
User-Friendly and Extensible Web Data
Extraction

T. Novella and I. Holubová

Abstract Creation of web wrappers is a subject of study in the field of web data
extraction. Designing a domain-specific language for a web wrapper is a chal-
lenging task, because it introduces tradeoffs between expressiveness of a wrapper’s
language and safety. In addition, little attention has been paid to execution of a
wrapper in a restricted environment. In this paper we present a new wrapping
language—Serrano—that has three goals: (1) ability to run in a restricted envi-
ronment, such as a browser extension, (2) extensibility to balance the tradeoffs
between expressiveness of a command set and safety, and (3) processing capabil-
ities to eliminate the need for additional programs to clean the extracted data.
Serrano has been successfully deployed in a number of projects and provided
competitive results.

Keywords Web data extraction � Safe execution � Restricted environment
Web browser extension

1 Introduction

Since the dawn of the Internet, the amount of available information has been
steadily growing every year. Email, social networks, knowledge bases, discussion
forums—they all contribute to the rapid growth of data. These data are targeted for
human consumption, therefore, the structure tends to be loose. Although humans
can easily make sense of unstructured and semi-structured data, machines fall short

A prior version of this paper has been published in the ISD2017 Proceedings (http://aisel.aisnet.
org/isd2014/proceedings2017).

T. Novella � I. Holubová (&)
Charles University, Prague, Czechia
e-mail: holubova@ksi.mff.cuni.cz

T. Novella
e-mail: tomasnovella@gmail.com

© Springer International Publishing AG, part of Springer Nature 2018
N. Paspallis et al. (eds.), Advances in Information Systems Development,
Lecture Notes in Information Systems and Organisation 26,
https://doi.org/10.1007/978-3-319-74817-7_14

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74817-7_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74817-7_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74817-7_14&domain=pdf
http://aisel.aisnet.org/isd2014/proceedings2017
http://aisel.aisnet.org/isd2014/proceedings2017

and have a much harder time doing so. Automation of data extraction therefore
gives companies a competitive edge: instead of time-consuming and tedious
human-driven extraction and processing, they become orders of magnitude more
productive, which leads to higher profits and more efficient resource usage. With
the advent of new web technologies, such as AJAX [1], and the rise of the Web 2.0
[2], simple raw manipulation of HTML [3] proved no longer sufficient. As a result,
extraction tools have started being bundled with an HTML layout rendering engine,
or have been built on top of a web browser to be able to keep up with modern
standards. Extraction tools have evolved to be more user-friendly; many came with
a wizard—an interactive user interface—that allowed for convenient generation of
wrappers. All this evolves in the direction to increase wrapper maintainability,
which helps to take on incrementally larger tasks. Major challenges facing the tools
available currently on the market are as follows:

• Data manipulation Tools, even the recent ones, provide only a restricted way of
data manipulation, such as data trimming and cleaning. These tasks are often
delegated to separate tools and modules, which may be detrimental to wrapper
maintenance, considering it leads to unnecessary granularization of a single
responsibility, since there have to be additional programs that process the data
that are pertinent to the given wrapper.

• Extensibility With the rapid evolution of web technologies, many tools soon
become obsolete due to the inability to easily extend the tool to support modern
technologies.

• Execution in restricted (browser) environment New execution environments
have emerged, which gives rise to novel applications of data extraction.
Examples include web browser extensions (in-browser application), which help
to augment the user browsing experience. These environments are restricted in
terms of programming languages they execute and system resources. Besides,
script execution safety is another concern.

In this paper we propose a novel data extraction language, Serrano, which deals
with all the three mentioned problems. In Sect. 2 we overview the related work. In
Sect. 3 we introduce the Serrano language. Section 4 showcases the user stories,
Sect. 5 discusses the advantages of Serrano and Sect. 6 concludes.

2 Related Work

Inspired by [4] in this paper we define a web wrapper as a procedure for seeking
and finding data, extracting them from web sources, and transforming them into
structured data. The exact definition of a wrapper varies and it is often interchanged
with the definition of the extraction toolkit [5], a software extracting, automatically
and repeatedly, data from websites with changing contents, and that delivers
extracted data to a database or another application. Toolkits are often equipped with

226 T. Novella and I. Holubová

a GUI that features an internal WebView that represents a tab in a browser to
facilitate wrapper generation. Typically, a user manipulates with the web inside the
WebView in order to obtain the desired data. User actions are recorded as DOM [6]
events, such as form filling, clicking on elements, authentication, output data
identification, and a web wrapper is generated. This wrapper can run either in the
toolkit environment, or separately packaged with a wrapper execution environment.
After the execution additional operations may be implemented, such as data
cleaning [7], especially when information is collected from multiple sources.
Finally, extracted data are saved in a structured form in a universal format, such as
XML [8], JSON [9], or into a database.

One of the first endeavors to classify Web Data Extraction toolkits [4] proposed
a taxonomy for grouping tools based on the main technique used by each tool to
generate a wrapper. Tools were divided into six categories: languages for wrapper
development (e.g., TSIMMIS [10]), HTML-aware tools (e.g., W4F [11]),
NLP-based tools (e.g., RAPIER [12]), wrapper induction tools (e.g., WIEN [13]),
modeling-based Tools (e.g., NODoSE [14]) and ontology-based tools (e.g.,
DIADEM [15]). Most wrappers combine two or three of underlying techniques for
locating data in the documents to compensate for their deficiencies. We can dis-
tinguish regular expression-based approaches (e.g., W4F), tree-based approaches
(e.g., OXPath [16]), declarative approaches (e.g., Elog [17]), spatial reasoning (e.g.,
SXPath [18]), and machine-learning based approaches (e.g., RAPIER). In [19], the
authors identify and provide a detailed analysis of 14 enterprise applications of data
extraction.

3 Serrano Language

This section examines and explains why Serrano was designed the way it was. For a
complete in-depth specification, the reader is referred to the official language
specification.1 The source codes as well as playground projects can be found on
Github2 and are written in Javascript.

Gottlob [20] presented four desiderata that would make an ideal extraction
language:

1. Solid and well-understood theoretical foundation Serrano uses jQuery3 selec-
tors, a superset of CSS selectors, for locating elements on the web page. These
technologies have been studied in depth along with their limitations and com-
putational complexity. Serrano wrapper is a valid JSON and every command
corresponds to a Javascript command.

1https://github.com/salsita/Serrano/wiki/Language-Spec.
2https://github.com/salsita/Serrano/tree/master/serrano-library.
3https://jquery.com/.

User-Friendly and Extensible Web Data Extraction 227

https://github.com/salsita/Serrano/wiki/Language-Spec
https://github.com/salsita/Serrano/tree/master/serrano-library
https://jquery.com/

2. A good trade-off between complexity and the number of practical wrappers that
can be expressed One of Serrano’s cornerstones is extensibility. Currently, the
language can only locate elements by CSS selectors and simulate mouse events.
Nevertheless, the command set can be easily extended so that a larger range of
wrappers can be expressed.

3. Gentle learning curve Many Serrano commands have the same name and
arguments as their Javascript counterparts.

4. Suitability for incorporation into visual tools Selector identification is a task
already handled by browsers in the Developer Tools extension. There is no
obvious obstacle that would prevent us from incorporating selected Serrano
commands into a visual tool.

In order to make a language easy to integrate with Javascript, we leveraged
JSON. In contrast to other data transmission formats, such as XML, JSON has been
strongly integrated into Javascript, which eliminates the need of additional helper
libraries for processing. In Serrano, both the wrapper and the result are valid JSON
objects. This makes them convenient to transform and manipulate: they can be
passed around via AJAX, or altered via Javascript directly, since they are repre-
sented by a built-in object type.

Moreover, Javascript libraries such as Lodash4 further extend object manipula-
tion capabilities. To deal with extensibility, Serrano has separated the command set
and allows to create custom commands. Examples of such extension are commands
for document editing which makes Serrano, to the best of our knowledge, the first
data extraction as well as data editing language used in the browser. With a simple
extension of a command set, we can allow Serrano to manipulate the native
Javascript window object, manage user credentials5 or change the page location.
This offers expressive power and control beyond the range of most extraction tools.
Wrapper maintainability is another design goal. Powerful commands, such as
conditions and type checks, make it possible to write verification inside the
wrapper.

3.1 Type System

Serrano type system inherits from the Javascript type system. It supports all types
that are transferable via JSON natively; that is number, string, boolean, undefined,
null and object as well as some additional Javascript types, such as Date and
Regexp.

4https://lodash.com/.
5http://w3c.github.io/webappsec-credential-management/.

228 T. Novella and I. Holubová

https://lodash.com/
http://w3c.github.io/webappsec-credential-management/

3.2 Scraping Directive

The basic building block is called a scraping directive. It represents a piece of code
that evaluates to a single value. There are 3 types of scraping directives: command,
selector and instruction.

Command
Commands are the core control structure of Serrano. As such, they appear similar to
functions in common programming languages; in that they have a name and
arguments. However, their use is much broader. Serrano has commands such as !if
for conditions, logical commands such as !and, !or, commands for manipulation
with numbers and arrays of numbers, such as !+, !-, !*, !/ etc. Elevating the strength
of commands and making them the central control structure is the cornerstone of
flexibility and extensibility: all control structures are of the same kind and adding/
removing these structures is a part of an API. Although some languages, such as
Selenium IDE,6 make it possible to write plugins and extensions of default com-
mand sets,7 we did not find any wrapping language that allows to add and remove
any command control structure arbitrarily.

Syntactically, a command is a JSON array, where the first element has a string
type denoting the command name followed by arguments (the rest of the array).

Below, we present an example of the !replace command with three string
arguments.

["!replace", "hello world", "hello", "goodbye"]

In this example, !replace is the command name, which has three arguments,
namely hello world, hello and goodbye. This command returns a new string based
on an old string (supplied as a first argument) with all matches of a pattern, be it a
string or a regular expression (second argument) replaced by a replacement (third
argument). Finally, the command returns the string goodbye world.

Raw arguments
Command arguments, unless stated explicitly otherwise, have implicit evaluation.
That means, when an argument of a command is another scraping directive, it is
first evaluated and only then the return value supplied. However, this behavior is
not always desired. Because of this, the command specification determines which
arguments should be raw (not processed). An example of such a command is the !
constant command, that takes one raw argument and returns it. Had the argument
not been specified as raw, the constant command would return a string “hello mars”.

6https://addons.mozilla.org/en-US/firefox/addon/selenium-ide/.
7http://www.seleniumhq.org/docs/08_user_extensions.jsp##chapter08-reference.

User-Friendly and Extensible Web Data Extraction 229

https://addons.mozilla.org/en-US/firefox/addon/selenium-ide/
http://www.seleniumhq.org/docs/08_user_extensions.jsp%23%23chapter08-reference

["!constant", ["!replace", "hello world", "world", "mars"]]) ["!replace", "hello

world", "world", "mars"]

Implicit foreach
By default, commands have a so-called implicit foreach. That means, when the first
argument of the command is an array, the interpreter engine automatically loops
through the array, and applies the command to each element, returning a list of
results. It is also known as the map behavior. Conversely, when a command does
not have an implicit foreach, the first argument is passed as-is, despite being an
array.

An example illustrates two commands. Command !upper has the implicit fore-
ach enabled. Thus, it loops through the array of strings and returns a new array
containing the strings in upper case. The second command !at has the implicit
foreach functionality disabled; therefore is selects the third element in the array.
(Had it been enabled for !at, the command would return the third letter of each
string, namely the following array [“e", “o”, “r”, “u”].)

//implicit foreach enabled for !upper

["!upper", ["!constant", ["hello", "world"]]]) ["HELLO", "WORLD"]

//implicit foreach disabled for !at

["!at", ["!constant", ["one", "two", "three", "four"]], 2]) "three"

Selector
A selector is used for extracting specific elements from the web page. It is denoted
as a single-item array, containing only one element (of type string) that is prefixed
with one of the characters $, =, � and followed by a string indicating the selector
name. This selector name is treated as a CSS selector (more precisely, a jQuery
selector8).

From the low-level perspective, a selector is syntactic sugar for the !jQuery
command (which takes one or two arguments and evaluates them as a jQuery
selector command9) and the different kinds of selectors are syntactically “desug-
arized” as follows:

• Dollar sign This is the basic type of selectors. [“$selector”] is treated as [“!
jQuery”, “selector”] which internally invokes the $(“selector”) jQuery method.

• Equal sign Selectors that start with this sign, i.e., [“=selector”] are treated as an
instruction [[“$selector”], [“>!call”, “text”]]. The important thing is, that after
selecting specific elements, the text value of the selector is returned, which
internally corresponds to invoking a jQuery text() method on the result.

8https://api.jquery.com/category/selectors/.
9http://api.jquery.com/jquery/.

230 T. Novella and I. Holubová

https://api.jquery.com/category/selectors/
http://api.jquery.com/jquery/

• Tilde sign This sign infers that type conversion of a selector result to a native
Javascript array is imposed. By definition, [“� selector”] is treated as [[“$se-
lector"], [“>!arr”]].

Most wrapping languages (including Selenium IDE language and iMacros10)
enable to target elements by CSS selectors. Those languages also support other
forms of element addressing such as XPath queries. SXPath language enables
addressing elements by their visual position. Serrano does not support those
additional methods and in the first version we decided to implement the support for
CSS selectors, since they are more familiar to web stack developers than other
methods. Nevertheless, we consider adding further methods of element addressing a
valuable future prospect.

Instruction
An instruction is a sequence of commands (and selectors), that are stacked in an
array one after another. Similarly to the UNIX pipe (|), the output of the previous
command can be supplied as the first argument of the following. This functionality
is enforced by the addition of an optional greater than sign at the beginning of a
command name or a selector. In that case, the supplied argument is called the
implicit argument. Otherwise, the result of the previous command is discarded. The
example below illustrates three examples of upper casing the hello string. The first
directive is an instruction that constructs a hello string and passes it to the !upper
command. The second directive is a direct command and the third one first con-
structs the goodbye string, but because the !upper method is not prefixed with the
greater than sign, it is discarded and the command runs only with its explicitly
stated hello argument. The last directive throws an error, since the !upper command
is expecting one argument and zero arguments are supplied.

[["!constant", "hello"], [">!upper"]]

["!upper", "hello"]

[["!constant", "goodbye"], ["!upper", "hello"]]

) "HELLO"

[["!constant", "goodbye"], ["!upper"]]) Error

3.3 Scraping Query and Scraping Result

Scraping directives are assembled into a higher logical unit that defines the overall
structure of data we want to extract. In other words, a scraping query is a

10http://imacros.net/.

User-Friendly and Extensible Web Data Extraction 231

http://imacros.net/

finite-depth key-value dictionary where for each key, the value is the scraping
directive or another dictionary. The example below showcases a scraping query.

{

title: [["$h2"], [">!at", 2], [">!lower"]],

time: {

start : [["$. infobar [itemprop=’datePublished ’]"], [">!attr", "content"],

[">!parseTimeStart"]]

end: //another scraping directive }

}

Once the Serrano interpreter starts interpretation of a scraping query, it recur-
sively loops through all the keys in an object and replaces the scraping directive
with respective evaluated values. E.g., if the interpreter runs in context of a fictional
movie database page, scraping query above will evaluate to a scraping result that
looks like this.

{

title: "The Hobbit",

time: {

start: "8:00pm" end : "10:41pm"

}

}

The structure provides two main advantages over wrappers in other languages:
(1) The pivotal part of the Serrano wrapper are the data, and a quick glance at a
scraping query reveals what data are being extracted and what the instructions that
acquire them are. Wrapping languages such as internal Selenium IDE language or
iMacros are instruction-centric, that is, the wrapper is described as a sequence of
commands, where some commands happen to extract data. Languages, such as Elog
also do not reveal immediately the structure of the extracted data. (2) A scraping
query consists of scraping directives. If one directive throws an error, it can be re-
ported, and the processing continues with the following directive in the scraping
query. In tools, such as Selenium IDE, the data-to-be-extracted are not decoupled,
so a failure at one point of running the wrappers halts the procedure.

3.4 Scraping Unit

A scraping unit roughly corresponds to the notion of a web wrapper. It is a higher
logical unit that specifies when the scraping is to begin as well as what actions need
to be executed prior to data extraction. The reason is that often scraping cannot start

232 T. Novella and I. Holubová

immediately after the page loads. When scraping from dynamic web pages, we
might be awaiting certain AJAX content to load, some elements to be clicked on
etc. These waits are referred to as explicit waits.

Some languages, such as TSIMMIS, do not expect that some content is not ready
immediately after the page has loaded. Other languages, such as iMacros, also
consider the page ready right after the load11 but also provide a command to wait
for a given period of time.12

We have separated the waiting prescription into the scraping unit instead of
mixing it with the wrapper itself to make the wrapper more clear and separate the
tasks. A certain disadvantage of our approach might be the fact, that for more
complex wait instructions (e.g., scraping intertwined with waiting) we also have to
mix them, which creates a disorderly wrapper.

Because the execution can be delayed or ceased (if the element we are waiting
for will not appear), interpretation of the scraping unit returns a Javascript Promise.
A Promise is an object that acts as a proxy for a result that is initially unknown,
usually because the computation of its value is yet incomplete.

3.5 Page Rules

Sometimes we want to execute different wrappers and run actions on a single web
page. Page rules is an object, that associates scraping units and scraping actions
with a web page. To our best knowledge, no wrapping language has this func-
tionality and users have to manage the wrappers and actions manually. Thus
Serrano also has the role of a “web data extraction manager”, where it manages
which wrapper should be executed on a given page.

The page rules object has two properties, scraping and actions, that serve for
specification of scraping units and actions, respectively. A valid rules object must
have at least one of these properties non-empty. The scraping property contains
either a single scraping unit, or a key-value pair of scraping units and their names.
Serrano then enables the user to execute the scraping unit by the name. Similarly, an
action can either be a scraping action (which is a special type of a scraping
directive) or a key-value pair of named actions.

11http://wiki.imacros.net/FAQ##Q:_Does_the_macro_script_wait_for_the_page_to_fully_finish_
loading.3F.
12http://wiki.imacros.net/WAIT.

User-Friendly and Extensible Web Data Extraction 233

http://wiki.imacros.net/FAQ%23%23Q:_Does_the_macro_script_wait_for_the_page_to_fully_finish_loading.3F
http://wiki.imacros.net/FAQ%23%23Q:_Does_the_macro_script_wait_for_the_page_to_fully_finish_loading.3F
http://wiki.imacros.net/WAIT

3.6 Document Item and Global Document

Each page rules object needs to be associated with the respective URL or a set of
URLs so that, at the visit of a web page in the browser, Serrano is able to find the
most suitable rules object. The associating object is called a document item and it
has the following four properties: the domain, then either a regexp (a regular
expression) that matches the URI, or a path which is the URN, and finally the rules
object. Multiple document items may match the given URL. In that case, we select
the match with the highest priority.

The priority is given to every document. The most important criterion is the
“length” of a domain. This is determined by the number of dots in the URL. E.g.,
scholar.google.com has a higher level of specification than google.com and thus it
has higher priority. The next criterion for priority is determined by other fields. The
regexp field has higher priority than the path field. Both fields are optional and they
cannot be used in a single document item simultaneously. The lowest priority has a
document item with the domain attribute set to *. This domain item is also referred
to as the default domain item and matches all URLs.

Finally, an array of document items forms a global document and it is the
top-level structure that encapsulates all the data in Serrano. With the Serrano API,
we usually supply this global document and the engine chooses the matching page
rules.

3.7 Command Set

One of the leading ideas behind Serrano is to create an extensible language that
extracts and processes the extracted data. The aim is to completely eliminate the
need for middleware processing that is dependent on a given wrapper. Therefore,
we consider extraction and subsequent data processing as one responsibility and
find valuable to couple these tasks together. As a consequence, Serrano wrapper
creators are capable of extracting and cleaning the data, all in one script. To
accomplish this, the resulting command set must be rich—the extracted data often
undergo complex transformations in order to be unified. These commands consti-
tute the core library of Serrano.

The rest of this section provides an overview of most important commands and
illustrates useful use cases. The full list can be found in the Language
Specification.13

Conditions and Logical Predicates
Ability to change the control flow is one of the distinguishing features of Serrano.
Using conditions, Serrano can decide which information to scrape and how to

13https://github.com/salsita/Serrano/wiki/Language-Spec.

234 T. Novella and I. Holubová

https://github.com/salsita/Serrano/wiki/Language-Spec

transform it during runtime. Commands that contribute to this category are divided
into:

• Branching commands. The main representative is the !if command with optional
else branch. The first argument is a predicate, which is a scraping directive that
returns a Boolean result.

• Existence tests Commands, such as !exists or !empty and their logical negations
!nexists, !nempty enable us to test if a given structure exists (is not undefined or
null) and whether the array contains any elements, respectively.

• Comparison tests serve for comparing two integers. Commands in this category
are: !lt, !gt, !le, !ge, !eq, !neq and are directly translated to <, >, <=, >=,==, !==,
respectively.

• Compound conditions include !and and !or commands and their !all and !any
aliases. They help to group multiple single predicates into compound predicates.

• Result filtering is a means for reducing an array of results to only those items
that pass a filtering criterion. For this purpose we define the !filter command that
takes an argument in the form of an array and on each array item it evaluates the
partial condition that is the second argument to !filter command. By partial
condition we mean that the condition which is the argument of the !filter
command should use argument chaining, i.e., should be evaluated on each tested
item of the filtered array.

Arithmetics
Arithmetics is especially useful when we need to add offsets to dates, or do other
minor calculations. There are four commands !+, !-, !*, !/ that cover the basic
operations with numbers. The commands have two operands and work on both
numbers and arrays of numbers. If both operands are arrays of the same length, the
operation is executed “per partes”. Otherwise, NaN is returned.

Text Manipulation
Among the myriad of commands, we list the most important ones: !lower, !upper,
!split, !trim, !replace, !join, !concat, !splice, and !substr. The behavior is identical to
their Javascript counterparts; details are provided by the official specification.

DOM Manipulation
Serrano has been recently enriched with DOM manipulation capabilities on top of
data extraction. To manipulate the DOM we can use !insert, !remove and
!replaceWith commands, which are identical to their jQuery counterparts.

The !insert command takes three arguments: first one has to be a selector,
followed by the string “before” or “after” to denote where the insertion is to be
done, and the final argument is the text to be inserted.

["!insert", ["$p:first"], "before", " < h2 > Hello John! </h2 > "]

User-Friendly and Extensible Web Data Extraction 235

The third variable may also be a template string enclosed by {{and }}. Names of
interpreted variables are either plain names, or refer to nested properties using
standard Javascript dot notation. The object with template values is supplied when
the scraping is initiated.

["!insert", ["$p:first"], "before", " <h2> Hello {{person.name}}!</h2>"]

The !remove command takes one argument—the selector that is to be removed
from the DOM. Finally, !replaceWith is used for replacing selected elements with a
new content. It takes two arguments, the selector and the HTML definition of a new
content.

4 User Stories

Serrano has proven its applicability in a number of real-world projects. Below, we
pick three and discuss how Serrano has benefited them.

4.1 Magneto Calendar

Magneto14 is a cloud-based calendar system that enables creation of meetings and
to-dos from any web page and adding them to Google or Microsoft Exchange
calendar. It also extracts key information for the corresponding events and stores it
with the items. If the user visits a website that contains information suitable for a
calendar event and clicks on the Magneto button (see Fig. 1), a browser action
window appears with extracted information of the event. To achieve this goal,
Magneto uses custom-page wrappers, along with the default wrapper.

There were two main reasons for rewriting the rules in Serrano: (1) As the
project expanded, the number of web sites and their respective wrappers became
harder to maintain and manage. (2) Updating the whole extension every time a
single wrapper is updated is stultifying to the user and bandwidth-consuming.

Separation and outsourcing the rules into Javascript would run into several
problems, most important of which is safety. Javascript is a general-purpose lan-
guage and allowing to execute arbitrary Javascript code in the extension would
create a potential security hole. Furthermore, downloading and executing remote
Javascript violates the conditions of the most application stores, for the same rea-
son. Hence, the application could not be placed there. Usage of an- other wrapping
language would also be problematic. Wrappers that were already written in

14https://magneto.me/welcome/about-us.html.

236 T. Novella and I. Holubová

https://magneto.me/welcome/about-us.html

Javascript involved processing of the scraped information, such as cleaning of the
selected data from HTML tags, date processing etc.

When rewriting wrappers into Serrano, we identified common functionality
across the wrap- pers and created new commands, including !convert12hTo24 h
which was used to convert the time of an event into a 24-h clock, since some web
sites use a 12-h format. Further helper commands include !textLB (LB stands for
line break) that appends a new line symbol after specific tags, such as <div>, <p>,

, <hr>. Another command was !cleanupSel for removing the tags and the
superfluous white spaces from the selected text.

Next, we identified parts of the wrappers that required higher expressive power
than Serrano had. We created commands that encapsulate this functionality and
they work as black boxes. That is, the functionality that requires higher expressive
power is encapsulated within the commands without granting the language higher
expressive power. These constructs include while loops, exceptions etc.

Another challenge for Serrano was understanding of the date of an event on
Facebook. Facebook, for user convenience, describes dates in various formats
depending on when it is going to occur. Valid descriptions of a date include: May
24, next Thursday, tomorrow etc. Our workaround involved creating a
!parseFacebookDate command, which was a raw copy and paste of the complex
function featuring in the former Javascript wrapper. After some time, Facebook
coupled additional microdata [21] with the event, so this command was removed.

After the replacement15 of Javascript wrappers with Serrano scraping units, both
maintainability and maintenance were increased.

Fig. 1 Magneto interface, when user clicked on the Magneto browser action button

15https://github.com/salsita/Serrano/tree/master/magneto/scraping-units.

User-Friendly and Extensible Web Data Extraction 237

https://github.com/salsita/Serrano/tree/master/magneto/scraping-units

4.2 MyPoints

MyPoints16 is a shopping rewards program that runs affiliate programs with
1900 + stores. It motivates people to make a purchase at associated stores to earn
points, which can be then transformed into discount coupons and subsequently
redeemed. Serrano was used in beta version of the extension. On websites with
search results of a search engine, MyPoints extension injects a text informing the
potential shopper about the amount of points they can earn, as shown in Fig. 2.
Moreover, when the user proceeds to a checkout in the store, it automatically fills in
the input field with an available coupon. To serve this purpose, the commands for
DOM manipulation17 were added.

4.3 Video Downloader

In this case, an extension was built into a modified version of Opera browser.18 The
purpose of Video Downloader (VD) is to facilitate download of a currently played
video and to enable one to eventually watch it offline. To accomplish this, VD
identifies videos on the websites—either by recognizing the domain, or the player if
the video is embedded—and attaches a small button that is displayed when user
hovers over the video. VD applies Serrano rules for both player element and player
content identification. Specifically, an instruction for player identification returns a
player element, which is then supplied to the second Serrano instruction for
download address identification.

Fig. 2 Excerpt of the search results for “Effective Java” augmented by MyPoints extension

16http://mypoints.com/.
17https://github.com/salsita/Serrano/wiki/Language-Spec##dom-manipulation.
18The browser vendor wishes to remain undisclosed.

238 T. Novella and I. Holubová

http://mypoints.com/
https://github.com/salsita/Serrano/wiki/Language-Spec%23%23dom-manipulation

During the implementation of the extraction rules we encountered two chal-
lenges. The first was that the video player element only needed to be extracted when
it had a class attribute with off-screen value. This was achieved by extending the
command set with !if. The second challenge was caused by the fact that some
players use different forms of video embeddings. For example, Youtube uses both
<object> and <embed> tags for embedding a video in an external source. However,
Serrano was able to deal with this by conflating these elements in one selector.

5 Discussion

In this part we explain the motivation behind choosing Serrano in the
above-mentioned projects. In all the projects we were limited to extraction within a
browser extension which had to be safe and able to extract the required data. Along
with Serrano we considered two alternatives: pure Javascript and in-browser
wrappers such as iMacros/Selenium. These tools were primarily designed for
writing UI tests, hence we refer to them as testing tools.

In Table 1 we compare the technologies in terms safety, learning curve and
extensibility. Regarding safety, executing arbitrary Javascript code poses a serious
security risk. Testing tools are safe depending on the capabilities of their default
command set. In terms of a learning curve for web developers, Javascript is the best
option followed by Serrano, which uses CSS selectors and has very similar func-
tions to Javascript. Testing tools have a very specific API suited for the scope they
were designed for. Extensibility-wise, Javascript is a Turing-complete language
with no need for extension of capabilities. Serrano has an expressive power
determined by the command set. The basic set only supports CSS selectors but it
can be theoretically extended to support everything Javascript does (by e.g.,
addition of an !eval command which would evaluate pure Javascript). Wrapping
languages of testing tools are not extensible to the best of our knowledge.

In Table 2, we discuss the feasibility of the technology with regard to the scope
of the task. For easy tasks with minimum scraping logic, both Serrano and testing
tools score well, thanks to a built-in library of functions that make scraping easy, as
opposed to native Javascript which requires a lot of code and libraries. In medium
complexity tasks, Javascript is closing in due to its expressiveness. And very
complex tasks are impossible to manage with testing tools since their command sets

Table 1 Key attributes of the
technology

Technology Simple
tasks

Medium
tasks

Hard tasks

Serrano Easy Medium Very hard

Javascript medium Medium Hard

Testing
tools

Easy Medium/
Hard

Impossible

User-Friendly and Extensible Web Data Extraction 239

are impossible to extend. Writing very complex wrappers is admittedly more dif-
ficult in Serrano than in Javascript, but it is not impossible, since the command set
can be extended to arbitrary expressive power.

6 Conclusion

The aim of our research was to create a web data extraction tool that could work in
a restricted environment. We implemented a novel language, Serrano, which
championed extensibility of the command set and separation of concerns. That
helped to eliminate the need for any accompanying software further transformating
and processing of the extracted data. Extensibility also works the other way—the
command set can be reasonably restricted so that the wrappers will only be able to
extract and process data to the extent they are allowed to. Deployment in real-world
projects has proven the durability of the language as well as significance of the
goals. Each project we faced contributed to broadening of the command set con-
firming its extensibility.

Despite the advantages, there still remain a few steps that can be taken to further
improve the language. E.g., creation of a toolkit with a GUI, outsourcing wrapper
creation and then dynamically downloading and updating them, or building a
database of command sets so that the users of Serrano could find appropriate
commands to personalize the language functionality.

Acknowledgements This work was supported by project SVV 260451.

Bibliography

1. AJAX. Mozilla Developer Network, 2017. https://developer.mozilla.org/en/ajax
2. G. Cormode, B. Krishnamurthy: Key differences between Web 1.0 and Web 2.0. First

Monday 13(6) (2008)
3. A vocabulary and associated APIs for HTML and XHTML, 2016. https://www.w3.org/TR/

html5/
4. Laender, A.H., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey of web data

extraction tools. ACM Sigmod Record 31(2), 84–93 (2002)
5. R. Baumgartner, W. Gatterbauer, G. Gottlob. Web data extraction system. In Encyclopedia of

Database Systems, pp. 3465–3471. Springer, Berlin (2009)

Table 2 Suitability of the
technology for a given project
scope

Technology Safety Learning curve Extensibility

Serrano Volatile Gentle Good

Javascript Low None Not needed

Testing Tools Fixed Steep None

240 T. Novella and I. Holubová

https://developer.mozilla.org/en/ajax
https://www.w3.org/TR/html5/
https://www.w3.org/TR/html5/

6. Document Object Model (DOM). W3C, 2005. http://www.w3.org/TR/REC-DOM-Level-1/
cover.html

7. Rahm, E., Do, H.H.: Data cleaning: problems and current approaches. IEEE Data Eng. Bull.
23(4), 3–13 (2000)

8. Extensible Markup Language (XML) 1.0 (Fourth Edition), 2006. http://www.w3.org/XML/
9. D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON).

JSON.org (2006)
10. J. Hammer, J. McHugh, H. Garcia-Molina. Semistructured Data: the TSIMMIS Experience.

In: ADBIS ’97, p. 22 (1997)
11. Sahuguet, A., Azavant, F.: Building intelligent web applications using lightweight wrappers.

Data Knowl. Eng. 36(3), 283–316 (2001)
12. Califf, M.E., Mooney, R.J.: Bottom-up relational learning of pattern matching rules for

information extraction. JMLR 4, 177–210 (2003)
13. Kushmerick, N.: Wrapper induction: efficiency and expressiveness. Artif. Intell. 118(1), 15–

68 (2000)
14. B. Adelberg: NoDoSE—a tool for semi-automatically extracting structured and semistruc-

tured data from text documents. ACM Sigmod Record 27(2):283–294 (1998)
15. T. Furche, G. Gottlob, G. Grasso, O. Gunes, X. Guo, A. Kravchenko, G. Orsi, C. Schallhart,

A. Sellers, C. Wang: DIADEM: domain-centric, intelligent, automated data extraction
methodology. In: WWW ’12, pp. 267–270. ACM, New York (2012)

16. T. Furche, G. Gottlob, G. Grasso, C. Schallhart, A. Sellers: OXPath: a language for scalable
data extraction, automation, and crawling on the deep web. VLDB J. 22(1), 47–72 (2013)

17. R. Baumgartner, S. Flesca, G. Gottlob: The Elog web extraction language. In: LPAR,
pp. 548–560. Springer, Berlin (2001)

18. E. Oro, M. Ruffolo, S. Staab: SXPath: extending XPath towards spatial querying on web
documents. In: Proc. VLDB Endow. 4(2), 129–140 (2010)

19. E. Ferrara, P. De Meo, G. Fiumara, R. Baumgartner. Web data extraction, applications and
techniques: a survey. Knowl. Based Syst. 70, 301–323 (2014)

20. G. Gottlob, C. Koch: Monadic datalog and the expressive power of languages for web
information extraction. JACM 51(1), 74–113 (2004)

21. I. Hickson: HTML microdata, 2011. http://www.w3.org/TR/microdata/

User-Friendly and Extensible Web Data Extraction 241

http://www.w3.org/TR/REC-DOM-Level-1/cover.html
http://www.w3.org/TR/REC-DOM-Level-1/cover.html
http://www.w3.org/XML/
http://www.w3.org/TR/microdata/

	14 User-Friendly and Extensible Web Data Extraction
	Abstract
	1 Introduction
	2 Related Work
	3 Serrano Language
	3.1 Type System
	3.2 Scraping Directive
	3.3 Scraping Query and Scraping Result
	3.4 Scraping Unit
	3.5 Page Rules
	3.6 Document Item and Global Document
	3.7 Command Set

	4 User Stories
	4.1 Magneto Calendar
	4.2 MyPoints
	4.3 Video Downloader

	5 Discussion
	6 Conclusion
	Acknowledgements
	Bibliography

