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Abstract The relevance of fermentation as an important and key aspect of food 
processing cannot be overemphasized, as it enhances beneficial composition and 
ensures safety. Fermentation technologies have constantly evolved with advances 
effectively dealing with the challenges associated with the traditional food fermen-
tation process. Over the years, concerted efforts, intensive scientific research and 
the advent of modern sophisticated equipment have addressed these challenges and 
progressed to new approaches for fermentation of foods, subsequently leading to 
the delivery of novel food products. These advancements are further fueled by com-
petitiveness among industry players based on innovativeness, cost-cutting mea-
sures, profit and the understandable desire for process improvement, better yields 
and quality products. This chapter covers significant advancement and technologi-
cal applications that can improve food fermentation processes that are applicable for 
the delivery of better, safer and cost-effective food products.

Keywords Fermentation · Mixed cultures · Carbohydrate · Novel processing 
techniques · Food metabolomics · Nanotechnology

O. A. Adebo (*) · P. B. Njobeh · J. A. Adebiyi · O. M. Ogundele · E. Kayitesi (*) 
Department of Biotechnology and Food Technology, University of Johannesburg, 
Doornfontein, Johannesburg, South Africa
e-mail: eugeniek@uj.ac.za 

A. S. Adeboye 
Department of Food Science, University of Pretoria, Hatfield, Pretoria, South Africa 

Department of Food Technology, Moshood Abiola Polytechnic,  
Abeokuta, Ogun State, Nigeria 

S. S. Sobowale 
Department of Food Technology, Moshood Abiola Polytechnic,  
Abeokuta, Ogun State, Nigeria

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74820-7_4&domain=pdf
https://doi.org/10.1007/978-3-319-74820-7_4
mailto:eugeniek@uj.ac.za


72

 Introduction

The onus and imperative for continued development of appropriate technologies for 
food production have continually risen over the past few years. While conventional 
food processing techniques still play an important role in the formulation of tradi-
tional diets, increasing consumer demand for high-quality, nutritious and safe prod-
ucts propels the industry to search for improved processes. Fermentation remains an 
age-long food processing technology, practiced, even before the understanding of 
the underlying processes involved. The techniques and associated knowledge 
involved in this process are normally handed down from one generation to the other 
and subsequently passed on within the local communities (Adebo et al. 2017a).

Recently, there has been an increased demand for fermented foods as potential 
sources of functional foods (Adebo et al. 2017a, b; Adebiyi et al. 2018). The need 
to meet consumer demand has made it essential to improve conventional fermenta-
tion techniques with advanced ones to ensure the delivery of desired fermented 
foods with consistently better quality, sensory attributes and nutritional benefits. 
This chapter, thus, provides an overview of the current state and potential develop-
ments and advances in fermentation technologies, for the delivery of novel food 
products. Aspects covered include the use of multi-strain starter cultures for fermen-
tation, novel fermentation processes, carbohydrate for improved processes and 
other technological applications that can help enhance the development novel fer-
mented foods.

 Mixed Starter Cultures for Fermentation

Although most indigenous fermentation processes still largely rely on uncontrolled 
fermentation techniques (spontaneous fermentation and backslopping), the use of 
starter cultures (yeasts, bacteria and fungi) is desirable to ensure consistency, main-
tain hygiene, improve quality and guarantee constant sensory quality and composi-
tion. Sequel to the increased consumer demands for products with enhanced 
beneficial properties, the fermentation industry is constantly exploring ways to 
select, develop and use these starter cultures to improve the process. The general 
sequence used for the starter culture selection is depicted in Fig. 4.1. Commercial 
starter cultures are, however, not necessarily selected in this way but rather done 
based on rapid acidification and phage resistance (Leroy and De Vuyst 2004).

Starter cultures can be distinguished as single strain (one strain of a species), 
multi-strain (more than one strain of a single specie) or multi-strain mixed cultures 
(strains from different species) (Mäyrä-Mäkinen and Bigret 1998; Bader et  al. 
2010). While the use of single-strain cultures has been the norm and utilized for 
numerous food products, utilization of multi-strain and mixed cultures has demon-
strated different advantages over single-strain use. Challenges of losses in the 
uniqueness, properties and characteristics of single-strain-fermented foods as 
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 compared to different microorganisms have been reported (Caplice and Fitzgerald 
1999), which could be ascribed to the limited microflora of the food. This could thus 
inform and suggest the use of multi-cultures, considering that these fermented foods 
are naturally produced through competitive action of different microorganisms and 
consequent varying metabolic pathways. Potential for synergistic utilization of dif-
ferent metabolic pathways; multiple biotransformation; increased yield; better 
organoleptic properties; bulk production of desirable metabolites, enzymes and 
antimicrobials; and rich biodiversity are added advantages of using mixed cultures 
(Meyer and Stahl 2003; Brenner et al. 2008; Bader et al. 2010).

Mixed cultures thus offer better complex metabolic activities and provide 
improved adaption in the food environment. Under such complex conditions, deg-
radation, proteolysis, polymerization and metabolization of the inherent substrate 
occur through a combined metabolic activity of the inoculated strains. Examples of 
mixed culture applications for fermentation and delivery of novel food products are 
summarized in Table 4.1. Accordingly, through improved communication, trading 
of metabolites, exchange of molecular signals, combining tasks and division of 
labour among the cultures, better versatility and robustness are experienced under 
such conditions (Meyer and Stahl 2003; Brenner et al. 2008; Bader et al. 2010). The 
growth of one strain may however be enhanced or inhibited by the activities of 
another microorganism, and thus the production of primary and secondary metabo-
lites may be increased or decreased (Keller and Surette 2006; Bader et al. 2010). 
Nonetheless, these cultures still play potential roles in increasing acidification and 
acceleration of the fermentation process and improvement of functionality, nutri-
tional quality and health-promoting components.

Equally important are also reduction of cholesterol and biogenic amines and 
production of ɣ-aminobutyric acid (Ratanaburee et al. 2013; Kantachote et al. 2016) 
initiated through different interaction modes of mutualism, parasitism, competition, 
amensalism and commensalism between the strains. Through binding and produc-
tion of metabolites, yeasts and LAB starter cultures have also been reported to 

Fig. 4.1 Schematic diagram for strain selection
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Table 4.1 Studies demonstrating the use of mixed cultures used for fermentation of food

Product Raw material Cocultures Reference

Bread Wheat flour, 
salt, sugar and 
water

S. cerevisiae, Torulaspora delbrueckii and 
Pichia anómala

Wahyono et al. 
(2016)

Cauim Rice, cassava L. plantarum and Torulaspora delbrueckii; 
L. acidophilus and T. delbrueckii

Freire et al. (2017)

Fermented 
milk

Milk C. kefyr and L. lactis Mufandaedza et al. 
(2006)

Fermented 
peanut milk

Peanut milk L. delbrueckii ssp. bulgaricus 
Streptococcus salivarius ssp. thermophilus

Isanga and Zhang 
(2007)

Fermented 
sausage

Pork meat P. pentosaceus, L. sakei, S. xylosus, S. 
carnosus and Dabaryomyces hansenula; P. 
pentosaceus and S. xylosus; L. sakei and S. 
xylosus

Wang et al. (2015)

Feta cheese Pasteurized 
whole milk

Lactococcus lactis; L. casei and 
Leuconostoc cremoris; L. lactis, L. casei 
and Enterococcus durans; L. lactis, L. 
casei, E. durans and Leuc. cremoris

Litopoulou- 
Tzanetaki et al. 
(1993)

Functional 
beverage

Peanut-soy 
milk

Saccharomyces cerevisiae and Pediococcus 
acidilactici; S. cerevisiae and Lactobacillus 
acidophilus; P. acidilactici and L. 
acidophilus; S. cerevisiae, P. acidilactici 
and L. acidophilus

Santos et al. (2014)

Kefir Milk Candida kefyr, Lactobacillus sp., 
Kluyveromyces sp. and Saccharomyces sp.

Lopitz-Otsoa et al. 
(2006)

Moromi Soy sauce Tetragenococcus halophilus and 
Zygosaccharomyces; T. halophilus and Z. 
rouxii; T. halophilus, Z. rouxii and 
Meyerozyma (Pichia) guilliermondii

Singracha et al. 
(2017)

Nham Pork P. pentosaceus and L. namurensis Ratanaburee et al. 
(2013) and 
Kantachote et al. 
(2016)

Probiotic 
beverage

Cereals L. plantarum and L. acidophilus Rathore et al. (2012)

Salami Meat L. plantarum and L. curvatus Dicks et al. (2004), 
Todorov et al. 
(2007), and Bohme 
et al. (1996)

L. sake and Micrococcus sp.; L. curvatus 
and Micrococcus sp.; L. sake, L. curvatus 
and Micrococcus sp.

Suan yu Fish L. plantarum, Stap. xylosus and S. 
cerevisiae; L. plantarum, Stap. xylosus and 
S. cerevisiae; P. pentosaceus; Stap. xylosus 
and S. cerevisiae

Zheng et al. (2013)

Sucuk Meat Staphylococcus carnosus and P. 
pentosaceus; Stap. carnosus and L. sakei; 
Stap. carnosus, P. entosaceus and L. sakei

Bingol et al. (2014)

(continued)
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detoxify mycotoxins (Adebo et al. 2017c). The use of cocultures/mixed starter cul-
tures during the fermentation process would largely ensure a diversity of microflora 
that would provide a broad range of beneficial components in fermented foods. An 
in-depth understanding of the mechanisms of action of these multiple strains in a 
food system is however needed, necessitating further research in this regard.

 Advances in the Use of Carbohydrates for Fermentation

The nature and type of carbohydrate influence inherent microbial and enzymatic 
actions as well as subsequent modifications to a substrate (Paulová et al. 2013). The 
complexity in the structural components of plant polysaccharides causes plant- 
degrading microbes to express numerous carbohydrate-active enzymes (CAZymes) 
(Lombard et  al. 2014), which specifically modify or cleave to a specific type of 
sugar linkage (Boutard et  al. 2014). Studies elucidating these mechanisms and 
approaches with models describing these interactions have been documented in the 
literature (Lynd et  al. 2002; Boutard et  al. 2014; Lombard et  al. 2014; Lü et  al. 
2017).

Particularly, important advances on carbohydrates in fermentation technology 
are measures applied to improve enzyme accessibility to the active sites, thereby 
increasing digestibility of substrates during fermentation processes (Taherzadeh 
and Karimi 2008; Alvira et al. 2010; Lü et al. 2017). These pretreatments could be 
done using both chemical and physical methods. As for chemical methods, they 
include water pretreatment making a substrate suitable for enzymatic hydrolysis 
and subsequent fermentation as well as steam explosion because, high temperature 
is known to easily remove lignin, which might compromise microbial action 
(Taherzadeh and Karimi 2008; Thirmal and Dahman 2012). The major physical 
pretreatment commonly used is milling (Thirmal and Dahman 2012), with the 
assumption that it would physically increase the surface area of carbohydrates and 
improve accessibility of substrates to fermenting microbiota (Taherzadeh and 
Karimi 2008; Thirmal and Dahman 2012; Lü et al. 2017).

Equally important are non-digestible oligosaccharides (NDOs), which are low- 
molecular- weight carbohydrates, with intermediate properties between sugars and 

Table 4.1 (continued)

Product Raw material Cocultures Reference

Ting Sorghum L. harbinensis and P. acidilactici; L. reuteri 
and L. fermentum; L. harbinensis and L. 
coryniformis; L. plantarum and L. 
parabuchneri; L. casei and L. plantarum

Sekwati-Monang 
and Gänzle (2011)

Wine Must S. cerevisiae and Starmerella bacillaris Tofalo et al. (2016)
Yakupa Cassava S. cerevisiae and L. fermentum; T. 

delbrueckii and L. fermentum; P. caribbica 
and L. fermentum

Freire et al. (2015)
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polysaccharides. Dietary fibre, an important member of this class, functions as pre-
biotics in diets, due to their excellent glycaemic response. Enrichment of ferment-
ing substrates with NDOs gives an avenue for increasing bacterial population, 
biochemical profile and consequent beneficial physiological effects in the gut 
(Mussatto and Mancilha 2007). These NDOs have been produced from various car-
bohydrate sources via direct extraction from natural sources, chemical processes 
and hydrolyses of polysaccharides or by enzymatic action and chemical synthesis 
from disaccharides (Mussatto and Mancilha 2007). As such, NDOs are rapidly find-
ing industrial applications both in prebiotic formulations and symbiotic products 
(containing probiotic organism and prebiotic oligosaccharide) (Mussatto and 
Mancilha 2007). This could potentially be utilized in different fermented foods for 
the delivery of desired health benefits.

 Novel Food Processing Technologies for Improved 
Fermentation Processes

Novel and emerging food processing technologies for fermentation have increas-
ingly gained interest over the past years. They are broadly categorized as a nonther-
mal and thermal process. The available novel nonthermal processes are high 
pressure processing (HPP), ultrasound (US) irradiation [gamma irradiation 
(ɣ-irradiation), microwave irradiation (MI)] and pulsed electric field (PEF); mean-
while thermal processes include ohmic heating (OH), radio frequency (RF) and 
microwave heating (MH). While the former could be aimed at accelerating the rate 
of chemical reactions (oxidation, polymerization, condensation and esterification) 
and fermentation, used for monitoring fermentation and for pasteurization, the latter 
may be adopted to improve shelf life, inactivate pathogenic and deleterious micro-
organisms, improve metabolic activities and production of enzymes as well as 
shorten the fermentation process. These techniques have recently been extensively 
described and adequately documented (Garde-Cerdán et  al. 2016; George and 
Rastogi 2016; Koubaa et al. 2016a, b; Ojha et al. 2016, 2017). Available studies 
reporting the use of these technologies are summarized in Table 4.2.

HPP is conventionally applied to food products as a final mitigation step for 
products already packaged, which cannot be heat treated (Bajovic et al. 2012). They 
have received considerable attention as a technique for eliminating pathogens in 
fermented foods, although with mixed results. Some studies have indicated that 
HPP may not be desirable (Marcos et al. 2013; Omer et al. 2015), while others have 
encouraged the potential use of HPP in fermented foods (Table 4.2). Significant 
reduction and elimination in microbial loads of fermented foods have been reported 
(Omer et al. 2010; Gill and Ramaswamy 2008; Avila et al. 2016), with other studies 
indicating that HPP shortens wine ageing duration and enhances composition (Oey 
et al. 2008; Tchabo et al. 2017).

O. A. Adebo et al.
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Table 4.2 Summary of studies reporting the use of novel processing techniques for fermented 
foods

Fermented 
product

Processing 
technique Observation Reference

Beer US Enhanced ethanol production Choi et al. (2015)
Changran 
Jeotkal

ɣ-irradiation Reduction of microbial levels, 
better chemical stability and 
improved overall acceptance

Jo et al. (2004)

Coffee RF Identification and characterization 
of behaviours during fermentation

Correa et al. (2014)

Dry-aged loins US Faster and better proteolytic 
changes in dry-aged meat cuts

Stadnik et al. (2014)

Fermented 
juice

OH Retention of nutrients, inactivation 
of microorganisms

Profir and Vizireanu (2013)

Fermented 
milk

HPP Reduced viable counts of Candida 
spoilage yeasts

Daryaei et al. (2010)

Fermented 
minced pepper

HPP Lower levels of biogenic amines, 
lower microbial level, better 
sensory quality

Li et al. (2016)

Fermented 
sausage

ɣ-irradiation Controlled the occurrence of 
undesirable and pathogenic 
microorganisms, reduction of E. 
coli O157:H7 load

Johnson et al. (2000), 
Chouliara et al. (2006), 
and Lim et al. (2008)

Fermented 
soybean paste

ɣ-irradiation Reduction of biogenic amines Kim et al. (2003)

Full-fat 
yoghurt

US Higher water holding capacity, 
viscosity, lower syneresis and a 
reduction in fermentation

Hongyu et al. (2000)

Gochunjang OH Better pasteurization with no 
reduction in quality

Cho et al. (2016)

Kimchi ɣ-irradiation Controlled ageing and improved 
the shelf life of kimchi, sterilization 
of the product, softening of texture 
and better sensory quality

Song et al. (2004) and Park 
et al. (2008)

Kombucha 
analogues

PEF Inactivation of acetic acid bacteria 
from kombucha consortium

Vazquez-Cabral et al. 
(2016)

Morr, salami HPP Reduction in E. coli O103:H25 and 
E. coli O157 counts

Gill and Ramaswamy 
(2008) and Omer et al. 
(2010)

Must HPP Reduction/elimination of wild 
microorganisms, especially yeasts

Bañuelos et al. (2016)

Must MI Reduction in fermentation time up 
to 40%, better alcohol yield

Kapcsándi et al. (2013)

Phellinus 
igniarius 
mycelial 
fermentation

US Improved polysaccharides 
production, accelerated transfer of 
nutrients and metabolites

Zhang et al. (2014)

(continued)
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Table 4.2 (continued)

Fermented 
product

Processing 
technique Observation Reference

Salami HPP Inactivation of L. monocytogenes, 
E. coli O157:H7, Salmonella spp. 
and/or T. spiralis larvae

Proto-Fett et al. (2010)

Salted and 
fermented 
squid

ɣ-irradiation Adequate squid fermentation, 
prevented putrefaction and 
prolonged shelf stability

Byun et al. (2000)

Seeds of 
Plantago 
asiatica L.

MH Enhanced production of value- 
added polysaccharides

Hu et al. (2013)

Semihard 
cheese

HPP Inactivation of Clostridium 
tyrobutyricum vegetative cells and 
prevention of late blowing defect

Avila et al. (2016)

Sugar cane 
must

ɣ-irradiation Decrease in contaminating 
bacterial counts, decreasing acidity, 
improved ethanol yield

Alcarde et al. (2003)

Sweet whey US Reduced fermentation time, with 
higher viable counts

Barukcic et al. (2015)

Wine ɣ-irradiation Shortening of ageing time, 
improving rice wine defects, 
production of a higher taste quality

Chang (2003) and Chang 
(2004)

Wine HPP Increase in esters, aldehydes, 
ketones, terpenes, lactones and 
furans contents, reduction of 
fermentation time

Buzrul (2012) and Tchabo 
et al. (2017)

Wine US Shortened ageing time Chang and Chen (2002), 
Chang (2004), and Liu 
et al. (2016)

Wine PEF Increased colour intensity, 
anthocyanins and total phenols, 
better extraction of bioactive 
compounds, higher flavonols and 
phenolics, reduction in the 
fermentation process time, 
alternative technique to stop 
fermentation (instead of using SO2)

Lopez et al. (2008), Donsi 
et al. (2010), Puértolas 
et al. (2010), El Darra et al. 
(2013), Abca and 
Evrendilek (2015), Delsart 
et al. (2015), Mattar et al. 
(2015), and El Darra et al. 
(2016)

Wine HVEF Shortened wine maturation process Zeng et al. (2008)
Wine RF Monitoring and quality control of 

traditional wine manufacturing
Song et al. (2015)

Yeast 
fermentation

US Process signature which may be 
related to product and process 
quality was captured

Hoche et al. (2016)

Yoghurt MH Improved shelf life Turgut (2016)
Yoghurt US Quality control and monitoring the 

fermentation stages of yoghurt
Alouache et al. (2015)

ɣ-irradiation gamma irradiation, HPP high pressure processing, HVEF high-voltage electric field, 
MH microwave heating, OH ohmic heating, PEF pulsed electric field, RF radio frequency, US 
ultrasound

O. A. Adebo et al.
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Irradiating meat (with doses up to 3 kGy) prior to production of dry fermented 
pepperoni was reported to reduce microbial load of E. coli O157:H7, with resultant 
products possessing intact quality parameters (Johnson et al. 2000; Chouliara et al. 
2006). Likewise is the use of microwave irradiation and heating, which have been 
applied in sterilization, material treatment and reduction in processing time, thus 
attracting a great deal of attention (Rasmussen et  al. 2001; Hoai et  al. 2011; 
Kapcsandi et al. 2013). The use of US also improves microorganism and/or enzyme 
activity, ensures high-quality product and safety (Alouache et al. 2015) and pro-
motes esterification, oxidation and condensation reactions leading to the production 
of more esters, acids and esters in ageing processed wine (Tchabo et al. 2017) and 
milk (Nguyen et al. 2009, 2012).

The possibilities of future application and vast current use of electric current for 
fermentation and production of value-added products are promising (Cho et  al. 
2016). OH have been successfully applied in electroporation of microorganisms 
(Sastry 2005; Loghavi et al. 2008, 2009). In comparison with conventional heating, 
a decrease in lag fermentation phase with OH was demonstrated by Cho et  al. 
(1996), suggesting it as a better technique for pasteurization and sterilization of 
viscous foods (Cho et al. 2016). Several applications of PEF in fermentation-related 
processes have been reported (Table 4.2), demonstrating improvement in the secre-
tion of phenolic substances and anthocyanins (Puértolas et al. 2010), reduction of 
fermentation time, lesser browning and an improvement in yeast metabolism 
(Delsart et al. 2015; Mattar et al. 2015).

Limited studies have been presented on the use of RF in fermentation-related 
processes, with one of such observing increased homogeneity, retention of impor-
tant microbes and no detrimental effect on storage stability of the yoghurt (Siefarth 
et al. 2014). Limitations of these novel technologies could relate to high investment 
costs, other variables during the process, standardization and optimization of the 
process to meet required regulations. Most of these applications reported are also 
under laboratory conditions, and simulating such under industrial conditions is 
needed to fully understand them and facilitate their subsequent implementation.

 Other Techniques for Advancing and Improving Fermentation 
Processes

While other major technologies for the advancement of the fermentation process 
have been discussed, other potential technologies such as encapsulation, metabolo-
mics and the use of extremophiles for the delivery of novel fermented food products 
are also highlighted in this section of the chapter.

4 Advances in Fermentation Technology for Novel Food Products
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 Encapsulation for the Delivery of Novel Fermented Products

Encapsulation is a technique used to entrap active agents embedded in a carrier 
material to improve delivery of desired components into foods. It equally ensures 
protection of inherent materials (such as sensitive bioactive materials) against envi-
ronmental extremes, stabilizes ingredients, immobilizes cells and enzymes during 
fermentation and can potentially mask unpleasant sensory qualities. Encapsulated 
starter cultures have demonstrated excellent applications in foods when compared 
to their nonencapsulated counterparts. They ensured stability and slow release of 
cultures during fermentation and production of heat-processed sucuks (Bilenler 
et al. 2017), higher viability during storage (Peredo et al. 2016) and an increase in 
fermentation efficiency and better microbial survival (De Prisco and Mauriello 
2016; Simo et al. 2017).

Accordingly, encapsulation has been effectively used for the delivery of bioac-
tive compounds and development of functional fermented foods. Increased folate- 
enriched functional foods was achieved using alginate and mannitol encapsulated 
LABs (Divya and Nampoothiri 2015), while a functional yoghurt was successfully 
produced by co-encapsulating bioactive compounds (Comunian et  al. 2017). 
Bioactive compounds may also be nanoencapsulated such that their potential for use 
as antioxidants and antimicrobials is improved to ensure safety against opportunis-
tic pathogenic microorganisms in fermented foods (Cushen et  al. 2012). 
Nanoencapsulation has been applied to improve stability, protect nutraceuticals 
against degradation, enhance bioavailability and ensure the delivery of functional 
ingredients to potential consumers (Dasgupta et al. 2015).

 Extremophiles for Fermentation

Extremophiles are microorganisms known to thrive in extreme conditions of pres-
sure, pH, radiation, salinity and temperature, high levels of chemicals and osmotic 
barriers. Due to their ability to thrive under such conditions, they possess adaptive 
capabilities and contain enzymes with potential applications in diverse fields of 
biotechnology (Gomes and Steiner 2004; Adebo et  al. 2017e). Extremozymes 
(enzymes from extremophiles) can effectively be applied to produce novel fer-
mented foods mainly because they have naturally developed resistance to drastic 
changes and reactions during food processing. Examples of such extremozymes 
with potential applications include amylases, cellulases, proteases, catalases, xyla-
nases, keratinases, pectinases, esterases, lipases, phytases and peroxidases (Gomes 
and Steiner 2004). Cold-active β-galactosidase has been utilized in the production 
of lactose free milk and cheese (Khan and Sathya 2017) and serine proteases applied 
for the hydrolysis of proteins to peptides (Mayr et  al. 1996; de Carvalho 2011). 
Extremophilic lipases and esterasescan hydrolyze glycerols and fatty acids, with 
possibility of producing health promoting poly-unsaturated fatty acids in fermented 
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foods (Schreck and Grunden 2014). Likewise are piezophilic extremozymes, which 
are also valuable to fermented food products requiring high-pressure processes 
(Zhang et al. 2015).

 Food Metabolomics for the Delivery of Novel Food Products

Food metabolomics (foodomics) has facilitated the characterization and simultane-
ous determination of the comprehensive profile of foods (Adebo et  al. 2017d). 
Qualitative and quantitative determinations of a complex food metabolome such as 
that of fermented foods, which had seemed technically challenging, can now be 
done sequel to the availability of sophisticated analytical equipment and chemomet-
ric tools. This profiling technique offers enormous potentials to generate in-depth 
information on the composition of fermented foods, metabolic interactions that can 
be associated with the functionalities and nutraceutical potentials embedded in fer-
mented foods. Through the application of this technique, a thorough understanding 
of the effect of fermentation on the development of functional and novel fermented 
foods is feasible. Further to this is a better understanding of fermentation and how 
it influences product quality, functionality and desired properties.

 Future Prospects and Conclusion

There is no doubt that fermentation is an integral and important processing technol-
ogy employed in developing novel food products. Significant advances have been 
made over these past years on effective technologies needed for improving the fer-
mentation processes. Different advanced technologies have emerged, and success-
ful developments of novel food processing techniques and food products have 
equally been developed. The need, however, for improvement is inevitable with 
evolving food habits, consumer demand for better quality as well as stringent regu-
lations. The use of the techniques highlighted in this chapter seems promising for 
modern industrial processes; nevertheless more detailed studies and optimization 
may still be required before they can be fully implemented on a large scale.
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