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Abstract Bingham fluids constitute a very important class of non-Newtonian
fluids. The modeling of Bingham materials is of crucial importance in industrial
applications, since a large variety of materials (e.g. foams, pastes, slurries, oils,
ceramics, etc.) exhibit the fundamental character of viscoplasticity, that is the
capability of flowing only if the stress is above some critical value. The flow of
these materials is difficult to predict, because of the presence of unknown interfaces
separating the yielded and the unyielded regions which are difficult to track. This is
particularly evident when the flow occurs in complex geometries and when major
simplifications, such as lubrication approximation, can be applied. Indeed, in some
cases the Bingham model may even lead to a paradox, known as the “lubrication
paradox”. In this chapter we focus on some practical situations of Bingham
flow which are the subject of a current mathematical research (lubrication flows,
asymptotic expansions, etc.). Such issues and developments arise, for example, in
the petroleum industry and in many natural contexts.

1 Introduction

Bingham fluids, or yield stress fluids, are encountered in a wide range of appli-
cations: toothpastes, cements, mortars, foams, muds, mayonnaise, etc. The funda-
mental character of these fluids is that they are able to deform indefinitely only
if they are submitted to a stress above some critical value. Actually, toothpaste
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visually exhibits the fundamental character of such a fluid model: it flows when
the applied stress exceeds a certain value, otherwise it does not flow, behaving as
a solid body (actually below the critical stress toothpaste deforms in finite way).
Despite the apparent simplicity in the constitutive modeling (especially within the
implicit framework theory developed by Rajagopal and co-workers [22–25]), the
flow characteristics of these materials are difficult to be predicted, since they involve
unknown boundaries separating the liquid and the solid regions. Readers are referred
to the books by Huilgol [14] and by Ionescu, Sofonea [15] where several issues
concerning the Bingham model (constitutive equations, mathematical techniques,
numerical methods and so on) are deeply analyzed.

A well known example of materials which are often modeled as Bingham Fluids
are waxy crude oils (i.e. oils with an high paraffin content). These fluids are known
to cause handling and pipelining difficulties. The flow properties depend strongly
on the yield stress which, in turn, depends on the shear history [31]. This leads to a
definable minimum operating point below which flow in a waxy crude oil pipeline
would cease.

Familiar examples of non-Newtonian fluids described by the Bingham model
include also mud (see [18] and the references therein cited), lubricated pipelining
[13], and materials used in ceramic casting [16].

2 Constitutive Model

The simplest shear-stress experiment that characterizes the Bingham fluid is repre-
sented in Fig. 1. On the top surface of a layer of material a uniform shear force F is
applied. If A is the area of the surface, the applied shear is F/A. If the applied shear
load (i.e. force per unit surface) does not exceed a certain threshold, τo, the material
does not move (the bottom of the layer is fixed on the “floor” ). When the applied
shear load exceeds the τo, the material flows as a linear viscous fluid.

Fig. 1 A schematic representation of the 1D shear stress experiment. F is the shear force and A
which is uniformly applied on a surface A so that the shear stress is F/A. The threshold is τo
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Fig. 2 The shear
stress—shear rate curve for
the Bingham model Bingham
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Actually such a peculiar rheological behavior is well highlighted by the exper-
imental tests performed in cylindrical viscometers. We just mention the recent
review by Coussot [5] and the numerous experimental papers therein cited. Hence,
considering a simple one-dimensional shear flow, if τ denote the modulus of the
shear stress and γ̇ the modulus of the strain rate, the constitutive Bingham model
writes as

τ = τo + μγ̇ , if τ > τo, (flow), (1)

and

γ̇ = 0, if τ ≤ τo, (no flow). (2)

Indeed (2) means, from the physical point of view, rigid behavior [11]. The threshold
τo is usually defined shear yield stress, or simply yield stress, and μ is referred to as
viscosity. In Fig. 2 we have reported the shear stress-shear rate curve for a Bingham
fluid. The model (1), (2) was introduced for the first time by E.C. Bingham [1, 2].
We note that in the Bingham model is much more natural to express the modulus of
the shear rate γ̇ in terms of the modulus of the shear stress τ . Indeed (1), (2) can be
rewritten (see also Fig. 3)

γ̇ = (τ − τo)+
μ

, (3)

where ( )+ denotes the positive part, namely

(τ − τo)+ =
⎧
⎨

⎩

τ − τo, if τ ≥ τo,

0, if τ < τo.
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Fig. 3 Shear stress—shear
rate according to (3)

shear stress

shear rate

Fig. 4 Decomposition of the
force F

In the example of Fig. 1 it is easy to identify the shear stress and formulate the yield
criterion. But how can we formulate the yield criterion in the general 3D case? What
is in this case the shear stress? Let us consider a point P and a small facet of area ds
surrounding. The normal to the facet is n. If we denote by F the force acting on ds
we have

F = T (P) n,

where T (P) is the Cauchy stress. The force vector F can be splitted into its
component along n and in a tangential vector τ (said tangential or shear force)

F = τ + σn,

where σ = F · n = T (P)n ·n (see Fig. 4). Obviously |F|2 = σ 2 + τ 2, where
τ = |τ |. We then consider a reference frame in which T (P) is diagonal, namely

T (P) =
⎛

⎝
T1 0 0
0 T2 0
0 0 T3

⎞

⎠ ,

and assume T1 > T2 > T3. Hence

|F|2 = σ 2 + τ 2 =
∣
∣
∣
∣
∣
∣

⎛

⎝
T1 0 0
0 T2 0
0 0 T3

⎞

⎠

⎛

⎝
n1
n2
n3

⎞

⎠

∣
∣
∣
∣
∣
∣

2

= T2
1n

2
1 + T2

2n
2
2 + T2

3n
2
3,
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and

σ = F ·n = T (P) n · n

=
⎛

⎝
T1 0 0
0 T2 0
0 0 T3

⎞

⎠

⎛

⎝
n1
n2
n3

⎞

⎠ ·
⎛

⎝
n1
n2
n3

⎞

⎠ = T1n
2
1 + T2n

2
2 + T3n

2
3 .

We thus get the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|n|2 = 1,

|F|2 = σ 2 + τ 2,

F · n = σ,

�⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n21 + n22 + n23 = 1,

T2
1n

2
1 + T2

2n
2
2 + T2

3n
2
3 = σ 2 + τ 2,

T1n21 + T2n22 + T3n23 = σ,

which, once solved with respect to n21, n
2
2, n

2
3, gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n21 =

(

σ − T2 + T3
2

)2

+ τ 2 −
(
T2 − T3

2

)2

(T2 − T1) (T3 − T1)
≥ 0,

n22 = −

(

σ − T1 + T3
2

)2

+ τ 2 −
(
T3 − T1

2

)2

(T2 − T3) (T1 − T2)
≥ 0,

n23 =

(

σ − T2 + T1
2

)2

+ τ 2 −
(
T2 − T1

2

)2

(T1 − T3) (T2 − T3)
≥ 0.

Thus, in the (σ, τ ) plane a domain is defined

(

σ − T2 + T3
2

)2

+ τ 2 ≥
(
T2 − T3

2

)2

,

(

σ − T1 + T3
2

)2

+ τ 2 ≤
(
T3 − T1

2

)2

,

(

σ − T2 + T1
2

)2

+ τ 2 ≥
(
T2 − T1

2

)2

,
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Fig. 5 Three points on the
horizontal axis correspond to
the three main stresses. The
figure shows that the
maximum shear is equal to
the radius of the largest circle

(n1, n2) = 0

n3 = 0

n

n2 = 0

(n1, n3) = 0 (n2, n3) = 0

t tMAX

tMAX = (maxTi – minTi)/2

s3 s2 s1
s

∀ →

n1 = 0

which corresponds to the area bordered by three circles, the so-called three Mohr
circles (see Fig. 5). Thus, since the maximum shear stress is τMAX , a possible yield
criterion is

⎧
⎪⎪⎨

⎪⎪⎩

τMAX ≤ τo

2
, no flow,

τMAX >
τo

2
, flow,

(4)

where

τMAX = 1

2
max {|T1 − T2| , |T2 − T3| , |T3 − T1|} . (5)

Such a criterion is known as Tresca criterion [3]. The representation in the principal
stress space of the surface (5), known as Tresca Surface, or

[
(T1 − T2)

2 − τ 2o

] [
(T1 − T3)

2 − τ 2o

] [
(T3 − T2)

2 − τ 2o

]
= 0,

is a cylindrical unbounded surface with hexagonal section and axis (1,1,1). So,
according to the Tresca criterion, at every point of the material we have to compute
the eigenvalues of the stress tensor. If all the eigenvalues are within the Tresca
surface then the material is in a rigid state. if at least one of the eigenvalues is
outside the surface then the material is in a fluid state.

The Tresca criterion, unfortunately, is not very practical to use. For this reason it
is preferred to use the Von Mises criterion [30], based on the second invariant of the
stress tensor. The maximum shear stress criterion (4) is replaced by

⎧
⎪⎪⎨

⎪⎪⎩

τVM ≤ τo

2
, no flow,

τVM >
τo

2
, flow,
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where

τVM =
√
1

2

[
(T1 − T2)2 + (T2 − T3)2 + (T3 − T1)2

]
.

Thus, splitting the Cauchy stress as T = −PI + S, where P = 1/3trT and S is the
extra-stress, we immediately realize that σVM coincides with the second invariant of
the extra-stress, namely

σVM = IIS =
√
1

2
tr S2.

Therefore the generalization of the Bingham model (1), (2) to the 3D case is the
following

S =
(

2μ + τo

IID

)

D, if IIS > τo, (flow), (6)

and

D = 0, if |τ | ≤ τo, (no flow), (7)

where

D = 1

2

(
∇v + ∇v

T
)

IID =
√
1

2
tr D,

and where v is the fluid velocity field. We remark that the Bingham constitutive
equation can be written in the implicit form (see [22–24, 26])

D =
(

IID
2μIID + τo

)

S. (8)

The above constitutive equation allows to express S as a function of D only when
IIS > τo, while D = 0, entails only IIS ≤ τo, the stress being constitutively
undetermined.

3 Flow in a Channel

We consider the flow of an incompressible Bingham fluid in a symmetric channel
of length L and width 2H. We consider a laminar flow so that the velocity field is

v = v( y, t)ex,

where, as shown in Fig. 6, x, y are the longitudinal and transversal coordinates
respectively. Due to symmetry we consider just the upper part of the channel. The
the inlet pressure ΔP is prescribed and we rescale the outlet pressure to 0. Hence



236 A. Farina and L. Fusi

Fig. 6 Sketch of the channel

2H

fo =
ΔP

L

y L

x

Prescribed pressure gradient

n = n (y,t )ex

the pressure gradient driving the flow is given by

fo = ΔP

L
.

In principle fo = fo (t) since ΔP may depend on time. In such a simple setting

D =
⎛

⎝
0 vy 0
vy 0 0
0 0 0

⎞

⎠ , T =
⎛

⎝
−P S12 0
S12 −P 0
0 0 −P

⎞

⎠ ,

so that IIS = |S12| and IID = ∣
∣vy
∣
∣. Hence, (6), (7) give

IIS > τo, �⇒ S12 = −τo + μvy,

IIS ≤ τo, �⇒ vy = 0.

Next, we assume that the viscous region, namely IIS > τo, and the rigid region,
IIS ≤ τo, are separated by a sharp interface y = s(t) a priori unknown, i.e. a free
boundary. In the fluid region, i.e. s (t) < y < H, the motion equation reduces to

ρvt = μvyy + fo,

coupled with the no-slip condition on y = H,

v (H, t) = 0,

and with the threshold condition on the free boundary s (t)

S12|y=s = τo, �⇒ vy
∣
∣
y=s = 0.
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y

H

x

no slip condition

FLUID REGION

RIGID CORE

VELOCITY OF THE
INNER RIGID CORE

n (H, t ) = 0

= 0

y = s (t )

K (t ) = n (s (t ),t )

fo+

s(t )

r
∂n ∂2n

∂n
∂y

∂y2∂t
= m

Fig. 7 The position s(t) of the “fluid – rigid” is unknown. Indeed we deal with a free boundary
problem

In particular, we assume no-slip also at the interface s (t), so that the velocity of the
rigid core is

κ (t) = v (s (t) , t) .

Figure 7 represents a sketch of the problem we have to solve. We need an evolution
for the interface s (t). According to the approach developed in [12], which is based
on the pioneering works by Safronchik [29] and Rubinstein [28], the unyielded
region is treated as an evolving non material volume, whose motion is determined
by using the integral (or global) momentum balance. The dynamics of the unyielded
domain

Ω (t) = {0 < x < L, −s (t) < y < s (t)} ,

is thus given by (see, e.g., [3])

d

dt

∫

Ω(t)
ρvdV =

∫

∂Ω(t)
Tn dS −

∫

∂Ω(t)
ρv [(v − w) · n] dS, (9)
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Fig. 8 The evolving non-material domain Ω

wherew is the velocity of the boundary1 ∂Ω and n its outward normal. Taking Fig. 8
into account relation (9) reduces to2

vt (s (t) , t) = 1

ρ

(

fo − τo

s (t)

)

.

We thus end up with this free boundary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρvt = μvyy − fo, s (t) < y < H, t > 0

v (H, t) = 0, t > 0,

vy (s (t) , t) = 0, t > 0,

ρvt (s (t) , t) = fo − τo

s (t)
, t > 0,

v ( y, 0) = vo ( y) 0 < y < so,

s (0) = so.

(10)

The domain of the problem is represented in Fig. 9. The problem (10) is a free
boundary problem but not of Stefan type, because in the evolution equation for the
free boundary ṡ does not appear. However if we consider as new dependent variable

1In the 1D case, considering just the upper part of Ω , w = ṡ (t) ey.
2We remark that κ̇ (t) �= vt (s (t) , t).
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Fig. 9 Sketch of the domain
of problem (10)

t

y

HS0

y = s(t)

z ( y.t) = vt ( y, t), problem (10) rewrites as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρzt = μzyy, s (t) < y < H, t > 0

z (H, t) = 0, t > 0,

ρz (s (t) , t) = fo − τo

s (t)
, t > 0,

zy (s (t) , t) = τo

s (t)
ṡ, t > 0,

v ( y, 0) = vo ( y) 0 < y < so,

s (0) = so.

(11)

In [4] global well posedness of problem (11) has been proved.

4 BinghamModel with Deformable Core

The Bingham model predicts that the material behaves as a rigid body if the shear
stress is less than the threshold τo. It is however evident that the schematization of
the rigid body is not plausible from a physical point of view (think, for example,
to the mayonnaise). Oldroyd [20] and Yoshimura et al. [32] have proposed to treat
the “solid phase” as deformable. In [7] Fusi et al. have studied an extension of
the 1D problem (10) to the case of an elastic core. The model has been developed
within the context of the theory of natural configurations [24, 25]. In [10] Fusi et al.
have extended the problem studied in [7] to a 2D channel flow where the channel
amplitude is not uniform.
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Actually, other models have been proposed for Bingham-like fluids whose
unyielded core is deformable. In [8, 9], for instance, the material in the non-fluid
region has been modeled as a visco-elastic fluid.

4.1 Channel Flow of a Bingham-Like Fluid with Linear
Elastic Core

Here we consider a channel flow of a Bingham-like fluid driven by a known pressure
gradient, assuming that the continuum behaves as a linear viscous fluid if the stress
is above the yield stress and as a linear elastic solid when the stress is below such a
threshold. In particular we assume that the domain may be split in two sub-domains,
see Fig. 10. The inner core, in which the material behaves as a linear elastic material,
and the outer part (i.e. the one close to the channel walls) where a linear viscous
behavior occurs. The two regions are separated by the unknown sharp interfaces
y = ±σ(x, t). Moreover the channel width varies along x, so that the channel walls
are given by the function y = H(x). The channel is finite and we denote its length
by L. As in Sect. 3, we limit our analysis to the upper part of the channel because of
symmetry. The motion equations are obtained by imposing the mass and momentum
balance. The evolution equation of the interface y = σ(x, t), as well as the boundary
conditions, are derived imposing Rankine-Hugoniot conditions and VonMises yield
criterion. The general mathematical problem is therefore a two-dimensional free
boundary problem. We develop the model assuming that the characteristic height of
the upper part H is far less than L, i.e. the aspect ratio

ε = H

L
� 1

is very small.

Fig. 10 A schematic
representation of the channel
flow with deformable core
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4.2 Kinematics and Constitutive Equation

Consider a two dimensional setting and assume that the motion is given by

x = χ (X, t), (12)

where χ is a differentiable and invertible mapping from R2 → R2. The vectors
x, X are the Eulerian and Lagrangian coordinates, respectively. The deformation
tensor is3

F = gradχ (X, t)

and mechanical incompressibility entails detF = 1.The Eulerian velocity and
acceleration are defined as

v (x, t) = ∂χ

∂ t

∣
∣
∣
∣
X=χ

−1
(x,t)

a (x, t) = ∂2χ

∂ t2

∣
∣
∣
∣
X=χ

−1
(x,t)

respectively. The strain rate tensor is

D =

⎛

⎜
⎜
⎜
⎜
⎝

∂v1

∂x

1

2

(
∂v1

∂y
+ ∂v2

∂x

)

1

2

(
∂v1

∂y
+ ∂v2

∂x

)
∂v2

∂y

⎞

⎟
⎟
⎟
⎟
⎠

,

and mechanical incompressibility gives

tr D = ∂v1

∂x
+ ∂v2

∂y
= 0. (13)

Splitting, as usual, the Cauchy stress as T = −PI+ S, with P = 1/3trT, we extend
we extend the constitutive relation (6), (7) to the case in which the region IIS < τo
behaves as a linear elastic material4 (see [7, 10]).

[

S −
(

2μ + τo

IID

)

D
]

Θ (IIS − τo) + (S − 2ηE)Θ (τo − IIS) = 0, (14)

3Here grad denotes the gradient operator w.r.t. Lagrangian coordinates, while ∇ the gradient w.r.t.
Eulerian coordinates.
4We are considering a linear elastic model even if ‖F‖ may be, in general, not very “small” , as we
shall see in Sect. 4.3.3.
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where

E = 1

2

[
∇f + (∇f )T

]

is the linearized strain tensor, f = χ−X is the displacement , η is the elastic modulus
and Θ is the Heaviside function

Θ(z) =
⎧
⎨

⎩

0, if z < 0,

1, if z � 0.

From (14) it is clear that, whenever IIS ≤ τo, the continuum behaves as a linear
elastic solid whereas the viscous behavior occurs when IIS ≥ τo.

4.3 Flow in a Channel

We rescale the longitudinal variable as

x̃ = x

L
h̃(x) = H(x)

H
σ̃ = σ

H
H = max

x∈[0,L]
H(x)

and we introduce the Reynolds and Bingham number

Re = ρUH

μ
, Bn = τoH

μU
, (15)

where U is the characteristic velocity and ρ is the material density. The we set

ỹ = 1

ε

y

L
t̃ = t

tc
tc = L

U
.

Concerning velocity and pressure, we introduce

ṽ1 = v1

U
, ṽ2 = v2

εU
, P̃ = P

Pc
Pc = μUL

H2

where Pc comes from the classical Poiseuille formula. Rescaling S as

S = μU

H

⎛

⎝
S̃11 S̃12

S̃12 S̃22

⎞

⎠ ,
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the motion equations become5

Re
ε

(
∂v1

∂ t
+ ∂v1

∂x
v1 + ∂v1

∂y
v2

)

= − 1

ε2

∂P

∂x
+ 1

ε

∂

∂x
(S11) + 1

ε2

∂

∂y
(S12) , (16)

Re
ε

(
∂v2

∂ t
+ ∂v2

∂x
v1 + ∂v2

∂y
v2

)

= − 1

ε4

∂P

∂y
+ 1

ε2

[
∂

∂x
(S12) + 1

ε

∂

∂y
(S22)

]

, (17)

and mass conservation is

∂v1

∂x
+ ∂v2

∂y
= 0. (18)

The displacement is rescaled as

f̃1 = f1
L

f̃2 = 1

ε

f2
L

,

so that6

E =

⎛

⎜
⎜
⎜
⎜
⎝

∂ f1
∂x

1

2

(
1

ε

∂ f1
∂y

+ ε
∂ f2
∂x

)

1

2

(
1

ε

∂ f1
∂y

+ ε
∂ f2
∂x

)
∂ f2
∂y

⎞

⎟
⎟
⎟
⎟
⎠

.

The sharp interface y = σ(x, t) separates the elastic domain from the viscous
domain, as shown in Fig. 2. We remark that the interface σ is unknown and it is
not material. The dimensionless normal velocity of the interface is

w = ε
√

1 + ε2

(
∂σ

∂x

)2

∂σ

∂ t
.

The dimensionless strain rate tensor is

D =

⎛

⎜
⎜
⎜
⎜
⎝

ε
∂v1

∂x

1

2

(
∂v1

∂y
+ ε2

∂v2

∂x

)

1

2

(
∂v1

∂y
+ ε2

∂v2

∂x

)

ε
∂v2

∂y

⎞

⎟
⎟
⎟
⎟
⎠

,

5We omit “˜” to keep notation simple.
6Again, we have omitted “ ”.
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while the dimensionless invariant IID is

IID = 1

2

√
√
√
√
(

∂v1

∂y
+ ε2

∂v2

∂x

)2

+ 2ε2

[(
∂v1

∂x

)2

+
(

∂v2

∂y

)2
]

. (19)

The yield criterion becomes

IIS � Bn. (20)

4.3.1 Boundary Conditions

Let [[ · ]] denotes the “jump” across the surface y = σ . Assuming no-slip on σ we
get

[[ v1 ]] = [[ v2 ]] = 0. (21)

The continuity of the stress gives

−[[ P ]]
(

1 + ε2
(

∂σ

∂x

)2
)

+
[[

ε3S11

(
∂σ

∂x

)2

− 2ε2S12
∂σ

∂x
+ εS22

]]

= 0, (22)

and

[[ S12 ]] + ε
∂σ

∂x

[[

S22 − S11 − εS12
∂σ

∂x

]]

= 0. (23)

Remark 1 If we neglect O (ε) terms, then [[ P ]] = [[ S12 ]] = 0, provided that Sij
are bounded.

On the channel wall y = h the no-slip condition yields v (x, h, t) ≡ 0, while the
boundary conditions for the pressure are

P (0, y, t) = Pin (t) , and P (1, y, t) = Pin (t) − ΔP (t) , with ΔP ≥ 0.

Finally, we impose the symmetry conditions:

∂ f1 (x, 0, t)

∂y
= 0, f2 (x, 0, t) = 0,

∂ f2 (x, 0, t)

∂y
= 0,

∂ f2 (x, 0, t)

∂ t
= 0.

(24)
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4.3.2 The Elastic Domain and the Viscous Domain

Let us first consider the elastic domain y ∈ [0, σ ]. According to (14)

S = Re
λ2

⎛

⎜
⎜
⎜
⎝

2
∂ f1
∂x

1

ε

∂ f1
∂y

+ ε
∂ f2
∂x

1

ε

∂ f1
∂y

+ ε
∂ f2
∂x

2
∂ f2
∂y

⎞

⎟
⎟
⎟
⎠

,

with

λ2 =
(
U

c

)2

c 2 = η

ρ
. (25)

The momentum balance yields

Re
(

∂2f1
∂ t2

+ ∂2f1
∂x∂ t

∂ f1
∂ t

+ ∂2f1
∂y∂ t

∂ f2
∂ t

)

= −1

ε

∂P

∂x
+ Re

λ2

(

2
∂2f1
∂x2

+ 1

ε2

∂2f1
∂y2

+ 1

ε

∂2f2
∂y∂x

)

, (26)

Re
(

∂2f2
∂ t2

+ ∂2f2
∂x∂ t

∂ f1
∂ t

+ ∂2f2
∂y∂ t

∂ f2
∂ t

)

= − 1

ε3

∂P

∂y
+ Re

λ2

(
1

ε2

∂2f1
∂x∂y

+ ∂2f2
∂x2

+ 2

ε2

∂2f2
∂y2

)

. (27)

In the viscous domain y ∈ [σ, 1]

S =
(

1 + Bn
2IID

)

⎛

⎜
⎜
⎜
⎝

2ε
∂v1

∂x

∂v1

∂y
+ ε2

∂v2

∂x

∂v1

∂y
+ ε2

∂v2

∂x
2ε

∂v2

∂y

⎞

⎟
⎟
⎟
⎠

,

The momentum equations are

Re
ε

(
∂v1

∂ t
+ ∂v1

∂x
v1 + ∂v1

∂y
v2

)

= − 1

ε2

∂P

∂x
+ 2

∂

∂x

[(

1 + Bn
2IID

)
∂v1

∂x

]
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+ 1

ε2

∂

∂y

[(

1 + Bn
2IID

)(
∂v1

∂y
ε2

∂v2

∂x

)]

, (28)

Re
ε

(
∂v2

∂ t
+ ∂v2

∂x
v1 + ∂v2

∂y
v2

)

= − 1

ε4

∂P

∂y

+ 1

ε2

{
∂

∂x

[(

1 + Bn
2IID

)(
∂v1

∂y
+ ε2

∂v2

∂x

)]

+ 2
∂

∂y

[(

1 + Bn
2IID

)
∂v2

∂y

]}

.

(29)

The model is consistent if IIS < Bn for y ∈ [0, σ ], i.e.
√
√
√
√
(

∂ f1
∂y

+ ε2
∂ f2
∂x

)2

+ 2ε2

[(
∂ f1
∂x

)2

+
(

∂ f2
∂y

)2
]

≤ Bnλ2ε

Re
. (30)

and if IIS ≥ Bn for y ∈ [σ, 1], i.e. IID ≥ 0. Finally we notice that

ε[[ S12 ]] = ε

[(

1 + Bn
2IID

)(
∂v1

∂y
+ ε2

∂v2

∂x

)]

y=σ+

− Re
λ2

[
∂ f1
∂y

+ ε2
∂ f2
∂x

]

y=σ−
. (31)

4.3.3 Asymptotic Expansion

The assumption ε � 1, allows to seek the unknown fields (i.e. v1, v2, P, etc.) in the
following form

φ =
∞∑

j=0

φ( j)εj

Substituting into the governing equations we get a hierarchy of problems that must
be matched together. The matching procedure requires the specification of Re, Bi,
and λ2. We consider: Re ≤ O (1) , i.e. laminar flow and Bn = O (1). We introduce
the dimensionless parameter

Γ = ηH

μU
= Re

λ2
, (32)
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and consider two different cases which correspond to different behaviors of the inner
core:

(1) Γ = O(1).
(2) Γ = O(ε).

When Γ = O (1), namely Re = O
(
λ2
)
, we have an almost rigid inner core, while

the case Γ = O (ε), i.e. Re = O
(
ελ2

)
, corresponds to a “ soft” inner core where

deformations are non-negligible. Let us show that the first case leads to the classical
Bingham model. Indeed, considering Re = O

(
λ2
)

O (1) = Γ = ε
tcη

μ
, ⇒ tcη

μ
= O

(
ε−1

)
. (33)

Evaluating the order of magnitude of the elastic stress Sel and of the viscous stress
Svis we have

Svis = μ
U

H
Sel = δη

L

H
,

where δ is the dimensionless order of magnitude of the longitudinal displacement.
The continuity of the shear stress at the interface yields

Sel
Svis

= O (1) ⇒ δ
tcη

μ
= O (1) . (34)

Hence we find δ = O (ε), meaning an almost uniform longitudinal displacement as
in the classical Bingham model. In the second case

Re = O(ελ2) ⇒ tcη

μ
= O (1)

which entails δ = O (1). As a consequence the longitudinal displacement is not
uniform.

4.3.4 First Case: Γ = O(1)

We start considering the elastic domain, and we focus on the zero order terms.
From (27) we obtain P(0) = P(0) (x, t). Next, since [[ P ]] = 0 on the interface,
we have that in the whole elastic region P(0) = P(0)

(
x, σ+, t

)
. From (26) we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2f (0)
1

∂y2
= 0,

∂ f (0)
1

∂y

∣
∣
∣
∣
∣
y=0

= 0,

�⇒ f (0)
1 = f (0)

1 (x, t) .
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Mass conservation in the elastic domain becomes

∂2f (0)
1

∂x∂ t
+ ∂2f (0)

2

∂y∂ t
= 0. (35)

Recalling (24) it is easy to show that

∂

∂x

(
∂ f (0)

1

∂ t

)

= 0. (36)

Therefore setting

κ = ∂ f (0)
1

∂ t
,

we have κ = κ (t). From (21) we find

κ = v
(0)
1

(
x, σ+, t

)
. (37)

From (35)

∂ f (0)
2

∂ t
depends only on t.

and the transversal velocity vanishes everywhere in the elastic region, so that

v
(0)
2

(
x, σ+, t

) = 0. (38)

Let us now consider relation (31) at the zero order approximation. We get

Re
λ2

∂ f (1)
1

∂y

∣
∣
∣
∣
∣
y=σ−

=
[(

1 + Bn

2II(0)D

)
∂v

(0)
1

∂y

]

y=σ+
. (39)

The latter forces to analyze the first order term in (26), (27), namely

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2f (1)
1

∂y2
= λ2

Re
∂P(0)

∂x
,

∂ f (1)
1

∂y

∣
∣
∣
∣
∣
y=0

= 0,

�⇒ f (1)
1 = λ2

2 Re
∂P(0)

∂x
y2 + B (x, t) .
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Hence (39) becomes

∂P(0)

∂x
σ =

[(

1 + Bn

2II(0)D

)
∂v

(0)
1

∂y

]

y=σ+
. (40)

It is easy to show that

IIS =
∣
∣
∣
∣
∂P(0)

∂x

∣
∣
∣
∣ y + O (ε)

in the elastic region so that condition (30) is fulfilled when

∣
∣
∣
∣
∂P(0)

∂x

∣
∣
∣
∣σ ≤ Bn. (41)

We now focus on the viscous part σ < y < 1. Here (29) entails P(0) = P(0) (x, t),
so that the pressure is uniform on any channel section. Next, we observe that

IIS =
∣
∣
∣
∣
∣

∂v
(0)
1

∂y
+ Bi sign

(
∂v

(0)
1

∂y

)∣
∣
∣
∣
∣
+ O (ε)

and (39) can be rewritten as

∣
∣
∣
∣
∂P(0)

∂x

∣
∣
∣
∣σ

︸ ︷︷ ︸
IIS≤Bn

=
∣
∣
∣
∣
∣
∣

∂v
(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

+ Bi sign

⎛

⎝
∂v

(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

⎞

⎠

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸
IIS≥Bn

.

We conclude that

∂v
(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

= 0
∂P(0)

∂x
σ = Bi sign

⎛

⎝
∂v

(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

⎞

⎠ . (42)

Focussing now on (28) we find

−∂P(0)

∂x
+ ∂

∂y

[
∂v

(0)
1

∂y
+ Bi sign

(
∂v

(0)
1

∂y

)]

= 0,
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so that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂P(0)

∂x
+ ∂2v

(0)
1

∂y2
= 0,

v
(0)
1 (x, h, t) = 0,

∂v
(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

= 0,

(43)

Solving (43) we get

v
(0)
1 (x, y, t) = −1

2

∂P(0)

∂x

(
h2 − y2

)
+ Bi sign

⎛

⎝
∂v

(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

⎞

⎠ (h − y) . (44)

In particular, (37) yields

κ = −1

2

∂P(0)

∂x
(h − σ)2 , with ω = ω (t) . (45)

Remark 2 We remark that

κ = −Bn
2σ

sign

⎛

⎝
∂v

(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

⎞

⎠ (h − σ)2 . (46)

Therefore the derivative w.r.t. x of the r.h.s. of (46) must vanish and

∂h

∂x
= h + σ

2σ

∂σ

∂x
. (47)

From (18)

∫ h

σ

∂v
(0)
1

∂x
dy = 0, (48)

since v
(0)
2 (x, h, t) = v

(0)
2

(
x, σ+, t

) = 0. Hence, exploiting (44)

∂v
(0)
1

∂x
= −1

2

∂2P(0)

∂x2

(
h2 − y2

)
− ∂P(0)

∂x

∂h

∂x
h + ∂P(0)

∂x
σ

∂h

∂x
.
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Thus (48) yields

(h − σ)2
[
1

6

∂2P(0)

∂x2
(σ + 2h) + ∂P(0)

∂x

∂h

∂x

]

= 0. (49)

In case h is uniform we get

∂2P(0)

∂x2
= 0 ⇒ P(0) (x, t) = Pin (t) − xΔP (t) ,

and

σ (t) = Bn
ΔP (t)

,

from which we derive the classical Bingham flow condition we find in [4]

Bn
ΔP (t)

< h,

ensuring the flow within the channel.

Remark 3 In case h does depend on x (49) does not give rise to any solution
consistent with (47) (a well known paradox of the Bingham model). Indeed,
form (42)2

∂2P(0)

∂x2
= − 1

σ

∂σ

∂x

∂P(0)

∂x
,

that inserted into (49) yields

∂P(0)

∂x
(h − σ)2

[
∂h

∂x
− ∂σ

∂x

σ + 2h

6σ

]

= 0.

The above implies

∂σ

∂x

σ + 2h

6σ
= ∂h

∂x
(50)

Inserting (50) into (47) we get h = −2σ , that is a contradiction (lubrication paradox,
see [6, 17, 21, 27]).
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4.3.5 Second Case Γ = O(ε)

Set εΓ̂ = Γ with Γ̂ = O (1). From (31)

[(

1 + Bn
2IID

)(
∂v1

∂y
+ ε2

∂v2

∂x

)]

y=σ+
= Γ̂

[
∂ f1
∂y

+ ε2
∂ f2
∂x

]

y=σ−
, (51)

Once again P(0) = P(0) (x, t) in the whole domain. In the elastic part

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2f (0)
1

∂y2
= 1

Γ̂

∂P(0)

∂x
,

∂ f (0)
1

∂y

∣
∣
∣
∣
∣
y=0

= 0,

⇒ f (0)
1 = 1

2 Γ̂

∂P(0)

∂x
y2 + a (x, t) , (52)

so that (51) implies

∂P(0)

∂x
σ =

[(

1 + Bn

2II(0)D

)
∂v

(0)
1

∂y

]

y=σ+
.

The term a (x, t) is unknown at this stage while v
(0)
1 is

v
(0)
1 = 1

2 Γ̂

∂2P(0)

∂ t∂x
y2 + κ (x, t) ,

where now

κ (x, t) = ∂a (x, t)

∂ t
, (53)

can be interpreted as the uniform part of the longitudinal velocity. Checking
condition (30) we find again (41).

Remark 4 At the leading order the longitudinal displacement is a superposition of
a uniform displacement a (x, t) and a non uniform displacement modulated by the
pressure gradient. The latter becomes negligible for large values of Γ̂ and the first
case is recovered for Γ̂ � 1.

In the fluid region

∂P(0)

∂x
σ = −Bn.



Viscoplastic Fluids: Mathematical Modeling and Applications 253

Moreover

v
(0)
1 (x, y, t) = −1

2

∂P(0)

∂x

(
h2 − y2

)
+ ∂P(0)

∂x
σ (h − y) .

The jump condition (21) yields

1

2 Γ̂

∂2P(0)

∂ t∂x
σ 2 + ω (x, t) = −1

2

∂P(0)

∂x
(h − σ)2 ,

with ω given by (53). From mass balance and boundary conditions

0 =
∫ h

0

∂v
(0)
1

∂x
dy =

∫ σ

0

∂

∂x

(
∂ f (0)

1

∂ t

)

dy +
∫ h

σ

∂v
(0)
1

∂x
dy,

which, after some of algebra, gives

(h − σ)2
[
1

6

∂2P(0)

∂x2
(2h + σ) + ∂P(0)

∂x

∂h

∂x

]

− σ 3

6 Γ̂

∂3P(0)

∂x2∂ t
− σ

∂ω

∂x
= 0.

Therefore the mathematical problem at the zero order approximation is the
following

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P(0)

∂x
σ = −Bn,

1

2 Γ̂

∂2P(0)

∂ t∂x
σ 2 + κ (x, t) = −1

2

∂P(0)

∂x
(h − σ)2 ,

− (h − σ)2
[
1

6

∂2P(0)

∂x2
(2h + σ) + ∂P(0)

∂x

∂h

∂x

]

+ σ 3

6 Γ̂

∂

∂ t

(
∂2P(0)

∂x2

)

+ σ
∂κ

∂x
= 0.

(54)

Example 1 Consider the stationary problem when h ≡ 1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P(0)

∂x
σ = −Bn, ⇒ ∂σ

∂x

∂P(0)

∂x
= −∂2P(0)

∂x2
σ,

κ (x, t) = −1

2

∂P(0)

∂x
(1 − σ)2 , ⇒ ∂κ

∂x
= −1

2

∂2P(0)

∂x2
(
1 − σ 2

)
,

− (1 − σ)2

6

∂2P(0)

∂x2
(2 + σ) + σ

∂κ

∂x
= 0.

(55)
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We get

1

3

∂2P(0)

∂x2

(
1 − σ 3

)
= 0,

yielding σ = 1 (which we do not consider) and P(0) = Pin − ΔPx, with ΔP known.
Therefore

σ = = Bn
ΔP

, (56)

κ = ΔP

2

(

1 − Bn
ΔP

)2

. (57)

Requiring σ < 1 we get the usual Bingham flow condition.

4.3.6 Stationary Version of (54)

We show that the stationary version of system (54), namely

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P(0)

∂x
σ = −Bn,

ω (x, t) = −1

2

∂P(0)

∂x
(h − σ)2 ,

− (h − σ)2
[
1

6

∂2P(0)

∂x2
(2h + σ) + ∂P(0)

∂x

∂h

∂x

]

+ σ
∂ω

∂x
= 0,

(58)

admits a unique solution when h is a smooth bounded function of x with h ∈
[hm, hM]. From (58)1

∂2P(0)

∂x2
= Bn

σ 2

∂σ

∂x
, (59)

and from (58)2

κ (x, t) = Bn
2 σ

(h − σ)2 , and
∂κ

∂x
= Bn (h − σ)

2σ 2

[

2σ
∂h

∂x
− ∂σ

∂x
(h + σ)

]

.
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Hence, system (58) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P(0)

∂x
σ = −Bn,

− (h − σ)2
[
1

6

∂2P(0)

∂x2
(2h + σ) + ∂P(0)

∂x

∂h

∂x

]

+
Bn (h − σ)

2σ

[

2σ
∂h

∂x
− ∂σ

∂x
(h + σ)

]

= 0.

(60)

In [10] it has been proved that there exists a unique pair of sufficiently regular
functions

(
σ (x) ,P(0) (x)

)
such that:

(a) 0 < σ (x) < h (x), for all x ∈ [0, 1].
(b) P(0) (0) = Pin, and P(0) (1) = Pin − ΔP.
(c) σ (x) and P(0) (x) fulfill the equations of (60).

Remark 5 Assuming that (60) is solvable according to the above definition, we find
immediately a new “flow condition”. Indeed, integrating (60)1 between 0 and 1, we
obtain

ΔP

Bn
=
∫ 1

0

dx

σ (x)
.

Since

∫ 1

0

dx

σ (x)
>

∫ 1

0

dx

h (x)
, (61)

if (60) admits a solution, the following inequality holds true

ΔP

Bn
>

∫ 1

0

dx

h (x)
. (62)

Going back to dimension variables we get

ΔP

τo
>

∫ L

0

dx

H (x)
,

which generalizes the classical Bingham flow condition.
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4.4 Numerical Simulations

We present some numerical simulations to investigate the stationary behavior of
σ(x) when Γ = O(1). Suppose following function

h(x) = 1

2
− 1

10
arctan

[

200

(

x − 1

2

)]

,

The channel profile and the free boundary separating the elastic and the viscous
phase are shown in Figs. 11, 12, 13, 14 for different values of ΔP/Bn satisfying
condition (62). We see that

∫ 1

0

dx
′

h(x′
)

= 2.2,

and consequently we perform numerical simulation with ΔP/Bn > 2.2.
The amplitude of the inner core decreases as ΔP/Bn increases. When ΔP/Bn � 1
(Fig. 14), the inner core approximately disappears and the system becomes almost
purely viscous. In the same way, we observe that when ΔP/Bn is close to 2.2 then
σ → h (Fig. 11) and the viscous part tends to disappear. Also in this case we speak
of a limit, since condition (62) must be fulfilled.
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Plot of the free boundary σ 

y=h(x)
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Fig. 11 Plot of the free boundary (dashed line) y = σ(x) with ΔP/Bn = 2.5 and with
condition (62) fulfilled
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Fig. 12 Plot of the free boundary (dashed line) y = σ(x) with ΔP/Bn = 3.5 and with
condition (62) fulfilled
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Plot of the free boundary σ 
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Fig. 13 Plot of the free boundary (dashed line) y = σ(x) with ΔP/Bn = 5.5 and with
condition (62) fulfilled
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Fig. 14 Plot of the free boundary (dashed line) y = σ(x) with ΔP/Bn = 9.5 and with
condition (62) fulfilled

5 Two Dimensional Channel Flow: A New Approach

Tomodel the flow of a Bingham fluid one considers the balance of linear momentum
written in the differential form

ρ
Dv
Dt

= −∇P + ∇ · S, (63)

where ρ is density, v is velocity, P is pressure and S is the deviatoric part of the
stress. Equation (63) is typically used in the whole domain, assuming that the
velocity and the stress are continuous across the fluid/rigid interface. Within the
liquid domain the fluid is assumed to behave as a viscous incompressible fluid,
whereas in the rigid part the stress is indetermined. Indeed in the unyielded part we
only know that the strain rate vanishes, i.e. D = 0. Assuming that Eq. (63) holds in
every part of the domain may lead to paradoxes, as the one that occurs in lubrication
regimes, [6, 17].

To avoid this occurrence we propose a novel approach which essentially consists
in using a integral formulation for the balance of linear momentum within the
unyielded part. We apply this approach to study the flow in a bidimensional channel
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of varying amplitude, with the driving force being an applied pressure gradient
(Poiseuille flow). We assume that the aspect ratio of the channel is small, so that
the lubrication approximation is suitable. In this case, Eq. (63) can be simplified
introducing the ratio ε � 1 between the length and the maximum amplitude
and rescaling the problem in a nondimensional form. The solution can be sought
as power series of ε, where the leading order is the one we are interested in.
With this procedure one tacitly assumes that the nondimensional variables and
their derivatives are O(1) in the liquid and solid domain. In particular the stress
components Sij are assumed to be everywhere O(1), but this latter hypothesis can
be checked “a posteriori” only in the liquid part, since in the rigid domain the stress
is not determined.

This point is the central importance for our procedure. Indeed, the assumption
Sij = O(1) and the use of (63) to derive the motion in the rigid part, leads to the
well known “lubrication paradox” , which consists in a plug velocity that depends
on the longitudinal coordinate. Note that the paradox disappears when one considers
a deformable core, as shown in the previous sections. If one does not use Eq. (63)
in the unyielded part and write the balance of linear momentum using an integral
global approach similar to the one presented in [29] and in [28], the paradox is no
longer present. Therefore, the unyielded part is treated as an evolving non material
volumeΩt and its dynamics is modelled writing the balance of linear momentum as

∫

Ωt

∂

∂ t
(ρv) dV +

∫

∂Ωt

ρv (v · n) dS =
∫

∂Ωt

(Tn)dS, (64)

where T = −PI+ S, is the Cauchy stress tensor and w the velocity of the boundary
∂Ωt. The advantage of this approach lies in the fact that the knowledge of the stress
inside the rigid part is no longer needed and no guess has to be made on the order of
magnitude of the stress components. Only the stress acting on the boundary of Ωt

is required.
Therefore we need to know: (1) the forces acting on the yield surface σ (see

Fig. 15); (2) the forces acting on the inlet and outlet of the channel. On σ the viscous
stress is given once the problem in the viscous domain is solved. On the channel
inlet and outlet the applied pressure, assumed to be a given datum of the problem,
is required.

When dealing with the leading order approximation in the channel flow, Eq. (64)
becomes an integro-differential equation for the pressure P, whose solution allows
to determine explicit expressions for the velocity field v and the yield surface σ .
We prove that the longitudinal velocity is spatially uniform, while the transversal
velocity vanishes (no paradox).We also show that these results can be also extended
to the case of fluids with constant density and pressure dependent viscosity.
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Fig. 15 Sketch of the
domain of the problem

5.1 The Physical Model

Let us consider the flow of an incompressible Bingham fluid in a channel of length L
and amplitude 2h (x). Because of symmetry, we may limit our analysis to the upper
part of the layer [0, h(x)]. The velocity field is given by

v = v1(x, y, t)i + v2(x, y, t)j,

The Cauchy stress is T = −PI+S, where the deviatoric part is the one of a Bingham
fluid

S =
(

2μ + τo

IID

)

D. (65)

In the above μ is the viscosity, τo is the yield stress. If D �= 0 we get

IIS = 2μIID + τo

which holds with IIS ≥ τo. Therefore, whenever D = 0, we have IIS ≤ τo and
the stress is not determined. We assume that the viscous and the rigid regions are
separated by a sharp interface y = ±σ(x, t). Assuming incompressibility we write

tr D = ∂v1

∂x
+ ∂v2

∂y
= 0. (66)
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5.2 The Viscous Domain

We write the governing equations in the viscous region neglecting body forces.
These are the incompressibility condition (66) and

ρ

(
∂v1

∂ t
+ v1

∂v1

∂x
+ v2

∂v1

∂y

)

= −∂P

∂x
+ ∂S11

∂x
+ ∂S12

∂y
, (67)

ρ

(
∂v2

∂ t
+ v1

∂v2

∂x
+ v2

∂v∗
2

∂y

)

= −∂P

∂y
+ ∂S12

∂x
+ ∂S22

∂y
, (68)

5.3 The Rigid Domain

The rigid domain Ωt at some time t > 0 is given by

Ωt = {(x, y) : x ∈ [0,L], y ∈ [−σ, σ ]} .

The integral momentum balance for the whole domain Ωt in the absence of body
forces is given by (64). Focussing on the upper part of the domain (y > 0) we find
that (64) can be rewritten as

2
∂

∂ t
(ρv)

∫ L

0
σ(x, t)dx + 2ρv

∫ L

0

∂σ

∂ t
(x, t)dx =

∫

∂Ωt

Tn dS.

The external forces acting on the boundary ∂Ωt are expressed by the surface integral
on the r.h.s. Assuming that Pin, Pout are the (uniform) pressures acting on the inlet
and outlet of the channel, we find

∫

∂Ωt

(Tn)dS = 2
∫ L

0

⎡

⎣
(−σxT11 + T12)σ

0

⎤

⎦ dx

+2
∫ σout

0

⎛

⎝
−Pout

0

⎞

⎠ dy + 2
∫ σin

0

⎛

⎝
Pin

0

⎞

⎠ dy,

where σin = σ(0, t), σout = σ(L, t). Recalling that in the rigid plug velocity is

⎧
⎨

⎩

v1 = k1(t),

v2 = k2(t) = 0 (by symmetry),
(69)
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the dynamics of the whole rigid region is expressed only by the first component
of (64), that is

∫ L

0

∂

∂ t
(ρk1σ) dx =

∫ L

0
[−σxT11 + T12]σ dx + Pinσin − Poutσout, (70)

Hence the prescribed pressure difference driving the flow is

ΔP = Pin − Pout. (71)

The boundary condition on the channel wall is

v(x, h, t) = 0 (72)

i.e. the no-slip condition. On σ we impose

�v · t� y=σ = 0, �v · n� y=σ = 0, (73)

�Tn · t� y=σ = 0, �Tn · n� y=σ = 0, (74)

which express the continuity of the velocity and of the stress across the yield surface
y = σ ( t and n are the tangent and normal unit vector to σ ).

Remark 6 In Sect. 5.10 we will extend our model the case in which the viscosity
depends on pressure, namely μ = μμ (P).

5.4 Scaling

Set

H = sup
x∈[0,L]

h(x),

and introduce

ε = H

L
� 1,

which is crucial for applying the classical thin film approach. We rescale the
problem using the following non dimensional variables

x̃ = x

L
, ỹ = y

εL
, σ̃ = σ

εL
, h̃ = h

εL
, t̃ = t

(L/U)
,
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ṽ1 = v1

U
, v2 = v2

εU
, P̃ = P − Pout

Pc
, ΔP̃ = ΔP

Pc
, (75)

S̃ = S
(μU/H)

, D̃ = D
(U/H)

, ĨID = IID
(U/H)

, ĨIS = IIS
(μU/H)

,

where we select the reference pressure using the Poiseuille formula

Pc = μLU

H2 (76)

After some algebra (and neglecting the tildas) we find

S =
(

2 + Bn
IID

)

D,

where

Bn = τoH

μU

is the Bingham number. Moreover

IID =
√

ε2

(
∂v1

∂x

)2

+ 1

4

(
∂v1

∂y
+ ε2

∂v2

∂x

)2

.

Equations (66)–(68) become

∂v1

∂x
+ ∂v2

∂y
= 0, (77)

εRe
(

∂v1

∂ t
+ v1

∂v1

∂x
+ v2

∂v1

∂y

)

= −∂P

∂x
+ ε

∂S11
∂x

+ ∂S12
∂y

, (78)

ε3Re
(

∂v2

∂ t
+ v1

∂v2

∂x
+ v2

∂v2

∂y

)

= −∂P

∂y
+ ε2

∂S12
∂x

+ ε
∂S22
∂y

, (79)

where

Re =
(

ρUH

μ

)

is the Reynolds number. The inner core equation (70) becomes

εRe
∫ 1

0

∂

∂ t
(k1σ)dx =

∫ 1

0
[Pσx − εσxS11 + S12]σ+ dx + ΔPσin. (80)
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The boundary conditions (72)–(74) become

v(x, h, t) = 0, (81)

�v1�y=σ = �v2�y=σ = 0, (82)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�P�

[

1 + ε2
(

∂σ

∂x

)2
]

y=σ

+
[

ε3S11

(
∂σ

∂x

)2

− 2ε2S12

(
∂σ

∂x

)

+ εS22

]

y=σ

= 0,

�S12�y=σ + ε

(
∂σ

∂x

)[

S22 − S11 − εS12
∂σ

∂x

]

y=σ

= 0.

(83)
In the rigid domain the non dimensional velocity field is

⎧
⎨

⎩

v1 = k1(t),

v2 = 0,
(84)

with k1 = k1/U.

5.5 The Leading Order Approximation

We look for a solution in which the main variables of the problem can be expressed
as power series of ε

v =
∞∑

j=0

v( j)εj P =
∞∑

j=0

P( j)εj σ =
∞∑

j=0

σ ( j)εj

We further assume that h(x) is such that

∂h

∂x
= O (1)

and we limit our analysis to the leading order, assuming that Bi =O (1) and
Re �O (1). We begin by observing that

S(0)
12 =

⎡

⎣1 + Bn

|v(0)
1y |

⎤

⎦ v
(0)
1y ,
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and, since we are looking for a solution with v
(0)
1y < 0 in the upper part of the

channel, we write

S(0)
12 = v

(0)
1y − Bn.

The problem reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
(0)
1

∂x
+ ∂v

(0)
2

∂y
= 0,

−∂P(0)

∂x
+ ∂

∂y

(
∂v

(0)
1

∂y

)

= 0,

−∂P(0)

∂y
= 0,

(85)

with boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂v
(0)
1

∂y

∣
∣
∣
∣
∣
y=σ (0)

= 0,

v
(0)
1 (x, h, t) = 0.

(86)

Integrating we find

v
(0)
1 = −P(0)

x
(h − y)( y − 2σ (0) + h)

6
. (87)

Exploiting the continuity equation we get

v
(0)
2 = − ∂

∂x

[

P(0)
x

( y − h)2( y − 3σ (0) + 2h)

6

]

. (88)

Evaluating the velocity components on the yield surface we get

v
(0)
1

∣
∣
∣
y=σ (0)

= k(0)
1 (t) = −P(0)

x
(h − σ (0))2

2
, (89)

v
(0)
2

∣
∣
∣
y=σ (0)

= ∂

∂x

[

−P(0)
x

(h − σ (0))3

3

]

− σ (0)
x P(0)

x
(h − σ (0))2

2
= 0,
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which entails
(

−P(0)
x

(h − σ (0))2

2

)

︸ ︷︷ ︸

k(0)
1

· ∂

∂x

[
2

3
(h − σ (0))

]

= −σ (0)
x

(

−P(0)
x

(h − σ (0))2

2

)

︸ ︷︷ ︸

k(0)
1

.

Supposing k(0)
1 �= 0, we find

σ (0) (x, t) = −2h (x) − C, (90)

where C is unknown. Let us now consider the rigid core equation (80) at the zero
order

1∫

0

P(0)σ (0)
x dx − Bn + ΔPσ

(0)
in = 0,

which, after an integration by parts, reduces to

−
∫ 1

0
P(0)
x σ (0)dx = Bn. (91)

Substituting (90) into (91), we obtain

C =
2
∫ 1

0
P(0)
x hdx− Bn

ΔP
.

We thus have

σ (0) = −2h (x) +
Bi−2

∫ 1

0
P(0)
x h dx

ΔP
, (92)

or equivalently

σ (0) = 2(hin − h (x)) + Bi
ΔP

+ 2

ΔP

∫ 1

0
P(0)hxdx, (93)

where hin = h(0). Defining the viscous region width as

�(0) = h (x) − σ (0) (x, t) , (94)
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formula (92) entails

�(0) = 3h (x) +
2
∫ 1

0
P(0)
x h dx − Bn

ΔP
. (95)

Hence

k(0)
1 = −P(0)

x
�(0)2

2
. (96)

Now, differentiating(̃96) with respect to x, we obtain

P(0)
xx + 6

hx
�(0)

P(0)
x = 0,

that is the integro-differential equation

P(0)
xx + 6hx

⎡

⎢
⎢
⎣3h +

2
∫ 1

0
P(0)
x h dx − Bn

ΔP (t)

⎤

⎥
⎥
⎦

P(0)
x = 0. (97)

The boundary conditions are P(0)
∣
∣
x=0 = ΔP, and P(0)

∣
∣
x=1 = 0. The solution P(0)

of (97) is then used to evaluate the v
(0)
1 via (87), v(0)

2 via (88) and the yield surface
σ (0) via (93).

Remark 7 From (92) we observe that σ
(0)
x = −2hx, meaning that the amplitude

of the rigid core becomes larger as the channel narrows, whereas it shrinks as the
channel becomes wider. This is in accordance with what found in [21].

5.6 Flow Condition

Let us investigate the conditions on ΔP that prevent the system from coming to a
halt. Let h (x) ≡ hin. From (93) we get:

• ΔP >
Bn
hin

, �⇒ σ (0) < hin (the fluid is flowing)

• ΔP <
Bn
hin

, �⇒ σ (0) > hin (no flow)
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When h(x) is not uniform we have to ensure that σ (0) < h (x), in order to prevent
the flow from stopping. Recalling (95) we must impose

�(0) ≥ 3hmin − 2hin − Bn
ΔP

− 2

ΔP

∫ 1

0
P(0)hxdx, (98)

where hmin = minx∈[0,1] h. To estimate the integral in the r.h.s. we remark that
P(0) fulfils Eq. (97), that is an equation of elliptic type. Maximum principle entails
0 ≤ P(0) ≤ ΔP. So, writing

∫ 1

0
P(0)hxdx =

∫

{hx≤0}
P(0)hxdx

︸ ︷︷ ︸
≤0

+
∫

{hx≥0}
P(0)hxdx

︸ ︷︷ ︸
≥0

,

we have

ΔPmin
{
h x; 0

} ≤ ΔPmax
{
hx; 0

}
,

where

h x = min
x∈[0,1] hx(x), and hx = min

x∈[0,1] hx(x).

In conclusion

2min
{
h x; 0

} ≤ 2

ΔP

∫ 1

0
P(0)hxdx ≤ 2max

{
hx; 0

}
. (99)

Therefore, recalling (98), we have

�(0) ≥ 3hmin − 2hin − Bn
ΔP

− 2

ΔP

∫ 1

0
P(0)hxdx

≥ 3hmin − 2max
{
hx; 0

}− 2hin − Bn
ΔP

, (100)

If we assume

(
3hmin − 2max

{
hx; 0

}− 2hin
)

> 0

and require that

3hmin − 2max
{
hx; 0

}− 2hin − Bi
ΔP

> 0,
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which implies

ΔP >
Bn

3hmin − 2max
{
hx; 0

}− 2hin
, (101)

we are sure that the flow never comes to a stop.

Example 2 If we consider a linear wall profile

h = hin + (hout − hin)︸ ︷︷ ︸
Δh

x,

where hout > 0, there are two possibilities:

• Δh > 0, ⇒ hmin = hin, and max
{
hx; 0

} = Δh. Condition (101) yields

Bn
ΔP

< hin − 2Δh
︸ ︷︷ ︸
2hout−3hin

, ⇔ ΔP >
Bn

2hout − 3hin
,

where, of course, we assume 2hout − 3hin > 0
• Δh < 0, ⇒ hmin = hout, and max

{
hx; 0

} = 0. Inequality (101) entails

Bn
ΔP

< 2Δh + hout︸ ︷︷ ︸
3hout−2hin

, ⇔ ΔP >
Bn

3hout − 2hin
,

where now we require 3hout − 2hin > 0.

5.7 Inner Core Appearance or Disappearance

A non uniform channel profile may cause the appearance/disappearance of the rigid
plug. These phenomena (highlighted also in [6] and [21]) are not possible when the
channel profile is uniform, namely when h (x) ≡ hin. Recalling (93), we set

σ (0) = max

{

0; 2(hin − h) + Bn
ΔP

+ 2

ΔP

∫ 1

0
P(0)hxdx

}

,

in order to avoid physical inconsistencies. Hence, σ (0) vanishes when

h ≥ hin + Bn
2ΔP

+ 1

ΔP

∫ 1

0
P(0)hxdx. (102)
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The r.h.s. of (102) is a critical value, that we denote as hcrt, such that, whenever
h ≥ hcrt the core disappears.

Example 3 Let us consider the channel profile

h(x) =
arctan

[

5

(
1

2
− x

)]

4 arctan

(
5

2

) + 3

4
. (103)

depicted with the dashed line in Fig. 20. We now estimate hcrt exploiting (102),
when ΔP = 10, and Bi = 5,

h (x) ≥ 1 + Bn
2ΔP

− 1

ΔP

∫ 1

0
P(0) |hx| dx

≥ 1 + Bn
2ΔP

− ‖hx‖L2 ≥ 1 + Bn
2ΔP

− 0.58 ≈ 0.67.

The core-free region is thus obtained solving h ≥ hcrt, which we approximate with
h ≥ 0.67, whose solution is the interval 1 ≤ x ≤ 0.58. Looking at Fig. 20 the
actual core-free region is 1 ≤ x ≤ 0.55, which substantially agrees with the above
estimate.

5.8 Solution for an Almost Flat Channel

When h (x) ≡ hin (i.e. uniform channel) equation (93) gives

σ (0) = Bn
ΔP

. (104)

Equation (97) yields

P(0) = (1 − x) ΔP.

The velocity field becomes7

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v
(0)
1 = −ΔP

[
( y − σ (0))2

2
− (1 − σ (0))2

2

]

,

v
(0)
2 = 0,

(105)

7We set, for the sake of simplicity, hin = 1.
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and we also find

k(0)
1 = ΔP

2
(1 − σ (0))2.

Let us now consider a non-uniform channel profile h (x), assuming that amplitude
width variation is small. We thus set

h (x) = 〈h〉 + φ (x) , (106)

where 〈h〉 denotes the spatial average along the channel, i.e.

〈 h 〉 =
1∫

0

h (x) dx

and assume that max |φ (x)| is small, that is we consider an almost flat channel. We
look for P(0) in the form

P(0) = (1 − x) ΔP + Π, (107)

where Π |x=0 = Π |x=1 = 0, and where we expect that both max |Π |, max |Πx| are
small. Inserting (107) into (92) we obtain

σ (0) = Bn
ΔP

− 2φ (x) − 2

ΔP

∫ 1

0
Πxφ dx ≈ Bn

ΔP
− 2φ (x) . (108)

Concerning �(0) we have

�(0) (x, t) ≈ 〈h〉 − Bn
ΔP (t)

+ 3φ (x) . (109)

Exploiting then (97) we compute the pressure field solving

Πxx + 6φx

�(0) (−ΔP + Πx) = 0.

Neglecting φxΠx we end up with the following problem

⎧
⎪⎪⎨

⎪⎪⎩

Πxx − 2ΔP

[
φx

φ + A

]

= 0, where A = < h >

3
− Bn

3ΔP
,

Π |x=0 = Π |x=1 = 0,
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so that

Πx = (const) + 2ΔP ln

[

1 + φ (x)

A

]

≈ (const) + 2ΔP
φ (x)

A
.

In conclusion

Π = 2ΔP (t)

A

∫ x

0
φ(x

′
)dx

′
,

which yields

P(0) = ΔP (1 − x) + 6ΔP2

〈h〉ΔP− Bn

∫ x

0
φ
(
x′) dx′. (110)

Example 4 Let us consider h (x) = 1 + mx, with m small. We write

h (x) = 1 + m

2︸ ︷︷ ︸
〈h〉

+ m

(

x − 1

2

)

︸ ︷︷ ︸
φ(x)

.

In this case

σ (0) = Bn
ΔP

− 2m

(

x − 1

2

)

,

and

P(0) = ΔP (1 − x) + 3mΔP2

〈h〉ΔP − Bn
x (x − 1) .

We see that σ
(0)
x = −2m, i.e. the core amplitude widens for m < 0 and shrinks for

m > 0.

Example 5 Let us consider a wavy channel

h(x) = 1 − θ cos

[

2πδ

(

x − 1

2

)]

, (111)

where δ > 0, and θ � 1. We write

h (x) =
[

1 − θ

πδ
sin (πδ)

]

︸ ︷︷ ︸
〈h〉

+ θ

[
sin (πδ)

πδ
− cos

(

2πδ

(

x − 1

2

))]

︸ ︷︷ ︸
φ(x)

,
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Fig. 16 The channel profile h (x) is (111) and of σ (0) given by (92), (112), with Bn = 5, ΔP =
10.5, δ = 0.2, θ = 0.1

with max |φ| = O (θ) � 1. Exploiting (108) we obtain

σ (0) ≈ Bn
ΔP

− 2θ

[
sin (πδ)

πδ
− cos

(

2πδ

(

x − 1

2

))]

, (112)

The behavior for θ = 0.1, and δ = 1/5 is shown in Figs. 16 and 17. In particular in
Fig. 17 a close-up showing the difference between the approximated solution (112)
and the computed one (see next section) is displayed.

5.9 Numerical Simulations

Setting F = P(0)
x , the elliptic problem (97) can be transformed in the following

integral equation

F = −ΔP
exp

{

−
∫ x

0

6hx′

�F
dx′
}

∫ 1

0
exp

{

−
∫ x

0

6hx′

�F
dx′
}

dx

, (113)
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Fig. 17 Close up for the difference between σ (0) given by (112) and σ (0) given by (92)

where, recalling (95),

�F = min

⎧
⎪⎪⎨

⎪⎪⎩

h (x) , 3h (x) +
2
∫ 1

0
Fh dx − Bn

ΔP

⎫
⎪⎪⎬

⎪⎪⎭

.

Now, if the conditions ensuring that �(0) is strictly positive (Sect. 5.6) are fulfilled,
we can solve (113) through the following iterative procedure:

Step j = 0. Set F0 = −ΔP, and �F, 0 = min

{

h (x) , 3h (x) − Bn
ΔP

−2
∫ 1

0
h dx

}

.

Step j = 1. F1 = −ΔP

exp

{

−
∫ x

0

6hx′

�F, 0
dx′
}

∫ 1

0
exp

{

−
∫ x

0

6hx′

�F, 0
dx′
}

dx

.

. . . . . .

Step j > 1. Fj = −ΔP

exp

{

−
∫ x

0

6hx′

�F, j−1
dx′
}

∫ 1

0
exp

{

−
∫ x

0

6hx′

�F, j−1
dx′
}

dx

, with
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Fig. 18 Plot of x-component of the velocity, h given by (111), δ = 0.1, θ = 0.02, and Bn = 5,
ΔP = 10.5

�F, j−1 = min

⎧
⎪⎪⎨

⎪⎪⎩

h (x) , 3h (x) +
2
∫ 1

0
Fj−1 h dx − Bi

ΔP

⎫
⎪⎪⎬

⎪⎪⎭

.

Iterating the procedure until the desired tolerance is reached, we determine the
solution F = P(0)

x . Integration then provides the pressure field P(0). We can show
that, under suitable hypotheses, the solution of (113) exists and is unique.

In Figs. 16, 17 we have plotted h(x) and σ (0)(x) for the wavy channel profile
given by (111). In Figs. 18, 19 we have reported the contour plots of v

(0)
1 , and v

(0)
2 ,

when h(x) is given by (111), with δ = 0.1, θ = 0.02, and Bn = 5.
The solid colored regions of Figs. 18 and 19 denote the core, with vanishing
transversal velocity and uniform longitudinal velocity. Notice also the symmetry
of the transversal velocity shown in Fig. 19. In Figs. 20, 21, 22 we have considered
the profile (103). The yield surface σ (0) and the velocities v

(0)
1 , v

(0)
2 are reported

respectively.
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Fig. 19 Plot of y-component of the velocity, h given by (111), δ = 0.1, θ = 0.02, and Bn = 5,
ΔP = 10.5
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Fig. 20 Plot of σ (0) and h, when h is given by (103). Bn = 5, ΔP = 10.5

5.10 Model with Pressure Dependent Viscosity

In this section we extend our model to the case of a pressure-dependent viscosity.
Going back to dimensional variables equation (65) rewrites in this way

D = IID
2μ (P) IID + τo

S.
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Fig. 21 Plot of x-component of the velocity, h given by (103). Bn = 5, ΔP = 10.5
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Fig. 22 Plot of y-component of the velocity, h given by (103). Bn = 5, ΔP = 10.5
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The viscosity is expanded considering

μ(P) = μ
(
P(0) + εP(1) + ε2P(2) + . . . . . . .

)
,

so that, around ε = 0, we get μ = μ(0) + εμ(1) + ε2μ(2) + . . ., where

μ(0) = μ(P(0)), μ(1) = dμ

dP
(P(0)) P(1). (114)

Following the same procedure described in Sect. 5.5, the non-dimensional leading
order problem becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
(0)
1

∂x
+ ∂v

(0)
2

∂y
= 0,

−∂P(0)

∂x
+ ∂

∂y

(

μ(0)
(
P(0)

) ∂v
(0)
1

∂y

)

= 0,

−∂P(0)

∂y
= 0,

whose boundary conditions are still given by (86). We get

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v
(0)
1 = P(0)

x

μ(0)
(
P(0)

)
( y − h(0))( y − 2σ (0) + h(0))

6
,

v
(0)
2 = ∂

∂x

[
P(0)
x

μ(0)
(
P(0)

)
( y − h(0))2( y − 3σ (0) + 2h(0))

6

]

,

and

k(0)
1 = − P(0)

x

μ(P(0))

(h(0) − σ (0))2

2
.

The interface σ (0) is still given by (92), while Eq. (97) modifies in this way

(
P(0)
x

μ(P(0))

)

x

+ 6
hx
�(0)

P(0)
x

μ(P(0))
= 0, (115)

where �(0) is given by (95).
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Example 6 In case μ (P) = eγP, and h ≡ 1, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
(0)
1 = [e−γPin − e−γPout]

γ

[
( y − σ (0))2

2
− (1 − σ (0))2

2

]

,

v
(0)
2 = 0,

σ (0) = Bn
ΔP

,

P = Pin − 1

γ
ln
[
1 + (

eγΔP − 1
)
x
]
.

(116)

We now consider h(0) = 1 + mf (x), with m small perturbation. We look for a
solution of (115) of the form

P(0) = Pin − 1

γ
ln
[
1 +

(
eγΔP − 1

)
x
]

+ mΠ, (117)

with Π = 0 on x = 0, 1. After inserting (117) into (115) and neglecting the m2, we
find

Π = − 6

γ

(
eγΔP − 1

)

1 + (
eγΔP − 1

)
x

[

x
∫ 1

0
f (ξ)dξ −

∫ x

0
f (ξ)dξ

]

,

and

σ (0) = Bn
ΔP

− m

[

2f (x) − 2

γΔP

∫ 1

0

f (ξ)
(
eγΔP − 1

)

1 + (
eγΔP − 1

)
ξ
dξ

]

.

6 Planar Squeeze

We consider the flow of an incompressible Bingham fluid placed between parallel
plates of length in a channel of length L. The gap between the plates occupied by
the fluid has amplitude 2h(t), as depicted in Fig. 23 (see also [19]). Because of
symmetry, we confine our analysis to the upper part of the layer, namely [0, h (t)].
The velocity field is v = u(x, y, t)i + v(x, y, t)j, where x, y are the longitudinal and
transversal coordinate respectively.

We assume that the region where IIS ≥ τo (yielded) and the region where IIS ≤
τo (unyielded) are separated by a sharp interface y = ±Y(x, t) representing the yield
surface. We also define the inner plug

Ωp = {(x, y) : x ∈ [0,L], y ∈ [−Y,Y]} .
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Fig. 23 A schematic
representation of the
squeezing channel

We may have Y(x, t) = 0 for some x ∈ (0,L) and for some t, so that Ωp becomes a
segment of zero measure. The rigid plug Ωp moves uniformly with velocity

⎧
⎨

⎩

u = up(t),

v = 0, (by symmetry).
(118)

Neglecting inertia and body forces, the governing equations in the viscous phase are

trD = 0,

and

− ∂P

∂x
+ ∂S11

∂x
+ ∂S12

∂y
= 0, (119)

− ∂P

∂y
+ ∂S12

∂x
+ ∂S22

∂y
= 0, (120)

The integral momentum balance for the domain Ωp is given by

∫

Ωp

∂

∂ t
(ρv) dV +

∫

∂Ωp

ρv (v · n) dS =
∫

∂Ωp

(Tn)dS, (121)
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where ρ is the material density. Neglecting the inertial terms, we get following
equation8

∫ L

0
[−YxT11 + T12]Y+ dx + PY0Y0 − PY1Y1 = 0. (122)

where PYo , PY1 represent the normal stresses on x = 0 and x = L. As usual we
impose

v|y=h · t = 0,
(
v|y=h − w

) · n = 0, (123)

where w · n is the wall normal velocity and t is the wall tangent vector. On Y we
write

�v� y=Y = 0, (124)

�Tn · t� y=Y = 0, �Tn · n� y=Y = 0, (125)

while at x = 0

⎧
⎨

⎩

u = 0,

S12 = 0,
(126)

6.1 Squeezing Between Parallel Plates

We assume h = h (t) and we set

H = max
t≥0

h(t).

We define the aspect ratio ε = H/L, assuming ε � 1. Then we rescale the problem
using the following non dimensional variables

x̃ = x

L
, ỹ = y

εL
, Ỹ = Y

εL
, h̃ = h

H
, t̃ = t

T
,

where T is the characteristic time scale, i.e. the “squeezing time”. We define the
characteristic transversal velocity as V = H/T, and the longitudinal velocity as
U = V/ε, so that u = u/U, v = v/V = v∗/(εU). Pressure is again rescaled

8The expression [−YxT11 + T12]Y+ represents the force exerted by the viscous region on the lateral
side of the inner rigid core.
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exploiting the Poiseuille formula Pc = (μLU)/H2 and we set P = P/Pc, Pout =
Pout/Pc, where Pout is the (given) pressure field applied at the channel outlet. We
suppose that Pout is constant in time and space. Next we introduce

S = S
(μU/H)

, D = D
(U/H)

, IID = IID
(U/H)

, IIS = IIS
(μU/H)

,

so that

S =
(

2 + Bn
IID

)

D,

where

Bn = τoH

μU

is again the Bingham number. The mechanical incompressibility constraint and
momentum balance become (neglect the tildas)

∂u

∂x
+ ∂v

∂y
= 0, (127)

− ∂P

∂x
+ ε

∂S11
∂x

+ ∂S12
∂y

= 0, (128)

− ∂P

∂y
+ ε2

∂S12
∂x

+ ε
∂S22
∂y

= 0. (129)

Equation (122) can be rewritten as

∫ 1

0
[PYx − εYxS11 + S12]Y+ dx + PY0Y0 − PoutY1 = 0, (130)

where Pout = PY1 . Boundary conditions (123) become

u|h = 0, v|h = ·
h, (131)

since the squeezing velocity is

·
h = ∂h

∂ t
< 0



Viscoplastic Fluids: Mathematical Modeling and Applications 283

Jump conditions on Y become

�u�y=Y = �v�y=Y = 0, (132)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�P�

[

1 + ε2
(

∂Y

∂x

)2
]

y=Y

+
[

ε3S11

(
∂Y

∂x

)2

− 2ε2S12

(
∂Y

∂x

)

+ εS22

]

y=Y

= 0,

�S12�y=Y + ε

(
∂Y

∂x

)[

S22 − S11 − εS12
∂Y

∂x

]

y=Y
= 0,

(133)

while conditions (126) become

⎧
⎨

⎩

u = 0,

S12 = 0.
(134)

6.2 Problem at the Leading Order

As for the channel, we look for a solution expressed as power series of ε, assuming
Bi =O (1). We get

S(0)
12 = u(0)

y − Bn

since we are looking for a solution with u(0)
y < 0 in the upper part of the channel.

Equations (127)–(129) reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(0)

∂x
+ ∂v(0)

∂y
= 0,

−∂P(0)

∂x
+ ∂

∂y

(
∂u(0)

∂y

)

= 0,

−∂P(0)

∂y
= 0,

(135)

with boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u(0)

∂y

∣
∣
∣
∣
∣
y=Y

= 0

u(0)(x, h, t) = 0

(136)
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For the sake of simplicity we suppress the superscript (0). Since P = P(x, t) we get

u = −Px
(h − y)( y − 2Y + h)

2
. (137)

Moreover exploiting mass conservation

·
h − v ( y, t) =

∫ h

y

∂

∂x

[

Px
(h − y′)( y′ − 2Y + h)

2

]

dy′ .

Evaluating u, v on Y and recalling conditions (132), we obtain

up(t) = −Px
( Y − h)2

2
, (138)

v|y=Y = ·
h + ∂

∂x

[

Px
( Y − h)3

3

]

− Yx
2
Px( Y − h)2 = 0. (139)

The plug equation (130) becomes

−
∫ 1

0
PxYdx = Bn. (140)

Recalling (134) we have uy = 0 in x = 0 implying Px|x=0 = 0. The solid region
must be detached from x = 0, since otherwise up ≡ 0, i.e. no rigid domain
motion. Accordingly there must be some s (t) ∈ [0, 1], not a priori known, such
that Y (x, t) ≡ 0, for 0 ≤ x ≤ s (t). Hence the spatial domain [0, 1] can be split in
two sub-domains (see Fig. 23):

• 0 ≤ x ≤ s (t), where Y ≡ 0;
• s (t) < x ≤ 1, where Y does not vanish.

Assuming that the longitudinal velocity is continuous across s (t), we have

up(t) = −Px (s, t)

2
(Y (s, t)
︸ ︷︷ ︸

0

− h)2 = −Px (s, t)

2
h2, (141)

where Px (s, t) is unknown at this stage. From (139) we get

− ·
h + 2

3

∂

∂x

[
− Px

2
( Y − h)2

︸ ︷︷ ︸
up(t)

( Y − h)
]

− Yx

[

−Px

2
( Y − h)2

]

︸ ︷︷ ︸
up(t)

= 0,

that is

·
h + 1

3
up(t)Yx = 0, (142)
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In order to avoid physical inconsistencies, we set

Y (x, t) = max

{

0,−3ḣs(t)

up(t)

(
x

s (t)
− 1

)}

. (143)

The local instantaneous discharge is given by

Q (x, t) =
∫ Y

0
updy +

∫ h

Y
udy = upY − Px (x, t)

3
(h − Y)3 . (144)

Mass conservation then requires Q (x, t) = − ·
hx, so that Q (s, t) = − ·

hs so that

up(t) = −3

2

·
h

h
s, (145)

which is positive since
·
h < 0. As a consequence

Y (x, t) = max

{

0, 2h (t)

(
x

s (t)
− 1

)}

. (146)

Therefore the fluid squeezes out of the channel only if Y (1, t) < h (t), namely when
s (t) > 2/3. In x ∈ [0, s] we have Y = 0 and the pressure fulfills Eq. (139) with the
boundary condition Px (0, t) = 0

⎧
⎪⎪⎨

⎪⎪⎩

Pxx = 3

h3
·
h, 0 < x < s, t ≥ 0

Px (0, t) = 0 t ≥ 0.

Therefore

P (x, t) = 3
·
h

2h3
x2 + A (t) ,

with A (t) still unknown at this stage. Recalling that Y is linear in x we integrate
(138) between x and 1 getting

P (x, t) = Pout + 3

2

·
h
( s

h

)3
[

1

2 − 3s
− 1

2x − 3s

]

, s (t) < x ≤ 1. (147)

Then imposing the continuity of P across x = s we get

P (x, t) = 3
·
h

2h3

(
x2 − s2

)
+ Pout − 3

·
h
s2

h3

(
s − 1

2 − 3s

)

, 0 ≤ x ≤ s (t) . (148)
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Finally rewriting (140) as

1∫

s

PxYdx = −Bn,

we get

f (s) = s2
[
2 (1 − s)

3s − 2
+ ln

(
3s − 2

s

)]

= −2

3

Bnh2
·
h

. (149)

Hence, solving (149) we find s (t) and we are able to determine the pressure field
in the whole channel and the rigid domain as well. We observe that s(t) is not
a material point so that, in principle, s(t) can also be still (i.e. ṡ(t) = 0), while
the rigid plug is moving with velocity up(t). Figure 24 shows the behavior of the
function f (s) in the l.h.s. of (149) with s ∈ (2/3, 1). We easily realize that f (s) is
monotonically decreasing for 2/3 < s ≤ 1 and that its range is [0,+∞). So, given
any −(2Bnh2)/(3ḣ) > 0, there exists one and only one s fulfilling (149). The force
acting on the unit surface of upper plate is

P (t) =
∫ 1

0
P (x, t) dx = Pout +

·
hs3

2h3
5 − 3s

2 − 3s
− 3

·
hs3

4h3
ln

(
3s − 2

s

)

.

Exploiting (149) we get

P (t) − Pout = Bn
2

s

h
− ḣ

( s

h

)3 1

(3s − 2)
. (150)

Fig. 24 Behavior of f (s) for
2/3 < s ≤ 1
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Remark 8 When Bn → 0, the solution of (149) is simply s = 1, i.e. the solid region
does not exists at all (as physically expected for a Newtonian fluid). Furthermore
formula (150) reduces to

P (t) − Pout = − ḣ

h3
,

corresponding to the Newtonian fluid planar squeezing, [17]. These results confirms
the physical consistency of our model.

6.3 Numerical Simulation

We perform here some numerical simulations to investigate the behavior of our
asymptotic solution at the leading order. To illustrate the dependence of the solution
on the Bingham number we consider the cases: Bn = 1 and Bn = 25. We plot the
yield surface Y, the pressure field P and the axial velocity u, assuming that the plates
have constant velocity so that

h(t) = 1 − t, ḣ(t) = −1. (151)

We consider t ∈ [0, 0.6], which guarantees that the plates do not come in touch in
the select time interval. We set hf = h(0.6), representing the half gap width at time
tf = 0.6 and sf = s(0.6) representing the onset of the rigid plug at time t = 0.6.
The yield surface Y and pressure field P are plotted for different times t belonging
to the selected time interval and for x ∈ [0, 1]. The axial velocity u is plotted at time
t = 0.6 (i.e. when h = hf ) for a finite number of x ∈ [sf , 1] and for y ranging in
[0, hf ].

In Figs. 25, 26 we have plotted the yield surface Y(x, t) and the upper plate y =
h(t) at different times in the time interval [0, tf ]. We have plotted the upper plate
only for x ∈ [s(t), 1] so that the evolution of the onset of the plug x = s(t) is visible.
We notice that the slope of the unyielded plug becomes smaller as s(t) increases,
as expected. In Figs. 27, 28 we have plotted the pressure field at different times
in the time interval [0, tf ] in the whole domain x ∈ [0, 1]. Also for this case the
position x = s(t) has been put in evidence. We notice that the pressure within the
gap increases as Bn increases.

In Figs. 29, 30 we have plot the axial velocity profile at time t = 0.6 for some
fixed x ∈ [sf , 1]. In particular velocity is plotted for x = 0.69, x = 0.73, x = 0.77,
x = 0.81, x = 0.85. As one can easily observe the velocity of the plug is the same
for each (x, y) belonging to the plug.

Finally in Figs. 31, 32 we have plotted the squeeze force given in (150) for
different values of the Bingham number, Bn. We have plotted (150) for the linear
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Fig. 25 Y for Bn = 1 and h given by (151)

squeezing (151) and for the exponential squeezing

h(t) = exp(−t), ḣ(t) = − exp(−t). (152)

We observe that the linear squeezing requires a grater squeezing force than the
exponential squeezing. This is physically consistent, since in the linear case the
plates move faster than in the exponential case.

6.4 Squeezing Between Surfaces

In this section we generalize the problem to the case in which the parallel plates
are surfaces y = ±h(x, t) that are approaching the channel centerline, as shown in
Fig. 33. In this case

H = max
x∈[0,L]
t>0

h(x, t),
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Fig. 26 Y for Bn = 25 and h given by (151)

and we again assume H/L = ε � 1. The theory develops exactly as in Sect. 6.1,
so that (140) still holds. We split [0, 1] into [0, s] and [s, 1], so that continuity of u
across s (t) yields

up(t) = −Px (s, t)

2
h(s, t)2.

Recalling (139) we find

ht + 1

3
up(t)Yx + 2

3
up(t)hx = 0,

which generalizes (142). We thus get the following Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

Yx = 3

up

[

−ht − 2

3
uphx

]

,

Y(s, t) = 0,
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whose solution is

Y(x, t) = 3

up

[

−
∫ x

s
htdξ − 2

3
up(h(x, t) − h(s, t))

]

, (153)

where s is still unknown. Following (143) we set

Y(x, t) = max

{

0, − 3

up

∫ x

s
htdξ − 2(h(x, t) − h(s, t))

}

. (154)

The local discharge is

Q (x, t) =
∫ Y

0
updy

︸ ︷︷ ︸
upY

+
∫ h

Y

[

−Px
(h − y)( y − 2Y + h)

2

]

dy
︸ ︷︷ ︸

−Px (x, t)

3
(h−Y)3

,
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Fig. 28 P for Bn = 25 and h given by (151)

while mass conservation ht + Qx = 0 implies

Q(x, t) = −
∫ x

0
htdξ,

since Q(0, t) = 0. We find

Q(s, t) = −
∫ s

0
htdξ = −Px(s, t)h2(s, t)

2︸ ︷︷ ︸
up

2h(s, t)

3
,

implying

up(t) = −3

2

1

h(s, t)

∫ s

0
htdξ, (155)
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which is the generalization of (145). In conclusion, substituting (155) into (154), we
find

Y(x, t) = max

{

0, − 2h(x, t) + 2h(s, t)

∫ x
0 htdξ
∫ s
0 htdξ

}

. (156)

In x ∈ [0, s] the pressure fulfils

⎧
⎪⎪⎨

⎪⎪⎩

−ht + ∂

∂x

[

Px
h3

3

]

= 0,
0 < x < s (t) ,

t ≥ 0,

Px (0, t) = 0, t ≥ 0,

(157)

so that

P(x, t) =
∫ x

0

[
3

h(x̃, t)3

∫ x̃

0
htdξ

]

dx̃ + A(t), (158)
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Fig. 30 u for Bn = 25 and h given by (151)

with A (t) to be determined. In x ∈ [s, 1] we have

Px(x, t) = − 2up(t)

(h − Y)2
,

so that

Px = 3

h(s, t) [h(x, t) − Y(x, t)]2

∫ s

0
htdξ, (159)

with Y given by (156). We observe that (157) and (159) yield Px|s− = Px|s+ . Let
us now integrate (159) between x and 1 with the boundary condition P (1, t) = Pout.
We find

Pout − P (x, t) = 3

h(s, t)

∫ s

0
htdξ

[∫ 1

x

d x̃

(h(x̃, t) − Y(x̃, t))2

]

(160)

Imposing P|s− = P|s+ , from (158), (160) we find A(t), so that the pressure can
be written in terms of s throughout the whole domain. Substituting (156) and (159)
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Fig. 31 Squeeze force for linear h(t), (151)

into (140) we get

∫ 1

s

[

−2h(x̃, t) + 2h(s, t)

∫ x̃
0 htdξ
∫ s
0 htdξ

]

+
[

h(x̃, t) −
[

−2h(x̃, t) + 2h(s, t)

∫ x̃
0 htdξ
∫ s
0 htdξ

]

+

]2 dx̃ = − Bn
[

3

h(s, t)

∫ s
0 htdξ

] ,

(161)

which provides an integral equation for the unknown s(t). Equation (161) can be
solved once we know the explicit form of the function h(x, t).

When h(x, t) = f (x)g(t), with f · g > 0, then (161) can be rewritten as

(∫ s

0
fdξ

)2 ∫ 1

s

[
−f (x̃)

(∫ s
0 fdξ

) + f (s)
(∫ x̃

0 fdξ
)]

+ dx̃
[
f (x̃)

2

(∫ s
0 fdξ

)−
[
−f (x̃)

(∫ s
0 fdξ

) + f (s)
(∫ x̃

0 fdξ
)]

+

]2

= −2Bnf (s)g(t)2

3ġ(t)
. (162)
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Fig. 32 Squeeze force for exponential h(t), (152)

Example 7 Let us consider

h(x, t) = f (x)g (t) , with f (x) = e−βx, g(t) = e−αt,

where α, and β both positive. Exploiting (162) we find

4(1 − e−βs)2

β

∫ 1

s

(e−βs − e−βx)
[
e−βx(3 − e−βs) − 2e−βs

]2 dx =
(
2Bn
3α

)

e−βse−αt. (163)

or equivalently

(1 − e−βs)2

β2e−2βs

[

ln
|2 + e−β − 3eβ(s−1)|

|e−β − eβ(s−1)| + 2(eβ(s−1) − 1)

2 + e−β − 3eβ(s−1)

]

︸ ︷︷ ︸
G (s)

=
(
2Bn
3α

)

e−αt,

(164)
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Fig. 33 A schematic
representation of the
squeezing channel

which is an implicit equation for s(t). Notice that taking the limit β → 0 of the
l.h.s. of (164) we recover the l.h.s. of (149), as expected. We immediately realize
that (164) admits a unique solution s(t) ∈ (ŝ(β), 1], with

ŝ(β) = 1 + 1

β
ln

[
e−β + 2

3

]

,

for each value of (2Bn/3α) e−αt. In particular it is easy to show that

2

3
< ŝ(β) < 1, ∀β > 0,

so that s ∈ (2/3, 1) for all t > 0. Recalling (156) we get

Y(x, t) = 2e−αt
[
e−βs − e−βx

(1 − e−βs)

]

. (165)

Clearly Y > 0 for every x > s, and Y = 0 at x = s. Actually we can show that Y
and h never meets. Indeed, suppose that Y(x, t) < h(x, t), then

2

[
e−βs − e−βx

(1 − e−βs)

]

< e−βx,

or analogously

2eβx < 3eβs − 1. (166)
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Fig. 34 The advance of the front x = s(t) for Bn ranging between 0.1 and 100

Hence Y < h if and only if (166) holds true for each x ≥ s. Now recall that s ≥
ŝ(β) > 2/3, for every finite time t > 0 and β > 0. Therefore

2eβx ≤ max
x∈[s,1]

{2eβx} = 2eβ = 3eβ ŝ − 1 < 3eβs − 1,

which proves that (166) holds true. As a consequence we get

0 ≤ Y(x, t) < h(x, t), ∀ x ≥ s, t > 0.

We observe that Y → h, which in turn tends to 0, only in the limit t → ∞. In Fig. 34
we have plot the advancing front x = s(t) for different values of Bn ranging from
Bn = 0.1 to Bn = 100. The parameters used are α = 2 and β = 0.4.
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