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Abstract These introductory lecture notes on numerical methods for hyperbolic
equations are suitable for advanced undergraduate and postgraduate students in
mathematics and engineering disciplines. More advanced approaches exist and will
be indicated as appropriate. The material is divided into four sections. Section 1
presents an overview of hyperbolic equations and also some basic concepts on
numerical discretization techniques. Section 2 deals with a specific example, the
system of non-linear shallow water equations; the equations are analysed and the
Riemann problem is solved exactly in complete detail. In Sect. 3 we first present the
Godunov method as applied to a generic hyperbolic system and then specialised to
the shallow water system in one space dimension; approximate solution methods
for the Riemann problem are also given. Finally, Sect. 4 gives a brief overview
of the ADER approach to construct high-order numerical methods for hyperbolic
equations, based on the first order Godunov method. Much of the material of these
lectures has been taken from the author’s text books (Toro, Riemann solvers and
numerical methods for fluid dynamics. A practical introduction, 3rd edn. Springer,
Berlin (2009) and Toro, Shock-capturing methods for free-surface shallow flows.
Wiley, Chichester (2001)), where further reading material can be found. I also
recommend the textbook by Godlewski and Raviart (Numerical approximation of
hyperbolic systems of conservation laws. Springer, New York (1996)) and that by
LeVeque (Finite volume methods for hyperbolic problems. Cambridge University
Press, Cambridge (2002)).
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1 Hyperbolic Equations

Many problems in science and engineering (e.g. wave propagation and transport
phenomena) are governed by advection-diffusion-reaction partial differential equa-
tions (PDEs). In the scalar case (a single equation) we may write

∂tq(x, t) + ∂x f (q(x, t)) = s(x, t, q(x, t)) + ∂x(α(x, t, q(x, t))∂xq(x, t)) , (1)

where q(x, t) is the unknown, called the dependent variable; q(x, t) is a function
of two independent variables x and t; f (q) is a prescribed function of q called the
flux, or physical flux; s(x, t, q) is also a prescribed function, called the source term.
The last term is called the diffusion term; α(x, t, q(x, t)) is the diffusion coefficient.
Equation (1) is parabolic due to the presence of the viscous term, a second-order
term. In the rest of these lectures we shall be concerned exclusively with hyperbolic
equations.

1.1 The Linear Advection Equation and Basic Concepts

A particular example of (1) is obtained by choosing

f (q) = λq , s(q) = 0 , α = 0 , (2)

with λ a constant wave propagation speed, which leads to the linear advection
equation (LAE)

∂tq + λ∂xq = 0 , −∞ < x < ∞ , t > 0 . (3)

Initial Value Problem (IVP) for the Linear Advection Equation We study the
simplest case of (1), the linear advection equation, in which the spatial domain is
infinite and an initial condition at the initial time t = 0 is prescribed, namely

PDE: ∂tq + λ∂xq = 0 , −∞ < x < ∞ , t > 0 ,

IC: q(x, 0) = h(x) , −∞ < x < ∞ ,

}
(4)

where h(x) is a prescribed function of distance x. Equation (4) defines a pure initial-
value problem or Cauchy problem.

Characteristic Curves and the Solution Characteristic curves, or characteristics,
are functions x(t) in the x-t half-plane of independent variables satisfying the IVP
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Fig. 1 Characteristic x(t) in
the t-x plane given by (6); x0:
foot of characteristic; positive
characteristic speed λ
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Fig. 2 Family of
characteristic curves x(t) in
the x-t plane, for the case of
positive characteristic speed
λ. Compare with Fig. 1

t

xx
(1)
0 x

(2)
0 x

(3)
0 x

(4)
0

x(t) = x
(k)
0 + λt

for an ordinary differential equation (ODE), namely

ODE:
dx

dt
= λ , t > 0 ,

IC: x(0) = x0 ,

⎫⎬
⎭ (5)

whose solution is immediate and reads

x = x0 + λt . (6)

Figure 1 illustrates solution (6). In practice it is more common to represent
characteristics in the x-t plane. The inclination of the characteristics depends on the
characteristic speed λ, in fact on 1/λ. In the linear case with constant coefficients,
characteristics are all parallel to each other, as seen in Fig. 2.

Consider now the time-rate of change (or total derivative) of q(x(t), t) along a
characteristic curve x = x(t)

dq

dt
= ∂q

∂ t

dt

dt
+ ∂q

∂x

dx

dt
. (7)

But the curve x(t) satisfies the ODE in (5). Then (7) becomes

dq

dt
= ∂tq + λ∂xq = 0 . (8)
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That is, q(x, t) is constant along x = x0 +λt. Consequently, the PDE in (4) becomes
an ODE, namely

dq

dt
= 0 along the characteristic x = x0 + λt .

This ODE states that q(x, t) is constant along the characteristic. From the above
observations, the value of q(x, t) at a point (x, t) on the characteristic curve passing
through (x, t) is equal to the value of q at the point x0 called the foot of the
characteristic. That is

q(x, t) = q(x0, 0) = h(x0) . (9)

But from (6)

x0 = x − λt

and therefore the solution of IVP (4) is

q(x, t) = h(x − λt) , (10)

which is the initial condition h in (4) evaluated at the position x−λt. Figure 3 shows
the three possible cases that can occur due to the value of the characteristic speed.

IVP Example Here we study in detail the following IVP

PDE: ∂tq + λ∂xq = 0 , −∞ < x < ∞ , t > 0 ,

IC: q(x, 0) = h(x) =
⎧⎨
⎩

0 if x < −1 ,

1 − x2 if −1 ≤ x ≤ 1 ,

0 if x > 1 .

⎫⎪⎪⎬
⎪⎪⎭

(11)

Solution According to formula (10) the solution of (11) is

q(x, t) = h(x − λt) =
⎧⎨
⎩

0 if x < −1 + λt ,

1 − (x − λt)2 if −1 + λt ≤ x ≤ 1 + λt ,

0 if x > 1 + λt .

(12)

Note that for a given speed λ and a chosen time t, the solution is simply a function
of x, called a profile. See Fig. 4.
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Fig. 3 The solution at point
(x̂, t̂) is found by tracing the
characteristic from (x̂, t̂) back
to its foot x0. There are three
possibilities: (a) λ > 0, (b)
λ = 0, (c) λ < 0

t
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The Riemann Problem Riemann problem for the linear advection equation is the
special IVP

PDE: ∂tq + λ∂xq = 0 , −∞ < x < ∞ , t > 0 ,

IC: q(x, 0) = h(x) =
{
qL (constant) if x < 0 ,

qR (constant) if x > 0 ,

⎫⎬
⎭ (13)

where qL (left of 0) and qR (right of 0) are constants.

Solution of the Riemann Problem From (10) it is obvious that the solution is

q(x, t) = h(x − λt) =
{
qL if x − λt < 0 ↔ x

t < λ ,

qR if x − λt > 0 ↔ x
t > λ .

(14)

See Fig. 5.
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Fig. 4 Solution (12) of initial value problem (11). Frame (a) displays the initial condition q(x, 0);
frame (b) displays picture of characteristics in x-t space and frame (c) shows solution profiles
q(x, tk) at different times tk

1.2 Linear Systems

We now consider a general one-dimensional, time-dependent system of m linear
hyperbolic equations with source terms, namely

∂tQ(x, t) + A∂xQ(x, t) = S(Q(x, t)) . (15)

Here Q: unknowns, A: matrix of coefficients (constant) and S(Q): source terms.
These are given as follows

Q =

⎡
⎢⎢⎢⎢⎢⎣

q1
. . .

qi
. . .

qm

⎤
⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎣

a11 . . . a1i . . . a1m
. . . . . . . . . . . . . . .

ai1 . . . aii . . . aim
. . . . . . . . . . . . . . .

am1 . . . ami . . . amm

⎤
⎥⎥⎥⎥⎥⎦

, S(Q) =

⎡
⎢⎢⎢⎢⎢⎣

s1
. . .

si
. . .

sm

⎤
⎥⎥⎥⎥⎥⎦

. (16)

Note that the linear advection equation (3) is a special case of (15).
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Fig. 5 Solution of Riemann problem (13). Frame (a) displays piece-wise constant initial condition
q(x, 0). Frame (b) displays picture of characteristics in x-t space. Frame (c) shows solution profiles
q(x, tk) at different times tk

Eigenvalues and Eigenvectors The eigenvalues of system (15) are the roots of the
characteristic polynomial

P(λ̂) ≡ Det(A − λ̂I) = 0 . (17)

Here I: m × m unit matrix; λ̂: a parameter; λi: eigenvalues, that is roots of (17),
which if real numbers, are conventionally written in increasing order

λ1 ≤ λ2 ≤ . . . ≤ λi ≤ . . . ≤ λm−1 ≤ λm . (18)

A right eigenvector Ri of A corresponding to λi is column vector

Ri = [r1i , r2i , . . . , rii , . . . , rmi]T , (19)

such that

ARi = λiRi . (20)
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The full set of m right eigenvectors corresponding to the eigenvalues (18) are

R1 ,R2 , . . . ,Ri , . . . ,Rm−1 ,Rm . (21)

A left eigenvector Li of A corresponding to λi is the row vector

Li = [li1 , li2 , . . . , lii , . . . , lim] , (22)

such that

LiA = λiLi . (23)

The m eigenvalues (18) generate correspondingm left eigenvectors

L1 ,L2 , . . . ,Li , . . . ,Lm−1 ,Lm . (24)

Hyperbolic System A system (15) is said to be hyperbolic if A has m
real eigenvalues and a corresponding complete set of m linearly independent
eigenvectors.

Note that for hyperbolicity, the eigenvalues are not required to be all distinct. What
is important is that there is a complete set of linearly independent eigenvectors,
corresponding to the real eigenvalues.

Strictly Hyperbolic System A hyperbolic system is said to be strictly hyperbolic
if all eigenvalues of the system are distinct.

Weakly Hyperbolic System A system may have real but not distinct eigenvalues
and still be hyperbolic if a complete set of linearly independent eigenvectors exists.
However if all eigenvalues are real but no complete set of linearly independent
eigenvectors exists then the system is called weakly hyperbolic, not to be mistaken
with non-strictly hyperbolic.

Orthonormality of Eigenvectors The eigenvectors Li and Rj are orthonormal if

Li • Rj =
{
1 if i = j ,

0 if i �= j .
(25)

Diagonalization andCharacteristic Variables ConsiderR = [R1 , . . . ,Ri , . . . ,

Rm]: matrix whose columns are the right eigenvectors; Λ: diagonal matrix formed
by eigenvalues. In full

R =

⎡
⎢⎢⎢⎢⎢⎣

r11 . . . r1i . . . r1m
. . . . . . . . . . . . . . .

ri1 . . . rii . . . rim
. . . . . . . . . . . . . . .

rm1 . . . rmi . . . rmm

⎤
⎥⎥⎥⎥⎥⎦

, Λ =

⎡
⎢⎢⎢⎢⎢⎣

λ1 . . . 0 . . . 0
. . . . . . . . . . . . . . .

0 . . . λi . . . 0
. . . . . . . . . . . . . . .

0 . . . 0 . . . λm

⎤
⎥⎥⎥⎥⎥⎦

. (26)
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Proposition If A is the coefficient matrix of a hyperbolic system (15) then

A = RΛR−1 or Λ = R−1AR . (27)

In this case A is said to be diagonalisable and consequently system (15) is said to
be diagonalisable. The proof is left as an exercise.

Characteristic Variables The existence of R−1 makes it possible to define the
characteristic variables C = [c1, c2, . . . , cm]T via

C = R−1Q ↔ Q = RC . (28)

Calculating the partial derivatives, recalling that the coefficient matrix is constant,
we have

∂tQ = R∂tC , ∂xQ = R∂xC

and direct substitution of the these expressions into Eq. (15) gives

R∂tC + AR∂xC = S .

Multiplication of this equation from the left by R−1 and use of (27) gives

∂tC + Λ∂xC = Ŝ , Ŝ = R−1S . (29)

This is called the canonical form or characteristic form of system (15). Assuming
Ŝ = 0 and writing the equations in full, we have

∂t

⎡
⎢⎢⎢⎢⎢⎣

c1
. . .

ci
. . .

cm

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

λ1 . . . 0 . . . 0
. . . . . . . . . . . . . . .

0 . . . λi . . . 0
. . . . . . . . . . . . . . .

0 . . . 0 . . . λm

⎤
⎥⎥⎥⎥⎥⎦

∂x

⎡
⎢⎢⎢⎢⎢⎣

c1
. . .

ci
. . .

cm

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0
. . .

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎦

. (30)

Clearly, each equation i-th of this system is of the form

∂tci + λi∂xci = 0 , i = 1, . . . ,m (31)

and involves the single unknown ci(x, t), which is decoupled from the remaining
variables. Moreover, this equations is identical to the linear advection equation (3),
with characteristic speed λi.

We have m decoupled equations, each one defining a characteristic curve. Thus,
at any chosen point (x̂, t̂) in the x-t half-plane there are m characteristic curves xi(t)
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(x̂, t̂)
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x
(0)
1x

(0)
ix

(0)
m

dx1
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= λ1

dxi
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= λi
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Fig. 6 The solution at a point (x̂, t̂) depends on the initial condition at the foot x(0)i of each

characteristic xi(t) = x(0)i + λit

passing through (x̂, t̂) and satisfying the m ODEs

dxi
dt

= λi , for i = 1, . . . ,m , (32)

as depicted in Fig. 6.

Remarks

• Each characteristic curve xi(t) = x(0)
i + λit intersects the x-axis at the point x

(0)
i ,

which is the foot of the characteristic passing through the point (x̂, t̂). The point
x(0)
i is given as

x(0)
i = x̂ − λi t̂ , for i = 1, 2, . . . ,m . (33)

See Fig. 6.
• Each Eq. (31) is just a linear advection equation whose solution at (x̂, t̂) is given

by

ci(x̂, t̂) = c(0)
i (x(0)

i ) = c(0)
i (x̂ − λi t̂) , for i = 1, 2, . . . ,m , (34)

where c(0)
i (x) is the initial condition, at the initial time. The initial conditions for

the characteristic variables are obtained from the transformation (28) applied to
the initial condition Q(x, 0).

• Given the assumed order (18) of the distinct eigenvalues the following inequali-
ties are satisfied.

x(0)
m < x(0)

m−1 < . . . < x(0)
2 < x(0)

1 . (35)
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Domain of Dependence The interval [x(0)
m , x(0)

1 ] is called the domain of depen-
dence of the point (x̂, t̂). See Fig. 6. The solution at (x̂, t̂) depends exclusively on
initial data at points in the interval [x(0)

m , x(0)
1 ]. This is a distinguishing feature of

hyperbolic equations. The initial data outside the domain of dependence can be
changed in any manner we wish but this will not affect the solution at the point
(x̂, t̂).

Proposition: The General Initial-Value Problem The solution of the general IVP
for the linear homogeneous hyperbolic system

PDEs: ∂tQ + A∂xQ = 0 ,−∞ < x < ∞ , t > 0 ,

IC: Q(x, 0) = Q(0)(x)

⎫⎬
⎭ (36)

is given by

Q(x, t) =
m∑
i=1

ci(x, t)Ri . (37)

The coefficient ci(x, t) of the right eigenvector Ri is a characteristic variable. The
proof is left as an exercise.

Remarks

1. The function ci(x, t) is the coefficient of Ri in an eigenvector expansion of the
solution vector Q(x, t).

2. Given a point (x, t) in the x-t plane, the solution Q(x, t) depends only on the
initial data at the m points x(i)

0 = x − λit. See Fig. 6.
3. These points are the intersections of the characteristics of speed λi with the x-

axis.
4. Solution (37) represents superposition of m waves of unchanged shape c(0)

i (x)Ri

propagated with speed λi.

Proposition: The Riemann Problem Solution The solution of Riemann problem

PDEs: ∂tQ + A∂xQ = 0 , −∞ < x < ∞ , t > 0 ,

IC: Q(x, 0) = Q(0)(x) =
{
QL if x < 0 ,

QR if x > 0 ,

⎫⎬
⎭ (38)

with QL and QR two constant vectors, is given by

Q(x, t) =
I∑

i=1

ciRRi +
m∑

i=I+1

ciLRi , (39)



102 E. F. Toro

t

x

x

t
= λ1

x

t
= λ2

x

t
= λi

x

t
= λm

R0

R1

Ri

Rm

x = 0

QL QR

Fig. 7 Structure of the solution of the Riemann problem. There are m waves that divide the half
x-t plane into m + 1 regions (wedges) Ri, with i = 0, 1, . . . ,m

where

m∑
i=1

ciLRi = QL ,

m∑
i=1

ciRRi = QR (40)

and I = I(x, t) is the maximum value of i for which x− λit > 0. The proof is left as
an exercise.

Remarks on the Solution of the Riemann Problem

1. The initial data consists of two constant vectors QL and QR, separated by a
discontinuity at x = 0.

2. This is a special case of IVP (36).
3. The structure of the solution of the Riemann problem (38) is depicted in Fig. 7,

in the x-t plane.
4. The solution consists of a fan of m waves emanating from the origin, one wave

for each eigenvalue λi. The speed of the wave i is the eigenvalue λi.
5. These m waves divide the x-t half plane into m + 1 constant regions

Ri =
{
(x, t)/ − ∞ < x < ∞; t ≥ 0; λi <

x

t
< λi+1

}
, (41)

for i = 1, . . . ,m− 1;R0 corresponds to the initial dataQL andRm corresponds
to the initial data QR. See Fig. 7.

Solving the Riemann problem means finding constant values forQ in regionsRi

for = 1, . . . ,m − 1.

Corollary The solution of the Riemann problem may be expressed as

Q(x, t) = QL +
I∑

i=1

δiRi = QR −
m∑

i=I+1

δiRi , (42)
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Fig. 8 The solution of the Riemann problem at a point (x̂, t̂) depends on the associated index
I = I(x̂, t̂)

where the coefficients ΔC = [δ1, . . . , δi, . . . , δm]T are the solution to the linear
algebraic system

m∑
i=1

δiRi = ΔQ ≡ QR − QL . (43)

This form is more convenient. We only need to solve one linear system. The proof
is left as an exercise. Figure 8 illustrates the solution at a point (x̂, t̂).

1.3 Non-linear Scalar Equations: Definitions and Examples

Consider the first-order PDE for the unknown function q(x, t)

∂tq + ∂x f (q) = 0 . (44)

This equation is called a conservation law, in which q is the conserved variable;
f (q) is the flux function or physical flux, a prescribed function of q. The equation
is said to be written in differential, conservative form. One may express (44) in
quasi-linear form as

∂tq + λ(q)∂xq = 0 , λ(q) = d

dq
f (q) ≡ f ′(q) . (45)

Here λ(q) is called characteristic speed.
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Equations of the type (44) may be characterised by the behaviour of the flux f (q)
and its derivative, namely the characteristic speed λ(q) = f ′(q). There are three
cases:

1. Convex flux: λ(q) is a monotone increasing function of q, that is

d

dq
λ(q) = λ′(q) = f ′′(q) > 0 , ∀q . (46)

2. Concave flux: λ(q) is a monotone decreasing function of q, that is

d

dq
λ(q) = λ′(q) = f ′′(q) < 0 , ∀q . (47)

3. Non-convex, non-concave flux: λ(q) vanishes for some q, that is

d

dq
λ(q) = λ′(q) = f ′′(q) = 0 , for some q . (48)

Example: The Inviscid Burgers’ Equation

∂tq + ∂x f (q) = 0 ,

f (q) = 1

2
q2 ,

λ(q) = f ′(q) = q , λ′(q) = f ′′(q) = 1 > 0 , ∀q .

⎫⎪⎪⎬
⎪⎪⎭

(49)

The flux is convex; the monotone increasing behaviour of λ(q) means that larger
values of q propagate faster than smaller values of q. This leads to wave distortion
and shock formation. We note that the true Burgers equation is viscous, namely

∂tq + ∂x f (q) = α∂(2)
x q , f (q) = 1

2
q2 ,

where α is a viscosity (or diffusion) coefficient.

Example: A Traffic Flow Equation

∂tq + ∂x f (q) = 0 ,

f (q) = umax(1 − q/qmax)q ,

λ(q) = f ′(q) = umax(1 − 2q/qmax) ,

λ′(q) = f ′′(q) = −2umax/qmax < 0 , ∀q .

⎫⎪⎪⎬
⎪⎪⎭

(50)

Here umax ≥ 0 and qmax > 0 are two constants, with 0 < q ≤ qmax. The flux is
concave, larger values of q will propagate more slowly than smaller values of q, the
opposite behaviour to that of Burgers’ equation.
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Solution Along Characteristics Consider the initial-value problem (or Cauchy
problem)

PDE: ∂tq + ∂x f (q) = 0 ,

IC: q(x, 0) = h(x) .

}
(51)

As for LAE, solutions along characteristic curves x = x(t), with

x = x0 + λ(h(x0))t (52)

can be defined as

q(x, t) = h(x0) = h(x − λ(h(x0))t) . (53)

Figure 9 depicts the situation.

Crossing Characteristics For non-linear equations, characteristics are no longer
parallel, as in the linear case. Therefore, characteristic curves may cross, as
illustrated in Fig. 10.

t

x

x = x0 + λ(h(x0))t

x0

Fig. 9 Characteristic curve x(t) = x0 + λ(h(x0)) t emanating from x0: foot of the characteristic

t

xx
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0 x

(2)
0

x = x
(1)
0 + λ

(
h

(
x
(1)
0

))
t

x = x
(2)
0 + λ

(
h

(
x
(2)
0

))
t

h
(
x
(1)
0

)

h
(
x
(2)
0

)

Double-valued
solution here

Fig. 10 Characteristics from x(1)0 and x(2)0 carry different initial values h(x(1)0 ) and h(x(2)0 ), leading
to multi-valued solutions
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Fig. 11 Shock wave
formation from smooth initial
condition at time t = 0.
Burgers’ equation solved
numerically with the
first-order Godunov method
on a very fine mesh
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Shock Formation: A Numerical Example For non-linear equations, even if the
initial data is continuous, discontinuities may develop in time. This is illustrated in
Fig. 11 below, where a sequence of profiles corresponding to an increasing sequence
of time values is shown, starting from t = 0, the initial condition.

The phenomenon of shock formation in non-linear equations calls for the
extension of the definition of solution. To this end the equations are reformulated
in terms of integral relations that no longer require continuity of the solution.

Integral Forms of the Equation Consider the general case written in differential
conservative form

∂tq(x, t) + ∂x f (q(x, t)) = s(q(x, t)) . (54)

This equation includes a source term and is thus called a balance law. If s(q(x, t)) =
0 then the equation is a conservation law.

Here we study integral forms, to accommodate discontinuous solutions. We
shall also derive a condition to be satisfied at discontinuities. To this end we consider
a control volume V in the x-t plane, depicted in Fig. 12, defined as

V = [xL, xR] × [t1, t2] . (55)

We integrate Eq. (54) in space and time in the control volume V

∫ xR

xL

∫ t2

t1
[∂tq(x, t) + ∂xf (q(x, t))] dxdt =

∫ xR

xL

∫ t2

t1
s(q(x, t)) dxdt . (56)

On rearranging the space and time integrals we obtain

∫ xR

xL

[∫ t2

t1
∂tq(x, t)dt

]
dx = −

∫ t2

t1

[∫ xR

xL
∂x f (q(x, t))dx

]
dt

+
∫ xR

xL

∫ t2

t1
s(q(x, t))dxdt .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(57)
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t

xxL xR

t1

t2

V

Fig. 12 Control volume V = [xL, xR] × [t1, t2] in x-t space. Equations will be integrated exactly
on this volume to derive integral forms of the conservation laws

Exact space-time integration gives the integral form of the balance law (54),
namely

∫ xR

xL
q(x, t2)dx =

∫ xR

xL
q(x, t1)dx −

[∫ t2

t1
f (q(xR, t))dt −

∫ t2

t1
f (q(xL, t))dt

]

+
∫ xR

xL

∫ t2

t1
s(q(x, t))dxdt .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(58)

In the absence of the source term, the integral form states that the amount of q(x, t)
in the interval [xL, xR] at time t = t2 is equal to the amount of q(x, t) in the interval
[xL, xR] at time t = t1 plus a difference of time integrals of the fluxes at the extreme
points. In the presence of a source term this statement is modified appropriately.

It is also convenient to obtain an averaged version of (58), namely

1

Δx

∫ xR

xL
q(x, t2)dx = 1

Δx

∫ xR

xL
q(x, t1)dx

− Δt

Δx

[
1

Δt

∫ t2

t1
f (q(xR, t))dt − 1

Δt

∫ t2

t1
f (q(xL, t))dt

]

+ Δt

ΔxΔt

∫ xR

xL

∫ t2

t1
s(q(x, t))dxdt .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(59)

The Finite Volume Formula The integral expression (59) can be written as

qnew = qold − Δt

Δx

[
fright − fleft

]+ Δt svol , (60)
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which is exact, with the following definitions

qnew = 1
Δx

∫ xR
xL

q(x, t2)dx ,

qold = 1
Δx

∫ xR
xL

q(x, t1)dx ,

fright = 1
Δt

∫ t2
t1
f (q(xR, t))dt ,

fleft = 1
Δt

∫ t2
t1
f (q(xL, t))dt ,

svol = 1
ΔxΔt

∫ xR
xL

∫ t2
t1
s(q(x, t))dxdt .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(61)

Numerical methods called finite volumemethods, use the finite volume formula (60)
to compute approximate solutions in which qold is a known average of the solution
at the previous time level and the remaining terms on the right hand side of (60)
are found by appropriate approximations of the integrals in (61). The computational
parameters Δt and Δx must be prescribed to complete the scheme to compute qnew.

Generalised Solutions and Rankine-Hugoniot Conditions A generalised (or
weak) solution of the conservation law (54) is a function q(x, t) that satisfies the
integral form (58). Weak solutions admit discontinuities (shocks), which satisfy the
Rankine-Hugoniot jump condition.

Proposition: Rankine-Hugoniot Condition A discontinuity of a weak solution
of the conservation law (54), no source term, satisfies the Rankine-Hugoniot jump
condition across it, namely

f (q(sR, t)) − f (q(sL, t)) = [q(sR, t) − q(sR, t)] s , (62)

where q(sL, t) and q(sR, t) are limiting values from left and right of the discontinuity;
f (q(sR, t)) and f (q(sL, t)) are the corresponding flux values and s is the speed of the
discontinuity. For the proof see [1].

Summarising in order to admit discontinuous solutions one needs to formulate
the equations in integral form and enforce the Rankine-Hugoniot condition across
discontinuities, while in smooth parts of the solution one may formulate equations
in differential form.

Example: Burgers’s Equation Assume a shock wave of speed swith states qL and
qR. The Rankine-Hugoniot condition gives

f (qR) − f (qL) = 1

2
q2R − 1

2
q2L = s(qR − qL) ,
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from which the shock speed is given by

s = 1

2
(qL + qR) . (63)

This is a very special case. The shock speed is a simple arithmetic average of the
characteristic speeds either side of the shock.

A Non-uniqueness Example The enlarged set of solutions of the integral formu-
lation includes smooth (classical) and discontinuous solutions. However, now the
set is too large, it contains spurious, non-physical solutions. Hence this requires
an admissibility criterion to discard unphysical shocks. To illustrate the question of
non-uniqueness we consider the following example:

PDE : ∂tq + ∂x f (q) = 0 , f (q) = 1
2q

2 ,

IC : q(x, 0) = h(x) =
{
qL = 0 if x < 0 ,

qR = 1 if x > 0 .

⎫⎬
⎭ (64)

Solution 1: RarefactionWave One solution of the problem is the rarefaction wave
(smooth)

q(x, t) =
⎧⎨
⎩
qL = 0 if x/t < 0 ,

x/t if 0 ≤ x/t ≤ 1 ,

qR = 1 if x/t > 1 .

(65)

Figure 13 illustrates solution and the corresponding picture of characteristics.

t

x

Tail x = 0 + 1t
(Head)︷ ︸︸ ︷Rarefaction fan

x = 0

Fig. 13 Illustration of the rarefaction solution (65) to initial-value problem (64)
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t

x

x

t
=

1

2

x

t
= 1

Shock solution

x = 0

Fig. 14 Illustration of the shock solution (66) to problem (64). Characteristics diverge from the
shock path

Solution 2: Shock Wave Another, discontinuous, solution (shock) is given as

q(x, t) =
{
0 if x/t < s = 1/2 ,

1 if x/t > s = 1/2 .
(66)

Figure 14 shows the shock solution to problem (64). Note that characteristics diverge
from the shock and the solution is therefore non-admissible. So the initial value
problem (64) has at least two solutions.

Admissible Shocks: The Lax Entropy Condition The proposed solution (66) is
not accepted as a physical solution. Rarefaction shocks are excluded. Admissible
discontinuities are those arising from compression. This compressibility condition
is ensured by the Lax entropy condition:

λ(qL) > s > λ(qR) . (67)

s: shock speed, λ(qL) and λ(qR) are characteristic speeds. Note that characteristics
run into the shock, which is compressed by the characteristics, see Fig. 15.

The Riemann Problem for Burgers’s Equation The problem is defined as

PDE : ∂tq + ∂x f (q) = 0 , f (q) = 1
2q

2 ,

IC : q(x, 0) =
{
qL if x < 0 ,

qR if x > 0 .

⎫⎬
⎭ (68)
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t

x0

qL

qR

dx

dt
= S

dx

dt
= λ(qL)

dx

dt
= λ(qR)

Fig. 15 Picture of characteristics for an entropy-satisfying shock. Characteristic curves run into
the shock path

The solution is given by the following two cases, shock if qL > qR and rarefaction
otherwise:

q(x, t) =
{
qL if x − st < 0
qR if x − st > 0

s = 1
2 (qL + qR)

⎫⎪⎪⎬
⎪⎪⎭

if qL > qR ,

q(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qL if
x

t
≤ qL

x

t
if qL <

x

t
< qR

qR if
x

t
≥ qR

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

if qL ≤ qR .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(69)

Figure 16 illustrates the solution structure for the two cases. The bottom frame
shows the shock case while the top frame shows the rarefaction case.

First-Order Non-linear Systems To end this introductory section we state that the
general setting is that of non-linear systems of m hyperbolic balance laws in three
space dimensions, which written in differential conservative form read

∂tQ + ∂xF(Q) + ∂yG(Q) + ∂zH(Q) = S(Q) , (70)
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t

xx = 0

qL qR

dx

dt
= s =

1

2
(qL + qR)

(a) qL > qR

t

xx = 0

qL qR

︷ ︸︸ ︷

(b) qL ≤ qR

dx

dt
= λ(qL)

dx

dt
= λ(qR)q(x, t) =

x

t

Fig. 16 Solution of the Riemann problem for the Burgers equation. Frame (a): shock wave if
qL > qR. Frame (b): rarefaction wave if qL ≤ qR

where

Q =

⎡
⎢⎢⎣
q1
q2
. . .

qm

⎤
⎥⎥⎦ ; F =

⎡
⎢⎢⎣
f1
f2
. . .

fm

⎤
⎥⎥⎦ ; G =

⎡
⎢⎢⎣
g1
g2
. . .

gm

⎤
⎥⎥⎦ ; H =

⎡
⎢⎢⎣
h1
h2
. . .

hm

⎤
⎥⎥⎦ ; S =

⎡
⎢⎢⎣
s1
s2
. . .

sm

⎤
⎥⎥⎦ .

(71)

Here the independent variables are: x, y, z and t. Q(x, y, z, t) is the vector of
dependent variables, called conserved variables; F(Q) is the flux vector in the
x-direction;G(Q) is the flux vector in the y-direction and H(Q) is the flux vector in
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the z-direction; S(Q) is the vector of source terms. Fluxes and sources are prescribed
functions ofQ(x, y, z, t).

In this chapter we deal exclusively with the one-dimensional case (1D). For the
more general case see for example [1–3] and [4].

1.4 Numerical Approximation of Hyperbolic Equations

Here we introduce some basic concepts on numerical discretization methods
for hyperbolic equations, all based on the simplest equation. To this end we
first consider the initial-boundary value problem (IBVP) for the linear advection
equation

PDE: ∂tq + λ∂xq = 0 , x ∈ [a, b] , t > 0 ,

IC: q(x, 0) = h(x) , x ∈ [a, b] , t = 0 ,

BCs: q(a, t) = bL(t) ; q(b, t) = bR(t) , t ≥ 0 .

⎫⎬
⎭ (72)

Here [a, b] defines the spatial domain; h(x) is the initial condition (IC) at the initial
time t = 0, a prescribed function of x; bL(t) and bR(t) are prescribed functions of
time and define boundary conditions (BCs) at x = a (left) and at x = b (right).

Finite Difference Discretisation One approach to solve problem (72) is by the
method of finite differences, which requires the following steps:

1. Partition of the spatial domain [a, b] intoM + 2 equidistant points

xi = a + iΔx , i = 0, . . . ,M + 1 , Δx = b − a

M + 1
, (73)

where M is a chosen positive integer. See Fig. 17. There are M interior points:
x1, x2, . . . , xM ; and two boundary points: x0 = a and xM+1 = b.

2. Partition of the temporal domain [0,Tout] into a set of time points, or time levels,

tn = nΔt , n = 0 , . . . ,Nout , . . . . (74)

See Fig. 17. Here t0 = 0: initial time; Tout = ΔtNout; Δt: timestep. We assume a
fixed relationship between Δt and Δx of the form

Δx = Δt × K , K > 0 : constant . (75)

The spatial mesh parameter Δx is chosen through the choice of M, that is, the
number of interior points. There are no particular constraints in choosing M. The
choice of the time step Δt is constrained by accuracy or stability considerations [4].
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Fig. 17 Finite difference
mesh defining a discrete set
of points (xi, tn) resulting
from partitions of the spatial x
and temporal t domains

Tout

Δx Δt

tn+1

tn–1

x = a x = b xxi– 1 xi xi + 1

tn

Discrete Values The continuous domain [a, b] × [0,∞) has been replaced by
a mesh made up of a finite number of points (xi, tn). We now need to replace
the continuous distribution of the function q(x, t) by a finite number of discrete
values q(xi, tn) associated with these points. Then in order to solve the differential
equation in this discrete setting we also need to represent in discrete form the
partial derivatives ∂tq(x, t) and ∂xq(x, t) in (72). Here we do so by finite difference
approximations. In this manner the partial differential equation is represented by
a difference equation, an expression that relates approximate discrete values of the
solution at neighbouring points. The differential operator is replaced by a numerical
operator, as we shall see.

Consider the generic point (xi, tn) of the mesh, as shown in Fig. 17. We seek an
approximation to q(xi, tn) and this will be denoted by qni , that is

qni ≈ q(xi, tn) . (76)

The temporal partial derivative ∂tq(x, t) can be approximated in a variety of ways,
such as

∂tq(xi, tn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q(xi, tn+1) − q(xi, tn)

Δt
+ O(Δt) , Forward ,

q(xi, tn) − q(xi, tn−1)

Δt
+ O(Δt) , Backward ,

q(xi, tn+1) − q(xi, tn−1)

2Δt
+ O(Δt2) , Centred .

(77)

Analogously, for the spatial partial derivative ∂xq(x, t) in (72) at the point (xi, tn) we
write

∂xq(xi, tn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q(xi+1, tn) − q(xi, tn)

Δx
+ O(Δx) , Forward ,

q(xi, tn) − q(xi−1, tn)

Δx
+ O(Δx) , Backward ,

q(xi+1, tn) − q(xi−1, tn)

2Δx
+ O(Δx2) , Centred .

(78)
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Now, various combinations of these finite difference approximations will lead to
various well-known methods.

The Method of Godunov: Finite Difference Version This method uses the
following approximations to partial derivatives

∂tq(xi, tn) = q(xi, tn+1) − q(xi, tn)

Δt
+ O(Δt) ,

∂xq(xi, tn) =

⎧⎪⎨
⎪⎩

q(xi, tn) − q(xi−1, tn)

Δx
+ O(Δx) if λ > 0 ,

q(xi+1, tn) − q(xi, tn)

Δx
+ O(Δx) if λ < 0 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(79)

Remarks

1. The time derivative is approximated by a forward-in-time formula.
2. The space derivative is approximated by a one-sided, upwind, space derivative

discretisation, according to the sign of the wave propagation speed.
3. For linear equations the method was first proposed Courant, Isaacson and Rees

(1952).
4. Godunov [5] extended the upwind method in conservation form to solve non-

linear systems of hyperbolic equations, see Sect. 3.

The differential operator in (72) is

Le(q) ≡ ∂tq(x, t) + λ∂xq(x, t) = 0 , (80)

which when applied to the point (xi, tn) of the mesh, for λ > 0, becomes

Le(q(xi, tn)) = ∂tq(xi, tn) + λ∂xq(xi, tn)

= q(xi, tn+1) − q(xi, tn)

Δt
+ O(Δt)

+λ[q(xi, tn) − q(xi−1, tn)

Δx
] + O(Δx)

= 0 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(81)

Suppressing O(Δt) + O(Δx) and replacing q(xi, tn) by qni gives

qn+1
i − qni

Δt
+ λ

(
qni − qni−1

Δx

)
= 0 .
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i 1 i i + 1
n

n + 1

Fig. 18 Stencil for Godunov’s method for positive characteristic speed λ. Note the one-sided
(upwind) character of the stencil

Solving for qn+1
i we obtain the numerical scheme

qn+1
i = qni − λΔt

Δx

(
qni − qni−1

)
. (82)

The Courant-Friedrichs-Lewy number, or the CFL number, or simply Courant
number is defined as

c = λΔt

Δx
= λ

Δx/Δt
. (83)

This is a dimensionless quantity, it is the ratio of the speed λ in the PDE in (72) and
the mesh speed Δx/Δt. Then the Godunov upwind scheme becomes

qn+1
i = qni − c

(
qni − qni−1

)
. (84)

Figure 18 displays the stencil of scheme (84), which is the set of points of the mesh
that contribute to the scheme
The FTCSmethod (Forward-in-TimeCentred-in-Space) results from the following
approximations to the partial derivatives

∂tq(xi, tn) = q(xi, tn+1) − q(xi, tn)

Δt
+ O(Δt) ,

∂xq(xi, tn) = q(xi+1, tn) − q(xi−1, tn)

2Δx
+ O(Δx2) .

⎫⎪⎬
⎪⎭ (85)

Substituting of these into the PDE, suppressing error terms and replacing exact
values by approximate values, yields

qn+1
i − qni−1

Δt
+ λ

(
qni+1 − qni−1

2Δx

)
= 0 . (86)

Solving for qn+1
i we obtain the FTCS numerical scheme

qn+1
i = qni − 1

2
c(qni+1 − qni−1) . (87)
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Fig. 19 Stencil for the FTCS
method. Note the symmetric
character of the stencil

i − 1 i i + 1
n

n + 1

Fig. 20 Stencil for the
Lax-Friedrichs method. Note
the symmetry of the stencil
and the missing point (xi, tn)

i 1 i i + 1
n

n + 1

Figure 19 shows the stencil. Unfortunately, FTCS is useless; it is unconditionally
unstable. FTCS uses the same approximation to the time derivative as the Godunov
method, but the spatial derivative is approximated via a centred, second-order
accurate, discretization. Naively, one would have expected a better method than
Godunov’s method. There are two ways to rescue FTCS. One modification results
in the explicit Lax-Friedrichs scheme. The other way is to resort to an implicit
version.

The Lax-Friedrichs method results from replacing qni in the approximation to the
time derivative of FTCS by a mean value, that is

qni −→ 1

2
(qni−1 + qni+1) .

Then

qn+1
i − 1

2 (q
n
i−1 + qni+1)

Δt
+ λ

(
qni+1 − qni−1

2Δx

)
= 0 , (88)

yielding the Lax-Friedrichs scheme

qn+1
i = 1

2
(1 + c)qni−1 + 1

2
(1 − c)qni+1 , (89)

whose stencil is shown in Fig. 20.

The Lax-Wendroff Method The construction of this method follows a different
approach, via the following steps:

1. The solution at (xi, tn+1) is expressed as a Taylor series in time

q(xi, tn+1) = q(xi, tn) + Δt∂tq(xi, tn) + 1

2
Δt2∂(2)

t q(xi, tn) + O(Δt3) . (90)

2. By means of the Cauchy-Kowalewskaya method (or Lax-Wendroff procedure,
as is sometimes called) one uses the PDE in (72) to replace time derivatives by
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Fig. 21 Stencil for the
Lax-Wendroff method. Note
the symmetry of the stencil

i − 1 i i + 1
n

n + 1

space derivatives

∂tq(x, t) = −λ∂xq(x, t) , ∂
(2)
t q(x, t) = λ2∂(2)

x q(x, t) . (91)

In fact, for any order k, one can prove

∂
(k)
t q(x, t) = (−λ)k∂(k)

x q(x, t) . (92)

3. By substituting (91) into (90) one obtains

q(xi, tn+1) = q(xi, tn)−Δtλ∂xq(xi, tn)+ 1

2
Δt2λ2∂(2)

x q(xi, tn)+O(Δt3) (93)

4. The spatial derivatives are approximated by centred finite differences

∂xq(xi, tn) = q(xi+1, tn) − q(xi−1, tn)

2Δx
+ O(Δx2) ,

∂(2)
x q(xi, tn) = q(xi+1, tn) − 2q(xi, tn) + q(xi−1, tn)

Δx2
+ O(Δx2) .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(94)

5. Finally, by substituting (94) into (93), neglecting truncation errors and replacing
exact values q(xi, tn) by qni one obtains the Lax-Wendroff scheme

qn+1
i = 1

2
c(1 + c)qni−1 + (1 − c2)qni − 1

2
c(1 − c)qni+1 , (95)

whose stencil is shown in Fig. 21.

General Form of a Scheme and Examples All explicit schemes studied so far can
be written in the general form

qn+1
i = H(qni−l, . . . , q

n
i , . . . , q

n
i+r) , (96)

with l, r two non-negative integers and H(. . .) a real-valued function of l + r + 1
arguments and

qni ≈ q(xi, tn) , qni → 0 as |i| → ∞ (97)
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is a point-wise value that approximates the true solution q(x, t) at the mesh point
(xi, tn), with xi = iΔx, tn = nΔt.

Example: The Godunov Finite Difference Method When the Godunov scheme
is written as in (96), we have

For λ > 0 H = cqni−1 + (1 − c)qni ,

For λ < 0 H = (1 + c)qni − cqni+1 .

}
(98)

Linear Schemes Linear schemes are a special class of schemes (96) for the linear
advection equation in (72), of the form

qn+1
i =

k=r∑
k=−l

bkq
n
i+k , (99)

in which the coefficients bk are constant, that is, they do not depend on the solution.

Consider now two examples.

1. For the Godunov finite difference method we have two cases: For λ > 0 l = 1,
r = 0, b−1 = c and b0 = 1 − c. For λ < 0 we have l = 0, r = 1, b0 = 1 + c,
b1 = −c.

2. For the Lax-Wendroff method we have l = 1, r = 1, b−1 = 1
2 (1 + c)c, b0 =

1 − c2, b1 = − 1
2 (1 − c)c.

Monotone Schemes A numerical scheme of the form (96) is called monotone if H
satisfies

∂

∂qnk
H(qni−l, q

n
i−l+1, . . . , q

n
i , . . . , q

n
i+r) ≥ 0 , i − l ≤ k ≤ i + r . (100)

Remark a linear scheme is monotone if and only if all its coefficients are non-
negative. This follows from the definitions of linear schemes and monotonicity.

A Shortcut to Accuracy Through the Accuracy Lemma A linear scheme of the
form (99) is p-th order accurate in space and time (p ≥ 0) in the sense of local
truncation error, if and only if

r∑
k=−l

kηbk = (−c)η , η = 0, 1, . . . , p , c : Courant Number. (101)

For notational convenience we introduce 00 = 1.

Proof For the proof and extensions to two and three dimensions see [1].
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Example: The Godunov Upwind Finite Difference Method For λ > 0 the
scheme is

qn+1
i = H(qni−l, q

n
i ) = cqni−l + (1 − c)qni . (102)

l = 1, r = 0, b−1 = c, b0 = 1 − c. Then we need to verify identity (101) for all
possible non-negative integer values of η.

η = 0 : (−1)0 × c + 00 × (1 − c) = c + 1 − c = 1 = (−c)0 .

This merely says that the sum of the coefficients of the scheme is unity.

η = 1 : (−1)1 × c + 01 × (1 − c) = −c = (−c)1 .

The Godunov scheme is first-order accurate. But just for fun we try:

η = 2 : (−1)2 × c + 02 × (1 − c) = c �= (−c)2 .

Thus the Godunov scheme is not second-order accurate, except for the trivial cases
c = 0 and c = 1.

Godunov’s Theorem [5] There are no monotone, linear schemes (99) for the linear
advection equation with constant λ, of accuracy two or higher.

Proof It is sufficient to prove that there is no second order, linear, monotonemethod
for LAE. Proceed by contradiction and assume there is a second order, linear,
monotone method for LAE. From the accuracy lemma we must have:

sη =
r∑

k=−l

kηbk =
⎧⎨
⎩

s0 = 1 , η = 0 ,

s1 = −c , η = 1 ,

s2 = c2 , η = 2 .

(103)

But, in particular, from (103) plus some algebraic manipulations one obtains

s2 =
r∑

k=−l

k2bk

=
r∑

k=−l

(k + c)2bk − 2c
r∑

k=−l

kbk − c2
r∑

k=−l

bk

=
[

r∑
k=−l

(k + c)2bk

]
− 2cs1 − c2s0 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(104)
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Use of (103) into (104) gives

c2 =
[

r∑
k=−l

(k + c)2bk

]
+ c2 . (105)

This implies a contradiction; for a monotone scheme all coefficients bk are non-
negative but not simultaneously zero. Thus Godunov’s theorem is true �.

Consequences of Godunov’s Theorem From the theorem we have that linear
monotone schemes are at most first-order accurate. But first-order methods are too
inaccurate to be of practical use and therefore one must search for other classes of
schemes. This is down to finding ways of circumventing Godunov’s theorem.The
key to this lies on the assumption of linear schemes. Thus a necessary condition for
a numerical scheme to be oscillation-free (without new extrema) and of high-order
of accuracy ( for smooth solutions) is to be non-linear. In simple terms: Schemes
must be non-linear, even when applied to linear equations.

Recall that schemes can be expressed in the general form (96). In what follows
we introduce other forms.
The conservative form is a particular class of schemes for hyperbolic equations
and can be written in the form

qn+1
i = qni − Δt

Δx

(
fi+ 1

2
− fi− 1

2

)
, (106)

where fi+ 1
2
is the numerical flux. See definition (60).

The Viscous Form of a Scheme This requires a function di+ 1
2
of 2k variables

di+ 1
2

= di+ 1
2
(qni−k+1, q

n
i−k+1, . . . , q

n
i , . . . , q

n
i+k) , (107)

such that a three-point scheme can be written as

qn+1
i = qni − 1

2

Δt

Δx
[ f (qni+1) − f (qni−1)] + 1

2
(di+ 1

2
Δqi+ 1

2
− di− 1

2
Δqi− 1

2
) . (108)

The function di+ 1
2
is called the coefficient of numerical viscosity.

Viscous Form of a Three-Point Linear Scheme We study the viscous form a
three-point linear scheme of the form

qn+1
i = b−1q

n
i−1 + b0q

n
i + b1q

n
i+1 . (109)

The coefficients b−1, b0 and b1 are constant. Assume the scheme to be at least first-
order. Then from the accuracy lemma, see (101), we have

b−1 + b0 + b1 = 1 , b−1 − b1 = c . (110)



122 E. F. Toro

System (110) gives a one-parameter family of solutions. From the first equation we
introduce d = b−1 + b1 = 1 − b0 and thus

b−1 = 1

2
(d + c) , b0 = 1 − d , b1 = 1

2
(d − c) . (111)

Now in terms of d scheme (109) becomes

qn+1
i = qni − 1

2
c(qni+1 − qni−1) + 1

2
d(qni+1 − 2qni + qni−1) . (112)

This is the viscous form of scheme (109) and d is the coefficient of numerical
viscosity of the scheme.

Remarks on the Viscous Form

1. Particular values of d give particular schemes, as we shall see.
2. The stability condition becomes

c2 ≤ d ≤ 1 . (113)

3. The monotonicity condition is

c ≤ d ≤ 1 . (114)

4. A truncation error analysis gives coefficient of numerical viscosity

αvisc = 1

2
Δxλ

(
d − c2

c

)
. (115)

Thus effectively the coefficient d measures the truncation error of the scheme.

Proposition The Godunov upwind scheme for the linear advection equation is the
monotone scheme with the smallest truncation error. The proof is left as an exercise.

Well-known schemes are obtained by an appropriate choice d. The following four
choices for d give four well-known numerical schemes:

d =

⎧⎪⎪⎨
⎪⎪⎩

1 → Lax-Friedrichs ,
1
2 (1 + c2) → FORCE ,

|c| → Godunov upwind ,

c2 → Lax-Wendroff .

(116)

Figure 22 shows the coefficient of numerical viscosity for all four schemes above.
The region of monotonemethods is contained in the dark triangular region. Schemes
outside this region are not monotone. Of the monotone methods the least accurate
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Fig. 22 Coefficient of
numerical viscosity d for four
schemes as functions of the
Courant number c. Monote
schemes lie inside the
triangular region defined by
the Godunov method
(bottom) and the
Lax-Friedrichs scheme (top)
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method is the Lax-Friedrichs method and the most accurate method is the Godunov
method. The FORCE method [6] is seen to lie in between these two methods.
The Law-Wendroff method is the most accurate scheme of them all but it is not
monotone. Stable schemes lie above the Lax-Wendroff method.

Sample Numerical Results Figures 23 and 24 show numerical results for the linear
advection equation (symbols) compared to the exact solution (line) for the Lax-
Friedrichs, Godunov and the Lax-Wendroff methods. Figure 23 shows the case of a
smooth solution, while Fig. 24 shows the case of a discontinuous solution. For the
smooth case of Fig. 23 we see that the Lax-Friedrichs method is the least accurate,
just look at the peak value (unity); this is followed by the Godunov method, with
Lax-Wendroff displaying the most accurate result. However, even for this smooth
test problem, the Lax-Wendroff method shows spurious oscillations (overshoots
and undershoots), mainly behind the wave. In fact the numerical solution has some
negative values, which would be unphysical if q(x, t) represented a concentration
variable, for example.

Figure 24 shows results for the discontinuous case. Again the least accurate
method is the Lax-Friedrichs method; note also the pairing of numerical values,
which is a typical feature of this method. The Godunov method is a little bit
more accurate but still far from representing well the square wave with its two
discontinuities. The Lax-Wendroff method shows less spreading of the disconti-
nuities (numerical diffusion) and its peak value is closer to the exact value; however
the spurious oscillations, with negative values, make this method unsuitable for
computing discontinuous solutions.

Note that the Lax-Friedrichs and Godunov methods do not show over and
undershoots; this is due to the fact that these schemes are monotone. This property
will prove useful when computing solutions to general hyperbolic systems. How-
ever, monotone methods are at most first-order accurate and thus they need to be
extended to higher order of accuracy, by circumventing the Godunov theorem via
the construction of non-linear methods. This subject will be addressed in Sect. 4.

Further Reading For further reading we recommend the following books [1–4].
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Fig. 23 Test 1 for smooth solution. Results at time t = 100 from the Lax-Friedrichs, Godunov
and Lax-Wendroff methods. Mesh used M = 25 and Courant number CFL = 0.9
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Fig. 24 Test 2 for discontinuous solution. Results at time t = 100 from the Lax-Friedrichs,
Godunov and Lax-Wendroff methods. Mesh used M = 25 and Courant number CFL = 0.9
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2 The Shallow Water Equations and the Riemann Problem

In this section we study a particular non-linear hyperbolic system of practical
interest, namely the shallow water equations. We first establish the governing
equations and some of their properties and then solve exactly the corresponding
Riemann problem. For further reading see [2].

2.1 Equations, Properties and Wave Relations

The equation for conservation of mass reads

∂th + ∂x(hu) = 0 , (117)

where h(x, t) is water depth and u(x, t) is the particle velocity. The equation for
conservation of momentum reads

∂t(hu) + ∂x(hu
2 + 1

2
gh2) = 0 , (118)

where g is the acceleration due to gravity. Recall that the celerity is defined as

a = √
gh , (119)

which is analogous to the speed of sound in a gas. In certain applications it is of
interest to consider an additional PDE

∂tψ + u∂xψ = 0 . (120)

ψ(x, t) is transported with u(x, t) and is often called a passive scalar. If we assume
that solutions are smooth, then from (117) and (120) we obtain the conservation
equation

∂t(hψ) + ∂x(hψu) = 0 . (121)

Now the three equations of interest are (117), (118) and (121). These can be written
in conservation form as

∂tQ + ∂xF(Q) = 0 , (122)

with

Q =
⎡
⎣ q1
q2
q3

⎤
⎦ =

⎡
⎣ h

hu
hψ

⎤
⎦ , F(Q) =

⎡
⎣ f1
f2
f3

⎤
⎦ =

⎡
⎣ hu
hu2 + 1

2gh
2

hψu

⎤
⎦ . (123)
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Here Q is called the vector of conserved variables and F(Q) if the physical flux
vector.

Quasi-linear Form and Eigenvalues Equation (122) can be written in quasi-linear
form as follows

∂tQ + A(Q)∂xQ = 0 , (124)

where A(Q) is the Jacobian matrix given as

A(Q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂q1

∂ f1
∂q2

∂ f1
∂q3

∂ f2
∂q1

∂ f2
∂q2

∂ f2
∂q3

∂ f3
∂q1

∂ f3
∂q2

∂ f3
∂q3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (125)

From (123) we have

F(Q) =
⎡
⎣ f1(q1, q2, q3)
f2(q1, q2, q3)
f3(q1, q2, q3)

⎤
⎦ =

⎡
⎣ hu
hu2 + 1

2gh
2

hψu

⎤
⎦ =

⎡
⎢⎢⎢⎣

q2
q22
q1

+ 1

2
gq21

q2q3
q1

⎤
⎥⎥⎥⎦ . (126)

Note that each component fk of the flux vector has been expressed in terms
of the components qj of the vector of conserved variables. This is necessary
before proceeding to calculate the partial derivatives. Calculating now the partial
derivatives in (125) and then using the physical variables u, a and ψ we may write
the Jacobian matrix as

A(Q) =
⎡
⎣ 0 1 0
a2 − u2 2u 0
−uψ ψ u

⎤
⎦ . (127)

The eigenvalues are the roots of the characteristic polynomial

P(λ̂) = Det(A − λ̂I) = 0 , (128)

where I is the identity matrix and λ̂ is a parameter. It is easily verified that

P(λ̂) = (u − λ̂)[λ̂(2u − λ̂) + a2 − u2] = 0 , (129)



128 E. F. Toro

a cubic equation, for which three real solutions exist, and therefore the system has
three real eigenvalues, namely

λ1 = u − a , λ2 = u , λ3 = u + a . (130)

Note that all three roots are distinct if a �= 0.

Right Eigenvectors A right eigenvector R corresponding to λ̂ satisfies

AR = λ̂R . (131)

For a generic R = [r1, r2, r3]T we have

r2 = λ̂r1 ,

(a2 − u2)r1 + 2ur2 = λ̂r2 ,

−uψr1 + ψr2 + ur3 = λ̂r3 .

⎫⎬
⎭ (132)

To find Ri corresponding to λi we substitute λi into (132) and solve the resulting
system for r1, r2 and r3 in terms of free parameters αi. The result is

R1 = α1

⎡
⎣ 1
u − a

ψ

⎤
⎦ , R2 = α2

⎡
⎣ 0
0
1

⎤
⎦ , R3 = α3

⎡
⎣ 1
u + a

ψ

⎤
⎦ , (133)

where α1, α2 and α3 are arbitrary scaling factors which can be chosen as desired.

Left Eigenvectors To compute a left eigenvector L = [l1, l2, l3] corresponding to
an eigenvalue λ̂, we solve the system of algebraic equations

LA = λ̂L . (134)

The left eigenvectors of A are given by

L1 = β1
[−(u + a) , 1 , 0

]
,

L2 = β2
[−ψ , 0 , 1

]
,

L3 = β3
[−(u − a) , 1 , 0

]
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(135)

where the coefficients β1, β2, β3 are arbitrary scaling factors.

Bi-orthonormality of Left and Right Eigenvectors The reader can easily verify
that the right and left eigenvectors (133), (135) of the Jacobian matrix A are
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bi-orthonormal, that is they satisfy the relations

Li · Rj =
⎧⎨
⎩
1 if i = j ,

0 if i �= j ,

(136)

if the scaling factors are chosen thus

β1 = 1

2aα1
, β2 = 1

α2
, β3 = − 1

2aα3
. (137)

Nature of Characteristic Fields First recall that a λi-characteristic field is said to
be linearly degenerate if

∇λi(Q) · Ri(Q) = 0 , ∀Q ∈ �m (138)

∇λi(Q) =
[

∂

∂q1
λi ,

∂

∂q2
λi , . . . ,

∂

∂qm
λi

]T
. (139)

Now we show that the λ2-characteristic field is linearly degenerate.

λ2(Q) = u = hu

h
= q2

q1

∇λ2(Q) =
[

∂

∂q1
λ2 ,

∂

∂q2
λ2 ,

∂

∂q3
λ2

]T
=
[
−u

h
,
1

h
, 0

]T
.

Then

∇λ2(Q) · R2(Q) = 0 (140)

forQ ∈ �3 and thus the λ2-characteristic field is linearly degenerate.

The λ1- and λ3-characteristic fields are genuinely nonlinear. First recall that a λi-
characteristic field is said to be genuinely non-linear if

∇λi(Q) · Ri(Q) �= 0 , ∀Q ∈ �m . (141)

Simple calculations give

∇λ1(Q) · R1(Q) = − 3
2a �= 0 and ∇λ3(Q) · R3(Q) = 3

2a �= 0 . (142)

Therefore the λ1(Q) and λ3(Q) characteristic fields are genuinely non-linear, if
a �= 0.
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Fig. 25 Structure of the
solution of the Riemann
problem for the augmented
1D shallow water equations

t
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QL QR

Q∗L Q∗R

2.2 The Riemann Problem

The Riemann problem for the shallow water equation (122) is the initial value
problem

PDEs: ∂tQ + ∂xF(Q) = 0 , −∞ < x < ∞ , t > 0 ,

ICs: Q(x, 0) =
{
QL if x < 0 ,

QR if x > 0 .

⎫⎬
⎭ (143)

The vector of conservative variables Q and the vector of fluxes F(Q) are given
in (123).QL andQR are two constant vectors that define the initial conditions of the
problem.

Structure of the Solution of the Riemann Problem
The structure of the solution in the x− t plane is shown in Fig. 25. Note that there are
three wave families separating four constant regions. The outer waves are non-linear
and are associated with shocks or rarefactions. The middle wave is linear (called
contact discontinuity). The solution in regionsR0 andR3 is known, corresponding
to the initial data on the left and right respectively. The solution in regions R1 and
R2 (Star Region) is unknown. The full problem of solving the Riemann problem
is divided into two subproblems: Problem 1: The Star Problem and Problem 2: The
Complete Solution. We start with the The Star Problem for which we first establish
some conventional wave relations.

2.2.1 Wave Relations

Rarefactions and Generalized Riemann Invariants Generalized Riemann
Invariants (GRIs) are relations that apply across the wave structure of simple
waves in x − t space. For a system of m equations consider the λj(Q)-characteristic
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Fig. 26 Left rarefaction
wave connecting states QL
and Q∗L. The characteristic
line x/t = uL − aL defines the
head and the characteristic
line x/t = u∗L − a∗L defines
the tail

t

xx = 0

Q∗L

QL

x

t
= uL − aL

x

t
= u∗L − a∗L

field and the corresponding right eigenvector

Rj = [
r1j, r2j, · · · , rmj

]T
. (144)

The GRIs apply across the wave structure and lead to m − 1 ODEs in phase space:

dq1
r1j

= dq2
r2j

= dq3
r3j

= · · · = dqm
rmj

. (145)

Equation (145) relate ratios of dqi to rij and we emphasize that the ratios are to be
interpreted as meaning proportionality, that is

dqi ∝ rij . (146)

If rij = 0 then dqi = 0 and therefore qi does not change across the respective wave.
We now apply these wave relations to study a particular class of waves.

Left Rarefaction Wave Assume a left rarefaction wave connecting QL (left) and
Q∗L (right). See Fig. 26. The rarefaction wave occupies a wedgeRL defined as

RL =
{
(x, t)/ uL − aL ≤ x

t
≤ u∗L − a∗L

}
, (147)

where the characteristic line x/t = uL − aL defines the head and the characteristic
line x/t = u∗L−a∗L defines the tail. λ1(Q) increases monotonically across the wave
from head to tail. Application of GRIs across the λ1-wave with Q = [h, hu, hψ]T
and R1 = [1, u − a, ψ]T gives

dh

1
= d(hu)

u − a
= d(hψ)

ψ
. (148)

From the first and third ratios dψ = 0 and so across the λ1 wave

ψ : constant . (149)
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t

xx = 0x̂

t̂
P̂

x

t
= û − â

Fig. 27 Point P̂ = (x̂, t̂) inside left rarefaction wave. We seek the solution for the celerity a and
the particle velocity u at the point P̂ in terms of its prescribed coordinates x̂, t̂

Analogously, from first and second ratios, along with integration in phase space we
obtain

u + 2a = constant . (150)

From here we establish

u∗L + 2a∗L = uL + 2aL , (151)

which we also express as

u∗L = uL − fL ; fL = 2(a∗L − aL) . (152)

Solution Inside a Rarefaction Consider a left rarefaction wave and a point inside
the wave. See Fig. 27. The point inside the rarefaction wave is P̂ = (x̂, t̂) ∈ RL.
Consider now a characteristic line through P̂ = (x̂, t̂) and the origin (0, 0), of slope
(known)

x̂

t̂
= û − â . (153)

The unknowns of the problem are û = u(x̂, t̂) and â = a(x̂, t̂), noting that h follows
from a. Application of the left Riemann invariant (150) to connect the point P̂ to the



Numerical Approximation of Hyperbolic Equations 133

t

xx = 0

Q∗R

QR

x

t
= uR + aR

x

t
= u∗R + a∗R

Fig. 28 Right rarefaction wave connecting states Q∗R and QR. The characteristic line x/t = uR +
aR defines the head while x/t = u∗R + a∗R defines the tail

left initial condition gives

û + 2â = uL + 2aL . (154)

Equations (153) and (154) are two equations for the two unknowns â and û, whose
solution is

âL = a(x̂, t̂) = 1

3
(uL + 2aL − x̂

t̂
) , ûL = u(x̂, t̂) = 1

3
(uL + 2aL + 2x̂

t̂
) . (155)

Right Rarefaction Wave Assume a right rarefaction wave, as depicted in Fig. 28,
connecting the constant statesQ∗R (left) andQR (right). The wave occupies a wedge
RR

RR =
{
(x, t)/ u∗R + a∗R ≤ x

t
≤ uR + aR

}
. (156)

λ3(Q) is monotone. The right generalized Riemann invariant gives

u − 2a = constant , ψ : constant . (157)

From here we obtain

u∗R − 2a∗R = uR − 2aR , (158)

which we also express as

u∗R = uR + fR ; fR = 2(a∗R − aR) . (159)
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t

xx =0

Q∗R

QR

dx

dt
= SR

Fig. 29 Right-facing shock wave of speed SR connecting constant states QR (ahead) and Q∗R
(behind)

The solution at P̂ = (x̂, t̂) ∈ RR inside the right rarefaction wave can easily be
found to be

âR = 1

3
(−uR + 2aR + x̂

t̂
) , ûR = 1

3
(uR − 2aR + 2x̂

t̂
) . (160)

Right-Facing Shock Wave Consider an isolated right-facing shock wave of
speed SR associated with the λ3-characteristic field, as depicted in Fig. 29. For
system (122), across the shock, the Rankine-Hugoniot Conditions apply and thus
we have

SR(QR − Q∗R) = F(QR) − F(Q∗R) . (161)

In addition, the shock must also satisfy the Lax entropy condition

λ3(Q∗R) > SR > λ3(QR) . (162)

Characteristics run into the shock path, as illustrated in Fig. 29. Now we apply the
transformation

û∗R = u∗R − SR , ûR = uR − SR , (163)

which is illustrated in Fig. 30. In the new frame the shock propagation speed is 0
and the vectors of conserved variables and fluxes ahead of the shock are

Q̂R =
⎡
⎣ hR
hRûR
hRψR

⎤
⎦ , F̂R =

⎡
⎣ hRûR
hRû2R + 1

2gh
2
R

hRûRψR

⎤
⎦ , (164)
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(a) (b)

SR 0

ψ∗R ψR

u∗R uR

h∗R hR

ψ∗R ψR

û∗R = u∗R − SR ûR = uR − SR

h∗R hR

Fig. 30 Right shock wave in two frames of reference. Frame (a) is the original frame of reference
and frame (b) is the moving frame of references in which the shock is stationary

while those behind the shock are

Q̂∗R =
⎡
⎣ h∗R
h∗Rû∗R
h∗Rψ∗R

⎤
⎦ , F̂∗R =

⎡
⎣ h∗Rû∗R
h∗Rû2∗R + 1

2gh
2∗R

h∗Rû∗Rψ∗R

⎤
⎦ . (165)

The Rankine-Hugoniot conditions in the moving frame are

F(Q̂∗R) − F(Q̂R) = 0 × (Q̂∗R − Q̂R) , (166)

which give

F(Q̂∗R) = F(Q̂R) .

The above flux equality written in full gives

h∗Rû∗R = hRûR ,

h∗Rû2∗R + 1
2gh

2∗R = hRû2R + 1
2gh

2
R ,

h∗Rû∗Rψ∗R = hRûRψR .

⎫⎬
⎭ (167)

The first equation in (167) says that the mass flux is constant across the shock, that
is

− MR ≡ h∗Rû∗R = hRûR . (168)

Using this into the third of Eq. (167) gives

ψ∗R = ψR . (169)

That is, ψ is constant across the shock wave. Thus we only need to work with the
first two equations in (167); the second one gives

(h∗Rû∗R)û∗R − (hRûR)ûR = 1

2
g(h2R − h2∗R) . (170)
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Use of (168) into (170) gives

MR =
1
2g(h

2
R − h2∗R)

ûR − û∗R
. (171)

But from (168) we write

û∗R = −MR

h∗R
, ûR = −MR

hR
. (172)

Use of (172) into (171) followed by some manipulations yields

MR =
√
1

2
ghRh∗R(hR + h∗R) . (173)

From (163)

u∗R = uR + (û∗R − ûR) . (174)

Inserting (172) into (174) followed by some algebraic manipulations gives

u∗R = uR + fR ; fR = (h∗R − hR)

√
1

2
g
(h∗R + hR)

hRh∗R
. (175)

From (163) we have

SR = uR − ûR . (176)

Use of (172) into (176) followed by manipulations gives

SR = uR + qRaR , qR =
√
1

2

(hR + h∗R)h∗R
h2R

. (177)

This expression relates the shock speed to the unknown depth h∗R behind the shock.
Note that for the limiting case h∗R/hR = 1 the shock speed coincides with the
characteristic speed, that is SR = u + a, as expected.

Left-Facing Shock Wave For a left-facing shock of speed SL associated with the
eigenvalue λ1 = u − a the analysis is similar to that of a right shock. See Fig. 31.
First we define the transformation

û∗L = u∗L − SL ; ûL = uL − SL . (178)
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t

xx = 0

Q∗L

QL

dx

dt
= SL

Fig. 31 Left-facing shock wave of speed SL connecting states QL (ahead) and Q∗L (behind)

Then the Rankine-Hugoniot conditions give

h∗Lû∗L = hLûL ,

h∗Lû2∗L + 1
2gh

2∗L = hLû2L + 1
2gh

2
L ,

h∗Lû∗Lψ∗L = hLûLψL .

⎫⎬
⎭ (179)

The first of Eq. (179) says that the mass flux

ML ≡ h∗Lû∗L = hLûL (180)

is constant across the shock wave. Using this condition into the third of Eq. (179)
gives

ψ∗L = ψL . (181)

In other words the passive scalar ψ is constant across the right shock. Analogous
manipulations to those for a right-facing shock yield

ML =
√
1

2
ghLh∗L(hL + h∗L) (182)

and

u∗L = uL − fL ; fL = (h∗L − hL)

√
1

2
g
(h∗L + hL)

hLh∗L
. (183)

This relates u∗L to h∗L via the function fL. Also, from (178)

SL = uL − ûL . (184)



138 E. F. Toro

t

xx = 0

Q∗L Q∗R

x

t
= u∗

Fig. 32 Contact wave associated with the linearly degenerate field λ2, connecting states Q∗L and
Q∗R. Characteristics either side of the wave are parallel to the wave, just as in the linear advection
equation

Use of (180) into (184) followed by manipulations gives

SL = uL − qLaL ; qL =
√
1

2

(hL + h∗L)h∗L
h2L

. (185)

This expression relates SL to h∗L. Again, in the limiting case h∗L/hL = 1 we have
SL = u − a.

Contact Discontinuity Wave An isolated contact discontinuity connecting the
(constant) states Q∗L and Q∗R associated with the λ2-characteristic field is depicted
in Fig. 32. The wave is a single discontinuity travelling with speed u∗ and charac-
teristics either side of the discontinuity run parallel to it, namely

λ2(Q∗L) = u∗ = λ2(Q∗R) . (186)

An eigenvector analysis provides the sought jump conditions across the contact
discontinuity. The right eigenvector corresponding to λ2 is R2 = [0, 0, 1]T , from
which we have

u∗L = u∗R = u∗ ,

h∗L = h∗R = h∗ ,

ψ∗L �= ψ∗R .

⎫⎬
⎭ (187)

Exercise Show that the above solution for the contact discontinuity wave satisfies
the Rankine-Hugoniot conditions across the wave.
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(Contact)

(Shock / Rarefaction)
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Fig. 33 Structure of the solution of the Riemann problem for the augmented shallow water
equations

2.2.2 Solution of Problem 1: The Star Problem

Figure 33 depicts the structure of the solution of the Riemann problem in the x − t
plane. The left and right waves can be shocks or rarefactions. The velocity and depth
are constant in the Star Region;ψ is also constant inR1∪R0 and inR2∪R3 but with
a discontinuous jump across the contact wave. To find the velocity u∗ and the depth
h∗ we first assemble together all the wave relations derived for each elementary wave
in isolation. Note that the velocity u∗ is connected to QL via a function fL and that
the velocity u∗ is connected to QR via a function fR; the functions fL and fR depend
on the unknown depth h∗, the wave type (shock or rarefaction) and, parametrically,
on the initial conditionsQL and QR, that is

fL = fL(h∗,wL;QL) ; fR = fR(h∗,wR;QR) . (188)

Here wL and wR denote logical variables that identify the wave type; wK denotes
either a shock or a rarefaction, for K = L and K = R. The complete solution
procedure for the Star Problem is then summarised in the following proposition.

Proposition The solution h∗ for the Riemann problem (143) is the root of

f (h) ≡ fL(h,wL; hL) + fR(h,wR; hR) + Δu = 0 , Δu ≡ uR − uL , (189)

fL(h,wL; hL) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(
√
gh − √

ghL) if h ≤ hL (wL: rarefaction) ,

(h − hL)

√
1

2
g
(h + hL)

hhL
if h > hL (wL: shock) ,

(190)
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fR(h,wR; hR) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(
√
gh − √

ghR) if h ≤ hR (wR: rarefaction) ,

(h − hR)

√
1

2
g
(h + hR)

hhR
if h > hR (wR: shock) ,

(191)

Once the depth h∗ has been found the solution for the velocity u∗ follows as

u∗ = 1
2 (uL + uR) + 1

2 [ fR(h∗,wR; hR) − fL(h∗,wL; hL)] . (192)

Sketch of the Proof First note that the particle velocity u∗ and depth h∗ are constant
across the contact discontinuity according to (187). In fact u∗ and h∗ are constant
in the entire Star region. Then, the function fL is used to relate u∗ to the left initial
condition QL across the left wave. In case the left wave is a shock we have the
relation (183) and if it is a rarefaction we use (152). Analogously, the function fR is
used to relate u∗ to the right initial condition QR across the right wave. If the right
wave is a shock we have the relation (175) and if it is a rarefaction we use (159).
As u∗ = u∗L = u∗R, see (187), we can eliminate u∗ resulting in Eq. (189). Then
the particle velocity could be written in terms of the function fL, for both the shock
and rarefaction cases. See (183) and (152). So we could compute u∗ directly from fL
once h∗ is known. Alternatively, we could compute u∗ directly from fR using (175)
or (159). Solution (192) results from a mean of the two possible solutions. This
concludes the proof.

Iterative Solution for h∗ We need to solve the algebraic non-linear equation (189)
for the unknown h∗ in the Star Region. To my knowledge, there is no general close-
form solution available to this equation and therefore we must solve it numerically
through an iteration procedure. To perform this task there are several methods
available, one choice being the Newton-Raphson method

h(k+1) = h(k) − f (h(k))

f ′(h(k))
, (193)

for k = 0, 1, . . . ,K. Here f ′(h) denotes the derivative of f with respect to h. The
iteration (193) is stopped whenever the change in h is smaller than a prescribed
small positive tolerance TOL, that is when

Δh ≡ |h(k+1) − h(l)|
(h(k+1) + h(l))/2

< TOL . (194)

Usually one takes TOL = 10−6. Having formulated and solved numerically the
Eq. (189) for h∗, the solution for u∗ follows directly from (192).

The Two-Rarefaction Case and Guess Value The iterative procedure (193)
requires a guess value h(0) to start the iteration. To this end we use a two-rarefaction
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type approximation, as we now describe. Assume a-priori that the two non-linear
waves associated with the eigenvalues λ1 and λ3 are both rarefaction waves.
See Fig. 33. Then the functions fL and fR in (190), (191) respectively are those
corresponding to rarefaction waves. Then (189) becomes

f (h) ≡ 2(a − aL) + 2(a − aR) + uR − uL = 0 , (195)

which has exact solution, called the Two-Rarefaction Solution. For the celerity a
one has

aTR = 1

2
(aL + aR) − 1

4
(uR − uL) . (196)

From the definition of celerity we obtain

h(0) = a2TR
g

, (197)

which is used as a starting value in the iteration procedure (193).

2.2.3 Solution of Problem 2: The Complete Solution

Now we put together all the components of the solution so as to be able to compute
the solution Q(x, t) for any given point (x, t) in the x-t half plane, −∞ < x < ∞
and t ≥ 0. See Fig. 34. We call this task the solution sampling procedure in which
we assume that the depth h∗ and velocity u∗ in the Star Region are already known.
The solutionQ(x, t) is sought at a specified time t̂ for any x in a finite interval [xl, xr]
containing the full wave system, as depicted in Fig. 34. Then Q(x, t̂) is a function
of x alone and gives a profile at time t̂. To sample the solution we make use of the

t

xx = 0xl xr

t = t̂

(λ3 = u + a( )λ2 = u( )λ1 = u − a) x

t
= u∗

R0

R1 R2

R3

RL RR

Fig. 34 Sampling the solution through the complete wave structure, at a chosen time t̂
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contact discontinuity to divide the full domain into the two subregions

RL =
{
(x, t)/

x

t
≤ u∗

}
, RR =

{
(x, t)/ u∗ <

x

t

}
. (198)

To perform the sampling we represent the solution in terms of the vector of physical
variablesW = [h, u, ψ]T and make use of the similarity variable

ξ = x/t̂ (199)

to locate the sampling point and assign the corresponding solutionW(ξ). Note that
ξ has dimensions of velocity. There are two cases.

• Sampling point lies to the left of the contact. The solutionW(ξ) for (x, t̂) ∈ RL

depends on the wave type. There are two possibilities:
Left shock. If the left wave is a shock of speed SL, then RL is again subdivided
into two subregions and the solution is

W(ξ) ≡
{
W∗L = [h∗, u∗, ψL]T if SL ≤ ξ ≤ u∗ ,

WL = [hL, uL, ψL]T if ξ < SL ,
(200)

where the shock speed SL is given by (185).

Left Rarefaction If the left wave is a rarefaction thenRL is subdivided into three
subregions and the solution is

W(ξ) =

⎧⎪⎨
⎪⎩

WL = [hL, uL, ψL]T if ξ ≤ uL − aL ,

WLfan =
[
ĥL, ûL, ψL

]T
if uL − aL ≤ ξ ≤ u∗ − a∗ ,

W∗L = [h∗, u∗, ψL]T if u∗ − a∗ ≤ ξ ≤ u∗ ,

(201)

where ĥL and ûL inside the left rarefaction are obtained from (155).

• Sampling point lies to the right of the contact. The solution W(ξ) for (x, t̂) ∈
RR depends on the type of the left wave present. Again there are two possibilities.
Right shock. If the right wave is a shock of speed SR, thenRR is again subdivided
into two subregions and the solution is

W(ξ) ≡
{
W∗R = [h∗, u∗, ψR]T if u∗ ≤ ξ ≤ SR ,

WR = [hR, uR, ψR]T if ξ > SR ,
(202)

where the shock speed SR is given by (177).
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Table 1 Initial conditions for
two Riemann problems for
the shallow water equations

Test x0 Tout hL uL hR uR
1 10.0 7.0 1.0 2.5 0.1 0.0

2 25.0 2.5 1.0 10.0 1.0 -10.0
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Fig. 35 Test 1. Solution profiles for h and u at the output time Tout = 7.0s. The solution consists
of a left rarefaction and a right shock

Right Rarefaction If the right wave is a rarefaction then RR is subdivided into
three subregions and the solution is

W(ξ) =

⎧⎪⎨
⎪⎩

WR = [hR, uR, ψR]T if ξ > uR + aR ,

WRfan =
[
ĥR, ûR, ψR

]T
if u∗R + a∗ ≤ ξ ≤ uR + aR ,

W∗R = [h∗, u∗, ψR]T if u∗ ≤ ξ ≤ u∗R + a∗ ,

(203)

where ĥR and ûR inside the right rarefaction are derived from (160).

Test Problems Here we solve two specific Riemann problems for the shallowwater
equations in a finite channel of length 50m. Table 1 gives the initial conditions and
computational details. Column 2 gives the position of the initial discontinuity and
column 3 gives the output time. The remaining columns give the initial conditions
for depth h and velocity u. Note that in these examples we have not considered
the equation for a passive scalar. Figures 35 and 36 show profiles for tests 1 and 2
respectively.

2.3 Concluding Remarks

In this section we have introduced the 1D shallow water equations augmented by
a passive scalar, and studied its salient mathematical properties. We have solved
exactly the corresponding Riemann problem, whose solution can be used to con-
struct Godunov-type finite volume numerical methods and discontinuous Galerkin
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Fig. 36 Test 2. Solution profiles for h and u at the output time Tout = 2.5s. The solution consists
of two rarefaction waves

finite element methods. Moreover, this exact solution can be used to construct
approximate solutions (approximate Riemann solvers) to be used in numerical
methods. Note also that the exact solution can be used to assess the correctness
and accuracy of numerical computations intended for solving the shallow water
equations.

Further reading material is found in [2] and [1] and in references therein.

3 Godunov’s Method for the Shallow Water Equations

We study the Godunov method [5] as applied to a general non-linear hyperbolic
system, and in particular as applied to the 1D shallow water equations. We consider
two approaches for computing the Godunov flux: the first requires the calculation
of the Godunov state, that is the state along the t-axis in the solution of the Riemann
problem, see Sect. 2. Then, the numerical flux is simply the physical flux function
evaluated at this Godunov state. In the second approach one calculates a numerical
flux directly.

General Initial-Boundary Value Problem (IBVP) First we apply the Godunov’s
method to a generic nonlinear hyperbolic system. Consider the IBVP for any non-
linear hyperbolic system

PDEs: ∂tQ + ∂xF(Q) = 0 , x ∈ [a, b] , t > 0 ,

ICs: Q(x, 0) = Q(0)(x) , x ∈ [a, b] ,

BCs: Q(a, t) = BL(t) , Q(b, t) = BR(t) , t ≥ 0 .

⎫⎬
⎭ (204)

Q(x, t) is the vector of conserved variables; F(Q) is the flux function, or physical
flux;Q(0)(x) is the initial condition; BL(t) and BR(t) are the boundary conditions on
the left and right boundaries respectively, two prescribed functions of time.
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3.1 The Finite Volume Method

Unlike the finite difference method introduced in Sect. 1, the finite volume discreti-
sation of the domain considers a partition of the entire x− t domain into space-time
finite volumes, as in Fig. 12 of Sect. 1. In the numerical context these finite volumes
are denoted as Vi = [xi− 1

2
, xi+ 1

2
] × [tn, tn+1]. Figure 37c shows three consecutive

finite volumes. Here Δt = tn+1 − tn denotes the time step and Δ = xi+ 1
2

− xi− 1
2

denotes the cell spatial size, or mesh size; xi+ 1
2
denotes the volume interface. With

this notation, the exact integration of the equations in the generic finite volume Vi

gives the finite volume formula

Qn+1
i = Qn

i − Δt

Δx

(
Fi+ 1

2
− Fi− 1

2

)
, (205)

with

Qn
i ≈ 1

Δx

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx (206)

q(x, tn)

xi − 1 i i + 1

qni−1
qni

qni+1

(a)

t

x

Qi− 1
2
(0) Qi+ 1

2
(0)

(b)

t

x

tn

tn+1

i − 1 i i + 1

Qn
i−1 Qn

i Qn
i+1

Qn+1
i

Fi− 1
2

Fi+ 1
2

(c)

Fig. 37 Godunov’s method for a hyperbolic system: (a) integral averages for one component q of
the vector Q in each interval [xi− 1

2
, xi+ 1

2
] at time tn give piece-wise constant data; (b) structure of

solutions of Riemann problems at intercell boundaries determined by piece wise constant data; (c)
finite volume formula to update averages using numerical fluxes
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and

Fi+ 1
2

≈ 1

Δt

∫ tn+1

tn
F(Q(xi+ 1

2
, t))dt . (207)

See Eqs. (60) and (61) in Sect. 1. Formula (205) serves to update approximations
to spatial integral averages (206) using numerical fluxes that are approximations to
time integral averages (207) at the cell interface xi+ 1

2
. See Fig. 37.

3.1.1 The Godunov Flux

To define the finite volume scheme (205) we prescribe suitable approximations to
the integral (207) to obtain the numerical flux Fi+ 1

2
. The Godunov upwind numerical

flux Fi+ 1
2
is computed from (207), making use of the solutionQi+ 1

2
(x/t) of the local

Riemann problem

PDEs: ∂tQ + ∂xF(Q) = 0 ,

ICs: Q(x, 0) =
⎧⎨
⎩
QL ≡ Qn

i if x < 0 ,

QR ≡ Qn
i+1 if x > 0 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(208)

The Godunov flux is computed from (207) and becomes

Fi+ 1
2

= F(Qi+ 1
2
(0)) . (209)

Qi+ 1
2
(0) is called the Godunov state and results from Qi+ 1

2
(x/t) evaluated at the

interface x/t = 0. Note that for convenience, at each interface xi+ 1
2
and time level

tn we use local coordinates through a change from global to local coordinates as
follows:

x̄ = x − xi+ 1
2

, t̄ = t − tn ,

x ∈ [xi, xi+1] , t ∈ [tn, tn+1] ,

x̄ ∈ [−Δx
2 , Δx

2 ] , t̄ ∈ [0,Δt] .

⎫⎪⎬
⎪⎭ (210)

We then use (x, t) to mean the local coordinates (x̄, t̄). See Fig. 38. In what follows
we specialise Godunov’s method to the shallow water equations.
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Fig. 38 Correspondence
between the global (a) and
local (b) frames of reference
for the solution of the
Riemann problem
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3.1.2 Godunov Flux with the Exact Riemann Solver

One first solves the Star problem; the solution for h∗ and u∗ in the Star Region
is found. To this end one solves the non-linear equation (using Newton-Raphson
method, for example)

f (h) ≡ fL(h) + fR(h) + Δu = 0 , Δu ≡ uR − uL . (211)

All details on the Riemann problem are given in Sect. 2. Once the water depth h =
h∗ has been found the velocity u∗ is calculated as

u∗ = 1
2 (uL + uR) + 1

2 [ fR(h∗) − fL(h∗)] . (212)

Note that not always the Godunov state needed for flux evaluation corresponds to
the Star State, for which it is necessary to go through a sampling procedure to find
the Godunov state Qi+ 1

2
(0) for flux evaluation, see Sect. 2.

If a passive scalar is present in the equations, then one simply chooses

ψ(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

ψL if
x

t
< u∗ ,

ψR if
x

t
> u∗ .

(213)

This completes the description of Godunov’s flux as applied to the augmented 1D
shallow water equations, using the exact Riemann solver.

In practice one resorts to approximate solution methods to find a Godunov-type
flux. We next describe several approaches but before doing so we address some
issues that emerge when having to choose an approximate Riemann solver. We first
recall that the Godunov method is the most accurate monotone numerical method,
as shown for the scalar linear case in Sect. 1. For systems, first recall that the
concept of monotone method does not exist, it is only a scalar concept. Then, on the
accuracy question, one knows that this depends crucially on the particular Riemann
solver used. The exact solver is the best but at the cost of (i) complexity and (ii)
computational expense. Computational expense however has to be seen in light of
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efficiency, that is, in relation to the error. The computational expense of the exact
Riemann solver is not excessive for systems such as for blood flow, shallow water
and ideal gas dynamics. Still, approximate Riemann solvers can and are used for
these systems but great care is required in choosing the appropriate approximation.
The following remarks are in order:

1. Good approximate Riemann solvers are required to be:

• Complete: their wave model contains all characteristic fields of the exact
Riemann problem.

• Non-linear. Linearised Riemann solvers have various defects and are thus to
be avoided whenever possible.

2. The simplest Riemann solver is the Rusanov solver, as we shall see its wave
model contains just one wave.

3. At the bottom of the hierarchy of numerical fluxes are centred methods, such as
the Lax-Friedrichs and FORCE fluxes.

4. Centred, or symmetric, methods may be the simplest but not the most efficient,
as we shall see later.

3.2 A Simple Linearised Riemann Solver

As an academic example here, we study a linearised Riemann solver, even if in
practice, such solvers are to be avoided. We look for approximations to h∗ and u∗ in
the Star Region. First we re-write the governing equations in terms of primitive, or
physical, variables h, u and ψ .

∂tP + M(P)∂xP = 0 , (214)

with

P =
⎡
⎣ h

u
ψ

⎤
⎦ , M(P) =

⎡
⎣ u h 0
g u 0
0 0 u

⎤
⎦ . (215)

Denote the initial conditions for the Riemann problem as

PL =
⎡
⎣ hL
uL
ψL

⎤
⎦ , PR =

⎡
⎣ hR
uR
ψR

⎤
⎦ . (216)

Now assume PL is close to PR and linearise system (214) about

h̃ = 1

2
(hL + hR) , ũ = 1

2
(uL + uR) (217)
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so that the nonlinear system (214) becomes the linear system

∂tP + M̂∂xP = 0 , (218)

with constant coefficient matrix

M̂ =
⎡
⎣ û ĥ 0
g û 0
0 0 û

⎤
⎦ . (219)

The linear Riemann problem for (218) with initial conditions (216) is solved exactly
by using standard methods for hyperbolic linear systems, see Sect. 1, to obtain

h∗ = 1

2
(hL + hR) − 1

2
(uR − uL)/C̄ ,

u∗ = 1

2
(uL + uR) − 1

2
(hR − hL)C̄ ,

C̄ =
√

2g

hL + hR
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(220)

Remarks About the Linearised Solution

1. The solution for ψ(x, y) is as given by (213), though u∗ is an approximation.
2. A sampling procedure to find Qi+ 1

2
(0) for evaluating the numerical flux is

required.
3. This Riemann solver is very simple but not robust enough.
4. It fails for strong rarefactions, near the vacuum state.
5. It fails for trans-critical (or sonic) flow, leading to entropy violating shocks (or

rarefaction shocks).
6. This Riemann solver is complete but linear.
7. In general, linearised Riemann solvers are not recommended for practical use.

3.3 A Two-Rarefaction Riemann Solver

Starting from the exact Riemann solver, by directly assuming that both non-linear
waves are rarefactions, constancy of Riemann invariants leads to

u∗ + 2c∗ = uL + 2cL , u∗ − 2c∗ = uR − 2cR . (221)
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There follows that

u∗ = 1
2 (uL + uR) − (cR − cL) ,

c∗ = 1
2 (cL + cR) − 1

4 (uR − uL) ,

h∗ = 1
g (c∗)2 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(222)

The solution for ψ(x, y) is as given by (213), though u∗ is an approximation. The
sampling procedure to find Qi+ 1

2
(0) for evaluating the numerical flux is required;

this is the same as for the exact Riemann solver. This Riemann solver is very simple,
complete and non-linear; in practice it is also shown to be very robust.

3.4 The Harten-Lax-van Leer (HLL) Riemann Solver

We want to solve the Riemann problem (208) approximately with the aim of finding
directly a numerical flux of the form

F0 = 1

T

∫ T

0
F(Q(0, t))dt (223)

for an arbitrary time T > 0 and where Q(0, t) is an approximate solution of
the Riemann problem along the t-axis (the Godunov state); see Fig. 39. Here we
construct a numerical flux following the HLL approach proposed by Harten, Lax
and van Leer [7]. We first establish some useful relations obtained by applying the
integral form of the conservation laws on appropriately chosen control volumes.

x
t = SL ≤ 0

x

t
x
t = SR ≥ 0

x = 0

Qn
i

F0

Qn+1
i

T

QHLL

xL = SL xT R = SRT

Fig. 39 Wave pattern used for the derivation of the HLL flux for a subcritical, or subsonic, wave
pattern, SL ≤ 0 and SR ≥ 0
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Consider the control volume [xL, 0] × [0,T] in the space-time configuration
of Fig. 39. Assume the fastest signals perturbing the constant initial states QL ≡
Qn

i and QR ≡ Qn
i+1 emerging from the Riemann problem solution are SL (for

left travelling signals) and SR (for right travelling signals). Assume the wave
configuration is subsonic, that is SL ≤ 0 and SR ≥ 0. Then, for an arbitrary time
T > 0 we define the distances

xL = TSL , xR = TSR . (224)

Applying the integral form of the conservation laws (204) in the control volume
[xL, 0] × [0,T] we obtain
∫ 0

xL
Q(x,T)dx =

∫ 0

xL
Q(x, 0)dx+

∫ T

0
F(Q(xL, t))dt−

∫ T

0
F(Q(0, t))dt . (225)

Evaluation of the first and second terms on the right hand side gives

∫ 0

xL
Q(x, 0)dx = −SLTQL ;

∫ T

0
F(Q(xL, t))dt = TF(QL) . (226)

Inserting these into (225) and dividing through by T gives

F0 = 1

T

∫ T

0
F(Q(0, t))dt = −SLQL + F(QL) − 1

T

∫ 0

xL
Q(x,T))dx . (227)

To define F0 approximately it is sufficient to find an approximation to the integral
on the right hand side of (227). This is accomplished by finding an approximate
state Q(x,T) by adopting an approach analogous to the Lax-Wendroff method, or
to the Godunov centred method; see [1]. Applying the integral form (225) of the
conservation laws (204) in the control volume [xL, xR] × [0,T], see Fig. 39, we
obtain

∫ xR

xL
Q(x,T)dx =

∫ xR

xL
Q(x, 0)dx+

∫ T

0
F(Q(xL, t))dt −

∫ T

0
F(Q(xR, t))dt .

(228)

The first term on the right hand side gives

∫ xR

xL
Q(x, 0)dx = −SLTQL + SRTQR . (229)

Substitution of this expression into (228) and evaluation of the integrals gives

∫ xR

xL
Q(x,T)dx = T[SRQR − SLQL + F(QL) − F(QR)] . (230)
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On division through by xR − xL = T(SR − SL) we obtain the averaged state

QHLL = 1

(xR − xL)

∫ xR

xL
Q(x,T)dx = SRQR − SLQL + F(QL) − F(QR)

SR − SL
.

(231)

We now use the state QHLL to evaluate the integral on the right hand side of (227).
The resulting intercell flux is

F0 = SRF(QL) − SLF(QR) + SLSR(QR − QL)

SR − SL
. (232)

The HLL Flux Finally the HLL flux for the approximate Godunov method is

FHLL
i+ 1

2
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

FL if 0 ≤ SL ,

SRF(QL) − SLF(QR) + SLSR(QR − QL)

SR − SL
, if SL ≤ 0 ≤ SR ,

FR if 0 ≥ SR .

(233)

To complete the HLL scheme it is necessary to find estimates for SL and SR. In [2],
the following estimates are suggested

SL = uL − qLcL , SR = uR + qRcR . (234)

Here qK (K = L,R) are obtained according to the type of non-linear waves present

qK =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1

2

(h̄∗ + hK)h̄∗
h2K

if h̄∗ > hK ,

1 if h̄∗ ≤ hK .

(235)

The scheme is complete by defining h̄∗ ≈ h∗, the depth in the Star Region. Here
we suggest to use the simple but robust estimate from (222). Given wave speed
estimates SL and SR, HLL is most easily implemented noting also that HLL is a
non-linear Riemann solver and entropy satisfying. HLL is complete but only for
systems of two equations. For larger systems HLL is incomplete.

HLLRusanov and Lax-Friedrichs Schemes Well-knownmethods can be derived
from HLL, as a special cases. For example, The Rusanov flux [8] can be derived
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from HLL by assuming S+ = SR and SL = −S+. Then we obtain

FRus
i+ 1

2
= 1

2
[F(QL) + F(QR)] − 1

2
S+(QR − QL) . (236)

The Rusanov scheme is the simplest upwind method, it has a 1-wave model and
is non-linear. But obviously the Rusanov method is incomplete for any system of
equations.

The well-known Lax-Friedrichs method can also be derived from HLL and more
specifically from Rusanov by choosing S+ = Δx

Δt , producing the Lax-Friedrichs flux

FLF
i+ 1

2
= 1

2
[F(QL) + F(QR)] − 1

2

Δx

Δt
(QR − QL) . (237)

The wave model of the Lax-Friedrichs method has zero waves. It is the most
diffusive (most inaccurate) stable method for hyperbolic equations. I would not
recommend its use for practical computations.

3.5 The HLLC Riemann Solver

HLL ignores intermediate waves in systems of three or more equations, leading to
excessive numerical dissipation for these waves. A possible improvement, called
HLLC, was first proposed by Toro and collaborators in 1992 [9]; see also [10]
and [11]. The HLLC approximate Riemann solver is a modification of HLL that
accounts for intermediate waves in the solution of the Riemann problem. See
Fig. 40.

t

xx = 0

x

t
= SL

x

t
= S∗

x

t
= SR

QL QR

FL FR

Q∗L Q∗R

F∗L F∗R

Fig. 40 Assumed wave pattern for the HLLC Riemann solver. The Star Region contains two sub-
regions separated by the intermediate wave
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Consider the wave pattern depicted in Fig. 40, where an intermediate wave of
speed S∗ is present. Application of the integral form of the conservation laws in
[xL, 0] × [0,T] and in [0, xR] × [0,T] yield

F∗L = FL + SL(Q∗L − QL) , F∗R = FR + SR(Q∗R − QR) . (238)

Here there are two vector equations for four unknown vectors Q∗L, Q∗R, F∗L
and R∗R. To solve this overdetermined algebraic system we make the following
additional assumptions

h∗L = h∗R = h∗ , u∗L = u∗R = u∗ = S∗ . (239)

As a matter of fact the above assumptions are true for the exact Riemann solver, as
seen in Sect. 2. From the first component of the first vector equation in (238) we
write

h∗u∗ = hLuL + SL(h∗ − hL) . (240)

From the first component of the second vector equation in (238) we write

h∗u∗ = hRuR + SR(h∗ − hR) . (241)

From (240) and (241) we write

h∗ = hR(uR − SR)

u∗ − SR
= hL(uL − SL)

u∗ − SL
. (242)

From here we obtain

u∗ = S∗ = SLhR(uR − SR) − SRhL(uL − SL)

hR(uR − SR) − hL(uL − SL)
. (243)

If SL and SR are prescribed, then h∗ is known from (242)–(243). Then the vectors
Q∗L and Q∗R in (238) are given as

Q∗L = h∗

⎡
⎣ 1
S∗
ψL

⎤
⎦ , Q∗R = h∗

⎡
⎣ 1

S∗
ψR

⎤
⎦ . (244)

Now the vectors F∗L and F∗R in (238) are determined and finally the HLLC flux is
given as

FHLLC
i+ 1

2
=

⎧⎪⎪⎨
⎪⎪⎩

FL if 0 ≤ SL ,

F∗L = FL + SL(Q∗L − QL) if SL ≤ 0 ≤ S∗ ,

F∗R = FR + SR(Q∗R − QR) if S∗ ≤ 0 ≤ SR ,

FR if 0 ≥ SR ,

(245)
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where the states Q∗L, Q∗R are given by (244). The wave speed estimates for SL and
SR are as for the HLL flux, see (234), and for S∗ we use (243).

The use of HLLC instead of HLL for a system including the passive scalar
ψ makes a dramatic difference to the resolution of the contact wave. This is
particularly evident for long-time evolution problems.

3.6 The Dumbser-Osher-Toro Riemann Solver: DOT

Here we present a modification of the Osher-Solomon Riemann solver [12] that
makes the approach much more practical and applicable to any hyperbolic system
for which the complete eigenstructure is known, either analytically of numerically.
The resulting scheme is non-linear and complete. The modification is due to
Dumbser and Toro [13, 14].

3.6.1 Definitions and Notation

Consider a general m × m hyperbolic system

∂tQ + ∂xF(Q) = 0 , (246)

with conserved variables and flux vectors respectively denoted as

Q = [q1, q2, . . . , qm]T , F = [ f1, f2, . . . , fm]T . (247)

The real eigenvalues are λi(Q) and the corresponding right eigenvectors are Ri(Q),
for i = 1, 2, . . . ,m. Here we consider Godunov-type finite volume schemes to
solve (246)

Qn+1
i = Qn

i − Δt

Δx
(Fi+ 1

2
− Fi− 1

2
) , (248)

where Fi+ 1
2
is the numerical flux found by solving the Riemann problem for (246)

with initial condition

Q(x, 0) =
{
Q0 if x < 0 ,

Q1 if x > 0 .
(249)

Recall that hyperbolicity of system (246) is equivalent to saying that the Jacobian
matrix A(Q) of the flux F(Q) is diagonalizable, that is

A(Q) = R(Q)Λ(Q)R−1(Q) , (250)
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where R(Q) is the matrix formed by the right eigenvectors Ri(Q), R−1(Q) is its
inverse and Λ(Q) is the diagonal matrix whose diagonal entries are the eigenvalues
λi(Q).

We introduce the definitions

λ+
i (Q) = max(λi(Q), 0) , λ−

i (Q) = min(λi(Q), 0) (251)

and consider the associated diagonal matrices Λ+(Q), Λ−(Q) and |Λ−(Q)|, whose
diagonal entries are λ+

i (Q), λ−
i (Q) and |λi(Q)| respectively. Note that

|λi(Q)| = λ+
i (Q) − λ−

i (Q) (252)

and hence

|Λ(Q)| = Λ+(Q) − Λ−(Q) . (253)

Then we introduce

|A(Q)| = R(Q)|Λ(Q)|R−1(Q) . (254)

Osher and Solomon [12] defined the numerical flux as

Fi+ 1
2

= 1

2
(F(Q0) + F(Q1)) − 1

2

∫ Q1

Q0

|A(Q)|dQ . (255)

This requires the evaluation of an integral in phase space, which depends on the
chosen integration path joining Q0 to Q1. Originally, Osher and Solomon proposed
two ways of choosing integration paths so as to make the actual integration
tractable, (a) the P-ordering and (b) the O-ordering. However, the analytical
calculations to be performed are still too involved for general hyperbolic systems.
Full details of the original Osher-Solomon Riemann solver are found in Chapter 12
of Toro [1].

3.6.2 The DOT Riemann Solver

Dumbser and Toro [13, 14] made two simple but effective suggestions: (i) choose
any path, without considerations regarding computational tractability of the scheme;
(ii) evaluate matrices by numerical integration in phase space. The simplest path to
evaluate the integral in (255) is the canonical path

ψ(s;Q0,Q1) = Q0 + s(Q1 − Q0) , s ∈ [0, 1] . (256)
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Obviously, other choices are available. Then, under a change of variables we obtain

Fi+ 1
2

= 1

2
(F(Q0)+F(Q1))− 1

2

⎛
⎝

1∫
0

|A(ψ(s;Q0,Q1))| ds
⎞
⎠ (Q1 − Q0) . (257)

Finally, the integral in (257) is computed numerically along the path ψ using a
Gauss type quadrature rule with G points sj and associated weights ωj in the unit
interval I = [0, 1]. We obtain

Fi+ 1
2

= 1

2
(F(Q0) + F(Q1)) − 1

2

⎛
⎝ G∑

j=1

ωj
∣∣A(ψ(sj;Q0,Q1))

∣∣
⎞
⎠ (Q1 − Q0) .

(258)

Note that
∣∣A(ψ(sj;Q0,Q1))

∣∣ must be decomposed as in (254) for each sj.

Remarks on the DOT Scheme

1. The complete eigenstructure of the system is needed and is used at each
integration point in (258).

2. The scheme is non-linear and complete, as it contains all characteristic fields of
the exact problem.

3. The scheme is very general. The original version of Osher and Solomon was
restricted to very simple hyperbolic systems.

4. The new DOT scheme also applies to non-conservative hyperbolic systems.

3.6.3 Sample Numerical Results, Accuracy and Efficiency

The purpose here is to show some numerical results for a wider range of equations
than those studied in these lecture notes. We first show some selected numerical
results for the Euler equations of gas dynamics; see [1] for background. Then we
also address the crucial issues of accuracy and efficiency of Riemann solvers; this is
done in terms of the blood flow equations [15].

Numerical Results for the Euler Equations Figure 41 shows computations from
a linearised Riemann solver not studied here, namely the Roe Riemann solver [16].
Results shown are for the Euler equations [1]. The left frame shows results from
the original Roe scheme without an entropy fix; an entropy violating shock (or
rarefaction shock) is computed, which is not physically admissible. The right frame
shows results from a modified Roe scheme through a so-called entropy fix; now
the results look correct and also accurate, recalling that the corresponding Godunov
method is only first order accurate.
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Fig. 41 Sonic flow test problem for the Euler equations taken from [1]. Comparison between
numerical (symbol) and exact (line) solutions. Left: linearised Roe solver without entropy fix.
Right: linearised Roe solver with entropy fix
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Fig. 42 Test problem for the Euler equations taken from [1]. Comparison between numerical
(symbol) and exact (line) solutions. Left: Original Osher-Solomon scheme. Right: new DOT
scheme

In Fig. 42 we show results for another test problem for the Euler equations taken
from [1]. Comparison between numerical (symbol) and exact (line) solutions is
shown. The left frame shows results from the original Osher-Solomon scheme [12],
which as seen in the figure, are completely wrong. The right frame shows results
from the new DOT scheme [13, 14]; these results are very accurate, especially for
the narrow region between the contact discontinuity and the shock wave.

Figure 43 shows results for a special test problem for the Euler equations, also
taken from [1]. The test problem consists of a single, isolated stationary contact
discontinuity. The left frame shows numerical results from the HLL scheme [7] and
the FORCE scheme [6]. Both numerical methods show large errors due to numerical
diffusion of the intermediate wave in the Riemann problem for the Euler equations.
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Fig. 43 Test problem for the Euler equations containing a single, isolated stationary contact
discontinuity; taken from [1]. Left: FORCE and HLL versus the exact solution. Right: HLL and
HLLC versus the exact solution
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Fig. 44 Efficiency test for the blood flow equations. The test is a Riemann problem containing
two rarefaction waves. Error against CPU time. Results are shown for the Godunov method used in
conjunction with Exact Riemann solver, the HLL Riemann solver, FORCE and the Lax-Friedrichs
flux (Courtesy of PhD student Christian Contarino, University of Trento, Italy)

The right frame shows results from HLL [7] and from HLLC [11], noting that the
latter reproduces the exact solution.

Accuracy and Efficiency We have already mentioned the question of efficiency,
which relates error (or accuracy) to computational cost. Figure 44 shows results
from an efficiency test for the 1D blood flow equations [15], where error is measured
against CPU time. Comparison is made for the Godunovmethod with four Riemann
solvers: the exact Riemann solver, HLL, FORCE and Lax-Friedrichs.
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What the results of Fig. 44 show is that for this test problem with smooth solution
the Godunov method is the most efficient method. Compared to the Lax-Friedrichs
method, it is about five times more efficient. To see this, imagine a horizontal line
through the last point of the Lax-Friedrichs curvewith the smallest error and look for
its intersection with the exact Riemann solver curve; these two intersection points
give two respective CPU times.

3.6.4 Concluding Remarks

The Godunov method for the augmented one-dimensional shallow water equations
has been introduced. The Godunov scheme works with the exact and with approx-
imate Riemann solvers. Examples of approximate Riemann solvers have also been
presented, along with some selected numerical results for the Euler equations and
for the blood flow equations, not studied here. The first-order Godunov schemes
studied in this section can be extended to high order of accuracy following a variety
of procedures available in the literature. In the next section we present the ADER
approach to construct high-order numerical methods.

4 High Order Methods: The ADER Approach

In this section we present one approach, the ADER approach, to construct high-
order accurate extensions of the first-order methods presented previously.

4.1 Overview

We are interested in time-dependent partial differential equations of the form

∂tQ(x, t) + A(Q(x, t)) = S(Q(x, t)) + D(Q(x, t)) ,

x ∈ Ω , t > 0 , ICs , BCs ,

⎫⎬
⎭ (259)

along with appropriate initial and boundary conditions. Here Q(x, t) is the vector
of unknowns; A(Q(x, t)) is an advection differential operator in 1D, 2D or 3D;
D(Q(x, t)) is a dissipative operator in 1D, 2D or 3D and S(Q(x, t)) is a source term
vector, a prescribed function of the unknowns.

The ADER approach was first presented by Toro and collaborators [17] for
linear hyperbolic systems in 1D, 2D and 3D on structured meshes; schemes of upto
10th order of accuracy in space and time were constructed and implemented. The
ADER schemes were further developed in [18] and [19] for non-linear systems;
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in [20] ADER was formulated, in a unified manner, in both the finite volume
and the discontinuous Galerkin finite element frameworks. For an introduction to
ADER see Chapters 19 and 20 of [1] and the many references therein, up to 2009.
Distinguishing features of the ADER approach include:

1. Accuracy is arbitrary in both space and time.
2. Schemes are non-linear schemes, in the sense of Godunov; computed shock

waves and other discontinuities have none or controlled spurious oscillations.
3. Schemes are suitable for general geometries in multiple space dimensions,

treated with both structured or unstructured meshes.
4. Schemes work in both the finite volume and the discontinuous Galerkin finite

element frameworks.
5. Schemes are applicable to conservative and non-conservative hyperbolic sys-

tems.

Why is High Accuracy Important? Because of Efficiency Figure 45 shows
computational results for an acoustic problem modelled by the linearised two
dimensional Euler equations solved by ADER schemes taken from [21]. The

Fig. 45 Efficiency plot: error against CPU cost for nine high-order ADER schemes, from the
2nd order to the 24th order of accuracy. For a chosen fixed error there corresponds a horizontal
line (e.g. black horizontal line); its intersection with the various curves gives corresponding times,
which give the cost of the corresponding scheme to compute the solution with that error. Taken
from [21]
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original paper reports computations of orders of accuracy from 1 to 24 in space
and time. Figure 45 displays some selected results from 2nd to 16th order.

4.2 ADER in the Finite Volume Framework

Consider the general system of hyperbolic equations with source terms (hyperbolic
balance laws) in one space dimension

∂tQ(x, t) + F(Q(x, t)) = S(Q(x, t)) . (260)

Exact integration of (260) in the control volume [xi− 1
2
, xi+ 1

2
] × [0,Δt] gives a finite

volume like formula

Q̂n+1
i = Q̂n

i − Δt

Δx
(F̂i+ 1

2
− F̂i− 1

2
) + ΔtŜi , (261)

where

Q̂n
i = 1

Δx

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx ,

F̂i+ 1
2

= 1

Δt

∫ tn+1

tn
F(Q(xi+ 1

2
, t))dt ,

Ŝi = 1

ΔtΔx

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

S(Q(x, t))dxdt .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(262)

Relation (261) with definitions (262) is exact andmotivates an approximate formula,
namely

Qn+1
i = Qn

i − Δt

Δx
(Fi+ 1

2
− Fi− 1

2
) + ΔtSi . (263)

See Sect. 1. Equation (263) defines a one-step, fully discrete finite volume numerical
scheme with numerical flux

Fi+ 1
2

≈ 1

Δt

∫ Δt

0
F(Qi+ 1

2
(τ ))dτ (264)

and numerical source

Si ≈ 1

ΔtΔx

∫ Δt

0

∫ x
i+ 1

2

x
i− 1

2

S(Qi(x, τ ))dxdτ . (265)
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Fig. 46 Illustration of the finite volume scheme (263) to solve the system of hyperbolic equa-
tion (260) with source terms. The scheme requires numerical fluxes at interfaces and the numerical
source within the control volume

q(
x
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n
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xxi−1 xi xi+1

pi−1(x)

pi(x) pi+1(x)
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Fig. 47 Illustration of the reconstruction procedure for one variable q(x, t) in one space dimension
on a regular mesh. From the set of (constant) integral averages {qni } one obtains an interpolant pi(x)
satisfying a conservation property and a non-linear property to circumvent Godunov’s theorem,
using for example criteria such as TVD, ENO and WENO. Note that at each interface one now has
reconstructed data that defines a generalised Riemann problem

Figure 46 illustrates scheme (263) to solve (260). The finite volume ADER
scheme (263) aims at computing approximations (264) and (265) as accurately as
possible.

4.3 Ingredients of ADER

The ADER method to solve (260) is based on the finite volume formula (263) and
requires the accurate evaluation of integrals (264) for the intercell numerical flux
and (265) for the numerical source. In order to achieve this, the following steps are
required.

1. Reconstruction: high-order non-linear spatial reconstruction, once per time
step, using any of the methodologies available, such as TVD, ENO and WENO.
Figure 47 illustrates the reconstruction process. For background on reconstruc-
tion techniques see for example [1, 4, 22, 23] and [24].
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2. Generalised Riemann problem (GRP) and numerical flux. At each interface
one must solve a Riemann problem with piece-wise smooth data, not piece-wise
constant, as in the conventional case. This GRPmay also include the source terms
in case these are present in the equations.

3. Numerical source. This is an additional term in the case in which the equations
include source term.

4.4 Generalized Riemann Problem

Starting from reconstructed data, at each interface one defines the following initial
value problem, called the generalized Riemann problem, or GRP

PDEs: ∂tQ + ∂xF(Q) = S(Q) , x ∈ (−∞,∞) , t > 0 ,

ICs: Q(x, 0) =
⎧⎨
⎩
QL(x) if x < 0 ,

QR(x) if x > 0 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(266)

In the GRP (266) the governing equations include source terms and the initial
conditions are piece-wise smooth (e.g. polynomials of any degree). This Riemann
problem also generalises the case in which the data is piece-wise linear, which is
associated with the second-order GRP scheme of Ben-Artzi and Falcovitz [25].

Figure 48 illustrates the classical Riemann problem (left) and the generalised
Riemann problem (right). Figure 49 shows an example of a generalised Riemann
problem for the Euler equations of gas dynamics. There are so far several published
methods for solving the generalised Riemann problem for hyperbolic systems. The
first practical solver for non-linear hyperbolic systems with source terms is due to
Toro and Titarev [18]. This solver is suitable for non-stiff source terms. Other solvers
include [26–30]. An important development was that in [27] in which the proposed
solver can deal with stiff source terms, reconciling in this way, stiffness and high-
order of accuracy.

4.5 Numerical Examples

Here we show some sample numerical results, first for the 1D linear advection
equation and then for the 2D Euler equations of gas dynamicswith the ideal equation
of state.

Figure 50 shows computed (symbols) and the exact solution (line) for linear
advection equation using a mesh of M = 50 cells, a Courant number coefficient
Ccfl = 0.95 at the output time tout = 1000π . The top frame displays results from a
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Fig. 48 Classical Riemann problem (left) and generalised Riemann problem (right). Bottom
frames depict the initial conditions (for a single variable) and top frames depict the structure of
the solution of the initial value problem in the x − t plane

Fig. 49 Structure of the solution of a generalized Riemann problem for the Euler equations.
Characteristics are curved in the x − t plane (Courtesy of Dr VA Titarev)

second-order TVD method used in conjunction with the MINBEE limiter [1]. The
bottom frame shows results from the 5th-order ADER scheme (5th order in space
and time) with WENO (non-linear) reconstruction. The results speak by themselves.
The second order TVD method is unable to resolve the wave packet and there is not
even a hint of waves; the profile is virtually flat. The killer here is the long evolution
time, tout = 1000π . Long time evolution problems expose the limitations of low
order methods. The fifth order method is just perfect.
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Fig. 50 Computed (symbols) and exact solution (line) of linear advection equation using a mesh
ofM = 50 cells, Courant number coefficient Ccfl = 0.95 and output time tout = 1000π . Top frame
displays results from second-order TVD method with the MINBEE limiter. Bottom frame shows
results from the 5th-order ADER scheme with WENO reconstruction

Figure 51 shows computed results for the two-dimensional Euler equations of gas
dynamics with the ideal gas equation of state. This test problem is well known in
the gas dynamics community. The domain is a rectangular region with a solid fixed
triangle in its interior (white object). The top and bottom boundaries are reflecting
fixed walls, while the left and right boundaries are transmissive. The initial condition
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Fig. 51 Shock wave impinging on stationary triangular body. Numerical solution of the Euler
equations of gas dynamics on a triangular mesh using a fourth order ADER method (Courtesy of
Prof. M Dumbser, University of Trento, Italy)

is an isolated shock wave of Mach number 1.3 positioned between the left boundary
and the triangle. The evolution of this initial condition gives rise to a complex
pattern of waves propagating and interacting. There are experimental visualization
results for this problem. The ADER solution represents those experiments well. In
addition to the dominant shock waves everywhere there are also regions of smooth
flow and many low amplitude waves; these are the flow features that are difficult
to capture with low order methods, they are simply wiped out, just as seen for the
linear advection example of Fig. 50.

4.6 Concluding Remarks

In this last section we have given a very brief introduction to one approach to con-
struct high-order numerical methods for hyperbolic equations, namely the ADER
approach. This is a fully discrete approach that requires a spatial reconstruction
procedure and the solution of the generalised Riemann problem. There are indeed
alternative methods to achieve high order of accuracy. Prominent examples are the
ENO andWENO semidiscrete approaches pioneered by Shu and collaborators [22–
24].
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Accumulated experience over the last few years has shown that high-order
methods are much more efficient than low order methods if small errors are sought,
that is if accurate solutions are sought. By efficiency we mean that given an error
deemed acceptable, then high order methods attain that error much more efficiently
on a coarse mesh than low order methods on a fine mesh. This is illustrated in
Fig. 45.

The issues of accurate solutions and efficiency are becoming increasingly
important given the growing trend to use mathematicalmodels (PDEs) to understand
the physics they embody. Only very accurate solutions of the PDEs will achieve this
and also reveal limitations of the mathematical models (the governing equations
and their parameters). Very long time evolution simulations, as in wave propagation
problems for long distances, require the use of high order methods, as illustrated in
Fig. 50.

References

1. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical
Introduction, 3rd edn. Springer, Berlin (2009). ISBN 978-3-540-25202-3. http://link.springer.
com/book/10.1007%2Fb79761

2. Toro, E.F.: Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley, Chichester
(2001)

3. Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conserva-
tion Laws. Springer, New York (1996)

4. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press,
Cambridge (2002)

5. Godunov, S.K.: A Finite difference method for the computation of discontinuous solutions of
the equations of fluid dynamics. Math. Sb. 47, 357–393 (1959)

6. Toro, E.F., Billett, S.J.: Centred TVD schemes for hyperbolic conservation laws. IMA J.
Numer. Anal. 20, 47–79 (2000)

7. Harten, A., Lax, P.D., van Leer, B.: On spstream differencing and Godunov-type schemes for
hyperbolic conservation laws. SIAM Rev. 25(1), 35–36 (1983)

8. Rusanov, V.V.: Calculation of interaction of non-steady shock waves with obstacles. J. Comput.
Math. Phys. USSR 1, 267–279 (1961)

9. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL Riemann
solver. Technical Report, Department of Aerospace Science, College of Aeronautics, Cranfield
Institute of Technology. CoA-9204 (1992)

10. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL Riemann
solver. Shock Waves 4, 25–34 (1994)

11. Toro, E.F., Chakraborty, A.: Development of an approximate Riemann solver for the steady
supersonic Euler equations. Aeronaut. J. 98, 325–339 (1994)

12. Osher, S., Solomon, F.: Upwind difference schemes for hyperbolic conservation laws. Math.
Comput. 38(158), 339–374 (1982)

13. Dumbser, M., Toro, E.F.: A simple extension of the Osher Riemann solver to general non-
conservative hyperbolic systems. J. Sci. Comput. 48, 70–88 (2011)

14. Dumbser, M., Toro, E.F.: On universal Osher-type schemes for general nonlinear hyperbolic
conservation laws. Commun. Comput. Phys. 10, 635–671 (2011)

15. Toro, E.F.: Brain venous haemodynamics, neurological diseases and mathematical modelling.
A review. Appl. Math. Comput. 272, 542–579 (2016)

http://springerlink.bibliotecabuap.elogim.com/book/10.1007%2Fb79761
http://springerlink.bibliotecabuap.elogim.com/book/10.1007%2Fb79761


Numerical Approximation of Hyperbolic Equations 169

16. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J.
Comput. Phys. 43, 357–372 (1981)

17. Toro, E.F., Millington, R.C., Nejad, L.A.M.: Towards very high-order Godunov schemes. In:
Toro, E.F. (ed.) Godunov Methods: Theory and Applications. Edited Review. Conference in
Honour of Godunov SK, vol. 1, pp. 897–902. Kluwer Academic/Plenum Publishers, New York
(2001)

18. Toro, E.F., Titarev, V.A.: Solution of the generalised Riemann problem for advection-reaction
equations. Proc. R. Soc. London, Ser. A 458, 271–281 (2002)

19. Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17,
609–618 (2002)

20. Dumbser, M., Balsara, D., Toro, E.F., Munz, C.D.: A unified framework for the construction
of one-step finite-volume and discontinuous Galerkin schemes on unstructured meshes. J.
Comput. Phys. 227, 8209–8253 (2008)

21. Dumbser, M., Schwartzkopff, T., Munz, C.D.: Arbitrary high order finite volume schemes
for linear wave propagation. In: Computational Science and High Performance Computing
II. Notes on Numerical Fluid Mechanics and Multidisciplinary Design Book Series (NNFM),
vol. 91, pp. 129–144. Springer, Berlin (2006)

22. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing
schemes. J. Comput. Phys. 77, 439–471 (1988)

23. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing
schemes II. J. Comput. Phys. 83, 32–78 (1989)

24. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys.
126, 202–228 (1996)

25. Ben-Artzi, M., Falcovitz, J.: A second order Godunov-type scheme for compressible fluid
dynamics. J. Comput. Phys. 55, 1–32 (1984)

26. Castro, C.E., Toro, E.F.: Solvers for the high-order Riemann problem for hyperbolic balance
laws. J. Comput. Phys. 227, 2481–2513 (2008)

27. Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for
stiff hyperbolic balance laws. J. Comput. Phys. 227, 3971–4001 (2008)

28. Toro, E.F., Montecinos, G.I.: Implicit, semi-analytical solution of the generalized Riemann
problem for stiff hyperbolic balance laws. J. Comput. Phys. 303, 146–172 (2015)

29. Götz, C.R., Iske, A.: Approximate solutions of generalized Riemann problems for nonlinear
systems of hyperbolic conservation laws. Math. Comput. 85, 35–62 (2016)

30. Götz, C.R., Dumbser, M.: A novel solver for the generalized Riemann problem based
on a simplified LeFloch-Raviart expansion and a local space-time discontinuous Galerkin
formulation. J. Sci. Comput. 69(2), 805–840 (2016)


	Lectures on Hyperbolic Equations and Their NumericalApproximation
	1 Hyperbolic Equations
	1.1 The Linear Advection Equation and Basic Concepts
	1.2 Linear Systems
	1.3 Non-linear Scalar Equations: Definitions and Examples
	1.4 Numerical Approximation of Hyperbolic Equations

	2 The Shallow Water Equations and the Riemann Problem
	2.1 Equations, Properties and Wave Relations
	2.2 The Riemann Problem
	2.2.1 Wave Relations
	2.2.2 Solution of Problem 1: The Star Problem
	2.2.3 Solution of Problem 2: The Complete Solution

	2.3 Concluding Remarks

	3 Godunov's Method for the Shallow Water Equations
	3.1 The Finite Volume Method
	3.1.1 The Godunov Flux
	3.1.2 Godunov Flux with the Exact Riemann Solver

	3.2 A Simple Linearised Riemann Solver
	3.3 A Two-Rarefaction Riemann Solver
	3.4 The Harten-Lax-van Leer (HLL) Riemann Solver
	3.5 The HLLC Riemann Solver
	3.6 The Dumbser-Osher-Toro Riemann Solver: DOT
	3.6.1 Definitions and Notation
	3.6.2 The DOT Riemann Solver
	3.6.3 Sample Numerical Results, Accuracy and Efficiency
	3.6.4 Concluding Remarks


	4 High Order Methods: The ADER Approach
	4.1 Overview
	4.2 ADER in the Finite Volume Framework
	4.3 Ingredients of ADER
	4.4 Generalized Riemann Problem
	4.5 Numerical Examples
	4.6 Concluding Remarks

	References


