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Abstract The flow of complex fluids through porous media is common to many
engineering applications. The upscaling is a powerful tool for modeling non-
homogeneous media and we consider homogenization of quasi-Newtonian and
electrokinetic flows through porous media. For the quasi-Newtonian polymeric
fluids, the incompressible Navier-Stokes equations with the invariants dependent
viscosity is supposed to hold the pore scale level. The two-scale asymptotic
expansions and the two-scale convergence of the monotone operators are applied
to derive the reservoir level filtration law, given as a monotone relation between the
filtration velocity and the pressure gradient. The second problem, we consider, is
the quasi-static transport of an electrolyte through an electrically charged medium.
The physical chemistry modeling is presented and used to get a dimensionless form
of the problem. Next the equilibrium solutions are constructed through solving the
Poisson-Boltzmann equation. For the solutions being close to the equilibrium, the
two-scale convergence is applied to obtain the Onsager relations linking gradients
of the pressure and of the chemical potentials to the filtration velocity and the ionic
fluxes.

1 Introduction to the Homogenization

Using the equations of the continuum physics at pore scale for porous media is a
promising approach to derive the overall equations, but meets many difficulties. The
presence of the fluid and the solid parts in the soil obliges us to consider it as a
multiphase medium. The phases are geometrically present in a heterogeneous way,
with small pores and cavities.
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Homogenization applied to heterogeneous media (porous media, composites,
tissues, etc.) is a mathematical method that allows to “upscale” the fundamental
equations from continuum physics, being valid at the microscopic level. Upscaling
or homogenization signifies that the particular phases lose their independent
presence in the model and will get “smeared”. Rather than tracking behavior
of every phase, we search to approximate the model with equations being valid
everywhere. Phases get present in every point through new averaged unknowns
like saturations and concentrations. This way it is not necessary to solve nonlinear
PDEs of the fluid mechanics/elasticity/heat conduction in the complicated geometry
of a heterogeneous medium. Note that, in addition, the pore geometry is usually
unknown and available only through some statistical averages.

The homogenization theory of heterogeneous media studies the effects of the
micro-structure (i.e. of the pore structure) upon solutions of PDEs of the continuum
mechanics. Even in the simplest case of a viscous single phase flow through a
porous medium, we are given a PDE with two natural length scales: a macroscopic
scale (the scale of the piece of reservoir/soil) of size L0 and a microscopic scale
(the pore scale or the scale of perforations) of size � << L0. This disparity
in length scales is what provides us with our expansion parameter ε = �/L0,
measuring the scale of oscillations. For fixed, but small, characteristic pore length
� = εL0 > 0 the solutions uε of the flow equations will in general be complicated,
having different behaviors on the two length scales.

A closed-form solution is not achievable and a numerical solution would be
nearly impossible to calculate. In the practical simulations of the flows through
porous media, we use PDEs at the macroscale. Information about the pore structure
is only kept through some averaged quantities as porosity and permeability.

Therefore, one of the fundamental questions in the modeling of flows through
porous media is how to get the “averaged” or “upscaled” equations. Next we wish
to calculate the effective coefficients describing the influence of the microstructure.
Finally, it is of interest to know whether our derived model is correct, in the sense
that it should approximate the original problem involving the micro-structure.

In the homogenization theory, the upscaling corresponds to the study of the
limiting behavior uε → u as ε → 0. The idea is that in this limit the micro-structure
(generating the high-frequency oscillations) will “average out”, and there will be a
simple “averaged” or “homogenized” PDE, which will represent a filtration law.

As even the simple example of Darcy’s law confirms, the homogenized PDE can
differ much from the original one. In overcoming this fundamental difficulty it is
useful to use formal multiscale expansions in ε, containing behavior on different
length scales.

The idea is to suppose uε has the following expansion:

uε = εβ

{
u0(x,

x

ε
) + εu1(x,

x

ε
) + ε2u2(x,

x

ε
) + . . .

}
(1)
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Two-scale expansion (1) is plugged into the PDE and we search for a scale of
equations determining the functions ui, i = 1, . . . . Nevertheless, before plugging
expansion (1) into the PDE, we should somehow determine β.

In order to answer all those questions, we establish the following strategy, which
we are going to apply in the sections which follow:

(A) A description of the geometry of the heterogeneous medium is given. It can be
periodic, statistically homogeneous etc.

(B) A continuum physics model valid at the pore scale is written up. The model
can come either from the well-established textbook modeling or from the
molecular dynamics calculations allowing to go from the molecular structure
to the continuum mechanics at micro/nano-metric scale.

(C) The a priori estimates for solutions of the PDE, uniform with respect to ε, are
established. For the flow problems we usually need:

(C1) A priori estimates for the velocity.
(C2) A priori estimates for the pressure.

(D) Having obtained a priori estimates, a formal multiscale expansion is set up
in the form (1). We shall see that for the linear and monotone problems it
corresponds to passing to the homogenization limit in the sense of the two-
scale convergence.

(E) The upscaled problem is studied. We prove uniqueness and regularity and
undertake separation of the fast and slow scales. A numerical method for
calculating the effective coefficients is proposed.

This short chapter will try to initiate the reader to the applications of the two-
scale convergence technique in the homogenization of complex flow through porous
media. We present three examples of complex flows through a porous medium: the
first is homogenization of a quasi-Newtonian flow, the second is homogenization
of a Bingham flow and the third is a derivation of the Onsager relations for the
electrokinetic flows.

In connection with the homogenization in porous media, we recommend to the
reader the book edited by U. Hornung [38]. It contains number of contributed
chapters, and we mention the chapters on the two-scale convergence and on the
derivation of Darcy’s law by homogenization by G. Allaire, which we are going
to quote frequently in this text. Also there is a chapter on the filtration of non-
Newtonian fluids (see [54]).

As general references on homogenization we recommend the classic text by E.
Sanchez-Palencia [71] and the recent engineering textbook by Mei and Vernescu
[53]. More recent mathematical references are the books by Jikov, Kozlov and
Oleinik [39], Cioranescu and Donato [28] and Pavliotis [66].

Classical references on two-scale convergence are papers by G. Allaire [5] and
by G. Nguetseng [62].
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2 Models for Quasi-Newtonian Fluids and a Derivation
of the Filtration Laws by a Two-Scale Expansion

In this section we first present models of quasi-Newtonian fluids. Then we discuss
their well-posedness and particularities of the geometry. After obtaining a priori
estimates, we propose two-scale expansions. They allow achieving our goal of
deriving formally equations describing filtration of a quasi-Newtonian fluid.

2.1 Continuum Physics Models for Quasi-Newtonian Fluids

We first recall the fluid mechanics equations at the pore level.
The incompressible quasi-Newtonian fluids are characterized by the viscosity

depending on the principal invariants of the symmetric stretching tensor D(v). In
our notation, v is the velocity, p the pressure, ∇v the gradient velocity tensor and
D(v) = (∇v + ∇vt)/2 will denote the rate-of-strain or the symmetric stretching)
tensor. The principal invariants of D(v) are

I1(D) = tr D = div v, I2(D) = 1

2

(
( div v)2 − tr D2) and I3(D) = det D.

σ is the stress tensor σ = −pI + 2ηrD(v). The viscosity ηr is constant for a

Newtonian fluid but dependent on the shear rate
.
γ=

√
|D(v)|2/2 = √

I2(D(v), i.e.

ηr = ηr(
.
γ ), for viscous non-Newtonian fluids. The deviatoric stress tensor τ , i.e. the

part of the total stress tensor that is zero at equilibrium, is then a nonlinear function
of the symmetric stretching tensor D(v),

τ = ηr(
.
γ )D(v).

Two most widely used laws in engineering practice are the power law and the
Carreau-Yasuda law. For more constitutive laws for the viscosity, we refer to [17]
and [18].

The first most popular empiricism is the “power law” or Ostwald-de Waele
model, where the expression for the shear rate dependent viscosity is

ηr(ξ) = λ0|ξ |r−2 = λ1|
.
γ |r−2 = λ1|

.
γ |n−1, ξ ∈ R

9, (2)

where n = r − 1 is the power-law exponent and λ1 is the consistency of the fluid.
For 1 < r < 2 the fluid is a shear thinning and for r > 2 a shear-thickening.

The simple power-law model (Eq. (2)) has a well-known singularity at zero shear
rate, which must be carefully accounted for in kinematic analyses. The Carreau-
Yasuda equation is an alternate generalized Newtonian model that enables the
description of the plateaus in viscosity that are expected when the shear rate is very
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small or very large. The empiricism for the viscosity ηr used in the Carreau-Yasuda
law is

ηr(ξ) = (η0 − η∞) (1 + λ|ξ |2)r/2−1 + η∞, ξ ∈ R
9, (3)

with η0 ≥ η∞ > 0, λ > 0, where η0 is the zero-shear-rate viscosity, η∞ is the
infinite-shear-rate viscosity, λ is a time constant being the inverse of a characteristic
shear rate at which shear thinning becomes important and r − 1 is a dimensionless
constant describing the slope in the “power law region” of log ηr versus log

.
γ .

The incompressible quasi-Newtonian Navier-Stokes system is given by

−∇ · {ηr(
.
γ )D(v)} + ρ(v∇)v + ∇p = ρf in Ωp, (4)

∇ · v = 0 in Ωp, (5)

v = 0 on ∂Ωp, (6)

where Ωp is the pore space of the porous medium.
The corresponding functional space for the velocity is

Vr(Ωp) = {z ∈ W1,r
0 (Ωp)

3 : ∇ · z = 0 in Ωp},

where 1 < r < +∞ and W1,r
0 (Ωp) = {z ∈ Lr(Ωp) | ∇z ∈ Lr(Ωp)

3}. Ωp is a
bounded open set with a smooth boundary and f is a smooth function.

In two and three dimensions the classical theory from Lions, Cattabriga and
Temam (see [25, 43] and [79]), and newly developed techniques from [24] give the
existence of at least one weak solution (v, p) ∈ Vr(Ωp)×Lr

′
0 (Ωp) for (2),(4)–(6) (i.e.

the power law) under assumption, r > 2d/(d+2) (i.e. r > 1 in the two dimensional
case and r > 6/5 in three dimension), with r′ = r/(r − 1). For system (3)–(6) (i.e.
for the case of Carreau-Yasuda law) we have existence of at least one weak solution
(v, p) ∈ V2(Ωp)×L2

0(Ωp) for 1 < r ≤ 2 and (v, p) ∈ Vr(Ωp)×Lr
′

0 (Ωp) for r > 2.
In order to make modeling more precise, we define the dimensionless geomet-

rical structure of the porous medium. We will divide Ωp, which is a subset of
Ω = (0,L)3, by the characteristic length L0 and obtain Ωε.

2.2 The Geometry of a Periodic Porous Medium and a Priori
Estimates

Now we consider a periodic porous medium Ω = (0,L/L0)
3 in R

3 with a periodic
arrangement of the pores. The formal description goes along the following lines:
First we define the geometrical structure inside the unit cell Y = (0, 1)3. Let Ys (the
solid part) be a closed subset of Ȳ and YF = Y\Ys (the fluid part). The liquid/solid
interface is S = ∂Ys \ ∂Y. See Fig. 1 for a typical unit cell.
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Fig. 1 Periodic cell with
connected solid and liquid
parts in three dimensions

Solid part Fluid part

We make the periodic repetition of Ys all over R3 and set Yk
s = Ys + k, k ∈ Z

3.
Obviously the set ES = ⋃

k∈Z3 Yk
s is a closed subset of R3 and EF = R

3\ES is an
open set in R

3. The following assumptions on YF and EF have been made:

(i) YF is an open connected set of strictly positive measure, with a C1,1 boundary
and Ys has strictly positive measure in Ȳ as well.

(ii) EF and the interior of ES are open sets with the boundary of class C1,1, which
are locally located on one side of their boundary. Moreover EF is connected and
the solid part, ES, is supposed connected in R

3 as well (in two dimensions this
hypothesis is not realistic).

Now we see that Ω = (0,L/L0)
3 is covered with a regular mesh of size ε, each

cell being a cube Yε
i = ε(Y + i), with 1 ≤ i ≤ N(ε) = |Ω |ε−3[1 + 0(1)]. We

define Yε
si = ε(Ys + i) and Yε

fi
= ε(YF + i). For sufficiently small ε > 0 we consider

Tε = {k ∈ Z
3|Yε

sk ⊂ Ω} and define

Ωε
s =

⋃
k∈Tε

Yε
sk , Γ ε = ∂Ωε

s , Ωε = Ω \ Ωε
s .

Obviously, ∂Ωε = ∂Ω ∪ Γ ε. The domains Ωε
s and Ωε represent, respectively,

the solid and fluid parts of a porous medium Ω .
For simplicity, we will suppose that L/(L0ε) is an integer.

Remark 1 A two-dimensional porous medium could be seen as a section of a bundle
of parallel fibers. Possible geometries are shown on Fig. 2.

The no-slip condition on the pore boundaries is at the origin of velocity
oscillations. They are precisely described by the following, pore-size dependent,
Poincaré’s inequality in a porous medium
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Fig. 2 Examples of two-dimensional porous media

Lemma 1 (See [71]) For each w ∈ W1,q
0 (Ωε)

3, the inequality

‖w‖Lq(Ωε)3 ≤ Cε‖D(w)‖Lq(Ωε)9, 1 < q < +∞, (7)

holds true.

The equivalence between the norms ‖D(w)‖Lq(Ωε)9 and ‖∇w‖Lq(Ωε)9 is due to
Korn’s inequality in porous media

Proposition 1 (See [64] and References Therein) For each w ∈ W1,q
0 (Ωε)

3, 1 <

q < +∞, we have the inequality

‖∇w‖Lq(Ωε)9 ≤ C‖D(w)‖Lq(Ωε)9 . (8)

Next we test Eq. (4) with the solution and obtain

||v||Lr + ε||D(v)||Lr ≤ Cεr/(r−1) (9)

in the case of the power law and

||v||Lr + ε||D(v)||Lr ≤ Cεβ, β = min{r/(r − 1), 2} (10)

in the case of the Carreau-Yosuda law.
Hence the characteristic velocity U is of order O(εβ) and the Reynolds number

Re=ρL0U/η0 is small. Therefore, it is enough to consider the quasi-Newtonian
Stokes equations.
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Consequently, in the case of power law (2) we consider the dimensionless system

−∇ · {|D(vε)|r−2D(vε)} + ∇pε = f in Ωε, (11)

∇ · vε = 0 in Ωε, (12)

vε = 0 on ∂Ωε. (13)

Problem (11)–(13) is equivalent to the minimization problem

min
ϕ∈Vr(Ωε)

J(ϕ) = min
ϕ∈Vr(Ωε)

{1

r

∫
Ωε

|D(ϕ)|r dx −
∫

Ωε

f · ϕ dx
}
. (14)

For 1 < r < +∞, J is strictly convex, proper, continuous and coercive, which
give the existence and the uniqueness of the minimizer vε ∈ Vr(Ωε) (see [33]). The
pressure field is recovered using the De Rham or Tartar’s constructions (see [79]).

2.3 The Filtration Laws via Two-Scale Asymptotic Expansions:
The Power-Law

The conclusion of the previous subsection is that we can take dimensionless
problem (11)–(13) as the starting point for the asymptotic analysis.

vε satisfies a priori estimate (9). Obtaining the a priori estimate for the pressure
field pε is more involved and we address the question in the next section. Motivated
by the classical Darcy law, we expect that there would be a term f − ∇xp in
the filtration law. Hence we expect to have the pressure pε uniformly bounded in
Lr

′
(Ωε), r′ = r/(r − 1).
After having obtained the a priori estimates, we can proceed with formal two-

scale asymptotic expansions. We will use the two-scale asymptotic expansion (1)
to perform the formal homogenization of the system (11)–(13). Introducing the fast
variable y = x/ε, we assume that the solution of (11)–(13) can be developed in the
following way

{
vε(x) = εr/(r−1)

{
v0(x, y) + εv1(x, y) + . . .

}
,

pε(x) = p0(x, y) + εp1(x, y) + . . . .

The above two-scale expansion can be considered as a special case of the general
expansions of this type from the monographs by Sanchez-Palencia [71] and
Hornung [38]. In particular, a derivation of Darcy’s law, for a Newtonian fluid, by
formal two-scale expansions goes back to the seminal article by Ene and Sanchez-
Palencia [34]. The differential operators transform as follows

∇· = 1

ε
∇y · +∇x·; D = 1

ε
Dy + Dx;

∇ = 1

ε
∇y + ∇x; |D(vε)|r−2 = ε(r−2)/(r−1)|Dy(v0) + O(ε)|r−2.
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Insertion of the two-scale asymptotic expansion into the incompressibility
condition (12) yields

1

ε
∇y · v0 + ∇x · v0 + ∇y · v1 = O(ε).

Hence at order O(1/ε) we have

∇y · v0 = 0 in YF; v0 = 0 on S (15)

and at order O(1)

∇x · v0 + ∇y · v1 = 0 in YF; v1 = 0 on S. (16)

Integration of Eq. (16) over YF yields the macroscopic mass conservation equation

∇x · (
∫
YF

v0(x, y) dy
) = 0 in Ω. (17)

Insertion of the two-scale expansion into the momentum equation (11) yields

−{1

ε
∇y · +∇x · } {ε|Dy(v0) + O(ε)|r−2(Dy(v0) + O(ε))

}+
1

ε
∇yp

0 + ∇xp
0 + ∇yp

1 + O(ε) = f. (18)

At order O(1/ε), Eq. (18) yields

∇yp
0 = 0 ⇒ p0 = p0(x). (19)

At order O(1) Eq. (18) yields

∇yp
1 − ∇y · {|Dy(v0)|r−2Dy(v0)

} = f(x) − ∇xp
0(x) in YF. (20)

Now we are able to write the resulting homogenized two-scale system.

∇yp
1 − ∇y · {|Dy(v0)|r−2Dy(v0)

} = f(x) − ∇xp
0(x) in YF × Ω, (21)

∇y · v0 = 0 in YF × Ω; v0 = 0 on S × Ω, (22)

{v0, p1} are Y − periodic, (23)

∇x · (
∫
YF

v0(x, y) dy
) = 0 in Ω, (24)

n ·
∫
YF

v0(x, y) dy = 0 on ∂Ω. (25)
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System (21)–(25) is called the two-pressures quasi-Newtonian Stokes problem.
Let

V = {ψ ∈ Lr(Ω;W1,r
per( YF)3) | ψ satisfies conditions (22)–(25) }.

Then the variational form of system (21)–(25) is
Find v0 ∈ V such that
∫

Ω

∫
YF

|Dy(v0)|r−2Dy(v0) : Dy(ψ) dydx =
∫

Ω

∫
YF

f · ψ dydx, ∀ψ ∈ V. (26)

After [16] and [33], the strict monotonicity, continuity and coercivity of the operator
yields existence of a unique solution for problem (26).

Similar to the Newtonian case,

−∇y · {|Dy(v0)|r−2Dy(v0)
}− f = 0 in V ′

means that −∇y · {|Dy(v0)|r−2Dy(v0)
}− f is an element of the subspace

Ṽ = {∇xϕ + ∇yψ, ϕ ∈ W1,r/(r−1)(Ω) and ψ ∈ Lr/(r−1)(Ω,Lr/(r−1)
per ( YF)/R)}

of Lr/(r−1)(Ω,W−1,r/(r−1)(YF)3).

The uniqueness of the pressure field is linked to the following surjectivity
property:

Lemma 2 (See [5]) For any function θ ∈ Lq(Ω)3, 1 < q < +∞, there exists
σθ ∈ Lq(Ω;W1,q

per(YF)3) such that

∇y · σθ = 0 in YF; σθ = 0 on S;
∫
YF

σθ dy = θ(x) (27)

and ||σ ||
Lq(Ω;W1,q

per(YF)3)
≤ C||θ ||Lq(Ω)3 .

In the uniqueness proof, we get for the pressures differences p = p0
1 − p0

2 and
π = p1

1 − p1
2, ∇xp + ∇yπ = 0. Consequently,

−∇xp ·
∫
YF

ξ(x, y) dy = 0 ∀ξ ∈ W1,r
per( YF)3,

∇y · ξ = 0 in YF × Ω, ξ = 0 on S × Ω.

Now using Lemma 2 we get ∇xp = 0. It implies p = 0 in Lr/(r−1)

0 (Ω) =
{z ∈ Lr/(r−1)(Ω)| ∫

Ω
z dx = 0}. Finally, ∇yπ = 0 and π = 0.
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Remark 2 After the discussion in [73] and [74], the filtration laws of the form

Ufilt = M(
.
γ eff ,K, ϕ)∇p

are usually used in applications. Ufilt is the filtration velocity and M is the effective
mobility, defined as the ratio of the permeability to the effective viscosity and
depending on the effective shear rate

.
γ eff , permeability K and porosity ϕ. After our

two-scale expansions, it makes sense to link the effective shear rate
.
γ eff to ∇xp0.

The obtained two-scale filtration law (21)–(23) is not of Darcy law type and
generally does not lead to the usual filtration law used in standard engineering
treatment (e.g. as in [27, 80] and [67]):

v = (
K

μeff
[−∂p

∂x
])1/(r−1) (28)

The above filtration law is obtained by modelling a porous medium as a collection
of long capillary tubes through which the fully developed laminar flow occurs.

If we suppose the flow only in the x1 direction then the variables x and y in
two pressures quasi-Newtonian Stokes system (21)–(25) can be separated. Then
solving (21)–(25) leads to a non-linear one dimensional power-like law, identical to
the one used in the engineering literature. In our notation it reads

∫
YF

v(x, y) dy = | f − dp

dx1
|r′−2 · ( f − dp

dx1
)

∫
YF

u( y) dy,

where u is the solution of two pressures quasi-Newtonian Stokes system (21)–(25)
for the right hand side of (21) being e1 = (1, 0, 0).

However, it should be noticed that this argument holds only in the one dimen-
sional case. Our laws, except for a tubular porous medium, are nonlocal and they
cannot be reduced to a multi-dimensional variant of (28), connecting the Darcy
velocity v and some power of ∇p. Most laboratory experiments are performed for
one-dimensional flows, which makes difficult observing any dimensional effect.
From the engineering point of view, it is important to have not only a good
laboratory prediction, but also the filtration laws for the oil fields.

In the case of tube flows, a detailed study of the filtration laws is in [21] and [55].

Remark 3 For more details on the formal two-scale expansions presented above we
refer to [72] and [65].

Remark 4 The impossibility to separate slow scale x and the fast scale y in the
homogenized momentum equation (21)–(23) has consequences to the numerical
simulations. A numerical method of a good performance was introduced in [36].
A study of the analytic properties of the homogenized law was undertaken in [22].
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2.4 The Filtration Laws via Two-Scale Asymptotic Expansions:
Carreau Law

The analogous procedure applies to the case of the Carreau-Yasuda law.
We start with the a priori estimate pour Carreau law. As before, we use Poincaré’s

inequality in a porous medium (7). In the Carreau-Yosuda law η∞ ≈ 0 and we
neglect it. Furthermore, we suppose λ = λ0/ε and 1 < r < 2. Then, after testing
Eq. (4) with the solution we obtain

||v||Lr + ε||D(v)||Lr ≤ Cε2, (29)

in the case of Carreau’s law.
Hence the characteristic velocity U is of order O(ε2) and the Reynolds number

Re=ρL0U/η0 is small. Therefore, it is enough to consider the quasi-Newtonian
Stokes equations.

Consequently, in the case of Carreau law (3), with η∞ = 0, we consider the
dimensionless system

−∇ · {(1 + λ2
0

ε2
|D(vε)|2)r/2−1D(vε)} + ∇pε = f in Ωε, (30)

∇ · vε = 0 in Ωε, (31)

vε = 0 on ∂Ωε. (32)

Problem (30)–(32) is equivalent to the minimization problem

min
ϕ∈Vr(Ωε)

J(ϕ) = min
ϕ∈Vr(Ωε)

{ ε2

rλ2
0

∫
Ωε

(1 + λ2
0

ε2
|D(vε)|2)r/2 dx−

∫
Ωε

f · ϕ dx
}
. (33)

For 1 < r < +∞, J is strictly convex, proper, continuous and coercive, which
yields the existence and the uniqueness of the minimizer vε ∈ Vr(Ωε). The pressure
field is (again) recovered using the De Rham or Tartar’s constructions.

vε satisfies a priori estimate (29) and we make a hypothesis that pε is uniformly
bounded in Lr

′
(Ωε).

We will use the two-scale asymptotic expansion (1) to perform the formal
homogenization of the system (30)–(32). Introducing the fast variable y = x/ε,
we assume that the solution of (30)–(32) can be developed in the following way

{
vε(x) = ε2{v0(x, y) + εv1(x, y) + . . .

}
,

pε(x) = p0(x, y) + εp1(x, y) + . . . .
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As before, the differential operators transform as follows

∇· = 1

ε
∇y · +∇x·; D = 1

ε
Dy + Dx; ∇ = 1

ε
∇y + ∇x;

(1 + λ2
0

ε2
|D(vε)|2)r/2−1 = |1 + λ2

0|Dy(v0) + O(ε)|2|r/2−1.

In the case of Carreau’s law, the formal asymptotic expansion for the mass
conservation equation is identical to the case of the power law:

Insertion of the two-scale expansion into the incompressibility condition (31)
yields

1

ε
∇y · v0 + ∇x · v0 + ∇y · v1 = O(ε).

Hence at order O(1/ε) we have

∇y · v0 = 0 in YF; v0 = 0 on S (34)

and at order O(1)

∇x · v0 + ∇y · v1 = 0 in YF; v1 = 0 on S. (35)

Integration of Eq. (35) over YF yields the macroscopic mass conservation equation

∇x · (
∫
YF

v0(x, y) dy
) = 0 in Ω. (36)

Insertion of the two-scale expansion into the momentum equation (30) is slightly
different and yields

−{1

ε
∇y · +∇x · } {ε|1 + λ2

0|Dy(v0) + O(ε)|2|r/2−1(Dy(v0) + O(ε))
}

+1

ε
∇yp

0 + ∇xp
0 + ∇yp

1 + O(ε) = f. (37)

At order O(1/ε), Eq. (37) yields

∇yp
0 = 0 ⇒ p0 = p0(x). (38)

At order O(1) Eq. (37) yields

∇yp
1 − ∇y · {(1 + λ2

0|Dy(v0)|2)r/2−1Dy(v0)
} = f(x) − ∇xp

0(x) in YF. (39)
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Now we are able to write the resulting homogenized two-scale system.

∇yp
1 − ∇y · {(1 + λ2

0|Dy(v0)|2)r/2−1Dy(v0)
} = f(x) − ∇xp

0(x)

in YF × Ω, (40)

∇y · v0 = 0 in YF × Ω; v0 = 0 on S × Ω, (41)

{v0, p1} are Y − periodic (42)

∇x · (
∫
YF

v0(x, y) dy
) = 0 in Ω, (43)

n ·
∫
YF

v0(x, y) dy = 0 on ∂Ω. (44)

System (40)–(44) is called the two-pressures Carreau-Stokes problem.
Let

V = {ψ ∈ Lr(Ω;W1,r
per( YF)3) | ψ satisfies conditions (41)–(44) }.

Then the variational form of system (40)–(44) is
Find v0 ∈ V such that

∫
Ω

∫
YF

(1 + λ2
0|Dy(v0)|2)r/2−1Dy(v0) : Dy(ψ) dydx =
∫

Ω

∫
YF

f · ψ dydx, ∀ψ ∈ V. (45)

After [16] and [33], the strict monotonicity, continuity and coercivity of the operator
yields existence of a unique solution for problem (26).

Similar to the Newtonian case,

−∇y · {(1 + λ2
0|Dy(v0)|2)r/2−1Dy(v0)

}− f = 0 in V ′

means that −∇y · {|Dy(v0)|r−2Dy(v0)
}− f is an element of the subspace

Ṽ = {∇xϕ + ∇yψ, ϕ ∈ W1,r/(r−1) and ψ ∈ Lr/(r−1)(Ω,Lr/(r−1)
per ( YF)/R)}

of Lr/(r−1)(Ω,W−1,r/(r−1)(YF)3).
The uniqueness of the pressure field is proved similarly like to the power

law case.

Remark 5 Finding the filtration laws of the form

Ufilt = M(
.
γ eff ,K, ϕ)∇p
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is even more complicated in this case. The consideration from [22] apply to the
Carreau law case as well.

2.5 The Filtration Laws via Two-Scale Asymptotic Expansions:
Bingham Fluid Case

In this subsection we discuss briefly the filtration laws for a Bingham fluid (a visco-
plastic fluid) in a porous medium.

As in Sect. 2.3 let v be the velocity, p the pressure and D(v) = (∇v + ∇vt)/2 the
rate-of-strain tensor. In the case of the Bingham fluid, the stress tensor σ is given by

σ = −pI + (2η0 + g
.
γ

)D(v), (46)

where η0 is the viscosity and
.
γ=

√
|D(v)|2/2 is the shear rate. The deviatoric stress

tensor τ , i.e. the part of the total stress tensor that is zero at equilibrium, is then a
nonlinear function of the shear rate D(v),

τ = (2η0 + g
.
γ

)D(v).

Constitutive law (46) is valid only if
.
γ �= 0.

In [32], Duvaut and Lions have shown that this constitutive law is equivalent with
the following one:

{ |τ |2/2 ≤ g ⇒ D(v) = 0,

|τ |2/2 > g ⇒ D(v) = (1 − g/
.
γ )τ/(2η0).

(47)

This is a threshold law: as long as the shear stress is below g, the fluid behaves as a
rigid solid. When the value of the shear stress exceeds g, the fluid flows and obeys a
nonlinear constitutive law. Moreover, the fluid is incompressible.

We will deal with the variational formulation of the problem. Let

V(Ωp) = {ψ|ψ ∈ H1
0(Ωp)

3, ∇ · ψ = 0 in Ωp}.

Then the variational problem reads as follows:
Find v ∈ V(Ω) such that

2η0

∫
Ωp

D(v) : D(ψ − v) dx + 2g
∫

Ωp

(
.
γ (ψ)− .

γ (v)) dx ≥
∫

Ωp

f · (ψ − v) dx,∀ψ ∈ V(Ωp). (48)
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Problem (48) was studied in [32] and existence and uniqueness were proved.
Furthermore, the corresponding differential interpretation result was established:

Proposition 2 Let v be the solution for (48). Then there exist a matrixM (x) and a
function p ∈ L2

0(Ωp) such that

Mij ∈ L∞(Ωp); Mij = Mji, ∀i, j; Tr(M ) = 0;
|M | ≤ 1 a.e. on Ωp; M : D(v) = |D(v)| a.e. on Ωp;

−η0Δv − g
√

2∇ · M = f − ∇p.

Following [44] we will study the following dimensionless Bingham flow model in
a porous medium

Find vε ∈ V(Ωε) such that

2η0ε
2
∫

Ωε

D(vε) : D(ψ − vε) dx + 2gε
∫

Ωε

(
.
γ (ψ)− .

γ (vε)) dx ≥
∫

Ωε

f · (ψ − vε) dx,∀ψ ∈ V(Ωε). (49)

and study the behavior of the problem in the limit ε → 0. The corresponding
two-scale asymptotic expansion was developed in [44] and a detailed study of the
homogenized problem undertaken. The computations are involved and the interested
reader can consult article [44].

We will see that for variational inequality (49) direct use of the two-scale
convergence is rigorous and shorter than using formal asymptotic expansions.

3 An Introduction to the Two-Scale Convergence
with Special Attention to the Two-Scale Lower
Semi-Continuity

We start with recalling basic facts from functional analysis. Let Y = (0, 1)d, d =
1, 2, 3, be the unit cube in R

d and Q a bounded open set in R
d.

Definition 1 A sequence {uε} in Lq(Q), 1 ≤ q < +∞ is said to convergeweakly to
u ∈ Lq(Q) if

lim
ε→0

∫
Q
uε(x)v(x) dx =

∫
Q
u(x)v(x) dx, ∀v ∈ Lq∗(Q); q∗ = q/(q − 1).

The notation is uε ⇀ u. If q = +∞, then q∗ = 1 and we have the weak∗
convergence in L∞(Q).
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After [23], the weak topology on a Banach space E is the coarsest topology in
which the linear forms are continuous.

Lemma 3 (A Property of the Mean Value—See e.g. [39]) Let f be a Y−periodic
function. Then

f (
x

ε
) ⇀

1

| Y|
∫
Y
f ( y) dy weakly in Lq(Q), for 1 ≤ q < +∞,

and weak∗ in L∞(Q), as ε → 0. (50)

Example 1 sin x
ε

⇀ 0 weakly in Lqloc(R
d) for 1 ≤ q < +∞ and weak∗ in L∞(Q),

as ε → 0.

Our difficulty is that in the homogenization problems we will have to calculate
limits of the type

lim
ε→0

∫
Q
A(

x

ε
)∇uεψ dx,

with weakly converging ∇uε and A( x
ε
). Their product will not converge in general

to the product of the weak limits.

Example 2 sin x
ε

⇀ 0 weakly, as ε → 0, but sin2 x
ε

⇀ 1/2 weakly and not to 0.

Therefore the weak convergence is not well adapted to our needs and the strong
convergence is out of reach for problems with oscillations.

There are several methods to pass to the limit in such products, like Tartar’s
energy method and the compensated compactness (see e.g. [39]).

Here we will present the two-scale convergence method, which involves a
convergence which is weaker than the strong convergence but stronger than the
weak convergence. We will see that it captures successfully the oscillations. It was
introduced by Nguetseng in [62] and developed by Allaire in [5].

Definition 2 The bounded sequence {wε} ⊂ Lq(Q), 1 < q < +∞, is said
to two-scale converge to a limit w ∈ Lq(Q × Y) if and only if for any ξ ∈
Lq/(q−1)(Q;C∞

per(Y)) (“per” denotes Y-periodicity) one has

lim
ε→0

∫
Q
wε(x)ξ(x,

x

ε
) dx =

∫
Q

∫
Y
w(x, y)ξ(x, y) dy dx .

We note that for ξ the values on the diagonal y = x/ε have to make sense and for
ξ ∈ L2(Q × Y) it is not the case.

(Admissible functions) A function f belongs to Lq(Q,Cper(Y)), 1 < q < +∞, if
and only if there exists a subset E of measure zero in Q such that

(a) For any x ∈ Q\E, the function y → f (x, y) is continuous and Y− periodic.
(b) For any y ∈ Y, the function x → f (x, y) is measurable.
(c) The function x → supy∈Y | f (x, y)| has finite Lq(Q) norm.
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Furthermore, the function x → f (x, x
ε
) is measurable and

|| f (x, x
ε
)||L2(Q) ≤ || f ||L2(Q;Cper( Y)); (51)

lim
ε→0

∫
Q

| f (x, x
ε
)|2 dx =

∫
Q

∫
Y

| f (x, y)|2 dxdy. (52)

The spaces Lq(Q,Cper(Y)), Lqloc(Y,C(Q)) and C(Q,Cper(Y)), 1 ≤ q < +∞, are
all separable Banach spaces, dense in Lq(Q × Y). We refer to [48] for more details
about the notion of the two-scale convergence in Lq-setting and the admissibility
conditions for the test functions.

Example 3 sin x
ε

⇀ 0 weakly but sin x
ε

→ sin y in two-scales, thus retaining the
information on the shape of oscillations present in the sequence. Note that the two-
scale convergence will not see the oscillations which are not in resonance with those
of test functions: u(x, x/ε2) → ∫

Y u(x, y) dy in two-scales, as ε → 0.

The Basic Compactness Theorem for the Two-Scale Convergence With the
weak convergence/topology, we have less open sets than when using the strong
topology but more compact sets. The situation is similar with the two-scale
convergence. Boundedness of a sequence will be sufficient for relative two-scale
compactness. The proof is based on

The Sequential Banach-Alaoglu Theorem (See [23]) Let X be a separable
Banach space. Then every bounded sequence in X∗ has a weak∗ convergent
subsequence.

Theorem 1 Let {uε} be a bounded sequence in Lq(Q), 1 < q < +∞. Then there
exists a subsequence, denoted by the same subscripts, and u0 ∈ Lq(Q×Y) such that
{uε} two-scales converges to u0.

Proof

Step 1. Let ψ ∈ Lq/(q−1)(Q,Cper(Y)). We define a sequence of functionals {με}
on Lq/(q−1)(Q,Cper(Y)) by

< με,ψ >=
∫
Q
uε(x)ψ(x,

x

ε
) dx.

It is easy to see that

| < με,ψ > | ≤ |
∫
Q
uε(x)ψ(x,

x

ε
) dx| ≤ C||ψ(x,

x

ε
)||Lq/(q−1)(Q)

≤ C||ψ(x, y)||Lq/(q−1)(Q,Cper( Y)).

Hence the sequence {με} is bounded in (Lq/(q−1)(Q,Cper(Y)))∗.
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Step 2. Lq/(q−1)(Q,Cper(Y)) is separable and by the sequential Banach-Alaoglu
theorem, there is a subsequence of {με} and a μ ∈ (Lq/(q−1)(Q,Cper(Y)))∗ such
that με ⇀ μ in the weak∗ topology in (Lq/(q−1)(Q,Cper(Y)))∗. Thus

< με,ψ >→< μ,ψ >, ∀ψ ∈ Lq/(q−1)(Q,Cper( Y)).

Step 3. Obviously

| < μ,ψ > | ≤ C
( ∫

Q
|ψ(x,

x

ε
)|q/(q−1) dx

)1−1/q ≤ C||ψ(x, y)||Lq/(q−1)(Q×Y).

(53)

Since Lq/(q−1)(Q,Cper(Y)) is dense in Lq/(q−1)(Q × Y), we can extend μ to a
bounded linear functional on Lq/(q−1)(Q × Y). The extension is denoted μ̃.

μ̃ satisfies estimate (53) and by the Riesz representation theorem μ̃ can be
identified with an element u0 ∈ Lq(Q × Y). Then we have

lim
ε→0

∫
Q
uε(x)ψ(x,

x

ε
) dx = lim

ε→0
< με,ψ >=< μ,ψ >

=
∫
Q

∫
Y
u0(x, y)σ (x, y) dy dx ,

for every ψ ∈ Lq/(q−1)(Q,Cper(Y)). This completes the proof.�
It is well-known that for PDEs the weak compactness in Sobolev spaces is of

importance. It is the same with the two-scale compactness. We follow the approach
of Allaire from [5]. Applying the basic compactness theorem for the two-scale
convergence first to the functions and then to their derivatives, and then simply
comparing the limits yields

Proposition 3 (See [5])

(a) Let wε and ε∇wε be bounded sequences in Lq(Q), 1 < q < +∞. Then there
exists a function w ∈ Lq(Q;W1,q

per(Y)) and a subsequence such that both wε and
ε∇wε two-scale converge to w and ∇yw, resp.

(b) Let wε and ∇wε be bounded sequences in Lq(Q), 1 < q < +∞. Then there
exists functions w ∈ W1,q(Q) and w1 ∈ Lq(Q;W1,q

per(Y)) and a subsequence
such that both wε and ∇wε two-scale converge to w and ∇xw + ∇yw1, resp.

(c) Let σ ∈ Lqper(Y), define σε(x) = σ( x
ε
), and let the sequence {wε} ⊂ Lq(Q) two-

scale converges to a limit w ∈ Lq(Q × Y). Then {σεwε} two-scale converges to
a limit σw.

(d) Let vε be a divergence-free bounded sequence in Lq(Q)d, 1 < q < +∞, which
two-scale convergences to v0 ∈ Lq(Q × Y)d. then, the two-scale limit satisfies
divyv0(x, y) = 0 a.e. in Q × Y and

∫
Y divxv0(x, y) dy = 0.
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Remark 6 Strong Convergence ⇒ Two-scale Convergence ⇒ Weak convergence
Weak Convergence � Two-scale Convergence � Strong convergence

After recalling these basic properties we give a sequential lower semicontinuity
result for two-scale convergence in Lq, 1 < q < +∞.

Proposition 4 (See [5]) Let Φ : R
n → R

+ be a continuous function satisfying
0 ≤ Φ(λ) for all λ ∈ R

n, σ ∈ C∞
0 (Q;C∞

per(Y))n, and σε(x) = σ(x, x
ε
). Then

lim
ε→0

∫
Q

Φ(σε) dx =
∫
Q

∫
Y

Φ(σ) dy dx. (54)

Furthermore, let Φ in addition be strictly convex and C1 in Rn2
, satisfying

c|λ|q ≤ Φ(λ) ≤ C(1 + |λ|q), ∀λ ∈ R
d, 1 < q < +∞.

Then, if vε is a bounded sequence from Lq(Ω)n which two-scale converges towards
v, we have

lim inf
ε→0

∫
Q

Φ(vε) dx ≥
∫
Q

∫
Y

Φ(v) dy dx. (55)

Remark 7 In fact the two scale semi-continuity result is not directly stated in [5],
but it is contained in the proof of Theorem 3.3, pages 1500–1503. For q = 2 the
result is stated in [6] as theorem 3.7 on page 243. For the confort of the reader we
recall the argument from [5]:

Since Φ is convex and C1, we have

Φ(vε) ≥ Φ(ψ(x,
x

ε
)) + ∇vΦ(ψ(x,

x

ε
))(vε − ψ(x,

x

ε
)),

for every ψ ∈ C∞
0 (Ω;C∞

per(Y))d , implying

lim inf
ε→0

∫
Q

Φ(vε) dx ≥ lim inf
ε→0

∫
Q

Φ(ψ(x,
x

ε
) dx+

lim inf
ε→0

∫
Q

∇vΦ(ψ(x,
x

ε
))(vε − ψ(x,

x

ε
)) dx =

∫
Q

∫
Y

Φ(ψ(x, y)) dy dx+
∫
Q

∫
Y

∇vΦ(ψ(x, y))(v(x, y) − ψ(x, y)) dxdy. (56)

Next, we take for ψ a sequence of smooth functions ψk ∈ C∞
0 (Ω;C∞

per(Y))d which

converges to v strongly in Lq(Q × Y)d . Due to the growth conditions on Φ and
smoothness, inequality (56) holds also in the limit ψk → v in the two-scale sense
and we obtain the inequality (55). Note that the coercivity is not required for the
lower semi-continuity.
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In several applications (Bingham flows, friction, . . . ) the functional

ψ →
∫
Q

|ψ(x)| dx

arises. We have

Proposition 5 Let {vε} be a bounded sequence from (Lq(Ω))n, 1 < q < +∞,
which two-scale converges towards v, we have

lim inf
ε→0

∫
Q

|vε(x)| dx ≥
∫
Q

∫
Y

|v(x, y)| dy dx. (57)

Proof The functions fδ = √|x|2 + δ2 − δ are C1 with partial derivatives
∂ fδ
∂xj

=

xj/
√

|x|2 + δ2, j = 1, . . . , n. We have

∫
Q

||vε| − fδ(vε)| dx ≤ cδ

and

√
|vε|2 + δ2 − δ ≥

√
|ψ|2(x, x

ε
) + δ2 − δ +

d∑
j=1

ψj(x, x
ε
)√

|ψ|2(x, x
ε
) + δ2

(vε
j − ψj(x,

x

ε
))

for every smooth ψ(x, y). Hence we have

lim inf
ε→0

∫
Q
(

√
|vε|2 + δ2 − δ) dx ≥

∫
Q

∫
Y
(

√
|ψ|2(x, y) + δ2 − δ) dxdy+

d∑
j=1

∫
Q

∫
Y

ψj(x, y)√|ψ|2(x, y) + δ2
(vj − ψj(x, y)) dxdy

Now we take a sequence of smooth functions ψ , periodic in y, which strongly
converges to v. It yields

lim inf
ε→0

∫
Q
(

√
|vε|2 + δ2 − δ) dx ≥

∫
Q

∫
Y
(

√
|v|2(x, y) + δ2 − δ) dxdy ⇒

lim inf
ε→0

∫
Q

|vε(x)| dx ≥ lim inf
ε→0

∫
Q
(

√
|vε|2 + δ2 − δ) dx − Cδ ≥

∫
Q

∫
Y
(

√
|v|2(x, y) + δ2 − δ) dxdy− Cδ ≥

∫
Q

∫
Y

|v| dx − Cδ, ∀δ > 0

and the proposition is proved.�
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Remark 8 It is important to note that two-scale convergence is a tool adapted to the
particular problem one wants to solve. Consequently, other two-scale convergences
can be introduced. An example are the problems with chemical reactions/biological
processes on surfaces Γ ε. Then the appropriate tool is the two-scale convergence
on the surfaces developed in [7, 61] and [49]. Another example is the two-scale
convergence with drift, designed to handle homogenization of reaction-diffusion
equations with large Péclet and Damkohler’s numbers. For details we refer to
[10, 50] and [8].

4 The a Priori Estimates for the Pressure and the Two-Scale
Limits in the Case of the Power Law Viscosity

In order to use the two-scale convergence, we first need a priori estimates. We
suppose d = 3 and all result also hold for d = 2.

We recall the estimate (9), valid in the case of the power-law viscosity:

||vε||Lr + ε||D(vε)||Lr ≤ Cεr/(r−1).

In order to investigate the behavior of solutions to (11)–(13), as ε → 0, we need
to extend vε and pε to the whole of Ω . We extend vε by zero in Ω\Ωε. It is well
known that extension by zero preserves Lq and W1,q

0 norms for 1 < q < ∞.
Extending the pressure is a much more difficult task. The extension

is closely related to the construction of the restriction operator Rq ∈
L
(
W1,q(Y)d, W1,q

S (YF)n
)
, d = 2, 3, where W1,q

S (YF) = {z ∈ W1,q(YF) : z = 0
on S}.

A priori estimates for the pressure are derived using the a priori estimates for the
velocity and the equation:

∇pε = f + ∇ · {|D(vε)|r−2D(vε)} ⇒

< ∇pε, ψ >=
∫

Ωε

(|D(vε)|r−2D(vε) : D(ψ) + f · ψ) dx, ∀ψ ∈ W1,r
0 (Ωε)

3.

(58)

Hence the pressure pε satisfies the inequality

‖∇pε‖W−1,r′ (Ωε)3 ≤ Cε. (59)

The functional space W−1,r′(Ωε)
3 changes with ε and estimate (59) is difficult to

use. Our strategy is to extend the pressure to the solid part of the porous medium.
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Following the idea of Lipton, Avellaneda [45] and using the constructions by
Tartar and Allaire (see [4, 6] and the Appendix of [71]) we define the extension of
pressure pε by

p̃ε =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pε, in Ωε,

1

|ε( YF + i)|
∫
Yε
Fi

pε, in the Yε
Si

for each i,
(60)

where Yε
Fi

is the fluid part of the cell Yε
i . Note that solid part of the porous medium

is an union of all Yε
Si

. We have

Proposition 6 (See [6]) The pressure extension p̃ε ∈ Lr
′

0 (Ω) of the function pε,
defined by (60) satisfies the estimate

‖p̃ε‖Lr′ (Ω) + ‖∇p̃ε‖W−1,r′ (Ω)3 ≤ C, n = 2, 3. (61)

Furthermore for arbitrary sequence {wε} ⊂ Lr0(Ω)3 which converges weakly to
0, we have ∫

Ω

p̃εwε → 0 as ε → 0. (62)

Proposition 7 Let {vε, pε} be corresponding solutions of the power-law sys-
tem (11)–(13). Then there exist subsequences of {vε} and {p̃ε} (again denoted
by the same symbols) and functions v∗

0 ∈ Lr(Ω × Y)3, p∗ ∈ Lr/(r−1)

0 (Ω) and
∇yv∗

0 ∈ Lr(Ω × Y)9 such that

ε−r/(r−1)vε → v∗
0 in the two-scale sense in Lr, (63)

ε−1/(r−1)∇vε → ∇yv∗
0 ∈ Lr(Ω × Y)9 in the two-scale sense in Lr, (64)

ε−r/(r−1)vε → v∗ =
∫
YF

v∗
0 dy weakly in Lr(Ω)3, (65)

p̃ε → p∗ in Lr/(r−1)
0 (Ω), (66)

as ε → 0.

Proof Proof of Proposition 7 follows directly from (9) and (61), through the
compactness results stated in Proposition 3. The pressure convergence (66) follows
the formal two-scale expansion:

Let ψ ∈ C∞
0

(
Ω;C∞

per(YF)
)3

such that ψ(x, y) = 0 on S for (a.e.) x ∈ Ω and set
ψε(x) = ψ(x, x

ε
). We test Eq. (21) with εψε . It yields

0 = lim
ε→0

∫
Ω

p̃ε∇y · ψε dx =
∫

Ω

∫
Y
p∗∇y · ψ(x, y) dx dy =< ∇yp

∗, ψ >Ω×Y .
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Hence p∗ is independent of y. The information is enough for passing to the limit
in the terms containing the pressure, but after [71], (62) implies also the strong
convergence of p̃ε. �.

Using the incompressibility and the weak convergence (65), we find out that the
average v∗ satisfies the equations

∇x · v∗ = 0 in Ω, v∗ · n = 0 on ∂Ω. (67)

Lemma 4 v∗
0 ∈ Lr

(
Ω;W1, r

S (YF)3
)
and ∇y · v∗

0 = 0 in YF.

Proof Let ψ be a smooth function. Then

0 = −
∫

Ωε

ε−r/(r−1)vε · ε∇ψ(x,
x

ε
) dx → −

∫
Ω

∫
YF

v∗
0 · ∇yψ dydx = 0.

⇒ ∇y · v∗
0 = 0 in YF .�

Proposition 8 The functions v∗
0 and p∗ defined, respectively, by (63) and (66)

satisfy the two-pressures quasi-Newtonian Stokes problem (21)–(25).

Proof It remains only to justify the momentum equation (21):

∇ · {|Dy(v∗
0)|r−2Dy(v∗

0)
}+ ∇yπ(x, y) = f − ∇xp

∗(x) in YF × Ω.

We use equation

∫
Ωε

|D(vε)|r−2D(vε) : D(ψ) dx+ < ∇pε − f, ψ >= 0, ∀ψ ∈ W1,r
0 (Ωε). (68)

Using Minty’s lemma1 we write it in as a minimization problem with a given
pressure:

∫
Ω

1

r
|εD(ψ)|r dx −

∫
Ω

1

r
|εD(ε−r/(r−1)vε)|r dx ≥

−〈f − ∇p̃ε, ψ − ε−r/(r−1)vε〉Ω, ∀ψ ∈ W1,r
0 (Ωε)

3. (69)

1Minty’s lemma (see [33]) Let F be a convex lower semi-continuous and proper functional on a
reflexive Banach space B. Then for u ∈ B the following three conditions are equivalent to each
other:

(a) u solves the problem inf
v∈B F(v).

(b) < F′(u), v − u >≥ 0, ∀ v ∈ B.
(c) < F′(v), v − u >≥ 0, ∀ v ∈ B.
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Next we choose ψ ∈ C∞
0

(
Ω;C∞

per(YF)
)3

such that ψ(x, y) = 0 on S for (a.e.)
x ∈ Ω, ∇y · ψ = 0 in YF and set ψε(x) = ψ(x, x

ε
).

We insert ψ = ψε as a test function in (69). It yields

−〈∇p̃ε, ψε〉Ω =
∫

Ω

p̃ε∇x · ψε →
∫

Ω

∫
Y
p∗∇x · ψ(x, y) dx dy, as ε → 0.

The above limit and Proposition 4 imply

∫
Ω

∫
Y

1

r
|Dy(ψ)|r dx dy −

∫
Ω

∫
Y

1

r
|Dy(v∗

0)|r dx dy ≥

〈f − ∇p∗(x),
∫
Y
(ψ − v∗

0) dy〉Ω. (70)

Using again Minty’s lemma and de Rham’s formula yield

−∇y · {|Dy(v∗
0)|r−2Dy(v∗

0)} + ∇yπ(x, y) = f − ∇p∗(x) in YF

∇y · v∗
0 = 0 in YF, v∗

0 = 0 on S,

and (21) is justified.�
Therefore we justified rigorously the two-pressures quasi-Newtonian Stokes prob-
lem. The uniqueness theorem from Sect. 2.1 implies that the whole sequence
converges towards {v∗

0, p
∗} = {v0, p0}.

4.1 A Priori Estimates and the Two-Scale Convergence
for the Case of the Law of Carreau

We recall the Carreau-Stokes system, corresponding to Carreau law (3):

−∇ · {(1 + λ2
0

ε2 |D(vε)|2)r/2−1D(vε)} + ∇pε = f in Ωε, (71)

∇ · vε = 0 in Ωε, (72)

vε = 0 on ∂Ωε. (73)

We also recall the a priori estimate (10) for the velocity:

||vε||Lr + ε||D(vε)||Lr ≤ Cε2.
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In order to investigate the behavior of solutions to (71)–(73), as ε → 0, we need
to extend vε and pε to the whole of Ω . We extend vε by zero in Ω\Ωε. It is well
known that extension by zero preserves Lq and W1,q

0 norms for 1 < q < ∞.
Extending the pressure is a much more difficult task. A priori estimates for the

pressure are derived using the a priori estimates for the velocity and the momentum
equation (30):

∇pε = f + ∇ · {(1 + λ2
0

ε2
|D(vε)|2)r/2−1D(vε)} ⇒

< ∇pε, ψ >=
∫

Ωε

((1 + λ2
0

ε2 |D(vε)|2)r/2−1D(vε) : D(ψ) + f · ψ) dx,

∀ψ ∈ W1,r
0 (Ωε)

3. (74)

Hence the pressure pε satisfies the inequality

‖∇pε‖W−1,r′ (Ωε)3 ≤ Cε, r′ = r/(r − 1). (75)

Extension of the pressure to the solid part of the porous medium is done again using
formula (60) and estimate (61) is valid again..

Furthermore for arbitrary sequence {wε} ⊂ Lr0(Ω)3 which converges weakly to
0, we have

∫
Ω

p̃εwε → 0 as ε → 0. (76)

Proposition 9 Let {vε, pε} be the corresponding solutions of the Carreau-Stokes
system (71)–(73). Then there exist subsequences of {vε} and {p̃ε} (again denoted
by the same symbols) and functions v∗

0 ∈ Lr(Ω × Y)3, p∗ ∈ Lr
′

0 (Ω) and ∇yv∗
0 ∈

Lr(Ω × Y)9 such that

ε−2vε → vC0 in the two-scale sense in Lr, (77)

ε−1∇vε → ∇yvC0 ∈ Lr(Ω × Y)9 in the two-scale sense in Lr, (78)

ε−2vε → vC =
∫
YF

vC0 dy weakly in Lr(Ω)3, (79)

p̃ε → pC in Lr
′

0 (Ω), (80)

as ε → 0.

Derivation of the macro and micro level mass conservation laws in the case of
Carreau law is exactly the same as in the case of the power law. Only the momentum
equations differs slightly.
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Proposition 10 The functions vC0 and pC defined, respectively, by (77) and (80)
satisfy the two-pressures Carreau-Stokes problem (40)–(44).

Proof It remains only to justify the momentum equation (40):

∇yp
1 − ∇y · {(1 + λ2

0|Dy(vC0 )|2)r/2−1Dy(vC0 )
} = f(x) − ∇xp

C(x)

in YF × Ω.

We use the variational equation

∫
Ωε

(1 + λ2
0

ε2 |D(vε)|2)r/2−1D(vε) : D(ψ) dx+ < ∇pε − f, ψ >= 0,

∀ψ ∈ W1,r
0 (Ωε)

3, (81)

and write it in as a minimization problem for a given pressure:

∫
Ω

1

rλ2
0

(1 + λ2
0|εD(ψ)|2)r/2 dx −

∫
Ω

1

rλ2
0

(1 + λ2
0|ε−1D(vε)|2)r/2 dx ≥

−〈 f − ∇p̃ε, ψ − ε−2vε〉Ω, ∀ψ ∈ W1,r
0 (Ωε)

3. (82)

Now we choose ψ ∈ C∞
0

(
Ω;C∞

per(YF)
)3

, such that ψ(x, y) = 0 on S for (a.e.)
x ∈ Ω, ∇y · ψ = 0 in YF , and define ψε(x) = ψ(x, x

ε
).

We insert ψ = ψε in (82). Then

−〈∇p̃ε, ψε〉Ω =
∫

Ω

p̃ε∇x · ψε →
∫

Ω

∫
Y
pC∇x · ψ(x, y) dx dy as ε → 0.

The above limit and Proposition 4 imply

∫
Ω

∫
Y

1

r
|Dy(ψ)|r dx dy −

∫
Ω

∫
Y

1

r
|Dy(vC0 )|r dx dy ≥

〈f − ∇pC(x),
∫
Y
(ψ − vC0 ) dy〉Ω. (83)

After recalling Minty’s lemma, using de Rham’s formula yields

−∇y · {(1 + λ2
0|Dy(vC0 )|2)r/2−1Dy(vC0 )} + ∇yπ(x, y) = f − ∇pC(x) in YF

∇y · vC0 = 0 in YF, vC0 = 0 on S,

and (40) is justified.�
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Therefore we justified rigorously the two-pressures Carreau-Newtonian Stokes
problem. The uniqueness theorem from Sect. 2.1 implies that the whole sequence
converges towards {vC0 , pC} = {v0, p0}.
Remark 9 We note that other scalings are discussed in [20]. In other cases,
depending on the scaling of λ, the limit could be either the classical Darcy law
or the power law.

4.2 A Priori Estimates and the Two-Scale Convergence
for the Case of the Bingham Flow

In the case of the Bingham flow through a porous medium we study variational
problem (49). The proofs follow reference [19].

Find uε ∈ V(Ωε) such that

2η0ε
2
∫

Ωε

D(uε) : D(ψ − uε) dx + 2gε
∫

Ωε

(
.
γ (ψ)− .

γ (uε)) dx ≥
∫

Ωε

f · (ψ − uε) dx, ∀ψ ∈ V(Ωε). (84)

and study the behavior of the solution uε to problem (84) in the limit ε → 0.
We start with estimates for the velocity uε , then we obtain a priori estimates for

the pressure and extend the pressure to the solid part of the porous medium.

Proposition 11 Let (uε, pε) be a solution for (49). Then we have

‖uε‖L2(Ωε)3 ≤ C, (85)

ε‖∇uε‖L2(Ωε)9 ≤ C, (86)

‖∇pε‖H−1(Ωε)3 ≤ Cε. (87)

Proof Proof of the estimates (85) and (86) is obtained by taking the solution uε as
a test function in (49). Next, from (49)) we get the inequality

| < ∇pε, v >Ωε | ≤ |( f , v)Ωε | + |2η0ε
2
∫

Ωε

D(uε) : D(ψ) dx| + g
√

2ε

∫
Ωε

|D(v)| dx
(88)

and (87) follows.�
We extend velocity uε by zero to the Ω \ Ωε and denote the extension by the

same symbol. Obviously estimates (85) and (86) remain valid and the extension is
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divergence free too. The extension of the pressure pε is constructed as before and
we summarize its properties in the following lemma:

Proposition 12 The pressure extension p̃ε ∈ L2
0(Ω) of the function pε, defined

by (60) satisfies the estimate

‖p̃ε‖L2(Ω) + ‖∇p̃ε‖H−1(Ω)3 ≤ C. (89)

Furthermore for arbitrary sequence {wε} ⊂ L2
0(Ω)3, which converges weakly to 0,

we have
∫

Ω

p̃εw
ε → 0 as ε → 0. (90)

Proposition 13 Let {uε, pε} be the corresponding solutions of the Bingham sys-
tem (49). Then there exist subsequences of {uε} and {p̃ε} (again denoted by the same
symbols) and functions uB

0 ∈ L2(Ω × Y)3, pB ∈ L2
0(Ω) and ∇yuB

0 ∈ L2(Ω × Y)9

such that

uε → uB
0 in the two-scale sense in L2, (91)

ε∇uε → ∇yuB
0 ∈ Lr(Ω × Y)9 in the two-scale sense in L2, (92)

uε → uB =
∫
YF

uB
0 dy weakly in L2(Ω)3, (93)

p̃ε → pB in L2
0(Ω), (94)

as ε → 0.

Derivation of the macro and micro level mass conservation laws in the case of
the Bingham flow is exactly the same as before. Only passing to the limit in the
momentum equation is different.

Proposition 14 Let

V( YF) = {ψ | ψ ∈ H1
per( YF)3, ψ = 0 on S, ∇y · ψ = 0 in YF},

W = {φ | φ ∈ L2(Ω;V( YF)), ∇x ·
∫
YF

φ dy = 0 in Ω

and n ·
∫
YF

φ dv = 0 on ∂Ω}.
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The functions uB
0 ∈ W and pB defined, respectively, by (91) and (94) satisfy the

following two-pressures Bingham variational inequality

2η0

∫
YF

Dy(uB
0 ) : D(ψ − uB

0 ) dy + 2g
∫
YF

(
.
γ y (ψ)− .

γ y (uB
0 )) dx ≥

∫
YF

(f − ∇xp
B) · (ψ − uB

0 ) dx, ∀ψ ∈ V( YF). (95)

Proof We choose ψ ∈ C∞
0

(
Ω;C∞

per(YF)
)3 such that ψ(x, y) = 0 on S for (a.e.)

x ∈ Ω, ∇y · ψ = 0 in YF and define ψε(x) = ψ(x, x
ε
).

Then we write (49) in the form

2η0ε
2
∫

Ωε

D(uε) : D(ψε) dx +
∫

Ωε

(g
√

2ε|D(ψε)| − pε∇x · ψε − f · ψε) dx ≥
∫

Ωε

(2η0ε
2|D(uε)|2 + g

√
2ε|D(uε)| − f · uε) dx, (96)

Next as ε → 0 we get

∫
Ω

p̃ε∇x · ψε →
∫

Ω

∫
Y
pB(x)∇x · ψ(x, y) dx dy, (97)

∫
Ωε

gε|D(ψε)| dx →
∫

Ω

∫
YF

g|Dy(ψ)| dy. (98)

Next

2η0ε
2
∫

Ωε

D(uε) : D(ψε) dx →
∫

Ω

∫
YF

2η0Dy(uB
0 ) : Dy(ψ) dydx, (99)

∫
Ωε

(2η0ε
2|D(uε)|2 + g

√
2ε|D(uε)|) dx ≥

∫
Ω

∫
YF

(2η0|Dy(uB
0 )|2 + g

√
2|Dy(uB

0 )|) dydx as ε → 0. (100)

Hence we passed to the limit in all terms and the Proposition is proved.�
Therefore we justified rigorously the two-pressures Bingham-Stokes prob-
lem (95), (41)–(44). The uniqueness theorem from [44] implies that the whole
sequence converges towards {uB

0 , pB}.
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4.3 Concluding Remarks on Filtration Laws
for Non-Newtonian Fluids

(a) Solving cell problems in the case of the quasi-Newtonian and Bingham flows
poses numerical difficulties. See [36] for an efficient numerical method and
[22] for an analytic study of the filtration laws, corresponding to the power and
Carreau law viscosities.

(b) For the ( formal) homogenization of a linear Oldroyd fluid in a bundle of
capillary tubes at low Reynolds and Deborah numbers see [42] . Very little
is known concerning filtration laws for non-Newtonian fluids, which are more
complicated than the quasi-Newtonian ones discussed in this chapter.

(c) Homogenization in Orlicz spaces of the quasi-Newtonian flow equations with
more general viscosity laws, was undertaken in [40]. Some viscosity laws, as
e.g. Ellis’ law

ηr(
.
γ ) = η0

1 + (
.
γ ηr(

.
γ ))α−1/τα−1

1/2

(101)

enter into the implicit constitutive laws considered in [24].
(d) An interesting open question is to get a corrector result of the type ε−r/(r−1)vε

−v0(x, x/ε) → 0 in Lr(Ω)3, as ε → 0. For the Newtonian case we refer to [6].

5 Homogenization of the Linearized Ionic Transport
Equations in Rigid Periodic Porous Media

The quasi-static transport of an electrolyte through an electrically charged porous
medium is an important and well-known multiscale problem in geosciences and
porous materials modeling. An N-component electrolyte is a dilute solution of N
species of charged particles, or ions, in a fluid which saturates a charged porous
medium. The porous medium can be either rigid or deformable.

The overall behavior of such a system is controlled by several phenomena. First
there is an effective filtration. It is caused by the hydrodynamic flow in the pore
space, heavily influenced by the charge distributions of the system. Second, there is
a migration of ions because of an electric field. Third, the diffusive transport of the
ions takes place. Finally, we have to take into account electrokinetic phenomena due
to the electric double layer (EDL) which is formed as a result of the interaction of
the electrolyte solution neutralizing the charge of the solid phase at the pore solid-
liquid interface.

The EDL can be split into several parts, depending on the strength of the electro-
static coupling. There is a condensed layer of heavily adsorbed ions depending on
the molecular nature of the interface. It is generally known as the Stern layer and its
characteristic width (the Gouy length) is typically less than one nanometer. Adjacent
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to the Stern layer the electrostatic diffuse layer or Debye’s layer is formed,
where the ion density varies. The EDL is the union of Stern and diffuse layers. The
thickness of the diffuse layer is predicted by the Debye length λD which depends
on the electrolyte concentration. For low to moderate electrolyte concentrations λD
is in the nanometric range. Outside Debye’s layer, in the remaining bulk fluid, the
solvent can be considered as electrically neutral.

A detailed, mathematically oriented, presentation of the fundamental concepts of
electroosmotic flow in nanochannels can be found in the book [41] by Karniadakis
et al., pages 447–470, from which we borrow the notations and definitions.

In the case of porous media with large pores, the electro-osmotic effects are
modeled by introducing an effective slip velocity (the Smoluchowski slip) at the
solid-liquid interfaces. Such models are not valid for numerous systems, such as
clays because the characteristic pore size is also of the order of the EDL size (a
few hundreds of nanometers or even less). Therefore the Debye’s layer fills largely
the pores and its effect cannot anymore be modeled by an effective slip boundary
condition at the liquid-solid interface.

In this section, we consider continuum physics equations as the right model
for the description of porous media at the pore scale where the EDL phenomena
and the pore geometry interact and will search to upscale them. It would allow
to derive and validate the macroscopic models used for engineering simulations
(see the works of Adler and collaborators [2, 3, 15, 29, 37, 51, 70]). The typical
length scale for which the continuum mechanics equations are valid is confirmed
to be both experimentally (see e.g. [26]) and theoretically [31, 52] close to 1 nm.
Therefore, at the microscopic level we couple the incompressible Stokes equations
for the fluid with the electrokinetic model made of a global electrostatic equation
and one convection-diffusion equation for each type of ions of an N-component
electrolyte in a dilute Newtonian solvent.

We start with the following mass conservation laws

div
(

ji + vni
)

= 0 in Ωp, i = 1, . . . ,N, (102)

where Ωp is the pore space of the porous medium, i denotes the solute species, v is
the hydrodynamic velocity and ni is the ith species concentration. For each species
i, vni is its convective flux and ji its migration-diffusion flux.

The solute velocity satisfies the incompressible Stokes equations with a forcing
term consisting of an exterior hydrodynamical force f and of the electric force

ηΔv = f + ∇p + e
N∑
j=1

zjnj∇Ψ in Ωp, (103)

div v = 0 in Ωp and v = 0 on ∂Ωp \ ∂Ω, (104)
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where η > 0 is the shear viscosity, f is the external body force, p is the pressure,
e is the elementary charge, zi is the charge number of the species i and Ψ is the
electrostatic potential.

We assume that all valencies zj are different integers. If not, we lump together
different ions with the same valency. We rank them by increasing order and
we assume that they are both anions and cations, namely positive and negative
valencies,

z1 < z2 < . . . < zN , z1 < 0 < zN, (105)

and we denote by j+ and j− the sets of positive and negative valencies.
The migration-diffusion flux ji is given by the following semi-linear relationship

ji = −
N∑
j=1

Lij(n1, . . . , nN)
(∇μj + zje∇Ψ

)
, i = 1, . . . ,N, (106)

where Lij(n1, . . . , nN) is the Onsager coefficient between i and j and μj is the
chemical potential of the species j given by

μj = μ0
j + kBT ln nj + kBT ln γj(n1, . . . , nN), j = 1, . . . ,N, (107)

with γj being the activity coefficient of the species j, kB is the Boltzmann constant,
μ0
j is the standard chemical potential expressed at infinite dilution and T is the

absolute temperature. The Onsager tensor
[
Lij
]

consists of the linear Onsager
coefficients describing interactions between the species i and j. It is symmetric and
positive definite. Furthermore, on the fluid/solid interfaces the no-flux condition is
imposed

ji · ν = 0 on ∂Ωp \ ∂Ω, i = 1, . . . ,N. (108)

The electrostatic potential is calculated from Poisson equation with the electric
charge density as the bulk source term

EΔΨ = −e
N∑
j=1

zjnj in Ωp, (109)

where E is the dielectric constant of the solvent. The surface charge Σ is assumed
to be given at the pores boundaries and the boundary condition reads

E∇Ψ · ν = −Σ on ∂Ωp \ ∂Ω, (110)

where ν is the unit exterior normal to Ωp.
The various parameters appearing in (102)–(110) are defined in Table 1.
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Table 1 Data description

Quantity Characteristic value

e Electron charge 1.6e−19 C (Coulomb)

D0
i Diffusivity of the ith species D0

i ∈ (1.333, 2.032)e−09 m2/s

kB Boltzmann constant 1.38e−23 J/K

nc Characteristic concentration (6.02 1024, 6.02 1026) particles/m3

T Temperature 293◦K (Kelvin)

E Dielectric constant 6.93e−10 C/(mV)

η Dynamic viscosity 1e−3 kg/(m s)

� Pore size 5e−9 m

λD Debye’s length
√
E kBT/(e2nc) ∈ (0.042, 0.42) nm

zj j-th electrolyte valence Given integer

Σ Surface charge density 0.129 C/m2 (clays)

f Given applied force N/m3

σj j-th hard sphere diameter 2e−10 m

Ψc Characteristic electrokinetic potential 0.02527 V (Volt)

LB Bjerrum length 7.3e−10 m

The activity coefficients γi and the Onsager coefficients Lij depend on the
electrolyte. The large majority of theoretical works are concerned with a simple
(so-called ideal) descriptions of charged porous media. It is based on the Poisson-
Nernst-Planck formalism for which the local activity coefficients of ions are
neglected and the transport properties are modeled solely from the mobility at
infinite dilution. In the ideal description we have

γi = 1 and Lij = δijniD
0
i /(kBT),

where D0
i > 0 is the diffusion coefficient of species i at infinite dilution.

In this section we will suppose that we have an infinite dilution, i.e. an ideal
description.

Remark 10 At finite concentration, the non-ideal effects modify the ion transport
and they are to be taken into account if a good quantitative description of the system
is required. Different models can be used and a widely accepted model is the Mean
Spherical Approximation (MSA) in its simplified form from [30]. It is valid if the
diameters of the ions are not too different. The activity coefficients read

ln γj = − LBΓ z2
j

1 + Γ σj
+ ln γHS, j = 1, . . . ,N, (111)

where σj is the j-th ion diameter, LB is the Bjerrum length, γHS is the hard sphere
term defined by (113), and Γ is the MSA screening parameter defined by

Γ 2 = πLB

N∑
k=1

nkz2
k

(1 + Γ σk)2
. (112)
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For dilute solutions, i.e., when all nj are small, we have

2Γ ≈ κ = 1

λD
with λD =

√
E kBT

e2
∑N

k=1 nkz
2
k

,

where λD is the Debye length. Thus, 1/2Γ generalizes λD at finite concentration
and it represents the size of the ionic spheres when the ion diameters σi are different
from zero. In (111) γHS is the hard sphere term given by

ln γHS = p(ξ) ≡ ξ
8 − 9ξ + 3ξ2

(1 − ξ)3 , with ξ = π

6

N∑
k=1

nkσ
3
k , (113)

where ξ is the solute packing fraction.
The Onsager coefficients Lij are given by

Lij(n1, . . . , nN) = ni

(
D0
i

kBT
δij + Θij

)(
1 + Rij

)
, i, j = 1, . . . ,N, (114)

where Θij = Θc
ij + ΘHS

ij stands for the hydrodynamic interactions in the MSA
formalism. It is divided into two terms: the Coulomb part is

Θc
ij = − 1

3η

zizjLBnj

(1 + Γ σi)(1 + Γ σj)

(
Γ +

N∑
k=1

nk
πLBz2

kσk

(1 + Γ σk)2

) , (115)

and the hard sphere part is

ΘHS
ij = −

(
σi + σj

)2
12η

nj
1 − Ỹ3/5 + (Ỹ3)

2/10

1 + 2Ỹ3
, (116)

with

Ỹ3 = π

6

N∑
i=1

ni
3Y1Y2 + Y3Y0

4Y2
0

and Yk = π

6

N∑
i=1

niσ
k
i . (117)

In (114) Rij is the electrostatic relaxation term given by

Rij = κ2
qe

2zizj
3E kBT(σi + σj)(1 + Γ σi)(1 + Γ σj)

1 − e−2κq(σi+σj)

κ2
q + 2Γ κq + 2Γ 2 − 2πLB

N∑
k=1

nk
z2ke

−κqσk

(1 + Γ σk)
2

(118)
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where κq > 0 is defined by

κ2
q = e2

E kBT

∑N
i=1 niz

2
i D

0
i∑N

i=1 D
0
i

. (119)

Note that when the concentrations nj are small, all entries Lij are first order
perturbations of the ideal values δijniD0

i /(kBT) and thus the Onsager tensor is
positive at first order.

Remark 11 Homogenization of the non-ideal MSA model was undertaken in [14].

At the outer boundary of the porous medium we set

Ψ + Ψ ext(x) , ni , v and p are Ω − periodic. (120)

The applied exterior potential Ψ ext(x) can typically be linear, equal to E · x, where
E is an imposed electrical field. Note that the applied exterior force f in the Stokes
equations (103) can also be interpreted as some imposed pressure drop or gravity
force. Due to the complexity of the geometry and of the equations, it is necessary
for engineering applications to upscale the system (102)–(110), (120) and to replace
the flow equations with a Darcy type law, including electro-osmotic effects.

A representative class of porous media are those having a periodic microstruc-
ture. We suppose the same periodic microstructure as in Sect. 2.2. For such media,
and in the ideal case, formal two-scale asymptotic analysis of system (102)–
(110), (120) has been performed in many previous papers. Many of these works
rely on a preliminary linearization of the problem, introduced by O’Brien et al.
[63]. Let us mention in particular the work of Looker and Carnie in [47], where the
formal two-scale expansions were undertaken and the resulting Onsager relations
written explicitly. We will present the rigorous justification of the homogenization
result, following article [9]. The numerical experiments are provided in [13]. Other
relevant references include [68, 69, 76, 77] and [78] .

Remark 12 in this review we will consider only rigid porous media. In many impor-
tant applications porous media are deformable. Derivations of the homogenized
models for deformable charge porous media were undertaken by Moyne and Murad
in [56–60]. For a mathematically rigourous analysis we refer to [12].

The goal of the section is to present the results from [9] and [13], providing
the homogenized system for a semi-linearized version of (102)–(110), (120) in
a rigid periodic porous medium. The semi-linearization means that we study the
solutions being a perturbation of a so-called equilibrium solution which satisfies the
full nonlinear system (102)–(110), (120) with vanishing fluxes.

The homogenized system is an elliptic system of (N + 1) equations

− divxM∇( p0, {μj}1≤j≤N) = S in Ω, (121)
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where p0 is the pressure, μj the chemical potential of the j-th species, M the
Onsager homogenized tensor and S a source term. Our goal is to derive rigorously
Eq. (121).

Before studying its homogenization, we need a dimensionless form of the
Eqs. (102)–(110), (120). We follow the same approach as in [9] and [13]. The known
data are listed in Table 1 and concern the characteristic pore size �, the characteristic
domain size L, the surface charge density Σ (having the characteristic value Σc), the
characteristic concentrations nc, the static electrical potential Ψ ext and the applied
fluid force f. As usual, we introduce a small parameter ε which is the ratio between
the pore size and the medium size, ε = �/L << 1.

Table 1 permits calculating Debye’s length λD = √
E kBT/(e2nc). Following

[41], we introduce the characteristic potential ζ = kBT/e and the parameter β

related to the Debye-Hückel parameter κ = 1/λD, is given by β =
(

�

λD

)2

.

Next we rescale the space variable by setting x′ = x/L (we shall drop the primes
for simplicity in the sequel). The pore space becomes Ωε = Ωp/L which is a
periodically perforated domain with period ε. Still following [41], we define other
characteristic quantities

Γc = √πLBnc, pc = nckBT, uc = ε2 kBTncL

η
,

where pc is a pressure equilibrating the electrokinetic forces in (103) and uc is the
velocity corresponding to a Poiseuille flow in a tube of diameter �, length L and
pressure drop pc. We also introduce adimensionalized forcing terms

Ψ ext,∗ = eΨ ext

kBT
, f∗ = fL

pc
, Σ∗ = Σ

Σc
, Nσ = eΣc�

E kBT
,

and adimensionalized unknowns

pε = p

pc
, vε = v

uc
, Ψ ε = eΨ

kBT
, nε

j = nj
nc

, jεj = jjL

ncD0
j

.

The dimensionless equations for hydrodynamical and electrostatic part are thus

ε2Δvε − ∇pε = f∗ +
N∑
j=1

zjn
ε
j (x)∇Ψ ε in Ωε, (122)

vε = 0 on ∂Ωε \ ∂Ω, div vε = 0 in Ωε, (123)

−ε2ΔΨ ε = β

N∑
j=1

zjn
ε
j (x) in Ωε, (124)
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ε∇Ψ ε · ν = −Nσ Σ∗ on ∂Ωε \ ∂Ω, (125)

(Ψ ε + Ψ ext,∗), nε
i , vε and pε are Ω − periodic in x, (126)

div

(
jεi + Pei nε

i vε

)
= 0 in Ωε, i = 1, . . . ,N, (127)

jεi · ν = 0 on ∂Ωε \ ∂Ω, i = 1, . . . ,N, (128)

jεi = −nε
i ∇Mε

i and Mε
i = ln

(
nε
i e

ziΨ ε
)

, i = 1, . . . ,N, (129)

where the Péclet number for the i-th species is Pei = ucL

D0
i

= O(1).

Remark 13 Existence results for a coupled Navier–Stokes–Nernst–Planck– Poisson
system are in [75].

Remark 14 After writing the dimensionless form, we are able to precise in which
sense the non-ideal MSA model from Remark 10 is close to the ideal case. The small
parameter is the characteristic value ξc = π

6
ncσ

3
c of the solute packing fraction,

where σc is the characteristic ion diameter. In [14] it was established that, under the
hypothesis that

bi = LB
σc

(Bjerrum’s parameter) and S = kBT

ηD0
cσc

are O(1), then the ideal case model is the vanishing solute packing fraction ξc
limit of our non-ideal MSA model. Note that small ξc means a low concentration,
weighted by the ion size. Namely, we have

(
D0
i

kBT
δij + Θij

)(
1 + Rij

)
= δij + O(

√
ξc), and ln γ ε

j = O(
√

ξc). (130)

5.1 Equilibrium Solution

The goal of this subsection is to find a so-called equilibrium solution of sys-
tem (122)–(129) when the exterior forces are vanishing f = 0 and Ψ ext = 0.
However, the surface charge density Σ∗ is not assumed to vanish or to be small. This
equilibrium solution will be a reference solution around which we shall linearize
system (122)–(129) in the next subsection.

Then we perform the homogenization of the (partially) linearized system. We
denote by n0,ε

i , Ψ 0,ε, v0,ε,M0,ε
i , p0,ε the equilibrium quantities.
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In the case f = 0 and Ψ ext = 0, one can find an equilibrium solution by choosing
a zero fluid velocity and taking all diffusion fluxes equal to zero. More precisely, we
require

v0,ε = 0 and ∇M0,ε
j = 0, (131)

which obviously implies that j0,ε
i = 0 and Eqs. (127)–(128) are satisfied. From

∇M0,ε
j = 0 and relations (129) we deduce that there exists constant n0

j (∞) > 0
such that

n0,ε
j (x) = n0

j (∞) exp{−zjΨ
0,ε(x)}. (132)

The Stokes equation (122) shall give the corresponding value of the pressure
satisfying

∇p0,ε(x) = −
N∑
j=1

zjn
0,ε
j (x)∇Ψ 0,ε(x) ⇒ p0,ε(x) =

N∑
j=1

n0
j (∞)(x)e−zjΨ 0,ε (x).

The value n0
j (∞) is the reservoir concentration (also called the infinite dilute

concentration) which will be later assumed to satisfy the bulk electroneutrality
condition for zero potential.

Then electrostatic equation (124) reduces to the Poisson-Boltzmann equation
which is a nonlinear partial differential equation for the unknown Ψ 0,ε

⎧⎪⎪⎨
⎪⎪⎩

−ε2ΔΨ 0,ε = β

N∑
j=1

zjn
0
j (∞) exp

{
−zjΨ

0,ε
}

in Ωε,

ε∇Ψ 0,ε · ν = −Nσ Σ∗(
x

ε
) on ∂Ωε \ ∂Ω, Ψ 0,ε is Ω − periodic.

(133)

We note that problem (133) is equivalent to the following minimization problem:

inf
ϕ∈Vε

Jε(ϕ), (134)

with Vε = {ϕ ∈ H1(Ωε), ϕ is Ω − periodic} and

Jε(ϕ) = ε2

2

∫
Ωε

|∇ϕ|2 dx + β

N∑
j=1

∫
Ωε

n0
j (∞)e−zjφ dx + εNσ

∫
Γ ε

Σ∗(x
ε
)ϕ dS.

The functional Jε is strictly convex, which gives the uniqueness of the minimizer.
Nevertheless, for arbitrary non-negative β, n0

j (∞) and Nσ , Jε may be not coercive
on Vε if all zj’s have the same sign (take ϕ to be constant, of the same sign as the zj’s
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and tending to infinity). Therefore, we must put a condition on the zj’s so that the
minimization problem (134) admits a solution. Following the literature, we impose
the bulk electroneutrality condition

N∑
j=1

zjn
0
j (∞) = 0, (135)

which guarantees that for Σ∗ = 0, the unique solution is Ψ 0,ε = 0. Under (135) it
is easy to see that Jε is coercive on Vε .

We recall that we suppose a periodic porous medium as introduced in Sect. 2.2.
By the uniqueness, Ψ 0,ε(x) = Ψ 0(x/ε), where Ψ 0(y) is a solution to the problem

inf
ϕ∈V J(ϕ), (136)

with V = {ϕ ∈ H1(YF), ϕ is 1 − periodic} and

J(ϕ) = 1

2

∫
YF

|∇yϕ( y)|2 dy + β

N∑
j=1

∫
YF

ncj exp{−zjϕ} dy + Nσ

∫
S
Σ∗( y)ϕ dS.

Note that J is strictly convex, which gives the uniqueness of the minimizer. Under
condition (135) it is easy to see that J is coercive on V .

Next difficulty is with the continuity of the functional J. In fact it is not defined on
V , but on its proper subspace V1 = {ϕ ∈ H1(YF), exp{maxj |zj||ϕ|} ∈ L1(YF)}. This
situation complicates the solvability of problem (136). The corresponding existence
result was established in [46], using a penalization, with a cut-off of the nonlinear
terms and applying the theory of pseudo-monotone operators. It reads as follows:

Lemma 5 ([46]) Assume that the bulk electroneutrality condition (135) holds true
and Σ∗ ∈ L2(S). Then problem (136) has a unique solution Ψ 0 ∈ V such that

N∑
j=1

zje
−zjΨ 0 ∈ L1( YF) and Ψ 0

N∑
j=1

zje
−zjΨ 0 ∈ L1( YF).

We need that n0
j = ncj exp{−zjΨ 0} satisfies the lower bound n0

j (y) ≥ C > 0

in YF . It is a consequence of the L∞-estimate for Ψ 0 from [11], proved by using
elementary comparison arguments (a similar result is also proved in [35]).

It is based on the comparison with the solution to the following auxiliary
Neumann problem

⎧⎪⎪⎨
⎪⎪⎩

−ΔU = 1

| YF|
∫
S
Σ∗ dS in YF,

∇U · ν = −Σ∗ on S,
U is 1 − periodic,

∫
YF

U( y) dy = 0.

(137)
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Problem (137) admits a unique solution U ∈ H1
per(YF) ∩ C(YF). If Σ∗ and S are

C∞, then U is C∞ as well. U achieves its minimum and maximum in YF .
The L∞-bound for Ψ 0 reads as follows

Proposition 15 (See [11]) The solution Ψ 0 of problem (136) satisfies the following
bounds

U( y) − Um − 1

z1
log max

⎛
⎝1,

σ

βz1n0
1(∞)

−
∑
j∈j+

zjn0
j (∞)

z1n0
1(∞)

⎞
⎠ ≥ Ψ 0( y) ≥

U( y) − UM − 1

zN
log max

⎛
⎝1,

σ

βzNn0
N(∞)

−
∑
j∈j−

zjn0
j (∞)

zNn0
N(∞)

⎞
⎠ , (138)

where the symbols j+ and j− denote the sets of positive and negative valences,
respectively, and

σ = 1

| YF|
∫
S
Σ∗ dS , Um = min

y∈YF
U( y) and UM = max

y∈YF
U( y).

By classical regularity theory for elliptic partial differential equations, we easily
deduce that for S ∈ C∞ and σ ∈ C∞

per(S), Ψ 0 ∈ C∞(ȲF).

Remark 15 In [11] the asymptotic analysis of (136), when β goes to zero, was
undertaken. This case corresponds to very small pores, � << λD. The asymptotic
regime depends on the sign of the averaged charge

∫
S Σ∗ dS. If it is negative (which

means that the surface is positively charged), then only the anion with the most
negative valence (z1) is important and that the potential behaves as

Ψ 0 ≈ log β

z1
+ ϕ0,

where ϕ0 is the solution of the reduced system, involving only the species 1,{
Δϕ0 = −z1n

0
1(∞)e−z1ϕ0 in the bulkYF,

∇ϕ0 · ν = −Σ∗( y) on the surface S.

As a consequence, the cation concentrations go to zero while the ion concentrations
blow up as nj = O(β−zj/z1) and n1 >> nj for j �= 1.

Remark 16 The opposite situation, when β goes to infinity, was also addressed in
[11]. This scaling corresponds to very large pores, � >> λD. The Debye’s layer,
describing the behavior of the solution close to the surface, was constructed in a
general geometric setting and a rigorous error estimate was given. If we choose the
characteristic concentration nc = ∑N

k=1 z
2
kn

0
k(∞), then

∑N
k=1 z

2
kn

0
k(∞) = 1 and

locally, close to the surface, the potential behaves as

Ψ ( y) ≈ −Σ∗
√

β
exp

{
−d( y)

√
β
}

,
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where d(y) is the distance between the point y and the surface. Away from
the surface, the concentrations nj are constant and satisfy the so-called bulk
electroneutrality condition.

The boundary condition for the electrostatic interaction between the two phases
is very often simplified by replacing surface charge Σ∗, which corresponds to the
chemistry of the system, by a surface potential. Its boundary value at the no slip
plane is known as the zeta potential ζ . In [11] the asymptotic behavior for large β

was established. It is again a boundary layer but with a totally different profile. More
precisely we established

Ψ ( y) ≈ Ψ0,ζ

(√
βd( y)

)

where d(y) is the distance between the point y and the surface and Ψ0,ζ is the
solution of the nonlinear ordinary differential equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ψ0,ζ |ξ=0 = ζ, C (x) =
N∑
j=1

n0
j (∞)e−zjx

d

dξ
Ψ0,ζ = −2 sign(ζ )

√
C (Ψ0,ζ ) − C (0).

(139)

which, starting from the boundary value ζ on the surface, is exponentially decaying
at infinity. In many situations, the explicit solutions for Ψ0,ζ are known. For
example, in the case −z1 = 1 = z2 and n0

1(∞) = n0
2(∞) = 1/2, we have the

following Gouy-Chapman solution

Ψ0,ζ (q
′, ξ) = 2 ln

1 + tanh(ζ/2)e−ξ

1 − tanh(ζ/2)e−ξ
.

Hence in the case of given potential at the boundary the normal component of the
electrical field will behave as

√
β, which is unrealistic. In fact, it is rather the surface

charge density Σ , proportional to the normal derivative of Ψ , than ζ , which is the
relevant parameter for the physical modeling.

5.2 Linearization and the a Priori Estimates
for the Perturbation

We now proceed to the linearization of electrokinetic equations (122)–(129) around
the equilibrium solution computed in Sect. 5.1. We therefore assume that the
external forces, namely the static electric potential Ψ ext(x) and the hydrodynamic
force f(x), are small. Note that the surface charge density Σ∗ on the pore walls Γ ε

need not to be small since it is part of the equilibrium problem. Such a linearization
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process is classical in the ideal case (see the seminal paper [63] by O’Brien et al.).
For small exterior forces, we write the perturbed electrokinetic unknowns as

nε
i (x) = n0,ε

i (x) + δnε
i (x), Ψ ε(x) = Ψ 0,ε(x) + δΨ ε(x),

vε(x) = vs0,ε(x) + δvε(x), pε(x) = p0,ε(x) + δpε(x),

where n0,ε
i , Ψ 0,ε, v0,ε, p0,ε are the equilibrium quantities, corresponding to f = 0

and Ψ ext = 0. The δ prefix indicates a perturbation. Since the equilibrium velocity
vanishes v0,ε = 0, we identify in the sequel vε = δvε.

Motivated by the form of the Boltzmann equilibrium distribution and the
calculation of n0,ε

i , we follow the lead of [63] and introduce a so-called ionic
potential Φε

i which is defined in terms of nε
i by

nε
i (x) = n0

i (∞) exp{−zi(Ψ
ε(x) + Φε

i (x) + Ψ ext,∗(x))}, (140)

After linearization (140) yields

δnε
i (x) = −zin

0,ε
i (x)(δΨ ε(x) + Φε

i (x) + Ψ ext,∗(x)). (141)

Introducing (141) into (122)–(127) and linearizing yields the following equations
for δΨ ε , δvε, δpε and Φε

i

−ε2Δ(δΨ ε) + β

( N∑
j=1

z2
j n

0,ε
j (x)

)
δΨ ε =

−β

( N∑
j=1

z2
j n

0,ε
j (x)(Φε

j + Ψ ext,∗)
)

in Ωε, (142)

ε∇δΨ ε · ν = 0 on ∂Ωε \ ∂Ω, (143)

δΨ ε(x) + Ψ ext,∗(x) is Ω − periodic, (144)

ε2Δδvε − ∇
(

δpε +
N∑
j=1

zjn
0,ε
j (δΨ ε + Φε

j + Ψ ext,∗)
)

=

f∗ −
N∑
j=1

zjn
0,ε
j (x)(∇Φε

j + E∗) in Ωε, (145)

div δvε = 0 in Ωε, δvε = 0 on ∂Ωε \ ∂Ω, (146)

δvε and δpε are Ω − periodic. (147)
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Note that the perturbed velocity is actually equal to the overall velocity and that it is
convenient to introduce a global pressure Pε

δvε = vε, Pε = δpε +
N∑
j=1

zjn
0,ε
j

(
δΨ ε + Φε

j + Ψ ext,∗) . (148)

A straightforward calculation yields for Φε
j

div
(
n0,ε
j (x)

(∇Φε
j + E∗ + Pej

zj
vε
)) = 0 in Ωε, (149)

(∇Φε
j + E∗) · ν = 0 on ∂Ωε \ ∂Ω, (150)

Φε
j is Ω − periodic. (151)

δΨ ε does not enter Eqs. (145)–(147), (149)–(151) and thus is decoupled from the
main unknowns vε, Pε and Φε

i . The system (132), (133), (145)–(148), (149)–(151)
is the same microscopic linearized system for the ionic transport as in the work of
Looker and Carnie [47].

Next, we establish the variational formulation of system (145)–(147), (149)–
(151) for the unknowns {vε,Pε, {Φε

j }j=1,...,N} and prove that it admits a unique
solution. The functional spaces related to the velocity field are

Wε = {g ∈ H1(Ωε)
3, g = 0 on ∂Ωε \ ∂Ω, Ω − periodic in x}

and

Hε = {g ∈ Wε, div g = 0 in Ωε}.
The variational formulation of (145)–(151) is:

Find vε ∈ Hε and {Φε
j }j=1,...,N ∈ H1(Ωε)

N , Φε
j being Ω-periodic, such that, for

any test functions g ∈ Hε and b ∈ H1(Ωε)
N , b being Ω-periodic,

a
(
(vε, {Φε

j }), (g, b)
)

= 〈L , (g, b)〉,

where the bilinear form a and the linear form L are defined by

a
(
(vε, {Φε

j }), (g, b)
)

:= ε2
∫

Ωε

∇vε : ∇g dx +
N∑
i=1

z2
i

Pei

∫
Ωε

n0,ε
i ∇Φε

i · ∇bi dx

+
N∑
j=1

zj

∫
Ωε

n0,ε
j

(
vε · ∇bj − g · ∇Φε

j

)
dx, (152)

〈L , (g, b)〉 :=
N∑
i=1

zi

∫
Ωε

n0,ε
i E∗ ·

(
g − zi

Pei
∇φi

)
dx −

∫
Ωε

f∗ · v dx, (153)
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where, for simplicity, we denote by E∗ the electric field corresponding to the
potential Ψ ext,∗, i.e., E∗(x) = ∇Ψ ext,∗(x).

Lemma 6 (See [9]) Let E∗ and f∗ be given elements of L2(Ω)3. The variational
formulation (152)–(153) admits a unique solution (vε, {Φε

j }) ∈ Hε × H1(Ωε)
3,

such that Φε
j are 1-periodic and

∫
Ωε

Φε
j (x) dx = 0. Furthermore, there exists a

positive constant C, independent of ε, such that

‖vε‖L2(Ωε)3 + ε‖∇vε‖L2(Ωε)9 + max
1≤j≤N

‖Φε
j ‖H1(Ωε)

≤

C

(
‖E∗‖L2(Ω)3 + ‖f∗‖L2(Ω)3

)
. (154)

Note that the a priori estimates (154) follow by testing the problem (152)–(153)
by the solution, using the L∞-estimate for Ψ 0 and using the well-known scaled
Poincaré inequality in Ωε (7).

In order to use the two-scale convergence from Sect. 3, we need that our
unknowns are (vε,Pε, {Φε

j }) are defined on Ω . As in Sect. 4, vε is extended by
zero to Ω \ Ωε. The pressure field is reconstructed using de Rham’s theorem
and extended by formula (60) from Sect. 4 to P̃ε, being uniformly bounded, with
respect to ε, in L2

0(Ω). For {Φε
j } we use an extension operator from the perforated

domain Ωε into Ω . As was proved in [1], under the assumptions on the geometry
from Sect. 2.2, there exists such an extension operator Tε from H1(Ωε) in H1(Ω)

satisfying Tε φ|Ωε = φ and the inequalities

‖Tεφ‖L2(Ω) ≤ C‖φ‖L2(Ωε)
, ‖∇(Tεφ)‖L2(Ω) ≤ C‖∇φ‖L2(Ωε)

with a constant C independent of ε, for any φ ∈ H1(Ωε). We keep for the extended
function Tε Φε

j the same notation Φε
j .

Hence the extensions satisfy estimates (154).

5.3 Homogenization via the Two-Scale Convergence

The formal two-scale asymptotic expansion method from Sects. 1 and 2 can be
applied to system (145)–(147), (149)–(151), as in [47] and [9]. Introducing the
fast variable y = x/ε, it assumes that the solution of (145)–(147), (149)–(151) is
given by

⎧⎨
⎩

vε(x) = v0(x, x/ε) + εv1(x, x/ε) + . . . ,

P̃ε(x) = p0(x) + εp1(x, x/ε) + . . . ,

Φε
j (x) = Φ0

j (x) + εΦ1
j (x, x/ε) + . . . .

(155)
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We then plug this ansatz in the Eqs. (145)–(147), (149)–(151). In the way analogous
to the calculations in Sect. 2, we identify the various powers of ε and obtain a
cascade of equations from which we retain only the leading ones that constitute
the two-scale homogenized problem. For details we refer to [47]. We will present a
rigorous passing to the limit using the two-scale convergence from Sect. 3.

Lemma 6 and the two-scale compactness Proposition 4 from Sect. 3 imply

Theorem 2 (See [9]) Under the assumptions of Lemma 6, there exist

(v0, p0) ∈ L2(Ω;H1
per( Y)3) × L2

0(Ω) and

{Φ0
j ,Φ

1
j }j=1,...,N ∈

(
H1(Ω) × L2(Ω;H1

per( Y))
)N

such that for a subsequence, denoted by the same indices, the solution of (145)–
(147), (149)–(151) converges in the following sense

vε → v0(x, y) in the two-scale sense

ε∇vε → ∇yv0(x, y) in the two-scale sense

P̃ε → p0(x) strongly in L2(Ω)

Φε
j → Φ0

j (x) weakly in H1(Ω) and strongly in L2(Ω)

∇Φε
j → ∇xΦ

0
j (x) + ∇yΦ

1
j (x, y) in the two-scale sense

n0,ε
j → n0

j (x, y) and Ψ 0,ε → Ψ 0( y)

in the two-scale sense in Lq, 1 < q < +∞, j = 1, . . . ,N.

Next we rewrite the variational problem (152)–(153) in the equivalent form, where
the velocity test function are not divergence-free and the pressure term is explicitly
present:

ε2
∫

Ωε

∇vε : ∇ξ dx −
∫

Ωε

pε div ξ dx +
N∑
j=1

∫
Ωε

zjn
0,ε
j

(− ξ · ∇Φε
j + vε · ∇bj

)
dx+

N∑
j=1

z2
j

Pej

∫
Ωε

n0,ε
j ∇Φε

j · ∇bj dx = −
N∑
j=1

z2
j

Pej

∫
Ωε

n0,ε
j E∗ · ∇bj dx

+
N∑
j=1

∫
Ωε

zjn
0,ε
j E∗ · ξ dx −

∫
Ωε

f∗ · ξ dx, (156)
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for any test functions ξ ∈ Wε and g ∈ H1(Ωε)
N , bj being 1-periodic, 1 ≤ j ≤ N.

We keep the divergence constraint div vε = 0 in Ωε. Next we define the two-scale
test functions:

ξε(x) = ξ(x,
x

ε
), ξ ∈ C∞

per(Ω;H1
per( Y)3),

ξ = 0 on Ω × S, divyξ(x, y) = 0 on Ω × Y, (157)

bε
j (x) = ϕj(x) + εγj(x,

x

ε
), ϕj ∈ C∞

per(Ω), γj ∈ C∞
per(Ω;H1

per( YF)). (158)

We take as test function in Eq. (156) (ξε, bε). Now we can pass to the limit in (156),
along the same lines as in Sect. 4. For the solution we use the convergences from
Theorem 2. After passing to the two-scale limit in (156) we get that the limit
(v0, p0, {Φ0

j ,Φ
1
j }) satisfy the following two-scale variational formulation:

Theorem 3 Let

(v0, p0) ∈ L2(Ω;H1
per( Y)3) × L2

0(Ω) and

{Φ0
j ,Φ

1
j }j=1,...,N ∈

(
H1(Ω) × L2(Ω;H1

per( Y))
)N

be a limit from Theorem 2 . Then it satisfies the two-scale two-pressures homoge-
nized problem

−Δyv0(x, y) + ∇yp
1(x, y) = −∇xp

0(x) − f∗(x)

+
N∑
j=1

zjn
0
j (y)

(
∇xΦ

0
j (x) + ∇yΦ

1
j (x, y) + E∗(x)

)
in Ω × YF, (159)

div yv0(x, y) = 0 in Ω × YF, v0(x, y) = 0 on Ω × S, (160)

divx

(∫
YF

v0(x, y) dy

)
= 0 in Ω, (161)

−divy

(
n0
i ( y)

(∇yΦ
1
i (x, y) + ∇xΦ

0
i (x) + E∗(x) + Pei

zi
v0(x, y)

)) = 0

in Ω × YF, i = 1, . . . ,N, (162)(∇yΦ
1
i + ∇xΦ

0
i + E∗) · ν( y) = 0 on Ω × S, i = 1, . . . ,N, (163)

−divx

∫
YF

n0
i ( y)

(∇yΦ
1
i (x, y) + ∇xΦ

0
i (x) + E∗(x)+

Pei
zi

v0(x, y)
)
dy = 0 in Ω, i = 1, . . . ,N, (164)

Φ0
i ,

∫
YF

v0 dy and p0 being Ω-periodic in x, (165)
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with periodic boundary conditions on the unit cell YF for all functions depending
on y and S = ∂YS \ ∂Y.

Remark 17 The limit problem features two incompressibility constraints (160)
and (161) which are exactly dual to the two pressures p0(x) and p1(x, y) which are
their corresponding Lagrange multipliers. Remark that Eqs. (159), (160) and (162)
are just the leading order terms in the ansatz of the original equations. On the other
hand, Eqs. (161) and (164) are averages on the unit cell YF of the next order terms
in the ansatz. For example, (161) is deduced from

divyv1(x, y) + divxv0(x, y) = 0 in Ω × YF

by averaging on YF , recalling that v1(x, y) = 0 on Ω × S.
The detailed proof of convergence and the derivation of the homogenized system

corresponds to Theorem 1 in [9]. The limiting procedure gives us the variational
form of problem (159)–(165) and it deserves to be recalled here in other to prove
the well-posedness of the two-scale homogenized problem.

Following [6], we introduce the functional space for the velocities

V = {v0(x, y) ∈ L2
per

(
Ω;H1

per( YF)3
)

satisfying (160)–(161)},

which is known to be orthogonal in L2
per

(
Ω;H1

per(YF)3
)

to the space of gradi-

ents of the form ∇xq(x) + ∇yq1(x, y) with q(x) ∈ H1
per(Ω)/R and q1(x, y) ∈

L2
per

(
Ω; L2

per(YF)/R
)

. We define the functional space

X = V × H1
per(Ω)/R × L2

per(Ω;H1
per( YF)d/R)

and the variational formulation of (159)–(165) is to find (v0, {Φ0
j ,Φ

1
j }) ∈ X such

that, for any test functions (v, {φ0
j , φ

1
j }) ∈ X,

a
(
(v0, {Φ0

j ,Φ
1
j }), (v, {φ0

j , φ
1
j })
)

= 〈L , (v, {φ0
j , φ

1
j })〉, (166)

where the bilinear form a and the linear form L are defined by

a
(
(v0, {Φ0

j ,Φ
1
j }), (v, {φ0

j , φ
1
j })
)

:=
∫

Ω

∫
YF

∇yv0 : ∇v dx dy

+
N∑
i=1

z2
i

Pei

∫
Ω

∫
YF

n0
i (∇xΦ

0
i + ∇yΦ

1
i ) · (∇xφ

0
i + ∇yφ

1
i ) dx dy (167)

+
N∑
j=1

zj

∫
Ω

∫
YF

n0
j

(
v0 · (∇xφ

0
j + ∇yφ

1
j ) − v · (∇xΦ

0
j + ∇yΦ

1
j )
)
dx dy
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and

< L , (v, {φj}) >:=
N∑
j=1

zj

∫
Ω

∫
YF

n0
j E∗ · v dx dy −

∫
Ω

∫
YF

f∗ · v dx dy

−
N∑
i=1

z2
i

Pei

∫
Ω

∫
YF

n0
i E∗ · (∇xφ

0
i + ∇yφ

1
i ) dx dy,

We apply the Lax-Milgram lemma to prove the existence and uniqueness of the
solution in X of (166). The only point which requires to be checked is the coercivity
of the bilinear form. We take v = v0, φ0

j = Φ0
j and φ1

j = Φ1
j as the test functions

in (166).
Using the incompressibility constraints (161) and the anti-symmetry of the third

integral in (167), we obtain the quadratic form

a
(
(v0, {Φ0

j ,Φ
1
j }), (v0, {Φ0

j ,Φ
1
j })
)

=
∫

Ω×YF
|∇yv0(x, y)|2 dxdy+

N∑
j=1

z2
j

Pej

∫
Ω×YF

n0
j ( y)|∇xΦ

0
j (x) + ∇yΦ

1
j (x, y)|2 dxdy. (168)

Recalling from Lemma 5 that n0
j (y) ≥ C > 0 in YF , it is easy to check that each

term in the sum on the second line of (168) is bounded from below by

C

(∫
Ω

|∇xΦ
0
j (x)|2 dx +

∫
Ω×YF

|∇yΦ
1
j (x, y)|2 dxdy

)
,

which proves that our bilinear form is V-elliptic.
Hence we have proved

Theorem 4 Problem (159)–(165) has a unique solution

(v0, p0) ∈ L2(Ω;H1
per( Y)3) × L2

0(Ω) and

{Φ0
j ,Φ

1
j }j=1,...,N ∈

(
H1(Ω) × L2(Ω;H1

per( Y))
)N

.

and whole sequence (vε, P̃ε, {Φε
j }) converges towards it.

5.4 The Separation of the Fast and the Slow Scales
and the Onsager Relations

From the point of view of applications, it is important to extract from (159)–(165)
the macroscopic homogenized problem. Obviously, it requires to separate the fast
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and slow scale. It was undertaken by Looker and Carnie in [47] and further improved
in [9] and [13].

The main idea is to recognize in the two-scale homogenized problem (159)–
(165) that there are two different macroscopic fluxes, namely (∇xp0(x) + f∗(x)) and
{∇xΦ

0
j (x) + E∗(x)}1≤j≤N. Therefore we introduce two families of cell problems,

indexed by k ∈ {1, 2, 3} for each component of these fluxes. We denote by {ek}1≤k≤3
the canonical basis of R3.

The first cell problem, corresponding to the macroscopic pressure gradient, is

−Δyv0,k( y) + ∇yπ
0,k( y) = ek +

N∑
j=1

zjn
0
j ( y)∇yθ

0,k
j ( y) in YF, (169)

divyv0,k( y) = 0 in YF, v0,k( y) = 0 on S, (170)

−divy
(
n0
i ( y)(∇yθ

0,k
i ( y) + Pei

zi
v0,k( y))

) = 0 in YF, (171)

∇yθ
0,k
i ( y) · ν = 0 on S. (172)

The second cell problem, corresponding to the macroscopic diffusive flux, is for
each species l ∈ {1, . . . ,N}

−Δyvl,k( y) + ∇yπ
l,k( y) =

N∑
j=1

zjn
0
j ( y)(δlje

k + ∇yθ
l,k
j ( y)) in YF, (173)

divyvl,k( y) = 0 in YF, vl,k( y) = 0 on S, (174)

−divy
(
n0
i ( y)(δije

k + ∇yθ
i,k
j ( y)

)+ Pei
zi

vi,k( y))
) = 0 in YF, (175)

(
δijek + ∇yθ

i,k
j ( y)

) · ν = 0 on S, (176)

where δij is the Kronecker symbol. As usual the cell problems are complemented
with periodic boundary conditions.

Then, we can decompose the solution of (159)–(165) as

v0(x, y) =
3∑

k=1

(
−v0,k( y)

(
∂p0

∂xk
+ f ∗k

)
(x) +

N∑
i=1

vi,k( y)

(
E∗
k + ∂Φ0

i

∂xk

)
(x)

)
,

(177)

p1(x, y) =
3∑

k=1

(
−π0,k( y)

(
∂p0

∂xk
+ f ∗k

)
(x) +

N∑
i=1

π i,k( y)

(
E∗
k + ∂Φ0

i

∂xk

)
(x)

)
,

(178)

Φ1
j (x, y) =

3∑
k=1

(
−θ

0,k
j ( y)

(
∂p0

∂xk
+ f ∗k

)
(x) +

N∑
i=1

θ
i,k
j ( y)

(
E∗
k + ∂Φ0

i

∂xk

)
(x)

)
.

(179)
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We average (177)–(179) in order to get a purely macroscopic homogenized problem.
We define the homogenized quantities: first, the electrochemical potential

μj(x) = −zj(Φ
0
j (x) + Ψ ext,∗(x)), (180)

then, the ionic flux of the jth species

jj(x) = 1

| YF|
∫
YF

n0
j ( y)

( zj
Pej

(∇yΦ
1
l (x, y) + ∇xΦ

0
l (x) + E∗(x)

)+ v0
)
dy, (181)

and finally the filtration velocity

v(x) = 1

| YF|
∫
YF

v0(x, y) dy. (182)

From (177)–(179) we deduce the homogenized or upscaled equations for the above
effective fields.

Proposition 16 Introducing the flux J (x) = (v, {jj}1≤j≤N) and the gradient
F (x) = (∇xp0, {∇xμj}1≤j≤N), the macroscopic equations are

divxJ = 0 in Ω, (183)

J = −MF − M (f∗, {0}), (184)

with a homogenized tensorM defined by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K
J1

z1
. . .

JN

zN

L1
D11

z1
· · · D1N

zN
...

...
. . .

...

LN
DN1

z1
· · · DNN

zN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (185)

and complemented with periodic boundary conditions for p0 and {Φ0
j }1≤j≤N. The

matrices Ji, K, Dji and Lj are defined by their entries

{Ji}lk = 1

| YF|
∫
YF

vi,k( y) · el dy,

{K}lk = 1

| YF|
∫
YF

v0,k( y) · el dy,

{Dji}lk = 1

| YF|
∫
YF

n0
j ( y)

(
vi,k( y) + zj

Pej

(
δijek + ∇yθ

i,k
j ( y)

) )
· el dy,

{Lj}lk = 1

| YF|
∫
YF

n0
j ( y)

(
v0,k( y) + zj

Pej
∇yθ

0,k
j ( y)

)
· el dy.
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Furthermore,M is symmetric positive definite, which implies that the homogenized
equations (183)–(184) have a unique solution.

Remark 18 The symmetry of M is equivalent to the famous Onsager reciprocal
relations. The symmetry of the tensor M was proved in [47] and its positive
definiteness in [9].

Proof The conservation law (183) is just a rewriting of (161) and (164). The
constitutive equation (184) is an immediate consequence of the definitions (181)
and (182) of the homogenized fluxes, taking into account the decomposition (177)–
(179).

We now prove that M is positive definite. For any vectors λ0, {λi}1≤i≤N ∈ R
3

let us introduce the following linear combinations of the cell solutions

vλ =
3∑

k=1

(
λ0
kv0,k +

N∑
i=1

λikvi,k
)

, θλ
j =

3∑
k=1

(
λ0
kθ

0,k
j +

N∑
i=1

λikθ
i,k
j

)
, (186)

which satisfy

−Δyvλ( y) + ∇yπ
λ( y) = λ0 +

N∑
j=1

zjn
0
j ( y)

(
λj + ∇yθ

λ
j ( y)

)
in YF (187)

divyvλ( y) = 0 in YF, vλ( y) = 0 on S, (188)

−divy
(
n0
i ( y)

(
zi(λ

i + ∇yθ
λ
i ( y)) + Peivλ( y)

))
= 0 in YF (189)

(λi + ∇yθ
λ
i ( y)) · ν = 0 on S. (190)

Multiplying the Stokes equation (187) by vλ, the convection-diffusion equa-
tion (189) by θλ

j and summing up, we obtain

∫
YF

(
|∇yvλ( y)|2 +

N∑
i=1

z2
i

Pei
n0
i ( y)(∇yθ

λ
i ( y) + λi) · (∇yθ

λ
i ( y) + λi)

)
dy

=
∫
YF

λ0 · vλ dy+
N∑
i=1

∫
YF

zin
0
i λ

i · vλ dy +
N∑
i=1

∫
YF

z2
i

Pei
n0
i (∇yθ

λ
i + λi) · λi dy

= Kλ0 · λ0 +
N∑
i=1

Jiλ
i · λ0 +

N∑
i,j=1

ziλ
i · Dijλ

j +
N∑
i=1

ziλ
i · Liλ

0

= M (λ0, {ziλi})T · (λ0, {ziλi})T .

The left hand side of the above equality is positive. This proves the positive definite
character of M .



Homogenization of Complex Porous Media Flows 223

It remains to prove the symmetry of M . For another set of vectors
λ̃0, {λ̃i}1≤i≤N ∈ R

3, we define vλ̃ and θ λ̃
j by (186). Multiplying the Stokes equation

for vλ by vλ̃ and the convection-diffusion equation for θ λ̃
j by θλ

j (note the skew-
symmetry of this computation), then adding the two variational formulations yields

∫
YF

∇yvλ · ∇yvλ̃ dy +
N∑
i=1

∫
YF

z2
i

Pei
n0
i ∇yθ

λ̃
i · ∇yθ

λ
i dy =

∫
YF

λ0 · vλ̃ dy +
N∑
j=1

∫
YF

zjn
0
j λ

j · vλ̃ dy−
N∑
i=1

∫
YF

z2
i

Pei
n0
i λ̃

i · ∇yθ
λ
i dy. (191)

Therefore, the left hand side of (191) is symmetric in λ, λ̃. Exchanging the last term
in (191), we deduce by symmetry

∫
YF

λ0 · vλ̃ dy +
N∑
j=1

∫
YF

zjn
0
j λ

j · vλ̃ dy +
N∑
i=1

∫
YF

z2
i

Pei
n0
i λ

i · ∇yθ
λ̃
i dy

=
∫
YF

λ̃0 · vλ dy +
N∑
j=1

∫
YF

zjn
0
j λ̃

j · vλ dy+
N∑
i=1

∫
YF

z2
i

Pei
n0
i λ̃

i · ∇yθ
λ
i dy,

which is equivalent to the desired symmetry

M (λ̃0, {ziλ̃i})T · (λ0, {ziλi})T = M (λ0, {ziλi})T · (λ̃0, {ziλ̃i})T .

The norm-closeness of the solution to the homogenized problem, to the solution of
the original problem is given by the following result.

Theorem 5 ([9]) Let (p0, {Φ0
j }1≤j≤N) be defined by (183)–(184). Let v0 be given

by (177) and {Φ1
j }1≤j≤N by (179). Then in the limit ε → 0 we have

∫
Ωε

(

∣∣∣vε(x) − v0(x,
x

ε
)

∣∣∣2 + |P̃ε(x) − p0(x)|2) dx → 0 (192)

and
∫

Ωε

∣∣∣∇ (Φε
j (x) − Φ0

j (x) − εΦ1
j (x,

x

ε
)
)∣∣∣2 dx → 0. (193)

Acknowledgements This research was partially supported by the MOCOMIPOC project (Modé-
lisation multiéchelles des écoulements complexes en présence de gaz dans les milieux chargés)
from the NEEDS program (Projet fédérateur Milieux Poreux MIPOR), part of CNRS, France
and by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program
“Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research
Agency (ANR).



224 A. Mikelić
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24. Bulíček, M. , Gwiazda, P. , Málek, J., Świerczewska-Gwiazda, A.: On steady flows of
incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var. 2, 109–136 (2009)

25. Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes.
Rendiconti Seminario Matematico della Università di Padova, 31, 308–340 (1961)

26. Chan, D.Y., Horn, R.G.: The drainage of thin liquid films between solid surfaces. J. Chem.
Phys. 83, 5311–5325 (1985)

27. Christopher, R.H., Middleman, S.: Power-law flow through porous media. Ind. Eng. Cheni.
Fund. 4, 422 (1965)

28. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press,
Oxford (2000)

29. Coelho, D., Shapiro, M., Thovert, J.-F. , Adler, P.M. : Electro-osmotic phenomena in porous
media. J. Colloid Interface Sci. 181, 169–90 (1996)

30. Dufrêche, J.-F. , Bernard, O. , Durand-Vidal, S. , Turq, P.: Analytical theories of transport in
concentrated electrolyte solutions from the MSA. J. Phys. Chem. B 109, 9873 (2005)

31. Dufrêche, J.-F., Marry, V. , Malikova, N. , Turq, P., : Molecular hydrodynamics for electro-
osmosis in clays: from Kubo to Smoluchowski. J. Mol. Liq. 118, 145 (2005)

32. Duvaut G., Lions J.L.: Inequalities in Mechanics and Physics. Springer, Heidelberg (1976)
33. Ekeland, I., Temam, R. : Analyse Convexe et Problèmes Variationnels. Gauthier-Villars, Paris

(1973)
34. Ene, H.I. , Sanchez-Palencia, E.: Equations et phénomènes de surface pour l’écoulement dans

un modèle de milieu poreux. J. Mécan. 14, 73–108 (1975)
35. Ern, A. , Joubaud, R. , Lelièvre, T.: Mathematical study of non-ideal electrostatic correlations

in equilibrium electrolytes. Nonlinearity 25, 1635–1652 (2012)
36. Gipouloux, O., Zine, A.M.: Computation of the filtration laws through porous media for a

non-Newtonian fluid obeying the power law. Comput. Geosci. 1, 127–153 (1997)
37. Gupta, A.K. , Coelho, D. , Adler, P.M.: Electroosmosis in porous solids for high zeta potentials.

J. Colloid Interface Sci. 303, 593–603 (2006)
38. Hornung, U. (ed.) : Homogenization and Porous Media. Interdisciplinary Applied Mathematics

Series, vol. 6. Springer, New York (1997)
39. Jikov, V.V., Kozlov, S., Oleinik, O.: Homogenization of Differential Operators and Integral

Functionals. Springer, New York, (1994)
40. Kaloušek, M. : Homogenization of incompressible generalized Stokes flows through a porous

medium. Nonlinear Anal. Theory Methods Appl. 136, 1–39 (2016)
41. Karniadakis, G., Beskok, A., Aluru, N.: Microflows and Nanoflows. Fundamentals and

Simulation. Interdisciplinary Applied Mathematics, Vol. 29. Springer, New York (2005)
42. Khuzhayorov, B., Auriault, J.-L., Royer, P. : Derivation of macroscopic filtration law for

transient linear viscoelastic fluid flow in porous media. Int. J. Eng. Sci. 38, 487–504 (2000)
43. Lions, J.L. : Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod

Gauthier-Villars, Paris (1969)
44. Lions, J.L., Sanchez-Palencia, E.: Écoulement d’un fluide viscoplastique de Bingham dans un

milieu poreux. J. Math. pures et appl. 60, 341–360 (1981)
45. Lipton, R., Avellaneda, M. : A darcy law for slow viscous flow past a stationary array of

bubbles. Proc. Royal Soc. Edinburgh 114A, 71–79 (1990)
46. Looker, J.R. : Semilinear elliptic Neumann problems and rapid growth in the nonlinearity.

Bull. Aust. Math. Soc., 74, 161–175 (2006)
47. Looker, J.R., Carnie, S.L.: Homogenization of the ionic transport equations in periodic porous

media. Transp. Porous Media 65, 107–131 (2006)
48. Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math. Sci.

2, 35–86 (2002)



226 A. Mikelić
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