
Peng Liu
Sjouke Mauw
Ketil Stølen (Eds.)

 123

LN
CS

 1
07

44

4th International Workshop, GraMSec 2017
Santa Barbara, CA, USA, August 21, 2017
Revised Selected Papers

Graphical Models
for Security

Lecture Notes in Computer Science 10744

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

Peng Liu • Sjouke Mauw
Ketil Stølen (Eds.)

Graphical Models
for Security
4th International Workshop, GraMSec 2017
Santa Barbara, CA, USA, August 21, 2017
Revised Selected Papers

123

Editors
Peng Liu
Pennsylvania State University
University Park, PA
USA

Sjouke Mauw
University of Luxembourg
Esch-sur-Alzette
Luxembourg

Ketil Stølen
SINTEF ICT Blindern
Oslo
Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-74859-7 ISBN 978-3-319-74860-3 (eBook)
https://doi.org/10.1007/978-3-319-74860-3

Library of Congress Control Number: 2018930744

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Welcome to the proceedings of GraMSec 2017, the 4th International Workshop on
Graphical Models for Security. This workshop seeks to bring together researchers from
academia, government, and industry to report on the latest research and development
results on graphical models for security, and to have productive discussion and con-
structive debate on this topic. The workshop was a single day event co-located with the
30th IEEE Computer Security Foundations Symposium (CSF 2017). Out of a total of
19 submissions from Europe and North America, we accepted five regular papers and
four short papers.

These proceedings also contain the abstract of an invited talk by Anoop Singhal
(U.S. National Institute of Standards and Technology) on “Security Metrics and Risk
Analysis for Enterprise Systems.” This valuable and insightful talk gave us a better
understanding of the topic. In addition, these proceedings include an invited paper by
members of the WISER project, entitled “Employing Graphical Risk Models to
Facilitate Cyber-Risk Monitoring – the WISER Approach.” We expect that the results
and experiences from this project will help the reader to explore the WISER approach
to graphical modeling for security.

Putting together GraMSec 2017 was a team effort. We thank all authors who sub-
mitted papers. We thank the Program Committee members and additional reviewers for
their great effort toward a thought-provoking program. We are also very grateful to the
invited speaker for his presentation and the financial support received from the Fonds
National de la Recherche Luxembourg (FNR-CORE grant ADT2P). Finally, we thank
the IEEE CSF organizers, particularly the general chair, Pedro Adão, for his support
and help.

December 2017 Peng Liu
Sjouke Mauw
Ketil Stølen

Organization

Program Committee

Mathieu Acher University Rennes 1/Inria, France
Massimiliano Albanese George Mason University, USA
Ludovic Apvrille Télécom ParisTech, CNRS LTCI, France
Thomas Bauereiß University of Cambridge, UK
Kristian Beckers Technical University of Munich, Germany
Giampaolo Bella Università di Catania, Italy
Stefano Bistarelli Università di Perugia, Italy
Marc Bouissou EDF and Ecole Centrale Paris, France
Binbin Chen Advanced Digital Sciences Center, Singapore
Frédéric Cuppens Télécom Bretagne, France
Nora Cuppens-Boulahia Télécom Bretagne, France
Hervé Debar Télécom SudParis, France
Harley Eades Iii Augusta University, USA
Mathias Ekstedt KTH Royal Institute of Technology, Sweden
Ulrik Franke Swedish Institute of Computer Science, Sweden
Frank Fransen TNO, The Netherlands
Olga Gadyatskaya University of Luxembourg, Luxembourg
Paolo Giorgini University of Trento, Italy
Dieter Gollmann Hamburg University of Technology, Germany
Joshua Guttman Worcester Polytechnic Institute, USA
René Rydhof Hansen Aalborg University, Denmark
Maritta Heisel University of Duisburg-Essen, Germany
Hannes Holm Swedish Defence Research Agency, Sweden
Siv Hilde Houmb Secure-NOK AS, Norway
Sushil Jajodia George Mason University, USA
Ravi Jhawar University of Luxembourg, Luxembourg
Henk Jonkers BiZZdesign, The Netherlands
Florian Kammueller Middlesex University London, UK and TU Berlin,

Germany
Nima Khakzad Delft University of Technology, The Netherlands
Dong Seong Kim University of Canterbury, New Zealand
Barbara Kordy INSA Rennes, IRISA, France
Pascal Lafourcade Université Clermont Auvergne, France
Jean-Louis Lanet Inria, France
Peng Liu Pennsylvania State University, USA
Sjouke Mauw University of Luxembourg, Luxembourg

Per Håkon Meland SINTEF, Norway
Jogesh Muppala Hong Kong University of Science and Technology,

SAR China
Simin Nadjm-Tehrani Linköping university, Sweden
Andreas L. Opdahl University of Bergen, Norway
Xinming Ou University of South Florida, USA
Stéphane Paul Thales Research and Technology, France
Wolter Pieters Delft University of Technology, The Netherlands
Sophie Pinchinat University Rennes 1, IRISA, France
Vincenzo Piuri University of Milan, Italy
Ludovic Piètre-Cambacédès EDF, France
Marc Pouly Lucerne University of Applied Sciences and Arts,

Switzerland
Nicolas Prigent Supélec, France
Cristian Prisacariu University of Oslo, Norway
Christian W. Probst Technical University of Denmark, Denmark
David Pym University College London
Saša Radomirović University of Dundee, UK
Indrajit Ray Colorado State University, USA
Arend Rensink University of Twente, The Netherlands
Yves Roudier Université Côte d’Azur, CNRS, I3S, UNS, France
Guttorm Sindre Norwegian University of Science and Technology,

Norway
Mariëlle Stoelinga University of Twente, The Netherlands
Ketil Stølen SINTEF, Norway
Xiaoyan Sun California State University, USA
Axel Tanner IBM Research - Zurich, Switzerland
Alexandre Vernotte KTH Royal Institute of Technology, Sweden
Luca Viganò King’s College London, UK
Lingyu Wang Concordia University, Canada
Jan Willemson Cybernetica, Estonia

Additional Reviewers

Audinot, Maxime
Puys, Maxime
Venkatesan, Sridhar

VIII Organization

Security Metrics and Risk Analysis
for Enterprise Systems

(Abstract of Invited Talk)

Anoop Singhal

Computer Security Division, National Institute of Standards
and Technology (NIST), Gaithersburg, MD 20899, USA

psinghal@nist.gov

Abstract. Protection of enterprise systems from cyber attacks is a challenge.
Vulnerabilities are regularly discovered in software systems that are exploited to
launch cyber attacks. Security analysts need objective metrics to manage the
security risk of an enterprise systems. In this talk, we give an overview of our
research on security metrics and challenges for security risk analysis of enter-
prise systems. A standard model for security metrics will enable us to answer
questions such as “are we more secure than yesterday” or “how does the security
of one system compare with another?” We present a methodology for security
risk analysis that is based on the model of attack graphs and the common
vulnerability scoring system (CVSS).

Contents

Graphical Modeling of Security Arguments: Current State
and Future Directions . 1

Dan Ionita, Margaret Ford, Alexandr Vasenev, and Roel Wieringa

Evil Twins: Handling Repetitions in Attack–Defense Trees:
A Survival Guide . 17

Angèle Bossuat and Barbara Kordy

Visualizing Cyber Security Risks with Bow-Tie Diagrams 38
Karin Bernsmed, Christian Frøystad, Per Håkon Meland,
Dag Atle Nesheim, and Ørnulf Jan Rødseth

CSIRA: A Method for Analysing the Risk of Cybersecurity Incidents 57
Aitor Couce-Vieira, Siv Hilde Houmb, and David Ríos-Insua

Quantitative Evaluation of Attack Defense Trees Using Stochastic
Timed Automata . 75

René Rydhof Hansen, Peter Gjøl Jensen, Kim Guldstrand Larsen,
Axel Legay, and Danny Bøgsted Poulsen

Probabilistic Modeling of Insider Threat Detection Systems 91
Brian Ruttenberg, Dave Blumstein, Jeff Druce, Michael Howard,
Fred Reed, Leslie Wilfong, Crystal Lister, Steve Gaskin, Meaghan Foley,
and Dan Scofield

Security Modeling for Embedded System Design . 99
Letitia W. Li, Florian Lugou, and Ludovic Apvrille

Circle of Health Based Access Control for Personal Health
Information Systems . 107

Ryan Habibi, Jens Weber, and Morgan Price

New Directions in Attack Tree Research: Catching up
with Industrial Needs. 115

Olga Gadyatskaya and Rolando Trujillo-Rasua

Employing Graphical Risk Models to Facilitate Cyber-Risk
Monitoring - the WISER Approach . 127

Aleš Černivec, Gencer Erdogan, Alejandra Gonzalez,
Atle Refsdal, and Antonio Alvarez Romero

Author Index . 147

Graphical Modeling of Security Arguments:
Current State and Future Directions

Dan Ionita1(B), Margaret Ford2, Alexandr Vasenev1, and Roel Wieringa1

1 Services, Cybersecurity and Safety group, University of Twente,
Drienerlolaan 5, 7522 NB Enschede, The Netherlands

{d.ionita,r.j.wieringa}@utwente.nl
2 Consult Hyperion, 10-12 The Mount, Guildford GU2 4HN, UK

margaret.ford@chyp.com

Abstract. Identifying threats and risks to complex systems often
requires some form of brainstorming. In addition, eliciting security
requirements involves making traceable decisions about which risks to
mitigate and how. The complexity and dynamics of modern socio-
technical systems mean that their security cannot be formally proven.
Instead, some researchers have turned to modeling the claims underpin-
ning a risk assessment and the arguments which support security deci-
sions. As a result, several argumentation-based risk analysis and secu-
rity requirements elicitation frameworks have been proposed. These draw
upon existing research in decision making and requirements engineering.
Some provide tools to graphically model the underlying argumentation
structures, with varying degrees of granularity and formalism. In this
paper, we compare these approaches, discuss their applicability and sug-
gest avenues for future research. We find that the core of existing security
argumentation frameworks are the links between threats, risks, mitiga-
tions and system components. Graphs - a natural representation for these
links - are used by many graphical security argumentation tools. But, in
order to be human-readable, the graphical models of these graphs need
to be both scalable and easy to understand. Therefore, in order to facil-
itate adoption, both the creation and exploration of these graphs need
to be streamlined.

Keywords: Risk assessment · Security requirements
Argumentation · Graphical modeling

1 Introduction

Complete security is impossible and security decisions have to be selective: some
risks can be mitigated in several ways while others will have to be accepted.
Thus, security decision making involves an opportunity cost - the loss of the
value that would have been realized by making an alternative decision.

The ability to trace back previous decisions is important if they have to be
defended or revised, or if new security decisions have to taken. Firstly, the deci-
sion maker may have to justify mitigation decisions made earlier, for instance
c© Springer International Publishing AG 2018
P. Liu et al. (eds.): GraMSec 2017, LNCS 10744, pp. 1–16, 2018.
https://doi.org/10.1007/978-3-319-74860-3_1

2 D. Ionita et al.

in the case of a successful attack [16] or to satisfy the “reasonable security”
requirements of regulators [4]. Second, the ever changing security landscape and
forces decision makers to frequently revisit security decisions. In fact, the new
European GDPR (General Data Protection directive) explicitly requires data
controllers and processors to ensure “ongoing” confidentiality, integrity, avail-
ability and resilience of processing systems and services [12, art 32(1)(b)]. Third,
related systems may face related but not identical risks and therefore, reusing
(parts of) the arguments made for similar systems facilitates decision making for
given systems [13]. By recording the argumentation behind security decisions,
risk assessments can be re-visited when an attack takes place, extended when
new risks surface, and re-used in related products or contexts. Altogether, this
highlights a need to document security decisions and the rationale behind them.

With respect to previous research, security arguments can be compared to
safety cases [1,9,25], in that they summarize the reasons why, and the extent to
which, a system is thought to be acceptably secure (or safe). Several techniques
for modeling security arguments exist, some inspired from legal argumentation
(Toulmin-like argumentation structures [19,22]), others from formal methods
(deontic logic [15], defeasible logic [35]). The various approaches differ in their
scope and applicability. However, security argumentation schemas have only been
applied to toy examples so far and have not yet been adopted (or even evaluated)
in practice, raising questions with regard to their practical usability, utility and
scalability.

A characteristic feature of security risk assessments is that stakeholders with
varying backgrounds must contribute to or check the assessment, and that these
stakeholders have no time to first learn a specialized language for argumen-
tation. Therefore, we argue difficulties in understanding the notation used to
represent security arguments are major threats to the usability of any security
argumentation methodology and that some form of graphical model is needed in
order to enhance understanding. However, a graphical representation with low
expressiveness may have reduced utility while one which is too granular may
face scalability issues. This paper looks at argumentation models have evolved
over time and cross-examines graphical security argumentation frameworks in
order to support researchers in advancing the graphical modeling of security
arguments, as well as inform specialists involved in the security requirements
elicitation or risk assessment about existing security argumentation frameworks
and tools.

We start in Sect. 2 with reviewing argumentation theory and its application in
the security domain. In Sect. 3 we review the graphical representation of security
arguments provided by graphical argumentation tools available at the time of
writing. In Sect. 4 we cross-compare the various representations employed by
each of the tools and draw conclusions with regard to their expressiveness and
applicability. In Sect. 5 we draw conclusions from the comparison and indicate
some topics for future work in the direction of making security argumentation
graphs more practically usable.

Graphical Modeling of Security Arguments 3

2 Background

Structured argumentation has its roots in legal reasoning, with examples of dia-
grams being used to capture the justifications of judges or juries dating back
to as early as 1913 [17]. With the advent of computers, attempts to capture
reasoning first behind design decisions and later behind decisions in general also
proliferated [8,14,26]. Significant effort was invested into developing complex
tools and even more complex approaches for automated decision support [27,33].
However, it quickly became apparent that capturing arguments is most useful
when no formal proof is possible but defensibility of the decision is required [30].
This is of course the case for legal reasoning, but a similar situation exits in
the fields of safety and security. Indeed, safety arguments (in the form of safety
cases) were quickly adopted by the industry as a standard way of claiming their
systems are safe [7]. With laws such as the European DPD (Data Protection
Directive) and, in the US, Sect. 5 of the Federal Trade Comission (FTC) act
requiring companies to show that they took reasonable steps in protecting their
customer’s data, argumentation-based approaches started finding their way into
the field of information security. The remainder of this section explores the evo-
lution of argumentation structures from the court of law to their more recent
incarnations in security requirements engineering and in risk assessment. We
leave the discussion of the graphical representations of these arguments for the
next sections.

2.1 Argumentation Modeling

Stephen Toulmin laid the foundations for modeling arguments in his 1958 book
The Uses of Argument [41]. He proposed subdividing each argument into six
components (as shown in Fig. 1): a central claim, some grounds to support that
claim, a warrant connecting the claim to the evidence, a factual backing for the
warrant, a qualifier which restricts the scope of the claim and finally a rebuttal to
the claim. He later identified applications of his framework in legal reasoning [40].

Warrant

Grounds

Backing

Qualifier Rebu�al

Claim

since

because

if unless
so

Fig. 1. The Toulmin argument structure

In the late 1980’s and early 90’s, argumentation models started being used
to support design decisions. Specifically, the emerging field of design rationale
began investigating ways to capture how one arrives at a specific decision, which
alternate decisions were or should have been considered, and the facts and

4 D. Ionita et al.

assumptions that went into the decision making [26]. In 1989 MacLean et al.
[28] introduced an approach to represent design rationale which uses a graphi-
cal argumentation scheme called QOC (for Questions, Options and Criteria) -
depicted in Fig. 2. Buckingham Shum et al. [38] later showed how the QOC nota-
tion can be used as a representative formalism for computer-supported visualiza-
tion of arguments, with applications in collaborative environments. Mylopoulos
et al. [31] introduced Telo, a language for representing knowledge about an infor-
mation system intended to assist in its development. Similarly, Fischer et al. [14]
claim that making argumentation explicit can benefit the design process itself.

Fig. 2. The Questions, Options and Criteria (QOC) graphical argumentation scheme

Soon, modeling of arguments found even wider applications in decision mak-
ing - especially when related to critical systems - where they started being used
to make expert judgment explicit, usually by means of so-called ‘cases’ [8]. Safety
cases, for instance, are structured arguments, supported by evidence, intended
to justify that a system is acceptably safe for a specific application in a spe-
cific operating environment [9]. These arguments should be clear, comprehen-
sive and defensible [25]. Two established approaches to safety cases are the CAE
(Claims Arguments Evidence) notation [10] and the GSN (Goal Structuring
Notation) [24].

Both approaches prescribe a graphical representation of the argumentation
structure but differ in terms of what this structure contains. The CAE was
developed by Adelard, a consultancy, and views safety cases as a set of claims
supported by arguments, which in turn rely on evidence. Although these concepts
are expressed using natural language, the cases themselves are represented as
graphs and most implementations suggest their own graphical symbols. Figure 4
shows the CAE representation used by the Adelard’s own ASCE tool [1]. The
GSN (Fig. 3) was developed by the University of York and provides a more
granular decomposition of safety arguments into goals, context, assumptions,
strategy, justifications and solutions [24]. The arguments are also represented
as a graph, with one of two types of links possible between each pair of nodes:
(1) a decompositonal is solved by between a goal and one or more strategies or
between a strategy and one or more goals, as well as (2) a contextual in context of

Graphical Modeling of Security Arguments 5

Jus�fica�on

Goal Assump�on

Strategy

Goal Context

Solu�on Solu�on

Is solved by Is solved by

In
 c

on
te

xt
 o

f

Is solved by

Is solved by

In
 c

on
te

xt
 o

f

In
 c

on
te

xt
 o

f

Fig. 3. The Goal Structuring Notation (GSN)

Claim

Argument

Subclaim Subclaim

Evidence

Is a subclaim ofIs a subclaim of

Supports

Is evidence for

Fig. 4. The Claims Arguments
Evidence (CAE) notation

between a goal, strategy or solution and an assumption, justification or context.
The notation comes with a well defined graphical language which - according to
its creator - attempts to strike a balance between power of expressiveness and
usability [25].

Other, more general representations such as concept maps [29], mindmaps [2]
or generic diagrams can of course also be used to represent and share knowledge,
including arguments [11]. These representations have no (formal or informal)
argumentation semantics and we ignore them in the rest of the paper.

2.2 Argumentation in Security

The success of safety cases has inspired other similar approaches, such as trust
cases [18], conformity cases [8] and, in the field of security, assurance cases [3,32]
used to show satisfaction of requirements and misuse cases [39] used to elicit secu-
rity requirements. Similarly, argumentation schemes for design rationale have
been adapted to provide support for security decisions. Recently, argumentation
modes have been used to encode the entire risk assessment process, from risk
identification to countermeasure selection. This subsection provides an overview
of these applications.

Arguing Satisfaction of Security Requirements. Assurance cases are an
argumentation-based approach similar to the safety cases described in Sect. 2.1.
They use structured argumentation (for instance using the GSN or CAE nota-
tions) to model the arguments of experts that a system will work as expected.
However, while safety cases only make claims pertaining to the safe operation
of a system, assurance cases are also concerned with other important system
functions, in particular security and dependability [37].

Haley et al. [21] laid the groundwork for an argumentation framework aimed
specifically at validating security requirements. It distinguishes between inner
and outer arguments. Inner arguments are formal and consist mostly of claims

6 D. Ionita et al.

about system behavior, while outer arguments are structured but informal and
serve to justify those claims in terms of trust assumptions. Together, the two
form a so-called “satisfaction argument”.

Supporting the Elicitation of Security Requirements. Misuse cases - a
combination of safety cases and use cases - describe malicious actions that could
be taken against a system. They are used to identify security requirements and
provide arguments as to why these requirements are important [39].

Rowe et al. [36] suggest using argumentation logic to go beyond formalizing
domain-specific reasoning and automatically reason about security administra-
tion tasks. They propose decomposing each individual argument into a Toulmin-
like structure and then representing defeasability links between the arguments as
a graph. This would allow both encoding unstructured knowledge and applying
automated reasoning, for example by using theorem provers. They suggest two
applications: attack diagnosis, where experts argue about the root-cause of an
attack, and policy recommendation, where security requirements are elicited.

Haley et al. [20] built their conceptual framework for modeling and validating
security requirements described in [21] into a security requirements elicitation
process, which can help distill security requirements from business goals. The
same authors later integrated their work on modeling and elicitation of security
requirements into a unified framework for security requirements engineering [19].
The framework considers the context, functional requirements and security goals
before identifying security requirements and constructing satisfaction arguments
for them. However, it does not consider the risks the system may or may not be
facing when not all security requirements are satisfied, or when not all security
goals are achieved.

Argumentation-Based Risk Assessment. Franqueira et al. [15] were among
the first to propose using argumentation structures to reason about both risks
and countermeasures in a holistic fashion. OpenArgue (discussed in Sect. 3.1)
supports the construction of argumentation models. Their proposed method,
RISA (RIsk assessment in Security Argumentation) links to public catalogs such
as CAPEC (Common Attack Pattern Enumeration and Classification) and the
CWE (Common Weakness Enumeration) to provide support for security argu-
ments using simple propositional logic. The method does not consider the pos-
sibility that a security threat may not be totally eliminated. Later, Yu et al.
[43] integrated the RISA method and Franqueira’s argumentation schema into
a unified argumentation meta-model and implemented it as part of tool - Open-
RISA - which partly automates the validation process. This tool is discussed in
Sect. 3.1.

Prakken et al. [35] proposed a logic-based method that could support the
modeling and analysis of security arguments. The approach viewed the risk
assessment as an argumentation game, where experts elicit arguments and
counter-arguments about possible attacks and countermeasures. Arguments
derive conclusions from a knowledge base using strict or defeasible inference

Graphical Modeling of Security Arguments 7

rules. The method is based on the ASPIC+ framework [34] and uses defeasible
logic. This restricts its usability in practice.

Prakken’s solution inspired a simplified approach, which used spreadsheets
to encode and analyze the arguments [22]. Each argument was decomposed
into only a claim and one or more supporting assumptions or facts. Similar to
Prakken’s approach, any argument could counter any other argument(s) and for-
mulas (this time built-into the spreadsheets) were used to automatically compute
which arguments were defeated and which were not. Argumentation spreadsheets
are discussed in detail in Sect. 3.2.

Later, a dedicated tool was developed which employed the same simplified
argument structure but without differentiating between assumptions and facts.
However, most arguments were found to refer to attacks, while most counter-
arguments proposed countermeasures to attacks. To simplify this, and further
improve usability, an online version was developed which also flattened the inter-
argument structure by only allowing counter-arguments to refer to countermea-
sures. These tools are part of the ArgueSecure family, discussed in Sect. 3.3.

3 Graphical Security Argumentation Tools
and Techniques

Both (formal) first order logic and (informal) structured argumentation provide
methods for analyzing the interaction between arguments. However, structured
argumentation also provides a foundation for presenting arguments for or against
a position to a user [36]. Of the argumentation notations reviewed above, we now
zoom in on those having a graphical representation, and discuss this represen-
tation in more detail by applying them to the same sample scenario. Graphical
security argumentation modeling tools mainly differ in the amount of detail they
use to describe the structure of, and links between, arguments. Therefore, we
evaluate each tool on its expressiveness in terms of intra-argument granularity
E1 (i.e. the number of components an argument has to be decomposed into),
inter-argument granularity E2 (i.e. how many types of rebuttals are possible).
Tools also provide secondary functionality, usually aimed at improving usabil-
ity and scalability. We therefore also identify relevant features provided by each
tool (labelled F1–F6) and summarize everything in a cross-comparison table
(Table 1), to be discussed in Sect. 4.

3.1 OpenArgue/OpenRISA

OpenArgue is an argumentation modeling tool featuring both a syntax editor
and a graphical editor, which comes with the ability to derive an argumentation
diagram from a textual specification [42]. OpenArgue assumes security require-
ments are known at the time of analysis and focuses on identifying ways by which
these requirements could be invalidated. This means all arguments are linked
to a specific security requirement (F1). It benefits from syntax highlighting as
well as a built-in model checker which can identify formal inconsistencies in the

8 D. Ionita et al.

F
ig
.
5
.
O

p
en

A
rg

u
e

-
sa

m
p
le

a
ss

es
sm

en
t

Graphical Modeling of Security Arguments 9

argumentation diagram. OpenArgue has a simplified Toulmin intra-argument
structure consisting of a central claim, supported by grounds, the relevance of
which is supported by warrants (E1 = 3). However, OpenArgue allows specifying
rather complex inter-argument relationships: arguments can rebut or mitigate
one or more other arguments (F3, F4) by challenging either their grounds or
their warrants (E1= 4). This can lead to inter-twined graphical representations
of the argumentation model that are hard to understand. This effect is ampli-
fied by the fact that the tool does not come with a custom editor but rather
uses a generic Eclipse UML editor and thereby poses significant usability and
scalability issues. Figure 5 shows a sample assessment built using OpenArgue.

OpenRISA is an extension of OpenArgue which can, in addition, check the
argumentation model against online knowledge bases and verify that the risks
identified are valid rebuttals.

3.2 Argumentation Spreadsheets

Tables have long served as a convenient means of storing and communicat-
ing structured data [6]. The argumentation spreadsheets attempt to decompose
arguments into three elements: a claim, one or more assumptions and one or
more facts [22] (E1 = 3). Each row encodes one argument divided across several
columns. A screenshot of a sample assessment using argumentation spreadsheets
is shown in Fig. 6.

Fig. 6. Argumentation spreadsheets - sample assessment

An argument describes either a risk or a risk mitigation and can rebut one
argument of an opposite type. This leads to a linear, attacker versus defender
game-like process of filling in the table: first, a risk is described; then, either

10 D. Ionita et al.

the risk is accepted or a counterargument describing a mitigation is added; this
back-and-forth rhetoric can continue until the risk is completely eliminated or
the residual risk is accepted. The tool keeps track of each argument’s state
(IN for arguments without rebuttals or arguments whose rebuttal was defeated
and OUT for arguments with an IN rebuttal), as well as automatically tagging
arguments which mention one of the assets in the asset column (F2). Finally, the
user can tag risk mitigation arguments with either a “Red.” or a “Transf.” tag
signifying that the suggested countermeasure only partially mitigates the risk,
or that it transfers the risk to a third-party (F5). Since this means a rebuttal can
be full or partial, the spreadsheets score a 2 on the inter-argument granularity.

In total therefore, four types of risk response exist: (1) ignore (undefeated
attacker argument), (2) eliminate (defeated attacker argument), (3) mitigate
(partially defeated attacker argument) and (4) transfer.

3.3 ArgueSecure

ArgueSecure is an umbrella terms for a pair of tools - one online and one offline
- derived from the spreadsheets described in the previous section.

The offline version is designed to streamline the manual process of filling in
the argumentation spreadsheets. Therefore, ArgueSecure-online maintains the
risk assessment game philosophy, where attacker arguments make claims with
regard to risks and defender arguments rebut them by describing mitigations.
However, it drops the concept of “facts” and does not support linking arguments
to assets [23] (E1 = 2), and it also does not differentiate between partial or full
mitigation (E2 = 1). In addition to the other tools reviewed so far, it provides
keyboard shortcuts, various report generation functionality (F9) and differen-
tiates between implemented and planned countermeasures (F7). It represents
the risk assessment as an indented, collapsible list, with color-coded argument
statuses (see screenshot in Fig. 7).

The online version makes the risk assessment process a collaborative one:
participants no longer have to be in the same room; they can contribute remotely
and asynchronously thereby transforming the argumentation model into a living
document which keeps track of risks as they are discovered and countermeasures
as they are proposed and implemented (F6). ArgueSecure-online also comes with
a simplified interface (see Fig. 8 for a screenshot) aimed at non-experts and
similar report generation functionality as its offline counterpart (F9), as well as
differentiating risk transfers from other types of mitigations (F5). However, it
also introduces new functionality, namely the ability to define many-to-many
relationships between risks and attacks (F3) and between attacks and defenses
(F4) and re-introduces the ability to relate arguments to assets (F2). This turns
the argumentation model into a graph, but in order to avoid inter-twined links,
the tool represents it as a tree by duplicating nodes with multiple incoming links.

Graphical Modeling of Security Arguments 11

Fig. 7. Arguesecure-offline - sample risk assessment

Fig. 8. Arguesecure-online - sample risk assessment

4 Comparison and Discussion

Table 1 compares the features provided by the graphical security argumentation
modeling tools described in the previous section.

In OpenRISA (and its predecessor, OpenArgue) a risk, by definition violates
a known security requirement. ArgueSecure does not have such a restriction,
allowing more flexibility and creativity but for this reason it also cannot support
linking countermeasures back to security requirements. Therefore the two have
slightly different application scenarios: OpenRISA assumes Security Require-
ments are known and they need to be implemented, while ArgueSecure can help
identify them.

OpenRISA and both of the ArgueSecure tools use a graph to encode the
argumentation model. The argumentation spreadsheet could also be represented

12 D. Ionita et al.

Table 1. Feature comparison of graphical security argumentation modeling tools

OpenArgue Arg. sheets AS-offline AS-online

E1: intra-argument granularity 3 3 2 2

E2: inter-argument granularity 4 2 1 1

F1: ability to relate to security req. Y N N N

F2: ability to relate to assets N Y N Y

F3: multiple attack vectors per risk Y N N Y

F4: multiple mitigations per attack Y N N Y

F5: supports risk transfer N Y Y Y

F6: collaborative N N N Y

F7: differentiates between
implemented and planned mitigations

N N Y N

F8: search and filtering N N N Y

F9: export and reports N N Y Y

as a graph, with each row describing one node and its links. In addition, most
generic argumentation tools (such as ASCAD) also use graphs. We therefore
conclude that graphs are a suitable representation for security arguments (O1).

The ArgueSecure tools only decompose an argument into two parts: a sum-
marized claim, together with some support for that claim (AS-offline calls them
claim plus assumptions, and AS-online, title plus description). OpenArgue adds
the concept of a warrant. An argumentation spreadsheets call the warrant an
inference rule and adds facts, which differ from assumptions in the sense that
they cannot be rebutted. However, these fields are often left empty in practice,
as the inference rule or backing are mostly considered obvious [23] (e.g. a vul-
nerability creating a risk) and the difference between a fact and an assumption
is many times only philosophical (e.g. facts can change with the specification).
This leads us to our second observation: in order to describe a security argu-
ment, one needs to be able to specify at least the vulnerability or vulnerabilities
involved, the risk they create and which mitigations are relevant (O2).

ArgueSecure only shows which argument attacks which other argument, but
in the argumentation spreadsheets it is possible to specify which component of
the argument is being attacked and in OpenRISA even how. Because OpenRISA
allows to model rebuttal relationships in more detail, the resulting diagrams are
more complex and inter-twined (see Fig. 5 vs. Fig. 8). The argumentation spread-
sheets also model rebuttals in similar detail, but due to the tabular representa-
tion, the result is more compact and readable (see Fig. 6). ArgueSecure, which
only supports binary rebuttal relationships between attacks and countermea-
sures and therefore manages to achieve similar scalability as the argumentation
spreadsheets (see Figs. 8 and 7). Our tentative observation is that while rebut-
tals are necessary for relating security arguments, anything other than binary
rebuttals can pose a significant scalability challenge (O3).

Graphical Modeling of Security Arguments 13

With regard to usability, the two ArgueSecure tools are the only ones which
use icons. In addition, they also attempt to manage scalability by collapsing
and expanding any part of the argumentation graph. The online version even
supports filtering nodes by tags. In our toy examples scalability was not much
of an issue. But realistic assessments can have hundreds of nodes, and there-
fore features to help navigate the argumentation graph are critical to making it
human-writable and human-readable (O4).

5 Conclusions and Outlook

Perfect security is invisible, and also impossible. Security arguments can show
that a system is secure to some extent by providing structured, but human-
readable explanations as to which risks were considered and how they were
mitigated. This is important for a variety of reasons, ranging from certification
to compliance, and from awareness to assurance.

Unsurprisingly, most argumentation modeling tools employ a simplified ver-
sion of Toulmin’s argument structure for conceptualizing security arguments but
vary in terms of either the granularity by which they decompose the argument
or in the way they represent inter-argument structures. However, very few tools
exist which address the specifics of security argumentation, and their audience
is mostly academic.

Indeed, confronting the tools of Sect. 3 with practical security arguments
shows that in order to be usable, security argumentation techniques need to
be simple and reduce themselves to the essential information that needs to be
present in order to argue about (in-)security of a system or software: the links
between mitigations, risks and system components or modules. As these links can
be of type “many-to-many”, graphs are a natural fit for representing these links.

In the words of Buckingham-Shum [5], diagramming tools differ not only in
the type of information they are able to represent, but especially in regard to
the trade-off they make between expressiveness and usability. This is true also
for argumentation graphs, which can explode in size when all known risks and
relevant mitigations pertaining to a real system are added. Therefore, ensuring
scalability is critical to maintaining reasonable usability. Only some of the tools
available provide ways of navigating the graph, for example by searching, fil-
tering or collapsing parts of the argumentation structure. We believe this topic
has to be better investigated before security argumentation modeling becomes
usable in practice. To further enhance scalability, automation and re-usability
are also relevant topics not only in security argumentation, but security in gen-
eral. Future work could look therefore into ways by which the argumentation
graph can be filled in semi-automatically, for instance by recognizing patterns,
linking to knowledge bases or parsing the output of vulnerability scanners. This
might require (re-)introducting some level of formalism into the argumentation
structure.

14 D. Ionita et al.

References

1. Adelard Safety Case Development (ASCAD) Manual, London, UK (2010)
2. Beel, J., Langer, S.: An exploratory analysis of mind maps. In: Proceedings of the

11th ACM Symposium on Document Engineering, pp. 81–84. ACM (2011)
3. Bloomfield, R.E., Guerra, S., Miller, A., Masera, M., Weinstock, C.B.: International

working group on assurance cases (for security). IEEE Secur. Priv. 4(3), 66–68
(2006)

4. Breaux, T.D., Baumer, D.L.: Legally “reasonable” security requirements: a 10-year
FTC retrospective. Comput. Secur. 30(4), 178–193 (2011)

5. Buckingham Shum, S.: The Roots of Computer Supported Argument Visualization,
pp. 3–24. Springer, London (2003)

6. Campbell-Kelly, M.: The History of Mathematical Tables: From Sumer to Spread-
sheets. Oxford University Press, Oxford (2003)

7. Cleland, G.M., Habli, I., Medhurst, J.: Evidence: Using Safety Cases in Industry
and Healthcare. The Health Foundation, London (2012)

8. Cyra, L., Górski, J.: Support for argument structures review and assessment.
Reliab. Eng. Syst. Saf. 96(1), 26–37 (2011). Special Issue on Safecomp 2008

9. Defence standard 00-56 issue 4 (part 1): Safety management requirements for
defence systems, July 2007

10. Emmet, L.: Using claims, arguments and evidence: a pragmatic view-and tool
support in ASCE. www.adelard.com

11. Eppler, M.J.: A comparison between concept maps, mind maps, conceptual dia-
grams, and visual metaphors as complementary tools for knowledge construction
and sharing. Inf. Vis. 5(3), 202–210 (2006)

12. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation). Off. J. Eur. Union L119/59, 1–
88, May 2016. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:
119:TOC

13. Firesmith, D.G.: Analyzing and specifying reusable security requirements. Techni-
cal report DTIC Document (2003)

14. Fischer, G., Lemke, A.C., McCall, R., Morch, A.I.: Making argumentation serve
design. Hum.-Comput. Interact. 6(3), 393–419 (1991)

15. Franqueira, V.N.L., Tun, T.T., Yu, Y., Wieringa, R., Nuseibeh, B.: Risk and argu-
ment: a risk-based argumentation method for practical security. In: RE, pp. 239–
248. IEEE (2011)

16. Gold, J.: Data breaches and computer hacking: liability & insurance issues. Amer-
ican Bar Association’s Government Law Committee Newsletter Fall (2011)

17. Goodwin, J., Fisher, A.: Wigmore’s chart method. Inf. Logic 20(3), 223–243 (2000)
18. Górski, J., Jarz̧bowicz, A., Leszczyna, R., Miler, J., Olszewski, M.: Trust case

justifying trust in an it solution. Reliab. Eng. Syst. Saf. 89(1), 33–47 (2005)
19. Haley, C., Laney, R., Moffett, J., Nuseibeh, B.: Security requirements engineering: a

framework for representation and analysis. IEEE Trans. Soft. Eng. 34(1), 133–153
(2008)

20. Haley, C.B., Laney, R., Moffett, J.D., Nuseibeh, B.: Arguing satisfaction of security
requirements. In: Integrating Security and Software Engineering: Advances and
Future Visions, pp. 16–43 (2006)

www.adelard.com
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC

Graphical Modeling of Security Arguments 15

21. Haley, C.B., Moffett, J.D., Laney, R., Nuseibeh, B.: Arguing security: validating
security requirements using structured argumentation. In: Proceedings of Third
Symposium on Requirements Engineering for Information Security (SREIS 2005)
held in conjunction with the 13th International Requirements Engineering Confer-
ence (RE 2005) (2005)

22. Ionita, D., Bullee, J.W., Wieringa, R.J.: Argumentation-based security require-
ments elicitation: the next round. In: 2014 IEEE 1st Workshop on Evolving Security
and Privacy Requirements Engineering (ESPRE), pp. 7–12. Springer, Heidelberg,
August 2014

23. Ionita, D., Kegel, R., Baltuta, A., Wieringa, R.: Arguesecure: out-of-the-box secu-
rity risk assessment. In: 2016 IEEE 24th International Requirements Engineering
Conference Workshops (REW), pp. 74–79, September 2016

24. Kelly, T., Weaver, R.: The goal structuring notation - a safety argument notation.
In: Proceedings of Dependable Systems and Networks 2004 Workshop on Assurance
Cases (2004)

25. Kelly, T.P.: Arguing Safety: A Systematic Approach to Managing Safety Cases.
University of York, York (1999)

26. Lee, J., Lai, K.Y.: What’s in design rationale? Hum.-Comput. Interact. 6(3–4),
251–280 (1991)

27. Liao, S.H.: Expert system methodologies and applications - a decade review from
1995 to 2004. Exp. Syst, Appl. 28(1), 93–103 (2005)

28. Maclean, A., Young, R.M., Moran, T.P.: Design rationale: the argument behind
the artefact. In: Proceedings of the Computer Human Interaction conference (CHI)
(1989)

29. Markham, K.M., Mintzes, J.J., Jones, M.G.: The concept map as a research and
evaluation tool: further evidence of validity. J. Res. Sci. Teach. 31(1), 91–101 (1994)

30. Mosier, K.L.: Myths of expert decision making and automated decision aids. In:
Naturalistic Decision Making, pp. 319–330 (1997)

31. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: representing knowl-
edge about information systems. ACM Trans. Inf. Syst. (TOIS) 8(4), 325–362
(1990)

32. Park, J.S., Montrose, B., Froscher, J.N.: Tools for information security assurance
arguments. In: Proceedings of the DARPA Information Survivability Conference,
DISCEX 2001, vol. 1, pp. 287–296 (2001)

33. Polikar, R.: Ensemble based systems in decision making. IEEE Circ. Syst. Mag.
6(3), 21–45 (2006)

34. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument Comput. 1, 93–124 (2010)

35. Prakken, H., Ionita, D., Wieringa, R.: Risk assessment as an argumentation game.
In: Leite, J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.) CLIMA
2013. LNCS (LNAI), vol. 8143, pp. 357–373. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40624-9 22

36. Rowe, J., Levitt, K., Parsons, S., Sklar, E., Applebaum, A., Jalal, S.: Argumen-
tation logic to assist in security administration. In: Proceedings of the 2012 New
Security Paradigms Workshop, NSPW 2012, pp. 43–52. ACM, New York (2012)

37. Rushby, J.: The interpretation and evaluation of assurance cases. SRI International,
Menlo Park, CA, USA (2015)

38. Shum, S.J.B., MacLean, A., Bellotti, V.M.E., Hammond, N.V.: Graphical argu-
mentation and design cognition. Hum.-Comput. Interact. 12(3), 267–300 (1997)

39. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases.
Requirements Eng. 10(1), 34–44 (2005)

https://doi.org/10.1007/978-3-642-40624-9_22
https://doi.org/10.1007/978-3-642-40624-9_22

16 D. Ionita et al.

40. Toulmin, S., Rieke, R., Janik, A.: An Introduction to Reasoning. Macmillan,
Basingstoke (1979)

41. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge
(1958)

42. Yu, Y., Tun, T.T., Tedeschi, A., Franqueira, V.N.L., Nuseibeh, B.: Openargue:
supporting argumentation to evolve secure software systems. In: 2011 IEEE 19th
International Requirements Engineering Conference, pp. 351–352, August 2011

43. Yu, Y., Franqueira, V.N.L., Tun, T.T., Wieringa, R., Nuseibeh, B.: Automated
analysis of security requirements through risk-based argumentation. J. Syst. Soft.
106, 102–116 (2015)

Evil Twins: Handling Repetitions
in Attack–Defense Trees

A Survival Guide

Angèle Bossuat1,3 and Barbara Kordy2,3(B)

1 University Rennes 1, Rennes, France
2 INSA Rennes, Rennes, France

3 IRISA, Rennes, France
{angele.bossuat,barbara.kordy}@irisa.fr

Abstract. Attack–defense trees are a simple but potent and efficient
way to represent and evaluate security scenarios involving a malicious
attacker and a defender – their adversary. The nodes of attack–defense
trees are labeled with goals of the two actors, and actions that they need
to execute to achieve these goals. The objective of this paper is to provide
formal guidelines on how to deal with attack–defense trees where several
nodes have the same label. After discussing typical issues related to such
trees, we define the notion of well-formed attack–defense trees and adapt
existing semantics to correctly capture the presence of repeated labels.

1 Into the Wild: Introduction

Security analysis and risk assessment are essential to any system facing potential
threats. Attack–defense trees allow the security experts to represent and assess
the system’s security, by illustrating different ways in which it can be attacked
and how such attacks could be countered. Formally speaking, attack–defense
trees are simple AND-OR trees, but their strength and expressive power relies
on intuitive labels that decorate their nodes. These labels describe what the
attacker and the defender need to do to achieve their goals, i.e., to attack and
defend the system, respectively.

To provide accurate evaluation results, an attack–defense tree must be as
precise and versatile as possible. Yet, no hard rules exist on how to label their
nodes. To be able to exploit the graphical aspects of attack–defense trees, experts
tend to prefer laconic labels which are often too short to fully express the desired
meaning. Furthermore, attack–defense trees are frequently reused from one sys-
tem to another, they may be borrowed from generic libraries of standard attack
patterns, and are usually constructed by merging subtrees devised by several
experts, not necessarily communicating with each other. Due to all these reasons,
it is not rare to find identical labels on separate nodes in an attack–defense tree.

The aim of this work is to formalize attack–defense trees with repeated labels
and develop guidelines to handle them properly. We distinguish between simple
mislabeling, and cases where the nodes should indeed have the same label. For
c© Springer International Publishing AG 2018
P. Liu et al. (eds.): GraMSec 2017, LNCS 10744, pp. 17–37, 2018.
https://doi.org/10.1007/978-3-319-74860-3_2

18 A. Bossuat and B. Kordy

the latter, we bring out some important differences, and propose solutions more
elaborate and less problematic than simply modifying the labels to make them
all unique in a given tree. Our specific contributions are as follows

1. Repeated labels: we classify repeated labels according to their meaning and
propose a new labeling format to properly handle trees with repetitions.

2. Well-formedness: we study frequently observed problems related to mislabel-
ing and introduce a notion of well-formed trees to address them.

3. Formal basis: we adapt existing formal semantics for attack–defense trees to
make sure they are in line with the new labeling scheme that we propose.

4. Quantification: we finally show how to preform quantitative analysis using
well-formed attack–defense trees.

Related Work. The attack–defense tree’s origins lie in attack trees, introduced in
1999 by Schneier to represent attack scenarios in the form of AND-OR trees [15].
Nowadays, there exist numerous variants of attack trees [9], some of which are
popular and widely used in the industry to support real-life risk assessment
processes [5,13]. Attack–defense trees extend the classical attack trees by com-
plementing them with the defensive point of view [7]. They aim to represent
interaction between the attacker and the defender, to give a more precise image
of reality.

Although, in practice, attack tree-based models often possess multiple nodes
with the same labels, not much fundamental research exists on the topic. From
the formal perspective, a semantics based on multisets has been used in [7,12]
to interpret an attack tree and respectively an attack–defense tree with a set of
multisets representing potential ways of attacking a system. This approach sup-
poses that every node with the same label is a separate action to be executed. On
the contrary, other works formalize attack tree-based models with propositional
formulæ where, due to the use of the logical conjunction and disjunction which
are idempotent, all repetitions are ignored [10,16].

Repeated labels might have an impact on quantitative analysis of attack trees.
The standard, bottom-up algorithm for quantification, recalled in Sect. 2.3, treats
all repeated nodes as separate events [8]. Since quantifying trees with repeated
nodes may increase the complexity of the underlying algorithms, some authors,
e.g., Aslanyan et al. in [1] restrain their considerations to linear trees, i.e., trees
with no label repetition, to gain efficiency. The authors of [14] go even further,
and provide two variants of an algorithm for the probability computation on
attack-countermeasure trees1 with and without repeated nodes. Finally, most of
the works do not consider repetitions explicitly but rather assume that all nodes
(including those with the same labels) represent independent events [2,11].

We believe that both approaches – treating all nodes as independent or ignor-
ing repetitions – are too restrictive. The objective of the formalization proposed
in this work is to accommodate both of these cases and thus allow for a more
faithful modeling of the reality.

1 Attack-countermeasure trees are yet another security model based on attack trees.

Evil Twins: Handling Repetitions in Attack–Defense Trees 19

Finally, studying the problem of labels’ repetition led us to propose the notion
of well-formedness for such trees. Previously, well-formedness of attack(–defense)
trees has been addressed in various ways. In [1], attack–defense trees are formal-
ized as typed terms over actions of the attacker and the defender, and well-formed
trees are simply identified with the well-typed ones. In [3], Audinot et al. ana-
lyze the problem of well-formedness (that they call correctness) of an attack tree
with respect to the modeled system. They focus on the well-formedness of the
tree refinements by introducing four correctness properties which allow them to
express how well an AND/OR combination of the child nodes represents the goal
of the parent node. The objective of the well-formedness developed in our work,
and defined in Definition 5, is to capture the intuitive construction of a security
scenario represented as an attack–defense tree, in a formal way.

2 Know the Flora: Attack–Defense Trees

We start by briefly introducing the attack–defense tree model and summarizing
the state of the art on its existing formal foundations. We especially focus the
attention on aspects that may influence the meaning and the treatment of trees
with repeated labels. For more detailed information on attack–defense trees,
their semantics, and their quantitative analysis, we refer the reader to [7].

2.1 The Model

An attack–defense tree (ADTree) is a rooted tree with labeled nodes, aiming
to describe and evaluate security scenarios involving two (sets of) competing
actors: the attacker trying to attack a particular system2 and the defender trying
to protect it against the potential attacks. Labels of the nodes represent the
goals that the actors must achieve. Each node has one of two types – attack
(red circle) or defense (green rectangle) – depending on which actor’s goal it
illustrates. The nodes of an ADTree can have any number of children of the
same type. These children represent the refinement of the parent’s goal into
subgoals. The refinement can be disjunctive (OR node) or conjunctive (AND node).
To achieve the goal represented by an OR node, it is necessary and sufficient to
achieve at least one of the subgoals represented by its children. To achieve the
goal represented by an AND node, it is necessary and sufficient to achieve all of
the subgoals represented by its children. To graphically distinguish OR from AND
nodes, we use an arc to connect the children of the AND nodes. The nodes that do
not have any children of the same type are called non-refined nodes. Their labels
represent the so called basic actions, i.e., the actual actions that the actors need
to execute to achieve their (sub)goals. Finally, each node of an ADTree can also
have at most one child of the opposite type, which represents a countermeasure,
i.e., a goal of the other actor, the achievement of which disables the goal of the
node. Graphically, countermeasures are connected to the nodes they counter by
dotted edges. A countermeasure can, in turn, be refined and/or countered.
2 The system can be an infrastructure, a computer program, an organization, etc.

20 A. Bossuat and B. Kordy

Remark 1. Note that the root node of an ADTree can be of the attack or the
defense type. The actor whose goal is represented by the label of the root node
is called the proponent, and the other one is called the opponent. In practice, the
proponent is the attacker, in most cases.

Example 1. Figure 1 shows a simple example of an ADTree. In this scenario,
the attacker (proponent) is a student who wants to pass a multiple choice
test examination. To be sure that she will answer all questions correctly,
she needs to learn the exam questions and get the solutions in advance, in
order to memorize the correct answers. She can get a copy of the exam
by accessing the teacher’s computer, finding the file containing the ques-
tions, and storing it either by printing it or by saving it on a USB stick.
She can proceed in a similar way to get a copy of the file with the solu-
tions, which is located on the same computer. However, to better protect
his exam, the teacher (opponent) could archive and encrypt the solutions’
file using PKZIP [6]. The student would then need to break the encryption,
for example using the CrackIt tool [17], to be able to access the solutions.

exam attack

get exam

access
laptop

find
exam

store
exam

print save on usb

get solutions

access
laptop

find
solutions

store
solutions

print save on usb encrypt

break

memorize solutions

Fig. 1. An ADTree for passing the examination

Since, in ADTrees for real-life scenarios, the number of nodes tends to grow
drastically, the graphical representation, as used in Fig. 1, is often not the most
appropriate one. To formally describe and manipulate ADTrees, we therefore
introduce an alternative, term-based notation.

Let B be the set of all basic actions. We assume that the elements of B are
typed, i.e., that B is partitioned into the basic actions of the proponent B

p and
those of the opponent Bo. The ADTrees are generated by the following grammar

T s : bs | ORs(T s, . . . , T s) | ANDs(T s, . . . , T s) | Cs(T s, T s̄), (1)

Evil Twins: Handling Repetitions in Attack–Defense Trees 21

where s ∈ {p, o}, p̄ = o, ō = p, and bs ∈ B
s. Whenever the type s of a basic

action bs is clear from the context, we omit the superscript s to simplify the pre-
sentation. Note that, as explained in [7], a term of the form Cs(T s

1 , T s̄
2) represents

the ADTree obtained from attaching (using a dotted edge) the tree T s̄
2 to the

root of the tree T s
1 .

According to Remark 1, terms of the form T p represent ADTrees, since the
label of the root node always illustrates the proponent’s goal. In the rest of
this paper, we identify an ADTree with its corresponding term. The set of all
ADTrees is denoted by T.

Example 2. The term representation of the ADTree from Fig. 1 is the following

ANDp
(
ANDp

(
lapt, ex, ORp

(
pr, usb

))
,

ANDp
(
lapt, sol, Cp

(
ORp(pr, usb), Co(enc, break)

))
, memo

)
.

2.2 Existing Semantics for ADTrees

It is well-known that two security experts may produce two visually different
ADTrees to represent the same security scenario. The simplest (but far from
the sole) example of this situation are the two trees T = ANDp(card, pin) and
T ′ = ANDp(pin, card). Here, the objective of the proponent is to get the necessary
credentials to withdraw money from a victim’s account. The order in which the
proponent obtains the card and the corresponding pin is not relevant – the only
thing that matters is that eventually, he gets both: the card and the pin.

To formally capture the notion of equivalent ADTrees, formal semantics for
ADTrees have been introduced. Different semantics focus on different aspects
(e.g., order of actions, their multiple occurrences, or cause-consequence relation-
ships) and allow to partition the set T into equivalence classes according to
these aspects. This is achieved by assigning mathematical objects to ADTrees,
for instance propositional formulæ or multisets of basic actions, in such a way
that trees representing the same scenario are interpreted with the same object.
It is important to note that two trees may represent the same situation with
respect to some aspects, i.e., be equivalent in one semantics, but differ substan-
tially when other aspects are taken into account. Formal semantics also facilitate
the reasoning about ADTrees, because they reduce it to the analysis of the cor-
responding mathematical objects. In general, any equivalence relation on T can
be seen as a semantics for ADTrees.

Definitions 1 and 2 recall two major semantics for ADTrees – the proposi-
tional and the multiset semantics. Full details can be found in [7].

Definition 1. The propositional semantics for ADTrees is a function P that
assigns to each ADTree a propositional formula, in a recursive way, as follows

P(b) = xb, P(ORs(T s
1 , . . . , T s

k)) = P(T s
1) ∨ · · · ∨ P(T s

k),
P(Cs(T s

1 , T s̄
2)) = P(T s

1) ∧ ¬P(T s̄
2), P(ANDs(T s

1 , . . . , T s
k)) = P(T s

1) ∧ · · · ∧ P(T s
k).

22 A. Bossuat and B. Kordy

where xb, for b ∈ B, is a propositional variable. Two ADTrees are equivalent wrt
P if their interpretations are equivalent propositional formulæ.

The recursive construction from Definition 1 starts by assigning a proposi-
tional variable to each basic action b ∈ B. This means that if a tree contains two
nodes having the same label, these nodes will be interpreted with the same propo-
sitional variable. In addition, the logical disjunction (∨) and conjunction (∧)
used to interpret the refined nodes are idempotent. This implies that the propo-
sitional semantics P is unable to take the multiplicity of actions into account,
as illustrated in Example 3.

Example 3. Consider the student/teacher scenario from Example 1. In order to
access the teacher’s laptop, the student would need to access the teacher’s office.
To do so, she needs to access the building – either by breaking-in through the
window or by picking the lock – and then access the office by picking its lock,
as illustrated in Fig. 2. When the propositional semantics is used, this tree is
equivalent to its simplified form composed of a single node lock-picking. This
is due to the absorption law which implies that f1 = (window∨pick)∧pick and
f2 = pick are equivalent formulæ. We discuss the link between the two trees in
more detail in Remark 2.

access office

access building

break window lock-picking

lock-picking

Fig. 2. ADTree for accessing office

Example 3 shows how the proposi-
tional semantics models that the execu-
tion of one of the repeated actions in
the tree activates all other occurrences of
this action in the considered scenario. In
contrast, the multiset semantics, that we
denote with M and briefly present below,
treats each repeated action as a separate
event. The multiset semantics has first
been introduced in [12] to formalize attack
trees and has then been extended to ADTrees in [7]. This semantics interprets
an ADTree with a set of pairs of the form (P,O) of multisets3 describing how
the proponent can reach the goal represented by the tree: the first multiset P
consists of basic actions from B

p that the proponent has to do, and the second
multiset O contains basic actions from B

o that the proponent must stop the
opponent from performing. The construction of M uses the distributive product
⊗ defined for two sets of pairs4 as:

S ⊗ Z = {(PS � PZ , OS � OZ)|(PS , OS) ∈ S, (PZ , OZ) ∈ Z},

where � is the multiset union. Definition 2 formalizes the construction of M.

3 A multiset is a collection that allows multiple occurrences of an element.
4 ⊗ can be generalized on any finite number of set of pairs, in a natural way.

Evil Twins: Handling Repetitions in Attack–Defense Trees 23

Definition 2. The multiset semantics for ADTrees is a function M that assigns
to each ADTree a set of pairs of multisets, as follows

M(bp) = {({|b|}, ∅)}, M(bo) = {(∅, {|b|})},

M (
ORp(T p

1 , . . . , T p
k)

)
=

k⋃
i=1

M(T p
i), M (

ORo(T o
1 , . . . , T o

k)
)

=
k⊗

i=1

M(T o
i),

M (
ANDp(T p

1 , . . . , T p
k)

)
=

k⊗
i=1

M(T p
i), M (

ANDo(T o
1 , . . . , T o

k)
)

=
k⋃

i=1

M(T o
i),

M (
Cp(T p

1 , T o
2)

)
= M(T p

1) ⊗ M(T o
2), M (

Co(T o
1 , T p

2)
)

= M(T o
1) ∪ M(T p

2).

Two ADTrees are equivalent wrt M if they are interpreted with the same set of
pairs of multisets.

Due to the use of multisets, the multiset semantics models that the execution
of one of the repeated actions has no effect on other occurrences of this action in
the considered scenario. In particular, the two trees considered in Example 3 are
not equivalent when the multiset semantics is used. Indeed, the tree from Fig. 2
is interpreted with the set {({|window, pick|}, ∅), ({|pick, pick|}, ∅)} and the tree
composed of a single node lock-picking with the set {({|pick|}, ∅)}.

Remark 2. The scenario considered in Example 3 shows that both semantics —
P and M — are useful. When the modeler is interested only in what skills are
necessary to perform the access office attack, then the propositional semantics
is sufficient. Here, we assume that the attacker who has lock-picking skills will
be able to use them at any time. However, if the goal of the security expert is to
enumerate and analyze the actual ways of attacking, then the multiset semantics
is the correct one to be used.

2.3 Quantitative Evaluation of ADTrees

To complete the overview of formal foundations for ADTrees, we briefly recall the
bottom-up procedure for their quantitative evaluation. The simple tree structure
of ADTrees can be exploited to easily quantify security scenarios. The security
expert’s objective might be to find out which way of attacking is the cheapest or
the fastest one, whether the proponent’s goal can be reached even in the presence
of some countermeasures deployed by the opponent, to estimate the probability
that the root goal will be achieved, etc. The idea is to assign values to the non-re-
fined nodes and then propagate them all the way up to the root, using functions
that depend on the refinement and the type of the node. This process is called
bottom-up attribute’s evaluation, and it is formalized in Definition 3. We refer
the reader to [8] for a detailed classification of existing attributes, and to [4] for
practical guidelines regarding the attributes’ evaluation on ADTrees.

24 A. Bossuat and B. Kordy

Definition 3. Let Dα be a set of values. An attribute α is composed of

– a basic assignment βα : B → Dα which assigns a value from Dα to every basic
action, and

– an attribute domain Aα = (Dα, ORpα, ANDpα, ORoα, ANDoα, Cpα, Coα), where for
OPS ∈ {ORS, ANDS, CS}, OPSα : Dk

α → Dα is an internal operation on Dα of
the same arity as OPS.

The bottom-up algorithm for α assigns values from Dα to ADTrees as follows

α(b) = βα(b), α
(
OPs(T s

1 , . . . , T s
k)

)
= OPsα

(
α(T s

1), . . . , α(T s
k)

)
.

Example 4 illustrates the evaluation of the minimal time attribute on the
ADTree from Fig. 1.

Example 4. Here, we are interested in the minimal time required for the stu-
dent to perform the exam attack illustrated in Fig. 1. First, we build the basic
assignment function βα which assigns a value (in minutes) to each basic action,
as illustrated in Table 1.

Table 1. Basic assignment for the minimal time attribute in the student attack (The
+∞ value assigned to the basic actions of the defender signifies that the attacker cannot
successfully perform these actions, see [8] for a detailed explanation.)

To propagate the values of minimal attack time up to the root node, the
following attribute domain is used Atime = (N ∪ {+∞},min,+,+,min,+,min).
The corresponding bottom-up computation is given in Fig. 3, and shows that the
student’s attack will take at least 210 min.

3 The Root of the Problem: Common Issues

Although constructing an ADTree seems to be a simple and intuitive task, this
process may suffer from several issues. They are related to the completeness or
correctness of the models. One of the important sources of modeling problems is
a presence of multiple nodes having the same label. In this section, we illustrate
the most common mistakes made while creating ADTrees and provide hints to
avoid them. This is the first step towards the notion of well-formed ADTrees
formalized in Sect. 5.

Evil Twins: Handling Repetitions in Attack–Defense Trees 25

3.1 Incomplete Refinement

As we have explained in Sect. 2, the children of a refined node represent subgoals
that need to be achieved so that the goal of the node is achieved. Figure 4a
shows an example of a tree where in order to access the teacher’s computer,
the student needs to get their username and password. This example presents
a problem of incomplete refinement, as getting the username and the password
is not sufficient to access the computer – the action of actually accessing the
machine is also necessary. The corrected tree is given in Fig. 4b.

exam attack
210

get exam
51

access
laptop

45

find
exam

5

store
exam

1

print
6

save on usb
1

get solutions
69

access
laptop

45

find
solutions

5

store
solutions

19

print
6

save on usb
1

encrypt
+∞

break
18

memorize solutions
90

Fig. 3. Minimal time for the student to perform the exam attack

The aim of this example is to illustrate that the label of a refined node
cannot represent any additional action to be executed along those already rep-
resented by its children. This label is just a short description replacing but not
complementing the refinement of the node. Note that this is due to the way in
which the formal semantics for ADTrees work: the meaning of a refined node is
fully expressed as the combination of its children. Similarly, in the case of the
bottom-up quantification of ADTrees, the value of a refined node is computed
as the combination of the values of its children.

Hint 1: One can easily check whether all nodes of an ADTree are fully refined
by hiding the labels of the refined nodes and judging whether the corresponding
goal is achieved, or if additional children nodes need to be added.

26 A. Bossuat and B. Kordy

access laptop

username password

(a) Incomplete refinement

access laptop

username password access

(b) Complete refinement

Fig. 4. Well-formedness and refinements

3.2 Misplaced Counter

A second frequent mistake is to misplace a counter node. Consider the tree from
Fig. 5a, where in order to get the teacher’s password, the student can find a
post-it where the password has been written, or perform a brute force attack.
In order to prevent the first attack, a security training could be offered to the
teachers to advise them against writing down their passwords. The student could
in turn overcome the security training by social engineering the teacher to reveal
the password. Note, however, that by social engineering the teacher, the student
would already achieve the get password goal. In the case of this tree, the social
engineering node is not a counterattack to security training. It is actually yet
another option to get the teacher’s password. The correct tree should therefore
look like the one in Fig. 5b. A simple analysis of the two trees from Fig. 5 shows
that they are not equivalent in any semantics. Similarly, the bottom-up algorithm
would give different quantitative results on these two trees.

get password

post-it

security training

soc. engineering

brute force

(a) Incorrect counterattack

get password

post-it

security training

brute force soc. engineering

(b) Correct tree

Fig. 5. Well-formedness and counter placement

Hint 2: A countermeasure node of type s is correctly placed if its achievement
disables the goal of the node of type s̄ it is supposed to counter.

Evil Twins: Handling Repetitions in Attack–Defense Trees 27

3.3 Repeated Labels

Due to the fact that ADTrees are often reused to model similar situations and
that libraries of standard attacks might be used to ease the creation of an
ADTree, it is not rare to see trees that contain several nodes having the same
label. In this case, the modeler needs to ensure that the same labels really rep-
resent the same goals to be achieved. As a consequence, subtrees rooted in the
nodes having the same label need to have the same refining subtrees. More pre-
cisely, the subtrees rooted in these nodes, and obtained by removing all nodes of
the other type, should be equivalent with respect to the semantics that is used.

Hint 3: If two nodes in an ADTree have the same labels but their refining
subtrees are not equivalent with respect to the considered semantics, then

– If the subgoals represented by the refinement of each of these nodes actually
apply to the other one as well, then the refining nodes present in only one of
the subtrees should be added to the other one and the labels of the two nodes
stay unchanged.

– If at least one subgoal does not apply to both nodes, the corresponding goals
are not identical, and at least one of the labels should be modified. Note that
it does not, however, mean that these goals cannot have common subgoals.

3.4 Repeated Basic Actions

Finally, we need to ensure that nodes labeled with the same basic action represent
the same actions to be executed. This implies that, if two non-refined nodes have
the same label, then there must not exist any attribute for which they have a
different value. If there is at least one attribute that differentiates them, then the
basic actions they represent are not identical, and should therefore be modeled
with different labels. For instance, if we assume that the exam considered in the
tree from Fig. 1 is a multiple choice test composed of five pages of questions,
the two print nodes should not have the same label, because printing the exam
would take more time than printing just the solutions that fit on one page.

Hint 4: To decide whether the non-refined nodes are correctly labeled, the mod-
eler should ensure that, for every attribute α that will be considered, all nodes
with the same label are indeed getting the same value by the assignment βα.

4 Poisonous or Edible: ADTrees with Repeated Labels

As we have seen in Sect. 3, ADTrees may contain several nodes with identical
labels. In this section, we propose a methodology to handle such trees properly.
We first discuss different origins of repeated labels, and then propose solutions
to avoid an incorrect labeling that could lead to miscalculations.

28 A. Bossuat and B. Kordy

4.1 Meaning of Repeated Labels

While analyzing ADTrees for real-life scenarios, one can observe that there are
two kinds of nodes with repeated labels. We call them cloned nodes and twin
nodes. We explain the difference between them below. To clarify the explanation,
we say that the node has been activated if the goal represented by its label is
achieved by the corresponding actor. When the goal of a node has been countered
by the other actor, we say that the node has been deactivated.

Cloned nodes – when activating one node means activating another one having
the same label, we say that the two nodes are cloned. This means that cloned
nodes represent exactly the same instance of an action, so deactivating one
of the cloned nodes deactivates all its clones.
Twin nodes – when activating one node does not activate another one having
the same label, we say that the two nodes are twins. This means that each
individual twin node represents a separated instance of the same action, thus
all twin nodes having the same label need to be deactivated separately.

Example 5. Consider the scenario from Example 1 illustrated in Fig. 1. The two
access laptop nodes are cloned: since the exam and the solution files are stored
on the same laptop, accessing the laptop needs to be done only once. In contrast,
the two save on usb nodes are twins: obviously, saving the exam file on a
usb stick does not result in saving the solution file, and vice versa. Note that
one could dispute the fact that the two save on usb nodes have the same
label, but according to Hint 4, this is correct. Even though the solution and the
exam are two different files, they have roughly the same size and will therefore
take the same time to be copied to the usb stick. Every other attribute gives
unquestionably the same value.

Existing semantics for ADTree have a rather restrictive view on ADTrees
with repeated labels. The propositional semantics acts as if all nodes having
the same labels were cloned: the labels of non-refined nodes are interpreted
as propositional variables and idempotent logical operators (∨,∧) are used to
interpret the refinements. In contrast, the multiset semantics assumes that all
nodes with repeated labels are twins: due to the use of the multisets, where
the multiplicity of elements in the collection is relevant, each node is viewed as
representing a separate instance of an action. In practice, however, the same
scenario may contain both cloned and twin nodes, as illustrated in Example 5.
To overcome this issue and accommodate cloned and twin nodes, we propose a
more precise labeling scheme, that we present in Sect. 4.2.

4.2 Extended Labeling for ADTrees with Repetitions

A naive solution would be to relabel all twin nodes to remove repetitions. This
would make the use of the propositional semantics possible, but this solution is
not preferred due to the following issues

Evil Twins: Handling Repetitions in Attack–Defense Trees 29

– It would prohibit the re-use of models created for similar scenarios, and make
the use of libraries of standard attacks more complex.

– Since the number of possible labels, i.e., the size of B, would increase, the
effort of defining βα would be (unnecessary but inevitably) greater. E.g.,
instead of providing one single value to quantify the complexity of brute forc-
ing a 15 char password, one would need to define two values: for brute force
a 15 char pwd for a laptop and for brute force a 15 char pwd for a
smartphone. However, these two values would obviously be the same.

– Relabeling could result in peculiar, non-intuitive labels, which could have a
disadvantageous influence on the tree analysis, especially regarding the esti-
mation of the values for basic actions, i.e., definition of βα.

– Finally, the cloned nodes would still be considered multiple times when the
multiset semantics would be used.

To bypass the above issues, we propose a solution which relies on labels being
pairs in G × Γ , where G is a typed set of goals containing B and Γ is a finite
set of indices. Instead of label g, a pair (g, γ) is used. Its first component g ∈ G

describes the goal to be achieved and the second component γ ∈ Γ is an index
which allows us to distinguish between cloned and twin nodes.

Definition 4. Let T be an ADTree whose nodes are labeled with the elements
of G×Γ , and consider two nodes having the same goal g, i.e., labeled with (g, ι)
and (g, γ), respectively. If ι = γ, then we say that the two nodes are cloned; if
ι �= γ, then we say that the two nodes are twins (or twin nodes).

(access office, ι)

(access building, ι)

(break window, ι) (lock-picking, ι)

(lock-picking, γ)

Fig. 6. Extended labeling of ADTree nodes

From now on, the word
label stands for the pair of
the form (g, γ) and g is called
its goal. Note that, since goals
are typed, the set G is parti-
tioned into goals of the pro-
ponent’s type (Gp) and those
of the opponent’s type (Go).
However, if this does not
lead to confusion, we omit
the superscript denoting the
goal’s type.

Example 6. While using the extended labeling based on pairs, the tree from
Fig. 2 is relabeled as shown in Fig. 6. It is now clear that (lock-picking, ι) and
(lock-picking, γ) represent two separate instances of picking a lock, as ι �= γ.

5 Survival Kit: Well-Formed ADTrees

The purpose of ADTrees is to represent and analyze the security scenarios in a
rigorous way. In order to obtain meaningful analysis results, an ADTree must
model the reality in the most faithful way possible. To achieve this, we have devel-
oped a set of rules that guide the security expert in creating well-formed trees.

30 A. Bossuat and B. Kordy

This is feasible thanks to the new labeling introduced in Sect. 4, which undoubt-
edly increases the expressive power of ADTrees. In this section, we formalize the
notion of well-formed ADTrees that overcome the typical problems illustrated in
Sect. 3. Then, we explain how to use them correctly, by adapting previously seen
formal semantics and the quantification algorithm to our pair-based labeling.

5.1 Definition of Well-Formed ADTrees

To be able to address the issues presented in Sect. 3, we first extend the gram-
mar (1) so that the generated terms capture the labels of the refined nodes:

T s : (bs, γ) | ORs[(g, γ)](T s, . . . , T s) | ANDs[(g, γ)](T s, . . . , T s) | Cs(T s, T s̄), (2)

where s, s̄ ∈ {p, o}, bs ∈ B, and g ∈ G are goals of refined nodes. The term
starting with C does not mention any label, since the goal of the root node
expressed by the term Cs(T s

1 , T s̄
2) is contained in the label of the root node of T s

1 .
The presence of extended labels in the terms generated by grammar (2) allows

us to explain the meaning of refinement and counter, formalize the hints from
Sects. 3.1–3.3, and differentiate between the cloned and the twin nodes. This is
captured by the notion of well-formed ADTrees that we introduce in Definition 5.
Note that, identifying well-formed ADTrees with the well-typed ones, as in [1], is
not sufficient for our work, in particular because it does not capture the problems
described in Sect. 3. Indeed, all trees considered in that section are well-typed,
but we have shown that they suffer from multiple construction drawbacks that
could hinder the security analysis. We therefore believe that the definition of
well-formed ADTrees needs to take into account the labels of every node (not
only the non-refined ones), the semantics that will be used for the tree analysis,
and the attribute domains for the considered attributes.

Definition 5. Let T be an ADTree generated by grammar (2). ADTree T is
said to be well-formed if and only if the type of its root node is p (proponent)
and all of the following conditions are satisfied for all of its subtrees Y , where
gi denotes the goal of the root node of Yi.

1. The meaning of OR
Let Y = ORs[(g, γ)](Y s

1 , . . . , Y s
k). The goal g is achieved if and only if at least

one of the subgoals gi is achieved.
2. The meaning of AND

Let Y = ANDs[(g, γ)](Y s
1 , . . . , Y s

k). The goal g is achieved if and only if all of
the subgoals gi are achieved.

3. The meaning of C
Let Y = Cs(Y s

1 , Y s̄
2). If g2 is achieved then g1 cannot be achieved.

4. Cloned and twin nodes
Let I be a semantics that will be used for the analysis of T and assume that
T contains two subtrees of the form Yi = OPsi [(gi, γi)](Yi1 , . . . , Yik), where
OPsi ∈ {ORs, ANDs}, for i ∈ {1, 2}. Let Yi|s denote the term obtained from Yi

Evil Twins: Handling Repetitions in Attack–Defense Trees 31

by recursively replacing all of its subterms of the form Cs(Ui1 , Ui2) by Ui1 .
5

If g1 = g2, then I(Y1|s) = I(Y2|s), i.e., the subtrees refining g1 and g2 are
equivalent wrt I. Moreover, if (g1, γ1) = (g2, γ2), i.e., the corresponding nodes
are cloned, then I(Y1) = I(Y2).

5. Correct labeling
Let α be an attribute that will be used for the analysis of T and assume that
T contains two subtrees of the form Yi = OPsi [(gi, γi)](Yi1 , . . . , Yik), where
OPsi ∈ {ORs, ANDs}, for i ∈ {1, 2}. Additionally, let Yi|s be as in the previous
item. If g1 = g2, then α(Y1|s) = α(Y2|s). Moreover, if (g1, γ1) = (g2, γ2), i.e.,
the corresponding nodes are cloned, then α(Y1) = α(Y2).

Rules 1 and 2 guarantee the correctness and completeness of refinements.
They implement Hint 1 from Sect. 3. For instance, the tree from Fig. 4a is not
well-formed, because it does not satisfy Rule 2. Rule 3 is related to Hint 2. The
tree from Fig. 5a does not satisfy Rule 3 because a successful social engineer-
ing attack does not counter the security training. Rule 4 formalizes Hint 3. It
makes sure that nodes with the same goals (in particular the twin nodes) have
equivalent refining subtrees and nodes with the same labels (goals and indices),
i.e., the cloned nodes, have equivalent subtrees (including countermeasures). In
particular, Rule 4 forbids two cloned nodes from being placed on the same path
to the root node. Rule 5 corresponds to Hint 4. It ensures that nodes with the
same labels and non-countered nodes with the same goals always get the same
value when the bottom-up quantitative analysis is performed.

In Example 7, we modify the tree from Fig. 1 by extending its labels with the
second component, and renaming some of the goals to ensure the well-formedness
of the tree. We remark that the unique purpose of the index from Γ is to allow
the distinction between the cloned and the twin nodes having the same goal. If
two nodes have different goals, the fact that they have the same index does not
model any additional relationship between them.

Example 7. As already discussed in Example 5, the two access laptop nodes
are cloned. They therefore get the same index ι. Since printing the exam will
be substantially longer than printing the solutions, the two print nodes cannot
have the same goal. We therefore rename them to print exam and print sol.
The exam and the solutions differ in terms of the number of pages, nevertheless
the size of the corresponding pdf files is practically the same. Therefore, the two
save on usb nodes may keep the same goal, but their indices must be different,
as these nodes are twins. The updated well-formed ADTree is given in Fig. 7.

5.2 Formal Semantics for Well-Formed ADTrees

We now discuss the formal semantics for well-formed ADTrees labeled with pairs
from G × Γ .

5 In other words, Yi|s is the tree Yi in which all countermeasures have been disregarded.

32 A. Bossuat and B. Kordy

(e
xa

m
at

ta
ck

,
ι)

(g
et

ex
am

,
ι)

(a
cc

es
s

la
pt

op
,
ι)

(fi
nd

ex
am

,
ι)

(s
to

re
ex

am
,
ι)

(p
ri

nt
ex

am
,
ι)

(s
av

e
on

us
b,

ι)

(g
et

so
l,

ι)

(a
cc

es
s

la
pt

op
,
ι)

(fi
nd

so
l,

ι)
(s

to
re

so
l,

ι)

(p
ri

nt
so

l,
ι)

(s
av

e
on

us
b,

γ
)

(e
nc

ry
pt

,
ι)

(b
re

ak
,
ι)

(m
em

or
iz

e
so

l,
ι)

F
ig
.
7
.
W

el
l-
fo

rm
ed

A
D

T
re

e
fo

r
p
a
ss

in
g

th
e

ex
a
m

in
a
ti

o
n

Evil Twins: Handling Repetitions in Attack–Defense Trees 33

Propositional semantics. We require that the propositional variables are asso-
ciated with labels (i.e., pairs) and not only with goals. We therefore have
P((b, γ)) = x(b,γ), and the rest of Definition 1 stays unchanged. If the pair-based
labeling is adopted, then cloned nodes are represented with the same variable
and are only counted once in the semantics; twin nodes, in turn, correspond to
different variables, say x(b,γ) and x(b,γ′), and will thus be treated as separated
actions to be performed. The propositional semantics of a well-formed ADTree
T can be expressed as a formula in a minimized disjunctive normal form.

P(T) =
l∨

i=1

((ni∧
j=1

x(pij ,γij)

) ∧ (mi∧
j=1

¬x(oij ,γij)

))
, (3)

where pij ∈ B
p, oij ∈ B

o, and ∀i,∀j, if j �= j′, then (pij , γij) �= (pij′ , γij′) and
(oij , γij) �= (oij′ , γij′).

Set semantics. The objective of using multisets in the semantics introduced in
Definition 2 was to be able to recall the multiplicity of the same goal. When the
labeling from G× Γ is used, the indices already take care of storing information
about which actions need to be repeated several times (twin nodes get different
indices) and which ones are only executed once (cloned nodes get the same
index). We therefore replace the multisets from Definition 2 with regular sets.
The corresponding semantics is formally defined in Definition 6, where

S Z = {(PS ∪ PZ , OS ∪ OZ)|(PS , OS) ∈ S, (PZ , OZ) ∈ Z},

for S,Z ⊆ B
p × B

o.

Definition 6. The set semantics for ADTrees labeled with pairs from G × Γ is
a function S : T → P(P(Bp × Γ) × P(Bo × Γ)

)
that assigns to each ADTree a

set of pairs of sets of labels, as follows

S (
(bp, γ)

)
=

{({(bp, γ)}, ∅)}, S (
(bo, γ)

)
=

{(∅, {(bo, γ)})}

S (
ORp(T p

1 , . . . , T p
k)

)
=

k⋃
i=1

S(T p
i), S (

ORo(T o
1 , . . . , T o

k)
)

=
k⊙

i=1

S(T o
i)

S (
ANDp(T p

1 , . . . , T p
k)

)
=

k⊙
i=1

S(T p
i), S (

ANDo(T o
1 , . . . , T o

k)
)

=
k⋃

i=1

S(T o
i)

S (
Cp(T p

1 , T o
2)

)
= S(T p

1) S(T o
2), S (

Co(T o
1 , T p

2)
)

= S(T o
1) ∪ S(T p

2).

The set semantics of a well-formed ADTree T can be expressed as follows

S(T) =
l⋃

i=1

{(ni⋃
j=1

{(pij , γij)},

mi⋃
j=1

{(oij , γij)}
)}

. (4)

Note that expressions (3) and (4) correspond to the canonical form of an
ADTree in the respective semantics, i.e., the form that explicitly enumerates

34 A. Bossuat and B. Kordy

possible ways to achieve the tree’s root goal, giving the minimum amount of
information necessary to reconstruct an equivalent ADTree. Example 8 illustrates
the use of the set semantics on a well-formed ADTree.

Example 8. While interpreting the tree from Fig. 7 with the set semantics, we
obtain the following eight ways of performing the student attack:

{({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (pr ex, ι), (pr sol, ι)}, ∅),({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (pr ex, ι), (usb, γ)}, ∅),({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (usb, ι), (pr sol, ι)}, ∅),({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (usb, ι), (usb, γ)}, ∅),({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (pr ex, ι), (pr sol, ι)}, {enc}),({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (pr ex, ι), (usb, γ)}, {enc}),({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (usb, ι), (pr sol, ι)}, {enc}),({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (usb, ι), (usb, γ)}, {enc})}.

The different attack options implement distinct ways of storing the exam and
the solution files, and depend on whether the solution file is encrypted or not.
The first four options correspond to the situation where the teacher can use
the encryption, because the student is prepared to break it. The last four cases
model that, in addition to the actions listed in the first set, the student should
also stop the teacher from encrypting the solution file.

The use of sets (instead of multisets) ensures that accessing the laptop is
performed only once. However, thanks to the use of different indices (ι and γ)
saving the exam and the solution files on a usb represent two different actions.

Quantitative analysis. If α is an attribute, the function βα is still of the form
βα : B → Dα, i.e., it does not take the indices into account, so two twin nodes
having the same goal will get the same value by βα. This way, the computational
burden of estimating values for similar basic actions is omitted. To ensure a cor-
rect handling of the cloned nodes, the value of attribute α must now be evaluated
on the semantics of the tree. Let Aα = (Dα, ORpα, ANDpα, ORoα, ANDoα, Cpα, Coα) be an
attribute domain for α. If the propositional semantics (resp. the set semantics) is
used, then the evaluation of the tree whose interpretation is given by formula (3)
(resp. (4)) proceeds as follows

α(T) = (ORpα)l
i=1

(
Cpα

(
(ANDpα)ni

j=1βα(pij), (ORoα)mi
j=1βα(oij)

))
. (5)

Example 9. Let us make use of the set semantics to evaluate the minimal time for
the exam attack on the well-formed tree from Fig. 7. We use the basic assignment
from Example 4, except for the two print nodes that now represent distinct basic
actions. We set βα(print exam) = 6 and βα(print sol) = 2, to model that
printing a longer document will take more time. The minimal time corresponding
to each attack option is as follows

Evil Twins: Handling Repetitions in Attack–Defense Trees 35

({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (pr ex, ι), (pr sol, ι)}, ∅) �→ 171,({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (pr ex, ι), (usb, γ)}, ∅) �→ 170,({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (usb, ι), (pr sol, ι)}, ∅) �→ 166,({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (usb, ι), (usb, γ)}, ∅) �→ 165,({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (pr ex, ι), (pr sol, ι)}, {enc}) �→ +∞,({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (pr ex, ι), (usb, γ)}, {enc}) �→ +∞,({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (usb, ι), (pr sol, ι)}, {enc}) �→ +∞,({(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (usb, ι), (usb, γ)}, {enc}) �→ +∞.

According to the formula from Eq. (5), we obtain that the time of the shortest
attack is min{171, 170, 166, 165,+∞} = 165, in contrast to 210 min obtained for
the non well-formed tree in Fig. 3. The reason is that the action of accessing
the laptop is now counted only once. This comparison shows that distinguishing
between different types of repeated nodes improves the accuracy of the attack–
defense tree analysis. We finally remark that every attack option where the
second set is not empty gets value +∞. This models that these options do not
represent successful attacks, as they cannot be performed in finite time.

6 Back to Civilization: Conclusion

The goal of the work presented in this paper was to provide guidelines for prop-
erly handling attack–defense trees where several nodes have the same label.
A thorough analysis of numerous examples of such trees resulted in a classifi-
cation of the repeated nodes into two categories: cloned nodes and twin nodes.
These two kinds of nodes must be treated differently, because activating a cloned
node activates all other ones having the same label, while activating one of the
repeated twin nodes does not have any influence on the other ones.

To formally capture the difference between the two cases, we have proposed
a new labeling scheme which complements the node’s goal with the information
regarding which repeated nodes are cloned, and which ones are twins. Further-
more, we have extended the classical grammar that generates ADTrees in a
way that includes the labels of the refined nodes. This enabled us to define
well-formed ADTrees, and formally specify their semantics. The definition of
well-formedness ensures that the trees are not only well-typed (with respect to
the actions of the proponent and the opponent), but also that they do not suffer
from common mistakes or omissions often made during the tree creation process.

Since attack trees are special cases of ADTrees, the solution elaborated in
this work directly applies to classical attack trees. We therefore hope that our
survival kit will be a valuable and practical help to security experts making use
of attack(–defense) trees to model and evaluate the security of their systems.

Repeated labels are just a special case of a much larger problem of depen-
dencies between nodes in ADTrees. In practice, different attacks may share some

36 A. Bossuat and B. Kordy

but not all of the necessary actions, they may involve temporal or causal depen-
dencies between the actions of the two actors, etc. We are currently working
on extending the ADTree model with such dependencies in order to be able
to analyze scenarios involving sequences (instead of sets of) actions, as well as
distinguishing between preventive and reactive countermeasures.

Another aspect that we would like to study is the formulation of the goals in
ADTrees. Due to their conciseness, the labels are often imprecise or misleading.
In addition, several formulations in the natural language might correspond to
the same goal. A methodology to devise precise labels and to decide which for-
mulations are equivalent should be developed, so that the nodes with different
but equivalent labels can be treated in the same, and if possible automated, way.

Acknowledgments. We would like to thank Wojciech Wide�l for the very fruitful dis-
cussions on the meaning of countermeasures in ADTrees, which allowed us to improve
the approach developed in this paper.

References

1. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7 6

2. Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of
attack-defence scenarios. In: CSF, pp. 105–119. IEEE Computer Society (2016)

3. Audinot, M., Pinchinat, S., Kordy, B.: Is my attack tree correct? In: Foley, S.N.,
Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 83–102.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 7

4. Bagnato, A., Kordy, B., Meland, P.H., Schweitzer, P.: Attribute decoration of
attack-defense trees. IJSSE 3(2), 1–35 (2012)

5. Gadyatskaya, O., Harpes, C., Mauw, S., Muller, C., Muller, S.: Bridging two worlds:
reconciling practical risk assessment methodologies with theory of attack trees. In:
Kordy, B., Ekstedt, M., Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp.
80–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46263-9 5

6. Katz, P.: PKZIP 6.0 Command Line User’s Manual. PKWare, Inc. (2002). https://
pkware.cachefly.net/webdocs/manuals/win6 cli-usersguide.pdf

7. Kordy, B., Mauw, S., Radomirovic, S., Schweitzer, P.: Attack-defense trees. J. Log.
Comput. 24(1), 55–87 (2014). http://dx.doi.org/10.1093/logcom/exs029

8. Kordy, B., Mauw, S., Schweitzer, P.: Quantitative questions on attack–defense
trees. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp.
49–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5 5

9. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14,
1–38 (2014)

10. Kordy, B., Pouly, M., Schweitzer, P.: Computational aspects of attack–defense
trees. In: Bouvry, P., K�lopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka,
A., Rybiński, H. (eds.) SIIS 2011. LNCS, vol. 7053, pp. 103–116. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-25261-7 8

11. Kordy, B., Wide�l, W.: How well can i secure my system? In: Polikarpova, N.,
Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 332–347. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66845-1 22

https://doi.org/10.1007/978-3-662-46666-7_6
https://doi.org/10.1007/978-3-319-66402-6_7
https://doi.org/10.1007/978-3-319-46263-9_5
https://pkware.cachefly.net/webdocs/manuals/win6_cli-usersguide.pdf
https://pkware.cachefly.net/webdocs/manuals/win6_cli-usersguide.pdf
http://dx.doi.org/10.1093/logcom/exs029
https://doi.org/10.1007/978-3-642-37682-5_5
https://doi.org/10.1007/978-3-642-25261-7_8
https://doi.org/10.1007/978-3-319-66845-1_22

Evil Twins: Handling Repetitions in Attack–Defense Trees 37

12. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

13. Paul, S.: Towards automating the construction & maintenance of attack trees: a
feasibility study. In: GraMSec@ETAPS. EPTCS, vol. 148, pp. 31–46 (2014)

14. Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees (ACT): towards
unifying the constructs of attack and defense trees. Secur. Commun. Netw. 5(8),
929–943 (2012)

15. Schneier, B.: Attack trees. Dr Dobb’s J. Softw. Tools 24, 21–29 (1999)
16. Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In:

CSF, pp. 337–350. IEEE Computer Society (2014)
17. Wesley, K.J., Anbiah, R.R.J.: Cracking PKZIP files’ password. A to Z of C, pp.

610–615 (2008)

https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17

Visualizing Cyber Security Risks
with Bow-Tie Diagrams

Karin Bernsmed1, Christian Frøystad1, Per H̊akon Meland1,3(B),
Dag Atle Nesheim2, and Ørnulf Jan Rødseth2

1 SINTEF Digital, Trondheim, Norway
{karin.bernsmed,christian.froystad,per.h.meland}@sintef.no

2 SINTEF Ocean, Trondheim, Norway
{dag.atle.nesheim,ornulfjan.rodseth}@sintef.no

3 Norwegian University of Science and Technology, Trondheim, Norway

Abstract. Safety and security risks are usually analyzed independently,
by different people using different tools. Consequently, the system analyst
may fail to realize cyber attacks as a contributing factor to safety impacts
or, on the contrary, design overly secure systems that will compromise
the performance of critical operations. This paper presents a method-
ology for visualizing and assessing security risks by means of bow-tie
diagrams, which are commonly used within safety assessments. We out-
line how malicious activities, random failures, security countermeasures
and safety barriers can be visualized using a common graphical notation
and propose a method for quantifying risks based on threat likelihood
and consequence severity. The methodology is demonstrated using a case
study from maritime communication. Our main conclusion is that adding
security concepts to the bow-ties is a promising approach, since this is
a notation that high-risk industries are already familiar with. However,
their advantage as easy-to-grasp visual models should be maintained,
hence complexity needs to be kept low.

Keywords: Security · Safety · Risk assessment · Bow-tie diagrams
Maritime communication

1 Introduction

One of the least understood challenges for cyber physical systems (CFS) is
uncertainty in the environment, cyber attacks and errors in connected physi-
cal devices [46]. The tight coupling between the cyber and physical world leads
to new forms of risks that have not been considered adequately, such that the
cyber element adversely affects the physical environment [4]. Safety risks, where
the system can harm the environment in which it operates, and security risks,
where the environment (e.g. malicious actors and other systems) can harm the
system, tend to be analyzed independently [42], by different people using dif-
ferent standards, tools and notations. As pointed out by Sun et al. [50], safety
c© Springer International Publishing AG 2018
P. Liu et al. (eds.): GraMSec 2017, LNCS 10744, pp. 38–56, 2018.
https://doi.org/10.1007/978-3-319-74860-3_3

Visualizing Cyber Security Risks with Bow-Tie Diagrams 39

and security goals interact synergistically or conflictingly, and should therefore
be evaluated together. If not, conflicts can result in either (a) overly secure sys-
tems that compromise the reliability of critical operations or (b) create insecure
systems where back-doors are easily found.

An inherent challenge when combining safety and security in an analysis is
the increased complexity. Graphical visualizations are helpful when you want to
make complex problems easier to understand and navigate [20]. The purpose of
this paper is to bridge the gap between safety and security during risk assessment
by utilizing the graphical bow-tie diagram methodology [11,14,15,25]. Bow-tie
diagrams are very suitable for communicating the results of a risk assessment
to different stakeholders within an organization due to the clear diversification
of causes and effects for a given unwanted event, and to clarify which barriers
have (or have not) been implemented. Bow-tie analysis, which includes the gen-
eration of one or more bow-tie diagrams, is a common approach to map the
risks associated with unwanted events in, for example, the oil and gas industry.
Our approach is to take advantage of the familiarity of this graphical notation
among industry experts, analyze use cases within the safety-critical maritime
sector, and try to answer the following research questions:

1. How can bow-tie diagrams be extended to include security considerations in
addition to safety considerations?

2. How can the likelihood of cause and severity of cyber attacks be visualized in
bow-tie diagrams?

In order to answer these questions, we apply a design science research
methodology [48], with focus on the extended bow-tie diagram methodology
as an artefact with a high priority on relevance for the cyber physical domain.
Evaluation is done through analysis of descriptive, constructed use cases for
maritime service scenarios to demonstrate its utility [21].

Our goal has not been to create yet another theoretical model for risk assess-
ment, but to propose a solution to a real, existing problem we experience in the
maritime domain when introducing new technology that may have effect both
safety and security. This follows the research paradigm of pragmatism [19], which
is associated with action, intervention and constructive knowledge. Furthermore,
it should be based on real problems and have practical usefulness beyond the
specific case studies.

This paper is organized as follows. Section 2 presents related work. In Sect. 3,
we introduce the marine communication case study in which we have developed
the proposed methodology. Section 4 explains the concepts and terminology that
we use and Sect. 5 presents the proposed bow-tie risk assessment methodology,
which is exemplified in Sect. 6. Finally, in Sect. 7 we discuss the results and Sect. 8
concludes the paper.

2 Related Work

The most common way of documenting and visualizing risks is in a risk matrix,
where the seriousness of the evaluated risks can be easily compared based on

40 K. Bernsmed et al.

the combination of likelihood and consequence. The US Air Force developed the
Risk Matrix Approach (RMA) [18] in 1995, and after that it has spread out to
a multitude of domains, such as weapons manufacturing, finance, transport and
project management [38]. Still, RMA is a very simplistic notation that does not
properly visualize the causes of the risks, and how to address them.

Within the field of security, there are many more specialized modelling nota-
tions that are in general concerned about “identifying system behavior, including
any security defenses; the system adversary’s power; and the properties that con-
stitute system security” [5]. Security modelling comes in many different forms
and flavors, but they all share the common aim of understanding security issues
so they can be dealt with effectively. Which one to choose usually depends on
what the analyst wants to focus on, level of abstraction/details and personal
preference (e.g. familiarity). To quote Shostack [47]: “different diagrams will
help in different circumstances”. For instance, an attack tree [31,45] is a tree-
based notation showing how an adversary can choose among different paths or
branches to obtain an overall attack goal. The attack-defense trees [26] extend
this notation by also adding preventive nodes, which again can be attacked by
attack nodes. Attack graphs [40] and vulnerability cause graphs [8] are examples
of a graph-based notation used for analyzing vulnerabilities, and CORAS [30]
contains several graphical notations for a risk analysis process. There also exist
different types of security extensions to more general purpose graphical mod-
elling notations, such as Data flow diagrams [47], UML [24,49] and BPMN [32].

For safety, there are many notations that go even further back in history.
The fault-tree analysis (FTA) method was developed in the 1960s for safety and
reliability [29], and a recent survey of usage is provided by Ruijters and Stoelinga
[43]. Event tree analysis (ETA) is an established technique originating from the
nuclear industry [3], and is used to analyze how a series of events can lead to
a potential accident scenario. Similarly to ETA, cause-consequence diagrams
(CCA) [39] are also used to analyze safety causes.

When considering safety and security in combination, there have been quite a
few related studies. For instance, Winther et al. [52] show how to handle security
issues as part of HAZOP studies, which is a systematic analysis on how deviations
from the design specifications in a system can arise, and whether these deviations
can result in hazards. Raspotnig et al. [42] have use UML-based models within
a combined safety and security assessment process to elicitate requirements.
Bieber and Brunel [7] show how common system models for security and safety
can be used for airworthiness certification within aviation. Kumar and Stoelinga
[28] have married fault and attack trees so that both safety and security can
be considered in combination. Further examples of methods, models, tools and
techniques in the intersection of safety and security can be found in the surveys
by Zalewski et al. [53], Piètre-Cambacédès and Bouissou [41], Chockalingam
et al. [12], as well as Kriaa et al. [27].

There have been several efforts by practitioners related to the use of bow-tie
diagrams for cyber security, but they differ from what we are presenting in this
paper in several ways. For instance, a report from SANS Institute [35] outlines

Visualizing Cyber Security Risks with Bow-Tie Diagrams 41

how a bow-tie risk assessment methodology can be applied to conduct a cyber
security risk assessment in an engineering environment. There is no change to the
diagram notation as such, but they argue that “the first step towards obtaining
Engineering community buy-in” is to compare concepts from security to bow-
tie, and basically evaluate cyber threats in the same manner as hazards. They
also include considerations related to actors and motivation, but this is done
in order to reduce the number of possible scenarios before modelling, and not
part of the notation itself. A report from DNV-GL [16] also proposes the use of
bow-tie diagrams as a key component in a cyber security assessment program
for the maritime sector. Here, standard safety notation is used, and the focus is
on visualization of barriers. Quantitative indicators are explicitly left out, and
even though vulnerability consideration is central in the overall assessment pro-
cess, this is not included as diagram concepts. Similarly, the Bow Tie for Cyber
Security series [22] at PI Square gives numerous examples where the standard
notation is used for security. The US Coastguard has also published a report [34]
on how to use bow-ties to identify preventive and responsive responses to cyber
attacks for marine transportation systems. Their examples are on a very high
abstraction level, where causes are for instance hactivists, technical errors and
insider threats. Two additional examples of bow-tie diagrams that visualize IT
security risks are provided in [10]. The focus here is more on chains of barriers,
although it seems like vulnerabilities are represented as escalation factors.

3 Case Study: Maritime Communication

In order to give a better understanding of the methodology and examples used
in the later sections, we would like to explain our maritime case study and why
security is a growing concern intertwined with safety in this domain.

Shipping has become increasingly dependent on digital data exchanges. As
dependence grows and the functions supported becomes more entangled in the
ship operations and critical interactions with on-shore authorities, the need to
consider consequences of digital attacks on the data exchanges also increases.
This calls for a more systematic approach to maritime cyber security.

In 2011, ENISA pointed out [13] that the “awareness on cyber security needs
and challenges in the maritime sector is currently low to non-existent”. Come
2015, the Lysne commission of Norway [2] reaffirmed this message. The lack of
general awareness regarding cyber security, makes the industry more vulnerable
to attacks.

Maritime navigational systems of today rely heavily on Global Navigation
Satellite Systems (GNSS), such as GPS and GLONASS, to navigate safely, avoid
collisions or groundings and for voyage optimization. The GNSS signals avail-
able for civilians are unencrypted and unauthenticated and are easily jammed
or even spoofed [6]. Automatic Identification System (AIS) is used to identify
other ships and their intentions, but can also be used to transmit short safety
messages, e.g. to act as virtual aids to navigations. AIS is becoming part of the
more extensive VHF Data Exchange System (VDES), which will extend the use

42 K. Bernsmed et al.

of AIS to include even more digital information exchanges. The AIS messages
are unencrypted and unauthenticated, and relatively easy to jam or spoof. Fur-
thermore, IOActive [44] conducted tests on SATCOM firmware from multiple
vendors and found vulnerabilities such as hardcoded credentials, undocumented
protocols, insecure protocols, backdoors, and weak password reset. Our atten-
tion is on digital data exchanges between ships and between ship and shore and
the possible consequences of cyber-attacks on these exchanges.

Ships spend most of their time at sea with a minimal crew, and remote mon-
itoring and maintenance is becoming more and more common. If not organized
in an appropriate way, this could allow an attacker extensive and easy access to
the systems on the ship. Additionally, there are multiple actors connected to the
network on-board a ship, including passengers, crew, and operational systems.
These actors have different requirements regarding safety, security and separa-
tion. For instance, some vessels have physically separated networks, while others
only provide logically separated networks. The mechanisms for logical separation
of networks vary, but are often just a simple firewall.

4 Concepts and Terminology of Bow-Ties

A bow-tie diagram is shaped like a bow-tie, where the central knot typically
represent an accident scenario, or as we will later refer to, an unwanted event.
The diagram can be seen as a combination of a fault tree and an event tree
[17], where the left side shows which causes can lead up to the accident, and the
right side the potential effects once the accident has occurred. As pointed out
by the tool provider CGE Risk Management1, the power of this diagram is that
it gives a clear distinction between proactive and reactive risk management, in
combination with an overview of multiple plausible scenarios.

To combine security with bow-tie safety assessment, we need to synchronize
the terminology and concepts from the safety and security domains. The bow-tie
diagram in Fig. 1 shows the traditional layout, notation and concepts from safety
assessments in the upper left horizontal part (cause, barrier, escalation factor),
with concepts we introduce from security in the lower left horizontal part (threat,
security control). Hazard and unwanted event are mainly from safety, while asset
comes from security. On the right side of the figure, the consequence concept is
shared between safety and security, and can be remedied with safety barriers
and security controls, often in combination. We describe these concepts further
below.

As defined by International Maritime Organization (IMO) [23], the first step
in a Formal Safety Assessment (FSA) [23] is to identify all potential hazards
that can contribute to accidents. A hazard is a potential to threaten human life,
health, property or the environment. Examples of maritime hazards are off-shore
operations, hazardous substances and sources of ignition onboard and external
hazards, such as storms, lightening and other ships. Hazards may give rise to
scenarios in which people, the environment or property will be damaged. The list
1 https://www.cgerisk.com/knowledge-base/risk-assessment/thebowtiemethod.

https://www.cgerisk.com/knowledge-base/risk-assessment/thebowtiemethod

Visualizing Cyber Security Risks with Bow-Tie Diagrams 43

Fig. 1. Our combined approach for modelling safety and security in a bow-tie diagram.

of identified hazards and their associated scenarios will be used as input to the
safety risk assessment. Basically, a hazard can be anything with the potential to
cause harm, but which is also necessary to perform business. From a risk analysis
perspective, the hazard needs to be controlled so that unwanted events will not
occur.

An unwanted event in safety assessment, also known as top event, loss event,
or loss of control, represents what will happen if one loses control over a haz-
ard, which again can have severe consequences. An unwanted event is typically
caused by an accident, or a random failure. In security assessments, the equiva-
lent is often called incident, something that typically affects the confidentiality,
integrity or availability of a critical system, data, or processes necessary for the
operation of the business. Such incident may have malicious or accidental causes.
In our model, we are using the term unwanted event for anything that can cause
harm to the asset(s) associated to the hazard, regardless if they stem from safety
or security causes. In real life, it is often a combination of different causes that
lead to unwanted events, therefore we want to evaluate them together.

Related to security, an asset is anything that has value to an organization.
The ISO/IEC 27005 standard [1] distinguishes between primary assets, which are
core business processes and their corresponding information, whilst supporting
assets are those required to be in place to support the activities of the primary
assets. Typical examples of (primary) assets in a maritime context are Maritime
Safety Information (MSI), ship certificates, and electronic nautical charts. Asset
is not a concept that is used in traditional safety assessment, but is usually
the first thing to identify when it comes to security assessments. Therefore, we
include a mapping between hazard and which assets will be damaged in case the
unwanted event occurs.

44 K. Bernsmed et al.

A threat is anything that can potentially cause an unwanted event [1]. Within
safety assessments, the term cause is very often used directly for the same mean-
ing. A barrier is a mechanism that aims to interrupt causes of unwanted events,
or that it is possible to recover from the unwanted event without severe conse-
quences. In a security context, the term barrier corresponds to the term control,
which is a means of managing risk, including policies, procedures, guidelines,
practices or organizational structures, which can be of administrative, technical,
management, or legal nature [1]. These can be preventive controls used to avoid,
detect or mitigate threats, or reactive controls, which are intended to limit the
damage caused by an incident. Note that in a security context, the word safe-
guard, mitigations, or countermeasure, are sometimes used as a synonym for
control. An escalation factor is anything that may cause a safety barrier to fail.
There is no one-to-one mapping between this concept and security terminology,
however, to succeed with a threat, a threat actor will need to exploit one or more
vulnerabilities, which often is only feasible at a certain point of time (window of
opportunity).

In our model, we use threats to explicitly represent malicious activities, while
causes are related to traditional safety accidents. We continue to use both barrier
and security control for both sides of the bow-tie, though they may have the
same implementation (e.g. through redundancy). Note that there can be chains
of both barriers or security controls (the latter is illustrated in Fig. 1). Such
chains follow the principle of defence in depth - if the first barrier fails or control
is circumvented, there is another one still operating.

We also introduce a set of color coded indicators for each threat branch on
the left side, and for each consequence branch on the right side of the diagram.
These indicators are meant to help visualize the likelihood of an unwanted event,
and the severity of a consequence in similar manner that is used for risk matrices.
This allows us to adopt the RMA framework as described in Sect. 2 as apart of
the notation, and make use of the color indicators that the industry community
is already familiar with. For a threat branch, we associate indicators related to
threat actors, window of opportunity, vulnerabilities and security controls. For
instance, the threat actors indicator informs whether or not it is likely that there
exists groups or individuals who have the competence, resources and motivation
necessary to perform an attack and instantiate the threat. Similarly, we indicate
the likely existence of the other indicators. For a consequence branch, the indica-
tors represent the severity of the impact related to individuals, the environment,
the reputation of a company and commercial (monetary) loss.

In the next section, we focus on how to identify what color should be used
for each indicator, and how to quantify the overall risk of a bow-tie diagram for
an unwanted event.

5 Risk Assessment

As illustrated in Fig. 1, the risk of an unwanted event will be a combination of the
likelihood and the impact of the unwanted event. Our contribution in this paper
focuses on a subset of all potential unwanted events, which are those caused by

Visualizing Cyber Security Risks with Bow-Tie Diagrams 45

hostile cyber attacks. In our model, an unwanted event U will be a function of one
or more threats. Each unwanted event will lead to one or more consequences C,
where each identified consequence is associated with a corresponding impact (i.e.
severity, or loss,) value L. The risk R associated with a certain unwanted event
U , which we denote R(U), will then be approximated as the probability that the
unwanted event occurs, i.e. p (U), multiplied with the worst-case consequence
impact value that has been identified, which we denote LC , and the likelihood
that this consequence occurs, i.e. p (C). The formal expression for this is

R(U) ≈ p (U) × LC × p (C) (1)

To quantify the risk of an unwanted event, we hence need to assess (1) the
probability of the unwanted event (as a function of one or more identified threats)
and (2) the impact value and probability of the worst-case consequence of the
unwanted event.

5.1 Assessing the Left Side of the Bow-Tie (Cause)

Assessing the probability of a cyber attack is a notoriously difficult problem.
In our model, we assume that all the threats are mutually independent. This
means that all the identified cyber attacks will be executed independently of
each other and that any of them can manifest itself and cause the unwanted
event during the time for which the system, or service, is being assessed. Under
this assumption, the probability of the unwanted event U can be computed as

p (U) = p (at least one Ti occurs) = 1 −
n∏

i=1

(1 − p (Ti)) (2)

where p(Ti), i = 1 . . . n, is the probability of threat Ti. The problem will hence
be reduced to assessing the probabilities, or likelihoods, of the individual threats
that have been identified.

Compared to more simplistic probability models, in which the threats are
modelled as mutually exclusive (i.e. p (U) will be computed as a sum of the
individual threats), the proposed Eq. 2 is much more realistic, since it allows
more threats to manifest within the same time interval, which corresponds more
closely to the real world. By using Eq. 2, we can also model cases in which
multiple attackers work simultaneously to exploit different vulnerabilities, and
cases where one attacker exploits all the vulnerabilities he can find. However,
the assumption that all the threats are independent may not always be true.
In particular, it is questionable whether one can model scenarios in which an
attacker is aware of all the potential threats that can be carried out, since this
may affect the probabilities of the individual threats, hence violating the inde-
pendence assumption. Another issue may be that, for some unwanted events,
once the unwanted event has happened, it will be less likely to happen again due
to increased awareness. This is a common situation in an security context, where
threats are manifesting themselves through the actions of human beings rather
than through random failures, and the malicious actors will lose their element
of surprise.

46 K. Bernsmed et al.

Another characteristic of Eq. 2 is that the more threats one identifies, the
higher the probability of the unwanted event. A side effect of using this model
could therefore be that a more thorough risk assessor, who manages to identify
more threats, will also end up with a higher probability of the unwanted event.
However, the influence of the number of identified threats will be negligible, as
long as both the threat probabilities and the number of identified threats are
sufficiently small (which is the case in most real-life scenarios).

In our opinion, in spite of the aforementioned issues, this is the simplest and
most straightforward alternative we have for computing the probability of an
unwanted event p (U) as a function of the identified threats. This same model is
frequently used in system reliability analysis, in which a system analysis models
the system as a set of components, assesses the individual failure rates of the
components and evaluates the effect of the total system reliability. In our case,
we model malicious threats rather than random failures, however, the underlying
line of thought is similar; we are considering multiple sources of error that can
cause the system, or service, to fail, regardless of cause. Note that, when using
this approach, care must be taken to ensure that all the identified threats are
independent and, as explained above, the risk assessor must understand the
characteristics of the underlying mathematical model.

Assessing the Threat Actors, Window of Opportunity, Vulnerabilities
and Security Countermeasures. We move on to describe how factors, such as
the actors who pose the threat, the needed window of opportunity for the threat
to be successful and any vulnerabilities and security countermeasures present in
the system can be assessed and visualized. As explained in Sect. 4, we use color
coded indicators to represent these factors in the graphical model.

Threat Actors. Threat actors are the attackers who will represent a security risk
against the system that is being assessed. Threat actors can be classified in terms
of characteristics, such as skill, capabilities, resources, intent and access [9]. The
risk assessor can estimate the threat actors by using the values of Table 1.

Window of Opportunity. The “window of opportunity” depends on how
often/long the threat actor theoretically could gain access to the target (sys-
tem or data) and how often/long the target of interest is within reach of the
attacker. The risk assessor can estimate the window of opportunity by using
Table 2.

Vulnerabilities. No system is perfect, nor are the security measures that are put
in place to prevent the threat from manifesting itself. Vulnerabilities can range
from simple programming errors to large design flaws of software, hardware and
processes. The presence of vulnerabilities increases the likelihood of a threat
manifesting. The risk assessor can estimate the existence of vulnerabilities by
using Table 3.

Visualizing Cyber Security Risks with Bow-Tie Diagrams 47

Table 1. Color coding for representing the threat actors

Threat actors
Dangerousness Description Color

coding
Severe There are threat actors highly capable of pursuing this

threat
High There are threat actors capable of pursuing this threat
Moderate There are threat actors somewhat capable of pursuing

this threat
Low There are threat actors interested in pursuing this threat,

but their capability is limited
None There are threat actors interested in pursuing this threat,

but they are not capable of acting on this interest

Table 2. Color coding for representing the window of opportunity

Window of opportunity
Window Description Color

coding
Always This threat is always possible.
Frequent This threat is frequently possible (there will be an op-

portunity about once every week).
Rare This threat is rarely possible (there will be an opportu-

nity about once every year).
Extremely rare This threat is extremely rarely possible (there will be an

opportunity about once every 10th year).
Never This threat is never possible.

Table 3. Color coding for representing the presence of vulnerabilities

Vulnerabilities
Vulnerability Description Color

coding
Known easy One or more known vulnerabilities exist, which are easy

to exploit.
Known-difficult One or more known vulnerabilities exist, but they are

either not publicly known, or they are difficult to exploit.
Unknown No known vulnerabilities exist, however, vulnerabilities

are expected to appear in the near future.
Very unlikely It is very unlikely that the system has, or will have, any

vulnerabilities in the near future.
Formally proven
absence

Formal methods, or the like, have been applied to demon-
strate that no vulnerabilities exist. It is extremely unlike
that vulnerabilities will appear in the near future.

48 K. Bernsmed et al.

Security Controls. Finally, the risk assessor will need to input information about
the existence of security control and assess their effectiveness (Table 4).

Assessing the Threats. For each threat Ti and preventive security controls
Ctrl1 . . . Ctrlm, the risk assessor choose values for Threat Actors, Window of
Opportunity, Vulnerabilities and Security Controls according to Tables 1, 2, 3
and 4. This is visualized as extended traffic lights as shown in Fig. 2. In addition
to the traffic lights, the relevant controls for each threat are shown as separate
boxes to give an overview of which threats are mitigated by which controls.

The visualization in Fig. 2 serves as domain specific assistance to the risk
assessor when assessing p(Ti), i = 1 . . . n, i.e. the probability of each of the iden-
tified threats. We do not dictate exactly how this estimation should be done in
practice, as there are different ways of doing threat prediction, and any model
depends a lot on the available information used as input. When working with
maritime threat scenarios, we have been using averages from generic threat intel-
ligence data, and then adjusted these based on the case specific domain data
using expert opinions.

5.2 Assessing the Right Side of the Bow-Tie (Consequence)

The consequence of an evaluated risk can manifest itself in many ways. FSA nor-
mally only consider individual risk and societal risk which represents the main
scope of the Maritime Safety Committee in IMO where the FSA was developed.
We have found it useful to also include other aspects, such as the environmental
(pollution), commercial (monetary losses) and reputational (loss of confidence
by e.g. customers, business partners, bank, insurance, regulatory bodies) dam-
age caused by each identified unwanted event in our model. As an example of

Table 4. Color coding for representing the effectiveness of security controls

Security controls
Control Description Color

coding
Known to be inef-
fective

No security countermeasure exists, or, one or more se-
curity countermeasures exists but they are known to be
ineffective.

Probably not ef-
fective

One or more security countermeasures exists but they
can be circumvented.

Effective One or more security countermeasures exists, which are
believed to be effective.

Very effective One or more security countermeasures exists, which are
very effective.

Formally proven
effective

Formal methods, or the like, have been applied to demon-
strate that existing security mechanisms are sufficient
and work as intended.

Visualizing Cyber Security Risks with Bow-Tie Diagrams 49

Fig. 2. The relation between an unwanted event, threats, threat actors, window of
opportunity, vulnerabilities and (preventive) security controls

reputational damage, the Paris MoU2 publishes a black list for all ships depend-
ing on results from Port State Controls. Once your ship is on this list, you are
much more eligible for inspections and your operation may suffer.

Table 5. Consequence type and severity level

Consequences
Level Individual Environment Reputation Commercial Color

coding
Cata-
strophic

Multiple
deaths

Uncontained release
with potential for very
large environmental
impact

International coverage,
unrecoverable damage

$ 50 000 k

Critical One death Uncontained release
with potential for major
environmental impact

National and some in-
ternational coverage, im-
pact lasting more than a
year

$ 5 000 k

Moderate Multiple
severe
injuries

Uncontained release
with potential for mod-
erate environmental
impact

National media cover-
age, impact lasting more
than 3 months

$ 500 k

Negligible One minor
injury

On site release contained
without external assis-
tance

Local complaint/ recog-
nition, impact less than
one month

$ 5 k

None No in-
juries

No effect No damage $ 1 k or less

The risk assessor can estimate the consequence of each identified unwanted
event using Table 5. One obvious problem with comparing these different out-
comes is to compare consequences for life and health with purely economic
or environmental damages. However, it is possible to compare the economic

2 https://www.parismou.org/.

https://www.parismou.org/

50 K. Bernsmed et al.

consequences of a lost life or health damage to other more direct economic con-
sequences of a cyber attack. Our approach is to follow this (semi-) quantitative
assessment, and leave a more qualitative societal risk acceptance analysis to later
stages.

Individual consequence represents the direct danger to life or health of per-
sons on board the ship, on other ships or on shore. It does not include secondary
effects due to, e.g. pollution or other factors. As noted above, it is not trivial
to assess the value of life and health in purely economic terms. The problem is,
for instance, complicated by the different economic values assigned to lives in
different parts of the world [51]. For example, this value was estimated to be
at USD 0.8 million in South Korea in the year 2000, and at USD 9.7 million
in Japan the same year. In our model, we will use the mean value of USD 5
million for one life as baseline. This represents the mean value from [51], but not
weighted according to population in the different areas.

We follow the defined severity levels for economical loss as shown in Table 5.
This maps critical to the above value corresponding to loss of one life and adjusts
other levels accordingly.

The inclusion of reputational and economical loss in the risk assessment has
been a matter of some discussion. Our rationale for doing this and not only focus-
ing on individual and environmental risks, is that in many cases the motivation
for and the consequences of a successful cyber-attack is likely to be much higher
in the commercial domain than in the general safety domains. This assump-
tion is strengthened by todays ship bridge operational regime where all received
information must be checked against other sources of information, including
making visual assessment of the ships situation. Thus, including commercial
consequences will likely lead to more risks being assessed as not acceptable and
by that lead to a higher overall safety level.

6 Use Case Example: Navigational Information Update

In this section, we demonstrate the use of our proposed methodology to rep-
resent unwanted events in a bow-tie diagram and to assess the corresponding
risk. The context is cyber security threats in the maritime communication case
study introduced in Sect. 3. The use case we investigate is called Navigational
Information Update. The objective here is to illustrate the visualization, and not
to present the complete description.

Ships are required to keep critical electronic databases up to date. Such
databases include electronic charts and lists of navigation signals. Updating can
be done by requesting updates as the voyage progresses and getting data from
the chart provider. In the near future, this will be implemented over an Internet
based service via satellite or other high capacity carriers. Failing to get the right
data can cause safety hazards as well as a danger of detention by the Port
State Control in the next port. In addition, some of this information is provided
by commercial companies that need to protect the supplied information from
copying to non-paying ships.

Visualizing Cyber Security Risks with Bow-Tie Diagrams 51

In this example, we address electronic ship navigation as a potential hazard
and we want to assess the risk of the unwanted event “Ship receives incorrect
updates”. The affected asset is the navigation data that is being transferred.
Figures 3 and 4 illustrate the identified threats, security controls and potential
consequences that we have identified in our analysis.

Fig. 3. The left hand threat side with preventive controls for the unwanted event “Ship
receives incorrect updates”

Fig. 4. The right hand consequence side with reactive controls for the unwanted event
“Ship receives incorrect updates”

To compute the risk, we need to assess the probabilities of all the identified
threats, as well as the impact value and probability of the worst-case consequence
identified for this unwanted event. The assessment of a risk assessor, who has
considered the threat actors, window of opportunity, vulnerabilities and security
controls, is used as a source for this threat prediction. If we for instance set
probability of threat T1 = 0.45 and probability of threat T2 = 0.23, and then
apply Eq. 2, we can compute the probability of the unwanted event:

p (U) = 1 − (1 − p (T1)) × (1 − p (T2)) = 1 − (1 − 0.45) × (1 − 0.23) ≈ 0.57 (3)

Furthermore, let’s assume the consequence C1 = 0.3, p (C1) = 0.5, C2 = 0.7
and that p (C2) = 0.2. By applying Eq. 1, we find that the risk of the unwanted
event to be:

R(U) ≈ 0.57 × 0.7 × 0.2 ≈ 0.08 (4)

52 K. Bernsmed et al.

This number does not mean much by itself, but can be used as a relative number
when comparing with other unwanted events, and to justify the addition of
barriers/controls.

As illustrated by this simple example, the bow-tie diagram provides an illus-
trative overview over the identified threats, security controls and potential con-
sequences of the unwanted event.

7 Discussion

To make useful cyber security visualizations with bow-tie diagrams, we needed
to identify which security concepts to include and what kind of quantified input
data would be meaningful as input to the diagrams. In our case, we have done
this in separate processes, one for each side of the diagrams. For the left side
(potential causes and threats, including likelihood), security and domain experts
participated in a workshop setting (n = 10), while the right side (consequences
and their severity) was evaluated by representatives from maritime industry and
coastal authorities through an online survey (n = 18). Both groups were working
with the same set of seventeen service scenarios for maritime communication, and
twenty use cases that overlapped between the services. Note that none of these
groups worked directly with bow-ties as a graphical notation, but were focused
on types of threats, consequences and estimating values based on their experience
and expert opinion. Based on these results, which are documented in [36], we
have developed the methodology for visualizing concepts and quantified values
for cyber security with the bow-tie notation, addressing research question 1 from
Sect. 1. This has then been applied to a sample of the use cases from the service
scenarios, as shown in Sect. 6, to demonstrate the utility of our approach. We
consider this to be a first step of evaluation, where we have shown that the main
security concepts can be contained and visualized. We have also tried to address
research question 2 by adding color coded indicators to the diagrams, which
are there to justify the likelihood and impact of an unwanted event. However,
further work is needed to do in-depth evaluation on how this is perceived and
found useful by other analysts, stakeholders from the maritime domain, as well
as stakeholders from other safety domains.

Some general observations we have made when working with bow-tie mod-
elling is that they are very suitable to show the broadness and distribution of
different causes and consequences for unwanted events, along with protective and
reactive barriers. However, this approach also has its limitations. For instance, a
bow-tie diagram will struggle to represent the depth and details of how attacks
can be performed. Furthermore, a single cause or threat can lead to different
unwanted events, therefore, there can easily be repetition/redundancy between
a collection of bow-ties addressing different hazards. We therefore recommend
that the diagrams are complemented with more established methods for threat
modelling, and that these are reused and referred to from nodes within the
bow-ties. This can for instance be fault-trees for safety, or generic attack trees
or misuse cases for security, that Meland et al. [33] have already showed can

Visualizing Cyber Security Risks with Bow-Tie Diagrams 53

be shared and reused between different projects, organizations or domains with
benefit. A prerequisite to realize this would be modelling tool support beyond
simple drawing tools, as well as collaboration and willingness to share knowledge
between risk analyst addressing both safety and security.

To capture more security related information within a bow-tie, it is also
possible to add specific nodes in the model for concepts such as threat actors
and vulnerabilities. We believe that this would lead to an unnecessary complexity
of the diagram, and it would lose some of its advantage as an easy to grasp
graphical representation. The number and types of nodes would increase, and
there would in many cases be many-to-many relationships between threat actors,
threats, vulnerabilities, and security controls. Therefore, we rather use the more
simplified notation of indicators related threat and consequence branches, that
sums up for instance whether it is likely there are many relevant threat actors.

8 Conclusion

Safety assessments with bow-tie diagrams give a good pictorial understanding
of major risks and how they are controlled. This is a technique that many of
the high-risk industries are already familiar with, such as oil and gas, mining,
aviation, maritime and public health services [37]. Due to the increasing con-
nectivity of cyber physical systems, these are the same industries that are now
becoming more and more exposed to cyber attacks. To avoid conflicting goals
and requirements between safety and security, we believe that adding security to
the bow-tie notation is more accommodating than inducing yet another special-
ized, separate modelling technique that tries to capture all aspects of safety and
security. Bow-tie diagrams are meant to be easy to understand, and by combin-
ing a minimal set of security concepts along with associated indicators, we can
show both safety and security considerations without overflowing the diagrams.

Acknowledgments. The research leading to these results has been performed as a
part of the Cyber Security in Merchant Shipping (CySiMS) project, which received
funding from the Research Council of Norway under Grant No. 256508, and the
SafeCOP-project, which received funding from the ECSEL Joint Undertaking under
Grant No. 692529. We appreciate all the feedback and comments from Professor
Guttorm Sindre at NTNU and anonymous reviewers that helped us improve this paper.

References

1. ISO/IEC 27005 Information technology - Security techniques - Information security
risk management. Technical rep. (2008). http://www.iso.org/iso/catalogue detail?
csnumber=56742

2. Digitale Sarbarheter Maritim Sektor: Technical rep. (2015). https://www.
regjeringen.no/contentassets/fe88e9ea8a354bd1b63bc0022469f644/no/sved/7.pdf

3. Andrews, J.D., Moss, T.R.: Reliability and Risk Assessment. Wiley-Blackwell,
Hoboken (2002)

http://www.iso.org/iso/catalogue_detail?csnumber=56742
http://www.iso.org/iso/catalogue_detail?csnumber=56742
https://www.regjeringen.no/contentassets/fe88e9ea8a354bd1b63bc0022469f644/no/sved/7.pdf
https://www.regjeringen.no/contentassets/fe88e9ea8a354bd1b63bc0022469f644/no/sved/7.pdf

54 K. Bernsmed et al.

4. Banerjee, A., Venkatasubramanian, K.K., Mukherjee, T., Gupta, S.K.S.: Ensuring
safety, security, and sustainability of mission-critical cyber-physical systems. Proc.
IEEE 100(1), 283–299 (2012)

5. Bau, J., Mitchell, J.C.: Security modeling and analysis. IEEE Secur. Priv. 9(3),
18–25 (2011)

6. Bhatti, J., Humphreys, T.: Hostile control of ships via false GPS signals: demon-
stration and detection. Navigation 64(1), 51–66 (2016)

7. Bieber, P., Brunel, J.: From safety models to security models: preliminary lessons
learnt. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F. (eds.) SAFECOMP 2014.
LNCS, vol. 8696, pp. 269–281. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10557-4 30

8. Byers, D., Ardi, S., Shahmehri, N., Duma, C.: Modeling software vulnerabilities
with vulnerability cause graphs. In: Proceedings of the International Conference
on Software Maintenance (ICSM 2006), pp. 411–422 (2006)

9. Casey, T.: Threat agent library helps identify information security risks (2007).
https://communities.intel.com/docs/DOC-1151

10. CGE Risk Management Solutions: Using bowties for it security (2017). https://
www.cgerisk.com/knowledge-base/risk-assessment/using-bowties-for-it-security

11. Chevreau, F.R., Wybo, J.L., Cauchois, D.: Organizing learning processes on risks
by using the bow-tie representation. J. Hazard. Mater. 130(3), 276–283 (2006)

12. Chockalingam, S., Hadziosmanovic, D., Pieters, W., Teixeira, A., van Gelder, P.:
Integrated safety and security risk assessment methods: a survey of key character-
istics and applications. arXiv preprint arXiv:1707.02140 (2017)

13. Cimpean, D., Meire, J., Bouckaert, V., Vande Casteele, S., Pelle, A., Hellebooge,
L.: Analysis of cyber security aspects in the maritime sector. ENISA, 19 Decem-
ber (2011). https://www.enisa.europa.eu/publications/cyber-security-aspects-in-
the-maritime-sector-1

14. Cockshott, J.: Probability bow-ties: a transparent risk management tool. Process
Saf. Environ. Prot. 83(4), 307–316 (2005)

15. De Dianous, V., Fiévez, C.: Aramis project: a more explicit demonstration of risk
control through the use of bow-tie diagrams and the evaluation of safety barrier
performance. J. Hazard. Mater. 130(3), 220–233 (2006)

16. DNV-GL AS: Recommended practice. Cyber security resilience management for
ships and mobile offshore units in operation (2016). DNVGL-RP-0496

17. Ferdous, R., Khan, F., Sadiq, R., Amyotte, P., Veitch, B.: Analyzing system safety
and risks under uncertainty using a bow-tie diagram: an innovative approach. Pro-
cess Saf. Environ. Prot. 91(1), 1–18 (2013)

18. Garvey, P.R., Lansdowne, Z.F.: Risk matrix: an approach for identifying, assessing,
and ranking program risks. Air Force J. Logistics 22(1), 18–21 (1998)

19. Goldkuhl, G.: Pragmatism vs interpretivism in qualitative information systems
research. Eur. J. Inf. Syst. 21(2), 135–146 (2012)

20. Hall, P., Heath, C., Coles-Kemp, L.: Critical visualization: a case for rethinking
how we visualize risk and security. J. Cybersecurity 1(1), 93–108 (2015)

21. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information
systems research. MIS Q. 28(1), 75–105 (2004). http://dl.acm.org/citation.cfm?
id=2017212.2017217

22. Paul, H.: Security: Bow Tie for Cyber Security (0x01): Ho... — PI
Square (2016). https://pisquare.osisoft.com/groups/security/blog/2016/08/02/
bow-tie-for-cyber-security-0x01-how-to-tie-a-cyber-bow-tie

23. IMO: Revised guidelines for Formal Safety Assessment (FSA) for use in the IMO
rule-making process (2013)

https://doi.org/10.1007/978-3-319-10557-4_30
https://doi.org/10.1007/978-3-319-10557-4_30
https://communities.intel.com/docs/DOC-1151
https://www.cgerisk.com/knowledge-base/risk-assessment/using-bowties-for-it-security
https://www.cgerisk.com/knowledge-base/risk-assessment/using-bowties-for-it-security
http://arxiv.org/abs/1707.02140
https://www.enisa.europa.eu/publications/cyber-security-aspects-in-the-maritime-sector-1
https://www.enisa.europa.eu/publications/cyber-security-aspects-in-the-maritime-sector-1
http://dl.acm.org/citation.cfm?id=2017212.2017217
http://dl.acm.org/citation.cfm?id=2017212.2017217
https://pisquare.osisoft.com/groups/security/blog/2016/08/02/bow-tie-for-cyber-security-0x01-how-to-tie-a-cyber-bow-tie
https://pisquare.osisoft.com/groups/security/blog/2016/08/02/bow-tie-for-cyber-security-0x01-how-to-tie-a-cyber-bow-tie

Visualizing Cyber Security Risks with Bow-Tie Diagrams 55

24. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45800-X 32

25. Khakzad, N., Khan, F., Amyotte, P.: Dynamic risk analysis using bow-tie approach.
Reliab. Eng. Syst. Saf. 104, 36–44 (2012)

26. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19751-2 6

27. Kriaa, S., Pietre-Cambacedes, L., Bouissou, M., Halgand, Y.: A survey of
approaches combining safety and security for industrial control systems. Reliab.
Eng. Syst. Saf. 139, 156–178 (2015)

28. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: 2017 IEEE 18th International Symposium on High Assurance Sys-
tems Engineering (HASE), pp. 25–32. IEEE (2017)

29. Lee, W.S., Grosh, D.L., Tillman, F.A., Lie, C.H.: Fault tree analysis, methods, and
applications; a review. IEEE Trans. Reliab. 34(3), 194–203 (1985)

30. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS
Approach. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12323-
8

31. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

32. Meland, P.H., Gjære, E.A.: Representing threats in BPMN 2.0. In: 2012 Seventh
International Conference on Availability, Reliability and Security (ARES), pp. 542–
550. IEEE (2012)

33. Meland, P.H., Tøndel, I.A., Jensen, J.: Idea: reusability of threat models – two
approaches with an experimental evaluation. In: Massacci, F., Wallach, D., Zan-
none, N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 114–122. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11747-3 9

34. Michel, C.D., Thomas, P.F., Tucci, A.E.: Cyber Risks in the Marine Transportation
System. The U.S. Coast Guard Approach

35. Mohr, R.: Evaluating cyber risk in engineering environments: a proposed
framework and methodology. SANS Institute (2016). https://www.sans.org/
reading-room/whitepapers/ICS/evaluating-cyber-risk-engineering-environments-
proposed-framework-methodology-37017

36. Nesheim, D., Rødseth, Ø., Bernsmed, K., Frøystad, C., Meland, P.: Risk model
and analysis. Technical rep., CySIMS (2017)

37. NevilleClarke: Taking-off with BowTie (2013). http://www.nevilleclarke.com/
indonesia/articles/topic/52/title/

38. Ni, H., Chen, A., Chen, N.: Some extensions on risk matrix approach. Saf. Sci.
48(10), 1269–1278 (2010)

39. Nielsen, D.S.: The cause/consequence diagram method as a basis for quantitative
accident analysis. Technical rep., Danish Atomic Energy Commission (1971)

40. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis.
In: Proceedings of the 1998 Workshop on New Security Paradigms, pp. 71–79.
ACM (1998)

41. Piètre-Cambacédès, L., Bouissou, M.: Cross-fertilization between safety and secu-
rity engineering. Reliab. Eng. Syst. Saf. 110, 110–126 (2013)

https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-12323-8
https://doi.org/10.1007/978-3-642-12323-8
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/978-3-642-11747-3_9
https://www.sans.org/reading-room/whitepapers/ICS/evaluating-cyber-risk-engineering-environments-proposed-framework-methodology-37017
https://www.sans.org/reading-room/whitepapers/ICS/evaluating-cyber-risk-engineering-environments-proposed-framework-methodology-37017
https://www.sans.org/reading-room/whitepapers/ICS/evaluating-cyber-risk-engineering-environments-proposed-framework-methodology-37017
http://www.nevilleclarke.com/indonesia/articles/topic/52/title/
http://www.nevilleclarke.com/indonesia/articles/topic/52/title/

56 K. Bernsmed et al.

42. Raspotnig, C., Karpati, P., Katta, V.: A combined process for elicitation and anal-
ysis of safety and security requirements. In: Bider, I., Halpin, T., Krogstie, J., Nur-
can, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) BPMDS/EMMSAD
-2012. LNBIP, vol. 113, pp. 347–361. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31072-0 24

43. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

44. Santamarta, R.: A wake-up call for satcom security. Technical White Paper (2014)
45. Schneier, B.: Attack trees. Dr. Dobbs J. 24(12), 21–29 (1999)
46. Sha, L., Gopalakrishnan, S., Liu, X., Wang, Q.: Cyber-physical systems: a new

frontier. In: IEEE International Conference on Sensor Networks, Ubiquitous and
Trustworthy Computing, SUTC 2008, pp. 1–9. IEEE (2008)

47. Shostack, A.: Threat Modeling: Designing for Security. Wiley (2014)
48. Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1996)
49. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases.

Requirements Eng. 10(1), 34–44 (2005)
50. Sun, M., Mohan, S., Sha, L., Gunter, C.: Addressing safety and security contra-

dictions in cyber-physical systems. In: Proceedings of the 1st Workshop on Future
Directions in Cyber-Physical Systems Security (CPSSW 2009) (2009)

51. Viscusi, W.K., Aldy, J.E.: The value of a statistical life: a critical review of market
estimates throughout the world. J. Risk Uncertainty 27(1), 5–76 (2003)

52. Winther, R., Johnsen, O.-A., Gran, B.A.: Security assessments of safety critical
systems using HAZOPs. In: Voges, U. (ed.) SAFECOMP 2001. LNCS, vol. 2187,
pp. 14–24. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45416-0 2

53. Zalewski, J., Drager, S., McKeever, W., Kornecki, A.J.: Towards experimental
assessment of security threats in protecting the critical infrastructure. In: Pro-
ceedings of the 7th International Conference on Evaluation of Novel Approaches
to Software Engineering, ENASE 2012, Wroclaw, Poland (2012)

https://doi.org/10.1007/978-3-642-31072-0_24
https://doi.org/10.1007/978-3-642-31072-0_24
https://doi.org/10.1007/3-540-45416-0_2

CSIRA: A Method for Analysing the Risk
of Cybersecurity Incidents

Aitor Couce-Vieira1,3(B), Siv Hilde Houmb2, and David Ŕıos-Insua3

1 Universidad Rey Juan Carlos, Madrid, Spain
am.couce@alumnos.urjc.es, aitor.couce@icmat.es

2 Secure-NOK AS, Stavanger, Norway
sivhoumb@securenok.com

3 Consejo Superior de Investigaciones Cient́ıficas,
Instituto de Ciencias Matemáticas, Madrid, Spain

david.rios@icmat.es

Abstract. Analysing risk is critical for dealing with cybersecurity inci-
dents. However, there is no explicit method for analysing risk during
cybersecurity incidents, since existing methods focus on identifying the
risks that a system might face throughout its life. This paper presents
a method for analysing the risk of cybersecurity incidents based on an
incident risk analysis model, a method for eliciting likelihoods based on
the oddness of events and a method for categorising the potential rami-
fications of cybersecurity incidents.

Keywords: Cybersecurity · Risk analysis · Incident risk analysis
Decision support

1 Introduction

Cybersecurity incidents happen in a context of uncertainty in which incident
responders have to analyse the potential uncertainties around the incident and
the potential consequences in the system and on the assets. The earlier signs of
one of these events are, typically, suspicious anomalies that could also be caused
by legit actions by the system or users. Here, the analysis focuses on identifying
what could have caused the anomalous event, and what events might follow. For
instance, a new connection within a network could be caused by a maintenance
laptop or an unauthorised party accessing the network. Additionally, if a specific
attack or problem has been identified, then the analysis focuses on identifying
the consequences of the threat, how likely they are or how the potential counter-
measures would change the risk. For example, analysing the presence of malware
in an industrial controller would deal with aspects such as whether it is harm-
ful to the controller or the current industrial process, whether it can spread to
other devices or what the consequences of removing the malware or changing
the device are.

c© Springer International Publishing AG 2018
P. Liu et al. (eds.): GraMSec 2017, LNCS 10744, pp. 57–74, 2018.
https://doi.org/10.1007/978-3-319-74860-3_4

58 A. Couce-Vieira et al.

Methods for cybersecurity risk analysis may be classified into three
approaches: upstream, downstream and combined. Upstream methods, such as
attack trees [1], fault trees or probabilistic attack graphs [2], identify the causes
of the main incident. Downstream methods, such as FMECA1 [3] or event trees
[4], identify the consequences of the main incident. Combined methods, such as
bow-ties [5,6] and risk matrices [7], cover both upstream and downstream anal-
ysis. A bow-tie combines an upstream tree for the causing events of the main
incident and a downstream tree for its consequences. Risk matrices assign an
ordinal value to the likelihood and to the severity of a risk, and then derive
an ordinal risk rating from both values. Other relevant combined methods are
CORAS [8] and FAIR [9]. Most of the existing methods, especially upstream and
downstream ones, concentrate on risk description2 [10] rather on risk evaluation.

Risk matrices are the most popular risk analysis method, but its limita-
tions [7] are even more problematic when it comes to analysing incidents. First,
combining the qualitative interpretations of likelihood in a chain of events
would become meaningless, since they do not follow probability axioms. Second,
analysing the impact over assets with them also present problems. On the other
hand, risk matrices are very suggestive on what stakeholders should value as most
frameworks using them provide a supporting table identifying some impact cat-
egories (e.g., people, property, reputation) and the corresponding severity level.
In addition, they are also very suggestive on how should stakeholders evaluate
the risk, since most frameworks provide an already coloured matrix to categorise
risks.

This paper presents a method for analysing the risk of cybersecurity inci-
dents, hereafter called CSIRA. The method combines a general model for inci-
dent risk analysis, a model for categorising the ramifications of cybersecurity
incidents and a minimal method for eliciting likelihoods based on the oddness
of events. These methods are introduced in Sect. 2. Section 3 introduces CSIRA,
supported by an example of its application in Sect. 4. Finally, Sect. 5 briefly
discusses our contributions and future work.

2 Base Models

2.1 GIRA: A General Model for Incident Risk Analysis

Figure 1 depicts a general model for incident risk analysis (GIRA), represented
as an influence diagram. GIRA [11] combines risk information from upstream
and downstream risk descriptions, as well as risk evaluation. As an influence
diagram, GIRA provides a visualisation of the cause-effect relations of the risk,
and the capability of processing quantitative and qualitative elicitations of it
(this last one through a semi-quantitative procedure).

1 Failure mode, effects and criticality analysis.
2 In ISO terminology, risk description is named risk analysis whereas risk analysis is

named risk assessment.

CSIRA: A Method for Analysing the Risk of Cybersecurity Incidents 59

In an influence diagram, ovals represent events with uncertain states (‘what
could happen?’). Double-lined nodes represent events with deterministic/known
states (‘what would happen?’). Rectangles represent a set of alternative actions
that decision-makers can take (‘what we can do?’). Hexagons represent a set
of preferences over the outcomes of a node (‘how we value what could hap-
pen?’). Arcs represent conditional relations between nodes (‘if this happens in
the antecedent, then that happens in the consequent’). Stacked nodes represent
that for certain node types, there could be several of them.

Fig. 1. GIRA depicted as an influence diagram.

The threat exposure node represents the likelihood that a threat is present in,
or targeting, the system that the incident handlers are in charge of protection
(MS, the managed system). Mathematically, it is represented by the probability
distribution p(t). The incident response node represents the alternative actions
that the incident handlers could implement to avoid or mitigate the incident.
The variable representing these actions is r. The incident materialisation node
represents the likelihood that the threat materialises as an incident in the MS,
taking into account the response of incident handlers. This is the first conditional
node, p(m|t, r), which means that the probability of incident materialisation
depends on the threat presence and the response. The consequences in the man-
aged system nodes represent the likelihood that an incident or its response cause
further negative events in the MS. Its distribution is modelled as p(ck|m, r).
There could be multiple nodes of this type, so we define the set of conse-
quence nodes as {ck} = {c1, . . . , cK}, being K the total number of consequences.

60 A. Couce-Vieira et al.

An asset is any element affected by the incident and valuable to the stakeholders.
The impact on asset nodes provide the likelihood that a consequence in the MS
leads to impacts over the assets of the MS or other systems, or over any other
stakeholders’ interests. This node takes into account the current asset status,
which might enable or escalate the impacts of the incident. An asset status is
represented as sz and the set of asset status nodes as {sz} = {s1, . . . , sZ}. An
impact on asset node is represented as p

(
ij |{ck : ∃ ck → ij}, {sz : ∃ sz → ij}

)
,

being {ck : ∃ ck → ij} the set of consequence nodes parenting the j-th impact
node3 and, similarly, {sz : ∃ sz → ij} the asset status nodes parenting the j-
th impact node. The set of impact on asset nodes is {ij} = {i1, . . . , iJ}. The
objective nodes synthesise impacts in a reduced number of objectives to facili-
tate stakeholders understanding and comparing the outcome of the incident. An
objective node is represented as p

(
ob|{ij : ∃ ij → ob}

)
, being {ij : ∃ ij → ob}

impact on assets nodes parenting the b-th objective node. The set of objective
nodes is {ob} = {o1, . . . , oB}.

The combination of all the nodes, from threat exposure to objective nodes,
represents risk description, which is modelled by the following equation:

p
(
{ob}, {ij}, {sz}, {ck}, m, r, t

)
=

= p(o1, . . . , oB , i1, . . . , iJ , s1, . . . , sZ , c1, . . . , cK , m, r, t) =

=

[B∏
b=1

p
(
ob|{ij : ∃ ij → ob}

)] [J∏
j=1

p
(
ij |{ck : ∃ ck → ij}, {sz : ∃ sz → ij}

)]

×
[K∏
k=1

p(ck|m, r)

]
p(m|t, r) p(t). (1)

Finally, the risk evaluation node represents the stakeholders’ evaluation of
the risk scenarios caused by the incident. It can be modelled, following the multi-
attribute utility theory paradigm [12], as u

(
{ob}

)
= u(o1, . . . , oB). The actual

risk evaluation is based on the expected utility when response r is implemented,

ψ(r) =

∫
. . .

∫
u
(
{ob}

)
p
(
{ob}, {ij}, {ck}, m, t

)
dt dm dcK . . . do1. (2)

From this equation, we can obtain the maximum expected utility response, by
calculating r∗ : max ψ(r).

Another aspect to consider is the time frame of the risk analysis. Specifically,
the expiration time (e) of GIRA is the estimated moment of the earliest relevant
change in any of the elements that participate in the incident (e.g., threat, sys-
tem, assets). The expiration time could also be a specific time frame set by the
analyst. The analysts should refer likelihoods to such time frame.

3 More properly, the set of consequence nodes for which there exist an arc (directed
edge as a graph) directed to the impact node ij .

CSIRA: A Method for Analysing the Risk of Cybersecurity Incidents 61

2.2 Eliciting the Likelihood Based on the Oddness of the Event

The quality of risk analysis relies on how well it considers uncertainty [13]. This is
achieved by using suitable and well-processed data, if available, or in the partial
or complete support of expert knowledge [14] or other elicitation methods [15].
However, this information might not be available during the time frame of the
incident, in which the analysts do not have access to data or experts.

Analysing the likelihood of events using a qualitative interpretation could be
arbitrary, but a meaningful yet practical approach is basing this splitting on a
qualitative interpretation of probability ranges: certain for p(e) = 1, possible for
p(e) = (t, 1), rare for p(e) = (0, t) and impossible for p(e) = 0. Any event x that
clearly has a likelihood below the interpretative oddness threshold t is defined
as rare, whereas the events with a likelihood around or above t are defined as
possible. This simple method can be extended with several levels of oddness.
Interpretatively, this means that rare would change to p(e) = (t2, t1) and could
be conceived as rare (oddness 1), and that we could define a new rarer than
rare/rare (oddness 2) event with p(e) = (t3, t2). We can continue this process
until a are (oddness i) event, which might be useful for comparing the likelihoods
of different events, although it would become more and more difficult to interpret
in absolute terms.

Additionally, we can establish a rule for the likelihood of a chains of n events,
based on the accumulated oddness, i.e.,

p(en|en−1| . . . |e1) = (tl−1, tl) : l =
n∑
i

odd(ei),

being odd(ei) the oddness of the event. Certain and possible events have an
oddness of zero. Additionally, any chain with at least one impossible event is
automatically impossible, and any chain with all of its events certain is auto-
matically certain.

Following this rules we have that a chain o possible and certain events is
possible, a chain with a rare event would be rare (one event with oddness 1), a
chain with two rare events would be a rarer than rare event (two events with
oddness (1), a chain with a rarer than rare event would be a rarer than rare
event too (one event with oddness (2). For instance, in industrial cybersecurity,
an analyst could interpret that the event of an attacker manipulating a controller
is rare and that, given such a manipulation, the event of a controlled sabotage
by the attacker is rare. Therefore, this chain of events would be elicited as ‘rarer
than rare event’.

Table 1 summarises these concepts. It also shows the numerical implementa-
tion in a Bayesian network like GIRA, which can take the qualitative likelihood
as a numerical input to populate the probabilities of nodes and, vice versa,
translate the overall probabilities calculated by the network into the qualitative
interpretation again. These values are defined based on practical purposes. First,
a probability range of 2 orders of magnitude, e.g. (1×10−2, 1), allows us to model
dozens of states. The differences among the magnitudes of the various probabil-
ity ranges are established in a way so that a chain with a rare event will always

62 A. Couce-Vieira et al.

Table 1. Table with the probabilistic interpretation of qualitative likelihoods.

Qualitative
likelihood

Probabilistic
interpretation

Numerical input to
GIRA Bayesian
network

Numerical output
from GIRA
Bayesian network

Certain 1 1 1

Possible (t1, 1) (1 × 10−2, 1) (1 × 10−10, 1)

Rare (oddness 1) (t2, t1) (1×10−12, 1×10−10) (1×10−20, 1×10−10)

Rarer than rare
(oddness 2)

(t3, t2) (1×10−22, 1×10−20) (1×10−30, 1×10−20)

.

Impossible 0 0 0

have a lower probability than a chain without it. In the case of GIRA, we have
a chain of 5 nodes and, taking into account that we use probability ranges of 2
orders of magnitude, the difference between probability ranges must be, at least,
10. This way, by multiplying the probabilities of the chain of events, we will get
as output the overall probabilities, with their different orders of magnitude.

2.3 Understanding Potential Ramifications of Cybersecurity
Incidents

Multiple guidelines and taxonomies exist for identifying and categorising cyber-
security risks. We can distinguish two groups. One group at the technical level,
the larger in the literature, deals with the categorisation of cyber attacks and
their effects on digital systems. These guidelines might be useful for identifying
elements related to threats, incidents, and system consequence. The other group
deals with the impact that cybersecurity risks might have on assets, value or
risk objectives. Examples of widely used methods are COBIT [16] or FAIR [9].
However, the majority of the categories for impacts and assets have a perspective
that pivots on a business/organisational interpretation of assets and stakehold-
ers. Although most risk management happens in organisational settings (e.g.,
business or public agencies), a more broad perspective is feasible when thinking
about cybersecurity risk impacts, i.e., asset as something with value for some-
body and stakeholder as somebody that might be affected by the incident.

A thorough categorisation model would require a combination of IT, OT,
cyber-phisical and cyber-psychological risks, an analysis of their impact at
microsocial and macrosocial level and an analysis of what new cyber risks would
emerge in the future (e.g. what risks the pervasive use of virtual reality will
bring and how they could become cybersecurity risks). There is no scientific or
technical literature so comprehensive. However, a simplified model for quick elic-
itation may be established. Figure 2 depicts a graphical model for categorising

CSIRA: A Method for Analysing the Risk of Cybersecurity Incidents 63

the potential ramifications of cybersecurity incidents. In the context of GIRA,
this model might be helpful for identifying the consequences and impacts nodes.

The starting point is the MS, in which the analysed cybersecurity incident
happens. The primordial risks of cybersecurity incidents are those involving the
processing, storage and transmission of digital data. For example, ransomware,
denial of service or man-in-the-middle attacks. These events could happen in
the MS or other digital systems managed by the organisation dealing with the
incident or third parties.

Fig. 2. Categories that classify the ramifications of cybersecurity risks

However, the importance of cyber risks resides, mostly, in the ramifications
to other organisational or physical systems and assets that depend on, or can be
affected by, the compromised digital systems. The most direct ramifications are
the incidents grouped in the broad category of cyber interfaces. Physical opera-
tions refer to the interactions between physical reality and digital systems, such
as input and output devices (e.g., keyboards, screens, printers, mouses, USB
ports) or the actuators and sensors of industrial control systems. Examples of
risks here involve unauthorised cyber-physical actions like the ones executed by
Stuxnet [17] (manipulation of nuclear plant centrifuge speeds) or the malicious
hijacking of laptop cameras. Information systems refer to the actual information
contained in the digital systems (e.g., documents, pictures). An example risk in
this case is the stealing of secret documents. Communication systems refer to
the actual communication facilitated by the digital systems (e.g., chats, video
conferences). Examples of risks here are the interference with a video conference
or even the dissemination of false information through vulnerabilities in social
networks (e.g., Twitter bots). Administrative operations refer to the affairs con-
ducted with the digital systems (e.g., invoicing or buying online). An example
risk in this area is the hijacking of an e-banking account. The virtual experi-
ence refers to the human experience in the reality created by the digital system
(e.g., user experience in an application, human interaction in a social network).
Examples of this type of risk are the exposure of personal information or sensitive
images in social networks.

64 A. Couce-Vieira et al.

The indirect ramifications are categorised in a micro- and a macro-
environment that refer to non-digital and non-cyber consequences. The micro-
environment refers to risks at the particular or organisational level, as well as
risks with organisations and people with a relatively direct relationship (e.g.,
customers and suppliers for a business, family and friends for a person). The
first type of risks are in physical assets (e.g., machinery, personnel) and activ-
ities (e.g., manufacturing and transporting items). An example risk could be
the sabotage by Stuxnet of the facility centrifuges (asset) and the enrichment of
uranium (activity). Intangible assets refer to any characteristic or thing without
physical presence. Example risks are the loss of secrets, reputation, compliance
or money caused by a cyber attack. The psychological aspect refers to how cyber
risks affect the human experience. Examples of these risks are the psychological
problems derived from cyber-bulling or the exposure or personal data to the pub-
lic. The macro-environment refers to the consequences at a social or ecosystem
level. For instance, the political impact on Iran of Stuxnet, or the environmen-
tal and economic impact in the case a cyber attack facilitates an accident with
contaminants or dangerous materials in an industrial facility.

3 CSIRA: Cybersecurity Incident Risk Analysis

Now we introduce the cybersecurity incident risk analysis model (CSIRA), which
aims at providing a paradigm practicable as a quick risk analysis method during
cybersecurity incidents. CSIRA combines GIRA, the oddness method for like-
lihood elicitation, the graphical model for brainstorming cybersecurity incident
ramifications and a simplified method for risk evaluation based on comparing
the outcomes of different incident responses.

First, CSIRA uses GIRA (Sect. 2.1) as the risk analysis model, so that a
high-level but comprehensive method is applied to the cybersecurity incident
assessment. As argued previously, risk matrices oversimplify many risks compo-
nents and other methods are more focused on the technical side (e.g. bow-ties).
It is feasible to combine the use of a more detailed technical model for the cyber
attack (e.g., attack tree) and the consequences (e.g., fault tree) with the use of
GIRA for the impact and objective analysis.

Second, CSIRA uses a simplified interpretation of likelihood (Sect. 2.2), so
that the elicitation is quick but at least implementable numerically. The qual-
itative scale of risk matrices cannot be applied to a chain of events nor be
interpreted easily as a probability range. We also assume that a quantitative or
semi-quantitative elicitation is not feasible in real-time. If so, then it would also
be feasible to directly use GIRA, with quantitative data or expert elicitation.

Third, CSIRA uses a simplified model for eliciting the ramifications of cyber-
security incidents (Sect. 2.3), so that all feasible types of incidents are thought
about. This intends to facilitate brainstorming, based the contextual knowledge
of the user undertaking the analysis. We think that this approach is more feasible
and useful in real time than presenting a general catalogue of impacts.

Fourth, GIRA would need the elicitation of the preferences and risk attitudes
of the stakeholders, following the standard process in influence diagram building.

CSIRA: A Method for Analysing the Risk of Cybersecurity Incidents 65

However, this would require time and support from experts. For CSIRA, we
establish a faster alternative method, desicribed in Sect. 4.4: Once the users
build the risk description part, they could obtain the total likelihoods of the risk
problem. From the decision-making perspective, the only comparison they have
to make is how the responses to the incident, and inaction, affect risk objectives.

CSIRA does not contain any knowledge base or any process to build one. For
that to be useful, it would be necessary with very tailored information adapted to
the specific systems, assets and stakeholders of the organisation. Indeed, rather
than the potential incorporation of cybersecurity knowledge, we would recom-
mend the use of a collection of cybersecurity standards. The most relevant one in
this case is the NIST Cybersecurity Framework [18], which provides (1) the most
comprehensive structuring of the aspects that should be taken into account in
cybersecurity management and (2) specific chapters that deal with these topics
in other relevant collections of standards (e.g., NIST, ISO, COBIT). Nor do we
provide any automatic reasoning mechanism besides the Bayesian calculation of
likelihoods. Although automation would reduce human task load, it would also
take decision-making from the users. Indeed, the intention is the opposite: pro-
viding a risk analysis model that explicitly relies, as much as possible, on human
interpretation and decision-making.

4 An Example Cybersecurity Risk Analysis

This section introduces the steps for using CSIRA, supported by an example.
Our intention is not to undertake a realistic risk analysis but to provide an
example to show CSIRA. First, we cover risk description, which consists in three
steps. The first step, in Sect. 4.1, is risk identification using the graphical model
presented in Sect. 2.3 for identifying cybersecurity incident ramifications. The
second step is risk elicitation (Sect. 4.2), using GIRA as the base risk model
(presented in Sect. 2.1) with the elicitation method presented in Sect. 2.2 to
generate the likelihoods of different events. The final step of the risk description
is risk calculation, using also the mentioned elicitation method. The outcome of
risk description are the relevant risk scenarios for decision-making: the potential
results of the different incident responses regarding their relevant risk objectives.
The risk analysis finalises with the risk evaluation of Sect. 4.4.

The example case is applied to the industrial control systems (ICS) of an
oil and gas drilling rig, as this facility is a paradigmatic case of the physical
and organisational ramifications that a cybersecurity incident could have. The
incident would be the presence of a wiper malware in the system in charge of
drilling the well. This kind of malware is capable of erasing data in the operating
system (OS) boot records or critical files. Interestingly [19] some of the most
notorious wiper cyber attacks, like Shamoon and BlackEnergy, targeted the oil
and gas industry. The human-machine interfaces (HMI) of industrial systems are
typically installed on top of popular OS like Windows. Therefore, a disruption in
the HMI caused by a wiper might affect, to some extent, the industrial operation
that the HMI helps to control. This involves that incident handlers should think
about the ramifications of the incident on industrial operations and assets.

66 A. Couce-Vieira et al.

4.1 Risk Description: Identification

Figure 3 depicts the consequences and impacts of cybersecurity incidents, apply-
ing the method of Sect. 2.3 to our scenario of a wiper in a drilling rig. The
managed system is the drilling ICS. The initial incident is the presence of the
threat, i.e., the presence of the wiper malware in the ICS. The exposure to this
threat could lead to the main incident, which is the execution of the wiper in
the PC hosting the HMI software. The square represents the potential response
of the incident handler. Given that a wiper could be a sophisticated tool, a full
fresh re-installation of the HMI PCs would be a prudent response.

In case the wiper is successfully running in an HMI PC, the next consequence
could be the disruption of the OS of the HMI PC. In addition, the incident
response has also a consequence: a fresh installation of the HMI PCs would
need to put the ICS under maintenance for 24 h. The next step is to identify
the ramifications that the disruption could have beyond the ICS. The first one
is the disruption in the human-machine interface, i.e., the disruption of the
interaction between operator, ICS and industrial operation. This could lead to a

Fig. 3. Graphical representation of potential risks of a wiper in a drilling rig. Rounded
nodes represent uncertain events. Rectangles represent incident handler decisions.
Double-rounded circles represent known states.

CSIRA: A Method for Analysing the Risk of Cybersecurity Incidents 67

disruption of the drilling operations, which in turn might lead to incidents with
equipment, the oil well or personnel. In addition, an incident involving the well
integrity might lead to a spill involving hydrocarbons or other contaminants
into the rig floor or the sea. An additional consequence, very relevant in oil
platforms, is the loss of time, which can be caused by both the disruption in the
drilling operations and the maintenance of the ICS (in the case of re-installing
the HMI OS). However, one important element affects the disruption of the
drilling operations: whether the platform is drilling or performing other activity.

4.2 Risk Description: Elicitation

Figure 4 illustrates the influence diagram of our example, using the likelihood
elicitation of Sect. 2.2, and derived from the risks identified in Sect. 4.1.

The uppermost node is the threat exposure. It represents the uncertainty
about the presence of the wiper. In this case, the analysts considered that the
presence is possible (represented as P in the graph). Its complementary state
(no presence of wiper) is also possible. Additionally, the incident response node
represents the actions that the incident handler can take. In our case, the re-
installation of the HMI OS with a fresh and updated version or the option of
leaving the system as is.

The incident materialisation node represents the main incident: the execu-
tion of the wiper in the HMI PC. It has two uncertain states: whether the wiper
runs in the PC or not. However, these events are conditioned by two factors.
First, whether the wiper presence is a false alarm (threat exposure node). Sec-
ond, whether the incident handlers re-install the HMI PCs. This is reflected in
the likelihood assigned. If the wiper is present and the incident handlers leave
the system as is, then it is possible that the wiper would run in the HMI PC.
Otherwise, the wiper would not run (in the graph, 0 represents impossible and
1 represents certain).

There are two consequence in the managed system nodes. The first one rep-
resents the event of the wiper actually disrupting the OS of the HMI. In case
the wiper is running in the HMI PC, then the likelihood of the HMI disrup-
tion is rare (as established earlier, rare (oddness 1), represented in the graph as
R1) and the likelihood of its opposite is, thus, possible. In case the wiper is not
running, then the certain event is the correct status. The second consequence
node represents the event of putting the system under maintenance caused by
the re-installation of the HMI PCs.

There are several impact on asset nodes. They represent most of the incident
ramifications outside the managed system we identified in the previous section,
except the disruption of drilling operations. The reason is that such disruption
acts as an ‘intermediate‘ risk, i.e., its risks are reflected on other assets, like the
integrity of the different assets, the loss of time or the spill of contaminants. These
nodes are preceded by the asset status node informing whether the platform is
drilling. In addition, the impact nodes should summarise the likelihood of the
chain of events that do not happen in the MS but may lead to those impacts.
This means that given a consequence in the MS and the status of some asset,

68 A. Couce-Vieira et al.

Fig. 4. Influence diagram representing the risk analysis for the wiper incident in a
drilling control system. When it comes to the likelihoods, a sure event is represented
with 1, an impossible event with 0, a possible event with P, a rare event with R, a rarer
than rare event with R2, and so on.

they should reflect the likelihood of the different impact levels attainable. For
instance, in case the impact 5 ‘spill of contaminants’ we have that, given that the
asset status is drilling and that the HMI PC has been disrupted, the likelihood

CSIRA: A Method for Analysing the Risk of Cybersecurity Incidents 69

of a local spill is rare (oddness 4), the likelihood of a site spill is rare (oddness
3) and the likelihood of the no spill event is possible.

It is necessary to analyse the chain of events to determine whether one event
is clearly rarer than other, as in Sect. 2.2. For instance, the event of a fatal
personnel injury is established as clearly rarer than a non-fatal injury and than
a local spill. Then, we establish that the event of a local spill is clearly rarer than
a site spill. Following this procedure, we assign the different oddness to different
events.

A final aspect to take into account is the expiration time of this risk analysis.
Most of the events described have no clear time boundary. However, one of the
nodes of our example stands out as the compass of timely risk response: the
asset status node. First, all of the relevant impacts happen when the platform is
drilling. Second, the incident handlers are able to know whether the platform is
drilling or not and when this status would change. For instance, drilling might be
scheduled for turns lasting several hours in the upcoming weeks. As an example,
the expiration time for the analysis could be 8 h.

4.3 Risk Description: Calculation

Following the procedure for likelihood calculation in Sect. 2.2, we can calculate
the final conditional probabilities of the different nodes of the influence diagram.
Figure 5 displays the calculation for the case in which the incident response ‘leave
the MS as is’ is selected and taking into account that the current asset status is
‘drilling’.

The logic of the influence diagram allows us to disregard infeasible and impos-
sible events. For instance, the stricken out text in grey cells highlights infeasible
events (e.g., in the consequence 2 node, it is infeasible any event that is con-
ditioned by the incident response event of ‘installation’) or impossible events
(once again, in the consequence 2 node, the event of ‘maintenance’ is impossible,
given that the incident response event is ‘leave the system as is’). This kind of
reasoning propagates through the diagram.

Additionally, the oddness method of likelihood propagation allows us to repli-
cate conditional probability. For instance, in the incident materialisation node,
the marginal likelihood of the event ‘wiper not running’, given the events ‘false
alarm’ in the threat exposure node and ‘leave it as is’ in the incident response,
is certain. However, its conditional probability is possible, since its materialisa-
tion is a chain of a possible event (‘false alarm’) and a certain event (‘wiper not
running, given the false alarm and the leaving of the system as is’). This proce-
dure propagates through the diagram. Additionally, when an event can happen
through multiple event chains, then the likelihood of the likeliest one is selected.
For example, in the impact on asset 5, the event ‘no spill event’ is rare if it comes
from the chain with the consequence 1 event ‘disruption’, and it is possible if it
comes from the chain with the consequence 1 event ‘correct status’. Since the
event is, overall, at least possible, this is the likelihood passed to the child event
‘none’ in the objective C node.

70 A. Couce-Vieira et al.

Fig. 5. Influence diagram representing the total conditional likelihoods for the risk
analysis problem. Grey cells with the text stricken out represent infeasible or impossible
events. Likelihoods in bold highlight that the conditional likelihood differs from the
marginal one in Fig. 4.

CSIRA: A Method for Analysing the Risk of Cybersecurity Incidents 71

4.4 Risk Evaluation

From an evaluative point of view risks and, specifically, impacts over value are
incommensurable, i.e., they cannot, or ought not, be objectively evaluated in a
single severity scale [20]. Therefore, a single scale, like the severity level of risk
matrices, leads to a high level of incommensurability. On the other hand, it is
recommendable to limit the number of elements to compare to facilitate decision-
making. Multiple methods exist for evaluating risk, for instance, if the analyst
has time and access to subject-matter experts, it is recommendable to use a
method for preference and risk attitude elicitation, e.g. multi-attribute utility
theory [21]. The rationality axioms make sense for generating a transparent and

Fig. 6. Tables representing the likelihood of different risk objectives when the incident
handlers leave the wiper in the MS (upper table) and when they decide to do a fresh
installation of the affected computers (lower table). Events with an oddness of 3 or
higher contain their specific likelihood with squared brackets.

72 A. Couce-Vieira et al.

logical evaluation of the risk scenarios. Utility functions are flexible enough to
represent multiple types of preference and risk attitudes and they offer strong
analytical and mathematical properties. In addition, it is possible to avoid re-
eliciting preferences as long as there are no changes in preferences.

The outcome of the risk description part is a set of scenarios representing
how risk objectives could be affected by an incident, given the incident response.
As depicted in Fig. 4, we created three objective nodes: monetary, safety and
environment. The monetary node synthesises the cost that an incident in the
assets might cause. On the other hand, the safety and environment nodes are
practically direct translations of their precedent impact on asset nodes, as they
have only one parent node.

As a decision problem, risk analysis is undertaken with the purpose of clar-
ifying what are the best options to counter a risky situation. In our case, this
involves that the main components to be evaluated are the potential responses
of the incident handlers regarding risk objectives.

Tables in Fig. 6 display the relevant information that CSIRA presents to the
stakeholders so that they are able to compare what different events regarding
risk objectives, and their likelihood, might happen if they implement a response.
In this case, the alternatives are either assuming a cost e240,000, caused by
the lost time of maintaining the MS or face the rare event of losing e80,000, or
the rarer than rare events of losing e240,000 or e720,000. If they disregard the
even more rare events (oddness 3 or greater), then it seems a simple comparison
between a certain lost of e240,000 and a loss three times greater but many more
times less likely. However, should the stakeholders take into account the most
rare events, then the comparison would become less clear.

5 Discussion

We have presented CSIRA, a model for building a high-level cybersecurity inci-
dent risk analysis. CSIRA is based on an influence diagram that provides a
more comprehensive risk analysis than risk matrices. Realising the fact that
risk quantification is practically infeasible in real time, we have implemented an
alternative qualitative method that is at least implementable in an influence dia-
gram to follow the basic logic of probability. We have put a special emphasis on
what stakeholders value (impact nodes), how to synthesize these impacts over
value (objective nodes) and how do stakeholders evaluate potential responses
with respect to these risk objectives (risk evaluation). These axiological aspects
require, rather than plain business impact scales, decision analysis modelling, so
that value aspects are better formalised [22].

We present our method as an alternative to risk matrices rather than to more
technical methods like attack or failure trees. Namely for two reasons, matrices
use a single severity scale to merge their different categories of impact, in contrast
to our approach or a more granular identification of impacts and their synthesis
in a reduced number of risk objectives. Additionally, our likelihood elicitation

CSIRA: A Method for Analysing the Risk of Cybersecurity Incidents 73

method is as simple as the risk matrices (and it shares its limitations) but is
designed to follow probability axioms, so that it could be applied to chains of
events.

Upcoming work will focus on the implementation of CSIRA. Provide a more
detailed specification of GIRA and the likelihood elicitation method. The main
aspect is its software implementation. The R environment offers an ideal plat-
form for elaborating a framework for the generation of CSIRA risk analysis case
studies. Alternative, a Python implementation would facilitate the creation of
an small application to undertake a CSIRA analysis. Besides the implementation
of the influence diagram, that requires statistical and graph visualisation pack-
ages, it is also important to define a semantic model of CSIRA that captures
the input from the users. Additionally, the elicitation method presented here
would require a set of functions that transforms the user input (e.g., possible,
oddness-1 rare event) into the marginal probabilities of the Bayesian nodes, and
a set of functions that transforms the calculated probabilities into the ‘oddness’
language again. Future work after the implementation shall focus on test-based
improvements of CSIRA and the construction of guidelines for its use.

Acknowledgements. The authors are grateful to the support of the MINECO
MTM2014-56949-C3-1-R project, the AXA-ICMAT Chair in Adversarial Risk Analysis,
the Regional Forskingsfond Vestlandet project 245291 Cybersecurity Incident Response
Framework, and the COST IS1304 Action on Expert Judgement.

References

1. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
2. Singhal, A., Ximming, O.: Security Risk Analysis of Enterprise Networks Using

Probabilistic Attack Graphs. National Institute of Standards and Technology,
Gaithersburg (2011). https://doi.org/10.6028/nist.ir.7788

3. Department of Defense: MIL-STD-1629A, Procedures for Performing a Failure
Mode, Effect and Criticality Analysis. Department of Defense, Washington DC,
USA (1980)

4. Clemens, P.L., Simmons, R.J.: System Safety and Risk Management: A Guide
for Engineering Educators. National Institute for Occupational Safety and Health,
Cincinnati (1998)

5. International Association of Drilling Contractors: Health, Safety and Environment
Case Guidelines for Mobile Offshore Drilling Units, Issue 3.6. International Asso-
ciation of Drilling Contractors, Houston, TX, USA (2015)

6. International Organisation for Standardization: ISO 17776:2000, Petroleum and
Natural Gas Industries – Offshore Production Installations – Guidelines on Tools
and Techniques for Hazard Identification and Risk Assessment. International
Organisation for Standardization, Geneva, Switzerland (2000)

7. Cox, L.A.: What’s wrong with risk matrices? Risk Anal. 28(2), 497–512 (2008).
https://doi.org/10.1111/j.1539-6924.2008.01030.x

8. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS App-
roach. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-12323-8

9. The Open Group: Risk Taxonomy. The Open Group, Reading, UK (2009)

https://doi.org/10.6028/nist.ir.7788
https://doi.org/10.1111/j.1539-6924.2008.01030.x
https://doi.org/10.1007/978-3-642-12323-8

74 A. Couce-Vieira et al.

10. Cherdantseva, Y., Burnap, P., Blyth, A., Eden, P., Jones, K., Soulsby, H.,
Stoddart, K.: A review of cyber security risk assessment methods for SCADA sys-
tems. Comput. Secur. 56, 1–27 (2016). https://doi.org/10.1016/j.cose.2015.09.009

11. Couce-Vieira, A., Insua, D.R., Houmb, S.H.: GIRA: a general model for incident
risk analysis. J. Risk Res. (2017). Advance online publication https://doi.org/10.
1080/13669877.2017.1372509

12. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives. Cambridge University
Press, Cambridge (1993). https://doi.org/10.1017/CBO9781139174084

13. European Food Safety Authority: Guidance on Uncertainty in EFSA Scientific
Assessment. European Food Safety Authority, Parma, Italy (2016)

14. European Food Safety Authority: Guidance on Expert Knowledge Elicitation in
Food and Feed Safety Risk Assessment. European Food Safety Authority, Parma,
Italy (2014). https://doi.org/10.2903/j.efsa.2014.3734

15. Renooij, S.: Probability elicitation for belief networks: issues to consider. Knowl.
Eng. Rev. 16(3), 255–269 (2001). https://doi.org/10.1017/s0269888901000145

16. ISACA: COBIT 5: A Business Framework for the Governance and Management of
Enterprise IT. ISACA, Rolling Meadows, IL, USA (2012)

17. Langner, R.: Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3),
49–51 (2011). https://doi.org/10.1109/msp.2011.67

18. National Institute of Standards and Technology. Framework for Improving Critical
Infrastructure Cybersecurity (2014)

19. Industrial Control Systems Cyber Emergency Response Team. Destructive Mal-
ware. National Cybersecurity and Communications Integration Center (US) (2014)

20. Espinoza, N.: Incommensurability: the failure to compare risks. In: The Ethics of
Technological Risk, pp. 128–143. Earthscan, London (UK) (2009)

21. Reichert, P., Langhans, S.D., Lienert, J., Schuwirth, N.: The conceptual founda-
tion of environmental decision support. J. Environ. Manage. 154, 316–332 (2015).
https://doi.org/10.1016/j.jenvman.2015.01.053

22. Gregory, R., Failing, L., Harstone, M., Long, G., McDaniels, T., Ohlson, D.: Struc-
tured Decision Making: A Practical Guide to Environmental Management Choices.
Wiley, Hoboken (2012)

https://doi.org/10.1016/j.cose.2015.09.009
https://doi.org/10.1080/13669877.2017.1372509
https://doi.org/10.1080/13669877.2017.1372509
https://doi.org/10.1017/CBO9781139174084
https://doi.org/10.2903/j.efsa.2014.3734
https://doi.org/10.1017/s0269888901000145
https://doi.org/10.1109/msp.2011.67
https://doi.org/10.1016/j.jenvman.2015.01.053

Quantitative Evaluation of Attack Defense
Trees Using Stochastic Timed Automata

René Rydhof Hansen1, Peter Gjøl Jensen1, Kim Guldstrand Larsen1,
Axel Legay2, and Danny Bøgsted Poulsen3(B)

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
2 INRIA - Rennes, Rennes, France

3 Christian Albrechts Universität, Kiel, Germany
dbp@informatik.uni-kiel.de

Abstract. Security analysis is without doubt one of the most important
issues in a society relying heavily on computer infrastructure. Unfortu-
nately security analysis is also very difficult due to the complexity of
systems. This is bad enough when dealing with ones own computer sys-
tems - but nowadays organisations rely on third-party services - cloud
services - along with their own in-house systems. Combined this makes
it overwhelming difficult to obtain an overview of possible attack sce-
narios. Luckily, some formalisms such as attack trees exist that can help
security analysts. However, temporal behaviour of the attacker is rarely
considered by these formalisms.

In this paper we build upon previous work on attack-defence trees
to build a proper temporal semantics. We consider the attack-defence
tree a reachability objective for an attacker and thereby separate the
attacker logic from the attack-defence tree. We give a temporal stochas-
tic semantics for arbitrary attackers (adhering to certain requirements
to make the attacker “sane”) and we allow annotating attacker actions
with time-dependent costs. Furthermore, we define what we call a cost-
preserving attacker profile and we define a parameterised attacker profile.
The defined semantics is implemented via a translation to uppaal SMC.
Using uppaal SMC we answer various questions such as the expected
cost of an attack, we find the probability of a successful attack and we
even show how an attacker can find an optimal parameter setting using
ANOVA and Tukeys test.

1 Introduction

Society is in increasing fashion relying on computer systems to support it in
every-day life and users are as such depending on computer systems to store
their personal data to automate tasks: companies may store information about
customers e.g. addresses for billing purposes and credit card information for auto-
matic payment. The more information stored in computer systems, the higher

Work partially Supported by the BMBF through the ASSUME (01IS15031J) project,
and the chist-era project success.

c© Springer International Publishing AG 2018
P. Liu et al. (eds.): GraMSec 2017, LNCS 10744, pp. 75–90, 2018.
https://doi.org/10.1007/978-3-319-74860-3_5

76 R. R. Hansen et al.

the need for protecting these data. History has however shown that making sys-
tems inpenetrable is extremely difficult and we have witnessed several security
breaches. The IT-infrastructure of today is complex and gaining a high-level
overview of how attacks may occur is extremely difficult for all but the simplest
infrastructures - a problem worsened by the fact that organisations nowadays
heavily rely on Cloud Services. A tool that has been developed for battling
this complexity is Attack-trees [8,10]. Attack-trees is a tree-based formalism in
which an overall attack on an organisation may be refined into sub-attacks -
or different ways of achieving an attack. This formalism provides a security
specialist a quick way of describing the possible ways that he sees an attack
can happen. Attack trees were originally introduced by Schneier [12] and since
given a formal semantics by Mauw and Oostdijk [10] - an overview of attack-
trees is given by Kordy et al. [9]. Basic quantitative analysis is possible on the
attack-tree formalism (with some annotations regarding costs and probabilities)
in a bottom-up fashion (i.e. costs for leaf nodes are propagated up the attack-
tree to calculate the cost of individual sub-attacks) [4]. In addition also various
extensions have been considered in order to improve the analysis of attacks.
Given an overview of possible attacks, it is intuitively straightforward to con-
nect the attack nodes with possible defence measures, allow defence measures
to be split into sub-tasks, and allow defences to be countered by other attack
options which gives us the Attack-Defence-trees (AD-tree) formalism [2,8]. These
trees allow analysis of the interplay between the attacker and defender and by
doing so give better understanding of possible attack-defence scenarios [4,8]. An
Attack-defence tree describes a game between two players but most analyses
are still based on a bottom-up-propagations [2] approach. Two recent works by
Hermanns et al. [7] and Gadyatskaya et al. [6] develop a temporal and stochastic
semantics for attack-defence scenarios. Hermanns et al. [7] develops their own
formalism Attack-Defence-Diagrams (ADD) highly inspired by attack-defence
trees. A problem with ADDs, in our view, is that while giving a stochastic
semantics they also compromise the simplicity of attack-defence trees by requir-
ing the user to consider things like reset-gates. The work by Gadyatskaya et al.
[6] on the other hand take their outset on the attack-defence trees and build
the semantics directly on top of these - thus a security specialist may do their
modelling exactly as usual and let a tool translate this to a stochastic semantics.
Both Hermanns et al. [7] and Gadyatskaya et al. [6] translated their respective
formalism to timed automata [1] with stochastic interpretations. Another recent
work concerned with temporal ordering of events is that of Aslanyan et al. [3]
which adds a sequential sequence operator to the syntax of attack-defence trees.
This logically split the tree into sub-attack-defence-trees which are processed in
sequence. They then use this split into sub-trees to develop a game semantics
playing out as follows: first the defender selects defence measures for the first
tree, then the attacker selects attacks and a result for the first tree is found
(using a probabilistic outcome of the attackers selected attacks). The result of
the first tree is then propagated onwards to the second subtree - and so it con-
tinues till the last sub-tree. Unlike Hermanns et al. [7] and Gadyatskaya et al.
[6] the attacker is not allowed to retry failed attacks.

Quantitative Evaluation of Attack Defense Trees 77

In this paper we expand upon the work of Gadyatskaya et al. [6] by firstly
allowing the cost of an attack to be a function of time instead of a constant cost
per atomic attack attempt. Secondly, we introduce the concept of parameterised
attackers and show how we can find attacker-parameters that minimise cost by
applying Analysis Of VAriance (ANOVA). The entire modelling framework is
translated into a uppaal SMC model automatically by a python script. All the
user needs to provide is a textual description of the AD-tree, the description of
the cost per atomic attack and the duration interval for each atomic attack.

In Sect. 2 we introduce the attack-defence tree formalism and define our
stochastic semantics with costs. We also present attacker and defender questions
and describe how these may be solved. In Sect. 3 we instantiate our framework
with a parameterised attacker. In Sect. 4 we discuss a translation of Sect. 3 into
uppaal SMC timed automata and show how to use uppaal SMC to answer
the questions of Sect. 2.

2 Attack-Defence Trees

In this section we first present the traditional “static” attack-defence-trees, fol-
lowed by an extension to a temporal semantics following the work of Gadyatskaya
et al. [6]. A stochastics semantics is on top the temporal semantics by defining
success probabilities for attacker actions and by associating a time distribution
to atomic attacks. As a final part of this section, and a main contribution of the
paper, we present a parameterised attacker model.

At the simplest a static attack-defence tree (AD-tree) is a propositional for-
mula with propositions split into attacker propositions (Aa) and defender propo-
sitions (Ad).

Definition 1 (AD-tree). An AD-tree over the attacker actions Aa and
defender actions Ad is generated by the syntax t:: = p | t ∧ t | t ∨ t | ∼ t
where p ∈ Aa ∪ Ad. We denote by L(Aa, Ad) all AD-trees over Aa and Ad.

For an AD-tree ψ ∈ L(Aa, Ad) and selected attacker actions A ⊆ Aa and
selected defence measures D ⊆ Ad, we inductively define �ψ�A,D as follows

– �p�A,D = tt if p ∈ A ∪ D, ff otherwise
– �ψ1 ∧ ψ2�A,D = (�ψ1�A,D) ∧ (�ψ2�A,D)
– �ψ1 ∨ ψ2�A,D = (�ψ1�A,D) ∨ (�ψ2�A,D)
– �∼ ψ�A,D = ¬(�ψ�A,D)

We depict an AD-tree by its parse tree as shown in Fig. 1. The particular AD-
tree in Fig. 1 models how an attacker may substitute an RFID-tag in a shop [2,6].
One way involves threatening the employees; another involves bribing a subject -
which also requires identifying the subject before-hand.

The syntax given in Definition 1 is overly liberal in what AD-trees it allows. In
particular, it allows defining trees in which an actor may do actions helping the
opponent - for instance StealCreditCard ∧ ¬LooseCreditCard would express

78 R. R. Hansen et al.

Fig. 1. An Attack-Defence Tree. Circles denote attacker actions, squares defender
actions.

that the attacker achieve an attack if he steals a credit cards and does not loose
it again. We consider that the attacker does things actively and thus would have
chosen to loose the credit card. To avoid this problem we follow along [2] and
impose a type-system that disallows such trees. The type system has two types
a and d, denoting attacker and defender respectively and is given in Fig. 2.

Ad, Aa � p : a
, p ∈ Aa

Ad, Aa � p : d
, p ∈ Ad

Ad, Aa � ψ1 : r Ad, Aa � ψ2 : r

Ad, Aa � ψ1 ∧ ψ2 : r

Ad, Aa � ψ1 : r Ad, Aa � ψ2 : r

Ad, Aa � ψ1 ∨ ψ2 : r

Ad, Aa � ψ1 : r

Ad, Aa �∼ ψ1 : r−1 , r
−1 =

{
a if r = d

d if r = a

Fig. 2. Type system to make attack-defence trees well-formed

For the remainder of this paper we only consider well-formed AD-trees with
respect to the type-system in Fig. 2. Since we are interested in analysing possible
attacks, we restrict our attention to AD-trees, ψ, for which Ad, Aa � ψ : a. From
now on let Lw(Aa, Ad) = {ψ ∈ L(Aa, Ad) | Aa, Ad � ψ : a}.

A key question for AD-trees is whether an attacker for any set of defence
measures can select a set of atomic attacks such that an attack will be successful.

Quantitative Evaluation of Attack Defense Trees 79

In a similar fashion, the defender is interested in finding defence measures that
guarantee an attack can never occur.

Attacker Question 1. Given an AD tree ψ ∈ Lw(Aa, Ad) and a D ⊆ Ad does
there exist an A ⊆ Aa such that �ψ�A,D = tt.

Defender Question 1. Given an AD tree ψ ∈ Lw(Aa, Ad) does there exist a
D ⊆ Ad such that for any A ⊆ Aa, �ψ�A,D = ff.

2.1 Temporal Semantics

Our temporal semantics consist of four components: the tree, the attacker, the
defender and an environmental model. The tree component defines a finite graph
with vertices containing successful atomic attacks and the currently selected
defense measures. The attacker is a mapping from the tree-vertices to actions he
may choose to perform. The actual outcome of performing an action is simulta-
neously selected by the environment component.

Definition 2 (Tree-Graph). Let ψ ∈ Lw(Aa, Ad) be an AD-tree, then the tree-
graph over ψ, denoted Graph(ψ), is a tuple (Vt,Vt

†, v
t0, E, Ed) where

– Vt = 2Aa × 2Ad is a set of vertices,
– Vt

† ⊆ {(A,D) ∈ Vt | �A,D�ψ = tt} is a set of final vertices,
– vt0 = (∅, ∅) is the initial vertex,
– E ⊆ Vt × Aa × Vt is a set of edges where ((A,D), a, (A ∪ {a},D)) ∈ E if a /∈ A

and �ψ�A,D = ff,
– Ed = {(v0,D,S) | D ⊆ Ad ∧ S = (∅,D)} is the defence select edges.

An attacker looks into the state of the tree-graph and based on this infor-
mation selects a set of actions that are feasible for him to perform. Likewise, a
defender maps the initial vertex of the graph to possible subsets of defenses to
perform. In the following, assume there is a special symbol † /∈ Aa used by an
attacker to signal he will not do any action.

Definition 3. Let ψ ∈ Lw(Aa, Ad) be an AD-tree and let its associated tree-graph
be Graph(ψ) = (Vt,Vt

†, v
t0, E, Ed). An attacker is a function Att : Vt → 2Aa ∪{{†}}

with the restriction that if a ∈ Att((A,D)) then a /∈ A and either (A,D) /∈ Vt
† or

a = †. We call Att deterministic if for all vt ∈ Vt, |Att(v)| = 1 - otherwise it is
non-deterministic.

The requirement on the attacker function is expressing that the attacker can
only choose to do an action if that action has not previously succeeded and the
tree is not already true.

Definition 4. Let ψ ∈ Lw(Aa, Ad)w be an AD-tree and let its associated
tree graph be Graph(ψ) = (Vt,Vt

†, v
t0, E, Ed). A defender is a function Def :

{vt0} → 22
Ad . We call Def determinstic if |Def(vt0)| = 1 - otherwise it is non-

deterministic.

80 R. R. Hansen et al.

The temporal semantics we consider is based on the idea that a defender
selects his defence measures once, followed by the attacker selecting atomic
attacks in a step-wise fashion.

Remark 1. The choice of letting the defender select defence measures once is
contrasting the work of Hermanns et al. [7] that considers a semantics where
defender and attacker can do actions interchangeably. We believe it is a more
realistic scenario that a defender choose actions to prevent attacks and not
actively work against an attacker.

Definition 5. Let ψ ∈ L(Aa, Ad)w be an AD-tree, Graph(ψ) = (Vt,Vt
†, v

t0, E, Ed)
be its associated tree-graph, Def be a defender and let Att be an attacker.
Then the transition system over ψ with attacker Att and defender Def, denoted
LTS(ψ|Att|Def), is a tuple (V,V†, v0,→,→¬,→†, ���) where

– V = Vt is a set of states,
– V† ⊆ Vt

† ∪ {v ∈ V | Att(V) = †} is a set of dead-end states,
– v0 = vt0 is the initial state,
– →⊆ V × Aa × V is a set of transitions where (v, a, v′) ∈→ if a ∈ Att(v) and

(v, a, v′) ∈ E,
– →¬⊆ V × Aa × V is a set of transitions where (v, a, v) ∈→¬ only if

(v, a, v′) ∈→,
– →†= {(v, †, v)|v ∈ V ∧ † ∈ Att(v)} is the do-no-attack transition relation,

and
– ���⊆ {(v0,D, v) | D ∈ Def(v0) ∧ (v0,D, v) ∈ Ed} is the defence select transi-

tions.

As per tradition we write v
a−→ v′(v ¬a−−→ v′) in lieu of (v, a, v′) ∈→ ((v, a, v′) ∈→¬)

and generalises this to ��� and →†. We write v →∗ v′ if there is a sequence
of transitions emanating from v and ending in v′ and denote by Reach(v) =
{v′|v →∗ v′}. A run over LTS(ψ|Att|Def) is a sequence

(v0,D)(v1,α1)(v2,α2) . . . (vn−1,αn−1)(vn, †)vn

where v0 D��� v1 and for all 1 ≤ i < n, αi ∈ {a,¬a | a ∈ Aa}, vi
αi−→ vi+1 and

finally vn
†−→ vn. We denote by Ω(ψ|Att|Def) all runs over ψ.

Obviously, as an attacker, we would be interested in for any D to find a
run (v0,D)(v1,α1)(v2,α2) . . . (vn, †)vn where vn ∈ V† and �ψ�vn = tt whereas a
defender wishes to find a D′ such that all runs end in a state v′

† where �ψ�v′
† = ff.

Attacker Question 2. Given an AD tree ψ ∈ Lw(Aa, Ad), an attacker Att,
non-deterministic defender Def is it the case for all D that there exists a run
(v0,D)(v1,α1)(v2,α2) . . . (vn, †)vn ∈ Ω(ψ|Att|Def) such that �ψ�vn = tt.

Defender Question 2. Given an AD tree ψ ∈ Lw(Aa, Ad), attacker Att, non-
deterministic defender Def does there exists a D ⊆ Ad such that for any run
(v0,D)(v1,α1)(v2,α2) . . . (vn, †)vn ∈ Ω(ψ|Att|Def), �ψ�vn = ff.

Quantitative Evaluation of Attack Defense Trees 81

Technique 1. The verification technique that may be used to answer Attacker
Question 2 and Defender Question 2 is model checking. Consider we are given an
AD-tree ψ ⊆ Lw(Aa, Ad), an attacker Att and non-deterministic defender Def
and want to answer Attacker Question 2. Let LTS(ψ|Att|Def) = (V,V†, v0,→,

→¬,→†, ���) and let VD = {v ∈ V | v0 D��� v} be the set of states reached by
the defender doing an action. Then the straightforward approach for answering
Attacker Question 2 is to do a reachability search from all of the states in VD

for a state v ∈ V† where �v�ψ = tt. That is, if for all vertices v ∈ VD the set
Rv = {v′ ∈ Reach(v) | �v′�ψ = tt} is non-empty then Attacker Question 2 is
true. On the other hand, if for some v, Rv is empty we have found an answer
for Defender Question 2.

The possibility of an attack is interesting in its own right, but disregards
how long time an attack may take. In the real world, an attacker may only be
interested in attacks that are executable within a given time horizon. Likewise,
the defender could possibly be happy as long he can guarantee a successful
attack can only occur after a specific time. To incorporate timing information,
consider that each atomic attack is assigned a duration interval by a function
Δ : Aa → B(R) - where B(R) denotes all possible intervals over R. A timed
attacker is thus a tuple Attτ = (Att,Δ) where Att is an attacker and Δ is
defined as above.

With a timed attacker (Att,Δ) and defender Def define a timed run as a
sequence

(v0,D)(v1, d1,α1)(v2, d2,α2) . . . (vn, †)vn

where
(v0,D)(v1,α1)(v2,α2) . . . (vn, †)vn

is a run and for all 1 ≤ i < n, di ∈ Δ(c(αi)) where c(a) = c(¬a) = a. For
the remainder of this paper we let Ωτ (ψ|Attτ |Def) be all timed runs over timed
attacker Attτ and defender Def.

Attacker Question 3. Given an AD tree ψ ∈ Lw(Aa, Ad), a time horizon τ ,
timed attacker Attτ , non-deterministic defender Def does there for all D exist a
timed run (v0,D)(v1, d1,α1)(v2, d2,α2) . . . (vn, †)vn ∈ Ωτ (ψ|Attτ |Def) such that
�ψ�vn = and

∑n−1
i=1 di ≤ τ .

Defender Question 3. Given an AD tree ψ ∈ Lw(Aa, Ad), timed attacker
Attτ , a time horizon τ and non-deterministic defender Def does there exists
a D such that for all timed runs (v0,D)(v1, d1,α1)(v2, d2,α2) . . . (vn, †)vn ∈
Ωτ (ψ|Att|Def) either �ψ�vn = ff or

∑n−1
i=1 di > τ .

Technique 2. For answering Attacker Question 3 for ψ ∈ Lw(Aa, Ad) with timed
attacker Attτ = (Att,Δ) and non-deterministic defender Def we will consider
a symbolic transition system with states of the form (v, I) where v ∈ V and I
is an interval of R≥0 and initial state (v0, [0, 0]). From a symbolic state (v, I)
we can do a symbolic transition (v, I) a� (v′, I + I ′) if (and (v, I) ¬a� (v, I + I ′)

82 R. R. Hansen et al.

if a �= †) and I ′ = Δ(a) (I ′ = [0, 0] if a = †). Similarly to the traditional
semantics we define Reach((v, I)) to be the set of reachable symbolic states from
Reach((v, I)). Answering Attacker Question 3 with a time bound τ is now a
matter of generating the sets Rv{(v′, [a, b]) ∈ Reach((v0, [0, 0]))|a ≤ τ ∧ �v′�ψ =

tt} where v ∈ {v′ | v0 D��� v′} and verifying they are all non-empty. Conversely
if one of them is empty, we have found a solution to Defender Question 3.

2.2 Stochastic Semantics

Our end goal is to have a fully stochastic model. For the defender part of the
transition system we let the choice of defence measures be selected according to a
probability mass function γDef : 2Ad → [0, 1]. A stochastic defender is thus a tuple
DefS = (Def, γDef) where Def is a defender and γDef(D) �= 0 =⇒ D ∈ Def(vt0).
A stochastic attacker for ψ is a tuple AttS = (Attτ , γAtt, δ) where Attτ =
(Att,Δ) is a timed attacker, γAtt : V → Aa ∪{†} → R assigns a probability mass
function to each state for selecting the action to perform and δ : Aa → R → R

assigns a probability density to the possible execution times of each action. A few
requirements must be stated here

1. if γAtt(vt)(a) �= 0 then a ∈ Att(vt) and
2. if δ(a)(r) �= 0 then r ∈ Δ(a).

The first requirement is simply expressing that the stochastic attacker may
only select actions defined by the timed attacker while the second requirement
expresses that only execution times inside the interval defined by Δ should be
given a density. The final component we need before giving the stochastic seman-
tics is a an environment Env that assigns success probabilities to the execution of
individual atomic actions: formally for each action we let Enva : {a,¬a} →]0, 1[
be a probability mass function assigning a non-zero probability of succeeding an
atomic attack.

Forming the core of a probability measure over runs of LTS(ψ|Attτ |Def)
with a stochastic attacker AttS = (Attτ , γAtt, δ) and stochastic defender
DefS = (Def, γDef) , we define a measure over a structure π = (v0, I0,α0)
(v0, I0,α0) . . . (vn, †)vn where for all i, Ii is an interval and αi ∈ {a,¬a | a ∈ Aa}
from v inductively as follows:

GAttS |DefS |Env
v (π) = (v0

?= v) · γAtt(v)(c(α0))·
(∫

I0

(δ(c(α0))(τ)) dτ

)

· Envc(α)(α0) · G
AttS |DefS |Env
v′ (π1),

where, v0
?= v is 1 if v0 = v and zero otherwise, v

α0−→ v′, c(a) = c(¬a) = a and
base case GAttS |DefS |Env(vnvn) = γAtt(vn)(†). As we will notice, the structure
π does not include defence measures and thus we are lacking the probabilistic
behaviour of the defender. For taking this into account, we instead consider
structures like Π = (v0,D)π to which we can easily assign a probability measure

Quantitative Evaluation of Attack Defense Trees 83

as follows F
AttS |DefS |Env
v0 (Π) = γDef(D) ·GAttS |DefS |Env

v (π) where v0 D��� v. We will

usually omit the v0 subscript and thus whenever we write F AttS |DefS |Env we really
mean F

AttS |DefS |Env
v0 .

With a measure over timed runs, we are now ready to define the probability
of a successful timed attack: let ω = (v0,D)(v1, d1,α1)(v2, d2,α2) . . . (vn, †)vn be
a timed run, then we define the indicator function for ψ and time bound τ as

1ψ,τ (ω) =

{
1 if �ψ�vn and

∑n−1
i=1 di ≤ τ

0 otherwise
.

Integrating 1ψ,τ over all runs yields the probability of a successful attack.

P
AttS

(ψ, τ) =
∫

ω∈Ωτ (ψ)

1ψ,τdF AttS |DefS

Attacker Question 4. Given an AD-tree, a stochastic attacker, a stochastic
defender and time bound τ ; what is the probability of a succesful attack.

Technique 3. The technique we shall later apply for answering Attacker
Question 4 is statistical model checking. This technique relies on having a sim-
ulator for the stochastic semantics that can generate timed runs up to a time
bound τ . Each run is now either a succesful attack or a failed attack i.e. a
Bernoulli experiment. Generating several runs we can, using classic statistical
methods, estimate the probability with some confidence.

2.3 Adding Cost

In the running example, we note that some of the attacks naturally will
result in some cost for the attacker. The most obvious one being the “bribe”
option. Therefore researchers started augmenting their modelling languages with
costs [2,6,7] . In this paper we are also considering a cost-based semantics but
instead of a fixed cost per atomic attack a, we define a cost rate Ca and
define the cost of a timed run ω = (v0,D)(v1, d1,α1)(v2, d2,α2) . . . (vn,†)vn

as C(ω) =
∑n−1

i=1 Cc(αi) · di. Given a time bound τ we define, in the style of
Gadyatskaya et al. [6], the cost of a timed bounded run to be the accumu-
lated cost up to reaching the time bound or the accumulated cost before reach-
ing a succesful state. Formally, if ω = (v0,D)(v1, d1,α1)(v2, d2,α2) . . . (vn, †)vn

and i = max{i | �ψ�vn = ff ∧ ∑i−1
j=1 dj ≤ τ} then we we define Cτ (ω) =

∑i−1
j=1 Cc(αj) ·dj . For a stochastic attacker, AttS , we can now define his expected

cost of an attempted attack against a stochastic defender DefS within a time
bound τ as

E
AttS |DefS |Env(ψ, τ) =

∫

ω∈Ωτ (ψ)

Cτ (ω) dF AttS |DefS |Env

84 R. R. Hansen et al.

Attacker Question 5. Given an AD-tree ψ, a stochastic attacker AttS , a
stochastic defender DefS and a time bound τ , what is the expected cost of an
attack? That is, calculate E

AttS |DefS
(ψ, τ).

Technique 4. As for Attacker Question 4 we answer Attacker Question 5 by
applying statistical model checking. The approach is intuitively simple: generate
a set of sample runs ω1, . . . ωn, for all i calculate cωi

= E
AttS |DefS |Env(ψ, τ). The

cωi
s are random variables from the same underlying distribution and thus we can

estimate their expected value.

For the remainder of the paper we require on-the-fly information of the cost
of runs; which means that we need to annotate our states with cost-information.
Let LTS(ψ|Attτ |Def) = (V,V†, v0,→,→¬,→†, ���) then a cost-annotated state
is a tuple c(v, r) where v ∈ V and r ∈ R. We let C denote all cost-annotated
states; and we say a cost-annotated-run is a sequence

ω = ((v0, c0),D)((v1, c1), d1,α1)((v2, c2), d2,α2) . . . (vn, cn)(vn, cn)

where co = c1 = 0,(v0,D)(v1, d1,α1)(v2, d2,α2) . . . (vn, †)vn is a timed run and
for all 2 ≤ i ≤ n, ci = ci−1+(1

Cc(αi−1)
·di−1). Lastly, for the remaining part of this

paper we will have γAtt map from cost-annotated states thus γAtt : C → Aa → R.
In addition we let S(ψ) be the set of all possible stochastic attackers for the
AD-tree ψ.

2.4 Parameterised Attacker

The framework so far defines the interaction between a specific stochastic
attacker and a specific stochastic defender. However, attackers may be defined in
terms of parameters that define their stochastic behaviour. Formally, a param-
eterised attacker is a tuple (P,D,B) where P = {p1, p2, . . . , pn} is a list
of parameters each with finite domain Di given by D : P → 2∪n

i=1Di and
B : ×n

i=1Di → S(ψ) gives the stochastic attacker corresponding to a given
parameter setting.

Attacker Question 6. Let ψ be an attack defence-tree, DefS be a stochastic
defender, Env be an environment, and let t (P,D,B) be a parameterised attacker
where P = {p1, . . . , pn} and for all i, D(pi) = Di.

Find Q = arg minq∈×n
i=0Di

E
B(q)|DefS |Env(ψ).

Technique 5. For answering our final question of optimising parameters we
will apply the statistical method ANalysis Of VAriance (ANOVA).

ANOVA. Analysis of variance is a collection of statistical tests developed to
compare whether one or more discrete factors has a significant effect on a con-
tinuous response variable. In the following we consider the one-factor design
where we only have one factor and wishes to determine if this factor affects the
response [11]. Consider we have a single factor with k levels, then for each level

Quantitative Evaluation of Attack Defense Trees 85

i we associate a random variable Xi giving the response values. Then an anova
analysis tests the hypothesis that E(X0) = E(X1) · · · = E(Xn) i.e. whether the
mean response is the same for all the levels. For each level i we obtain samples
Xi = {xi

0,x
i
1, . . . x

i
m} and denote by X̄i =

∑m
k=0

1
mxi

k the mean of these and by
X̄ = 1

n∗m

∑n
l=0

∑m
k=0 xl

k the average of all samples.
ANOVA now calculates what is called the F-statistic

F =
(1

n−1)
∑n

i=0(X̄i − X̄)2
1

m−n (
∑n

i=0

∑m
k=0(x

i
k − X̄)2)

which if the hypothesis is true should follow a F-distribution with n − 1 and
m − n degrees of freedom. Now, as usual with hypothesis, we can calculate a
value p which characterises how likely it is to obtain a value of F if the hypothesis
is true. If p is less than some predetermined α then we reject the hypothesis.
ANOVA is only capable of determining whether there is a difference between
the levels, but is inadequate for finding which level is the one being different.
For finding the different one we need to apply a post-hoc test that will perform
a comparison between all the pairs. One such test is Tukeys-Test which will
compare all pair-wise means and return whether they are different - with some
significance.

Optimising with ANOVA. The approach we take for finding the optimal parame-
ter for minimising the expected cost of an attack is to iteratively generate samples
for each configuration until a significant difference of α is found using ANOVA.
Afterwards we apply Tukeys test - and for each pair of configurations that are
significantly different from each other we remove the one with the smallest mean.
In Algorithm 1 Simulate(ψ,c,τ) simulates the AD-tree ψ with the configuration
c and returns the cost over that run, Anova(simulations) runs the anova analysis
and returns the p−value, FilterTukey(simulations) runs Tukeys test and filter
out the configuration with smallest cost for each significantly different pairs of
configurations.

A small caveat with Algorithm 1 is that it may spin into an infinite loop if
ANOVA determines there is significant difference while Tukeys-Test find no dif-
ferent pairs. In this case no filtering occurs and thus the algorithm will continue
generating samples (and as ANOVA already determined there is a difference,
α will never get larger than 1 − α to terminate. In practice we overcome this
problem by limiting the number of times the algorithm can determine there is a
difference without removing a configuration.

3 Instantiating the Framework

The preceding section has defined a general modelling framework for attackers
and defenders. In this section we present one way of defining a parameterised
attacker. The first parameter we consider adding is a cost budget which is the
maximal amount of resources an attacker can use during an attack. Given a
cost budget variable, B, we define a cost-preserving stochastic attacker as one

86 R. R. Hansen et al.

Data: Set of configurations C, a time bound τ and an AD-tree ψ, samples per iteration x
foreach c ∈ C do

simulations[c] = ∅;
end
while ¬conf do

foreach c ∈ C do
foreach i ∈ {0, 1, . . . , x} do

simulations[c] = simulations[c]∪ Simulate(ψ,c,τ)
end

end
a =Anova(simulations);
if a > 1 − α then

conf = tt;
end
else if a < α then

C =FilterTukey(simulations)
end

end
return C

Algorithm 1. Parameter Optimisation Algorithm.

that assign higher probabilities to atomic attacks that preserve most of the cost
budget.

In the following we let Attnd be the fully non-deterministic attacker - i.e.
if ψ ∈ L(Aa, Ad) then Att((A,D)) = Aa \ A if �D, a�ψ = ff otherwise †.

Table 1. Parameters of the run-
ning example: the Cost column is the
cost-rate of attack; while probability
is success probability of the attack.

Attack Cost rate Probability

is 4 0.80

bs 5 0.70

t 5 0.70

b 5 0.70

st 2.5 0.50

ba 4.25 0.60

im 3.5 0.50

ot 0 0.60

Definition 6. Let ψ ∈ L(Aa, Ad), let B be a
cost budget and let C be the cost-annotated
states; then a cost-preserving stochastic
attacker is a stochastic attacker AttS(B) =
(Attτ , γC

Att, δ) with Attτ = (Attnd,Δ) where

– δ(a) is a uniform distribution over Δ(a),
– γC

Att((v, c))(a) = W (a)∑
b∈Aa

W (b) where

• W (a) = B−(c+Ca·dh)
B with Δ(a) =

[dl, dh] if B − (c + Ca · dh) > 0 and
a ∈ Att(v) - otherwise 0.

if a ∈ Aa and W (a) �= 0,
– γC

Att((v, c))(†) = 1 − ∑
a∈Aa

γC
Att((v, c))(a)

and
– δ((v, c))(r) = 1

dh−dl
if r ∈ [dl, dh] and

Δ(a) = [dl, dh].

It is not unreasonable to think that some attackers may have higher tendency
to perform some attacks - even though they are more costly. Based on this
thought we adapt the cost-preserving attacker to one with multiple parameters
- one for each atomic attack. We call these parameters for likeliness-parameters.

Definition 7 (Parameterised-Attacker). Let ψ ∈ L(Aa, Ad) where Aa =
{a1, . . . , an} be an AD-tree, let B be a cost budget, let AttS(B) = (Attτ , γC

Att, δ)
be the cost-preserving stochastic attacker, let C be the cost-annotated states and
let D ⊆ R≥0 be some finite domain. Then we define our parameterised attacker

Quantitative Evaluation of Attack Defense Trees 87

AttSp(B) = (P,D,B) where P = {pa|a ∈ Aa}, D(pa) = D for all a ∈ Aa, and
B(pa1 , . . . , pan

) = (Attτ , γP
Att, δ) where

– γP
Att((v, c))(a) = W (a)∑

b∈Aa
W (b) where W (d) = pd · γC

Att(d) for a ∈ Aa and
– γP

Att((v, c))(†) = 1 − ∑
b∈Aa

γP
Att((v, c))(b)

Example 1. As an example of how the parameters may affect expected cost of an
attacker we consider four different configurations for our running example (see
Table 1 for the cost and success probabilities); namely (1) all likeliness param-
eters are 1, (2) all likeliness parameters are 1500, (3) all likeliness parameters
are 1 except for threaten which is 1500 and (4) all likeliness parameters are 1
except for threaten and Bribe which are 1500.

Estimating the expected cost for these different configurations with a time
limit of 1000 yield expected cost 229 ± 35 for Item 1, 208 ± 33 for Item 2,
120 ± 20 for Item 3 and finally for Item 4 we get 102 ± 20. All of the estimates
were computed using 30 simulations.

4 Experiments

The framework developed has been translated into a uppaal SMC [5] timed
automata model based on a textual description of the AD-tree, the cost param-
eters and their timing intervals. Also the textual description includes the prob-
abilities of an atomic attack to be successful. In the following we will use these
scripts in conjunction with Uppaal to answer the questions raised throughout
the running text.

4.1 Encoding

Although this encoding is specific for the instantiation of Sect. 3 we note that it
shows the applicability of uppaal SMC to encode the general framework from
Sect. 2. The encoding of an AD-tree within uppaal SMC follows along the lines
of [6] with one automaton modelling the defender, one automaton modelling the
attacker, and one automaton modelling the environmental choice of an outcome
for the execution of an atomic attack. To coordinate their behaviour the automata
synchronise over channels for indicating what action the attacker wants to per-
form - and boolean variables to maintain the discrete state of the AD-tree (i.e.
what atomic attacks and defenses are true at any given time). In the following
paragraph double concentric circles denote the initial state of an automaton.

Fig. 3. The defender automaton

Defender. In Fig. 3 we present the template of
the Defender Timed Automaton for an AD-tree
with the defender actions Ad = {p1d, p2d, p3d}.
The automaton initiates by selecting a subset
of Ad and setting the corresponding boolean
variables (e.g. b p1d) to true. Afterwards, the
defender does nothing. Since there are no weights on the edges from the ini-
tial locations, the choice of an edge is a uniform choice - corresponding to the
uniform choice in our stochastic semantics previously given.

88 R. R. Hansen et al.

Fig. 4. The attacker automaton

Attacker. Let AttSp(B) = (P,D,B)
with P = {pa 1, pa 2} be a parame-
terised attacker with attacker actions
Aa = {a1,a2}. Figure 4 shows how to
encode the attacker given by B(T1,T2).
Here the AD-tree has Δ(ai) = [L ai, H ai]
and a cost rate of C ai/H ai for execut-
ing a i . The automaton keeps tracks of
the currently used resources in the clock
usedRes. Initially the automaton can go
to a dead-end if one of two conditions
are true: either (1) the tree is already
true ({t}) or (2) for all atomic actions it is either the case that they cannot be
performed without risking exceeding the budget (i.e. (C ai > budget − usedRes))
or they are already true. In case this edge is not enabled, the automaton instead
transits to a probabilistic choice to choose what action to perform according
to the weights previously described in Sect. 3. After selecting an attack a i , the
attacker goes to a location where a delay between d ∈ [L ai, H ai] is selected
and the clock usedRes is increased by d·(C a1/H a1). After this, the automaton
synchronises on doAi! to tell the environment that he attempted to perform ai.

Fig. 5. The environment
automaton

Environment. An example of an environment automa-
ton is shown in Fig. 5. Initially it awaits doA? syn-
chronisation from the attacker after which it instantly
selects a result. A successful execution happens with
probability p while an unsuccessful execution occurs
with probability 1− p. If succesful the boolean variable
bA is set to true.

In practice there is one of these loops for each attacker proposition of the
AD-tree.

4.2 Estimating Probability of Attack

Table 2. Probability Estimates
and expected cost for the Cost-
preserving attacker for various time
bounds.

Bound Cost Probability

10 34.78 0.08

50 143.28 0.52

100 221.64 0.84

200 192.70 0.95

400 232.75 0.95

Consider that we use the Cost-preserving
attacker profile, and are given a time
bound τ and consider the defender selects
defence measures according to a uniform
distribution; then we can answer Attacker
Question 4 and Attacker Question 5 by
using the statistical model checking capa-
bilities of uppaal SMC. For Attacker
Question 4 we simply ask the question
Pr[<=τ]{t} which will return a confidence
interval for performing a successful attack.

Quantitative Evaluation of Attack Defense Trees 89

For Attacker Question 5 we use the query E[<=τ ; nbRun](max : usedRes∗
(1 − {t})), where nbRun is the number of runs used by uppaal SMC to estimate
the cost and usedRes is a Uppaal variable counting the cost. The (1− {t}) is
a technicality to make sure usedRes stop increasing after the attack has been
successful. In Table 2 we show the expected cost and probability of a successful
attack. Estimating the cost was done with 500 runs in all cases.

4.3 Parameter Optimisation

We have applied Algorithm1 (with uppaal SMC as a simulating backend) to
our running example with the likeliness parameters obtaining values in the range
{1, 150} and with a time bound of 1000. The x in the algorithm was set to 10.
The algorithm determined that 64 of the 256 configurations yield higher expected
cost. The remaining ones are indistinguishable. In Fig. 6 we show boxplots for
the various configurations ordered such that configurations deemed optimal by
ANOVA are at the left while configurations yielding higher expected cost are to
the right. Visually we notice that there is a seperation between these two groups.

Fig. 6. Sampled data from the ANOVA analysis.

5 Conclusion

In this paper we have developed a temporal and stochastic semantics for attack-
defense trees. The stochastic semantics distinguishes itself from similar work of
[6] by allowing time-dependent cost functions. The attack-defense tree is trans-
lated into uppaal SMC stochastic timed automata, and it is shown how this
translation may answer several of the questions stated throughout the running
text: for instance how to estimate the expected cost of an attacker. This paper
also includes a parameterised description of attackers which leads to the interest-
ing question of finding optimal parameter settings. We develop a method based
upon the statistical test ANOVA and observe that our algorithm found 64 out
of 256 configurations to yield higher cost than the remaining ones.

90 R. R. Hansen et al.

In the future we plan to expand the expressive power of our framework, and
we wish to handle temporal dependencies between attacker actions: currently,
the attacker is capable of choosing to bribe a subject before actually having iden-
tified the subject. Another interesting work is to allow defenders to do counter
measures while the attacker is attacking and create a more game-like feeling of
the semantics. The definition of attackers are currently defined in terms of simple
parameters, in the future will attempt creating a high-level for describing more
complex attacker behaviours. Obtaining the probabilities and cost-functions that
our framework depend on is a research topic in its own right.

References

1. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990).
https://doi.org/10.1007/BFb0032042

2. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Principles of Security and Trust, vol. 9036, p. 95 (2015). https://doi.org/10.1007/
978-3-662-46666-7 6

3. Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of
attack-defence scenarios. In: IEEE 29th Computer Security Foundations Sympo-
sium, CSF 2016, Lisbon, Portugal, 27 June–1 July 2016, pp. 105–119. IEEE Com-
puter Society (2016). https://doi.org/10.1109/CSF.2016.15

4. Bagnato, A., Kordy, B., Meland, P., Schweitzer, P.: Attribute decoration of attack-
defense trees. Int. J. Secur. Soft. Eng. (IJSSE) 3(2), 1–35 (2012)

5. David,A., Larsen,K.G., Legay,A.,Mikucionis,M., Poulsen,D.B.:Uppaal SMCtuto-
rial. STTT 17(4), 397–415 (2015). https://doi.org/10.1007/s10009-014-0361-y

6. Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen,
D.B.: Modelling attack-defense trees using timed automata. In: Fränzle, M.,
Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35–50. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44878-7 3

7. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence dia-
grams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 163–185.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0 9

8. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Logic
Comput. 24(1), 55–87 (2014)

9. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14,
1–38 (2014). https://doi.org/10.1016/j.cosrev.2014.07.001

10. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

11. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, Hoboken (2006)
12. Schneier, B.: Attack trees: Modeling security threats. Dr. Dobb’s J. (1999)

https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/978-3-662-46666-7_6
https://doi.org/10.1007/978-3-662-46666-7_6
https://doi.org/10.1109/CSF.2016.15
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/978-3-319-44878-7_3
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1016/j.cosrev.2014.07.001
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17

Probabilistic Modeling of Insider Threat
Detection Systems

Brian Ruttenberg1(B), Dave Blumstein1, Jeff Druce1, Michael Howard1,
Fred Reed1, Leslie Wilfong2, Crystal Lister2, Steve Gaskin3, Meaghan Foley4,

and Dan Scofield4

1 Charles River Analytics, Cambridge, MA 02138, USA
bruttenberg@cra.com

2 Cognitio Corp., McLean, VA 22102, USA
3 Applied Marketing Science, Waltham, MA 02451, USA
4 Assured Information Systems, Rome, NY 13441, USA

Abstract. Due to the high consequences of poorly performing auto-
mated insider threat detection systems (ITDSs), it is advantageous for
Government and commercial organizations to understand the perfor-
mance and limitations of potential systems before their deployment.
We propose to capture the uncertainties and dynamics of organiza-
tions deploying ITDSs to create an accurate and effective probabilistic
graphical model that forecasts the operational performance of an ITDS
throughout its deployment. Ultimately, we believe this modeling method-
ology will result in the deployment of more effective ITDSs.

Keywords: Insider threat · Probabilistic relational models

1 Introduction

Insider threats are a major source of concern for many Government agencies and
private sector industries. For example, several recent high-profile incidents have
revealed the severe damage that insiders can inflict on both Government and
commercial organizations [7,14]. While human analysis and direct questioning
may be the most accurate way to identify insiders, examining every individual
in a large organization is infeasible and intrusive, and most organizations use
automated methods to identify potential candidates for closer examination.

Automated insider threat detection systems (ITDSs) use information about
the people, activities, and data from an organization to infer potential or active
threats. Despite their widespread adoption, ITDSs tend to suffer from serious
deficiencies [12]. First, most ITDSs are deployed in dynamic organizations and
use uncertain or noisy data to make inferences; behavior changes over time,
world events can temporarily (but significantly) disrupt activities, and logs used
to infer threats may be imperfect or ambiguous. Second, the performance of
deployed ITDSs can vary significantly from their initial testing, or change over
time. Considering the high consequences of false negative detections, system
c© Springer International Publishing AG 2018
P. Liu et al. (eds.): GraMSec 2017, LNCS 10744, pp. 91–98, 2018.
https://doi.org/10.1007/978-3-319-74860-3_6

92 B. Ruttenberg et al.

Fig. 1. An example functional architecture of an ITDS.

sensitivities are often increased, producing massive amounts of false positives
that overwhelm human analysts. Finally, any post-deployment fixes on ITDSs is
a time-consuming task and one that is often neglected due to cost.

One solution to these problems is to model a proposed ITDS before it is
deployed in an organization. If such a model could account for the dynamics and
uncertainties, one could predict the impact of deploying an ITDS, compute its
sensitivity and robustness, or even use the model to optimize its performance.
However, building and using such a model is a challenging endeavor, since orga-
nizations, people, and the ITDSs themselves are complex entities.

In this paper, we describe our efforts to build and use probabilistic and rela-
tional graphical models [3] to represent and reason about automated ITDS per-
formance, quality and sensitivity. By representing the uncertainty in the threat
system (e.g., non-deterministic detection algorithms) and in the organization,
we have developed a powerful tool that gives ITDS analysts and designers the
ability to understand how and why insider threat performance may change in
deployed systems. Ultimately, we believe that our methodology will lead to the
development of more robust, calibrated, and accurate insider threat systems.

This paper is organized as follows. In Sect. 2, we provide some background on
insider threat systems and introduce notation on their structure and functions.
In Sect. 3, we detail the design and implementation of a graphical model of ITDS.
In Sect. 4, we present some applications and experiments using our system to
demonstrate its benefits. Finally, we conclude in Sect. 5.

2 Insider Threat Systems

Although ITDSs vary in implementation, they typically share commonalities
in their functional architecture, e.g., by decomposing the task of identifying
malicious users into the identification of particular threat types. Threat types can
include users exhibiting signs of leaving the organization, with newly abnormal
work habits, or transferring an unusual amount of data. Because insiders act
and behave relative to these threat types, the insider detection problem can be
viewed as flagging users who exhibit indicators of a specific threat type.

To make these inferences, the ITDS uses detectors as numerical realizations
of indicators. For example, consider the architecture of an ITDS shown in Fig. 1.
The threat type of interest is “users who exhibit abnormal work habits”, one
indicator is “works off hours”, and the detector for that indicator is “number of

Probabilistic Modeling of Insider Threat Detection Systems 93

(a) BN of an ITDS. (b) Extending a BN into a PRM. The rectangles
represent classes with varying details, such as dif-
ferent implementations or probability distributions.

Fig. 2. The Bayesian network (BN) and probabilistic relational model (PRM) formu-
lation of an ITDS.

days in a month with user VPN logins after 9 pm.” The ITDS must also have an
approach for issuing alerts from a potentially large number of detector values.
This process can be thought of as being composed of fusion and downselect
components; fusion merges detector outputs (e.g., counts the number of detectors
for which a user was in the top 10% of all users), and downselect issues an alert
if some criterion of the fusion is met (e.g., at least two detector values are true).

With complete information and perfect mappings from threat type to indica-
tor to detector values, an ITDS would solve the insider threat detection problem.
However, information gaps in the real world render perfect performance impossi-
ble. For example, actual threats vary in precisely which indicators they exhibit.
Gaps also exist between indicators and detectors; “works off hours” may be a
perfectly acceptable indicator, but “number of days in a month with VPN logins
after 9 pm” may not accurately capture that concept. The net result is non-ideal
performance in identifying threats, and potentially disastrous consequences for
missed detections.

3 Graphical Models of Insider Threat Systems

3.1 Modeling Framework

Our goal under this effort is to create a flexible, adaptable, and rich framework
for representing and reasoning on a variety of ITDS’s deployed in a multitude of
domains. Since these domains and ITSDs are uncertain and dynamic, we need
a modeling representation that can accurately reflect these uncertainties yet
still efficiently and effectively produce actionable results for a user. As such, we
represent the ITDS and its domain as a probabilistic relational model (PRM) [3].

94 B. Ruttenberg et al.

Before discussing the PRM, in Fig. 2(a) we first show the formulation of an
ITDS described in Sect. 2 as a generative Bayesian network (BN) [6]. At the
top of the figure, we have a variable representing the probability that a person
in the organization is a threat. Successive nodes have conditional probability
distributions of various components in the system, e.g., P (Indicatori|Threat).
Once these distributions are parameterized for a specific use case, marginalizing
this BN to the Downselect variable yields a distribution over the alert rate for
this ITDS (among other things that can be computed).

In essence, a PRM is an object-oriented BN. In Fig. 2(b), we extend the
original BN into a PRM. Specifically, we extend the BN by creating classes
describing various components of the ITDS, and describe the probabilistic rela-
tionship between these classes. There are several reasons why a PRM is more
effective for modeling ITDSs. First, the BN represents the threat as a single vari-
able for an entire organization. In reality, different people and roles within an
organization have varying likelihood of being insiders [1], and a PRM can easily
represent this uncertainty in different classes (as shown by the Person class at
the top of Fig. 2(b)). Second, ITDSs often flag people as potential threats when
their behavior is different or anomalous compared to others in the organiza-
tion or team. Hence, modeling the behaviors of a group of people can allow us
to model algorithms that make relative comparisons (like dimensionality reduc-
tion or clustering). Finally, a PRM allows us to represent uncertainty over the
structure of the ITDS itself, enabling us to characterize the performance of an
ITDS that selects algorithms dynamically or non-deterministically. For exam-
ple, Fig. 2(b) shows an ITDS where the choice of the fusion algorithm is either a
simple sum operation or uses the clustering method DBScan [2]. As shown later,
this representation can also allow one to optimize the ITDS to choose the best
algorithm or parameter that maximizes performance.

3.2 Implementation

Implementing a large PRM for an ITDS with many users and complex con-
straints is challenging. To facilitate rapid construction, (re-)configuration, and
reasoning, we build our framework using a probabilistic programming language
(PPL) [9]. Probabilistic programming is a general approach to representation
and reasoning that uses the flexibility and expressiveness of programming lan-
guages to create complex, rich, and realistic models of the world. Specifically, we
use Figaro [8], an object-oriented PPL that allows us to express PRMs that are
scalable (e.g., can be expanded to model complex, large organizations), uncertain
(e.g., over user behavior), and incorporate complex modeling components (e.g.,
multifaceted tasks such as downselecting). Using Figaro also allows us to per-
form a variety of informative inference queries without constructing additional
models, as will be discussed in Sect. 4. A full description of Figaro, downloadable
code, and runnable examples are available at https://github.com/p2t2/figaro.

The most challenging task is the parameterization of the probabilistic and
functional relationship between the variables, critical in describing uncertainty in
an ITDS and the target organization. For example, conditional probability values

https://github.com/p2t2/figaro

Probabilistic Modeling of Insider Threat Detection Systems 95

such as P (Indicator = True|Threat = True) must be chosen with respect to
that indicator and the norms and expectations in a particular organizations. Full
discussion of model parameterization is outside the scope of this paper. However,
our team has proposed and explored several options for accurately representing
parameters, including aggregation of collected statistics, using subject matter
expertise, and deploying surveys to capture the organizational behaviors. For
example, we deployed surveys that probed users about their email and inter-
net usage habits, and used the results to estimate the value and uncertainty for
parameter which can be directly incorporated into our model. Additional orga-
nization related parameters, e.g., prior threat probabilities, could be estimated
from previous manual assessments of users, or approximated by parameters from
similar organizations where these values are well known.

4 Experimentation

Once a model of an ITDS is defined, we can perform inference on the model.
Here, we consider three realizations of inference: performance, sensitivity, and
optimization, all performed on the same model. Because PPLs separate model
representation from model inference [5], we only need to build a single model
of the ITDS to perform a variety of queries. To test our approach, we model
the performance of an ITDS running on a simulated organization consisting
of four thousand employees, where users who are going to leave the company
are considered threats, and our four indicators are associated with excessive
webmail, login, and web-browsing activity. We obtain realistic detector data for
these indicators from a CERT database [4]. The system recall (the fraction of
true threats the system catches), the precision (the fraction of users the systems
identifies as threats that are true threats), and the false positive rate (FPR- the
fraction of users the system incorrectly identifies as threats) are considered.

4.1 Performance

Performance estimates are implemented as queries against the model for the
distribution or expected value of metrics, conditioned on one or more other
variables. For example, to measure the recall of an ITDS, we query the model
for the conditional distribution P (Downselect|Threat = true) (or the expec-
tation with respect to this distribution). Similarly for precision, we query for
P (Threat|Downselect = true).

In addition to distributions or expectations, we can also produce confidence
bounds on queries. That is, for some set of variables V in the model and some
performance query Q (e.g., recall), we can compute P (E[Q]|V), the distribution
of the expected value of Q conditioned on V. This has the benefit of conveying to
the user the variation of system performance that one could expect when deploy-
ing the ITDS in the real world, with respect to some uncertain parameters (e.g.,
the prior over the threat rate). In Fig. 3(a), we compute the 60% confidence inter-
val for 11 system performance metrics on our example ITDS model. The value

96 B. Ruttenberg et al.

(a) Performance results, showing the predic-
tion (circle), 60% interval, and ground truth
(dot) from a third–party evaluator.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target Value

No Correlation
Medium Correlation
High Correlation

(b) Sensitivity analysis, varying a pa-
rameter of the model P (Indicator1 =
true|Threat = true) for three different
levels of indicator correlation.

Fig. 3. Two illustrative examples of inference on an IEM.

of the first (left-most) query suggests that ITDS might detect fewer than 20% of
threats. However, system precision implies only one false positive for each true
positive, which appears to be an overly high precision for the ITDS application.
It is likely acceptable to release ten or more false alarms to every true threat-
assuming that would improve system recall-to the human screeners who are the
next step in the process.

4.2 Sensitivity

The sensitivity of the ITDS is also of interest to a system designer or analyst
who may want to understand the implications of incorrect assumptions or orga-
nizational changes over time. For example, suppose a slight perturbation in a
parameter leads to vastly different outcomes in the expected precision or recall of
the ITDS. Currently, sensitivity analysis is implemented using Figaro’s existing
inference capabilities (i.e., vary each parameter and record the changes in per-
formance). However, our ongoing research focuses on using more sophisticated
approaches, such as computing gradients of the queries via automatic differenti-
ation [10].

Figure 3(b) illustrates how sensitivity analysis might inform an ITDS
designer. In this example, we computed the system recall for all possible values
of the parameter P (Indicator1 = True|Threat = True) for the ITDS pictured
in Fig. 2(b). In this experiment, we consider the additional (and often realis-
tic) complexity that the indicators are correlated with three different degrees
strength. Interestingly, a perfect estimate (about 63%) cannot be realized by the
model with no correlation between the detectors, but can with the cases includ-
ing correlation. However, the correlation cases induce more variation, and hence
less stability.

Probabilistic Modeling of Insider Threat Detection Systems 97

4.3 Optimization

Designers may also seek to improve the performance of an ITDS by investigating
alternate configurations or algorithms, for example, by optimizing configuration
parameters to maximize system metrics. Using the same model as in the other
inference tasks, we frame optimization as a decision-making problem [13]. In
this formulation, we define a set of utility variables U in the model (e.g., system
precision or F1 score) and a parameter to optimize P . The optimal parameter P̂
is formulated as P̂ = argmax

p∈P
E[U |p] That is, select the value of P that produces

the highest expected utility. Performing this optimization builds on the existing
inference capabilities of Figaro that search the decision space over the parameters
of interest to maximize the utility function [11]. Table 1 illustrates an experiment
optimizing the configuration for six parameters in an ITDS, where the utility
is defined as the sum of system precision and recall. The final column shows
the incremental improvements to utility after each decision. This result suggests
that the optimized design is nearly twice as good as the original baseline (with
respect to the defined metrics).

Table 1. Results of an experiment optimizing configuration parameters to improve
predicted performance.

Decision Component Original threshold New threshold Utility

1 Detector A 2000 2100 1.04

2 Detector B 3 1 1.12

3 Detector C 7 8 1.14

4 Detector D 3 7 1.11

5 Detector E 1 2 1.12

6 Downselect 2 3 1.89

5 Conclusion

In this paper, we detailed our work creating a probabilistic and relational graphi-
cal model of ITDSs. Using the inference capabilities of our model, ITDS designers
can understand the performance and limitations of current and deployed systems,
and eventually, build more effective systems to thwart damaging incidents.

Significant future directions exist for this work. While we have presented
general capabilities of an ITDS model, there is still an open question of the best
way to adapt these capabilities for a variety of organizations: e.g., transferring
knowledge from one organization to another may be a feasible way to parame-
terize these models for new organizations. In addition, our framework allows a
variety of model topologies that can change depending on the organization.

98 B. Ruttenberg et al.

Acknowledgments. This work was supported by IARPA contract 2016-16031100002.
The views expressed are those of the authors and do not reflect the official policy or
position of the U.S. Government.

References

1. INSA’s Security Policy Reform Council: Assessing the mind of the malicious
insider. Technical report, Intelligence and National Security Alliance (2017).
https://www.insaonline.org/

2. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.
226–231 (1996)

3. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: IJCAI, vol. 99, pp. 1300–1309 (1999)

4. Glasser, J., Lindauer, B.: Bridging the gap: a pragmatic approach to generating
insider threat data. In: Security and Privacy Workshops (SPW), pp. 98–104. IEEE
(2013)

5. Goodman, N.D.: The principles and practice of probabilistic programming. In: Pro-
ceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 399–402. ACM (2013)

6. Jensen, F.V.: An Introduction to Bayesian Networks, vol. 210. UCL Press, London
(1996)

7. NPR: Ex-NSA contractor accused of taking classified information is indicted
(2013). http://www.npr.org/sections/thetwo-way/2017/02/09/514275544/ex-nsa-
contractor-indicted-for-taking-classifed-information

8. Pfeffer, A.: Creating and manipulating probabilistic programs with Figaro. In: 2nd
International Workshop on Statistical Relational AI (2012)

9. Pfeffer, A.: Practical Probabilistic Programming. Manning Publications, Cherry
Hill (2016)

10. Rall, L.B. (ed.): Automatic Differentiation: Techniques and Applications. LNCS,
vol. 120. Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-10861-0

11. Ruttenberg, B.E., Pfeffer, A.: Decision-making with complex data structures using
probabilistic programming. arXiv preprint arXiv:1407.3208 (2014)

12. Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack detection
research. In: Stolfo, S.J., Bellovin, S.M., Keromytis, A.D., Hershkop, S., Smith,
S.W., Sinclair, S. (eds.) Insider Attack and Cyber Security. Advances in Informa-
tion Security, vol. 39, pp. 69–90. Springer, Boston (2008). https://doi.org/10.1007/
978-0-387-77322-3 5

13. Shachter, R.D.: Evaluating influence diagrams. Oper. Res. 34(6), 871–882 (1986)
14. New York Times: A lawsuit against Uber highlights the rush to conquer driverless

cars (2017). https://nyti.ms/2kVzR8Z

https://www.insaonline.org/
http://www.npr.org/sections/thetwo-way/2017/02/09/514275544/ex-nsa-contractor-indicted-for-taking-classifed-information
http://www.npr.org/sections/thetwo-way/2017/02/09/514275544/ex-nsa-contractor-indicted-for-taking-classifed-information
https://doi.org/10.1007/3-540-10861-0
http://arxiv.org/abs/1407.3208
https://doi.org/10.1007/978-0-387-77322-3_5
https://doi.org/10.1007/978-0-387-77322-3_5
https://nyti.ms/2kVzR8Z

Security Modeling for Embedded System Design

Letitia W. Li1,2(B), Florian Lugou1, and Ludovic Apvrille1

1 Télécom ParisTech, Université Paris-Saclay,
450 route des Chappes, Sophia Antipolis, France

{letitia.li,florian.lugou,ludovic.apvrille}@telecom-paristech.fr,
letitia.li@vedecom.fr

2 Institut VEDECOM, 77 rue des Chantiers, Versailles, France

Abstract. Among the many recent cyber attacks, the Mirai botnet
DDOS attacks were carried out using infected IoTs. To prevent our con-
nected devices from being thus compromised, their security vulnerabili-
ties should be detected and mitigated early. This paper presents how the
SysML-Sec Methodology has been enhanced for the evolving graphical
modeling of security through the three stages of our embedded system
design methodology: Analysis, HW/SW Partitioning, and Software Anal-
ysis. The security requirements and attack graphs generated during the
Analysis phase determine the sensitive data and attacker model during
the HW/SW Partitioning phase. We then accordingly generate a secured
model with communication protection modeled using abstract security
representations, which can then be translated into a Software/System
Design Model. The Software Model is intended as the final detailed model
of the system. Throughout the design process, formal verification and
simulation evaluate safety, security, and performance of the system.

Keywords: Embedded systems · ProVerif · Formal verification

1 Introduction

To prevent the compromise of connected objects, their security vulnerabilities
should be detected and mitigated, preferably as early as possible. Correcting
these security flaws might be difficult once the system has been released - and
sometimes impossible - if the flaws cannot be corrected by software update only.
Furthermore, adding security mechanisms at the late stages of software develop-
ment may change the performance of the system to render a selected architecture
non-optimal.

Autonomous drones have been proposed for use in disaster relief efforts. How-
ever, insufficient security may allow an unauthorized attacker to gain control
of the drone. Furthermore, disaster relief drones may carry sensitive data and
images that should be kept confidential [15].

The SysML-Sec methodology was introduced to handle the design of such
complex systems, in terms of safety, performance, and security [2]. SysML-Sec
is an extension of UML for the design of embedded systems. It addresses system
c© Springer International Publishing AG 2018
P. Liu et al. (eds.): GraMSec 2017, LNCS 10744, pp. 99–106, 2018.
https://doi.org/10.1007/978-3-319-74860-3_7

100 L. W. Li et al.

development starting from Requirements and Attacks analysis, progressing into
Hardware/Software Partitioning, and finishing with Software/System Design.
The entire design process is supported by TTool, a free, open-source, multi-
profile toolkit [3].

The paper presents how security can be efficiently handled through the entire
design process (see Fig. 1). Solid lines in the methodology represent manual steps
to be performed by the designer, while dotted lines represent automatic steps
performed by our toolkit. Our methodology starts with Requirements/Analysis
phase, described in Sect. 2, which helps a designer consider the security require-
ments and possible attacks. Next, we describe the security-aware HW/SW Par-
titioning phase, where we model the abstract system architecture and behavior
based on those requirements and risks. Section 4 describes the transition to the
final Software Design phase. Next, we present the related work in Sect. 5. Finally,
Sect. 6 concludes the paper.

Fig. 1. Design methodology

2 Analysis: Security Requirements and Attack Trees

The methodology depicted in Fig. 1 starts with the Analysis phase (Step 1),
which involves describing the requirements and use case of the system, and then
considers the possible attacks that the system may face. This analysis is expected
to prepare the verification phase, and to drive the two further steps (functional
view, architecture view) with the selection of the components (functions, hard-
ware elements) adapted to counter the listed attacks. The necessary iterations
between requirements, attacks, and components of the system are not detailed
in this paper, but are explained in [14].

Security Modeling for Embedded System Design 101

Fig. 2. Security-related Requirements Diagram for a drone

Figure 3 shows a high-level overview of one attack tree for gaining control
of the drone. An attacker must understand how to forge commands, then gain
remote access to the drone while denying access to the legitimate user controller.
The avenues for gaining control include kicking the legitimate user and then
connecting to the drone [6], or a Man-in-the-Middle (MITM) attack [13].

The Requirements Diagram includes the textual specifications regarding
important properties of the system. Figure 2 shows an extract of the Security-
related Requirements Diagram. These requirements may be continually refined
with the details of their implementation. The requirement for the drone to be
secure involves the sub-requirements that the drone should only accept com-
mands from the authorized user, and that captured images should remain con-
fidential.

After performing this analysis, we detail in the next section how to use these
diagrams for security modeling in the HW/SW Partitioning phase.

Fig. 3. Attack Tree for gaining unauthorized control of a drone

102 L. W. Li et al.

3 Security-Aware HW/SW Partitioning

The HW/SW Partitioning phases models the high-level behavior and architec-
ture of the drone system, based on the Y-chart methodology. The application
model (Fig. 4) designs the high-level behavior of the system as a set of communi-
cating tasks. The architecture (Fig. 5) is modeled as the execution nodes (CPUs
and Hardware Accelerators) and memories connected by buses and bridges. The
mapping model then places the application tasks onto execution nodes of the
architecture.

3.1 Security Modeling

Based on the security requirements described in the Analysis Phase, certain com-
munications may be considered critical and must be secured. For example, since
images taken by the camera and should be secure, we mark those communica-
tion channels with a grey lock to indicate that we should examine its security
properties.

Attack Trees describing scenarios of attack also provide information on the
attacker’s actions and capabilities. In our attack tree, we assumed that the
attacker could intercept the Wifi communications between the controller and
Drone. On the other hand, since we assume the attacker has no physical access
to the drone and cannot probe the internal drone bus, then we mark it as secure
with the green shield.

In this sample mapping, mission commands are broadcast across a bus acces-
sible to the attacker, so we must secure that communication.

Fig. 4. Application model of drone considering requirements

Abstract operators named ‘Cryptographic Configurations’ indicate security
operations performed on communications [9]. These application security ele-
ments may be added manually or automatically after a security verification. Since
security operations can be computationally-intensive and require the secure stor-
age of cryptographic elements (e.g., keys), there exist specialized co-processors
Hardware Security Modules which perform cryptographic operations faster than
a normal processor and store cryptokeys.

Security Modeling for Embedded System Design 103

Fig. 5. Architecture model of drone considering attacks

To verify that these countermeasures are sufficient, our toolkit performs secu-
rity verification automatically with ProVerif [12]. The verification results are
backtraced automatically to our diagrams, by marking communications that are
verified secure for a given mapping with a green lock, and marking insecure
communications with a red lock. Once our mapping has been verified to meet all
safety, security, and performance requirements, then the software of the system
can be designed in detail, as described in the next section.

4 Security in Software Design

After HW/SW Partitioning has determined the architecture and mapping of
the system, we design the software components of the application in greater
detail. Our toolkit can generate a software design diagram automatically based
on HW/SW Partitioning models. The details of the algorithms to be imple-
mented must then be added by the designer. For example, the trajectory cal-
culation algorithm should be added in place of the element indicating only its
computational complexity. The generation saves the designer time, by creating
the model blocks and framework.

Figure 6 shows the transition from the Activity Diagram in HW/SW Par-
titioning to the State Machine Diagram in Software Design for the drone con-
troller. Cryptographic configurations are translated into software methods. The
software modeling environment also offers primitives to closely model security
protocols.

Verification of Software Design models is intended to verify the details of
implementations of security. For example, the verification may concern the con-
fidentiality of one given block attribute, or the authenticity of one given message
exchanged between SysML block. On the contrary, verification at mapping stage
concerns abstract data channel.

5 Related Work

[4] relies on Architecture Analysis and Design Language (AADL) models to con-
sider architectural mapping during security verification. The authors note that
a system must be secure on multiple levels: software applications must exchange
data in a secure manner, and also execute on a secure memory space and commu-
nicate over a secure channel. Our approach, however, considers security regarding
protection against external attackers instead of access control.

104 L. W. Li et al.

Fig. 6. Translation of activity diagrams to state machine diagrams

Another approach performs Design Space Exploration on a vehicular net-
work protecting against replay and masquerade attacks [10]. The project evalu-
ates possible security mechanisms, their effects on message sizes, and candidate
architectures during the mapping phase. While their work targets automotive
systems and network communications, our analysis may be applied more broadly
for any embedded system.

Attack Defense Trees [7] analyze the possible attacks against a system, in
conjunction with the defenses that the system may implement. The supporting
toolkit ADTool analyzes attack scenarios to determine the cost, probability, time,
etc., required for a successful attack.

The Knowledge Acquisition in Automated Specifications approach Security
Extension aims to identify security requirements for software systems [8]. The
methodology uses a goal-oriented framework and builds a model of the system,
and then an anti-model which describes possible attacks on the system. Both
models are incrementally developed: threat trees are derived from the anti-model
and the system model adds security countermeasures to protect against the
attacks described in the anti-model.

SecureUML enabled the design and analysis of secure systems by adding
mechanisms to model role-based access control [11]. Authorization constraints
are expressed in Object Constraint Language (OCL) for formal verification. Our
security model focuses on protecting against an external attacker instead of
access control. In contrast to formula-based constraints or queries, our approach
to security analysis relies on graphically annotating the security properties to
query within the model.

Another work [16] proposed modeling security in embedded systems with
attack graphs to determine the probability that data assets could be compro-
mised. While their approach is also UML-based, they focus on estimating proba-
bilities of success for attacks, while ours focuses on verifying adequate placement
of encryption.

UMLSec [5] is a UML profile for expressing security concepts, such as encryp-
tion mechanisms and attack scenarios. It provides a modeling framework to
define security properties of software components and of their composition within

Security Modeling for Embedded System Design 105

a UML framework. It also features a rather complete framework addressing var-
ious stages of model-driven secure software engineering from the specification of
security requirements to tests, including logic-based formal verification regard-
ing the composition of software components. However, UMLSec does not take
into account the HW/SW Partitioning phase necessary for the design of IoTs.

The Software Architecture Modeling (SAM) framework [1] aims to bridge the
gap between informal security requirements and their formal representation and
verification. SAM uses formal and informal security techniques to accomplish
defined goals and mitigate flaws. SAM relies on a well established toolkit - SMV
- and considers a threat model, but the “security properties to proof” process is
not yet automated. In contrast, our work focuses on automatic formal verification
from an abstract partitioning model.

In contrast to these approaches, our work involves a methodology for the
modeling and analysis of security at all stages in the design process.

6 Conclusion

This paper presented how our enhanced SysML-Sec Methodology now considers
security at all phases in the design process. We examined the security consider-
ations in the design of a disaster relief drone, which must not be compromised
or controlled by an attacker. First, the requirements and attacks phase helps us
decide what data needs to be secure and which architectural locations are vul-
nerable, which then leads us to add abstract representations of security. Once
an architecture and mapping are decided, then we can generate the base struc-
ture of the software models. The software model is then refined to include the
algorithms and details of the software to be developed.

In future work, we plan to better connect the Analysis and Partitioning
phases. Currently, the Analysis phase provides guidelines for the designer, but
does not explicitly connect security requirements in the Requirements Diagram
with the critical channels in the Mapping Models. We should add the capabili-
ties to trace the fulfilment of each requirement. The attack paths in the Attack
Trees could also provide more explicit information regarding the security of spe-
cific architectural elements, instead of needing to be deciphered by a designer.
These additions will enhance our toolkit to better support the design of secure
embedded systems.

Acknowledgment. This work was partly funded by the French Government
(National Research Agency, ANR) through the Investments for the Future Program
reference #ANR-11-LABX-0031-01 and Institut VEDECOM.

106 L. W. Li et al.

References

1. Ali, Y., El-Kassas, S., Mahmoud, M.: A rigorous methodology for security archi-
tecture modeling and verification. In: Proceedings of the 42nd Hawaii International
Conference on System Sciences. IEEE (2009). 978-0-7695-3450-3/09

2. Apvrille, L., Roudier, Y.: SysML-Sec: a model driven approach for designing safe
and secure systems. In: 3rd International Conference on Model-Driven Engineering
and Software Development, Special session on Security and Privacy in Model Based
Engineering. SCITEPRESS Digital Library, France, February 2015

3. Apvrille, L.: TTool, December 2003. ttool.telecom-paristech.fr
4. Hansson, J., Wrage, L., Feiler, P.H., Morley, J., Lewis, B., Hugues, J.: Architectural

modeling to verify security and nonfunctional behavior. IEEE Secur. Priv. 8(1),
43–49 (2010)

5. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45800-X 32

6. Kamkar, S.: Skyjack: autonomous drone hacking (2003). http://www.samy.pl/
skyjack/

7. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: security analysis with
attack–defense trees. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 173–176. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40196-1 15

8. van Lamsweerde, A.: Elaborating security requirements by construction of inten-
tional anti-models. In: Proceedings of the 26th International Conference on Soft-
ware Engineering, ICSE 2004, pp. 148–157 (2004)

9. Li, L.W., Lugou, F., Apvrille, L.: Security-aware modeling and analysis for
HW/SW partitioning. In: Conferénce on Model-Driven Engineering and Software
Development (Modelsward 2017), Porto, Portugal, February 2017

10. Lin, C.W., Zheng, B., Zhu, Q., Sangiovanni-Vincentelli, A.: Security-aware design
methodology and optimization for automotive systems. ACM Trans. Des. Autom.
Electroni. Syst. (TODAES) 21(1), 18 (2015)

11. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: a UML-based modeling lan-
guage for model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45800-X 33

12. Lugou, F., Li, L.W., Apvrille, L., Ameur-Boulifa, R.: SysML models and model
transformation for security. In: Conferénce on Model-Driven Engineering and Soft-
ware Development (Modelsward 2016), Rome, Italy, February 2016

13. Rodday, N.: Hacking a Professional Drone, March 2016. Slides at www.blackhat.
com/docs/asia-16/materials/asia-16-Rodday-Hacking-A-Professional-Drone.pdf

14. Roudier, Y., Idrees, M.S., Apvrille, L.: Towards the model-driven engineering of
security requirements for embedded systems. In: Proceedings of MoDRE 2013,
Rio de Janeiro, Brazil, July 2013

15. Tanzi, T.J., Sebastien, O., Rizza, C.: Designing autonomous crawling equipment
to detect personal connected devices and support rescue operations: technical and
societal concerns. Radio Sci. Bull. 355(355), 35–44 (2015)

16. Vasilevskaya, M., Nadjm-Tehrani, S.: Quantifying risks to data assets using formal
metrics in embedded system design. In: Koornneef, F., van Gulijk, C. (eds.) SAFE-
COMP 2015. LNCS, vol. 9337, pp. 347–361. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24255-2 25

http://www.ttool.telecom-paristech.fr
https://doi.org/10.1007/3-540-45800-X_32
http://www.samy.pl/skyjack/
http://www.samy.pl/skyjack/
https://doi.org/10.1007/978-3-642-40196-1_15
https://doi.org/10.1007/978-3-642-40196-1_15
https://doi.org/10.1007/3-540-45800-X_33
https://doi.org/10.1007/3-540-45800-X_33
www.blackhat.com/docs/asia-16/materials/asia-16-Rodday-Hacking-A-Professional-Drone.pdf
www.blackhat.com/docs/asia-16/materials/asia-16-Rodday-Hacking-A-Professional-Drone.pdf
https://doi.org/10.1007/978-3-319-24255-2_25
https://doi.org/10.1007/978-3-319-24255-2_25

Circle of Health Based Access Control
for Personal Health Information Systems

Ryan Habibi(B), Jens Weber, and Morgan Price

LEAD Lab, University of Victoria, 3800 Finnerty Rd, Victoria, Canada
rphabibi@uvic.ca

http://www.leadlab.ca

Abstract. Patients can track, manage, and share their personal health
information (PHI). There are security concerns with the ownership and
custodianship of PHI. Traditional provider-facing access control (AC)
policies have been applied to many patient-facing applications without
consideration as to whether these controls are comprehensible and suf-
ficient. We have conducted a scoping literature review of on AC and
patient privacy (n = 31) to identify the state of knowledge and to under-
stand what is being done to address this gap. Synthesizing the results
we propose Circle of Health Based AC, a graphical patient-centric AC
model. The model has been validated with a panel of user experience,
healthcare, and security experts. This work will discuss the scoping lit-
erature review and describe the proposed model and justification for it’s
applications for user-defined access policy.

Keywords: Attribute-based access control
Personal Health Information · Circle of Care · Graph transformations

1 Introduction

Personal health management technology is an emerging field raising questions
about ownership of personal health information (PHI). Traditional privacy tools
and strategies have been applied but consideration of how patients understand
PHI, its sensitivity, or storage and retrieval have been sparsely reported; this
leaves users vulnerable when the user’s mental model of their privacy is not
expressed clearly. According to Norman, the user’s mental model is not based on
facts but what the user believes about the system at hand [1]. We will examine
access control paradigms and the user context surrounding patients engaged
proactively or reactively in their healthcare. We conclude by proposing the Circle
of Health Based Access Control (CoHBAC) as a user-centric, graph-based access
control policy for health applications.

2 Background

Access control (AC) models are one facet of design required to develop secure sys-
tems. Other commonly required mechanisms include identification and authen-
tication, data encryption, audit trails, etc. The focus of this work is on AC. The
other mechanisms are assumed to be sufficient as prerequisites.
c© Springer International Publishing AG 2018
P. Liu et al. (eds.): GraMSec 2017, LNCS 10744, pp. 107–114, 2018.
https://doi.org/10.1007/978-3-319-74860-3_8

108 R. Habibi et al.

Price describes a Circle of Care (CoC) as a system centered on a patient
which contains providers, information, and activities related to the patient’s
care [2]. Relationships between patients and the actors in their CoC are complex
and constantly evolving. CoC’s can be quite extensive; Pham et al. found that
patients managing multiple health concerns may see up to 16 physicians in a
single year [3]. Furthermore, Price points out that providers in the CoC may not
be limited to formal care givers.

We extend the CoC to encompass trusted laypeople who may assist a subject
of care. We name this broader collection the Circle of Health (CoH). In addition
to more comprehensively encompassing the actors in an individual’s contextual
healthcare process, this extension also considers that many patients engage in
healthcare unrelated to ongoing treatment. We use the illustration of mobile
fitness, which allows individuals to proactively manage their health when no
health concern is present.

Users may have a disconnect between expectations of privacy and the poten-
tial consequences of using a service. Users must agree to terms of service in
order to track and aggregate data. Few users possess the knowledge and skills
to create meaningful metrics from the data independently. Several important
questions emerge from the transfer of data. Users may not fully understand
viewing/editing rights, ownership, or to what extent data can be erased. Com-
panies may own data reported allowing them to sell the raw data or inferences
which can be made from its analysis.

PHI (including clinical, fitness, location, and demographic data) is sensitive.
Publication of some or all of a patients’ data can have social or financial repercus-
sions. Kahn et al. describe principles for an ideal personal health record system
as one that will require “information to be protected and private; that ownership
lie solely with the consumer; that storage and use of the data be approved by
the patients;” [4]. These three principals form a basis for patient-centric policy.
However, they are not sufficient to protect users from harm caused by misunder-
standing and/or misuse of the system which adheres to these principles. Granting
ownership is not enough. Patients must have a sufficient knowledge of the data,
usable privacy and access controls, and understand the consequences of use.

User-centric AC design increases security by reducing human error when
defining and reviewing AC policy. Having established the necessity for user-
centric AC in healthcare the remainder of this work is as follows: In Sect. 3 we
will discuss a scoping literature review and synthesis of AC models in healthcare.
In Sect. 4 we will formalize the results of the literature review into our graph
model. Section 5 will discuss strengths and limitations of our model. Finally,
Sect. 6 will address future work.

3 Scoping Literature Review

We conducted a scoping literature review [5] on AC models for user-centric health
information systems. This review was conducted to rapidly map key concepts
underpinning the emerging research field, identify main sources, and types of
evidence available. Our initial research was:

Circle of Health Based Access Control 109

“What is known in the current literature about AC models for consumer health
informatics applications, including their effectiveness, limitations, and compre-
hensibility.”
The search was restricted to English online sources published between 2004
and 2015. We searched Compendex and INSPEC with controlled terms “access
control”, “health care”, “health”, and “social networks” for inclusion. Con-
trolled terms such as “biometrics”, “sensor nodes”, and “quality of service”
were selected for exclusions to focus results. Moreover, we added uncontrolled
keywords “patient”, “client”, or “consumer”. This resulted in 124 unique pub-
lications. Additionally, we searched MedLine utilizing MeSH controlled vocab-
ulary terms “personal health records”, “consumer health information”, “social
support”, “confidentiality”, and “computer security”. This resulted in an addi-
tional 49 unique publications. The 173 collected abstracts were screened and
excluded if:

– Meta-data (title/abstract/keywords) does not express any focus on consumer-
facing health informatics application. This may be expressed by mentioning
a consumer-facing technology (such as PHR), a representative of such a tech-
nology (such as Google Health), the reference to consumers/patients as direct
users of a system, or the use of terms that indicate a patient-facing component
of the IT solution (e.g., Telehealth).

– Meta-data does not express any focus on patient driven AC or security models.

The remaining publications (n = 31) made up the corpus for this review and
were analyzed for key themes and grouped based on type of AC mechanism.

3.1 Themes

Three themes emerged from the literature: (1) Definition of privacy, (2) Measur-
ing user trust and, (3) Temporal access constraints.

Definition of Privacy. In the included corpus, several authors characterize
requirements to govern the design of AC mechanisms for patient-controlled PHI,
referencing various legal and social frameworks. Hue et al. use Westin’s definition
of privacy as representing “the claim of individuals, groups, or institutions to
determine for themselves when, how, and to what extent...informations about
them is communicated to others” [6]. This definition has been used as the basis
for the U.S. Health Insurance Portability and Accountability Act, the European
Data Protection Direction, the Data Protection Act of Japan, and others. We
will also use Westin’s definition of privacy as a basis for our AC model.

Measuring User Trust. An empirical study on consumer requirements and
factors influencing patient-centric AC model requirements was published by
Trojer et al. [7]. Trust relationships were reported to be the most important
factor for patient decision making. This was explored by Levy et al., in their

110 R. Habibi et al.

work on trust-aware privacy controls they proposed a formal trust metric. [8]
Margheri et al. states that many formalisms for defining AC policies are not
user-friendly and impede human understanding [9].

Temporal Access Constraints. Access to PHI often has a temporal dimen-
sion. Sicuranza and Esposito [11] proposed a combination of role-based AC,
mandatory AC, and a temporal aspect which allows patients to provide time-
limited consent directives for patients who are aware of how long an actor will
be in their CoH.

3.2 AC Models

Although several AC paradigms were discussed, few complete AC models were
presented. Commonly, a specific aspect of AC was addressed. Examples of AC
aspects discussed in the corpus not discussed above are: requirements gathering
for AC in healthcare; work-flow based consent directives; emergency response;
intended data usage and social networks; default policy, overrides, access revo-
cation; and verification and validation of AC Policies.

3.3 Synthesis

The conducted review informed our research question and provided a basis for
defining an AC model. It is clear from the literature review that patient own-
ership and custodianship of PHI is a relatively new concept and there are few
proposed AC models. Based on the available literature we identified the following
ten requirements:

Data Objects

– [R1] Differentiate data by sensitivity
– [R2] Differentiate data by type or treatment (episodic) context
– [R3] Maintain data provenance (origin, time of creation, time of last access)
– [R4] Provide data compositionality

Subjects (Actors in the CoH)

– [R5] Subjects may be individuals, groups, or entire organizations
– [R6] Subjects may contribute data to a patient, or may just be viewing data.

Circle of Care (Actors and Rights)

– [R7] Differentiate CoH by trust criteria. (Patients may have multiple CoHs)
– [R8] Allow for ephemeral CoHs as well as for persistent ones.
– [R9] Subjects may stay anonymous with respect to other subjects in the CoH

Usability

– [R10] The model should be easy to use and comprehend from a patients
perspective

Circle of Health Based Access Control 111

4 Circle of Health Based Access Control

We formalized the Circle of Health Based Access Control (CoHBAC) model
(Fig. 1) to meet the ten requirements identified from the literature review in the
Canadian healthcare context. This method is based on graphs and graph trans-
formation systems [12]. Figure 1 shows a graph schema to represent CoHBAC
policies. CoHBAC is a generalizable patient-centric privacy control paradigm
and is intended to be extensible and flexible as needs evolve.

Users in CoHBAC are actors. Two principal types of actors exist: patient
or provider. The difference between providers and patients is that the latter
have a personal CoH and PHI. The provider role extends beyond primary care
providers. Organizations can be represented as providers. Organizations (care
facilities, support groups, and health authorities) can act as a single provider.

Fig. 1. Formalized CoH-based AC model

To better match the patient’s privacy mental model, all privacy controls are
implemented on groups of actors, referred to as circles, to better map changes
in context to policy creation and maintenance.

4.1 Satisfying Requirements

PHI can be described and constrained by attributes. [R1], [R2], [R3] and [R8]
are satisfied by extending CoHBAC to include the attributes modeled in Fig. 1.
Any data object may be a collection of data by [R4] and allows inherited access
controls to be implemented on any level of the hierarchy. Actors may be identified
as a provider by [R5]. The patient may have any number circles by [R7]. In
others’ circles actors can be granted editing rights, [R6], and choose anonymity
from other members in that circle, [R9].

112 R. Habibi et al.

[R10] is more challenging to prove due to its dependence on interface; how-
ever, in this section we will argue why CoHBAC is accessible and knowable by
design.

CoHBAC is a combination of Role-Based AC (RBAC) and Attribute-Based
AC (ABAC). It can implement either model or a combination of both based
on user needs and limitations. While RBAC is the dominant model applied in
provider facing systems it is commonly not considered to provide sufficient gran-
ularity for patient-controlled PHI [10]; most patient-centric AC models identified
in the review provided some combination of role-based and identity-based policy
statements.

An individual’s relationship with members of their CoH exist on a continuum
of trust and therefore must be addressed on a case by case basis; this further
emphasizes the users’ need to define AC policy with a high degree of granularity.
Despite many users’ mental model of their privacy being more detailed than
RBAC affords, some users cannot or will not bear the additional cognitive load.

To address trust relationships, ABAC can be implemented for fine granu-
larity AC. ABAC adds complexity for the user in both the initial setup and
maintenance. The complexity of ABAC stems, in part, from difficulties man-
aging a mental model of the system over time. CoHBAC allows user defined
contextual groupings which relate directly to their perception of their CoH. By
closely coupling changes in the patient’s real world CoH or health concerns to
correspond with required changes in their privacy controls CoHBAC can utilize
fine grain ABAC while lessening the cognitive load.

Consider the potential users of a tool which would implement CoHBAC. We
define our target user base as “Any individual actively engaged in managing
their health”. This includes users involved in proactive PHI management and
those undergoing treatment. With a broad user base comes a wide variety of
technical, physical, and mental skill levels. The proposed solution needs to be
flexible and extensible such that a simplified model is accessible to users deficient
in the required skills as well as an extended model for users who want to define
very specific policy.

Individual CoHBAC actors are not granted data access. Instead, actors are
members of a patient’s circles. The context of each circle may be defined by
involvement in care for an illness or injury, or it may relate to a dimension of
health such as fitness, diet, or mental health. Patients are expected to know
when to update their access policy as it reflects changes in their context.

Instances of the CoHBAC exists on a continuum from lowest granularity
(RBAC) to highest granularity (ABAC) inclusively, dependant on the user’s cir-
cles. It is possible to implement RBAC or ABAC using CoHBAC. Generally,
as the number of circles increases and the average number of members per cir-
cle decreases the model tends towards ABAC. Instances with one member per
circle and each actor included in a single circle most closely resembles tradi-
tional ABAC. As the number of circles decreases and the number of members
per circle increases membership criteria becomes more abstract resembling tra-
ditional RBAC.

Circle of Health Based Access Control 113

5 Limitations

In this work we have discussed the CoHBAC model and the evidence-based app-
roach used to design a patient-centric AC model. Our investigation of literature
was not exhaustive on account of our selection of primary publications databases
and choice to limit the search to electronically available publications in English.
While Inspec, Compendex, and Pubmed are comprehensive indexing databases
covering a large portion of engineering and health IT venues, the consideration
of additional databases or printed resources may yield further relevant studies.
Emphasis was placed on the use of controlled vocabularies in searching these
databases which may have caused us to overlook publications which were not
explicitly associated with the controlled terms.

6 Future Work

The CoHBAC model was developed with a panel of experts including a physician,
a safety engineer, and user experience experts. Further refinement requires user
feedback. Several medium and high fidelity interactive prototypes were created
to allow the interdisciplinary team to visualize and discuss difficult edge cases in
healthcare. Further work testing CoHBAC user interfaces will uncover strengths
and limitations from provider and patient viewpoints.

One way of specifying a secure AC model is to define a secure initial state
and a set of secure transformations that are guaranteed to output a secure state
given that their input is a secure state. We define the initial state of our AC
graph as the empty graph, which, can be considered secure, as it provides no
privileges. A graph rewriting language allows us to formally specify all actions
on the AC model and to verify that insecure states cannot be reached. We leave
out the formal set of secure graph transformations to describe CoHBAC due to
space limitations. We plan to extend this work by comparing CoHBAC to other
AC models implemented in healthcare.

7 Conclusion

The Circle of Health defines the context and actors that surround an individuals
health management and recovery. Users expect connectivity and interoperability
despite risks. Sharing of PHI has the potential to help care providers understand
the context surrounding patients and empower those patients to take a more
prominent role in their health management. CoHBAC seeks to move away from
the assumptions made by provider-facing AC models. By focusing on extensi-
bility and usability by design CoHBAC matches any user’s need to describe the
complex trust relationships associated with their health management bounded
by their physical and cognitive skills. A graph based formalism including graph
tests and secure transformations enable precise definition and verification of AC
decisions. CoHBAC couples usability by design with formal graph models to cre-
ate a new paradigm where users can own their data and understand the privacy
and security surrounding it.

114 R. Habibi et al.

References

1. Norman, D.A.: The Design of Everyday Things: Revised and Expanded Edition.
Basic Books, New York (2013)

2. Price, M.: Circle of Care Modeling: Seeking Improvements in Continuity of Care
for end of life patients. PhD Dissertation, School of Health Information Science,
University of Victoria (2009)

3. Pham, H., Schrag, D., O’Malley, A., Wu, B., Bach, P.: Care patterns in Medicare
and their implications for pay for performance. New Engl. J. Med. 356(11), 1130
(2007)

4. Kahn, J.S., Aulakh, V., Bosworth, A.: What it takes: characteristics of the ideal
personal health record. Health Aff. 28(2), 369–376 (2009)

5. Arksey, H., O’Malley, L.: Scoping studies: towards a methodological framework.
Int. J. Soc. Res. Methodol. 8(1), 19–32 (2005)

6. Hue, P.T.B., Wohlgemuth, S., Echizen, I., Thuc, N.D., Thuy, D.T.B.: An exper-
imental evaluation for a new column-level access control mechanism for elec-
tronic health record systems. Int. J. U- E-Serv. Sci. Technol. 4(3), 73–86 (2011).
http://www.sersc.org/journals/IJUNESST/vol4 no4/1.pdf

7. Trojer, T., Katt, B., Ozata, T., Breu, R., Mangesius, P., Schabetsberger, T.: Factors
of access control management in electronic healthcare: the patients perspective, pp.
2967–2976. IEEE (2014). https://doi.org/10.1109/HICSS.2014.369

8. Levy, K., Sargent, B., Bai, Y.: A trust-aware tag-based privacy control for eHealth
2.0. In: Proceedings of the 2011 Conference on Information Technology Education.
ACM (2011)

9. Margheri, A., et al.: On a formal and user-friendly linguistic approach to access
control of electronic health data, pp. 263–268 (2013)

10. Ssembatya, R.: An access control framework for protecting mobile health records:
the case study of developing countries. In: Proceedings of the Ninth International
Network Conference (INC 2012) (2012). Lulu.com

11. Sicuranza, M., Esposito, A.: An access control model for easy management of
patient privacy in EHR systems. In: 2013 8th International Conference for Internet
Technology and Secured Transactions (ICITST), pp. 463–470 (2013). https://doi.
org/10.1109/ICITST.2013.6750243

12. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Graph transformation systems. In:
Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. (eds.) Fundamentals of Algebraic
Graph Transformation. EATCS, pp. 37–71. Springer, Heidelberg (2006). https://
doi.org/10.1007/3-540-31188-2 3

http://www.sersc.org/journals/IJUNESST/vol4_no4/1.pdf
https://doi.org/10.1109/HICSS.2014.369
https://www.Lulu.com
https://doi.org/10.1109/ICITST.2013.6750243
https://doi.org/10.1109/ICITST.2013.6750243
https://doi.org/10.1007/3-540-31188-2_3
https://doi.org/10.1007/3-540-31188-2_3

New Directions in Attack Tree Research:
Catching up with Industrial Needs

Olga Gadyatskaya(B) and Rolando Trujillo-Rasua

SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
{olga.gadyatskaya,rolando.trujillo-rasua}@uni.lu

Abstract. Attack trees provide a systematic way of characterizing
diverse system threats. Their strengths arise from the combination of
an intuitive representation of possible attacks and availability of for-
mal mathematical frameworks for analyzing them in a qualitative or a
quantitative manner. Indeed, the mathematical frameworks have become
a large focus of attack tree research. However, practical applications
of attack trees in industry largely remain a tedious and error-prone
exercise.

Recent research directions in attack trees, such as attack tree gener-
ation, attempt to close this gap and to improve the attack tree state-of-
the-practice. In this position paper we outline the recurrent challenges in
manual tree design within industry, and we overview the recent research
results in attack trees that help the practitioners. For the challenges
that have not yet been addressed by the community, we propose new
promising research directions.

1 Introduction

Attack trees are one of the most popular graphical models for information secu-
rity assessment. Proposed originally by Bruce Schneier in 1999 [57], they are
intuitive and relatively easy to master, yet they enjoy well-studied formalizations
and quantitative analysis means [4,5,31,39]. Security risk assessment at industry
has long appreciated attack trees as a means to solve cognitive scalability issues
related to securing large systems [46], and as a tool to enable communication
among different stakeholders and facilitate brainstorming [15,59].

From the graphical perspective an attack tree resembles a mind map [11,59]:
a powerful cognitive tool used often in Psychology and Education. It has a single
root node, representing the main attacker’s goal, which is subsequently refined
in sub-goals captured by child nodes. But this is where the analogy ends, as
attack trees have a precise mathematical interpretation based on well-defined
refinement operators [39]. The most frequently used refinement operators are
the conjunctive (AND) and disjunctive (OR) refinements. The AND-refinement
sets that all child nodes need to be performed to achieve the parent node, while
the OR-refinement states that if the attacker can achieve any of the child nodes,
then the parent node will also be achieved [39]. The leaf nodes, i.e., the nodes
that do not have any children, represent atomic or self-evident attack steps.
c© Springer International Publishing AG 2018
P. Liu et al. (eds.): GraMSec 2017, LNCS 10744, pp. 115–126, 2018.
https://doi.org/10.1007/978-3-319-74860-3_9

116 O. Gadyatskaya and R. Trujillo-Rasua

Attack trees are traditionally regarded as both a formal framework and a
tool to communicate security risks, but these two aspects are rarely considered
together in the literature. For example, research in attack trees strongly focuses
on improving expressiveness of the formalism through new refinement opera-
tors (e.g., sequential AND [3,26]), proposing new flavors of attack trees (e.g.,
attack-defense trees [31] or attack-countermeasure trees [55]), and developing
various quantitative analysis methods with attack trees [7,8,19,28,39]. Quantita-
tive analysis techniques give rise to optimization problems, such as cost-effective
countermeasure selection [4,18,55] and ranking of attacks [19]. In parallel, new
attack tree semantics are being developed that translate attack trees into other
formalisms, such as timed automata [17,32], stochastic games [5] and Markov
chains [25], which offer advanced computational capabilities.

Mostly separately from those efforts, researchers have looked into integra-
tion of attack trees with security risk management methodologies [18,47,49] and
applying attack trees to model threat scenarios in a large variety of domains,
e.g., SCADA systems [41,63], RFID systems [7], and ATM systems [15].

More recently, researchers have started to look into the questions emerging
when applying attack trees in industry. Indeed, practical applications of attack
trees pose many challenges, including noticeable time investment into the tree
design, significant cognitive burden on the analyst when dealing with large trees,
and multitude of possible interpretations for even the most basic refinement oper-
ators AND and OR that may lead to conceptual misalignments within a single
tree created and read by a group of people. This is why attack trees are some-
times mentioned in security threat assessment guidelines as an “advanced” and
“alternative” model [40,44,59]. In this position paper we overview the emerging
research directions for practical applications of attack trees and identify the gaps
that are still to be investigated by the research community interested in attack
trees. We argue that there are many exciting research problems that can con-
tribute to better acceptance of attack trees in practice and to a better synergy
between the academic and industry worlds.

We start by reviewing some practical challenges with attack trees and lessons
we learned while working with attack trees (Sect. 2). Then we overview the
emerging research directions in attack trees that focus on improving the accep-
tance of the formalism in practice (Sect. 3). Subsequently, we propose additional
research themes that are currently not so active, but will be appreciated by
practitioners (Sect. 4).

2 Challenges with Attack Tree Design in Practice

Attack trees allow to structure quite diverse threat scenarios (e.g., attacks occur-
ring at physical, digital or social levels, or a combination of those) and to reason
about these scenarios at different levels of abstraction. Yet, this strength comes
at the cost of substantial time and effort investment into the design of a
comprehensive tree. Like any other security assessment methodology, a thorough
attack tree model requires a diverse set of skills from its authors. Typically, an

New Directions in Attack Tree Research: Catching up with Industrial Needs 117

attack tree design exercise requires domain expertise (i.e., stakeholders provid-
ing in-depth knowledge of the system) and security expertise (persons providing
security knowledge and experience in the methodology). For example, the attack-
defense tree for the relatively small ATM case study reported in [15] required a
team of two domain experts and two security analysts working jointly for 6 days.
Furthermore, one of the stakeholders has spent 10 days before the case study
meeting on preparing the documentation, reviewing ATM crime reports, outlin-
ing the scenario, and collecting statistical data for quantitative analysis. This
amount of effort can be prohibitive for small organizations.

A delaying factor in designing attack trees is that, although they may seem to
be quite simple and intuitive [57–59], there is still a space for misconceptions
and a multitude of interpretations about the meaning of refinement opera-
tors or tree semantics. These discrepancies are often neglected in the literature,
but they become apparent when a group of people with diverse backgrounds
starts working together on an attack tree. For example, in case of attack-defense
trees applied in [15], the meaning of defense nodes was problematic. For the
stakeholders, the defense nodes represented anything that is a security control,
irrespectively of its type (preventive, detective or reactive). However, the attack-
defense tree formalism provides a uniform meaning to defense nodes through
semantics and attribute domain specification [31], and it does not allow to spec-
ify explicitly different countermeasure types.

Attribute domains can introduce confusion even for pure attack trees without
countermeasure nodes. For example, the traditional AND operator specifies that
all children nodes need to be fulfilled to fulfil the parent node. Its interpretation
in the minimal attack time attribute domain depends whether the children node
actions can be done in parallel or they are sequential. The ADTool software, for
example, includes both options, and so the practitioners have to choose which
one to work with [30]. This means, they need to be aware of this choice, and
they need to interpret it correctly and consistently for the whole tree.

In fact, attack tree guidelines existing today in the literature are quite vague,
and they usually operate within the top-down approach. The team needs to start
with the top node representing the attacker’s main goal, that can be refined into
subgoals and more concrete steps until very precise attack actions are found
[1,39,57,59,62]. The guidelines do not specify what is the best way to structure
the tree, how to deal with repeating nodes, how to label the nodes in the best
way, or how to arrange the work on the attack tree so that everybody has the
same understanding of the attack tree elements meaning. This means that, in
the best case, these choices are strategically made by the most experienced team
members, who, however, do not share them with the wider community, or they
are made ad-hoc or even post-hoc. In the worst case, these aspects are not agreed
upon at all, and, therefore, the resulting tree can be inconsistent. Furthermore,
this tree will likely be less comprehensible, due to the absence of empirically
founded best practices in tree structure and comprehensible tree design.

Absence of errors is another big concern for practitioners when designing
attack trees [57,59]. These errors can be on both sides, and, therefore, optimally,

118 O. Gadyatskaya and R. Trujillo-Rasua

the designed tree should be both complete (no attacks are omitted) and sound
(does not contain attacks that do not exist in the actual system). Practitioners
can apply some tree validation techniques to ensure this. For example, in the
ATM case study semantics-based validation (checking that attack bundles in
the multiset semantics [31] represented meaningful attacks), data-based valida-
tion (investigating any discrepancies between the expected attribute value and
the value computed in the quantitative analysis), and catalogue-based valida-
tion (ensuring that all attacks collected by an industry specific catalogue are
captured) were applied [15]. However, these validation techniques are limited
when applied by human analysts, because it is impractical to check by hand all
possible attack bundles or data value discrepancies.

Certainly the attack tree construction process is an excellent opportunity
for brainstorming about potential security threats and cost-effective counter-
measures. But its main value comes from post-analysis and subsequent com-
munication with other stakeholders. We observe that in practice analysis and
comprehensibility of attack trees are in conflict. On the one hand, fine-
grained analysis benefits from large trees describing all attacks on a concrete
system. But on the other hand, large models can strain analysts’ cognitive capa-
bilities, and the practitioners may find it difficult to comprehend all described
attack scenarios, especially after a certain time.

Acquisition of input data is a challenge by itself in risk assessment
methodologies [67], and attack trees magnify it due to a large number of leaf
nodes [7,45]. The standard approach for attack trees, when only leaf nodes are
annotated with values can be too restrictive, as often data for intermediate nodes
can be more readily available than data for leaves. This observation is further
reinforced if we consider the costs of data collection in an organization (in terms
of effort, time, etc.). Sometimes, more generic data than expected is available,
e.g. from historical databases, multiple surveys and empirical results [15]. In this
case, correlation and normalization of data to fit the attack tree methodology
can become a challenge.

We notice that there exists a conceptual mismatch between research on
attack trees and practical applications of attack trees. As we mentioned, in
practice, attack trees are constructed by following the top-down approach. Yet,
academic papers on attack trees define semantics and quantitative analysis tech-
niques for these models via the leaf nodes, i.e., the lowest-level events (bottom-up
approach). This makes it hard to implement a consistent feedback loop between
design and analysis.

3 Research Trends in Attack Tree Applications

Given the challenges summarized in Sect. 2, several promising research directions
have emerged recently to address the needs of practitioners.

Attack tree generation. Manual design is the state-of-practice for attack
trees [56,59]. However, this exercise is time-consuming and error-prone. Auto-
mated tree generation techniques have emerged very recently, and there are few

New Directions in Attack Tree Research: Catching up with Industrial Needs 119

approaches reported in the literature yet [16,20,24,50,66]. These works provide
means to generate attack trees from some system model, under assumption that
it is easier for the team to design a good system model than a good attack tree.
However, there is still some way to go before generated attack trees can be used
in the security risk assessment practice. First of all, the techniques reported in
[24,66] generate refinement-unaware trees, i.e., trees that do not support the user
in understanding the various levels of abstraction. In tradition with the propo-
sitional semantics of attack trees [39], but in contrast with the expectations of
a security analyst, [66] interprets each intermediate node only as a combination
of children nodes. The techniques [16,24] offer trees with meaningful intermedi-
ate nodes, yet still lacking a proper refinement structure, when more abstract
subgoals are refined into more precise attack steps.

The earliest approach capable of generating refinement-aware trees is
ATSyRA [50,51]. It extracts the refinement structure from a hierarchy of actions
in the model defined by the expert. More recently, Gadyatskaya et al. [20] showed
that both the semantical domain and refinement structure of a tree can be
obtained from a system model; without the need of expert intervention. Although
the approach is promising, as it allows for fully automatic attack tree generation,
it still cannot produce proper labels for the refinement structure.

Other attack tree generation approaches work with established security cat-
alogues and knowledge bases, and attempt to construct attack trees from them.
Knowledge bases and catalogues that systematize information on attacks, vul-
nerabilities and countermeasures are a trusted source of information for security
risk practitioners, and many security risk management techniques include one or
more catalogues [2,9,42]. Suggestions to apply established catalogues of threats
to facilitate manual tree design have been voiced in [15,59]. Furthermore, for
some knowledge bases, it is straightforward to transform certain attack scenar-
ios described in those into attack trees. Then an analyst can manually produce
more complex threat scenarios from these attack trees [21,64]. Techniques to
automate attack tree generation using security catalogues and libraries have
been reported in [46,52]. The TREsPASS project [53,65] has applied a security
knowledge base to attack trees generated from a system model in order to refine
leaf nodes of particular types, mainly for precise attacks on human agents and
processes, such as social engineering or hacking.

Attack tree generation allows to reason on formal properties of obtained
models. Indeed, for manually designed trees, it is understood that these models
are as complete as the knowledge and experience of experts who designed them
[57,59]. When attack trees are produced from an underlying system model or a
knowledge base, it is possible to define the notion of completeness with respect
to the model, and one can investigate whether an approach generates complete
trees. For example, completeness with respect to a knowledge base is established
as a desired property in [46], and completeness of a generated tree with respect
to a system model is established in [20,24]. Completeness is especially critical
for risk managers and security consultants, as they want to be reassured that no
important attacks are missed.

120 O. Gadyatskaya and R. Trujillo-Rasua

Another interesting property of generated attack trees is soundness with
respect to a system model, i.e., whether all attack scenarios captured by a
tree are valid attacks in the model. Audinot and Pinchinat defined the sound-
ness property for generated attack trees [6]. Soundness is critical for generating
refinement-aware trees. Indeed, refinement establishes how abstract actions can
be represented as combinations of more precise ones. Yet, not all combinations
of precise actions can result in a valid attack in the system model.

Attack tree visualization. The TREsPASS project has proposed means for
visualizing large attack trees [22,37,48]. This visualisation portfolio strives to
hide away complexity of the tree by removing the node labels, arranging the tree
circularly, linearizing complex attack scenarios, and supporting zooming-in and
out (at the visualization level). These methods lead to reduction of the cognitive
effort needed to process a complex tree, yet they contrast with the traditional
manually designed attack trees, where meaningful node labels are essential, trees
are arranged vertically to allow label readability, and non-linearism of attack
scenarios gives an opportunity to reason about complex attacks [58,59].

Empirical studies with attack trees. To the best of our knowledge, Opdahl
and Sindre [43] and Karpati et al. [27] have been the only ones reporting on
empirical studies with attack trees. These studies compared attack trees with
misuse cases in the context of threat assessment, and they have reported that
attack trees allowed the participants to find more threats.

4 Next Steps and Conclusions

Comparing the challenges enumerated in Sect. 2 and research results summa-
rized in Sect. 3, we can see that some challenges are addressed by an ongoing
or past research effort. Indeed, generation techniques strive to reduce the time
and effort required to produce attack trees, and to provide a framework for guar-
anteeing absence of errors in the obtained model. Visualization approaches are
helping the analysts to better comprehend attack trees and to improve the cog-
nitive scalability of the method. Yet, these results can still be strengthened and
extended towards more user-friendly models.

In particular, the generation techniques can be improved by working on the
refinement-awareness for the produced models. To achieve this, we propose to
establish a new refinement-aware semantics for attack trees that will allow to
assign meaning to intermediate nodes independently of their children nodes. The
generated trees will need to be correct with respect to this semantics. Refine-
ment relationship can be either defined by an expert as in [50], or it can be
extracted from the system model itself [20] or from an appropriate knowledge
base. Furthermore, the generated trees can be transformed into semantically-
equivalent forms that have less nodes [29,39], what could potentially improve
the comprehensibility of these smaller trees.

Comprehensibility and readability of graphs and the limits of human cogni-
tive capabilities while reading and analyzing graphical data have been explored

New Directions in Attack Tree Research: Catching up with Industrial Needs 121

in, e.g., [13,54]. Information visualization challenges related to usability and scal-
ability were highlighted in [12]. It will be interesting to see the findings of these
works applied in the attack tree domain.

In the security risk assessment area, comprehensibility studies of visual and
textual security risk models were reported in, e.g., [23,35,38]. A classification of
scenarios for empirical studies in information visualization was proposed by Lam
et al. [36], and visualization evaluation for cyber security was discussed by Staheli
et al. [61]. To the best of our knowledge, there have been yet no empirical studies
of attack tree comprehensibility, and this could be a promising research direction.
Indeed, outside the attack trees topic, there is a rich empirical research literature
on security modeling and assessment [10,33,34], software engineering [68], and
requirements engineering [60]. This literature can be used by the attack trees
community to build upon.

The challenges acquisition of input data, absence of empirically grounded best
practices, the trade-off between analysis and comprehensibility, and the concep-
tual mismatch between the top-down manual tree design process and the bottom-
up formal semantics have not yet been addressed in the attack trees community.

The data issues for quantitative analysis is a complex problem, because
the quality and quantity of available data strongly depend on the application
domain. In the quantitative risk analysis domain data-related challenges are
known, and there exist methodologies for validating the data [67]. The attack
tree community may thus strive to devise new methodologies for data validation
and data-based tree validation.

We observe that the tension between detailed analysis, which requires large-
scale trees, and comprehensibility, which tends to drop with the size of the
tree, can be mitigated by means of model transformation techniques. Model
transformation is fundamental in Computer Science and key in Model-driven
software development [14], as it provides models at different levels of abstraction
in a synchronized way. In that regard, attack tree generation can be seen as a
model transformation approach; from a system model to an attack tree model.
It would be interesting to see other types of transformations, e.g., from an attack
tree to an attack tree, that could yield more condensed yet human-readable trees.

We argue that the misconceptions and multitude of interpretations of attack
trees can be addressed by establishing a more rigorous methodology for practical
application of attack trees that will include an initial phase when interpretations
of the tree semantics and refinement operators are agreed upon. This methodol-
ogy needs to be grounded in empirical studies with attack tree practitioners, in
which they could report on what are the most frequent communication pitfalls
they face, and how do they interpret different attack tree-related aspects, such
as operators, semantics, etc.

Overall, we can conclude that the attack tree research community has made
a substantial progress in developing the formal framework underpinning the
model. We as researchers have a huge choice of attack tree semantics, quan-
titative analysis techniques, software tools, and means to apply attack trees
in security assessment case studies. It is also exciting to see that the research

122 O. Gadyatskaya and R. Trujillo-Rasua

community has started to focus on the practical needs of security analysts work-
ing with manually designed attack trees in organizational threat modeling and
security risk management. We believe that this synergy between research and
industry can further enhance the attack tree formalism and it will open new
horizons in the attack tree research.

Acknowledgements. The research leading to these results has received funding from
the European Union Seventh Framework Programme under grant agreement number
318003 (TREsPASS) and from the Fonds National de la Recherche Luxembourg under
grant C13/IS/5809105 (ADT2P).

References

1. Amenaza: Creating secure systems through attack tree modeling (2003). http://
www.amenaza.com/

2. ANSSI: EBIOS – Expression des Besoins et Identification des Objectifs de Securite
(2010)

3. Arnold, F., Guck, D., Kumar, R., Stoelinga, M.: Sequential and parallel attack tree
modelling. In: Proceedings of SAFECOMP and Workshops, pp. 291–299 (2015)

4. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7 6

5. Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of
attack-defence scenarios. In: Proceedings of CSF. IEEE (2016)

6. Audinot, M., Pinchinat, S.: On the soundness of attack trees. In: Kordy, B.,
Ekstedt, M., Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp. 25–38. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46263-9 2

7. Bagnato, A., Kordy, B., Meland, P.H., Schweitzer, P.: Attribute decoration of
attack-defense trees. Int. J. Secure Softw. Eng. (IJSSE) 3(2), 1–35 (2012)

8. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice
of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS
2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). https://doi.org/
10.1007/11962977 19

9. Bundesamt fur Sicherheit in der Informationstechnik: IT-Grundschutz-Catalogues,
13th version (2013)

10. Buyens, K., De Win, B., Joosen, W.: Empirical and statistical analysis of risk
analysis-driven techniques for threat management. In: Proceedings of ARES. IEEE
(2007)

11. Buzan, T., Buzan, B.: The mind map book: how to use radiant thinking to maxi-
mize your brain’s untapped potential. Plume, reprint edn., Mar 1996. http://www.
amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0452273226

12. Chen, C.: Top 10 unsolved information visualization problems. IEEE Comput.
Graph. Appl. 25(4), 12–16 (2005)

13. Cleveland, W.: The elements of graphing data. AT&T Bell Laboratories (1994)
14. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation

approaches. IBM Syst. J. 45(3), 621–645 (2006)

http://www.amenaza.com/
http://www.amenaza.com/
https://doi.org/10.1007/978-3-662-46666-7_6
https://doi.org/10.1007/978-3-319-46263-9_2
https://doi.org/10.1007/11962977_19
https://doi.org/10.1007/11962977_19
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0452273226
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0452273226

New Directions in Attack Tree Research: Catching up with Industrial Needs 123

15. Fraile, M., Ford, M., Gadyatskaya, O., Kumar, R., Stoelinga, M., Trujillo-Rasua,
R.: Using attack-defense trees to analyze threats and countermeasures in an ATM:
a case study. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP,
vol. 267, pp. 326–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48393-1 24

16. Gadyatskaya, O.: How to generate security cameras: towards defence generation for
socio-technical systems. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraMSec 2015.
LNCS, vol. 9390, pp. 50–65. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29968-6 4

17. Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C.,
Poulsen, D.B.: Modelling attack-defense trees using timed automata. In:
Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35–50.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 3

18. Gadyatskaya, O., Harpes, C., Mauw, S., Muller, C., Muller, S.: Bridging two worlds:
reconciling practical risk assessment methodologies with theory of attack trees. In:
Kordy, B., Ekstedt, M., Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp.
80–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46263-9 5

19. Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua,
R.: Attack trees for practical security assessment: ranking of attack scenarios with
ADTool 2.0. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp.
159–162. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4 10

20. Gadyatskaya, O., Jhawar, R., Mauw, S., Trujillo-Rasua, R., Willemse, T.A.C.:
Refinement-aware generation of attack trees. In: Livraga, G., Mitchell, C. (eds.)
STM 2017. LNCS, vol. 10547, pp. 164–179. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68063-7 11

21. Ghani, H., Luna Garcia, J., Petkov, I., Suri, N.: User-centric security assessment
of software configurations: a case study. In: Jürjens, J., Piessens, F., Bielova, N.
(eds.) ESSoS 2014. LNCS, vol. 8364, pp. 196–212. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-04897-0 13

22. Hall, P., Heath, C., Coles-Kemp, L., Tanner, A.: Examining the contribution of crit-
ical visualisation to information security. In: Proceedings of NSPW. ACM (2015)

23. Hogganvik Grøndahl, I., Lund, M.S., Stølen, K.: Reducing the effort to comprehend
risk models: text labels are often preferred over graphical means. Risk Anal. 31(11),
1813–1831 (2011)

24. Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammüller, F.: Transforming graphi-
cal system models to graphical attack models. In: Mauw, S., Kordy, B., Jajodia, S.
(eds.) GraMSec 2015. LNCS, vol. 9390, pp. 82–96. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29968-6 6

25. Jhawar, R., Lounis, K., Mauw, S.: A stochastic framework for quantitative analysis
of attack-defense trees. In: Barthe, G., Markatos, E., Samarati, P. (eds.) STM 2016.
LNCS, vol. 9871, pp. 138–153. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46598-2 10

26. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

27. Karpati, P., Redda, Y., Opdahl, A., Sindre, G.: Comparing attack trees and misuse
cases in an industrial setting. Inf. Softw. Technol. 56(3), 294–308 (2014)

28. Kordy, B., Mauw, S., Schweitzer, P.: Quantitative questions on attack–defense
trees. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp.
49–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5 5

https://doi.org/10.1007/978-3-319-48393-1_24
https://doi.org/10.1007/978-3-319-48393-1_24
https://doi.org/10.1007/978-3-319-29968-6_4
https://doi.org/10.1007/978-3-319-29968-6_4
https://doi.org/10.1007/978-3-319-44878-7_3
https://doi.org/10.1007/978-3-319-46263-9_5
https://doi.org/10.1007/978-3-319-43425-4_10
https://doi.org/10.1007/978-3-319-68063-7_11
https://doi.org/10.1007/978-3-319-68063-7_11
https://doi.org/10.1007/978-3-319-04897-0_13
https://doi.org/10.1007/978-3-319-04897-0_13
https://doi.org/10.1007/978-3-319-29968-6_6
https://doi.org/10.1007/978-3-319-29968-6_6
https://doi.org/10.1007/978-3-319-46598-2_10
https://doi.org/10.1007/978-3-319-46598-2_10
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-642-37682-5_5

124 O. Gadyatskaya and R. Trujillo-Rasua

29. Kordy, B., Kordy, P., van den Boom, Y.: SPTool – equivalence checker for SAND

attack trees. In: Cuppens, F., Cuppens, N., Lanet, J.-L., Legay, A. (eds.) CRiSIS
2016. LNCS, vol. 10158, pp. 105–113. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-54876-0 8

30. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: security analysis with
attack–defense trees. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 173–176. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40196-1 15

31. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J.
Log. Comput. 24(1), 55–87 (2014). http://people.rennes.inria.fr/Barbara.Kordy/
papers/ADT12.pdf

32. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 156–171. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1 11

33. Labunets, K., Massacci, F., Paci, F.: On the equivalence between graphical and
tabular representations for security risk assessment. In: Grünbacher, P., Perini, A.
(eds.) REFSQ 2017. LNCS, vol. 10153, pp. 191–208. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54045-0 15

34. Labunets, K., Massacci, F., Paci, F.: An experimental comparison of two risk-based
security methods. In: Proceedings of ESEM. pp. 163–172. IEEE (2013)

35. Labunets, K., Massacci, F., Paci, F., Marczak, S., de Oliveira, F.: Model com-
prehension for security risk assessment: an empirical comparison of tabular vs.
graphical representations. Empir. Softw. Eng. 22(6), 3017–3056 (2017)

36. Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S.: Empirical studies
in information visualization: seven scenarios. IEEE Trans. Vis. Comput. Graph.
18(9), 1520–1536 (2012)

37. Li, E., Barendse, J., Brodbeck, F., Tanner, A.: From A to Z: developing a visual
vocabulary for information security threat visualisation. In: Kordy, B., Ekstedt, M.,
Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp. 102–118. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46263-9 7

38. Matulevičius, R.: Model comprehension and stakeholder appropriateness of security
risk-oriented modelling languages. In: Bider, I., Gaaloul, K., Krogstie, J., Nurcan,
S., Proper, H.A., Schmidt, R., Soffer, P. (eds.) BPMDS/EMMSAD -2014. LNBIP,
vol. 175, pp. 332–347. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43745-2 23

39. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

40. Microsoft: Threat modeling (2003). https://msdn.microsoft.com/en-us/library/
ff648644.aspx

41. Nielsen, J.: Evaluating information assurance control effectiveness on an air force
supervisory control and data acquisition (SCADA) system. Technical report, DTIC
Document (2011)

42. NIST: Special Publication 800-53 Revision 4. Security and privacy controls for
federal information systems and organizations (2013). http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

43. Opdahl, A.L., Sindre, G.: Experimental comparison of attack trees and misuse
cases for security threat identification. Inf. Softw. Technol. 51(5), 916–932 (2009)

44. OWASP: CISO AppSec guide: criteria for managing application security risks
(2013)

https://doi.org/10.1007/978-3-319-54876-0_8
https://doi.org/10.1007/978-3-319-54876-0_8
https://doi.org/10.1007/978-3-642-40196-1_15
https://doi.org/10.1007/978-3-642-40196-1_15
http://people.rennes.inria.fr/Barbara.Kordy/papers/ADT12.pdf
http://people.rennes.inria.fr/Barbara.Kordy/papers/ADT12.pdf
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-54045-0_15
https://doi.org/10.1007/978-3-319-46263-9_7
https://doi.org/10.1007/978-3-662-43745-2_23
https://doi.org/10.1007/978-3-662-43745-2_23
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://msdn.microsoft.com/en-us/library/ff648644.aspx
https://msdn.microsoft.com/en-us/library/ff648644.aspx
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

New Directions in Attack Tree Research: Catching up with Industrial Needs 125

45. Schweitzer, P.: Attack–defense trees. Ph.D. thesis, University of Luxembourg
(2013)

46. Paul, S.: Towards automating the construction & maintenance of attack trees: a
feasibility study. In: Proceedings of GraMSec (2014)

47. Paul, S., Vignon-Davillier, R.: Unifying traditional risk assessment approaches with
attack trees. J. Inf. Secur. Appl. 19(3), 165–181 (2014)

48. Pieters, W., Barendse, J., Ford, M., Heath, C., Probst, C.W., Verbij, R.: The
navigation metaphor in security economics. IEEE Secur. Priv. 14(3), 14–21 (2016)

49. Pieters, W., Davarynejad, M.: Calculating adversarial risk from attack trees:
control strength and probabilistic attackers. In: Garcia-Alfaro, J., Herrera-
Joancomart́ı, J., Lupu, E., Posegga, J., Aldini, A., Martinelli, F., Suri, N. (eds.)
DPM/QASA/SETOP -2014. LNCS, vol. 8872, pp. 201–215. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-17016-9 13

50. Pinchinat, S., Acher, M., Vojtisek, D.: Towards synthesis of attack trees for sup-
porting computer-aided risk analysis. In: Canal, C., Idani, A. (eds.) SEFM 2014.
LNCS, vol. 8938, pp. 363–375. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15201-1 24

51. Pinchinat, S., Acher, M., Vojtisek, D.: ATSyRa: an integrated environment for
synthesizing attack trees. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraMSec
2015. LNCS, vol. 9390, pp. 97–101. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-29968-6 7

52. Fredslund, M.P.: Automated synthesis of attack-defense trees using a library of
component attacks. Master thesis, University of Luxembourg (2015)

53. Probst, C.W., Willemson, J., Pieters, W.: The attack navigator. In: Mauw, S.,
Kordy, B., Jajodia, S. (eds.) GraMSec 2015. LNCS, vol. 9390, pp. 1–17. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29968-6 1

54. Purchase, H.C., Cohen, R.F., James, M.I.: An experimental study of the basis for
graph drawing algorithms. J. Exp. Algorithmics (JEA) 2, 4 (1997)

55. Roy, A., Kim, D.S., Trivedi, K.: Scalable optimal countermeasure selection using
implicit enumeration on attack countermeasure trees. In: Proceedings of DSN.
IEEE (2012)

56. Saini, V., Duan, Q., Paruchuri, V.: Threat modeling using attack trees. J. Comput.
Sci. Coll. 23(4), 124–131 (2008)

57. Schneier, B.: Attack trees. Dr. Dobb’s J. Softw. Tools 24(12), 21–29 (1999).
http://www.ddj.com/security/184414879

58. Schneier, B.: Secrets and Lies: Digital Security in a Networked World. Wiley,
New York (2011)

59. Shostack, A.: Threat Modeling: Designing for Security. Wiley, Hoboken (2014)
60. Sommerville, I., Ransom, J.: An empirical study of industrial requirements engi-

neering process assessment and improvement. ACM Trans. Softw. Eng. Methodol.
14(1), 85–117 (2005)

61. Staheli, D., Yu, T., Crouser, R.J., Damodaran, S., Nam, K., O’Gwynn, D.,
McKenna, S., Harrison, L.: Visualization evaluation for cyber security: trends and
future directions. In: Proceedings of VizSec. ACM (2014)

62. Synopsis: How mapping the Ocean’s Eleven heist can make you better at applica-
tion security testing (2015). https://www.synopsys.com/blogs/software-security/
oceans-eleven-make-you-better-at-application-security-testing/

63. Ten, C.W., Liu, C.C., Govindarasu, M.: Vulnerability assessment of cybersecu-
rity for scada systems using attack trees. In: Power Engineering Society General
Meeting. IEEE (2007)

https://doi.org/10.1007/978-3-319-17016-9_13
https://doi.org/10.1007/978-3-319-15201-1_24
https://doi.org/10.1007/978-3-319-15201-1_24
https://doi.org/10.1007/978-3-319-29968-6_7
https://doi.org/10.1007/978-3-319-29968-6_7
https://doi.org/10.1007/978-3-319-29968-6_1
http://www.ddj.com/security/184414879
https://www.synopsys.com/blogs/software-security/oceans-eleven-make-you-better-at-application-security-testing/
https://www.synopsys.com/blogs/software-security/oceans-eleven-make-you-better-at-application-security-testing/

126 O. Gadyatskaya and R. Trujillo-Rasua

64. Tøndel, I.A., Jensen, J., Røstad, L.: Combining misuse cases with attack trees and
security activity models. In: Proceedings of ARES. pp. 438–445. IEEE (2010)

65. TREsPASS: Technology-supported Risk Estimation by Predictive Assessment of
Socio-technical Security, FP7 project, grant agreement 318003 (2012–2016). http://
www.trespass-project.eu/

66. Vigo, R., Nielson, F., Nielson., H.R.: Automated generation of attack trees. In:
Proceedings of CSF. IEEE (2014)

67. Vose, D.: Risk Analysis: A Quantitative Guide. Wiley, New York (2008)
68. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Exper-

imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

http://www.trespass-project.eu/
http://www.trespass-project.eu/
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Employing Graphical Risk Models to Facilitate
Cyber-Risk Monitoring - the WISER Approach

Aleš Černivec1, Gencer Erdogan2(B), Alejandra Gonzalez3, Atle Refsdal2,
and Antonio Alvarez Romero4

1 XLAB Research, Ljubljana, Slovenia
ales.cernivec@xlab.si

2 SINTEF Digital, Oslo, Norway
{gencer.erdogan,atle.refsdal}@sintef.no

3 AON, Milan, Italy
alejandra-gonzalez@alice.it

4 ATOS, Sevilla, Spain
antonio.alvarez@atos.net

Abstract. We present a method for developing machine-readable cyber-
risk assessment algorithms based on graphical risk models, along with a
framework that can automatically collect the input, execute the algo-
rithms, and present the assessment results to a decision maker. This
facilitates continuous monitoring of cyber-risk. The intended users of
the method are professionals and practitioners interested in developing
new algorithms for a specific organization, system or attack type, such as
consultants or dedicated cyber-risk experts in larger organizations. For
the assessment results, the intended users are decision makers in charge
of countermeasure selection from an overall business perspective.

Keywords: Cyber risk · Security · Risk modelling · Risk assessment
Risk monitoring

1 Introduction

Cybersecurity is of critical importance for small businesses, large companies,
public administrations and everyone involved in the digital economy. Millions of
euros are lost to cyber-crime each year. Online security is a growing concern for
businesses, with attacks increasing against large corporate business and critical
infrastructures, but also against small enterprises that lack the time, money and
human resources to dedicate to consolidating their cyber-risk management.

There are currently a number of tools available to support cyber-risk man-
agement. Most such tools focus on the technical aspects of detecting vulnera-
bilities and attacks, without relating these to the wider business context of the
organization. This may provide useful support for IT administrators. However,
managers and decision makers need to understand the impact of cyber-risks on
their business objectives in order to determine how to deal with them from a
c© Springer International Publishing AG 2018
P. Liu et al. (eds.): GraMSec 2017, LNCS 10744, pp. 127–146, 2018.
https://doi.org/10.1007/978-3-319-74860-3_10

128 A. Černivec et al.

more strategic perspective. This impact can be expressed either quantitatively
or qualitatively. Quantitative estimates of the likelihood of incidents and the
consequence in terms of money allow risks to be weighed against the cost of
available countermeasures. Unfortunately, providing trustworthy numbers can
be very difficult, as this requires access to good empirical data and statistics to
serve as a foundation for quantified estimates. Such data is often unavailable.
Even if we can obtain the data, analyzing it to understand its impact on the
assessment is a major challenge [32]. This means that providing good quanti-
tative assessments is not always feasible. In such cases, a qualitative approach
can be a good alternative. By qualitative, we mean that we use ordinal scales,
for which the standard arithmetic operators are not defined, to provide assess-
ments. Each step is usually described by text, such as {Very low; Low; Medium;
High; Very high}. More informative descriptions of each step can of course be
given. Ordinal scales imply that values are ordered, thereby making it possible
to monitor trends.

Cyber-risks depend on many different factors, many of which are highly tech-
nical. Moreover, the risks are continuously changing due to updates in the target
ICT infrastructure or the way it supports the business, discovery of new vulnera-
bilities, and a rapidly evolving threat landscape. Therefore, rather than providing
a snapshot representing one point in time, we want to facilitate monitoring by
providing automated updates of risk level assessments based on dynamic input
that captures vulnerabilities, events observed in the target ICT infrastructure, as
well as the business configuration. To achieve this, we need executable algorithms
that define how the risk level assessments change as a result of changes in the
dynamic input, as well as an assessment infrastructure that can automatically
collect the input, execute the algorithms, and present the results.

Developing risk level assessment algorithms requires a good understanding of
the relevant threats, threat scenarios, vulnerabilities, incidents and assets. The
CORAS risk modelling approach has proved to be well suited for establishing
such an understanding and supporting risk level assessments [21,35]. However,
the CORAS approach was created to perform manual assessments represent-
ing a single point in time, rather than establishing algorithms for automated
assessments.

In this paper, we present a method for developing quantitative and qualitative
cyber-risk assessment algorithms by exploiting the structure of CORAS risk
models, together with a cyber-risk monitoring framework that automatically
collects the dynamic input, executes the algorithms, and presents the results.
The method and framework were developed in the WISER project [39].

In the following, we start by presenting the cyber-risk monitoring framework
in Sect. 2. We then give an overview of the method for risk modelling, which
includes the algorithm development, in Sect. 3. The method consists of two main
steps. Sections 4 and 5 presents each step in more detail. In Sect. 6 we present
related work, before discussing and concluding in Sect. 7.

Employing Graphical Risk Models to Facilitate Cyber-Risk Monitoring 129

2 Cyber-Risk Monitoring Framework

In this section, we present the framework developed in the WISER project
to assess and monitor cyber-risk for companies from the business perspective.
Figure 1 shows an overview of the essential components in the framework.

Fig. 1. Overview of the WISER framework.

The brain of the WISER framework is the Risk Assessment Engine. It pro-
duces an assessment of the risk the company faces, based on a cyber-risk model
with an associated risk assessment algorithm. As illustrated by the left-hand side
of Fig. 1, there are three different types of dynamic input to this algorithm. By
“dynamic” we mean that the input values may change between each execution
of the algorithm. The first input type is provided by the user configuring the
framework for the company via a business configuration interface. The second
input type is events and alarms obtained from monitoring the network and appli-
cation layers of the ICT infrastructure, while the third input type is information
about detected vulnerabilities provided by vulnerability scanners. We use the
term indicator to denote the inputs to the algorithm. The output of the Risk
Assessment Engine is an assessment of quantitative and/or qualitative risk lev-
els. In addition, a proposal for mitigation options will also be triggered if risk
levels exceeds a set threshold. However, mitigation options are beyond the scope
of this paper. The reader is referred to [31] for further details on this.

In the remainder of this section, we explain how the input to the assessment
algorithms, i.e. the indicator values, are obtained.

2.1 Business Configurator

As already noted, the first input type in Fig. 1 is provided by the user configuring
the framework for a client/organization. This is done through a Business Config-
uration interface by answering general questions about the business, ICT profile

130 A. Černivec et al.

and security management of the organization. Furthermore, the user is asked to
provide information about the machines and applications to be protected, which
we refer to as the targets of analysis.

For each target of analysis, the user assigns a level of importance with respect
to confidentiality, integrity, and availability, which will depend on the way in
which this target supports the business processes. The user also characterizes
each target based on the ACM Computing Classification System [1], which serves
as the de facto standard classification system for the computing field.

Finally, for clients who wish to obtain quantitative cyber-risk assessments,
the user configuring the framework is asked to provide, for each target of
analysis, a typical and worst-case loss potentially resulting from a successful
cyber-attack. If these values are not provided, the framework resorts to using
default values defined for a typical European SME, as estimated by the WISER
Consortium [31].

2.2 Network and Application Monitor

The Network and Application Monitor module in the WISER framework pro-
vides the most dynamic input to the cyber-risk assessment, as the monitoring
occurs in real time. The module consists of sensors which generate events (mes-
sages announcing unusual activity or values of observed metrics) and a Monitor-
ing Engine, which generates alarms by correlating and combining several events.
Various sensors, installed on the client’s infrastructure, continuously observe
numerous network and application-level parameters to provide input values for
risk assessment indicators. Both events and alarms are fed into the Risk Assess-
ment Engine. Alarms can also be used independently from the Risk Assessment
Engine to notify the responsible users about ongoing attacks or emerging security
threats.

The monitoring architecture incorporates two layers: the Resource Layer and
the Provider Layer. The Resource Layer consists of WISER Agents and sensors
installed on the client’s infrastructure, providing data about the infrastructure
to the Provider Layer. The Provider Layer supports the monitoring capabilities
with back-end core services for event aggregation and correlation and a central
data storage facility, serving monitoring data to the Risk Assessment Engine.

Monitoring sensors are able to detect several types of attacks and anomalies
in the network infrastructure as well as in applications installed on the client’s
premises. The following sensors, which are further described in [36], are employed
by WISER:

– DNS Traffic Sensor: monitors DNS requests to detect patterns of traffic that
potentially belong to botnets.

– Snort: a network-based intrusion detection system, detecting network recon-
naissance attempts, malware signatures and denial of service attacks.

– OSSEC: a host-based intrusion detection system, monitoring application-level
activity and detecting anomalies in operation of core operating system ser-
vices and user applications, recognizing viruses and attackers.

Employing Graphical Risk Models to Facilitate Cyber-Risk Monitoring 131

– Cowrie: an SSH-based honeypot used to attract attackers and detect their
presence while averting attacks from other machines on the network.

The WISER Agents are responsible for the collection, normalization and transfer
of data of the events to the provider layer. The Agents gather the data from
sensors installed on the same network through encrypted syslog channels, adds
common information about the organization, and forwards the messages in a
common format to the provider layer communication bus, supported by the
AMQP-based RabbitMQ server. RabbitMQ is responsible for message queuing
and distribution to other components on the monitoring provider layer.

The Monitoring Engine, part of the Provider layer, is composed of a SIEM
(Security Information and Event Management) solution and a correlation engine
that provides continuous analysis of security-related events, aggregating data
from the sensors and generating reports and alarms, taking a predefined set of
correlation rules and security directives into consideration.

For each generated alarm, the Monitoring Engine computes a risk score,
which combines measures of potential attack damage, likelihood of the attack
and the value of assets compromised. If the risk score is high enough, the WISER
Framework can automatically notify a responsible person. Notice that these risk
scores should not be confused with the risk level assessments provided by the
Risk Assessment Engine when executing the algorithms addressed in Sects. 3–5.
The former provides low-level assessments according to fixed rules to facilitate
a quick response by an ICT administrator. The latter provides more high-level
assessments, where several events and alarms from the Monitoring Engine can
be considered in conjunction with other types of indicators to provide more ICT
and business context, and where the algorithms can be tailored to a specific
organization or system.

2.3 Vulnerability Scanner

The Vulnerability Scanner module automatically identifies security vulnerabili-
ties in the client’s web applications. The Vulnerability Scanner acts similarly as
a monitoring sensor, installed at the clients premises. It scans specified target
websites periodically (in a configured time interval) and reports the results to
the Risk Assessment Engine, like monitoring sensors. The vulnerabilities found
by each scan can also be seen in the WISER Dashboard along with their mitiga-
tion suggestions. The vulnerability scanner in this mode of operation can scan
public websites as well as web applications that are only accessible from inside
the organization’s network. This means that it can be used to test specialized
web applications and also websites during their development process.

The Vulnerability Scanner is based on combining results from several tools
for vulnerability scanning, such as W3af [38] and OWASP ZAP [29]. These tools
automatically gather responses from the targeted website and compare them to
their databases of known vulnerabilities to find which vulnerabilities might be
present in the web application. The vulnerability databases contain explanations
of the vulnerabilities and their mitigation proposals, which are included in the
reports.

132 A. Černivec et al.

3 Method for Cyber-Risk Modelling

In this section, we explain the overall method for risk modelling. The risk mod-
elling described here will typically be a part of a wider risk management process,
such as ISO 31000 [17], and can be “plugged into” any such process. We focus
on the methodological aspects that are special in our context, which are the
following:

– For risk level assessment, the goal is not to perform an assessment repre-
senting a snapshot of one particular point or period in time, but rather to
develop algorithms for automated assessment. The algorithms can be either
qualitative or quantitative.

– Identification of threats, vulnerabilities, threat scenarios, incidents and risks
is done using CORAS diagrams (models).

– For the elements of a risk model described above, we also identify the dynamic
factors that can be provided by the framework, i.e. the indicators, as explained
in Sect. 2. The indicators serve as input for the assessment algorithms.

Fig. 2. Method for cyber-risk modelling.

Figure 2 shows the overall method used for cyber-risk modelling, considering
these aspects. The outcome of the first step is a validated CORAS diagram with
indicators. This diagram captures the relevant assets, risks, the ways in which
these risks may materialize, and the relation between these elements and the
available business configuration indicators, vulnerability scan indicators, net-
work monitoring indicators and application monitoring indicators that can be
employed to assess the risk and the involved threats, vulnerabilities and threat
scenarios.

Employing Graphical Risk Models to Facilitate Cyber-Risk Monitoring 133

The outcome of the second step is a machine-readable algorithm for risk
level assessment (and mitigation proposals) that can be automatically executed
by the Risk Assessment Engine. The dynamic input for this assessment algorithm
consists of the indicators identified in the first step. In the next two sections, we
explain the steps in further detail.

4 Step 1: Establish and Document Understanding
of the Risk Picture

4.1 Step 1.1: Create CORAS Diagram with Indicators

As illustrated by Fig. 2, this step is the same irrespective of whether the aim is
to develop a qualitative or a quantitative assessment algorithm. The reason is
that the purpose of this particular step is not to assess risk levels or define an
assessment algorithm, but to identify the potential chains of events that may lead
to risks materializing. This includes identifying all the threats, vulnerabilities,
threat scenarios and incidents involved in such chains. Moreover, we identify the
indicators that can provide information about all risk elements that can serve
as useful input for the assessment algorithm to be developed in Step 2.

For creating security risk models, we use CORAS [21], which is a graphi-
cal risk modeling language that has been empirically shown to be intuitively
simple for stakeholders with very different backgrounds [35]. Moreover, CORAS
comes with a method that builds on established approaches (in particular ISO
31000 [17]), and includes detailed guidelines for creating CORAS models, which
can be applied to carry out Step 1.

Figure 3 gives an overview of the CORAS notation. Threats, threat scenar-
ios, unwanted incidents, assets, relations and vulnerabilities are collectively used
to create CORAS risk models, which document risks as well as events and cir-
cumstances that can cause risks. Notice that the different relations are used to
connect different nodes: the initiates relation goes from a threat to a threat
scenario or an unwanted incident. The leads-to relation goes from a threat sce-
nario or an unwanted incident to a threat scenario or an unwanted incident.
The impacts relation goes from an unwanted incident to an asset. The indicator
construct, which is not part of the standard CORAS notation, is introduced to
capture dynamic factors that are obtained by the framework, as explained in
Sect. 2.

Fig. 3. CORAS notation. cp = conditional probability.

134 A. Černivec et al.

To support risk estimation, CORAS uses likelihood values, conditional prob-
abilities, and consequence values (enclosed in brackets) on certain nodes and
relations, as illustrated in Fig. 3. These will be represented by variables in the
risk assessment algorithms. It is therefore useful to establish a naming conven-
tion for the variables, as well as for the nodes and indicators in the diagram.
Table 1 shows our naming convention.

Table 1. Naming conventions for defining likelihood and consequence variables. The
letters x and y represent integers.

Name Meaning

Ax Asset x

Sx Scenario x (“S” means threat scenario)

Ux Incident x (“U” means unwanted incident)

IN-x Indicator x

l Ux Likelihood of Ux

l Sx Likelihood of Sx

c Ux Ay Consequence of Ux for Ay

cp Sx to Sy Conditional probability of Sx leading to Sy

cp Sx to Uy Conditional probability of Sx leading to Uy

Figure 4 shows a CORAS risk model for a session hijacking in the context
of web-applications. This risk model is (a slightly simplified version of) one of
10 risk models we developed in the WISER project [39]. These risk models were
not developed for a particular target of analysis, but primarily intended for an
arbitrary European SME. Notice that some of the indicators appear more than
once, as they are attached to more than one element.

Indicators are normally identified after the assets, threats, threat scenarios,
unwanted incidents and vulnerabilities. Indicator identification is not covered
by the standard CORAS method [21]. We therefore present here the guiding
questions used for this purpose:

– What observable events at the network layer could give useful information
about the likelihood/frequency of attacks? (Network monitoring indicators.)
This question should be asked for each identified threat scenario and incident.

– What observable events at the application layer could give useful information
about the likelihood/frequency of successful or unsuccessful attacks? (Appli-
cation monitoring indicators.) This question should be asked for each identi-
fied threat scenario and incident.

– What information can we get from vulnerability scanners or security tests?
(Test result indicators). This question should be asked for each identified
vulnerability.

Employing Graphical Risk Models to Facilitate Cyber-Risk Monitoring 135

– What do we otherwise know about the threats, vulnerabilities, threat sce-
narios, incidents or assets that could help us assess the level of cyber-risk?
(Business configuration indicators.) These questions should be asked for each
element of the risk model.

Fig. 4. CORAS risk model for Session hijacking. IN-34 and IN-35 are vulnerability
scan indicators. IN-30 and IN-C1 are business configuration indicators. IN-41, IN-42,
IN-51, and IN-52 are application monitoring indicators.

4.2 Step 1.2: Validate CORAS Diagram with Indicators

The CORAS diagram provided in Step 1.1 serves as the basis for developing
the machine-readable algorithm in Step 2. Therefore, before moving on, it is
essential to ensure that the CORAS diagram reflects, as far as possible, the
actual reality with respect to potential threats, vulnerabilities, threat scenar-
ios and risks. Of course, as risk assessments concern what might happen in the
future, there is no way we could ensure that a CORAS diagram (or any other
form of risk model) is objectively correct and complete with respect to reality.
Instead, what we aim for here is a convincing argument that the diagram reflects
available knowledge and beliefs among qualified cybersecurity experts. Such an
argument can be established, for example, by showing that the CORAS diagram
faithfully captures information available from well-reputed standards, reposito-
ries, text books, research papers or similar sources; some examples include ISO
27001 [15], ISO 27005 [18], ISO 27032 [16], CAPEC [23] and OWASP [28]. If
possible, the validation of the CORAS diagram should be carried out by a group

136 A. Černivec et al.

of cybersecurity experts who, after relevant information sources have been iden-
tified and obtained, go through each part of the diagram in a systematic manner
to identify elements that need to be added, removed, or otherwise improved. The
validation terminates when no such elements are found.

5 Step 2: Provide Machine-Readable Algorithm

In the following, we explain how to define quantitative (Sect. 5.1) and qualita-
tive (Sect. 5.2) assessment algorithms based on a CORAS model, before briefly
discussing how to validate the results (Sect. 5.3). Notice that the two types of
algorithms are independent alternatives, and readers who are only interested
in one type can skip the other section. For both alternatives, our focus here
is on establishing the algorithm structure. Therefore, we do not go into details
regarding estimations that must be done in order to complete the algorithms,
but provide references where further information can be found where relevant.

5.1 Step 2.1, alt. a: Define Quantitative Assessment Algorithm

For defining quantitative assessment algorithms we follow an actuarial app-
roach, where the likelihood (frequency) and consequence (economic loss) of
unwanted incidents are modelled separately through the probabilistic framework
of Bayesian Networks (BN) [25]. More specifically, we use hybrid BNs [24], which
means that the random variables are not bound to be discrete or (conditionally)
Gaussian.

The algorithm is implemented using the R programming language [34] for
statistical computing. The underlying calculations are performed by Markov-
Chain-Monte-Carlo simulation. However, in this paper we focus on the exploita-
tion of CORAS diagrams to establish the BN structure. Understanding this does
not require prior knowledge about the R programming language, hence we do
not show any R code. Detailed guidelines on how to create an R script from a
CORAS model are provided in [31].

BN Skeleton. The first step is to define a BN skeleton based on the structure
of the CORAS model. Figure 5 shows the BN skeleton reflecting the CORAS
model in Fig. 4. A risk captured in a CORAS diagram (by an impacts relation
from an unwanted incident to an asset) is represented by a childless node in the
BN (R1 in Fig. 5). The overall goal is to compute a risk level for risk nodes, as a
function of indicators. Any risk node has two parent nodes: one representing the
frequency of the unwanted incident and another representing the consequence
for the asset. In our example, the risk node R1 has the parent nodes l U1 and
c U1 A1, representing the frequency of the incident U1 and its consequence for
the asset A1, respectively.

Employing Graphical Risk Models to Facilitate Cyber-Risk Monitoring 137

Fig. 5. BN skeleton for CORAS model in Fig. 4.

Nodes Representing the Frequency of an Unwanted Incident. The fre-
quency of unwanted incidents is calculated following the underlying logic of the
CORAS model. The frequency node of an unwanted incident has a parent node
for each incoming leads-to relation to the incident in the CORAS diagram, rep-
resenting the likelihood contribution from each incoming relation. For example,
node l U1 in Fig. 5 has two parent nodes: l U1S1 and l U1S2.

The likelihood contribution from each leads-to relation depends on the like-
lihood of its threat scenario (the source node) and the conditional probability
that an occurrence of this threat scenario will lead to the unwanted incident.
Therefore, the node l U1S1 depends on the parentless nodes l S1 (likelihood of
scenario S1) and cp S1 to U1 (the conditional probability that an occurrence
of S1 will lead to U1). Similarly, l U1S2 depends on l S2 and cp S2 to U1. In
our example, the probability distribution of the frequency node l U1 is defined
as follows1:

l U1 = l U1S1 + l U1S2
= l S1 · cp S1 to U1 + l S2 · cp S2 to U1

Notice that node l U1 is deterministic, since its value at each step of the simu-
lation is calculated by a formula from the values of its parent nodes.

The indicators, which represent the input to the final algorithm, are not
included in the BN structure. They will be used to compute the values for the
parentless ancestor nodes of l U1 (l S1, l S2, cp S1 to U1 and cp S2 to U1 in
Fig. 5). These nodes are represented by uniform distributions whose extremes
depend on the indicators affecting the nodes. The functions from indicator values
to the extremes of the distributions are defined based on expert estimates and
available empirical data. We chose uniform distributions in order to ease the
1 This formula assumes that the scenarios for the incoming leads-to relation are sep-

arate, as further explained in [21, p. 224].

138 A. Černivec et al.

estimate elicitation. CORAS uses intervals for the same reason. Since our focus
here is on the algorithm structure, we refer to [13] for further details on the
estimation.

Nodes Representing the Consequence of an Unwanted Incident. Con-
sequence nodes model the consequence, in terms of economic loss per occurrence
of an unwanted incident (node c U1 to A1 in Fig. 5). Here we follow an app-
roach typically adopted in scenario analysis for operational risk management.
For a given risk, a two-parameter distribution is chosen for the consequence,
and experts are requested to provide a typical case loss and a worst case loss.
This provides the minimal amount of information required to describe the main
features of the distribution, that is a value which is experienced frequently and
a value which is extreme (experienced rarely). Usually, the typical case loss is
identified with a location index, such as the median of the distribution. The
worst case loss is identified with a suitably large quantile of the distribution.
This gives a nonlinear system of two equations in two variables (the parameters
of the distribution), which can be solved by a Newton-like numerical approxi-
mation method [2,10,26]. We adopted the lognormal distribution for modeling
consequence nodes. In modelling loss data, the lognormal distribution is observed
to provide good fits in many cases; for this reason it is often used for modelling
consequence in operational risk and particularly for the scenario analysis com-
ponent, see e.g. [11,19].

Nodes Representing Risk Level. Risk level nodes model the yearly aggre-
gate loss distribution, which depend on the frequency and consequence of the
unwanted incident. In our example, the risk level is represented by node R1 in
the BN. The probability distribution assigned to R1 is defined as follows:

R1 = l U1 · c U1 to A1

5.2 Step 2.1, alt. b: Define Qualitative Assessment Algorithm

For defining qualitative assessment algorithms we use DEXi [12], which is a
computer program for development of multi-criteria decision models and the
evaluation of options. We briefly present DEXi before explaining how to create
a DEXi model from a CORAS diagram. For a detailed description, we refer to
the DEXi User Manual [6].

A multi-attribute model decomposes a decision problem into a tree (or graph)
structure where each node in the tree represents an attribute. The overall prob-
lem is represented by the top attribute, also called the root. All other attributes
represent sub-problems, which are smaller and less complex than the overall
problem. Each attribute is assigned a value. The set of values that an attribute
can take is called the scale of the attribute. DEXi supports definition of ordinal
scales; typically, each step consists of a textual description.

Employing Graphical Risk Models to Facilitate Cyber-Risk Monitoring 139

Every attribute is either a basic attribute or an aggregate attribute. Basic
attributes have no child attributes. This means that a basic attribute represents
an input to the DEXi model, as its value is assigned directly, rather than being
computed from child attributes.

Aggregate attributes are characterized by having child attributes. The value
of an aggregate attribute is a function of the values of its child attributes. This
function is called the utility function of the attribute. The utility function of each
aggregate attribute is defined by stating, for each possible combination of its child
attribute values, what is the corresponding value of the aggregate attribute.
The DEXi tool automatically computes the value of all aggregate attributes
as soon as values have been assigned to the basic attributes. Hence, a DEXi
model can be viewed as an algorithm where the basic attribute values constitute
the input and the values of the aggregate attributes constitute the output. A
java library and a command-line utility program for DEXi model execution is
available [12], meaning that functionality for executing DEXi algorithms can be
easily integrated in software systems. This, combined with the fact that DEXi has
been designed to produce models that are comprehensible to end users [9], was
our reason for choosing DEXi. Its comprehensibility seems to be confirmed by its
application in several different domains, involving a wide range of stakeholders
[7–9].

Figure 6 shows an example of a DEXi model which consists of three aggre-
gate attributes and three basic attributes; the latter are shown as triangles. The
top attribute, which is an aggregate attribute, is named Risk and has two child
attributes (Likelihood and Consequence) that are also aggregate attributes. The
Likelihood attribute has in turn two basic attributes as child attributes (Likeli-
hood indicator 1 and Likelihood indicator 2), while the Consequence attribute
has one basic attribute as child attribute (Consequence indicator 1).

Fig. 6. DEXi model.

We now show how to build a security risk assessment algorithm, in the form
of a DEXi model, based on a CORAS model. We use the model in Fig. 4 as an
example. This means that the decision problem represented by the top attribute
in the DEXi model concerns deciding the risk level. We start by explaining how
each fragment of the CORAS model can be schematically translated to a corre-
sponding fragment of the DEXi model. Since our focus here is on the algorithm
structure, we do not address the definition of scales and utility functions, but
refer to [14] for further discussion on this.

140 A. Černivec et al.

Risk. In the CORAS model, a risk corresponds to an impacts relation from an
unwanted incident to an asset. The risk level depends on the likelihood of the
incident and its consequence for the asset, as represented by l U1 and c U1 A1 in
Fig. 4. In the DEXi model, a risk is therefore represented as a top (i.e. orphan)
attribute that has two child attributes, one representing the likelihood of the
incident and one representing its consequence for the asset. Figure 7(a) shows
the DEXi-representation of the (only) risk shown in Fig. 4. The value of the top
attribute R1 represents the risk level. Notice that R1 does not occur as a sepa-
rate name in the CORAS diagram, as a risk is represented by the combination of
the incident, the asset, and the relation between them, rather than by a separate
node.

Fig. 7. Screenshots from the DEXi tool.

Node with Incoming leads-to Relations. In a CORAS model, the like-
lihood of a node with incoming leads-to relations2 depends on the likelihood
contributions from each relation. In the DEXi model, such a node is therefore
represented by an attribute with one child attribute for every incoming leads-to
relation. The attribute l U1 in Fig. 7(b), which represents the likelihood of U1,
therefore has two child attributes, l S1 to U1 and l S2 to U1, representing the
likelihood contributions from S1 and S2 via their outgoing leads-to relations.
2 Recall from Sect. 4 that threat scenarios and unwanted incidents are the only node

types that may have incoming leads-to relations.

Employing Graphical Risk Models to Facilitate Cyber-Risk Monitoring 141

Node with Outgoing leads-to Relation. The contribution from a leads-to
relation to its target node depends on the likelihood of the source node and the
conditional probability that an occurrence of the source node will lead to an
occurrence of the target node. The latter is assigned to the leads-to relation in
a CORAS model. In the DEXi model, a source node with an outgoing leads-
to relation is therefore represented by an attribute with two child attributes,
one representing the likelihood of the source node and one representing the
conditional probability that an occurrence of the source node will lead to the
target node. As illustrated in Fig. 7(c), the attribute l S1 to U1 representing the
likelihood contribution from S1 to U1 therefore has two child attributes, l S1
representing the likelihood of S1 and cp S1 to U1 representing the conditional
probability of S1 leading to U1 (and similarly for l S2 to U1).

Node with Attached Indicators. In a CORAS model, indicators can be
attached to a node to show that the indicators are used as input for assessing
the likelihood of the node. In the DEXi model, indicators attached to a node
are therefore represented as basic attributes under the attribute representing
the node. Figure 7(d) shows the complete DEXi tree structure derived from the
CORAS risk model in Fig. 4. The basic attributes in Fig. 7(d) correspond to the
indicators in Fig. 4. Here we see that l S1 has a child attribute for each of the
indicators IN-34, IN-41, IN-42, IN-51 and IN-52 attached to S1 in Fig. 4, while
l S2 has child attributes representing the indicators IN-41 and IN-42, which are
attached to S2 in Fig. 4.

Notice that we may have cases where a node has incoming leads-to relations
in addition to attached indicators, although this is not the case in the example.
In such cases, the attribute representing the node can have child attributes rep-
resenting the incoming branches in addition to the child attributes representing
indicators.

Leads-to Relation with Attached Indicators. In a CORAS model, indica-
tors can be attached to a leads-to relation from one node to another, or on a
vulnerability attached to such a relation, to show that the indicators are used
as input for assessing the conditional probability of an occurrence of the source
node leading to the target node. In the DEXi model, indicators attached to a
leads-to relation (or vulnerability) are therefore represented by basic attributes
under the attribute representing the conditional probability assigned to the rela-
tion. Therefore, in Fig. 7(d) we see that cp S1 to U1 has a child attribute for
each of the indicators IN-30, IN-34 and IN-35, while cp S2 to U1 has one child
attribute representing IN-52.

Other CORAS Model Fragments. We have not provided separate guidelines
for threats, initiates relations, and indicators attached to impacts relations. For
the latter, the reason is that a CORAS model does not provide any support for
consequence assessment beyond the assignment of a consequence value to the
impacts relation from an unwanted incident to an asset. All indicators relevant
for consequence assessments are therefore represented as basic attributes directly
under the attribute representing the consequence, as illustrated by c U1 A1 in

142 A. Černivec et al.

Fig. 7(d). In our example, the single indicator IN-C1 attached to the impacts
relation from U1 actually provides the consequence value directly, which means
that the IN-C1 attribute could have been attached directly under R1, without
the intermediate c U1 A1 attribute. We chose to include c U1 A1 to illustrate
the general structure.

Concerning threats and initiates relations, we rarely assign likelihoods to
these CORAS elements in practice, as estimating threat behavior is very difficult.
Instead, we assign a likelihood directly to the target node of the initiates relation.
An indicator assigned to a threat or to an initiates relation can therefore be
handled as if it was assigned directly to the target node.

5.3 Step 2.2: Validate Assessment Algorithm

Before putting the algorithm in operation, it should be validated to verify that
its output can reasonably be expected to reflect reality. When dealing with the
kind of cyber-risk assessment addressed in this paper, we typically need to rely
on expert judgment for this. We first select a set of validation scenarios and
then validate the output from the algorithm for each scenario with a team of
experts. As the CORAS model does not provide any support for consequence
assessment beyond annotation on impacts relations, we focus here primarily on
the likelihood assessment.

A validation scenario is a set of indicator values representing one possible
snapshot of the dynamic factors that influence the likelihood assessment (and
hence also the risk level). Thus, the number of possible scenarios is the product
of the number of possible values for each such indicator. This often results in
many possible scenarios, which may be infeasible to validate. Our example in
Fig. 4 includes 7 different Boolean indicators affecting the likelihood assessment
(as well as one affecting the consequence). This gives 128 possible scenarios.

We therefore need to select a reasonable number of scenarios depending on the
available effort. As a minimum, we suggest selecting validation scenarios based
on the following two criteria: (1) cover the extreme scenarios where none or all
of the indicators are triggered (yielding the minimum and maximum frequency
values), and (2) cover each path in the CORAS risk model, meaning that for
each path p (from the threat to the unwanted incident) in the risk model, there
must be a scenario where one or more indicators along the path is triggered and
the indicators for all other paths are not triggered unless these indicators also
affect path p. By triggered, we mean that the indicator value contributes to the
increase of likelihood. For example, for IN-34 (Are idle sessions destroyed?), the
value False (=No) would imply a higher likelihood than True (=Yes), since idle
sessions can be exploited by an attacker.

For validating the output of the algorithm with the experts, we recommend
using a well-established approach, such as the Wide-band Delphi method [4].
This is a forecasting technique used to collect expert opinion in an objective way,
and arrive at consensus conclusion based on that. Another similar estimation
approach is the Constructive Cost Model (COCOMO) [5].

Employing Graphical Risk Models to Facilitate Cyber-Risk Monitoring 143

6 Related Work

Most security risk approaches aim to provide either quantitative or qualitative
assessments capturing the risk level at a single point in time, rather than con-
tinuous monitoring. However, there are also approaches that address dynamic
aspects and offer support for updating assessments based on new information.

Poolsappasit et al. [30] propose an approach for dynamic security risk man-
agement using Bayesian Attack Graphs (BAGs). This approach is dynamic in
the sense that it allows system administrators to tweak the probability of events
captured by a BAG in order to see how this propagates in the complete risk
picture. While their approach facilitates manual update of probability of events,
our method facilitates both manual and automatic update of the likelihood of
events indirectly through the different types of indicators. The manual update
in our method is based on input provided by representatives of the target under
analysis (business configuration indicators), while the automatic update is based
on input collected from vulnerability scanning, application-layer monitoring, and
network-layer monitoring.

The first use of measurable indicators as dynamic input to provide risk level
assessments based on CORAS was presented in [33]. This is a quantitative app-
roach where indicators are represented by variables in arithmetic formulas for
computing risk levels, without using distributions or BNs. As argued by Neil
et al. [25] BNs provide a flexible and attractive solution to the problem of mod-
eling (operational) risk. In particular, BNs enable an analyst to combine quan-
titative information (e.g. available historical data) with qualitative information
(e.g. subjective judgments) regarding the loss-generating processes. In the con-
text of cyber-risk, BNs have been used for a variety of purposes, such as to model
attack graphs or loss event frequencies [20,30].

The consequence assessment for the quantitative version of our approach is
based on the Loss Distribution Approach (LDA), which is typically used to model
operational risk and its insurability [22], provided that a sufficient amount of
data is available. In the LDA, the temporal occurrence of the losses is frequently
modeled by a Poisson process, while various families of distributions (Gamma,
Generalized Pareto, Lognormal, etc.) might be used to model the severity of
the losses. Biener et al. [3] study whether models which prove to be useful for
operational risk can also be applied to an analysis of cyber-risk. They conclude
that the LDA approach is suitable to model cyber-risk and that it provides useful
insights regarding, e.g., the distinct characteristics of cyber-risk with respect to
operational risk in general.

For the qualitative version of our method, we chose DEXi due to its simplicity
and ease of integration in the WISER framework. DEXi is one of many approaches
within the field of multi-criteria decision making (on which there is a huge lit-
erature [37]), and has been tried out in a wide range of domains, such as health
care, finance, construction, cropping systems, waste treatment systems, medicine,
tourism, banking, manufacturing of electric motors, and energy [9,12]. To the best
of our knowledge, DEXi has not been used for security risk assessment. However, it
has been applied to assess safety risks within highway traffic [27] and ski resorts [8].

144 A. Černivec et al.

Although they focus on safety risks, the approaches provided by Omerčević et al.
[27] and Bohanec et al. [8] are similar to our approach in the sense that they use
DEXi models as the underlying algorithm to compute an advice based on relevant
indicators. Unlike our approach, they do not employ any dedicated risk modeling
language to provide a basis for developing the DEXi models.

7 Discussion and Conclusion

The framework presented in Sect. 2 has been successfully demonstrated in three
different pilot organizations, using quantitative and qualitative algorithms based
on 10 different CORAS models, all developed following the method outlined in
Sect. 3. Due to the structure of a CORAS model and the simple relationship to
the algorithm structure, we believe that most cyber-risk practitioners who are
familiar with CORAS and the chosen algorithm language (R or DEXi) will have
little problems establishing the algorithm structure from a CORAS model.

Having established the structure of an algorithm, the remaining challenge is
to fill in the details, in particular deciding the impact of the indicators. This
amounts to defining the functions from indicators to the parentless nodes in the
BN skeleton (in the quantitative approach) or defining the scales and utility
functions for the attributes (in the qualitative approach). We provide further
guidelines for this in [13,14], respectively.

An inherent limitation of the approach is that new and unforeseen threats,
vulnerabilities and attack types can only be addressed by updating the relevant
risk models and algorithms (or creating new ones) manually. The only dynamic
changes automatically covered by the monitoring are those captured by changing
indicator values. Periodic evaluations are therefore needed to decide whether new
or updated models and algorithms are required. Of course, this limitation applies
to all methods that rely on human experts for risk identification.

Although our own experiences from applying the method and framework are
promising, further empirical studies are needed to evaluate them in a wider con-
text. In particular, we hope to investigate to what degree cyber-risk practitioners
outside the WISER consortium are able to establish algorithms that are suffi-
ciently correct to provide useful decision support for those in charge of dealing
with cyber-risk for an organization.

Acknowledgments. This work has been conducted as part of the WISER project
(653321) funded by the European Commission within the Horizon 2020 research and
innovation programme.

References

1. The ACM Computing Classification System (CCS). https://dl.acm.org/ccs/ccs.
cfm. Accessed 3 Nov 2017

2. Atkinson, K.A.: An Introduction to Numerical Analysis. Wiley, New York (1989)
3. Biener, C., Eling, M., Wirfs, J.H.: Insurability of cyber risk an empirical analysis.

Geneva Pap. Risk Insurance Issues Pract. 40(1), 131–158 (2015)

https://dl.acm.org/ccs/ccs.cfm
https://dl.acm.org/ccs/ccs.cfm

Employing Graphical Risk Models to Facilitate Cyber-Risk Monitoring 145

4. Boehm, B.W.: Software Engineering Economics. Prentice Hall, Upper Saddle River
(1981)

5. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E.,
Madachy, R., Reifer, D.J., Steece, B.: Software Cost Estimation with COCOMO
II. Prentice Hall, Upper Saddle River (2000)

6. Bohanec, M.: DEXi: program for multi-attribute decision making. User’s Manual
v 5.00 IJS DP-11897, DEXi (2015)

7. Bohanec, M., Aprile, G., Costante, M., Foti, M., Trdin, N.: A hierarchical multi-
attribute model for bank reputational risk assessment. In: DSS 2.0 - Supporting
Decision Making with New Technologies, pp. 92–103. IOS Press (2014)

8. Bohanec, M., Delibašić, B.: Data-mining and expert models for predicting injury
risk in ski resorts. In: Delibašić, B., et al. (eds.) ICDSST 2015. LNBIP, vol. 216,
pp. 46–60. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18533-0 5

9. Bohanec, M., Žnidaršič, M., Rajkovič, V., Bratko, I., Zupan, B.: DEX methodology:
three decades of qualitative multi-attribute modeling. Informatica (Slovenia) 37(1),
49–54 (2013)

10. Bus, J.C.P.: Convergence of Newton-like methods for solving systems of nonlinear
equations. Numerische Mathematik 27(3), 271–281 (1976)

11. Chernobai, A.S., Rachev, S.T., Fabozzi, F.J.: Operational Risk: A Guide to Basel
II Capital Requirements, Models, and Analysis. Wiley, Hoboken (2007)

12. DEXi: A program for multi-attribute decision making. http://kt.ijs.si/
MarkoBohanec/dexi.html. Accessed 19 Oct 2017

13. Erdogan, G., Gonzalez, A., Refsdal, A., Seehusen, F.: A method for developing
algorithms for assessing cyber-risk cost. In: Proceedings of the 2017 IEEE Inter-
national Conference on Software Quality, Reliability, & Security (QRS 2017), pp.
192–199. IEEE (2017)

14. Erdogan, G., Refsdal, A.: A method for developing qualitative security risk assess-
ment algorithms. In: Proceedings of 12th International Conference on Risks and
Security of Internet and Systems (CRiSIS 2017). Springer (2017, to appear)

15. International Organization for Standardization: ISO/IEC 27001 - Information tech-
nology - Security techniques - Information security management systems - Require-
ments (2005)

16. International Organization for Standardization: ISO/IEC 27032 - Information tech-
nology - Security techniques - Guidelines for cybersecurity (2005)

17. International Organization for Standardization: ISO 31000:2009(E), Risk manage-
ment - Principles and guidelines (2009)

18. International Organization for Standardization: ISO/IEC 27005:2011(E), Infor-
mation technology - Security techniques - Information security risk management
(2011)

19. Klugman, S.A., Panjer, H.H., Willmot, G.E.: Loss Models: From Data to Decisions.
Wiley, New York (2012)

20. Le, A., Chen, Y., Chai, K.K., Vasenev, A., Montoya, L.: Assessing loss event fre-
quencies of smart grid cyber threats: encoding flexibility into FAIR using Bayesian
network approach. In: Hu, J., Leung, V.C.M., Yang, K., Zhang, Y., Gao, J.,
Yang, S. (eds.) Smart Grid Inspired Future Technologies. LNICST, vol. 175, pp.
43–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47729-9 5

21. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS App-
roach. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-12323-8

22. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts,
Techniques and Tools. Princeton University Press, Princeton (2015)

https://doi.org/10.1007/978-3-319-18533-0_5
http://kt.ijs.si/MarkoBohanec/dexi.html
http://kt.ijs.si/MarkoBohanec/dexi.html
https://doi.org/10.1007/978-3-319-47729-9_5
https://doi.org/10.1007/978-3-642-12323-8

146 A. Černivec et al.

23. Common Attack Pattern Enumeration and Classification (CAPEC). https://capec.
mitre.org/. Accessed 18 Oct 2017

24. Mittnik, S., Starobinskaya, I.: Modeling dependencies in operational risk with
hybrid Bayesian networks. Methodol. Comput. Appl. Probab. 12(3), 379–390
(2010)

25. Neil, M., Fenton, N., Tailor, M.: Using Bayesian networks to model expected and
unexpected operational losses. Risk Anal. 25(4), 963–972 (2005)

26. Solve Systems of Nonlinear Equations. https://cran.r-project.org/web/packages/
nleqslv/nleqslv.pdf. Accessed 19 Oct 2017

27. Omerčević, D., Zupančič, M., Bohanec, M., Kastelic, T.: Intelligent response to
highway traffic situations and road incidents. In: Proceedings of the Transport
Research Arena Europe 2008 (TRA 2008), pp. 21–24 (2008)

28. The Open Web Application Security Project. www.owasp.org. Accessed 18 Oct
2017

29. OWASP Zed Attack Proxy Project. https://www.owasp.org/index.php/OWASP
Zed Attack Proxy Project. Accessed 2 Nov 2017

30. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using
Bayesian attack graphs. IEEE Trans. Dependable Secure Comput. 9(1), 61–74
(2012)

31. Refsdal, A., Erdogan, G., Aprile, G., Poidomani, S., Colgiago, R., Gonzalez, A.,
Alvarez, A., González, S., Arce, C.H., Lombardi, P., Mannella, R.: D3.4 - cyber risk
modelling language and guidelines, final version. Technical report D3.4, WISER
(2017)

32. Refsdal, A., Solhaug, B., Stølen, K.: Cyber-Risk Management. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23570-7

33. Refsdal, A., Stølen, K.: Employing key indicators to provide a dynamic risk picture
with a notion of confidence. In: Ferrari, E., Li, N., Bertino, E., Karabulut, Y. (eds.)
IFIPTM 2009. IAICT, vol. 300, pp. 215–233. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02056-8 14

34. The R Project for Statistical Computing. https://www.r-project.org. Accessed 19
Oct 2017

35. Solhaug, B., Stølen, K.: The CORAS language - why it is designed the way it
is. In: Proceedings of the 11th International Conference on Structural Safety &
Reliability (ICOSSAR 2013), pp. 3155–3162. Taylor and Francis (2013)

36. Černivec, A., Alvarez, A., González, S., Arce, C.H., Žitnik, A., Plestenjak, R.,
Biasibetti, A.L.: D4.2 - WISER Monitoring Infrastructure. Technical report D4.2,
WISER (2016)

37. Velasquez, M., Hester, P.T.: An analysis of multi-criteria decision making methods.
Int. J. Oper. Res. 10(2), 56–66 (2013)

38. Web Application Attack and Audit Framework. http://w3af.org/. Accessed 2 Nov
2017

39. Wide-Impact cyber SEcurity Risk framework (WISER). https://www.cyberwiser.
eu/. Accessed 16 Oct 2017

https://capec.mitre.org/
https://capec.mitre.org/
https://cran.r-project.org/web/packages/nleqslv/nleqslv.pdf
https://cran.r-project.org/web/packages/nleqslv/nleqslv.pdf
www.owasp.org
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://doi.org/10.1007/978-3-319-23570-7
https://doi.org/10.1007/978-3-642-02056-8_14
https://doi.org/10.1007/978-3-642-02056-8_14
https://www.r-project.org
http://w3af.org/
https://www.cyberwiser.eu/
https://www.cyberwiser.eu/

Author Index

Apvrille, Ludovic 99

Bernsmed, Karin 38
Blumstein, Dave 91
Bossuat, Angèle 17

Černivec, Aleš 127
Couce-Vieira, Aitor 57

Druce, Jeff 91

Erdogan, Gencer 127

Foley, Meaghan 91
Ford, Margaret 1
Frøystad, Christian 38

Gadyatskaya, Olga 115
Gaskin, Steve 91
Gonzalez, Alejandra 127

Habibi, Ryan 107
Hansen, René Rydhof 75
Houmb, Siv Hilde 57
Howard, Michael 91

Ionita, Dan 1

Jensen, Peter Gjøl 75

Kordy, Barbara 17

Larsen, Kim Guldstrand 75
Legay, Axel 75
Li, Letitia W. 99
Lister, Crystal 91
Lugou, Florian 99

Meland, Per Håkon 38

Nesheim, Dag Atle 38

Poulsen, Danny Bøgsted 75
Price, Morgan 107

Reed, Fred 91
Refsdal, Atle 127
Ríos-Insua, David 57
Rødseth, Ørnulf Jan 38
Romero, Antonio Alvarez 127
Ruttenberg, Brian 91

Scofield, Dan 91

Trujillo-Rasua, Rolando 115

Vasenev, Alexandr 1

Weber, Jens 107
Wieringa, Roel 1
Wilfong, Leslie 91

	Preface
	Organization
	Security Metrics and Risk Analysis for Enterprise Systems (Abstract of Invited Talk)
	Contents
	Graphical Modeling of Security Arguments: Current State and Future Directions
	1 Introduction
	2 Background
	2.1 Argumentation Modeling
	2.2 Argumentation in Security

	3 Graphical Security Argumentation Tools and Techniques
	3.1 OpenArgue/OpenRISA
	3.2 Argumentation Spreadsheets
	3.3 ArgueSecure

	4 Comparison and Discussion
	5 Conclusions and Outlook
	References

	Evil Twins: Handling Repetitions in Attack–Defense Trees
	1 Into the Wild: Introduction
	2 Know the Flora: Attack–Defense Trees
	2.1 The Model
	2.2 Existing Semantics for ADTrees
	2.3 Quantitative Evaluation of ADTrees

	3 The Root of the Problem: Common Issues
	3.1 Incomplete Refinement
	3.2 Misplaced Counter
	3.3 Repeated Labels
	3.4 Repeated Basic Actions

	4 Poisonous or Edible: ADTrees with Repeated Labels
	4.1 Meaning of Repeated Labels
	4.2 Extended Labeling for ADTrees with Repetitions

	5 Survival Kit: Well-Formed ADTrees
	5.1 Definition of Well-Formed ADTrees
	5.2 Formal Semantics for Well-Formed ADTrees

	6 Back to Civilization: Conclusion
	References

	Visualizing Cyber Security Risks with Bow-Tie Diagrams
	1 Introduction
	2 Related Work
	3 Case Study: Maritime Communication
	4 Concepts and Terminology of Bow-Ties
	5 Risk Assessment
	5.1 Assessing the Left Side of the Bow-Tie (Cause)
	5.2 Assessing the Right Side of the Bow-Tie (Consequence)

	6 Use Case Example: Navigational Information Update
	7 Discussion
	8 Conclusion
	References

	CSIRA: A Method for Analysing the Risk of Cybersecurity Incidents
	1 Introduction
	2 Base Models
	2.1 GIRA: A General Model for Incident Risk Analysis
	2.2 Eliciting the Likelihood Based on the Oddness of the Event
	2.3 Understanding Potential Ramifications of Cybersecurity Incidents

	3 CSIRA: Cybersecurity Incident Risk Analysis
	4 An Example Cybersecurity Risk Analysis
	4.1 Risk Description: Identification
	4.2 Risk Description: Elicitation
	4.3 Risk Description: Calculation
	4.4 Risk Evaluation

	5 Discussion
	References

	Quantitative Evaluation of Attack Defense Trees Using Stochastic Timed Automata
	1 Introduction
	2 Attack-Defence Trees
	2.1 Temporal Semantics
	2.2 Stochastic Semantics
	2.3 Adding Cost
	2.4 Parameterised Attacker

	3 Instantiating the Framework
	4 Experiments
	4.1 Encoding
	4.2 Estimating Probability of Attack
	4.3 Parameter Optimisation

	5 Conclusion
	References

	Probabilistic Modeling of Insider Threat Detection Systems
	1 Introduction
	2 Insider Threat Systems
	3 Graphical Models of Insider Threat Systems
	3.1 Modeling Framework
	3.2 Implementation

	4 Experimentation
	4.1 Performance
	4.2 Sensitivity
	4.3 Optimization

	5 Conclusion
	References

	Security Modeling for Embedded System Design
	1 Introduction
	2 Analysis: Security Requirements and Attack Trees
	3 Security-Aware HW/SW Partitioning
	3.1 Security Modeling

	4 Security in Software Design
	5 Related Work
	6 Conclusion
	References

	Circle of Health Based Access Control for Personal Health Information Systems
	1 Introduction
	2 Background
	3 Scoping Literature Review
	3.1 Themes
	3.2 AC Models
	3.3 Synthesis

	4 Circle of Health Based Access Control
	4.1 Satisfying Requirements

	5 Limitations
	6 Future Work
	7 Conclusion
	References

	New Directions in Attack Tree Research: Catching up with Industrial Needs
	1 Introduction
	2 Challenges with Attack Tree Design in Practice
	3 Research Trends in Attack Tree Applications
	4 Next Steps and Conclusions
	References

	Employing Graphical Risk Models to Facilitate Cyber-Risk Monitoring - the WISER Approach
	1 Introduction
	2 Cyber-Risk Monitoring Framework
	2.1 Business Configurator
	2.2 Network and Application Monitor
	2.3 Vulnerability Scanner

	3 Method for Cyber-Risk Modelling
	4 Step 1: Establish and Document Understanding of the Risk Picture
	4.1 Step 1.1: Create CORAS Diagram with Indicators
	4.2 Step 1.2: Validate CORAS Diagram with Indicators

	5 Step 2: Provide Machine-Readable Algorithm
	5.1 Step 2.1, alt. a: Define Quantitative Assessment Algorithm
	5.2 Step 2.1, alt. b: Define Qualitative Assessment Algorithm
	5.3 Step 2.2: Validate Assessment Algorithm

	6 Related Work
	7 Discussion and Conclusion
	References

	Author Index

