivity εr = 4.
We excite it from the top by a plane wave with a wavelength equal to the diameter of
the sphere. To compute the electromagnetic fields, we first need to fix the expansions
and matching points. We start with the mesh and the corresponding distribution
shown in Fig. 6.1.

Then, the excited fields can be computed following the standardMMP procedure.
The real part of the scattered electric field on the polarization axis (in-plane) and the
real part of the scattered magnetic field (out-of-plane) are depicted in Fig. 6.4 in a
vertical cut plane through the center of the sphere.

6.5.2 Properties of Mesh-Based MMP

To determine optimal parameters for an efficient and accurate numerical simulation
with the mesh-based MMP approach, a series of numerical convergence studies was
performed.

Fig. 6.4 Real part of the scattered electric and the scattered magnetic field of a dielectric sphere
excited by a plane wave
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Fig. 6.5 Mesh refinement to observe convergence of the absolute and relative error using the
example of a sphere excited by a plane wave

6.5.2.1 Mesh-Refinement

First, we test howmanymesh elements are required tomodel the fields accurately. For
this purpose, the mesh was successively refined. To compute error estimates, the field
mismatch is integrated over the entire surface using a quadrature rule of higher order
than the one used to generate the matching points. The graph in Fig. 6.5 shows the
behavior of relative and absolute error over the number ofmesh elements.We observe
an exponential decaywith a slightly flattened slope after a kink at 122 elements. Since
a relative error of around 10−5 is sufficient for most practical purposes, we will use
the mesh with 122 elements for all further tests.

6.5.2.2 Quadrature-Refinement

The next important parameter is the order of the quadrature rule applied on the mesh
elements for the matching point placement. The quadrature order directly influences
the factor of overdetermination of theMMP system. Naturally, this has a large impact
on the memory consumption and on the computational time. Table6.1 shows the
overdetermination depending on the quadrature order.

Table 6.1 Overdetermination
caused by given quadrature
order

Quadrature order Overdetermination

1 1

2 3

3 6

4 6
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Fig. 6.6 Absolute and relative error for a sphere excited by a plane wave as a function of the
quadrature order

Since the rule of 1st order only has one node in the center, it leads to a squareMMP
matrix. Unfortunately, it is well known that a square system can result in oscillatory
or unphysical solutions. This behavior can also be observed in the error plot depicted
in Fig. 6.6. On the other hand, triangular quadrature rules of 3rd and 4th order have
the same number of nodes, so we are left with the choice between a 2nd order and
a 4th order rule. From the data in Fig. 6.6 we clearly see that a 4th order rule does
not provide any extra accuracy, so we employ 2nd order rules for the distribution of
matching points in all further MMP calculations.

6.5.2.3 Mesh Element Order

Finally, we briefly discuss the use of curvilinear elements versus using straight ele-
ments. However, since the geometry only affects the preprocessing, namely the gen-
eration of expansions and matching points, it has no significant influence of the
computational time. It therefore makes sense to use the most accurate geometry rep-
resentation, i.e., curvilinear elements, if available. To support this statement, Table6.2
shows the errors for both kind of elements for the spherical test system.

As expected, we find that the error reduces significantly when using curvilinear
elements.

Table 6.2 Absolute and relative errors for planar or curvilinear mesh elements using the example
of a sphere excited by a plane wave

Error Linear Curved

Relative 2.0397 · 10−5 2.5381 · 10−6

Absolute 1.4712 · 10−4 1.8393 · 10−5
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Fig. 6.7 Split-ring resonator
geometry and mesh to show
the experimental setup. The
red dot indicates the location
of the electron beam
excitation

6.5.2.4 Expansion Distance to Particle Surface

The final test of our MMP implementation concerns the influence of the expansion
distance. For this particular case, we switch to a more challenging test geometry.
Specifically, we will use a split-ring resonator similar to the one studied in [22].
The mesh is shown in Fig. 6.7 and the structure is excited by an electron beam at
the position indicated by the red dot. Then, an electron energy loss spectrum is
computed for different distances of the expansions to the split-ring surface, starting
at half the minimal curvature and going up to 90% thereof. The resulting spectra
are depicted in Fig. 6.8. These results clearly demonstrate the importance and diffi-
culty of placing the expansions optimally. For short distances, the signal is strongly

Fig. 6.8 Electron-energy loss spectra for different distances of the expansions to the surface.
Increasing the distance improves the accuracy of the method considerably
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Fig. 6.9 Normalized EELS maps for the first two modes of a plasmonic split-ring resonator

suppressed. When moving the expansions further away, the spectrum converges
towards its correct solution. For our example, the result does not change for dis-
tances above d = 13.5 nm. However, when the expansions are placed even further
away from the surface, their locations become too close to each other. As a result,
the condition number of the MMP matrix deteriorates, which can lead to significant
instabilities. We find that using a distance of around 90% of the smallest curvature
radius in the geometry works well in most cases.

6.5.3 Electron Energy Loss Spectroscopy of a Plasmonic
Split-Ring Resonator in Free Space

After the convergence studies in the previous sections, we now demonstrate the
advantages ofMMPwhen computing EELSmaps. Since theMMPmatrix is indepen-
dent of the excitation, we can setup and factorize the matrix once and then efficiently
solve the system for a large number of different sources. To compute the EELS maps
shown in Fig. 6.9, we solved the system for 201 by 201 different beam positions. We
find that both the resonance frequencies and the EELS maps are qualitatively similar
to the results published in [22], but the resonance are slightly blue-shifted. Those
deviations are readily explained by the omission of the silicon nitride membrane in
our MMP simulations.
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Fig. 6.10 Geometry and mesh for the disk-dimer experiment. The colored dots again indicate the
positions of the electron beam excitation

6.5.4 Electron Energy Loss Spectroscopy of a Plasmonic
Disk-Dimer on a Membrane

As discussed above, to obtain results comparable to experimental measurements, the
inclusion of the substrate or membrane is essential. Here, we demonstrate that MMP
can handle this by using the layered dipole expansions presented in Sect. 6.3.2. To
this end, we model a plasmonic disk dimer made out of gold and deposited on a
30nm thick silicon nitride membrane (εr = 4). The disk radius is r = 75 nm and
its height is t = 30 nm. The distance between the disks is taken to be g = 20 nm.
The geometry and the corresponding mesh are sketched in Fig. 6.10, where the dots
indicate the positions of the electron beam excitation for EELS spectra computation.
The resulting spectra are shown in Fig. 6.11.

Fig. 6.11 Electron energy loss spectrum of a plasmonic disk-dimer calculated at two different
electron beam positions
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Fig. 6.12 Normalized EELS maps for the first three modes of the plasmonic disk-dimer

We can clearly observe how the two different excitation positions lead to distinct
resonance peaks. This can be explained by looking at the corresponding EELS maps
depicted in Fig. 6.12.

Here, we see that the mode with a resonance at 773nm shows very little signal at
position #1. In contrast, the modes at 870nm and 700nm are comparatively weak at
position #2. To gain further insight into the nature of the different modes, we also
use MMP to compute the distribution of the electric field in a plane slightly above
the dimer. The results for the z-component (perpendicular to the cut plane) can be
found in Fig. 6.13. These plots contain information about the relative phase, which
allows us to identify the mode at 870nm as the symmetric and the mode at 700nm as
the anti-symmetric combination of the fundamental mode of an individual disk (cf.
[23]). Here, the higher-energetic mode at 773nm corresponds to a dark mode and
would not be visible when using classical optical spectroscopy.

6.5.5 Comparison of MMP and DGTD for Electron Energy
Loss Spectroscopy Calculations

Finally, we compare the performance of our novel MMP implementation to an estab-
lished Discontinuous Galerkin time-domain (DGTD) solver [23–25]. It is important
to keep in mind that MMP is a frequency-domain method while DGTD works in
the time-domain. For this comparison, we return to the EELS experiment with the
golden split-ring resonator of Sect. 6.5.3 and compare the computation times of the
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Fig. 6.13 Normalized electric field in z-direction for the first threemodes of a plasmonic disk-dimer

two solvers for both EELS spectrum and EELS map computations. The simulations
were run on a desktop computer with Intel Xeon W3680 processor with 6 cores at
3.33GHz and 12GB RAM.We restricted both solvers to run on a single core to get a
fair comparison independent of the implementation of parallelization. To guarantee a
similar accuracy of both methods, the same surface mesh was used for the split-ring
resonator. For DGTD method, the given surface mesh was extended to a tetrahedral
volume mesh using Netgen [10].

First, we computed the EELS spectrum and measured the time consumption of
both methods. The timings of the individual steps performed in the MMP solver and
the total time for DGTD are listed in Table6.3.

As a time-domain solver, DGTD computes the entire spectrum in a single run,
while MMP requires a separate simulation per frequency point. Therefore, the time

Table 6.3 Computation times for EELS spectrum simulations with MMP or DGTD. In DGTD, the
full spectrum is received in one simulation while in MMP it scales with the number of frequency
points n f

MMP DGTD

Assembly (min) 0.5 · n f −
QR decomposition (min) 50.0 · n f −
Solving equation (min) <0.1 · n f −
Loss evaluation (min) <0.1 · n f −
Total time (min) 50.6 · n f 2505



6 MMP Simulation of Plasmonic Particles … 143

Table 6.4 Computation times for EELS map simulations with MMP or DGTD. In DGTD, a full
simulation is required for each point while in MMP the QR decomposition in the setup can be
reused for all beam positions. Here, nr is the number of raster points

MMP DGTD

Assembly (min) 0.5 −
QR decomposition (min) 50.0 −
Solving and Evaluation (min) 0.06 · nr −
Total time (min) 50.0 + 0.06 · nr 2505 · nr

per frequency point in MMP needs to be multiplied by the number of points in a
spectrum. Hence, for a good spectral resolution it is beneficial to use a time-domain
solver while frequency-domain methods are only appropriate for a small number of
frequencies. In our example, DGTD performs more efficiently once the number of
frequency points exceeds 50.

Second, the rasterization time for an EELS pattern was measured. Since MMP is
a boundary discretization method in the frequency-domain, it can reuse the matrix
decomposition for the different beam positions as they are just right-hand-sides. In
contrast, DGTD requires a full calculation per point. While this does also deliver
a full spectrum, maps are usually only required for very few selected frequencies.
Hence, MMP easily outperforms DGTD for the computation of EELS maps. The
corresponding timings can be found in Table6.4.

From this data, we find that both frequency and time-domain methods have their
respective advantages. For the computationally more demanding EELS map compu-
tation, MMP is clearly preferable in our case. However, if we had used an example
with substrate, the timings would have been more favorable for DGTD, since the
evaluation of the Sommerfeld integrals is computationally expensive.

Finally, it should be noted that the absolute times of bothmethods can be improved
significantly by parallelization. Simply using a parallel implementation of the matrix
factorization and thendistributing thedifferent positions for anEELSmaponmultiple
cores leads to an almost perfect scaling. Similarly, since each position corresponds
to a separate computation, DGTD can also be expected to scale very well with
the number of cores and processors. Additionally, as was shown in [23], the EELS
computation with the DGTD method can be massively accelerated by using the
computational power of GPUs.

6.6 Summary and Outlook

We presented a number of extensions to the well established multiple multipole pro-
gram (MMP), which enhance the flexibility and usability of this technique. Our novel
procedure to automatically generate a distribution of both expansions and matching
points from a given surface mesh leads to a significant reduction in preparation time
and allows to apply MMP to arbitrary geometries. In addition, the introduction of
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layered dipoles as expansions allows a more efficient simulation of realistic experi-
ments where the nanostructures are usually deposited on substrates or membranes.
Finally, with the introduction of an electron beam source and a suitable adaptive
integration routine, MMP can also be used to compute electron energy loss spectra
and EELS maps.

Overall, we showed that MMP is a well-tested, robust and fast simulation tech-
nique which is particularly well suited for the analysis of plasmonic nanostructures.
Especially for the computation of EELS maps, the MMP method has strong advan-
tages over alternative simulation techniques such as classical FEM or DGTD. Due
to the small size of the systemmatrix, MMP allows to precompute and store a matrix
decomposition. Then, even very large maps can be computed with relatively little
computational effort. If, on the other hand, only the spectrum at a single point is
required, MMP has some disadvantages over time-domain simulations.

As an outlook, we expect that a more sophisticated placement of the expansions
based on the curvature of the surface could boost the efficiency enormously. Unfortu-
nately, constructing an algorithm that reliably works for arbitrary geometries without
sacrificing stability has proved difficult and further research is needed to achieve this
goal.
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Chapter 7
The Generalized Multipole Technique
for the Simulation of Low-Loss Electron
Energy Loss Spectroscopy

Lars Kiewidt and Mirza Karamehmedović

Abstract In this study, we demonstrate the use of a Generalized Multipole Tech-
nique (GMT) to simulate low-loss Electron Energy Loss Spectroscopy (EELS) spec-
tra of isolated spheriodal nanoparticles. The GMT provides certain properties, such
as semi-analytical description of the electromagnetic fields, efficient solution of the
underlying electromagnetic model, accurate description of the near field, and flex-
ibility regarding the position and direction of the incident electron beam, that are
advantageous for computation of EELS spectra. Within the chapter, we provide a
derivation of the electromagnetic model and its connection to EELS spectra, and
comprehensive validation of the implemented GMT regarding electromagnetic scat-
tering and EELS.

7.1 Introduction to Generalized Multipole Techniques
and Their Use in the Simulation of EELS

Generalized Multipole Techniques (GMT) were developed independently by differ-
ent researchers in the early eighties to solve electromagnetic scattering problems [13,
16, 22, 23, 30]. Later Ludwig [24] suggested the generic term Generalized Multi-
pole Technique to summarize the above mentioned methods. Major developments
of the GMT were done, among others, by Hafner [14], Hafner and Bomholt [15],
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Leidenberger et al. [21], Piller and Martin [31], and S. Mohsen Raeis Zadeh Bajes-
tani [27]. A comprehensive review of different GMTs is given by Wriedt [37]. In
this chapter, however, the term GMT explicitly refers to our implementation of a
numerical field solver.

In general, the GMT is well-suited for the computation of EEL spectra because
of several advantageous properties that will be explained later in this chapter. The
current method based on the GMT was developed to provide a robust, accurate, and
fast model for the numerical inversion of EEL spectra of nanoparticles. A detailed
description and validation of the method are already given in [20]. Nevertheless, the
fundamentals of the underlying classical electromagnetic model, descriptions of the
implemented method, and numerical results are presented in this chapter again to
give a comprehensive and self-contained overview of the simulation of EELS in this
edited book.

The fundamentals of the classical electromagneticmodel are explained inSect. 7.2,
followed by a detailed description of the implementation of the current method
in Sect. 7.3. Validation of the implemented method is provided by comparisons to
available analytical solutions for classical electromagnetic scattering and EELS in
Sect. 7.4. Finally, in Sect. 7.5, the results are summarized and conclusions regarding
extensions, improvements, and future applications of the method are drawn.

7.2 The Classical Electromagnetic Model and the
Computation of the Electron Energy Loss Probability

The fundamentals of the electromagnetic EELS model and the calculation of the
electron energy loss probability P(ω) were already outlined by Matyssek et al. [25]
and presented in detail by Kiewidt et al. [20]. Nevertheless, due to the great signif-
icance of the electron energy loss probability to EELS, its derivation in light of the
classical electromagnetic model is repeated here.

Within experimental EELS measurements a large number of electrons interact
with the specimen under investigation. Due to the quantum mechanical probabilistic
nature of the interactions the energy loss of the electrons is distributed over some
range. The mean expected energy loss is then given by (see [10, p. 214])

ΔEprob =
∞∫

0

�ωP(ω)dω, (7.1)

where P(ω) is the probability of an energy loss of �ω per unit of ω. The quantities
� ≈ 1.055 × 10−34 Js and ω are the reduced Planck constant and the angular fre-
quency associated with the energy loss, respectively.

In classical deterministic electromagnetic theory, however, the energy loss of a
single electron moving in an electromagnetic field is calculated by integrating the
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Lorentz force along the path of the electron (see again [10, p. 214]),

ΔEdet = e

∞∫

−∞

[
Esca(re(t), t)

] · v dt. (7.2)

Here,Esca(re(t), t) is the scattered electric field intensity along the path of the electron
caused by the oscillations of the electrons in the specimen, and
−e ≈ 1.602 × 10−19 C, v, and re(t) are the elementary charge, the velocity vec-
tor of the electron, and the time-dependent path of the electron, respectively. Equa-
tion (7.2) already contains two simplifications: First, the contribution of the scattered
magnetic field to the Lorentz force is not included because the vector v is orthog-
onal to v × Bsca(re(t), t). Second, the negative signs of the Lorentz force and the
elementary charge cancel.

As a further simplification, we assume the velocity and the trajectory of the elec-
tron to be constant in the following derivation because the energy loss of the inci-
dent electrons (approx. 0.5–50eV) is small compared to their initial kinetic energy
(approx. 50–300keV). This simplification, known as the no-recoil approximation, is
frequently used in the simulation of EELS [25, 26].

By equating (7.1) and (7.2) a sufficient condition on the electron energy loss
probability P(ω) is derived for

ΔEdet = ΔEprob (7.3)

to hold true.
Substituting (7.1) and (7.2) into (7.3) yields

e

∞∫

−∞
v · Esca(re(t), t)dt =

∞∫

0

�ωP(ω)dω. (7.4)

As the right-hand side of (7.4) is formulated in the frequency domain we replace
the scattered electric field intensity in the time domain on the left-hand side by its
inverse Fourier transform, defined by

(
F−1 f̂

)
(t) = f (t) = 1

2π

∞∫

−∞
f̂ (ω)e−iωtdω, t ∈ R, (7.5)

to get

e

2π

∞∫

−∞

∞∫

−∞
v · Esca(re(t), ω)e−iωtdωdt =

∞∫

0

�ωP(ω)dω. (7.6)
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Note that we use the time-dependence factor e−iωt throughout this chapter. Using
the identity that (see [25])

Esca(re(t),−ω) = Esca(re(t), ω)∗, (7.7)

where E∗ is the complex conjugate of E, (7.6) can be rewritten

e

π

∞∫

−∞

∞∫

0

Re
{
v · Esca(re(t), ω)e−iωt

}
dωdt =

∞∫

0

�ωP(ω)dω. (7.8)

After changing the order of integration on the left-hand side, and after some
rearrangement, (7.8) yields

∞∫

0

(
e

π

∞∫

−∞
Re

{
v · Esca(re(t), ω) e−iωt

}
dt − �ωP(ω)

)
dω = 0. (7.9)

A sufficient condition for (7.9) to hold is that the outer integrand vanishes, that is,

e

π

∞∫

−∞
Re

{
v · Esca(re(t), ω)e−iωt} dt − �ωP(ω) = 0. (7.10)

Finally, solving (7.10) for the electron energy loss probability P(ω) results in

P(ω) = e

π�ω

∞∫

−∞
Re

{
v · Esca(re(t), ω)e−iωt

}
dt. (7.11)

It is seen from (7.11) that the energy loss probability P(ω) is expressed in terms of
the scattered electric field intensity Esca(re(t), ω) in the frequency domain along the
path of the electron, and that the computation of the electron energy loss probability
reduces to solving a sequence of classical electromagnetic scattering problems with
subsequent integration of the electric scattered field intensity along the path of the
electron. Hence, (7.11) is the basis of the electromagnetic EELS model, also called
classical dielectric formalism [10, Sect. II.B], and thus enables the use of established
numerical methods, like the GMT, to compute EEL spectra.
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7.3 Implementation of the GMT to Compute Low-Loss
EELS

7.3.1 The Electromagnetic Model

Figure7.1 illustrates the non-penetrable EELS configuration considered in the cur-
rent model. The nanoparticle under investigation is modeled by a spheroid of
semidiameters a and c. The boundary of the spheroid ∂Ω−, that separates the
interior domain Ω− from the exterior domain Ω+ of constitutive parameters
ε0 ≈ 8.854 × 10−12As V−1m−1 and μ0 = 4π × 10−7 NA−1, is parametrized by

x = a sin θ cosϕ

y = a sin θ sin ϕ

z = c cos θ

⎫⎬
⎭ 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. (7.12)

Acartesian coordinate system is placedwith the origin at the center of the spheroid,
and with the z-axis aligned with the axis of rotational symmetry of the spheroid.
According the definition of the spherical coordinates θ is the polar angle measured
from the positive z-axis, and ϕ is the azimuthal angle in the xy-plane measured from
the positive x-axis towards the positive y-axis.

The parametrization (7.12) allows modeling a variety of different particle shapes
ranging from extremely oblate nanodiscs (c � a), over perfect spheres (a = c),
to extremely elongated shapes such as nanotubes (c � a). Also, other analytical
parametrizations and numerical representations of the surface of the particle can
readily be included into the current model.

The incident electrons pass the nanoparticle with velocity vector v and impact
parameter b. Note that the impact parameter is measured as the orthogonal distance
from the origin of the coordinate system to the path of the electron re(t).

The particle itself is assumed to be homogeneous and thematerial ismodeled by its
permittivity ε and permeabilityμ. Here, we only consider non-magnetic materials so
thatμr = 1 and consequentlyμ = μ0. The relative frequency-dependent permittivity
εr (ω) is either obtained from experimental data ormodeled by thewell-knownDrude
model [4, 5] named after Paul Drude,

εr (ω) = 1 − ω2
p

ω2 + iηω
with ωp =

√
nee2

ε0me
, (7.13)

where ωp is the plasma frequency, and η is the collision rate of the free electrons
in the material with the immobile cores. Further, me, −e, ne are the electron mass,
electron charge, and electron density, respectively. Amodern discussion of the Drude
model is given by Dressel and Grüner [3, Sects. 5 and 6].

A more advanced model for the dielectric function is the Drude–Lorentz model
(see [3, Sect. 6]), that also accounts for interband transitions by adding several higher
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Fig. 7.1 Mathematical model of the EELS configuration considered in this chapter

order terms,

εr (ω) = 1 − f0ω2
p

ω2 + iη0ω
−

N∑
k=1

fkω2
p

ω2 − ω2
e,k + iηkω

. (7.14)

Here, fk is the so-called oscillator strength, and ωe,k is the eigenfrequency of the
kth oscillator.

Figure7.2 shows a comparison of the simple Drude model, (7.13), and the
advanced Drude–Lorentz model, (7.14), for aluminum against experimental data
of Rakić [34]. The corresponding parameters in the Drude model are �ωp = 15.8eV
and �η = 0.6eV [10]. For the Drude–Lorentz model the parameter set of Rakić
et al. [35] with N = 4 Lorentzian terms is used. It is seen that the Drude model
describes the real and imaginary component of the dielectric function quite well
in the interval λ0 ∈ [100 nm, 550 nm] but deviates for larger wavelengths. Further-
more, the Drudemodel does not capture the local extrema caused by strong interband
transitions around λ0 ≈ 800nm (approx. 1.5 eV).

The Lorentz–Drude model, in contrast, matches well with the experimental data
in the full range under consideration for both the real and imaginary component
of the dielectric function. Also, it describes the strong interband transitions around
λ0 ≈ 800nm well.
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Fig. 7.2 Comparison of the Drude model (7.13) and the Drude–Lorentz model (7.14) against
experimental data for aluminum [34]

7.3.2 Computation of the Electromagnetic Fields Using the
GMT

To solve the scattering problem, the exterior electric andmagnetic field intensities are
decomposed in contributions from the incident fields, caused by the passing electron,
and the scattered field,

{
Eext(r, ω) = Einc(r, ω) + Esca(r, ω),

Hext(r, ω) = Hinc(r, ω) + Hsca(r, ω),
(7.15)

where r ∈ Ω+ is the position vector of any point in the outer domain.
Within the electromagnetic approach the incident electron is modeled by the

electromagnetic fields caused by a point charge in uniform straight motion. Ana-
lytic expressions for the electromagnetic fields caused by a point charge in uniform
straight motion along the z-axis are given in [6, Sects. 5.4d and 5.4e]. Considering
the translation of the trajectory of the electron in Fig. 7.1, the components of the
incident electric and magnetic field intensities read
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Einc
x (r, ω) = x − bx

ρ

evακ̂

i4ωε0
eiαz H (1)

1 (κ̂ρ),

Einc
y (r, ω) = y − by

ρ

evακ̂

i4ωε0
eiαz H (1)

1 (κ̂ρ),

Einc
z (r, ω) = evκ̂2

4ωε0
eiαz H (1)

0 (κ̂ρ),

Hinc
x (r, ω) = y − by

ρ

ievκ̂

4
eiαz H (1)

1 (κ̂ρ),

Hinc
y (r, ω) = − x − bx

ρ

ievκ̂

4
eiαz H (1)

1 (κ̂ρ),

Hinc
z (r, ω) = 0,

(7.16)

with

α = ω

v
, k0 = 2π

λ0
, κ̂2 = k20 − α2, (7.17)

and where
ρ =

√
(x − bx )2 + (y − by)2 (7.18)

is the orthogonal distance of the observation point to the path of the electron. Further,
the quantitiesλ0 and k0 are the free-spacewavelength and the free-spacewavenumber,
respectively, and v is the magnitude of the velocity vector v. The function H (k)

ν is the
cylindrical Hankel function of νth order and kth kind.

As already pointed out in Sect. 7.2, the computation of low-loss EEL spectra
using the electromagnetic model requires the solution of several independent clas-
sical scattering problems. Hence, the electric scattered field intensity along the path
of the integration path is calculated using the GMT. Figure7.3 shows the general
concept of the GMT to compute the scattered and interior electromagnetic field
intensities. Several exterior and interior multipole origins are distributed in space to
approximate the scattered and interior electromagnetic field intensities. In the case
of spheroidal nanoparticles the multipole origins are typically distributed along the
axis of rotational symmetry of the particle. The scattered and interior electric field
intensities are then computed as a superposition of all multipoles,

Esca(r, ω) ≈
Nsca∑
j=1

M j
sca∑

l=1

l∑
m=−l

(
asca, jlm M(3), j

lm + bsca, jlm N(3), j
lm

)
, r ∈ Ω+ (7.19)

Eint(r, ω) ≈
Nint∑
j=1

M j
int∑

l=1

l∑
m=−l

(
aint, jlm M(1), j

lm + bint, jlm N(1), j
lm

)
, r ∈ Ω−. (7.20)

Here, Eint and Esca are the total interior and scattered exterior electric field inten-
sities, respectively. The quantities aint, jlm and bint, jlm , and asca, jlm and bsca, jlm are unknown
expansions coefficients of the total interior and scattered exterior electric field inten-
sities of the j th multipole that have to be determined numerically. The functions
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M(1), j
lm and N(1), j

lm , and M(3), j
lm and N(3), j

lm are the regular and radiating spherical vec-
tor wave functions (SVWF) [2], respectively. The latter satisfy the Silver–Müller
radiation condition,

∣∣∣∣ε1/2Esca(r, ω) − μ1/2Hsca(r, ω) × r
|r|

∣∣∣∣ = O

(
1

|r|
)

. (7.21)

Of course similar expansions exist for the scattered and interior magnetic field inten-
sities. For simplicity of notation, however, they are omitted in this chapter.

Explicit expressions for the SVWF are given by Nédélec [29, Sect. 5.3, p. 185 ff.].
A summary of all the equations implemented in the current model can be found in
[19, Appendices A and B].

The SVWF arise from the solution of the vectorial wave equation using a sepa-
ration of variables approach. A derivation of the vectorial wave equation from the
time-harmonicMaxwell equations is given, among others, in [19]. Consequently, the
SVWF are also exact solutions of the Maxwell equations. Furthermore, the SVWF
forma basis in the space L2

tan(∂Ω−) of vectorswith square-integrable tangential com-
ponents, for any bounded C2 domainΩ− [2, Theorem 1.9 on p. 159], [29, Theorems
2.4.7 and 2.4.8 on pp. 36–40].

The unknown expansion coefficients in (7.19) and (7.20), sometimes called ampli-
tudes, are computed numerically using aGeneralized PointMatching (GPM)method
[14, Sects. 5.5.3 and 7.3.1], [18, Sect. 3.5] that enforces the transmission conditions,

Fig. 7.3 Concept of distributed multipoles to compute the scattered and interior electromagnetic
fields as used in the GMT
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ν̂ × (Esca − Eint) = ν̂ × Einc,

ν̂ × (Hsca − Hint) = ν̂ × Hinc,
(7.22)

at so-called matching points. In the current model the matching points are dis-
tributed equidistantly along the polar and azimuthal angle of the boundary ∂Ω−
of the spheroid. In (7.22), ν̂ is the outward unit vector field, and Einc andHinc are the
incident electric and magnetic field intensities given by (7.16).

In principle the number of matching points has at least to be equal to the number
of unknown coefficients in the multipole expansions. This is referred to as Point
matching (PM) method. Ludwig [24], however, recommends to used two to three
times as many matching points as unknown coefficients to increase the stability of
the method. This leads to an overdetermined system of equations that is solved in a
least-squares sense so that

min
{‖Ax − b‖22, x ∈ C

Nc
}
. (7.23)

The latter method is commonly named Generalized point matching (GPM) method.
The matrix A is the system matrix containing the SVWF, the vector x contains

the unknown expansion coefficients, and b represents the incident electromagnetic
fields. The quantity Nc is the number of unknown coefficients.

Finally, after solving (7.23) to determine the unknown expansion coefficients,
(7.19) and (7.20) are used to compute the scattered electric field intensity along the
path of the electron. Next, the field is integrated numerically to compute the electron
energy loss probability P(ω) according to (7.11). The process is then repeated for
the designated range of incident wavelengths to compute the whole EEL spectrum.

As already mentioned at the beginning of this chapter, the GMT has some impor-
tant advantages for the simulation of EELS. Firstly, the use of analytic expressions
for the scattered and interior electromagnetic field intensities ensures accurate and
smooth numerical solutions. Secondly, only the boundary of the nanoparticle has to
be discretized. In Finite Element and Finite Difference Time Domain Methods the
volume in- and outside the scatterer has to be discretized. This is especially disadvan-
tageous in the simulation of EELS because very fine grids have to be used to ensure
an accurate solution in the small space between the surface of the scatterer and the
trajectory of the electron, cf. [25]. Next, the implemented GMTmethod works exclu-
sively in the frequency domain and thus avoids the numerical Fourier transformation
of the results. The Fourier transformation was suspected recently to cause numerical
errors in the simulation of EELS using a time-domain method, cf. [25]. Finally, the
implemented GMT method is flexible regarding the shape of the nanoparticle and
the trajectory of the incident electron. For comparison, the Null-Field Method with
Discrete Sources is restricted in the trajectory of the incident electron by the small-
est circumscribing sphere around the scatterer because the field expressions are not
valid in the specific space between the surface of the nanoparticle and the smallest
circumscribing sphere, see [26]. Hence, the scattered electric field intensity can not
be computed along any trajectory that intersects the smallest circumscribing sphere.
Only recently Doicu and Wriedt [1], and Forestiere et al. [7], presented a method in
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the frame of the T-matrix method to compute the near field in the space between the
scatterer and the smallest circumscribing sphere. Contrary, no geometric restrictions
arise within the GMT approach.

7.4 Validation and Numerical Results

7.4.1 Electromagnetic Scattering of Spheroidal Dielectric
Nanoparticles

The implemented GMT is validated and tested by simulating classical electromag-
netic scattering by spherical and spheroidal nanoparticles and comparisons to ana-
lytical and numerical solutions.

The particles, placed in plain free space, have semidiameters a and c, and relative
permittivity εr . A uniform plane wave propagating in the positive z-direction with
wavelength λ0 and amplitude E = 1Vm−1 is used as illumination. The plane wave
is polarized in the xz-plane.

For perfectly spherical particles only one exterior and one interior multipole is
placed in the center of the nanoparticles. The multipole order was chosen between
M = 4 and M = 10 (M = Mext = Mint) depending on the optical size a/λ0

of the scatterer. For spheroidal particles up to three exterior and interior multipole
origins are distributed equidistantly along the z-axis. Themultipole orders are chosen
between M = 4 and M = 5.

The obtained differential scattering cross sections (DSCS) are compared to Prahl’s
Mie Scattering Calculator [33] for spherical particles, and to the Superellipsoid Scat-
tering Tool (SScatT) [38] for spheroidal particles. Figure7.4 shows the normalized
DSCS for two representative optical particle sizes and relative permittivities. It is
seen that the GMT gives accurate results, with maximal relative errors below 1%,
for classical electromagnetic scattering by dielectric particles.

Figure7.5 shows the DSCS for two spheroidal nanoparticles with aspect ratios
c/a = 0.5 and c/a = 1.5, and relative permittivity ε = 1.5. Again, the results are
in excellent agreement with the numerical reference method. The average relative
errors are below 5%. This demonstrates the ability of the implemented method to
provide accurate results for representative physical parameters. Comparisons for
intermediate optical sizes, relative permittivities, and aspect ratios are presented in
[19].
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7.4.2 Low-Loss EEL Spectra of Spherical Dielectric
Nanoparticles

The ability of the implemented method to compute EEL spectra is validated by
computing EEL spectra of spherical nanoparticles for different materials and com-
parisons of the results against available analytic solutions by Garc̀ia de Abajo [8, 9,
11]. The spherical particles are again placed in plain free space, and the influence of
any supporting structure is neglected. The radius of the particles is a = 10nm. The
kinetic energy of the incident electrons is E0 = 50keV, and the impact parameter
is b = (10.5 nm, 0 nm). The relative permittivities of gold (Au) [17], silver (Ag)
[17], aluminum (Al) [34], silicon (Si) [32], silica (SiO2) [32], and alumina (Al2O3)
[32] are obtained by interpolating experimental data given in the references stated
above. As in the case of electromagnetic scattering of perfect spheres, one exterior
and one interior multipole origin is placed in the center of the spherical particles.
The multipole order was chosen between M = 3 and M = 5, depending on the
material.

It is seen from Fig. 7.6 that it is sufficient to integrate the scattered electric field
intensity from −5a to 5a along the trajectory of the electron. The integration is

(a)

(b)

Fig. 7.4 Normalized DSCS of perfectly spherical nanoparticles of radius a = 10nm. The rel-
ative permittivities are a ε = 1.5, and b ε = 1.5 + 10 i. The incident wave has wavelengths
a λ0 = 100nm, and b λ0 = 10nm, corresponding to size parameters a k0a = 0.63, and
b k0a = 6.28, and is polarized in the xz-plane
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(a)

(b)

Fig. 7.5 Normalized DSCS of spheroidal nanoparticles of semidiameters a a = 10nm and
c = 5nm, and b a = 10nm and c = 15nm. The relative permittivity is ε = 1.5. The incident
wave has wavelength λ0 = 100nm, corresponding to size parameters of an equivolume sphere
a k0r = 0.50, and b k0r = 0.72, and is polarized in the xz-plane

performed using Shampine’s [36] adaptive Gauss–Kronrod quadrature procedure
with relatively tight tolerances of 10−15. Further, it is beneficial to use a denser
distribution of sampling points along the path of the electron close to the scatterer
because the scattered field oscillates more significantly near the scatterer than far
away from it. Also, we observed better results if the matching points along the
surface of the scatterer are distributed equidistantly contrary to a uniform angular
distribution of the matching points.

Figures7.7, 7.8 and 7.9 show the normalizedEEL spectra of the spherical nanopar-
ticles for the six different materials. All EEL spectra are normalized with respect to
their maximum value for comparison. In general, the implemented method pro-
vides excellent qualitative results. Especially for Au (Fig. 7.7a), Ag (Fig. 7.7b), Si
(Fig. 7.8b), and Al2O3 (Fig. 7.9a), the GMT results match excellently with the ana-
lytical solution in the whole range under consideration. In the case of SiO2 the peak
around λ0 = 120nm agrees well with the analytical solution, however, the rela-
tive amplitudes of the peaks in the range from 70 to 100nm do not match with the
reference. Nevertheless, the position of the peaks compares fairly well, and an appro-
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priate change of the numerical parameters will most likely improve the computed
solution in the specific range. Thus, it is concluded that the GMT in principle is
able to compute very accurate EEL spectra of spherical nanoparticles for different
materials.

7.4.3 Low-Loss EEL Spectra of Spheroidal Nanoparticles

After validation of the implemented method for spherical nanoparticles, the program
is used to predict the EEL spectra of prolate spheroidal nanoparticles. Figure7.10
shows the EEL spectrum of a slightly prolate spheroidal Al particle with semidi-
ameters a = 10nm and c = 12nm excited by a 50keV electron. The frequency-
dependence of the dielectric function is modeled by the Drude model (7.13) with
�ωp = 15.8eV and �η = 0.6eV [10]. In total, three exterior and three interior mul-
tipoles are distributed equidistantly along the z-axis.

The results computed with the implemented method correspond to the DGTD
[25] results for λ0 ≤ 100 nm and λ0 ≥ 130 nm. In between, the results show a sig-
nificant discrepancy. This is also observed for different aspect ratios c/a, up to 1.5,
and different materials. An appropriate change of the numerical parameters such as
number and order of the multipoles, and number and distribution of the matching
points along the boundary of the spheroid does not improve the solution, but might
cause an instability of the solution. Also, using the rules of Moreno et al. [28] to dis-

Fig. 7.6 Normalized EEL spectra of 50 keV electrons passing a spherical gold (Au) nanoparticle
of radius a= 10nm for varying lengths of the integration path. The integration was performed from
−na to na. Impact parameter b = (10.5 nm, 0 nm)
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tribute the multipole origins did not remove the instability. Hence, further extensive
numerical experiments have to be conducted to identify the source of instability, and
to provide empirical rules of thumb to set the numerical parameters according to the
configuration.

Nevertheless, it is seen fromFigs. 7.8a and7.10 that the peaks in the EEL spectrum
depend on the geometry of the nanoparticle. This would enable the inversion of EEL
spectra to characterize individual nanoparticles.

Fig. 7.7 Normalized EEL spectra of 50keV electrons passing spherical nanoparticles of radius
a = 10nm. Impact parameter b = (10.5 nm, 0 nm). Analytical solution from [8, 9, 11]
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Fig. 7.8 Normalized EEL spectra of 50keV electrons passing spherical nonaparticles of radius
a = 10nm. Impact parameter b = (10.5 nm, 0 nm). Analytical solution from [8, 9, 11]

Finally, Fig. 7.11 shows the absolute scattered and interior electric field intensities
around the slightly prolate spheroidal Al nanoparticle in the xy-plane (ϕ = 0◦). The
dotted line indicates the particle, and the dashed line illustrates the trajectory of
the electron. A strong near-field enhancement is seen around the metallic particle.
This effect is used in Surface Enhanced Raman Spectroscopy [12] to measure the
loading of metallic surfaces. In addition, it is seen that the implemented method
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Fig. 7.9 Normalized EEL spectra of 50keV electrons passing spherical nonaparticles of radius
a = 10nm. Impact parameter b = (10.5 nm, 0 nm). Analytical solution from [8, 9, 11]

provides smooth near fields that are easily numerically integrated along the path of
the electron.
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Fig. 7.10 EEL spectrum of 50keV electrons passing a prolate spheroidal Al nanoparticle of semidi-
amters a = 10nm and c = 12nm computed with the GMT and the DGTD method. Impact
parameter b = (10.5 nm, 0 nm)

Fig. 7.11 Electric near-field intensity around a prolate spheroidal Al nanoparticle of semidiameters
a = 10nm and c = 12 nm (dashed line). The arrow indicates the trajectory of the 50keV electron
with impact parameter b = (10.5 nm, 0 nm). The wavelength associated with the shown energy
loss is λ0 = 162 nm (�ω = 7.62eV)
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7.5 Summary and Conclusions

In this chapter we presented a semianalytical method based on the GMT to com-
pute classical electromagnetic scattering and EEL spectra of spheroidal dielectric
nanoparticles, exclusively in the frequency domain. Hence, no Fourier transforma-
tion of the results is needed. Given the appropriate numerical parameters, such as
multipole order and distribution, and number and distribution of the matching points,
the implemented method is able to provide very accurate results. Furthermore, the
method accepts either experimental data or dielectric functions modeled by Drude–
Lorentz type equations.

The implementedmethod is validated extensively by considering classical electro-
magnetic scattering and EELS by dielectric spheroidal nanoparticles. The computed
results agree well with available analytical and numerical solutions. Consequently,
the presented method is able to provide accurate EEL spectra that help to interpret
experimental data, and to design innovative plasmonic devices. Furthermore, the
model forms a fundamental basis for the inversion of experimental EEL spectra to
characterize individual nanoparticles.

Future research includes addressing the stability of the implemented method and
taking into account the interaction between several nanoparticles and supporting
structures.
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Chapter 8
Introduction to Yasuura’s Method of
Modal Expansion with Application to
Grating Problems

Akira Matsushima, Toyonori Matsuda and Yoichi Okuno

Abstract In this chapter we introduce the theory of the Yasuura’s method based
on modal expansion and explain the methods of numerical computation in detail
for several grating problems. After a sample problem we discuss the methods for
solving two types of problems that require additional knowledge and steps, that
is, scattering by a dielectric cylinder and diffraction by a grating. Some numerical
results are shown to give an evidence of an experimental rule for the number of linear
equations in formulating the least-squares problem that determines the modal coeffi-
cients. After confirming the rule we show a couple of examples of practical interest,
i.e., scattering by a relatively deep metal grating, plasmon surface waves on a metal
grating placed in conical mounting, scattering by a metal surface modulated in two
directions, and scattering by periodically located dielectric spheres. To provide sup-
plementary explanations of particular problems, four appendices are given; H-wave
scattering from a cylinder, the normal equation and related topics, conical diffraction
by a dielectric grating, and comparison of modal functions and the algorithm of the
smoothing procedures.
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8.1 Introduction

In Chap.6 of the last edition [27] we have introduced Yasuura’s method of modal
expansion from two main points of view: one was the relation with the fictitious
or equivalent source methods; and another was the employment of smoothing pro-
cedures (SP’s) [10, 24, 25, 31, 41, 42] to obtain rapidly converging solutions. We
needed the first point to have the method recognized as one of the modal expansion
methods having firm theoretical foundations and a wide range of application. While
in the second point we tried to explain our tool to cope with the problem of slow
convergence. Because we had been working with the separated solutions as modal
functions, we were often troubled by their poor approximation power. Accordingly,
Yasuura et al. hit upon an idea of the SP, whichworks to accelerate the convergence of
solutions by reducing the higher-order oscillations on the boundary. The SP, hence, is
an important step in solving a 2-D problem1 where the cross section of the obstacle is
strongly deformed from the coordinate curves of a separable system of coordinates.

In the last edition we have included: (1) the theory and the method of numerical
execution of the original form of Yasuua’s method, which we call the conventional
Yasuura’smethod (CYM) today; (2) Yauura’smethodwith a smoothing or a singular-
smoothing procedure (YMSP or YMSSP); and (3) numerical examples obtained
mainly by the YMSP and YMSSP. In the present chapter, however, we decided to
omit a greater part of SP-related topics in view of the recent trend in computational
electromagnetics. That is, the methods for 3-D as well as 2-D analysis of structures
made of a dielectric are required in various areas. Instead of removing the SP, we
include a detailed explanation on the solution process by the CYM. We hope this
helps those who are interested in solving their problems by using Yasuura’s methods,
CYM, YMSP, and YMSSP. Because the process with the SP’s are almost in common
with that of the CYM, the detailed introduction of the CYM execution process would
be useful not only for the CYM users but also for those who intend to employ the
YMSP or YMSSP.

The contents of this chapter are as follows: In Sect. 8.2 we first introduce the
theory of the CYMbriefly and explain the method of numerical computation in detail
taking a sample problem. Then, we move on to the methods for solving two types of
problems that require additional knowledge and steps: (1) scattering by a dielectric
cylinder; and (2) diffraction by a grating. In Sect. 8.3we show somenumerical results.
The aim of Sect. 8.3.1 is to give an evidence of an experimental rule for the number
of sampling points or, in general, the number of linear equations in formulating
the least-squares problem that determines the modal coefficients. Computational
results show the number should be twice as many as the number of unknown modal
coefficients. After confirming the rule we show a couple of examples of practical
interest in Sects. 8.3.2–8.3.5: Scattering by a relatively deep metal grating, Plasmon
surface waves on a metal grating placed in conical mounting, Scattering by a metal
surface modulated in two directions, and Scattering by periodically located dielectric

1The reason why we set a limit “2-D” is that the SP, in the present form, is available only in 2-D
problems. This is because we employ an indefinite integral to realize a low-pass spatial filter.
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spheres. Section8.4 is a conclusion where we state some additional remarks. Finally,
four appendices follow mainly providing supplementary explanations of particular
problems: 1 H-wave scattering from a cylinder; 2 The normal equation and related
topics; 3 Conical diffraction by a dielectric grating; and 4 Comparison between two
types of modal functions and a brief introduction to the algorithm with the SP.

8.2 Yasuura’s Method of Modal Expansion

In this sectionwe introduce the foundations ofYasuura’smethod ofmodal expansion.
We start by formulating a sample problem: plane wave scattering by a perfectly-
conducting (PC) cylinder, the problem from which we can learn the essential part of
the method together with important concepts and ideas in Yasuura’s method.

8.2.1 Scattering by a Perfectly-Conducting Cylinder

The geometry of the sample problem is shown in Fig. 8.1. The closed curve C is the
cross section and Se is the exterior infinite region of C. We denote a point in Se by
r (r, θ); and one on C by an arc-length s along C measured counterclockwise from
a fixed point s0. Se0 is an arbitrary closed region that is entirely inside Se. Let the
incident plane wave be polarized in z and

Ei(r) = uz F(r) = uz exp[−ikr cos(θ − ι)], (8.1)

where uz is a unit vector in z-direction, ι is the angle of incidence shown in Fig. 8.1,
and k = 2π/λ = ω/c is the wavenumber of the incident field. The eiωt time depen-
dence is assumed. This case of polarization is called E-wave,2 which is one of the
two basic polarizations. We will deal with an E-wave problem in this section and
summarize important results of an H-wave case, which is another basic polarization,
in Appendix 1.

In the present problema surface current flows in the z-direction exciting a scattered
wave polarized in z again:

Es(r) = uzΨ (r). (8.2)

Other non-zero components of the scatteredwave,Hs(r) = ux H s
x (r) + uy H s

y(r), can
be obtained by3

2It is also termed Transverse-Electric (TE) wave, which means the electric field is orthogonal to the
xy-plane. While in the H-wave (or TM-wave) the magnetic field has the z-component alone.
3The component is called a leading field if it gives other nonzero components as in (8.3). Note
that the derivation of Hs by (8.3) is a proper procedure because the sequence of our approximate
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Fig. 8.1 Geometry of the
sample problem. C is a
closed curve of length C
representing the cross section
of a cylindrical obstacle. Se
is the exterior infinite region
of C; and Si is the interior
region, which we need in
Sects. 8.2.2.1 and 8.2.4

Hs(r) = i

ωμ0
∇Ψ (r) × uz, (8.3)

where ∇ = (∂/∂x, ∂/∂y, 0) is the 2-D nabla operator. Hence, our target is Ψ (r) and
we can state our sample problem as:

Problem 1 E-wave, PC. Find the scattered electric field Ψ (r) that satisfies:

(D1) The 2-D Helmholtz equation in Se

∇2Ψ (r) + k2Ψ (r) = 0 (r ∈ Se), (8.4)

(D2) The 2-D radiation condition at infinity

√
r

(
∂Ψ (r)

∂r
+ ikΨ (r)

)
→ 0 (r → ∞), (8.5)

(D3) The boundary condition

Ψ (s) = f (s) ≡ −F(s) (s ∈ C, i.e., 0 ≤ s ≤ C). (8.6)

Here, ∇2 = ∂2/∂x2 + ∂2/∂y2 denotes the 2-D Laplacian. The condition given by
(8.6) is called Dirichlet’s or the first-kind boundary condition.

solutions converges to the true solution uniformly in wider sense in the exterior region Se as we
will see later.
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8.2.2 Modal Functions, Approximate Solution, and
Least-Squares Boundary Matching

Here we introduce the analytical part of Yasuura’s method [38–40]. Because it is one
of the modal expansion methods, we need: (i) definition of a set of modal functions;
(ii) a method to construct an approximate solution; and (iii) the sense in which the
solution approximates the boundary condition. Let us see these points below.

8.2.2.1 Definition of the Set of Modal Functions

Modal functions for the sample problem are solutions of Helmholtz’s equation (8.4)
satisfying some additional requirements. Here, we define a set of modal functions
{ϕm(r) : m = 1, 2, . . .} as a countable set that satisfy the following three require-
ments:

(M1) Each ϕm(r) satisfies the Helmholtz equation in Se;
(M2) Each ϕm(r) meets the 2-D radiation condition;
(M3) Both the set of boundary values {ϕm(s) : m = 1, 2, . . .} and the set of normal

derivatives {∂ϕm(s)/∂ν : m = 1, 2, . . .} are complete (or total)4 in the function
space H = L2(C) consisting of all the square-integrable functions defined on the
boundary C.

The first two requirements are natural and easy to understand; but the third is rather
complicated and needs explanation. Here, we would like to call readers’ attention to
the fact that (M3) is a little different from the original requirement given in [39],which
seems to be lacking in concreteness than the statement above. We have modified the
original statement to require completeness of the boundary values.

Now, let us see a couple of examples first to facilitate the understanding. Then,
we will give additional explanations for this issue throughout this section.

Example 1 The set of radiative separated solutions

ϕm(r) = H (2)
m (kr) exp(imθ) (m = 0,±1,±2, . . .), (8.7)

where H (2)
m (kr) is the second kind Hankel function of order m and the coordinate

origin should be inside Si, the complimentary region of Se.5

4We hope the readers consult a treatise on Functional Analysis, e.g. [14], in case of need.
5If C is a circle centered at the origin, it is apparent that the sets of boundary values and normal
derivatives are both complete because the members of each set are nothing other than the Fourier
bases. Even in case if C is not a circle, the sets are still complete because of Example 2: let L be
a circle centered at the origin and take the Fourier bases for fm(t) in (8.8), then we get a set of
separated solutions.
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Fig. 8.2 Relevant to
definition of the set of modal
functions. The cross section
C is shown by a dashed
curve; L is another closed
curve inside C

Example 2 Let L be a smooth closed curve that is entirely inside Si and De be an
exterior infinite region of L. As shown in Fig. 8.2, Se is a subregion of De; and Di,
the complementary region of De, is a subregion of Si. Now, let an enumerable set of
functions { fm(s) : m = 1, 2, . . .} be complete in the function space L2(L). Then, the
set of potential functions defined in De with fm(t)’s as double-layer density func-
tions on L

ϕm(r) = −
∫
L

fm(t)
∂ψ(kR)

∂νt
dt (r ∈ De; R = tr; m = 1, 2, . . .) (8.8)

is a set of modal functions in De provided that k does not coincide with a member of
{kH(Di)}, the set of eigenvalues of the homogeneous H-wave (Neumann) problem in
Di.6 Here, R is the distance between t and r,ψ(kR) = H (2)

0 (kR)/4i is the free-space
Green’s function, and ∂/∂νt denotes normal derivative at t . Note that the ensemble of
single-layer potentials can also be the set of modal functions provided k /∈ {kE(Di)},
the set of eigenvalues of homogeneous E-wave (Dirichlet) problem in Di.

Example 3 Monopole fields whose poles pm are located on L

ϕm(r) = H (2)
0 (kRm) (r ∈ De; Rm = pmr; m = 1, 2, . . . , M) (8.9)

form a set of modal functions in De when we let M → ∞while letting pmpm+1 → 0
provided there is no internal resonance in Di [26, 30].

Example 4 The set of multiple-multipole fields whose poles pm are on L

ϕmn(r) = H (2)
n (kRm) exp(inθm)

(r ∈ De; Rm = pmr; m = 1, 2, . . . , M; n = 0,±1,±2, . . .)
(8.10)

is also an example of modal functions.

6This is not a strong exception because we can modify the contour L (and hence Di) slightly to
avoid the coincidence. Example 2 is a key theorem of generation of complete sets, which has been
proven by Yasuura and Itakura [39] as an analogy of Runge’s (or Runge-Walsh’s) theorem known
in Theory of Complex Functions.
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8.2.2.2 Construction of an Approximate Solution

To define an approximate solution, we first choose a set of modal functions from
among possible candidates. Let us take the set of separated solutions in the follow-
ing analysis. This is because the set of separated solutions is one of the most familiar
functions and each member has physical meaning.7 Thus we can define an approx-
imate solution as a finite summation of the outgoing separated solutions (8.7) with
unknown coefficients:

ΨN (r) =
N∑

m=−N

Am(M) ϕm(r). (8.11)

Here, Am(M) means that the Am coefficient depends on M = 2N + 1, the num-
ber of modal functions employed.8 Because of the definition of modal functions,
the approximate solution already satisfies the requirements (D1) and (D2). The Am

coefficients, hence, should be determined so that the solution meets the boundary
condition in a sense of approximation. Let us call this procedure boundary matching
and keep in mind that the sense of approximation in boundary matching determines
a method of solution.

We employ the least-squares approximation in Yasuura’s method, i.e., minimiza-
tion of mean-squares boundary residual. We will see in Sect. 8.2.2.3 that this is
a promising way in boundary matching provided the completeness of the set of
boundary values (M3) is guaranteed.

8.2.2.3 Least-Squares Boundary Matching

We employ integral representations of the solutions to explain the method of solution
including convergence of the approximate solutions. For this purpose let us define
the Green’s function of our problem,G(r, r′), satisfying Helmholtz’s equation with a
unit source at r, radiation condition with respect to r′, and a homogeneous boundary
condition9

7Unfortunately, separated solutions are not very efficient in a problemwhereC is stronglymodulated
from a circle (or, in general, a coordinate surface of the system of coordinates employed). As an
example, we show a comparison between types of modal functions: the separated solutions (8.7)
and monopole fields (8.9) in Appendix 4.
8This dependence is natural because the boundary values ofmodal functions, in general, do not form
an orthogonal set in H. This type of summation is usually called a flexible summation. Note that the
approximate solution is defined in a finite summation ofmodal functions. By considering a sequence
of finite-sum solutions, we can avoid the constraint of the convergence area of an infinite series
solution. Yasuura’s original papers [38–40] has been written from this point of view. Reference [9]
includes an interpretation of the difference between series and sequence solutions.
9G(r, r′) is a total electric field observed at r′ (
= r)when a unit line source is placed at r in Fig. 8.1.
Note that employment of the Green function satisfying (8.12) is for convenience and is not essential:
The whole theory has been established in [38–40], where the free-space Green function alone was
used.
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G(r, s) = 0 (r ∈ Se; s ∈ C). (8.12)

Using the Green’s formula to Ψ (r′) and G(r, r′), we have

Ψ (r) = −
C∫

s=0

∂νG(r, s)Ψ (s) ds = −
C∫

s=0

∂νG(r, s) f (s) ds (r ∈ Se). (8.13)

Here, ∂ν denotes the normal derivative at s and the second equality comes from
(D3). Besides, we get a similar representation for the approximate solution ΨN (r).
Subtracting (8.13) from the representation of ΨN (r) side by side, we have

ΨN (r) − Ψ (r) = −
C∫

s=0

∂νG(r, s)[ΨN (s) − f (s)] ds (r ∈ Se). (8.14)

Although (8.14) is a formal representation, we can deduce useful results starting
from it.

Let the observation point r be inside the closed region Se0 in Fig. 8.1. Then,
∂νG(r, s) is a continuous function of s because there is a non-zero distance between
s and r. Taking the absolute value of both sides of (8.14) and applying Cauchy–
Schwarz’s inequality to the right-hand side, we obtain

∣∣ΨN (r) − Ψ (r)
∣∣ ≤
√√√√√

C∫
s=0

|∂νG(r, s)|2 ds ∥∥ΨN − f
∥∥ (r ∈ Se). (8.15)

Here, ‖ f ‖ stands for the Euclidean norm of a function f (s) defined by

‖ f ‖ =
⎡
⎣

C∫
s=0

| f (s)|2 ds
⎤
⎦

1/2

. (8.16)

Because the integrand on the right of (8.15) is a continuous function of r, the integral,
as a function of r, has a maximum inside the closed region Se0:

G(Se0) = max
r∈ Se0

√√√√√
C∫

s=0

|∂νG(r, s)|2 ds (Se0 ⊂ S). (8.17)

Thus we have an estimation

|ΨN (r) − Ψ (r)| ≤ G(Se0)
∥∥ΨN − f

∥∥ (r ∈ Se0 ⊂ Se), (8.18)

which means that the maximal absolute error in Se0 cannot exceed the product of the
mean-squares boundary residual and a factor of proportionality G(Se0). Note that
the latter depends on the region Se0 but does not depend on r.
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Now, let us remember the completeness (M3) of the set of boundary values of
modal functions. Because the given boundary value f (s) is a member ofH = L2(C),
for given any positive number ε, there is a positive integer N0 such that

∥∥ΨN − f
∥∥ < ε (N > N0). (8.19)

That is, there exists a sequence of boundary values of the approximate solutions
{Ψ0(s), Ψ1(s), Ψ2(s), . . .} that converges to the true boundary value f (s) in themean-
squares sense: ∥∥ΨN − f

∥∥→ 0 (N → ∞). (8.20)

Referring to (8.18), we can conclude that the corresponding sequence of approximate
solutions {Ψ0(r), Ψ1(r), Ψ2(r), . . .} converges toΨ (r) uniformly in the closed region
Se010: for given any positive number ε, there is a positive integer N0(Se0, ε) such that

|ΨN (r) − Ψ (r)| < ε (r ∈ Se0 ⊂ Se; N > N0(Se0, ε)). (8.21)

Wecanget such a sequence by solving repeatedly the following least-squares problem
(LSP) stated in the function space H.

LSP 1: E-wave, PC. Find the coefficients Am(M) (m = 0,±1, . . . ,±N ; M =
2N + 1) that minimize the normalized mean-squares boundary residual

EN =
∥∥ΨN − f

∥∥2
‖ f ‖2 = 1

‖ f ‖2
∥∥∥∥∥

N∑
m=−N

Am(M)ϕm − f

∥∥∥∥∥
2

. (8.22)

Note that the least-squares boundarymatchingmeans a relaxation of the boundary
condition because (8.6) implies ‖Ψ − f ‖ = 0; but the converse is not always true.
The smoothing procedure (SP), which we mentioned in Introduction, is an exten-
sion of the relaxation idea: we minimize ‖ ∫ (Ψ − f ) ds‖ instead of ‖Ψ − f ‖; and
extinction of the latter is stronger than vanishing of the former [10, 24, 31, 41, 42].
Although the Yasuura’s method with the SP is a strong tool for 2-D problems, we
shall not get deeply in this subject.

8.2.3 Method of Numerical Solution

Because computers cannot handle continuous functions, we need (i) method of dis-
cretization of LSP 1 and (ii) method of solution to the discretized problem.11

10This kind of convergence is called uniform convergence in wider sense in Se.
11Until the middle of 80s we employed normal equations (NE) in solving LSP 1. Now we solve the
problem using the method in Sect. 8.2.3.2. We state the reason why we stopped using the NE and
attach some comments in Appendix 2.
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8.2.3.1 Method of Discretization

To discretize the problem we first locate J (≥ M) sampling points on C, assign a
set of integers from 0 through J to them, and get a numbered set of sampling points
{s0, s1, . . . , sJ }. Because C is a closed curve, we give two numbers, 0 and J , to the
point s = 0. Two methods are usually used in locating the points:

1. An equal division of the boundary C: In most applications we can recommend to
use the points given by

s j = jC

J
( j = 0, 1, 2, . . . , J ) (8.23)

without any reservation in theory. If we take this method, we may have to solve
an (transcendental) (8.23) in locating the points.

2. An equal division with respect to a coordinate variable: For example, if C is
represented as r = r(θ), it must be convenient to use the discretization

θ j = j2π

J
( j = 0, 1, 2, . . . , J ). (8.24)

This choice, however, means a variable transformation in (8.13) and in other inte-
grals onCandwill lead us solving aweighted least-squares problemunexpectedly.
Users should notice this and be careful in applying this method of location in a
problem where the boundary C is strongly deformed from a circle.12

Having located the sampling points on C, we can define discretized forms of the
functions f (s), ϕm(s), and so on:

f = [ f (s1) f (s2) · · · f (sJ )]
T (8.25)

and
ϕm = [ϕm(s1) ϕm(s2) · · · ϕm(sJ )]

T . (8.26)

Here, the superscript T denotes a transposed vector or matrix and the discretized
forms are J -dimensional complex-valued column vectors. Next, we define a J × M
matrix by

Φ = [ϕ−N ϕ−N+1 · · · ϕN

] =
⎡
⎢⎢⎢⎣

ϕ−N (s1) ϕ−N+1(s1) · · · ϕN (s1)
ϕ−N (s2) ϕ−N+1(s2) · · · ϕN (s2)

...
...

. . .
...

ϕ−N (sJ ) ϕ−N+1(sJ ) · · · ϕN (sJ )

⎤
⎥⎥⎥⎦ (8.27)

12On the other hand, there is a possibility to make possible use of the weighting function accompa-
nying the variable transformation. For example, a Schwarz–Christoffel-type transformation works
to remove the singularity of Green’s function in a problem of an edged cross section [23].
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which is usually termed a Jacobian matrix. Finally, defining an M-dimensional solu-
tion vector

A = [A−N (M) A−N+1(M) · · · AN (M)
]T

, (8.28)

we can represent a discretized form of an approximate solution on C in vector-matrix
notation

Ψ N =
N∑

m=−N

Am(M)ϕm = ΦA. (8.29)

Thus, we have an approximation to the mean-squares boundary residual in (8.22):

EN J = ‖ΦA − f‖2
‖f‖2 . (8.30)

Here, ‖f‖ denotes a Euclidean norm of a J -dimensional complex-valued vector f.
Because C is a closed curve and f (s0) = f (sJ ), etc., (8.30) can be understood as
a trapezoidal-rule approximation of (8.22). Now, we can state a discretized form of
LSP 1 as follows:

DLSP 1: E-wave, PC. Find the solution vector A that minimizes the numerator of
(8.30).

Here arises an important issue of the number of sampling points13: How many J
do we need? If we answer to this question in generality, we should say: It depends.
However, employing the results of examination in Sect. 8.3.1, we can state an exper-
imental rule:

J
.= 2(2N + 1) = 2M. (8.31)

Here, the symbol
.=means that the number on the right-hand side is usually sufficient

in finding the scattered field. This might be considerably smaller than what unini-
tiates expect because DLSP 1 with the number J of (8.31) does not seem to be a
good approximation of LSP 1. This is because an inner product (C/J )f†g implicitly
included in the norm on the right of (8.30) cannot be a precise approximation of
( f, g) in (8.22) if either f (r) or g(r) is a higher-order space harmonic. Nevertheless,
DLSP 1 with (8.31) gives an approximate solution having converged with respect
to J . We know this welcome nature of DLSP 1 since we started solving the scat-
tering problem on a computer in early 70s. At that time the method in Sect. 8.2.3.2
was not known widely and we solved the problem using a normal equation (NE;
see Appendix 2). We found (8.31) was effective even in using the NE where the
inner products (C/J )f†g appeared explicitly as the matrix elements. In the method
of solution that we introduce next, we do not have to calculate these inner products.
That is one of the advantages of the method.

13It is more reasonable to ask “How many linear equations do we need?” This is because (i) we
get two equations at one sampling point in a 2-media problem (see Sect. 8.2.4); and (ii) we should
understand (8.31) as a relation between the numbers of equations J and unknowns M .
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8.2.3.2 Solution Method to the Discretized Problem

To solve the least-squares problem in the J -dimensional vector space, we employ
orthogonal decomposition of the Jacobian matrix: the singular-value decomposition
(SVD) and the QR decomposition (QRD) [15]. They have the following features:

• The SVD informs us of the character of the Jacobian matrix through singular
values. This is helpful in designing and testing a process of numerical solution,
in particular, choice of modal functions, number and location of sampling points,
etc. Instead, the computational complexity, in both memory and time, is bigger
than that of the QRD.

• The QRD needs less computation than the SVD and solves the problem provided
no rank deficiency occurs.14

Hence, we recommend the use of the SVD for designing and testing the discretized
least-squares problem. After the problem is established, application of the QRD is
appropriate. Let us see how to use these decompositions in examining and solving
DLSP 1.

Utilization of the SVD

Applying the SVD, we get a decomposition of the Jacobian matrix in the form

Φ = UΣV†, (8.32)

where U (J × J ) and V (M × M) are unitary matrices, and † denotes Hermitian
conjugation: V† = V̄T. Σ is a stack of an M × M diagonal matrix and a (J − M) ×
M zero matrix. The diagonal elements of Σ , σm , are non-negative and are called the
singular values of Φ. Arranging the M singular values in the order of decreasing
magnitude, we have σ1 ≥ σ2 ≥ · · · ≥ σM (M = 2N + 1). Let us call σ1 and σM by
σmax and σmin because this order of σm does not necessarily agree with the order of
modal functions. The following items are widely known and accepted:

• The singular values are non-negative square roots of the eigenvalues of a posi-
tive semidefinite Hermitian matrix Φ†Φ: σm(Φ) = √λm(Φ†Φ). And, vanish of
the smallest singular value, σmin = 0, means detΦ†Φ = 0. Because Φ†Φ is the
coefficient matrix of the NE (8.106) in Appendix 2, this is a serious problem: the
least-squares problem does not have a unique solution. Although σmin = 0 in strict
sense seldom occurs in practice, very tiny σmin is not rare and causes substantial
rank deficiency.

• The ratio of the maximum singular value to the minimum

cond(Φ) = σmax

σmin
(8.33)

14In addition, the solution by a QRD program, usually, is not inferior in accuracy to one by an SVD
program. This may be because of the greater computational complexity of the SVD.
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defines the condition number ofΦ, which shows the degree of numerical difficulty
in solving the least-squares problem with the Jacobian matrix Φ. In general, a
problem with a small cond(Φ) is easy to solve and is termed well-conditioned;
while one with a huge cond(Φ) is difficult and called ill-conditioned. In this
connection an empirical rule is known: if the reciprocal of cond(Φ) is of the same
order as or smaller than the machine epsilon15 of the system of floating-point
numbers, effective rank ofΦ might be less than M and DLSP 1 may not be solved
properly.

Although our main purpose to employ the SVD is to check the nature of Φ, we
can solve DLSP 1 in the following way:

(a) Modifying ‖ΦA − f‖2 by insertion of (8.32), we have

‖ΦA − f‖2 = ‖U†(ΦA − f)‖2 = ‖ΣV†A − U†f‖2 = ‖ΣB − d‖2. (8.34)

Here, we have used that the matrices U and V are unitary and that a unitary
transformation does not change the norm of a vector. Also, note that the last
equal sign defines the vectors B and d.

(b) We get the solution to DLSP 1 from

Bm = dm
σm

(m = 1, 2, . . . , M (= 2N + 1)) (8.35)

and the squared norm by

‖ΦA − f‖2 =
J∑

j=M+1

|d j |2. (8.36)

Utilization of the QRD

Employment of the QRD leads us to a decomposition of the form

Φ = QR̃ = Q

[
R
0

]
, (8.37)

where Q is a J × J unitary matrix and R̃ is a stack ofM × M upper triangular matrix
R and a (J − M) × M zero matrix. Having the decomposition (8.37), we can solve
DLSP 1 by the following procedure:

(a) Inserting (8.37) into ‖ΦA − f‖2, we have

15The machine epsilon, EPS, is the minimum positive number that satisfies 1 + EPS > 1 in the
floating-point system employed.



182 A. Matsushima et al.

‖ΦA − f‖2 = ‖Q†(ΦA − f)‖2 = ‖R̃A − Q†f‖2 ≡
∥∥∥∥
[
RA
0

]
−
[

d
z

]∥∥∥∥
2

,

(8.38)
where the last equality defines the vectors d and z.

(b) We obtain the solution by solving

RA = d. (8.39)

Because R is triangular, we need only back substitution to solve (8.39). The
residual norm is given by

‖ΦA − f‖2 = ‖z‖2. (8.40)

8.2.4 Application to Dielectric or Metal Obstacles

This section introduces the Yasuura’s method applied to problems with dielectric or
metal obstacles [35, 43–45]. Although metals have unique nature, we here regard
a metal as a dielectric with a complex permittivity depending on the frequency.
Therefore we consider a material whose permittivity and refractive index are given
by complex numbers ε and n = √

ε/ε0. Usually thematerial is penetrable and there is
a non-zero transmitted field in Si, the complementary region of Se. Thus we have two
unknown functions Ψ i(r) (r ∈ Si) and Ψe(r) (r ∈ Se); and we need two boundary
conditions to determine the two unknown functions. The continuity of tangential
components of the electric and magnetic field satisfies the necessity.

8.2.4.1 E-Wave Scattering by a Cylindrical Obstacle Made of a
Dielectric

Let us assume that the obstacle in Fig. 8.1 is made of a dielectric and that an E-
wave is incident. The electric field in Se is a sum of the incident and the scattered
wave: uz(F + Ψe)(r); while the field in the interior region Si is the transmitted field
uzΨ i(r). They are the solutions of Helmholtz’s equation in each region:

{(∇2 + k2
)
Ψe(r) = 0 (r ∈ Se),(∇2 + (nk)2
)
Ψ i(r) = 0 (r ∈ Si).

(8.41)

The exterior solution, in addition, should meet the radiation condition (8.5). The con-
tinuity of tangential components of electric andmagnetic fields requires the boundary
conditions16

16To get the latter we set uν × (He − Hi) = 0. Insertion of He = (i/ωμ)∇Ee × uz etc. finds the
desired relation. Here, Ee = F + Ψe stands for the total electric field in Se.



8 Introduction to Yasuura’s Method of Modal Expansion … 183

{
Ψe(s) − Ψ i(s) = f (s) ≡ −F(s),
∂Ψe(s)

∂ν
− ∂Ψ i(s)

∂ν
= g(s) ≡ −∂F(s)

∂ν
.

(8.42)

Thus we get a boundary-value problem for Ψe(r) and Ψ i(r):

Problem 2 E-wave, dielectric. Find the electric fields Ψe(r) and Ψ i(r) that satisfy
(8.41), (8.5), and (8.42).

Note that in dealingwith anH-wave problem, the second line of (8.42) should include
the refractive index n or permittivity ε (see (8.100) in Appendix 1).

8.2.4.2 Modal Functions and Approximate Solutions

We need two sets of modal functions to solve the problem, one is for Ψe(r) and
another is for Ψ i(r). Let us call them the exterior and interior modal functions and
represent them as {ϕem(r)} and {ϕ im(r)}. They should satisfy the requirements below,
which are almost in common with the conditions from (M1) through (M3) given in
Sect. 8.2.2.1

(MD1) Each member of the set of exterior modal functions satisfies the Helmholtz
equation in Se and meets the radiation condition at infinity.

(MD2) Each member of the set of interior modal functions satisfies the Helmholtz
equation in Si.

(MD3) The sets of boundary values {ϕem(s)} and {ϕ im(s)}, and the sets of nor-
mal derivatives {∂ϕem(s)/∂ν} and {∂ϕ im(s)/∂ν} are all complete in the function
space H.

Here, we take the sets of separated solutions again because they are familiar to many
people working with boundary-value problems. Then, the exterior and interior modal
functions are:

{
ϕem(r) = H (2)

m (kr) exp(imθ), ϕ im(r) = Jm(nkr) exp(imθ)

(m = 0,±1,±2, . . .).
(8.43)

Here, Jm(nkr) stands for the Bessel function of orderm. Then, we can define approx-
imate solutions in Se and Si as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ΨeN (r) =
N∑

m=−N

Aem(M)ϕem(s) (r ∈ Se),

ΨiN (r) =
N∑

m=−N

Aim(M)ϕ im(s) (r ∈ Si).

(8.44)

They satisfy the Helmholtz equation in each region and ΨeN meets the radiation
condition.
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8.2.4.3 Error Estimation and Least-Squares Boundary Matching

After some analytical work we get error estimations similar to (8.18)17:

|ΨeN (r) − Ψe(r)| ≤ Ge1(Se0)

∥∥∥∥∂ΨeN

∂ν
− ∂ΨiN

∂ν
− g

∥∥∥∥
+ Ge2(Se0) ‖ΨeN − ΨiN − f ‖ (r ∈ Se0 ⊂ Se)

(8.45)

and

|ΨiN (r) − Ψ i(r)| ≤ G i1(Si0)

∥∥∥∥∂ΨeN

∂ν
− ∂ΨiN

∂ν
− g

∥∥∥∥
+ G i2(Si0) ‖ΨeN − ΨiN − f ‖ (r ∈ Si0 ⊂ Si).

(8.46)

Here, Se0 and Si0 are arbitrary closed regions in Se and Si, and Gpq (p = e, i; q = 1,
2) are positive constants depending on Se0 and Si0.

We can prove that: provided the sets of modal functions satisfy the requirement
(MD3), there exists a sequence of pairs of approximate solutions

[
Ψe0(r)
Ψi0(r)

]
,

[
Ψe1(r)
Ψi1(r)

]
, . . . ,

[
ΨeN (r)
ΨiN (r)

]
, . . . (8.47)

whose boundary values and normal derivatives satisfy

EN ≡
∥∥ΨeN − ΨiN − f

∥∥2
‖ f ‖2 +

∥∥∂ΨeN/∂ν − ∂ΨiN/∂ν − g
∥∥

‖g‖2 → 0 (N → ∞).

(8.48)
The sequence (8.47), hence, converges to the true solutions of the problem uniformly
in wider sense in Se and Si:

ΨpN (r) → Ψp(r) (N → ∞; p = 1, 2; uniformly in Sp0). (8.49)

Members of such a sequence can be found by solving the least-squares problem:

LSP 2: E-wave, dielectric. Find the modal coefficients {Apm(M) : m = 0,±1,
. . . ,±N } (p = e, i) that minimize the normalized mean-square error EN defined in
(8.48).

It is worth to note the following matters: Because the convergence in (8.48) is
a consequence of completeness of the four sets of boundary functions in a product
space H × H, the choice of denominators in (8.48), ‖ f ‖2 and ‖g‖2, is no more than a

17We cannot include the derivation of equations from (8.45) through (8.49) because it takes much
space. Interested readers can find the details in [35, 43–45]. The paper by Petit and Cadilhac [33]
is also helpful.
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convention to get non-dimensional quantities or to unify the units.18 Speaking from a
computational point of view, however, the ratio ‖ f ‖2/‖g‖2 may have an effect on the
condition number of LSP 2 and, sometimes it is effective to introduce a parameter
γ (0 < γ < 1) to modify the definition of EN as

EN ≡ γ

∥∥ΨeN − ΨiN − f
∥∥2

‖ f ‖2 + (1 − γ )

∥∥∂ΨeN/∂ν − ∂ΨiN/∂ν − g
∥∥2

‖g‖2 . (8.50)

The parameter should be determined by optimization to get a permissible condition
number.

8.2.4.4 Notes on the Method of Numerical Computation

In above formulation we have 2M = 2(2N + 1) unknowns. If we apply the rule in
Sect. 8.3.1 (and also in Sect. 8.2.3.1), we need 2 × 2M = 4M linear equations. The
number of sampling points required for the 4M equations, however, is 2M again.
This is becausewe have two equations at each sampling point: the first and the second
equation of (8.42).

Let us follow the method of discretization in Sect. 8.2.3.1. Locating J (= M =
2(2N + 1)) sampling points on C, we define J -dimensional vectors

{
f = [ f (s1) f (s2) · · · f (sJ )]

T ,

g = [g(s1) g(s2) · · · g(sJ )]
T ,

(8.51)

{
ϕem = [ϕem(s1) ϕem(s2) · · · ϕem(sJ )]

T ,

ϕim = [ϕ im(s1) ϕ im(s2) · · · ϕ im(sJ )]
T (8.52)

and {
∂νϕem = [∂νϕem(s1) ∂νϕem(s2) · · · ∂νϕem(sJ )]

T ,

∂νϕim = [∂νϕ im(s1) ∂νϕ im(s2) · · · ∂νϕ im(sJ )]
T ,

(8.53)

where the mode-number m runs from −N to N .
Next, we construct four J × M matrices

{
Φ11 = [ϕe,−N ϕe,−N+1 · · · ϕe,N

]
,

Φ12 = [ϕi,−N ϕi,−N+1 · · · ϕi,N

] (8.54)

and {
Φ21 = [∂νϕe,−N ∂νϕe,−N+1 · · · ∂νϕe,N

]
.

Φ22 = [∂νϕi,−N ∂νϕi,−N+1 · · · ∂νϕi,N

]
.

(8.55)

18Theuse of intrinsic impedance is also possible and iswidely employed.That is: find the coefficients
by minimization of |error in E|2 + Z2

0 |error in H|2. Here, Z0 is the intrinsic impedance of vacuum
or surrounding material. We use this formulation in Appendix 3.
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Arranging the four matrices, we get a 2J × 2M Jacobian matrix

Φ =
[
pΦ11 pΦ12

qΦ21 qΦ22

]
. (8.56)

Here,

p = γ

f †f
, q = 1 − γ

g†g
(8.57)

are normalizing constantswith the parameter γ appeared in (8.50).19 Finally, defining
a 2M-dimensional solution vector

A =
[

Ae

Ai

]
, (8.58)

where {
Ae = [Ae,−N (M) Ae,−N+1(M) · · · Ae,N (M)

]T
,

Ai = [Ai,−N (M) Ai,−N+1(M) · · · Ai,N (M)
]T (8.59)

are M (= 2N + 1) dimensional column vectors. Thus, we can state a discretized
problem as:

DLSP 2: E-wave, dielectric. Find the solution vector A that minimizes the dis-
cretized form of normalized boundary residual

EN J =
∥∥∥∥ΦA −

[
p f
q g

]∥∥∥∥
2

=
∥∥∥∥ pΦ11Ae + pΦ12Ai − pf
qΦ21Ae + qΦ22Ai − qg

∥∥∥∥
2

. (8.60)

8.2.5 Application to Gratings

Here we consider the problem of plane-wave diffraction by a grating and state the
points of difference from scattering by a cylindrical obstacle. The book edited by Petit
[32] includes a nice introduction to Yasuura’s method applied to grating problems
as of late 70s.

8.2.5.1 Diffraction by a PC Grating

Figure8.3 shows the cross section of a grating, an incident wave, and the system of
coordinates. The cross section C is periodic in X with a period d and the surface is

19If the compensation by γ is not necessary, we can set p = 1/f †f and q = 1/g†g or use the
intrinsic impedance.
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Fig. 8.3 Diffraction by a PC
grating

uniform in Z . The semi-infinite region S over C is a vacuum and the region below C
is occupied by a PC.We assume C is represented by a single-valued smooth function

C : y = η(x), (8.61)

where η(x) is periodic in x , η(x + d) = η(x), and (x, y) denotes a point on C.
Let an electromagnetic wave having an electric field

uZ F(r) = uZ exp(−ikX sin θ + ikY cos θ) (8.62)

is incident on the grating. This case of polarization is termed E-wave, TE wave, or
s-polarization.20 Here, r = (X,Y ) is a point in S, uZ is a unit vector in Z , and θ

is the angle of incidence shown in Fig. 8.3. The diffracted electric field has only a
Z -component, which we describe by Ψ (r). Ψ (r) is the solution of the following
problem.

Problem 3 E-wave, PC grating. Find Ψ (r) that satisfies the conditions below:

(GD1) The 2-D Helmholtz equation in S;
(GD2) A radiation condition in Y that Ψ (r) propagates or attenuates in positive

Y ;
(GD3) A periodicity condition

Ψ (X + d,Y ) = exp(−ikd sin θ) Ψ (X,Y ); (8.63)

(GD4) The boundary condition

Ψ (x, η(x)) = f (x) ≡ −F(x, η(x)). (8.64)

20s stands for senkrecht (German), which means the electric field is perpendicular to the plane of
incidence, the plane spanned by uY (grating normal) and the incident wavevector.
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Conditions (GD1) and (GD4) are common to the case of cylindrical obstacle in
Sect. 8.2.1, while (GD2) is quite different from (D2) and (GD3) is a new requirement.
These differences come from the pseudo-periodic nature of the problem. Because a
grating has a periodic structure, and because we have assumed a plane-wave inci-
dence, the phenomena at (X,Y ) and (X + d,Y ) are almost the same; the only dis-
crepancy can be seen in the phase difference (8.63). Hence, if we divide S by vertical
lines X = 0,±d,±2d, . . . as shown in Fig. 8.3, the diffracted fields in neighboring
strip regions are the same except for the phase shift. This is a characteristic fea-
ture of a grating problem called quasi- or pseudo-periodicity and explains why the
1-D radiation condition appears in (GD2). In solving a grating problem, hence, we
can assume that the observation point r = (X,Y ) is inside the first strip region S1
(0 < X ≤ d; Y ≥ η(X)) shown in Fig. 8.3.

8.2.5.2 Modal Functions, Approximate Solution, and Key Points
in the Solution Method

Here againwe choose separated solutions asmodal functions. The separated solutions
satisfying the periodicity are known as Floquet modes. We take the Floquet modes
satisfying the radiation condition (GD2)

ϕm(r) = exp(−iαm X − iβmY ) (m = 0,±1,±2, . . .) (8.65)

as the set of modal functions, where

αm = k sin θ + 2mπ

d
, βm =

√
k2 − α2

m (Reβm ≥ 0, Imβm ≤ 0). (8.66)

The term k sin θ inαm is for the periodicity, the definition ofβm implies theHelmholtz
equation, and the sign of βm (positive or negative imaginary) is for the radiation
condition.

We construct an approximate solution following the way we took in Sect. 8.2.2.2:

ΨN (r) =
N∑

m=−N

AE
m(M) ϕm(r). (8.67)

This solution satisfies conditions (GD1), (GD2), and (GD3). Hence, the AE
m coeffi-

cients21 should be determined so that the solution satisfies the boundary condition
(GD4) approximately. Let us see briefly the least-squares boundary matching works
to yield a sequence of solutions converging to the true solution.

Some analysis starting from an assumption that r is inside a closed region S10 (⊂
S1) leads us to an estimation

21The superscript E denotes that the coefficients concern the E-wave. Later we will also use the
superscripts H, TE, and TM in accordance with polarizations.
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|ΨN (r) − Ψ (r)| ≤ G(S10)‖Ψ̃N − f̃ ‖ (r ∈ S10 ⊂ S1). (8.68)

Here, G is a positive constant depending on the closed region S10 and the quanti-
ties with tildes, e.g. f̃ , mean periodic functions derived from the pseudo-periodic
functions:

f̃ (s) = exp(iα 0x) f (x, y) = − exp(−iβ 0y), (8.69)

Ψ̃N (s) = exp(iα 0x)ΨN (x, y) =
N∑

m=−N

AE
m(M) ϕ̃m(x, y), (8.70)

and

ϕ̃m(x, y) = exp(iα 0x)ϕm(x, y) = exp

(
−2mπ ix

d
− iβm y

)
. (8.71)

The norm of a function g(s) defined on C1, the first period of C, is defined by

‖g‖ =
⎡
⎣

C∫
s=0

|g(s)|2ds
⎤
⎦

1/2

, (8.72)

where C denotes the length of C1. Thus we have a least-squares problem:

LSP 3: E-wave, PC grating. Find the AE
m coefficients that minimize the numerator

of the normalized mean-square error

EN =
∥∥∥Ψ̃N − f̃

∥∥∥2∥∥∥ f̃
∥∥∥2

. (8.73)

The modification of the boundary values to define the periodic functions is the
key point in the solution of grating problems. Introducing the modification, we can
establish a correspondence between one period of the grating surface C1 and the
cross section of a cylindrical obstacle C in Sect. 8.2.1.22 The method of numerical
solution for LSP 3 is similar to that in Sect. 8.2.3. To solve the problem of diffraction
by a grating made of dielectric or metal we can combine the method in this section
with that in Sect. 8.2.4. Guidance to the problem of conical diffraction can be found
in Appendix 3.

22If we employ the SP, this correspondence is essentially important because we need periodicity
of the functions defined on the boundary. In using Yasuura’s method without the SP, we can say
the following points: (1) If we get the solution through the NE, this modification is not necessary
because it is done automatically in calculating the inner products; (2) While if we employ the
QRD or SVD: (2.i) The modification may accelerate the convergence of the solutions because
the target function and the modal functions are periodically continuous after modification; (2.ii)
And, a quadrature by parts (or rectangular-rule) approximation is equivalent to a trapezoidal-rule
in numerical integrations.



190 A. Matsushima et al.

8.3 Numerical Examples

In this section we show some results of numerical computations obtained by the
methods in the last section. First, we examine the nature of the Jacobian matrices
taking grating problems as examples to show the validity of the experimental rule
(8.31). Meanwhile we add some comments that are useful in applying the method.
Then we give the results of four problems of practical interest.

8.3.1 Rule on the Number of Sampling Points

We have solved the problem of diffraction by a grating made of PC and by one made
of BK7 optical glass varying the number of sampling points or of linear equations.
The results support our experimental rule. In addition, we have made a comparison
between the two methods of locating the sampling points, (8.23) and (8.24), intro-
duced in Sect. 8.2.3.1 and found little difference in the rage J ≥ 2M for the problem
parameters employed in numerical analysis.

8.3.1.1 A PC Grating

We consider the grating shown in Fig. 8.3 and assume that the cross section C is
given by23

C : y = H

(
cos

2πx

d
− 1

)
. (8.74)

Weassume also that anE- orH-polarized planewave is incident at θ = 0 (normal inci-
dence). Other physical parameters are: d = 556nm, H/d = 0.15, andλ = 500nm.24

The computational parameters are: the number of truncation N = 20; the total num-
ber of modal functions M = 41; and the number of sampling points J is in the range
M ≤ J ≤ 4M . This means that the number of unknown coefficients is M and the
number of linear equations is between M and 4M .

The first example, Fig. 8.4, shows the convergence of the solution and related
parameters in the E-wave. The curves in Fig. 8.4a includes the maximum and mini-
mum singular value, the condition number cond(Φ), E20 J of (8.30), and an error on
the power balance

eN J = 1 −
∑
prop

ρm = 1 −
∑
βm>0

βm

β 0
|AE

m(M, J )|2, (8.75)

23Note that the bias setting (we used−1 here) has an effect on the accuracy of numerical computation
when the grating is deep.
24Although the use of normalization bywavelength (i.e., kd = 2πd/λ etc.) is convenient in handling
a problem with a PC obstacle, we employ real length here.
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Fig. 8.4 Convergence of the solutions with respect to J for a PC grating in the E-wave. θ = 0,
d = 556nm, H/d = 0.15, and λ = 500nm: a Cond(Φ) and errors; b AE

0 (20, J ) and AE
10(20, J )

where
∑

prop and
∑

βm>0 mean the summation in respect to the propagating orders.25

We observe these quantities are approaching final values with increasing J ; and
have converged for J ≥ 2M .26 Figure8.4b illustrates the convergence of AE

0 (20, J )

and AE
10(20, J ) coefficients. The former has converged before reaching J = 2M ;

while the latter is with small ripples until J = 2.2M . We, however, can neglect this
oscillation in finding the diffractedwave because themodewithm = 10 is evanescent
and cannot be observed at a point apart from the grating surface.

The second set of figures, Fig. 8.5, displays the same thing for the H-wave. The
curves in Fig. 8.5a show the max and min singular value, cond(Φ), E20 J , and e20 J .
While in Fig. 8.5b we show the convergence of AH

0 (20, J ) and AH
10(20, J ). We

observe all the quantities have converged substantially in the range J ≥ 2M .
The third example, Fig. 8.6, shows the convergence of solutions: N dependence

of the normalized mean-square error EN and energy error eN of E- and H-wave
solutions. The rule J = 2M is applied. Because the surfacemodulation ismoderate in
the problem,weget precise solutionswith 10−6 or 10−4 percent energy error easily for
both E- and H-wave problem.27 It is worth to mention that a modal coefficient—e.g.
AE
m(M), as a function of M , converges to a final value: AE

m(M) → AE
m (M → ∞).

This convergence, however, is not uniform with respect to m.

25ρm is referred to as the (reflection) efficiency of the mth order.
26When the number of truncation is small (e.g., N ≤ 10), we sometimes observe a phenomenon
that the condition number continues to decrease slightly beyond J = 2M due to tiny increment of
σmin.
27We should notice, however, that the accuracy of an H-wave solution is lower than that of an
E-wave solution by one or two digits. This is observed generally; and was Yasuura’s motivation
of introducing the SP. His idea came from the fact that a Neumann problem for an electrostatic
potential is equivalent to a Dirichlet problem for a stream function. The prototype of the SP, hence,
was called an algorithm using the stream function in a wave field.
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Fig. 8.5 Convergence of the solutions with respect to J for a PC grating in the H-wave. Optical
parameters are the same as those in Fig. 8.4: a Cond(Φ) and errors; b AH

0 (20, J ) and AH
10(20, J )

Fig. 8.6 Convergence of the solutions with respect to N for a PC grating. Optical parameters are
the same as those in Fig. 8.4: a E-wave; b H-wave

8.3.1.2 A BK7 Optical Glass Grating

Here we examine the case of a dielectric grating made of an optical glass BK7 whose
refractive index is 1.5139 [1]. Other parameters are the same as in Sect. 8.3.1.1. In
the present problem we have transmitted fields (Et and Ht) in the region V2 below
the grating surface in addition to the reflected fields (Er and Hr) over the grating V1.
We, hence, define approximate solutions following (8.44) in Sect. 8.2.4. That is, we
employ Floquet modes in V1 and V2 and construct approximations of leading fields
in each region in the form of finite linear combinations of the Floquet modes. Let the
number of truncation be N . Then, we have 2(2N + 1) = 2M unknown coefficients
in total.
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Fig. 8.7 Convergence of the solutions with respect to J for a BK7 grating in the E-wave. θ = 0,
d = 556nm, H/d = 0.15, and λ = 500nm: a Cond(Φ) and errors; b AE

0 (20, J ) and AE
10(20, J )

Fig. 8.8 Convergence of the solutions with respect to J for a BK7 grating in the H-wave. Optical
parameters are the same as those in Fig. 8.7: a Cond(Φ) and errors; b AH

0 (20, J ) and AH
10(20, J )

Figure8.7 shows the convergence of the solution and related parameters as func-
tions of the number of sampling points J in the E-wave and N = 20.We observe that
all the errors and the parameters have converged in the range J ≥ 2M = 2(2N + 1)
except for small ripples. Figure8.8 shows the same thing in the H-wave. This means
that the number of linear equations in the least-squares problem can be twice as many
as the number of unknowns (2 × 2M = 4(2N + 1); see Sect. 8.2.4.4).

Figure8.9 illustrates the N dependence of the errors of the solutions. We get
precise solutions with 10−5 percent energy error easily on a personal computer.



194 A. Matsushima et al.

Fig. 8.9 Convergence of the solutions with respect to N for a BK7 grating. Optical parameters are
the same as those in Fig. 8.7: a E-wave; b H-wave

8.3.2 Scattering by Relatively Deep Gratings

Yasuura’s method, when combined with the partition of the groove region, can solve
the problem of diffraction from a deep grating with a depth-to-period ratio beyond
unity. In the conventional Yasuura’s method without partition, this ratio is said to
be about 0.5 and a little less than 0.4 in the E- and H-wave cases, respectively.
In the present subsection, some numerical results are given for the scattering by
relatively deep gratings using a combination of up-and down-going Floquet modal
functions [22].

Theperiod andheight of the sinusoidal profile ared and2H , respectively, as shown
in Fig. 8.10. At first we deal with a perfectly conducting grating as a fundamental
problem where the electromagnetic fields exist only in the vacuum region. The semi-
infinite region over the grating surface is divided into an upper half plane U0 and a
groove region a fictitious boundary (a horizontal line). The latter is further divided
into shallow horizontal layers U1,U2, . . . ,UQ again by fictitious boundaries.

An approximate solution in U0, that is Ψ0N (r), is defined in a usual manner as
(8.67), while the solutions in Uq (q = 1, 2, . . . , Q) include not only the up-going
but also the down-going modal functions as

ΨqN (r) =
N∑

m=−N

[
A+
qm(N ) ϕ+

m (r − uY yq) + A−
qm(N ) ϕ−

m (r − uY yq−1)
]
, (8.76)

where ϕ±
m (r) = exp(iαm X ± iβmY ), and the plane Y = yq is the boundary between

Uq and Uq+1. Thus the total number of unknown coefficients is (2N + 1)(2Q + 1).
These coefficients should be determined in order that the solutionsmeet the boundary
condition (GD4) and an additional set of boundary conditions on the Q fictitious
boundaries:
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Fig. 8.10 Cross section of a
perfectly conducting (PC) or
dielectric sinusoidal grating.
In the case of PC grating,
partition into Q + 1 layers is
done only in the vacuum
region

⎧⎪⎪⎨
⎪⎪⎩

(
Fδq0 + Ψq

)∣∣
Y=yq+0 = Ψq+1

∣∣
Y=yq−0 ,

∂
(
Fδq0 + Ψq

)
∂Y

∣∣∣∣∣
Y=yq−0

= ∂Ψq+1

∂Y

∣∣∣∣
Y=yq−0

,
(8.77)

where δq0 is Kronecker’s delta. The mean-square error is defined in the same form as
(8.73), but the integration range in the norm (8.72) must include not only the grating
surface but also the fictitious boundaries.

Let us check the convergence of the results obtained by the present method.
Figure8.11 shows the variation of the normalized mean-square error and the energy
error as functions of the number of truncation N for both E- and H-wave incidence.
As is observed in these figures, the mean-square error decreases as N increases. An
approximate solution with 0.1 percent energy error is accomplished at N = 14 for an
E-wave. In the H-wave case convergence of solutions is not so fast as in the E-wave
case. We attain to one percent energy error at N = 23 in that case of polarization.

Figure8.12 shows comparison of reflection efficiency for a perfectly conducting
grating as functions of the incident angle at E-wave incidence. The numbers (N , Q)

are (15, 4), (15, 5), and (30, 20) as H/d = 0.31, 0.4, and 1.066, respectively. The
curves and symbols represent the present results and the results by the integral equa-
tionmethod [46].Wefindgood agreement between the results. For dielectric gratings,
partitionmust bemade not only in the vacuum region but also in the dielectric one. As
a result, numbers of unknown modal coefficients and boundary conditions become
doubled compared with the previous case.

Figure8.13 shows comparison of transmission efficiency for a dielectric grating
as functions of the incident angle at H-wave incidence. The numbers (N , Q) are
(11,4). The curves and symbols represent the present results and the results by the
finite element method [20]. We find that the results agree with each other except for
the grazing limit.
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Fig. 8.11 Normalized
mean-square error EN and
energy error eN as functions
of the truncation number N
for a PC grating with
2H/d = 1, d/λ = 0.5, and
θ = 30◦

Fig. 8.12 Reflection
efficiency in percent for a PC
grating with d/λ = 0.75 at
E-wave incidence.
Comparison with the integral
equation method [46]

Fig. 8.13 Transmission
efficiency in percent for a
dielectric grating with
εr = 4, 2H/d = 1, and
d/λ = 0.6 at H-wave
incidence. Comparison with
the finite element method
[20]
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Fig. 8.14 Diffraction by a dielectric grating: a Conical mounting; b Definition of δ

Although there are a couple of methods that are capable of solving the problems
of extremely deep gratings, the present results make sense because they show a limit
of a conventional modal-expansion approach when using the Floquet modes as basis
functions.

8.3.3 Plasmon Surface Waves Excited on a Metal Grating
Placed in Conical Mounting

We show some numerical results in regard to plasmon surface waves excitation on
a metal grating placed in conical mounting [29]. Conical mounting is an optical
arrangement in which the plane of incidence is not perpendicular to grooves of a
grating as shown in Fig. 8.14. Readers can find detailed description of problem in
Appendix 3. We here illustrate the results obtained by the method explained there.

We deal with a sinusoidal silver grating whose surface profile is given by z =
H sin(2πx/d). The upper regionV1 over the grating surface is assumed to be vacuum
with a refractive index n1 = 1 and the grating is made of silver with a complex
refractive index n2. As an incident light we consider an electromagnetic plane wave,
which is specified by the wavenumber in vacuum (k = 2π/λ), the polar angle (θ )
between the wavevector and the grating normal, and the azimuthal angle (φ) between
the X axis and the plane of incidence.

The diffracted fields in the conical mounting are decomposed into a TE and a TM
componentwhichmean that the relevant electric andmagnetic field are perpendicular
to the plane of incidence. The efficiency of the mth-order diffracted mode in V1,
hence, is represented as ρm = ρTE

m + ρTM
m . Here, ρTE

m or ρTM
m is the efficiency of the
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Fig. 8.15 ρ0 and ρTotal as
functions of wavelength λ

TE- orTM-component of themth-order diffractedmode.28 In the numerical examples
below we deal with a shallow grating made of silver with a period d = 0.556µm
and an amplitude H = 0.0278µm. Yasuura’s method provides sufficiently reliable
results for the problem of such a grating at the truncation number of the approximate
solutions N = 10.

Figure8.15 shows the efficiency of the 0th-order diffracted mode ρ0 and the total
diffraction efficiency ρTotal as functions of wavelength λ.29 The incident light is in
the TM incidence—a polarization angle δ = π/2 in (8.114) of Appendix 3—where
the magnetic field is perpendicular to the plane of incidence. The polar angle and the
azimuthal angle are chosen as θ = 9.2◦ and φ = 30◦. As a complex refractive index
of silver n we take the interpolated values for the experimental data in the literature
[8]. In the figure we observe partial absorption of incident light at λ = 0.515µm and
λ = 0.650µm as dips in the total efficiency curve.30 As we will see later, the dips
are associated with plasmon resonance absorption, which is caused by coupling of
surface plasmons with an evanescent mode diffracted by the grating [21, 34].

Figure8.16 shows the 0th-order efficiency ρ0 and the TE and TM component ρTM
0

and ρTE
0 as functions of θ with a fixed azimuthal angle φ = 30◦. The wavelength

is chosen as λ = 0.650µm and a refractive index is n2 = 0.07 − i4.2. Remaining
parameters are the same as those of Fig. 8.15. We observe in Fig. 8.16 partial absorp-
tion of incident light at θ = 9.2◦, we call it a resonance angle, as a dip in the ρ0 curve.
In addition we notice that ρTM

0 takes a minimal value at the resonance angle, but ρTE
0

increases there to the contrary. This illustrates the enhancement of TM-TE mode
conversion [5] that a TM component of the incident light is strongly converted into a
TE component of the 0th-order diffracted light when plasmon resonance absorption
occurs in a metal grating in conical mounting.

28The efficiencies are given by ρTE
m = (γ1m/γ10) |ATE

1m |2 and ρTM
m = (γ1m/γ10) |ATM

1m |2 where γ1m
is the propagation constant in the Z -direction of the mth-order propagating mode (Re (γ1m) ≥ 0)
concerning the upper regionV1, and ATE

1m and ATM
1m are the expansion coefficients of the approximate

solutions defined in (8.120) of Appendix 3.
29ρTotal is a summation of ρm over the propagating orders.
301 − ρTotal represents the ratio of the absorbed light power by a metal grating to the incident light
power.
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Fig. 8.16 ρ0, ρTE
0 and ρTM

0
as functions of θ

Fig. 8.17 ATM
1−1 as functions

of θ

In Fig. 8.17 we show the expansion coefficient of the−1st-order TM vector modal
function ATM

1−1 defined in (8.120) of Appendix 3 as a function of θ . The parameters in
the figure are the same as those of Fig. 8.16where the−1st-order mode is evanescent.
The solid curve inFig. 8.17 represents the real part of the expansion coefficient and the
dashed curve is the imaginary part. From this resultweobserve the resonanceproperty
of the expansion coefficient ATM

1−1 at the angle of incidence θ = 9.2◦ and confirm that
theTMcomponent of the−1st-order evanescentmode coupleswith surface plasmons
at the resonance angle. We thus demonstrate that plasmon resonance absorption is
associated with coupling of surface plasmons with an evanescent mode diffracted by
a metal grating.

We note that the excitation of surface plasmons is largely affected by the azimuthal
angle φ. Figure8.18 shows the plasmon resonance absorption for several φ’s under
the same parameters as those of Fig. 8.16. We observe that the resonance angle
varies with φ as shown in Fig. 8.18. This means direction of propagation depends
on φ, the direction in which the plasmon surface wave propagates. The azimuthal
angle φ has also large influence on the enhancement of TM-TE mode conversion
through plasmon resonance absorption. For example, a TM component of the 0th-
order diffracted mode almost vanishes at the resonance absorption at φ = 45◦, but a
TE component becomes to be 0.7 there.
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Fig. 8.18 Dependence of
TE-TM mode conversion
on φ

8.3.4 Scattering by a Metal Bigrating

In this subsection we deal with a 3-D problem: diffraction by ametal bigrating whose
surface profile is periodically corrugated in two directions. We briefly describe the
formulation of Yasuura’s method for solving the problem by a metal bigrating and
then show numerical results of plasmon resonance absorption in the grating [16].

We consider a bisinusoidal metal grating shown in Fig. 8.19. The surface profile
of the grating is given by

η(x, y) = H

[
sin

(
2πx

d

)
+ sin

(
2πy

d

)]
. (8.78)

The upper region V1 over the grating surface S0 is vacuum with a refractive index
n1 = 1 and the region V2 below the grating surface consists of a lossy metal with a
complex refractive index n2. The permeability of the metal is assumed to be μ0.

The incident light is an electromagnetic plane wave

[
Ei

Hi

]
(r) =

[
ei

hi

]
exp(−iki · r). (8.79)
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Fig. 8.19 A bisinusoidal
grating and coordinate
system

Here, r is the position vector for an observation point, ki is the wavevector of the
incident wave, and hi = (1/ωμ0) ki × ei. The wavevector is given by

ki = (α, β,−γ ) (8.80)

with α = n1k sin θ cosφ, β = n1k sin θ sin φ, and γ = n1k cos θ . Here, k (= 2π/λ)

is the wavenumber in vacuum, and θ is the polar angle between the Z axis and the
incident wavevector, and φ is the azimuthal angle between the X axis and the plane
of incidence.

We denote the diffracted electric and magnetic fields by Ed
�(P), Hd

�(P) in the
regions V� (� = 1, 2). Here we explain briefly Yasuura’s method for finding the
diffracted fields. We first introduce TE and TM vector modal functions defined in
the region V� (� = 1, 2):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕTE
�mn(r) = eTE�mn exp(−ik�mn · r), eTE�mn = k�mn × uZ

|k�mn × uZ | ,

ϕTM
�mn(r) = eTM�mn exp(−ik�mn · r), eTM�mn = eTE�mn × k�mn∣∣eTE�mn × k�mn

∣∣
(m, n = 0,±1,±2, . . .).

(8.81)

Here, uZ is a unit vector in the Z -direction and k�mn (� = 1, 2) is the wavevector of
the (m, n)th-order diffracted wave:

k1mn = (αm, βn, γ1mn), k2mn = (αm, βn,−γ2mn) (8.82)

with

{
αm = α + 2mπ

d
, βn = β + 2nπ

d
, γ�m =

√
(n�k)2 − (α2

m + β2
n )

(Re γ�mn ≥ 0, Im γ�mn ≤ 0).
(8.83)
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We form approximate solutions for the diffracted electric and magnetic fields:

[
Ed

�N
Hd

�N

]
(r) =

N∑
m,n=−N

ATE
�mn

[
ϕTE

�mn

ψTE
�mn

]
(r) +

N∑
m,n=−N

ATM
�mn

[
ϕTM

�mn

ψTM
�mn

]
(r) (� = 1, 2)

(8.84)
with

ψ
q
�mn(r) = 1

ωμ0
k�mn × ϕ

q
�mn(r) (q = TE,TM). (8.85)

The expansion coefficients ATE
�mn , A

TM
�mn are determined so that the approximate

solutionsEd
�N (P),Hd

�N (P) satisfy the boundary conditions in aweighted least-squares
sense. To do this, we minimize the mean-square error

EN =
∫
S

∣∣ν × (Ed
1N + Ei − Ed

2N

)
(s)
∣∣2 dS

+ Z2
0

∫
S

∣∣ν × (Hd
1N + Hi − Hd

2N

)
(s)
∣∣2 dS,

(8.86)

where S is one period cell of the grating surface S0, ν is a unit normal vector to the
grating surface, and Z0 is an intrinsic impedance of the medium of V1.

The mean-square error EN is discretized by applying a two-dimensional trape-
zoidal rule where the number of divisions in the X - and Y -directions is chosen to be
J = 2(2N + 1). The discretized LSP with 24(2N + 1)2 × 4(2N + 1)2 Jacobian is
solved by QRD.

The diffraction efficiency ρmn of the (m, n)th-ordermode (γ1m ≥ 0) in V1 is given
by

ρmn = ρTE
mn + ρTM

mn , (8.87)

where the efficiency of the (m, n)th-order TE or TM mode is given by

ρTE
mn = γ1m

γ
|ATE

1mn|2, ρTM
mn = γ1m

γ
|ATM

1mn|2. (8.88)

We show the plasmon resonance absorption in a bisinusoidal grating made of
silver [12]. We consider a shallow bisinusoidal grating with a corrugation depth
H = 0.0075µm and a period d = 0.556µm. The wavelength of the incident light is
chosen as λ = 0.650µm where only the (0, 0)th-order diffracted mode propagates.
We take n2 = 0.07 − i4.2 as the refractive index of silver at this wavelength.

Figure8.20 shows the diffraction efficiency of the (0, 0)th-order diffracted mode
ρ00 as functions of the polar angle θ when the azimuthal angle φ = 30◦ is fixed. In the
efficiency curve we observe four dips A, B, C, and D at which incident light power
is strongly absorbed by the grating. The dips are associated with absorption that is
caused by the coupling of surface plasmons with an evanescent mode diffracted by
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Fig. 8.20 ρ00 as functions
of θ

Fig. 8.21 Expansion
coefficients as functions of θ :
a ATM+

1−10; b ATM+
10−1

a bisinusoidal silver grating. This is confirmed from Fig. 8.21 where the expansion
coefficients (a) ATM

1−10 and (b) ATM
10−1 are plotted as functions of θ under the same

parameters as in Fig. 8.20. The solid curves in Fig. 8.21 represent the real part of the
expansion coefficient and the dashed curves are the imaginary part. In Fig. 8.21a, a
resonance property of the ATM

1−10 curve at θ = 9.5◦, i.e., a dip A, illustrates that the
TM component of the (−1, 0) evanescent mode couples with surface plasmons at
a dip A. From the resonant property of the ATM

10−1 curve in Fig. 8.21b we confirm
that dips B and D are associated with the coupling of the (0,−1) evanescent mode
with surface plasmons. Similarly, we can show a dip C is caused by coupling of the
(−1,−1) evanescent mode.
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Fig. 8.22 Simultaneous
resonance absorption in a
bisinusoidal silver grating

Fig. 8.23 Power flows of the
total field when simultaneous
resonance absorption occurs

When an incident light with φ = 45◦ illuminates a bisinusoidal grating at the
specific angle of θ , i.e., the resonance angle, two surface plasmon waves are excited
and propagate in directions symmetric with respect to the plane of incidence. The
absorption associated with the two surface plasmon waves is called simultaneous
resonance absorption [12]. Figure8.22 shows an example of the simultaneous reso-
nance absorption where the (−1, 0)th- and (0,−1)st-order evanescent modes couple
simultaneously with two surface plasmon waves at the same polar angle θ = 12.2◦.
The two surface plasmon waves excited simultaneously on the grating surface inter-
act with each other and the interference of the surface plasmon waves causes the
standing wave in the vicinity of the grating surface. This is confirmed in Fig. 8.23,
where the X and Y components of Poynting’s vector S on the surface 0.01d above
the one-unit cell of the grating surface are plotted as the vector (SX , SY ).
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Fig. 8.24 Scattering by
dielectric spheres. The
structure is periodic both
parallel to and
perpendicularly to the page

8.3.5 Scattering by Periodically Located Spheres

Some numerical results are given for the scattering by dielectric spheres located
periodically in three directions [17]. This kind of structure is a fundamental model
of photonic crystals having properties of electromagnetic or optical band gaps.

As shown in Fig. 8.24, the structure is composed by stacking cubic unit cell regions
with a volume d3, each of which includes a sphere with radius a and relative per-
mittivity εr . The number of spheres is infinity along the both X and Y axes, and the
two-dimensionally infinite periodic structures are stacked to compose finite Q layers
in the Z direction. At present we limit ourselves to the case where either electric or
magnetic field of the incident plane wave is perpendicular to the page, allowing us
to use only one incident angle θ .

In the upper and lower semi-infinite spaces, the approximate wave functions
(E0N (r), H0N (r)) and (EQ+1 N (r), HQ+1 N (r)) are expressed in terms ofmodal coef-
ficients ATE,TM

0mn (N ) and ATE,TM
Q+1mn(N ), respectively. The set of modal functions here is

the same as that employed in Sect. 8.3.4 for the two-dimensional periodic structures.
On the other hand, for the fields in the areas of periodically distributed spheres, a set
of vector spherical wave functions

{
me,h

mn(r), ne,h
mn(r)

}
is used towrite the approximate

wave functions. In the cube region of the layer �q, they are expressed by

⎧⎪⎨
⎪⎩
[

EqN (r)
Z0HqN (r)

]
=

3N∑
n=1

n∑
m=−n

[
me

mn(rq) ne
mn(rq)

−inh
mn(rq) −imh

mn(rq)

] [
ATE
qmn(N )

ATM
qmn(N )

]

(q = 1, 2, . . . , Q),

(8.89)
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where Z0 is the intrinsic impedance of vacuum and rq = (rq , θq , φq) is a position
vector with its origin placed at the center of the qth sphere on the Z axis. Note that
the truncation number is selected as 3N in order to maintain the balance with the
half spaces from the viewpoint of the degree of approximation. The spherical wave
functions

{
me,h

mn(rq), ne,h
mn(rq)

}
are written by combination of the spherical Bessel

functions of the nth order, the associated Legendre functions P |m|
n (cos θq), and the

exponential (trigonometric) functions exp(imφq).31 The functions with respect to rq
are constructed beforehand so that they automatically satisfy the continuity condi-
tions for Eθ , Eφ , Hθ , and Hφ over the spherical surfaces rq = a [17]. As a result, the
present problem is reduced to the determination of the modal coefficients such that
the remaining boundary conditions on the horizontal planes

{
uZ × (Eq , Hq

) = uZ × (Eq+1, Hq+1
)

(between the layers �q and �q + 1; q = 0, 1, 2, . . . , Q)
(8.90)

and the periodicity conditions on the vertical planes

⎧⎪⎨
⎪⎩

uX × (Eq , Hq
)
exp(ikd sin θ)

∣∣
X=−d/2+0 = uX × (Eq , Hq

)∣∣
X=d/2−0 ,

uY × (Eq , Hq
)∣∣

Y=−d/2+0 = uY × (Eq , Hq
)∣∣

Y=d/2−0

(q = 1, 2, . . . , Q)

(8.91)

should be satisfied on the faces of the unit cells in the sense of least-squares. In the
boundary conditions (8.91), we count the upper and lower half spaces by the numbers
�0 and �Q + 1, respectively.

Figure8.25 shows the normalizedmean-square error and energy error as functions
of the truncation number N . We find that both errors decrease monotonically when
N increases. The period d is 0.8 times as the wavelength of the incident wave λ

(=2π/k). Since the wavelength in dielectric material is shorter than that in the air,
we need large N for big spheres. However, even at a/d = 0.3, these errors become
less than 1% if N ≥ 4.

Figure8.26 is drawn to observe the effect of increasing the layer number on the
band of total transmission and total reflection. For the single layer at Q = 1, we
find two reflection points at d/λ ≈ 0.77 and 0.91. When the layer is increased, these
points are changed to reflection bands.

Figure8.27 presents the reflected power for each mode as a function of incident
angle for a 4-layered structure. We observe the power is totally reflected when θ is
less than about 40◦. This property disappears for larger θ due to the emergence of
the (−1, 0)th higher order modes having a cutoff angle θ = 46◦.

31The vector me,h
mn(rq ) is perpendicular to the rq axis, whereas ne,h

mn(rq ) has an rq component. That
is, the superscript TE (TM) in (8.89) means transverse electric (transverse magnetic) with respect
to rq .
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Fig. 8.25 Normalized
mean-square error EN and
energy error eN as functions
of truncation number N ;
Q = 2, εr = 10, d/λ = 0.8,
and θ = 0

Fig. 8.26 Normalized
transmitted powers as
functions of wavelength;
a/d = 0.25, εr = 12, and
θ = 0

We should note that introduction of sequential accumulation in the process of QR
decomposition reduces the computation time from O(Q3) to O(Q1) and thememory
requirement from O(Q2) to O(Q1), with Q being a number of sphere layers. See
[17] for the detailed data.
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Fig. 8.27 Normalized
reflected powers as functions
of θ ; Q = 4, a/d = 0.25,
εr = 12, and d/λ = 0.58

8.4 Conclusions

Because of the reasons we have stated in Sect. 8.1, we reviewed Yasuura’s method
of modal expansion attaching importance to the process of solution by the CYM:
choice ofmodal functions; a finite-sumapproximate solution; least-squares boundary
matching; location and number of sampling points; and solution method for the LSP.
In addition, we included guidances for handling dielectric obstacles and gratings
placed in planer or conical mounting. Still more, we gave a comparison between
separated solutions and monopole fields in approximation power.

As for applications to 3D, we have only two grating problems in Sects. 8.3.4 and
8.3.5. Because we have been working in diffraction gratings, we do not have appro-
priate examples that show the effectiveness of the CYM in 3D scattering problems.
However, our former colleagues have solved the problems using the CYM and pub-
lished their results [11, 13]. Speaking from a theoretical point of view, they have
employed the set of multipole functions as the modal functions whose completeness
has been proven by Calderón [6].

We hope that the contents of this chapter would be useful for researchers and
engineers who need reliable methods for solving electromagnetic boundary-value
problems.
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Appendix 1: H-Wave Scattering by a PC Cylinder

Let us consider a problem where an H-wave (TM-wave) is incident to the obstacle
shown in Fig. 8.1. That is, the incident wave is polarized in the xy-plane so that the
incident magnetic field has only a z-component

Hi(r) = uz F(r) = uz exp[−ikr cos(θ − ι)]. (8.92)

The scattered magnetic field has only a z-component

Hs(r) = uzΨ (r) (8.93)

which is a leading field of the problem. Thus, we have

Problem 1’: H-wave, PC. Find Ψ (r) that satisfies:

(N1) The 2-D Helmholtz equation in Se;
(N2) The 2-D radiation condition at infinity;
(N3) The boundary condition

∂νΨ (s) = g(s) ≡ −∂νF(s) (s ∈ C). (8.94)

Here, ∂ν denotes a normal derivative at s. Equation (8.94) is called Neumann’s or
the second-kind boundary condition.

Employing the Green’s (or Neumann’s) function of this boundary-value problem
satisfying a homogeneous boundary condition

∂νN (r, s) = 0 (r ∈ S; s ∈ C), (8.95)

we get a formal representation similar to (8.13)

ΨN (r) − Ψ (r) = −
C∫

s=0

N (r, s) [∂νΨN (s) − g(s)] ds (r ∈ S). (8.96)

Here, ΨN denotes an approximate solution defined by

ΨN (r) =
N∑

m=−N

Bm(M)ϕm(r). (8.97)
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After a discussion similar to that in Sect. 8.2.2.3, we have a least-squares problem
for the H-wave problem:

LSM 1’: H-wave, PC. Find the coefficients Bm(M) (m = 0,±1, . . . ,±N ) that
minimize the mean-squares boundary residual

EN = ‖∂νΨN − g‖2
‖g‖2 = 1

‖g‖2
∥∥∥∥∥

N∑
m=−N

Bm(M)∂νϕm − g

∥∥∥∥∥
2

. (8.98)

We can solve this problem on a computer following the procedure in Sect. 8.2.3.
Approximations to other nonzero components can be found by

Es
N (r) = 1

iωε0
∇ΨN (r) × uz . (8.99)

It is worth noting that in an H-wave scattering from a dielectric obstacle, the
boundary condition (8.42) should be altered slightly. Let Hs(r) = uzΨe(r), and
Ht(r) = uzΨ i(r), then we have

{
Ψe(s) − Ψ i(s) = f (s) ≡ −F(s)
∂νΨe − n−2∂νΨ i(s) = g(s) ≡ −∂νF(s),

(8.100)

where the second line means the electric-field continuity and n2 = ε/ε0.

Appendix 2: Solution of LSP 1 by a Normal Equation and
Related Topics

Although we do not use a normal equation in numerical analysis, we look over the
solutionmethod by the equation because it is an important theoretical tool in working
with a least-squares problem. Let us define an inner product between two functions
in H = L2(0,C) by

( f, g) =
C∫

s=0

f (s)g(s) ds, (8.101)

then we find that ‖ f ‖ = √
( f, f ). Employing these relations, we modify (8.22) to

obtain

EN =
N∑

m=−N

N∑
n=−N

Am(ϕm, ϕn)An −
N∑

m=−N

Am(ϕm, f ) −
N∑

n=−N

( f, ϕn)An + ‖ f ‖2.
(8.102)

The predictable M is not shown.
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Now we define a subspace of H, ΦN , spanned by the boundary values of a finite
number of modal functions {ϕ0(s), ϕ±1, . . . , ϕ±N }. An element of ΦN can be repre-
sented as

ΨN (s) =
N∑

n=−N

An ϕn(s). (8.103)

Apparently, there is a minimum value of EN , which is a squared distance between
f (s) and a point in ΦN .32 The minimum is achieved when (8.103) agrees with the
foot of a perpendicular line from f (s) to the surface of ΦN . The necessary and
sufficient condition for this is that: The Am coefficients are the solutions of the set
of linear equations

N∑
n=−N

(ϕm, ϕn) An = (ϕm, f ) (m = 0,±1, . . . ,±N ). (8.104)

This is referred to as the normal equation (NE) of LSP 1 and is a formal solution to
the problem.33

Next, let us consider the minimization from a computational point of view. That
is, we try to find the Am coefficients using the sampled values of boundary functions;
and the functions are represented by J -dimensional complex-valued vectors f , ϕm ,
and Ψ N as in Sect. 8.2.3. This leads us to DLSP 1. We know the orthogonal decom-
positions are useful tools for solving the problem. However, setting them aside, we
here consider a NE based on DLSP 1. Because the Jacobian matrix Φ is J × M
(J > M), the set of linear equations

ΦA = f (8.105)

is over-determined and does not have a usual solution. However, if we multiply
(8.105) by Φ† from the left, we have

HA = b, (8.106)

where
H = Φ†Φ (8.107)

is an M × M positive-definite Hermitian matrix provided Φ is full rank. And,

b = Φ†f (8.108)

32If f ∈ ΦN , then EN = 0. This, however, cannot occur in practice: For example, even in the case
of scattering from a circular cylinder made of a PC, we need an infinite series to represent a rigorous
solution because the boundary value has a form exp[−ika cos(θs − ι)]. In addition, note that ΦN is
closed.
33We get (8.104) by setting (ϕm , ΨN − f ) = 0 (m = 0,±1, . . . ,±N ); or from ∂EN /∂Am = 0.
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is an M-dimensional right-hand side. Usually, (8.106) is referred to as the NE of
DLSP 1 and has been employed as a standard method of solution for a long time.

Obviously, (8.106) is an approximation of (8.104). For example, an (m, n)th
element of the coefficient matrix of (8.104) can be represented as

(ϕm, ϕn) =
C∫

s=0

ϕm(s)ϕn(s) ds � C

J

J∑
j=1

ϕm(s j )ϕn(s j ) = C

J
ϕ†
mϕn. (8.109)

The right-hand side of (8.109) is the (m, n)th entry of H multiplied by the line
elementC/J . Hence, (8.104) and (8.106) are essentially the same thing, and they have
common weak points in numerical computations. Widely-accepted key observations
are:

• TheNE is rigorous, in principle, and can be employed in theoretical considerations;
• TheNEcombinedwithGaussian elimination (diagonal pivoting assumed) is equiv-
alent to the (modified) Schmidt QRD except for the next two items;

• The NE may lose information in constructing H = Φ†Φ, and this process is time
consuming usually;

• The NE is dominated by the condition number of H that is square of the original
condition number: cond(H) = [cond(Φ)]2.

The last item means (8.104) and (8.106) are more sensitive to computational errors
thanLSP 1 andDLSP 1. Therefore, theNE’s aremore difficult to solve on a computer
than the original least-squares problems. We, hence, do not recommend the use of
(8.104) or (8.106). Even if we are working in the case where the inner products in
(8.104) can be calculated analytically, we should not employ (8.104) because of the
last item.

Before closing this Appendix, we would like to state a couple of comments on
(8.105). Apparently, J cannot be less than M because (8.105) is indeterminate for
J < M . If we set J = M , we have a point-matching method (PMM) or a collocation
method. The method is known to be effective if the contour C coincides with a part
of a coordinate curve of a system of coordinates in which Helmholtz’s equation is
separable; and that the modal functions are the separated solutions in that system.
Convergence of the PMMsolution is related to the validity of theRayleigh hypothesis
[2, 3, 18].

In Yasuura’s method we usually set J = 2M as we see in Sect. 8.3.1. That is,
we employ 2M linear equations to determine M unknown coefficients. This may be
understood as a small device or improvement of the PMM. However, this produces
good results such as proof of convergence, wide range of application, and so on with
little increase of computational complexity as a reasonable cost.
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Appendix 3: Conical Diffraction by a Grating

In Sect. 8.2.5 we dealt with diffraction by a grating, where all the field components
were functions of two variables (X and Y ) and two independent cases of polarization
[E-wave (TE, s) and H-wave (TM, p)] existed. In addition, the directions of propa-
gating diffraction-orders were parallel to the plane of incidence. These were possible
because: (1) the grating surface was uniform in Z ; and (2) the plane of incidence
was in parallel to the direction of periodicity uX . Here, we concisely examine the
problem of a lossless dielectric grating in which the second condition is not satisfied,
i.e., the plane of incidence makes a nonzero angle φ with the positive X -direction as
shown in Fig. 8.14a. We will see that

• The field components are functions of X , Y , and Z , but the dependence on Y—the
direction of uniformity—is limited;

• The two cases of polarization are not independent, i.e., both TE and TM diffracted
waves exist for TE (or TM) incidence34;

• The direction of propagating orders lie on the surface of a conewhose vertex agrees
with the coordinate origin O; the direction of the zeroth mode is on the plane of
incidence at the same time.

Because of the third characteristic, this arrangement (φ 
= 0) is called conical mount-
ing and the term conical diffraction is used. In this connection, the arrangement in
Sect. 8.2.5 is termed planar mounting.

Let the incident wave be
[

Ei

Hi

]
(r) =

[
ei

hi

]
exp(−iki · r). (8.110)

Here, ei and hi are electric- and magnetic-field amplitude, which are related by

hi = 1

ωμ0
ki × ei (8.111)

and ki is the incident wavevector defined by

ki = (n1k sin θ cosφ, n1k sin θ sin φ,−n1k cos θ) ≡ (α, β,−γ ) (8.112)

with θ being the polar angle between the wavevector ki and the grating normal uZ .
We decompose the incident wave into a TE(s)- and a TM(p)-component, where TE
(or TM) means that the electric (or magnetic) field of the relevant incident wave is
perpendicular to the plane of incidence. To do this, we define two unit vectors that
span a plane orthogonal to the incident wavevector

34Assume a PC surface-relief grating with a TE-wave incidence, for simplicity, and imagine the
surface current induced. It apparently has a Z -oriented ingredient, which excites a TM-wave com-
ponent.
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eTE = (sin φ,− cosφ, 0), eTM = (cos θ cosφ, cos θ sin φ, sin θ). (8.113)

They give the directions of the incident electric fields that are in the TE- and TM-
polarization.35 Thus the decomposition is

ei = eTE cos δ + eTM sin δ, (8.114)

where δ is a polarization angle shown in Fig. 8.14b. δ = 0 and π/2 mean TE- and
TM-incidence. Hence, an incident wave has three angular parameters: φ, θ , and δ.

We consider the problem to seek the diffracted electric and magnetic field in the
semi-infinite regions V1 and V2 over and below the grating surface SG.

Problem 4 conical, dielectric grating. Find the solutions that satisfy the following
requirements:

(CD1) The Helmholtz equation in V1 and V2;
(CD2) Radiation conditions in the positive and negative Z -direction;
(CD3) Aperiodicity condition that: the relation f (X + d,Y, Z) = eiαd f (X,Y, Z)

holds for any component of the diffracted wave, and the phase constant in Y is β;
(CD4) The total tangential component of electric and magnetic field must be con-

tinuous across the grating surface SG.

Dealing with a problem of conical diffraction, we should keep in mind the unique
nature of the problem. First, because every field component has a common phase
constant β in Y , it is sufficient to match the boundary condition on a cross section
between the grating surface and a plane Y = const. The conically-mounted gratings,
hence, belong to the class of quasi-3-D structures. Second, because the TE- and TM-
wave are not independent, we always need both TE and TM vector modal functions
in constructing approximate solutions.

We define the modal functions satisfying (CD1)–(CD3) by

{
ϕTE

�m(r) = eTE�m exp(−ik�m · r), ϕTM
�m (r) = eTM�m exp(−ik�m · r)

(� = 1, 2; m = 0,±1,±2, . . .).
(8.115)

Here,

eTE�m = k�m × uZ

|k�m × uZ | , eTMpm = eTE�m × k�m

|eTE�m × k�m | (� = 1, 2), (8.116)

k1m = (αm, β, γ1m), k2m = (αm, β,−γ2m), (8.117)

and {
αm = α + 2mπ

d
, γ�m =

√
(n�k)2 − (α2

m + β2)

(Re γ�m ≥ 0, Im γ�m ≤ 0).
(8.118)

35eTE is perpendicular to the plane of incidence; the fact that the magnetic field accompanying eTM

is orthogonal to the plane can be seen by manipulation.
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Note that the functions in (8.115) are for constructing electric fields. For themagnetic
fields we get

ψ
q
�m(r) = 1

ωμ0
k�m × ϕ

q
�m(r) (� = 1, 2; q = TE,TM) (8.119)

through Maxwell’s equations. Finite linear combinations of the modal functions
define approximate solutions:

[
E�N

H�N

]
(r) =

N∑
m=−N

ATE
�m

[
ϕTE

�m
ψTE

�m

]
(r) +

N∑
m=−N

ATM
�m

[
ϕTM

�m
ψTM

�m

]
(r) (� = 1, 2)

(8.120)
Here, the number of modal functions M is neglected.

The unknown coefficients in (8.120) should be determined in order that the solu-
tions satisfy the boundary condition (CD4) approximately in themean-squares sense.
For this purpose we first consider the cross section C between the grating surface SG
and a plane Y = 0. This is the same thing as the periodic curve C in Sect. 8.2.5. In a
similar way to one in Sect. 8.2.5, we define the primary period S1, whose boundary C1

(⊂ C), the function space H consisting of all the square integrable functions on C1,
and the norm ‖ f ‖ of a function f (s). Then, we can state the least-squares problem
that determines the unknown coefficients:

LSP 4: conical, dielectric grating. Find the coefficients ATM
�m and ATM

�m (� =
1, 2; m = 0,±1, . . . ,±N ) that minimize the mean-square error

EN =
∥∥∥ν ×

(
Ẽ1N + Ẽi − Ẽ2N

)∥∥∥2 + Z2
0

∥∥∥ν ×
(

H̃1N + H̃i − H̃2N

)∥∥∥2 . (8.121)

Here, Z0 denotes the intrinsic impedance of vacuum and Ẽi etc. mean periodic
functions with respect to x defined in the same way as one in (8.69)–(8.71). The
method of discretization and the solution method are found in Sect. 8.2.4.

Appendix 4: Comparison of Modal Functions and Algorithm
of the SP

Herewe show some results of effectiveness comparison between three kinds ofmodal
functions in solving a sample problem36: E-wave scattering fromaPCcylinderwhose

36We can use monopole fields also in the grating problems discussed in Sect. 8.2.5. A countably
infinite set of monopoles located periodically in x—i.e., the location is given by (x1 + �d, y1)
(0 < x1 ≤ d; y1 < η(x1); � = 0,±1,±2, . . .)—radiates a plane wave [4, 36] satisfying (GD1)
and (GD2). If we let the monopoles be accompanied by phase factors exp(i�kd sin θ), the plane
wave meets the periodicity (GD3). Increasing the number of monopoles in the first strip region to
M , i.e., (x, y) = (x1, y1), (x2, y2), (x3, y3), . . . , (xM , yM ), and repeating the same procedure, we
have a set of M plane waves, which is the desired set of modal functions [28, 37].
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cross section is given by37

C : rs = a(1 + 0.2 cos 3θs). (8.122)

Let us normalize every quantity having dimension of length by the total length of
C. And, we assume the incident wave comes along the x-axis from the negative
x-direction (i.e., ι = 0).

The modal functions considered here are: (a) the separated solutions, which we
defined by (8.7) in Sect. 8.2.2; (b) monopole fields defined by (8.9); (c) monopole
fields whose poles are located densely near the convex part of C. Because the sepa-
rated solutions are known widely, we explain the monopole fields below:

(b) Equally spaced poles. Let L be a similar curve to C with the ratio of similitude
d (0 < d < 1).38 We arrange M poles on L at regular intervals. Then, the distance
between two poles is L/M where L is the length of L.

(c) Concentration of poles near the convex parts of L. (i) First, we draw the simi-
lar curve L. (ii) Next,we calculate the curvature κ(t) of L as a function of t (∈ L),
and add some positive bias c in order that the biased curvature (BC) be no less than
0: κ̃(t) = κ(t) + c (≥ 0). (iii) Thirdly, we define a probability density function
by normalizing the BC.39

f (t) =

t∫
0

κ̃(t ′) dt ′

L∫
0

κ̃(t ′) dt ′

. (8.123)

Thus we get the number of poles between t1 and t2 by

n(t1, t2) = M

t2∫
t1

f (t) dt. (8.124)

We have solved the problem using the method explained in Sects. 8.2.2 and 8.2.3.
We used three kinds of modal functions (a), (b), and (c); and tried at two frequencies:
ka = 10 and 30. The parameter d was set to be 0.87. To see the accuracy of a solution
we calculated two kinds of errors: the normalized mean-square error EM(m) and

37Although the employment of polyphase wave functions is effective because of the periodicity, we
do not use them for simplicity.
38According to the result of numerical computation, an optimum d was in the rage [0.85, 0.90]
when the total number of poles was between 40 and 120. If we increased (or decreased) the number
of poles, the optimum d approached 0.90 (or 0.85). Note, however, that the trends were observed in
solving a particular problemwith specific computational parameters and are no more than reference
data.
39The result of sample calculation has shown that the use of |BC|α (α > 1) instead of BC (i.e.,
further emphasis of the convex part in locating poles) gives better solutions.
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the error on energy balance (or on the optical theorem) eM(m). The former is the
same thing as one defined in (8.22) and (8.30)40 except that the subscript shows the
total number of modal functions. The latter shows the deviation from a proportional
relation between the forward scattering amplitude and total cross section.41 The
argument m shows the type of modal functions: m = sep, esp, and pcc, which mean
(a) separated solutions, (b) equally-spaced poles, and (c) poles concentrated near the
convex parts.

Results at ka = 10. Because the obstacle size is handy, the EM errors fall off
rapidly: E45(sep), E35(esp), and E31(pcc) are below1%.As for the eM errors of the
solutions, the situation is different. The solutions with esp or pcc modal functions
converge rapidly as eM(esp) and eM(pcc) are below 1% at M � 30. On the other
hand, e31(sep) is about 10%. IncreasingM to 70,we have: e70(esp) = 9 × 10−5%;
e70(pcc) = 1 × 10−5%; and e71(sep) = 4%.

Results at ka = 30. The advantage of the monopole fields is clear in this range
of frequency. Setting M � 100, we have E101(sep) = 4%, E100(esp) = 2 ×
10−1%, E100(pcc) = 2 × 10−3%, e101(sep) = 7%, e100(esp) = 2 × 10−1%, and
e100(pcc) = 5 × 10−3%. The pcc modal functions seems to be the best choice in
solving the problem. In fact, we can find an accurate solution with a 10−5% eM
error by setting m = pcc and M = 120.

These results mean that the potential of a combination of separated solutions is
not so strong in describing scattered fields from obstacles deformed strongly from a
circle. We have two ways to cope with this issue: (i) employment of a set of modal
functions other than the separated solutions42; and (ii) employment of the SP.

The Algorithm of the SP

Here we include a guidance how to apply the SP in the boundary-matching process
based onYasuura’smethod ofmodal expansion for convenience.We start fromDLSP
1, i.e., minimization of the numerator of (8.30), ‖ΦA − f‖2. Instead of minimizing
it directly, we force a constraint

(1, ΦA − f) = 0 (8.125)

on the M-dimensional solution vector A, where the parentheses mean an inner prod-
uct and 1 = [1 1 · · · 1]T is a J -dimensional constant vector.

An operator of the smoothing procedure (in a discretized form) is a J × J matrix
given by

K(p) =
[
K (p)

j�

]
, (8.126)

40We have applied the rule J = 2M and have omitted J .
41The relation is referred to as the optical theorem, which implies energy conservation.
42We have employed the monopole fields and have seen their effectiveness [30]. It is worth noting
that inclusion of a few dipoles located near the convex part of L in addition to the monopoles
improves the efficiency greatly. This might be related to Cadilhac-Petit’s opinion [7] in locating the
poles near an internal focus.
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where p means the order of the SP. The explicit forms of the matrix elements for
p = 1, 2, and 3 are43:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K (1)
j� = u( j − �) − j − �

J
− 1

2
,

K (2)
j� = −1

2

[
( j − �)2

J 2
− | j − �|

J
+ 1

6

]
,

K (3)
j� = 1

6

[ | j − �|3
J 3

− 3( j − �)2

2J 2
+ | j − �|

2J
+ 1

6

]
.

(8.127)

Thus we can state a method of solution with the SP as follows:

DLSP 3: E-wave, PC, SP. Find the solution vector A that minimizes the discretized
mean-square error

EMJ = ‖K(p)(ΦA − f)‖2
‖K(p)f ‖2 (8.128)

under the constraint (8.125).
Twoways are possible to solve this conditioned least-squares problem: (i) employ-

ment of Lagrange’s multiplier; and (ii) elimination of a modal coefficient by using
the constraint. Although (i) is a standard way in handling a constraint, we take (ii)
because our constraint is simple and can eliminate one of the M unknowns to deduce
a least-squares problem with M − 1 unknowns.
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Chapter 9
Pole Location in GMT

James E. Richie

Abstract This chapter begins with an overview of the variety of methods and tech-
niques used to choose discrete pole locations in the family of Generalized Multipole
Techniques (GMT). The heuristic rules and guidelines that are described are often
quite successful. In addition, studies of the performance of GMTmethods for canon-
ical problems are reviewed. It has been shown that there are at least two sources
of error when using GMT: analytically-based error and numerically-based error.
The effective spatial bandwidth (EBW) of fields along the boundary of scatterers is
described and used to show the conditions necessary to obtain stable solutions from
GMT techniques. The EBW for two-dimensional circular boundaries is applied to
some examples. In addition, an extension of EBW for non-circular boundaries is
described and applied to elliptically shaped boundaries.

9.1 Introduction: GMT and Its Variations

There are many techniques to compute the electromagnetic scattering from objects.
The methods considered here are based on the use of discrete sources to model the
scattered field and (in the case of non-perfectly conducting scatterers) the internal
field. The name used here for these methods is the Generalized Multipole Technique
(GMT) [1]. Authors refer to particular implementations of these methods as the
Multiple Multipole Program (MMP), the Method of Auxiliary Sources (MAS), the
Filamentary Current Method (FCM), and the Method of Fictitious Sources (MFS).

In Fig. 9.1 a scattering object is shown. The object has some permittivity ε, per-
meabilityμ, and conductivity σ . There is an incident field denoted as Ei andHi. The
goal is to determine the scattered (Es, Hs) and internal fields (Ed , Hd ).

One model for determining the unknown fields is the Rayleigh hypothesis. A
multipole expansion with all poles at a single origin is used. A large number of poles
may be needed at the origin depending on the size and complexity of the object.
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Fig. 9.1 The general
scattering problem
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Computing the coefficients may be difficult and the series solution may converge
slowly.

A second approach is to use the moment method [2]. In this approach, an integral
equation (IE) is formulated that expresses the boundary conditions of the problem
assuming an unknown current on the object surface. The current is modeled using
basis functions with unknown coefficients. Then, testing functions are applied to the
resulting modified integral equation to compute the coefficients. Because the current
is on the boundary and the IE is evaluated on the boundary, special care must be
taken near the singularity in the kernel.

In the moment method, enough computational complexity must be applied to the
basis and/or testing functions to obtain suitable accuracy [3]. To ensure sufficient
accuracy, sophisticated basis functions with simple testing functions can be used or
vice versa. Similar results are obtained by using a lesser amount of sophistication
applied equally to the basis and testing functions.

In the GMTmethods, multipoles are used. The sources are not at a single origin as
in Rayleigh’s hypothesis, and the sources are not on the boundary as in the moment
method. Typically, scattered field poles are inside the object and internal field poles
are outside the object.

Each multipole has unknown strength. To determine the pole coefficients, the
boundary conditions are satisfied at a discrete set of locations on the surface of
the object, i.e., collocation or point matching is used. Using a number of boundary
condition equations equal to or greater than the number of unknowns, a linear system
of equations (LSE) can be solved to obtain the unknown coefficients.

Sufficient accuracy can be obtained using point matching due to the sophisticated
arrangement of the multipoles. The pole locations are adjusted according to the
complexity of the problem. Borrowing terms from themomentmethod, sophisticated
“basis” functions are used and therefore point matching can be applied with little
loss in accuracy.
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A number of researchers have applied discrete source methods to electromagnetic
scattering. GMT is discussed in [4], where two-dimensional and three-dimensional
problems have been solved using the Multiple Multipole Program (MMP) [5]. The
MMP implements multipoles at multiple origins and uses an overdetermined LSE
to find the pole strengths. The work in [6] is a similar implementation of GMT for a
conducting body of revolution.

In [7–9], the FilamentaryCurrentMethod (FCM) is described for two/dimensional
problems. In FCM, filaments of current (monopoles) are used to model the scattered
and internal fields. The same research group also reported some three-dimensional
work in [10].

The Method of Auxiliary Sources (MAS) is fundamentally formulated from [11].
The MAS is organized slightly differently than the previous techniques [12]. In the
MAS, auxiliary sources are placed on an auxiliary surface (AS). The auxiliary sources
are usually the lowest order poles, and the auxiliary surface is typically conformal
to the boundary. The sources are homogeneously placed on the AS.

There are a number of advantages to GMT methods. By choosing multiple ori-
gins that are away from the surface, the singularity inherent in the moment method
is avoided. Another advantage is that the effect of the multipoles becomes approxi-
mately localized. Each multipole expansion has a strong effect along the portion of
the boundary that is closest to the pole origin. This localization improves convergence
of the scattered field model.

In addition, the integration along the bounding surface that is often necessary in
moment methods is avoided by using collocation. This results in a computational
algorithm that is more efficient than the moment method.

A final advantage of GMT is that the boundary conditions can easily be verified by
computing the fields along the surface of the scatterer. This feature of GMT solutions
is highly significant because the accuracy of the solution can be inferred from the
boundary condition error.

Although GMT and its variations have several advantages, there are some disad-
vantages as well. One disadvantage is that objects with edges and corners require
special care to solve for the fields. A second disadvantage of the GMT methods is
that it may be unclear where to place the multipoles. The number, location, and order
of the poles is not obvious when solving a specific scattering problem.

9.2 Placement Rules Developed and Utilized

Some researchers have reported “rules” for the placement of poles for solving scat-
tering problems in GMT. Typically, the rules are cast within the specific variation of
GMT, i.e., MAS rules, MFS rules, etc. In this section, the variety of heuristic rules
proposed for GMT shall be discussed.

A few early guidelines for the use ofGMTappear in [6, 8, 9]. In [6], the scatterer is
a cone-sphere, which is a body of revolution. Themultipoles are placed along the axis
of rotation. This iswell-known to be a beneficial choice for bodies of revolution.Also,
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Fig. 9.2 Illustration of the
region of influence. The pole
origins are the dots, the
boundary is solid, and the
regions of influence are the
circles
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it is shown that the order of the poles should increase as the pole origin approaches
the tip of the cone. In [8, 9], the scattering of a plane wave by a dielectric cylinder of
radius a is modeled using filaments of current. The poles used to model the scattered
field are found to be ideally situated between 0.5a and 0.8a; for the internal field, 2a
is shown to be an adequate pole distance.

Hafner published some heuristic guidelines in [4]:

• pole origins must be outside the domain of the modeled field;
• no pole should be within the region of influence of another pole;
• the minimum distance from the pole origin to the boundary should be on the order
of one wavelength or less.

A key concept in this list of rules is the region of influence. Figure9.2 illustrates
the concept of domain of greatest influence for a pole. The boundary is divided into
subdomains where each subdomain is linked to the origin of a multipole expansion.
A circle is drawn, centered at the origin of the pole and has a radius somewhat larger
(roughly 1.2–1.4 times) the minimum distance from the pole origin to the boundary.
The region of influence admits an angle, φn for origin n, as shown in Fig. 9.2.

Hafner provided additional guidelines regarding the poles and match points. Each
origin consists of an expansion of poles that begins at the lowest order (0 for two
dimensions, 1 for three dimensions) and includes all orders up to the maximum.
For smooth boundary regions, the angles φn should be roughly equivalent. For more
complex boundary regions, as the angle φn increases, the highest pole order required
for origin n should increase.

Additional guidance regarding the nature of the pole distance to the boundary
is reported in [13]. As the radius of curvature of the boundary decreases, the poles
should come closer to the boundary and the poles should come closer together. This
was demonstrated using cylinders of elliptical cross section and the packing number
concept.

Pole location in the MAS is described differently. In MAS [12], an auxiliary
surface that is conformal to the boundary is defined. The lowest order poles for the
problem are then placed in a uniform fashion along the AS. As the AS approaches
the boundary, the density of the poles increases. The lowest order poles in the two-
dimensional case aremonopoles (or current filaments). In the three-dimensional case,
pairs of perpendicular dipoles, both tangent to the boundary, are used.
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Fig. 9.3 Pole locations near
a corner or edge

One disadvantage of GMT techniques is modeling the scattered field for scatterers
with edges and/corners. There are two approaches to resolve this problem. The first
is to slightly round off the corner of the scatterer itself. In the cone-sphere object case
[6], it is reported that a radius of 0.01 λ results in a radar cross section error less than
0.5dB. A second technique for edges is described in [14] and is shown in Fig. 9.3.
In this approach, poles are placed closer to the boundary as the expansion origins
approach the edge. As the origins approach the edge, the pole density increases along
with the matching point density. Although both approaches can provide acceptable
results, [12] suggests that the second approach provides more accurate results than
rounding the edge.

9.2.1 Automatic and Semi-automatic Pole Placement
Approaches

A very early attempt to automatically place the poles in GMT is reported in [15]. In
this method, a network of origins is defined for possible pole locations. To place a
pole, all possible origins are tested to determine which location will minimize the
residual boundary condition error. This (rather slow) procedure results in a mono-
tonically decreasing boundary condition error as poles are added to the field model.

A detailed discussion of rules for the nearly automatic placement of multipoles
appears in [16] and represents a refinement of Hafner’s guidelines discussed earlier.
The guidelines are based on the geometry of the boundary alongwith thewavelengths
of fields in each region.
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The pole placement procedure is based on three ideas:

• the complexity of the fields is correlated with the complexity of the geometry;
• the density of poles should correspond to the complexity of the geometry;
• the pole locations should avoidnumerical dependencies that result in ill/conditioned
matrices.

Based on these principles, a set of heuristic rules are developed:

• the distance from the pole location to the boundary is chosen according to the local
radius of curvature of the boundary;

• every section of the boundary must be within the region of influence of some
expansion origin;

• the distance between the multipoles must be larger than the radius of each region
of influence and be somewhat larger than the distance of each origin from the
boundary;

• a multipole origin must be outside the domain of validity of the field.

These rules ensure that pole origins are neither too close to each other or to the
boundary. Reference [16] provides a number of examples that illustrate these rules
and some common exceptions for pole placement.

The rules are implemented by constructing an auxiliary surface that the multipole
expansions lie on. The algorithm used to define the auxiliary surface depends only
on the local properties of the boundary. The exceptions in [16] show that non-local
effects can cause pole locations to severely violate the spirit of the rules.

Other automated procedures related to pole location have been reported. In [17] a
scheme is described for detecting (and removing) pole locations that cause thematrix
to be ill-conditioned. In [18, 19], a genetic algorithm is used to find the optimum pole
placement in MAS for perfectly conducting and dielectric cylinders, respectively.

9.2.2 Singularities of the Scattered Field

In principle, the scattered field induced by some incident field on an object can be
analytically continued into the object. However, this analytic continuation is limited
by the location of the scattered field singularities (SFSs). The SFSs must exist, or
the scattered field would be constant everywhere.

The pole locations in GMT methods are the singular points in the scattered field
model. The GMT pole locations must enclose the SFSs of the true scattered field
to obtain an accurate model for the scattered field. A fundamental analysis of the
scattered field singularities and their relationship to the scatterer boundary appears
in Chap.5 of [1].

To illustrate the importance of the SFSs, consider the scattering of a monopole
line source in the vicinity of a perfectly conducting cylinder of radius a, as shown
in Fig. 9.4. The line source is at a radius ρo from the center of the cylinder. It is well
known that the analytic continuation of the scattered field for this canonical problem
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Fig. 9.4 Geometry of scatterer (radius a) with a monopole line source at ρo. Pole locations shown
at ρ1 outside the radius of the singularity (ρs)

exists within the cylinder for radius ρ between a and a2/ρo (indicated as ρs = a2/ρo

in the figure).
An early investigation of the performance ofGMTon the problem for Fig. 9.4 (per-

fectly conducting cylinder case) appears in [7]. This study shows that pole locations
that do not enclose the singularity provide results that are not stable. Specifically,
as the number of poles increases, the solution tends to vary considerably with little
improvement in the boundary condition error. However, for pole locations that do
enclose the singularity (such as ρ1 in the figure), the results are very stable and the
boundary condition error falls rapidly as the number of poles increases.

Oneway to understand the role of the SFS’s is to consider a point source a distance
d above a perfectly conducting ground plane. The SFS is at a distance d below the
ground plane. In [20, 21], the MAS is used to investigate pole locations for this
canonical problem. An auxiliary surface is placed parallel and under the ground
plane at a distance b < d . For b near zero (close to the ground plane), a large number
of poles are needed to accurately model the scattered field. As b increases, fewer
poles are required for similar accuracy. When b = d , only one pole is needed.

This result along with some additional canonical examples are used to argue that
MAScanbe extremely efficient, particularly for large scatterers. This is accomplished
by using the SFS locations (or caustic surfaces) as the location of the auxiliary
sources.

For general scatterers, a scheme is developed and applied in [21] that computes
the locations of the caustics for a more general scatterer. The techniques are also
applied to the inverse scattering problem.
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9.2.3 Summary Comments

The semi-heruistic rules described earlier along with the examples provided in [16]
provide a suitable framework for choosing pole locations that are likely to result in a
reasonable solution to a scattering problem. Coupling these rules with knowledge of
the scattered field singularities and the special considerations for particular geometric
details (such as edges or corners), GMT and its variations are quite successful.

Despite the success of the rules and guidelines described in this section, the use
of GMT and its variations continues to rely on the experience and intuition of the
person applying themethod, particularlywhen choosing pole locations. Additionally,
situations have been observed where the method fails for no apparent reason. These
difficulties have led to studies regarding convergence and error analysis of the MAS.
In the next section, an error analysis of MAS and discussion of convergence issues
for these techniques will be described.

9.3 Convergence and Error Analysis in MAS

The creation of guidelines for pole placement in the GMT methods is one step
toward understanding the best implementation of discrete source methods. Another
step is to investigate the nature of error and convergence in the GMT methods for
canonical problems. In this section, convergence and error analysis of the MAS will
be described for the case of a circular cylindrical scatterer.

The Method of Auxiliary Sources is based on the use of auxiliary sources on
an auxiliary surface. The fundamental theory considers a continuous source on the
auxiliary surface. In practice, an approximation to the theory is used where a dis-
crete collection of N monopoles are placed on the auxiliary surface. Convergence is
concerned with the nature of the solution as the number of sources increases. There-
fore, as N → ∞, the solution for the fields should converge to the exact solution.
However, it is possible for the solution to not converge as N increases. Error analysis
is concerned with the characteristics of the error in the implementation of the MAS.
This error can have multiple sources. For example, errors can be due to the numerical
computations, and errors can be due to the approximation of the continuous source
as a set of N poles.

9.3.1 MAS Convergence Analysis: Monopole Line Source
Incident Field

One area of recent interest is the nature of the convergence of MAS methods as N
approaches infinity. In [22], the convergence properties of the MAS for a line source
scattering from a perfectly conducting cylinder (see Fig. 9.4) are reported. Cases
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where the auxiliary surface does enclose the SFS’s and where it does not enclose the
SFS’s are compared.

When the AS encloses the singularities, theMAS pole strengths are well-behaved
and converge asN increases. In addition, the pole strengths in this case also replicate
the analytic continuation of the scattered field within the object between the AS and
the scatterer boundary.

When the AS does not enclose the singularities, the pole strengths oscillate and
do not converge as N approaches infinity. Fields between the AS and the scatterer
boundary can not replicate the analytic continuation of the scattered field within
the object. The pole strength oscillations are not due to matrix ill-conditioning.
Even though the coefficients do not converge, the fields do converge to a close
approximation of the actual scattered fields on and outside the object.

In [23], the results of [22] are extended to dielectric circular cylinders with a
line source incident field. For the dielectric case, an auxiliary surface (of radius ρd )
outside the cylinder is used tomodel the internal field as shown in Fig. 9.4. If ρd < ρo

(as shown in the figure), the pole strengths are stable and convergent. If ρd > ρo,
then the pole coefficients are not stable. In both cases, the fields within the cylinder
converge toward the solution.

Thus, as the research into the nature of convergence for the MAS shows, there
are two distinct types of convergence. The first is concerned with the convergence
of the scattered and internal field. The second is concerned with the convergence
of the pole strengths. In the preceding analysis, it was demonstrated that the pole
coefficients converge if the singularities are enclosed by the AS. The field model can
converge to the solution even when the pole coefficients do not converge.

9.3.2 MAS Accuracy Analysis: Plane Wave Incident Field

A second area of recent interest is the analysis of the accuracy of MAS. Consider the
problem of a TMz incident plane wave on a perfectly conducting circular cylinder.
Plane wave illumination can be considered as monopole illumination where the
distance between the monopole and the cylinder is very large. As the monopole
moves away from the cylinder, the singularities approach the origin. Therefore, the
auxiliary surface for a cylinder illuminated by a plane wave can range in size from
nearly zero to nearly the radius of the cylinder.

In [24], the MAS solution to the plane wave incidence problem is analyzed. The
MAS matrix is analytically derived and investigated in a fashion similar to [25].
The condition number and invertability of the matrix are studied. It is shown in
[24] that the computational error can be separated into an analytical and a numerical
component. The error that dominates the total error in the solution is found to depend
on the radius of the auxiliary surface.

The following is a brief synopsis of the results reported in [24]. First, consider
the effect of the auxiliary surface (AS) radius. For very small AS radius, the numer-
ical error dominates. This is due to the numerical precision of the computer used to
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perform the calculations. As the AS radius increases, the numerical error falls. At
some point, the increasing radius reaches a region where the analytical error domi-
nates the cumulative error.

As the AS radius increases further, the analytical error increases. For an AS radius
nearly equal to the cylinder radius, the numerical error again begins to increase faster
than the analytical error. This increase in the numerical error is attributed to the very
large entries along the diagonal of the matrix since the poles are very close to the
matching points on the cylinder.

For an AS radius where the analytical error dominates the cumulative error,
increasing the number of auxiliary sources results in lower boundary condition error.
This is the result expected from the fundamental theory that MAS is based upon.

Finally, a set of spikes in the numerical error are observed at very specific and con-
sistent ratios of AS radius to cylinder radius. Using the analytically derived solution,
it is shown that these errors are due to zeros of the Bessel function.

In conclusion, it is suggested in [24] that the auxiliary surface should be placed
as far from the boundary as possible and yet close enough to the boundary to avoid
numerical errors. One convenient method of estimating the optimum location is to
monitor the condition number of the matrix, since the condition number is a way to
approximate the expected level of numerical error.

The analysis in [24] for TMz plane wave scattering on a perfectly conducting
circular cylinder is repeated in [26] for the TEz plane wave PEC case, in [27] for the
dielectric cylinder, and in [28] for the case of a cylinder with material properties that
allow the use of the surface impedance boundary condition (SIBC).

In each case, the results are very similar. When the auxiliary surface has a very
small radius, the numerical error dominates because of the numerical precision of
the machine. When the auxiliary surface radius approaches the cylinder radius, the
large diagonal entries cause numerical errors. Isolated spikes in the numerical error
are attributed to zeros of the Bessel functions.

For the dielectric case, the radius of the auxiliary surface to model the internal
field is also investigated. In this case, no numerical difficulties are encountered.

It is instructive to correlate the results of theMAS accuracy studies in [24, 26–28]
with the heuristic rules discussed earlier [16]. In particular, the large numerical errors
are avoided by appropriate application of the rules: poles should neither be too close
together nor too close to the surface. In fact, as the poles approach the surface, they
ideally should proportionately approach each other to maintain suitable regions of
influence.

9.3.3 Summary Comments

The studies described in this section focus on the numerical implementation of MAS
and details of the resulting solutions for somewell-known canonical problems. How-
ever, there are other ways to describe and quantify the characteristics of the scattered
field model. In two-dimensional MAS, the fundamental object in the scattered field
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model is a monopole displaced from the origin. In the next section, the characteris-
tics of the displaced monopole will be compared to the characteristics of the incident
field to obtain additional insight regarding pole placement.

9.4 Effective Spatial Bandwidth

In this section, the effective spatial bandwidth (EBW) of fields on a boundary is
introduced, described, and computed to ascertain the range of radii that will provide
MAS solutions that avoid excessive numerical error (as in [24]) and avoid large
oscillations in the MAS source strengths (as in [22]). Two examples will be used to
demonstrate that EBW is an effective, relatively practical engineering tool to evaluate
the suitability of pole locations.

9.4.1 Introduction

An incident field scatters off of a circular cylinder with radius a, as shown in Fig. 9.5.
The cylinder is infinitely long, and the incident field is polarized such that the electric
field is in the z direction, parallel to the cylinder axis. There is no field variation in
the z direction. The incident field can be a plane wave or a line source in the vicinity

ρρ ’

ρ ρ ’

ρ "

ρ ρ "

a

φ

y

free space

ε,σ

x

Fig. 9.5 Geometry of scatterer (radius a) showing the location of a pole in the scattered field model
(at ρ′), the location of an internal field pole (at ρ′′), and a point on the boundary (at ρ). Incident
field may be a plane wave or a line source (L) at ρo
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of the cylinder (both are shown in the figure). The line source may be a monopole or
a multipole of some order with even or odd symmetry in the angle φ. The scatterer
in general has conductivity σ and permittivity ε. An exp{ jωt} time dependence is
assumed throughout.

Using Rayleigh’s hypothesis, the scattered field is

Es
z,analytic =

∞∑

n=−∞
cnH

(2)
n (kρ) e jnφ (9.1)

where k is the wavenumber outside the cylinder, and H (2)
n (·) is the Hankel function

of the second kind of order n representing outward traveling waves. If the incident
field is a unit strength plane wave, Ei

z = exp{−jkx}, then

cn = −j−n Jn(ka)

H (2)
n (ka)

(9.2)

where a is the cylinder radius.
In GMT, the scattered field is modeled as a collection of monopoles:

Es
z =

Np∑

n=1

anH
(2)
o (k | ρ − ρ ′

n | ) (9.3)

where there are Np poles with amplitudes an at locations ρ ′
n, and | ρ ′

n | < a. We
have assumed only monopoles in the scattered field model. The internal field is also
modeled using a set of monopoles at origins | ρ ′′

n | > a as

Ed
z =

Np∑

n=1

bnH
(2)
o (kd | ρ − ρ ′′

n | ) (9.4)

where kd is the wavenumber inside the cylinder. In both (9.3) and (9.4), the poles are
equally spaced in φ.

Suppose the incident field is a plane wave such that the solution for Es
z is given

by (9.1) with cn in (9.2). The scattered field model consists of monopoles displaced
from the global origin of the scatterer. A displaced monopole can be written as a
multipole expansion at the global origin using the addition theorem (AT):

H (2)
o (k | ρ − ρ ′ | ) =

∞∑

n=−∞
Jn(kρ<)H (2)

n (kρ>) e jn(φ−φ′) (9.5)

where ρ< (ρ>) is the smaller (larger) of ρ and ρ ′.
Consider a singlemonopole in the scattered fieldmodel (9.3). The distanceρ ′ < a,

so the coefficients of theAT expansion are governed by theBessel function Jn(kρ ′). If
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ρ ′ is very small, only a few terms in the AT expansion are significant because Jn(kρ ′)
will quickly go to zero as n increases. However, cn may have considerable values for
manymore terms. In this case, the scattered field model may not accurately represent
the actual scattered field. This is analogous to the situation described earlier and in
[24]. The auxiliary surface (i.e., ρ ′

n) is too small and the numerical errors dominate
the errors in the scattered field computation.

If ρ ′ is very small, the an coefficients are affected as well. If Jn(kρ ′) decays more
quickly than cn, then the computed coefficients, an in (9.3), will become very large.
To match the boundary condition, the sum in (9.3) must remain bounded. Therefore,
while themagnitude of an diverges, the phase of an will provide extensive cancelation
to the fields along and outside the boundary, as explained in [22].

On the other hand, consider the case where ρ ′ is large enough. The AT expansion
coefficients will decay at a rate that is similar to cn. The pole locations admit a
scattered field error that is dominated by the analytic error of [24]. The an will most
likely be stable values at a reasonable magnitude.

9.4.2 Theoretical Development of EBW

In this section, the concept of effective spatial bandwidth of the fields is described. A
procedure to quantify the bandwidth is developed and used to aid in pole placement
in the GMT.

A plane wave is incident upon the cylinder of the previous section. On the cylinder
boundary, the incident field has a constant magnitude and the phase variation is
correlated to the position on the boundary. As the cylinder radius increases, the
phase of the incident field varies more. If a line source is the incident field, the
magnitude of the field along the boundary will also vary according to the distance
between the line source and the cylinder boundary.

Suppose a GMT monopole is inside the cylinder. If the monopole is at the origin
(ρ ′ = 0), the field along the boundary has a constant magnitude and phase. As ρ ′
increases, the boundary field variation increases. If ρ ′ = a, then the field of the
monopole on the boundary is singular at the monopole.

Thus, if the amount of variation of the field along the boundary can be quantified
for both the incident field and the monopoles in the scattered field model, then the
GMT pole radius can be chosen so that the amount of variation of the GMT pole
matches the variation of the incident field along the boundary. Using GMT poles
with similar variation is likely to result in coefficients an and bn that are stable and
well-behaved in addition to satisfying the boundary conditions.

The variation of the fields along the boundary of the scatterer will be quantified
using the effective spatial bandwidth of the fields. An early study on the bandwidth
of scattered fields can be found (for the non-periodic case) in [29]. In the two-
dimensional case described here, the scattered field is periodic. The “bandwidth” or
Effective spatial BandWidth (EBW) is introduced in [30], and is summarized below.
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Consider a field quantity such as Es
z , denoted e(φ), around the circular boundary

of Fig. 9.5. Define the energy of e(φ):

E (e) =
2π∫

0

| e(φ) | 2ρ(φ)dφ (9.6)

where ρ(φ) is the distance from the origin to the point on the scatterer at angle φ. The
function e(φ) can havemany harmonics. Since the boundary is a circle, the harmonics
will be exp{jnφ} where n is an integer. Our present goal is to find the function eN (φ)

that has a maximum spectral component exp{jNφ}. One could convert e(φ) to the
spectral domain, eliminate termswith coefficients greater thanN , and convert back to
the spatial domain to find eN (φ). Analytically, it is convenient to use the convolution:

eN (φ) = 1

C

2π∫

0

BN (φ, ξ)e(ξ)ρ(ξ)dξ (9.7)

where the subscript N indicates that the function has been bandlimited to a maximum
harmonic of order N , C is the circumference of the scatterer, and

BN (φ, ξ) = sin
[(
N + 1

2

)
(φ − ξ)

]

sin
[
1
2 (φ − ξ)

] (9.8)

For a periodic function e(φ), define EBW = N such that N is the smallest integer
with 
N ≤ 0.1%, where


N = E (e) − E (eN )

E (e)
× 100% (9.9)

In other words, find N such that 99.9% of the energy is within the first N harmonics.
Computation of the EBW for the incident field along the boundary is now possible

using the abovedefinition. TheEBWfor amonopole in theGMTscatteredfieldmodel
can also be found. If the location of the GMT monopole is varied from a very small
radius to nearly the radius of the scatterer, there should be a radius where the EBW
of the monopole matches the EBW of the incident field.

If the pole location is at a radius where the EBW of the poles matches or is a bit
larger than the incident field EBW, then, the GMT solution for the scattered field
would be well behaved because the model includes enough field variation along the
boundary to match the boundary conditions. The resulting coefficients an should also
be well-behaved and converge as Np approaches infinity.

If the pole locations are at a much smaller radius, then the EBW of the GMT poles
is significantly smaller than the incident field EBW. In this case, the GMT poles are
unable to match the variations in the incident field along the boundary. Therefore, the
numerical implementation results in an coefficients that have divergent magnitudes
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and oscillating phases to create the field variation required to match the boundary
conditions.

9.4.3 Results

In this section, the EBW of fields along the circular boundary are computed for
several different cases.

9.4.3.1 Plane Wave Incident Field

Consider a unit strength plane wave incident on the cylinder, traveling in the +x
direction. The electric field is given by E = Ep

z êz, where

Ep
z = e−jkx = e−jkρ cosφ =

∞∑

n=−∞
j−nJn(kρ)ejnφ (9.10)

where the superscript p indicates plane wave.
The field Ep

z on the boundary of a cylinder with radius a can be limited to a
bandwidth of N :

Ep
z,N (φ) = 1

2π

∞∑

n=−∞
[j−nJn(ka)]

2π∫

ξ=0

BN (φ, ξ)ejnξdξ (9.11)

The integral is 2π exp{jnφ} if |n| < N and is zero otherwise. As N increases, the
quantity in brackets approaches zero. Once the bracketed quantity becomes small
enough so that 
n < 0.1%, the EBW is found.

The EBW for a plane wave incident on the cylinder can also be computed numeri-
cally by integrating (9.6) and (9.7). A graph of the EBWof a plane wave as a function
of cylinder radius a is shown in Fig. 9.6.

As expected, when a is very small, the plane wave EBW is also small because
the phase remains fairly constant around the boundary. As a increases, the phase
variation around the boundary increases resulting in a larger EBW.

9.4.3.2 Monopole Line Source Incident Field

The field due to a unit strength monopole line source at ρo is written as:

Eo
z = H (2)

o (k | ρ − ρo | ) (9.12)
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Fig. 9.6 EBW for a plane
wave incident on a cylinder
of radius a (in wavelengths)
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where the superscript o indicates a monopole line source. The EBW for the line
source on the cylinder boundary can be computed in the same fashion as the plane
wave incident field case. Figure9.7 shows the results of this calculation for cylinders
of radius 0.5 λ and 1.0 λ.

For a line source very close to the scatterer, the EBW is quite large and diverges as
ρo/a → 1.Asρo increases, theEBWconverges to the planewavevalue.Convergence
to the plane wave result depends on both ρo and a. For larger a, a larger ρo is needed
to reach the plane wave approximation.

9.4.3.3 GMT Monopole Located Inside Cylinder

A monopole inside the scattering cylinder represents one term of the scattered field
model. The electric field at ρ for a unit strength monopole at location ρ ′ is given by:

EM
z = H (2)

o (k | ρ − ρ ′ | ) (9.13)

where the superscript M indicates GMT monopole. After applying the AT, the ban-
dlimited field for the monopole can be computed as:
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Fig. 9.8 EBW for a
monopole inside the
cylinder: a = 0.5 λ (solid);
a = 1.0 λ (dotted)
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z,N = 1

2π

∞∑

n=−∞
Jn(kρ

′)H (2)
n (ka)e−jnφ′

2π∫

ξ=0

BN (φ, ξ)ejnξdξ (9.14)

where the same integral as found in (9.11) is seen. If ρ ′ = 0, the monopole is at the
origin. The field around the cylinder will be constant and the only non-zero term
in the series of (9.14) will be the n = 0 term, as seen by the Jn(kρ ′) factor. As ρ ′
increases, the number of terms in (9.14) with a significant Jn(kρ ′) will increase as
well. The number of significant terms in the series is an indication of the EBW for
EM
z,N . Therefore, as ρ ′ increases, the EBW increases as well.
The EBW for a GMT monopole can be computed by numerically integrating as

before. The EBW for a monopole within cylinders of radius 0.5 λ and 1 λ are plotted
as a function of ρ ′ in Fig. 9.8.

As seen in Fig. 9.8, the EBW for the GMT monopole increases slowly at first and
diverges as ρ ′ → a. A larger cylinder results in a higher EBW for a similar monopole
location.

9.4.3.4 GMT Monopole Located Outside Cylinder

For penetrable scatterers, the internal field ismodeled using poles outside the scatterer
as in (9.4). The EBW for a GMT monopole outside the cylinder is identical to the
monopole line source results shown in Fig. 9.8. If the monopole is placed far from the
scatterer, the field is approximately a planewave. Then, themodel for the internal field
is approximately a plane wave expansion using a finite set of plane wave propagation
directions.

9.4.4 Examples

In this section, some example calculations are used to evaluate the usefulness of EBW
when choosing pole locations. The EBW for the incident field, denoted EBWinc will
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be compared to the EBW for the scattered field (EBWscat). GMT will be used to
compute the solution to the scattering from a cylinder under a variety of situations.
TheGMTmodel for the scattered field is (9.3) and the internal field is (9.4). Solutions
are obtained by choosing a set of Np matching points, equally spaced in φ along the
boundary. The φ values are identical to the φ values for the pole locations. A LSE
with square matrix is formulated by forcing the total tangential electric field to zero.
The LSE is solved to obtain the unknown coefficients.

To evaluate the accuracy of the solution, define the average boundary condition
error (in percent) as:

ε̄% = 1

360

360◦∑

φ=1◦

|Ei
z(φ) + Es

z(φ)|
|Ei

z(φ)| × 100% (9.15)

Recall, if the scattered monopole radius is too small, the an tend to diverge in
magnitude and oscillate in phase. Typically, one would prefer a solution that has
stable and converging coefficients. Solutions with stable coefficients shall be called
“suitable” or “stable” solutions.

To quantify the stability or suitability of GMT solutions for the general problem,
define a measure, V , that depends on the scattered field coefficients:

V = |an|max
∣∣ 1
Np

Np∑
n=1

an
∣∣

(9.16)

Note that a similar scheme using V = |an|max is implemented in [23].
The measure V takes the maximum coefficient magnitude and divides by the sum

of the coefficients. If the coefficients are very large with nearly equal and opposite
phases, V will be large and diverge as Np increases. If the coefficients are well
behaved, then V will remain nearly constant as Np increases.

9.4.4.1 Example 1. Plane Wave Incident on a PEC Circular Cylinder

Aperfectly conducting (PEC) cylinder of radius a = 1.0 λ is excited by a planewave.
The spatial bandwidth for the incident field isEBWinc = 9. AGMTmonopole within
the cylinder has an equivalent EBW when ρ ′ is approximately 0.4 λ.

Figure9.9 shows the GMT results for various ρ ′ using Np = 30 monopoles. The
average boundary condition error (ε̄%) indicates a “best” solution for ρ ′ near 0.125 λ.
However, the suitability measure V diverges strongly for ρ ′ < 0.4 λ. Recall that the
EBW for the monopoles and the incident field match at ρ ′ = 0.4 λ.

Next consider results for increasing Np. Figure9.10 shows ε̄% and V for ρ ′
at 0.25 λ and 0.45 λ. For both ρ ′ values, the average boundary condition error
decreases asNp increases. The suitability does not diverge in either case; however, for



9 Pole Location in GMT 239

Fig. 9.9 GMT results for
Example 1: solid, ε̄%;
dashed, V
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Fig. 9.10 GMT results for
Example 1: solid,
ρ′ = 0.45 λ; dashed,
ρ′ = 0.25 λ

Np

ε̄%, V

0.0001

0.01

1

100

10000

1e+06

1e+08

10 20 30 40

V

ε̄%

ρ ′ = 0.25 λ, |V | is two orders of magnitude larger. In general, the non-divergent
behavior of |V | indicates that the poles are enclosed by the auxiliary surface. The
suitability degrades as ρ ′ decreases because of the numerical error described earlier.

In this example, it is clear that using ρ ′ greater than 0.4 λ is useful to avoid
numerical errors. This result demonstrates the validity of EBWas a guide to choosing
the pole radius.

9.4.4.2 Example 2. Monopole Line Source Incident on a PEC Circular
Cylinder

A perfectly conducting cylinder of radius a = 1.0 λ is in the vicinity of a monopole
line source. The location of the line source is ρo = 1.12 λ at φ = 0. The EBW of the
incident field is EBWinc = 16. A GMT monopole within the cylinder has an equiva-
lent EBW when ρ ′ is approximately 0.75 λ. The singularity for the configuration is
at a2/ρo = 0.893 λ. Note how the radius to satisfy the EBW requirement is smaller
than the singularity radius.
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Fig. 9.11 GMT results for
Example 2: solid, ε̄%;
dashed, V
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Fig. 9.12 GMT results for
Example 2: solid, ρ′ = 0.6 λ;
dashed, ρ′ = 0.8 λ; dotted,
ρ′ = 0.9 λ
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Figure9.11 shows the average boundary condition error and V as a function of
GMT monopole radius for the monopole line source example with Np = 30. The
boundary condition error does not fall much below 1% becauseNp is small; however,
V illustrates divergent behavior as ρ ′ gets smaller. The value of V is quite small for
ρ ′ near 0.9 λ, as expected from the singularity radius.

Figure9.12 shows ε̄% and V for Example 2 as Np increases from 10 to 40. In
all cases, the average boundary condition error decreases as Np increases. When
ρ ′ = 0.6 λ, the pole radius is smaller than the radius dictated by both the singularity
and EBW. The V increases to very large values as Np increases. For ρ ′ = 0.8 λ, the
pole radius is large enough to satisfy the EBW requirement but not the singularity
requirement. In this case, V is smaller.When ρ ′ = 0.9 λ, both conditions are satisfied
and V remains quite small and fairly constant over the entire range of Np.

In general, Example 2 illustrates that enclosing the singularity results in the best
situation for the GMTmonopoles for a scattering problem. However, in many cases,
the location of the singularity may be difficult to ascertain; in these cases, the EBW
can be used as a way of estimating the pole locations that come close to enclosing
the singularity and hence, obtain a suitably stable solution to the problem.
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9.4.5 Comments on the Dielectric Cylinder Case

All of the results in the preceding section pertain to the scattering from a perfectly
conducting cylinder. In this brief section, the results obtained for a dielectric cylinder
will be discussed [31]. For a dielectric cylinder, the boundary conditions change; there
is now a condition of continuity of the tangential magnetic field as well as continuity
of the tangential electric field.

In the dielectric case, the internal field is modeled using (9.4). At the boundary,
only the φ component of the magnetic field is needed:

Hφ = 1

jωμ

∂Ez

∂ρ
(9.17)

A set ofNp matching points are chosen along the boundary. There are 2Np unknowns
and each matching point admits two equations. Thus, a square matrix is obtained and
used to find the unknown coefficients.

The effective spatial bandwidth calculations are independent of the material prop-
erties of the scatterer. Thus, the EBW results shown previously are still valid. The
EBW guidelines for the scattered field monopole locations are the same.

The internal field monopoles at ρ ′′
n follow guidelines that can be inferred preced-

ing, depending on the incident field type.
For a monopole line source, ρ ′′

n must be between the cylinder radius a and the line
source distance ρo. The EBWof the GMTmonopoles at ρ ′′

n follows the same analysis
as the monopole line source. Therefore, if ρ ′′

n is larger than ρo, then the internal field
model will have a smaller EBW than the incident field.

For a plane wave incident field, [31] reports that ρ ′′
n may be quite large with-

out encountering large boundary condition errors and still provide suitably stable
solutions. As the monopole moves far from the cylinder, the field in the vicinity of
the cylinder will become approximately a plane wave. Thus, having a collection of
monopoles far from the cylinder is equivalent to a discrete plane wave expansion for
the internal field.

9.5 Effective Spatial Bandwidth for Non-circular Cylinders

In this section, the generalization of the EBW calculation to non-circular two-
dimensional geometries is briefly introduced. First, amodified kernel for the bandlim-
iting operation is presented. Then, results are presented using a perfectly conducting
cylinder with elliptical cross section.
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9.5.1 Introduction

The effective spatial bandwidth for some field quantity on the scatterer boundary
is computed by performing the bandlimiting operation and comparing the energy
in the original function and the bandlimited function. For non-circular boundaries,
the EBW can be computed by modifying the bandlimiting operation. The key is the
kernel in the integration over the boundary,BN (φ, ξ). Properties of the kernel include
that the kernel is constant for N = 0 so the integration returns the average value of
e(φ). Also, the kernel must be periodic over the arc length of the boundary. Since
the kernel must be periodic, EBW will again be integer values.

The appropriate modified kernel can be written:

KN (s, σ ) = sin
[(
N + 1

2

)
2π
C (s − σ)

]

sin
[
1
2
2π
C (s − σ)

] (9.18)

where the boundary is parameterized by s andC is the circumference of the boundary.
Both s and σ are distances between 0 and C, relative to a point on the boundary
identified as s = 0. The integrations (9.6) and (9.7) are also modified to integrate s
or σ from 0 to C.

The EBW of a plane wave over a non-circular scatterer boundary, for example,
has some interesting features. The variation in the incident field will be a function
of the angle of incidence. Thus, EBW will be a function of the angle of incidence of
the plane wave. Similarly, the EBW for a GMT monopole within the scatterer will
be a more complex function of pole location.

9.5.2 Scattering from a Perfectly Conducting Elliptical
Cylinder

As an example, scattering of a plane wave by an elliptical cylinder as shown in
Fig. 9.13 will be discussed. The cross section is an ellipse with major axis 2a and
minor axis 2b. The axes are aligned with the x and y axes. An ellipse can be param-
eterized as points (x, y):

x = a cos t y = b sin t (9.19)

where t is from 0 to 2π . An ellipse is also characterised by its eccentricity, e:

e =
√
a2 − b2

a2
(9.20)

where e = 0 indicates a circle (a = b) and e = 1 corresponds to a flat plate from
x = −ae to x = ae. Denote ellipses that have the same focal points as a family of
ellipses. Then, ellipses with equal ae products are in the same family.
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Fig. 9.13 Geometry for the
elliptical cylinder scatterer
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y
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(a,0)
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Fig. 9.14 EBW for a plane
wave incident on an elliptical
cylinder, a = 1 λ: solid:
b = 0.5 λ; dotted: b = 0.1 λ

AOI(degrees)

EBW

0 45 90 135 180

6

8

10

12

The incident field is a plane wave arriving at some angle of incidence (AOI). For
example, a plane wave traveling in the +x direction has AOI = 0◦ and in Fig. 9.13,
AOI = 225◦. The electric field is in the z direction.

The focal points (ae, 0) and (−ae, 0) are also the singularities for the scatterer
geometry. Therefore, the scattered field model should have an auxiliary surface that
encloses the line segment between the focal points.

The EBW for a plane wave incident on an elliptical cylinder with a = 1 λ for
b = 0.1 λ and b = 0.5 λ is shown in Fig. 9.14. The figure shows the EBW results as
a function of AOI. For b = 0.5 λ, there is a small amount of change in EBW with
AOI. Near 0◦ and 180◦, the EBW falls slightly from the 90◦ result of EBW = 8.
However, the b = 0.1 λ case is more interesting. The range of EBW values is from
2 to 13. Near AOI = 0◦, the plane wave propagates parallel to the narrow dimension
of the ellipse. Large phase variations of the incident field occur along the x direction
and result in a large EBW. Near AOI = 90◦, the phase variations along x are much
smaller and a lower EBW is observed.

The EBW for a GMT monopole inside the cylinder positioned at (x′, 0) is shown
in Fig. 9.15. The scatterer again has a = 1 λ, and data for b = 0.1 λ and 0.5 λ is
shown. In both cases, the EBW begins smaller and rises sharply as x′ approaches
a. In addition, the EBW is higher when b = 0.1 λ for all x′. One interesting item to
note in Fig. 9.15 is that the EBW of the interior monopole does not monotonically
increase as x′ increases. For example, for the b = 0.5 λ case the EBW falls for x′
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Fig. 9.15 EBW for a GMT
monopole at (x′, 0) within an
elliptical cylinder, a = 1 λ:
solid: b = 0.5 λ; dotted:
b = 0.1 λ
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Fig. 9.16 EBW for a GMT
monopole at (x′, 0) within an
elliptical cylinder, a = 1 λ:
solid: b = 0.5 λ; dotted:
b = 0.1 λ
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near 0.2 λ and 0.6 λ. The nature of this drop is unclear. Figure9.16 shows results for
a GMT monopole at (0, y′). Similar trends are observed.

To complete the elliptical cylinder example, the EBW results will be applied to the
GMT solution for planewave scattering by an ellipsewith a = 1 λ and b = 0.5 λ. The
AOI shall be 90◦ which admits an EBWinc = 8. The GMTmonopole results indicate
that EBWGMT = 8 when x′ .= 0.88 λ. This result is consistent with the notion that
the singularities must be enclosed by the auxiliary surface. Using a = 1 λ, the focal
distance:

ae = √
3/2

.= 0.866 < 0.88 (9.21)

The monopole results also indicate that EBWGMT = 8 when y′ .= 0.32 λ.
The GMT scattered field model consists of 50 monopoles placed on an ellipse

with a′ = 0.88 λ and a variable b′. It has been observed that poles and observation
points equally spaced in t (see (1.19)) provides better results when compared to poles
equally spaced in arc length. In all simulations, the match points and pole locations
are equally spaced in t along each ellipse.

The boundary condition error and suitability measure V are shown in Fig. 9.17
for simulations where b′ sweeps from nearly zero to nearly 0.5 λ. The boundary

http://dx.doi.org/10.1007/978-3-319-74890-0_1
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Fig. 9.17 GMT results for
an elliptical cylinder,
a = 1 λ, b = 0.5 λ, and
a′ = 0.88 λ: solid: ε̄%;
dotted: V
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condition error is quite small for small b′ and increases for b′ larger than 0.15 λ. The
cause of the spike near b′ = 0.275 λ is not known.

Anunusual dip in the boundary condition error occurs nearb′ = 0.15 λ. In general,
it has been observed that auxiliary surfaces that are in the same family as the scatterer
boundary provide the lowest boundary condition error. Using

ae = a′e′ → e′ = ae

a′
.= 0.984 → b′ .= 0.156 (9.22)

it is seen that the dip in boundary condition error near b′ = 0.15 λ is when the
auxiliary surface is in the same family as the boundary.

The suitability measure V shown in Fig. 9.17 is larger for small and large b′.
Strictly, the minimum is near b′ = 0.2 λ; however, V does not increase significantly
until b′ > 0.32 λ. This is consistent with the EBW calculations, which showed that
the EBW for a y-displaced monopole matches the plane wave EBW at y′ = 0.32 λ.

In this section, EBW was implemented for scatterers of elliptical cross section.
The EBW calculations result in an auxiliary surface that encloses the singularities of
the scattered field. However, EBW calculations result in global information. In more
complex situations, local characteristics of the scatterer boundary and the incident
field may dominate decisions regarding pole placement.

9.6 Conclusions

The family of GMT methods to solve scattering problems has many advantages;
however, one major disadvantage is a lack of knowledge or understanding regarding
the placement of the poles. Heuristic rules and guidelines have been developed and
are quite successful.

In addition, analysis of the performance of the technique (particularly MAS) has
been accomplished by studying the canonical problem of scattering by a circular
cylinder. Accuracy analyses and investigation into the different types of convergence
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are described along with the relationship between pole placement and the scattered
field singularities.

Finally, the effective spatial bandwidth for tangential fields along the boundary of
scatterers has been described. The location of the GMT poles is chosen so that the
EBW of the poles matches (or slightly exceeds) the EBW of the incident field. The
EBWconceptwas extended to non-circular boundaries and the elliptical cylinderwas
used as an example to illustrate the usefulness of the effective spatial bandwidth.
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