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Abstract Three of the most studied problems in fluid dynamics are revisited within
implicit theories of fluids. Specifically, the onset of convection, the determination of
laminar flows and the motion of a fluid down an inclined plane are studied under
the assumption that the Cauchy stress tensor and the rate-of-strain tensor are related
through implicit constitutive equations. Particular attention is paid to fluids whose
viscosities are pressure-dependent.

1 Introduction

The principium reddendae rationis is one of the most powerful tool that have
been used in philosophical argumentations [28]. It has been used as principle by
many philosophers (Spinoza, Liebniz, Descartes, Hamilton, to cite a few of them)
and is very useful also in Science. Anaximander of Miletus suggestively used the
principium reddendae rationis to argue that Earth was a round cylinder statically
floating at the center of Universe without any support. In Anaximander’s reasoning,
since Earth was equidistant from all other bodies there was no reason why it should
move in any one direction.

The principium reddendae rationis has been applied more rigorously in classical
continuum mechanics, and, here, we shall appeal to it to sustain the suitability of
introducing implicit constitutive relations rather than explicit models. The main aim
of these notes is indeed the introduction, in the framework of implicit theories of
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fluids, of the class of fluids whose viscosities depend on pressure and that, for such
a peculiarity, are called piezo-viscous fluids [10].

It is well known that in any continuum theory the motion of a real body B is
governed by the balance laws of mass, linear and angular momenta, and energy as
well as by the second law of Thermodynamics. In particular, if the Cauchy axiom
holds, namely the internal actions in B can be represented only by a vector field,
in the absence of body couples the balance of angular momentum requires that the
Cauchy stress tensor T is symmetric, i.e. T = TT , and the equations of mass, linear
momentum and energy read

ρ̇ + ρdivv = 0, (1)

ρv̇ = divT + ρb, (2)

ρė + divq = T · D + ρr, (3)

respectively. In (1)–(3) ρ denotes the mass density, v the velocity field, b the specific
body force, e the specific internal energy, r the specific radiant heating, q the heat
flux vector, and D the rate-of-strain tensor, i.e. the symmetric part of the velocity
gradient L = ∇v. The superimposed dot denotes the material time derivative.1 The
second law of Thermodynamics is instead usually written as the Clausius-Duhem
inequality

ρη̇ ≥ ρ
r

θ
− div

(q
θ

)
, (4)

with η denoting the specific entropy and θ the temperature.
Regarding the specific body force b as known, Eqs. (1)–(3) provide seven scalar

equations for 13 scalar fields—the mass density ρ, the velocity components vi
(i = 1, 2, 3), and the stress tensor components Tij (i, j = 1, 2, 3). The system
of PDEs (1)–(3) is then not closed. The disparity in the number of equations
and unknowns is however not surprising as (1)–(3) are valid for all the non-polar
materials (i.e. materials satisfying the Cauchy axiom), but do not differentiate the
special material the body is made of. Therefore, to obtain a system the number
of equations of which matches the number of unknowns, one has to introduce
some constitutive equations characterizing the thermomechanical response of the
material.

Constitutive equations are very often referred to as constitutive relations. Accord-
ing to the Cambridge dictionary, a relation is a connection or similarity between
two things. This is exactly what modelers well educated in mechanics usually do.
They connect thermodynamical quantities through an equation which is specific to
a particular material or substance.

1For the sake of self-consistency, if Σ is a smooth scalar, vector or tensor field defined on the
trajectory of the body B, Σ̇ = Σt + (v · ∇)Σ .
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For example, in classical fluid mechanics the stress tensor is related to the rate-
of-strain tensor D, the density of the fluid and the temperature through an equation
of the form

H(T,D, ρ, θ) = O. (5)

Such a relationship is sufficient to close the subsystem (1)–(3) and thus there is no
clear reason (no reddendae rationis) to consider a priori an explicit representation
of the form

T = T̂(D, ρ, θ), (6)

such as the Navier-Stokes constitutive equation:

T = −p|E(ρ, θ)I + λ(ρ, θ)tr(D)I + 2μ(ρ, θ)D, (7)

where p|E is the pressure at thermodynamic equilibrium, and λ and μ are the bulk
and shear viscosity, respectively. The reason of considering a representation of the
form (6) stands exclusively in its mathematical ease.

The search for models of mathematical ease is common when dealing with
problem of the motion of real bodies. A simple example comes from particle
mechanics. It is well known that the motion of a free particle X is governed by
Newton’s second law

ma = F, (8)

wherem is the mass of the particle, a is the acceleration vector, andF is the resultant
force acting on X. In direct problems the resultant force F is usually known, and the
motion is to be determined by solving (8) under prescribed initial conditions for the
position x and the velocity v of X. To solve uniquely the resulting Cauchy problem,
one assumes that any experimental model for the force F depends on the motion
of the particle through a relation of the form F = F̂(x, v, t), where F̂ satisfies the
smoothness assumptions of Cauchy’s theorem for ordinary differential equations.

Behind the introduction of a constitutive relation of the form (6) there is then
the expectation that, in the framework of a field theory like continuum mechanics,
any initial and boundary value problem (IBVP) governing the motion of a real body
admits a unique solution as the Cauchy problem governing the motion of a free
particle in the framework of Newtonian’s particle mechanics.

Jacques Hadamard [18] introduced the concept of well-posedness of IBVPs. An
IBVP is well posed if it admits a unique solution which depends continuously
on the data (that is on initial and boundary conditions). Well-posedness in the
sense of Hadamard has always influenced strongly applied mathematicians and
scholars involved in continuum mechanics research when modeling a real-world
phenomenon. From a mathematical point of view it is clear that well-posedness
is intriguing. From the point of view of continuum mechanics well-posedness is
closely related to the concept of determinism. From this perspective, the principle
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of determinism for the stress stated in Truesdell and Noll’s celebrated handbook
[52],

The stress in a body is determined by the history of the motion of that body,

can be regarded as a sort of ‘pathway’ to well-posedness.
John Ball and Richard James [5] commenting on the concept of well-posedness

in the sense of Hadamard wrote:

Any reader of that paper will see the unmistakable influence of Truesdell. At the end of
the day, perhaps it would have been realized that Hadamard’s notions of well-posedness
are far too restrictive in the nonlinear setting, that non-uniqueness and even non-existence
comprise acceptable behavior, and that there are probably no fundamental restrictions on
the strain-energy function at all besides those arising from material symmetry and frame-
indifference.

This means not only that the principle of determinism is highly questionable
from a physical point of view, but also that mathematical feasibility is not a good
argument to support explicit constitutive equations where stress is given in terms of
motion.

Nature does not care if the relationship at the basis of its phenomena are graphs
or functions. It is our idealization of natural phenomena that sometimes realizes the
fact that relationships in the form of functions are more convenient. Moreover, an
explicit approach rules out a priori the possibility to describe interesting phenomena
like, for instance, constitutive branching. There is then no advantage to sacrifice
the principium reddendae rationis on the altar of mathematical well-posedness and
there are no a priori physical reason to support explicit constitutive equations.

It is well known that in an experiment it is possible to control stress or
deformation. For example, when pulling a bar of steel it is possible to control
the engineering stress and to record the engineering strain (the test is said to be
performed in a soft device), or to control the engineering strain and to record the
engineering stress (test performed in a hard device). Therefore, in the first case why
can we not postulate that the motion in a body is determined by the history of the
stress of that body? The fact that constitutive relationships are described by graphs
and not functions is also confirmed by several experimental works (see [37] and
references therein).

The aim of these lectures is to investigate classical problems in fluid mechanics
(such as the onset of Rayleigh-Bénard convection, laminar flows and flows over an
inclined plane) by employing implicit constitutive relations for the stress tensor. We
do not claim that the use of such implicit constitutive models represents a scientific
revolution. In the light of the previous discussion, we only claim that implicit
constitutive equations are useful tools for investigating real-world phenomena and
there is no a clear and neat reason to throw away a priori this class of relations.

These notes are not meant to be a detailed review of the literature concerning
piezo-viscous fluids. The choices of the topics treated and the literature presented
are based mainly on our personal tastes and pedagogical aims. The level of these
lecture notes is basic and tailored for undergraduate students with an elementary
knowledge of continuum mechanics.
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2 Implicit Constitutive Models for the Cauchy Stress Tensor

Consider the constitutive relation for the Cauchy stress tensor T of a linearly viscous
fluid given by

T = −pI+ 2μ

[
D − 1

3
tr(D)I

]
, (9)

where

p = −1

3
trT (10)

is the pressure and the positive parameter μ is the viscosity.
A quick look reveals that (9)–(10) differs from the classical constitutive model

for the Cauchy stress

T = −pI + 2μD. (11)

In fact, contrarily to (11), in (9) and (10) it is explicitly stated what it is meant
by “pressure”: the negative of the mean normal stress. On using the terminology
widely adopted in the literature, by “pressure” we mean the “mechanical pressure”.
It is extremely important point out this from the beginning not only because we
are going to examine some aspects of the flows in fluids with material parameters
depending on pressure, but also because, as observed by Rajagopal [36], the term
“pressure” has been used in a plethora of different contexts and, as an unavoidable
consequence, it has been often misused in the literature. Referring the interested
reader to [36] for a detailed discussion on the issues related with the usage of
the word “pressure”, we limit to observe that, as argued by Huilgol [20], if one
wishes to include pressure in the rheological material functions (as we intend to),
defining the pressure through (10) is the only unambiguous way of introducing such
a physical quantity. In addition, this definition can be used to interpret experimental
data systematically both for compressible and incompressible fluids (the motions of
which, as is well known, are subjected to the kinematic constraint divv = tr(D) = 0)
[20].

It is widely accepted that the viscosity of fluids depends on temperature. In
particular, experimental observations have shown that viscosity decreases with
increasing temperature. On the other hand, there is also a vast literature on the
dependence of the viscosity on pressure. For the sake of brevity, below, we report
only some of the most important studies on this topic.

The first scholar to realize that the viscosity of a fluid may depend on pressure
was Stokes. In fact, in his celebrated paper [49] on the constitutive response of
fluids, Stokes stated

Let us now consider in what cases it is allowable to suppose μ to be independent of the
pressure. It has been concluded by Du Buat from his experiments on the motion of water in
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pipes and canals, that the total retardation of the velocity due to friction is not increased by
increasing the pressure. . . I shall therefore suppose that for water, and by analogy for other
incompressible fluids, μ is independent of the pressure.

Stokes’s comment clearly implies that only in special circumstances the viscosity
of a fluid is independent of pressure. While for flows in canals and pipes under
normal conditions inclusion of the dependence of the viscosity on pressure does not
affect the results of the experiments, there are several other situations where one
needs to take this dependence into account. Eight decades later, Bridgman [10] gave
a measure of the effect of pressure on the viscosity of water as well as of other
forty-two pure liquids. In addition, Bridgman observed that, while it is true that
all the physical quantities do vary with pressure, the variation in the viscosity with
pressure may be far more dramatic than the variation of the other quantities with
pressure. To this aim, Bridgman reported:

It may be said in general that the effects of pressure on viscosity are greater than on any
other physical property hitherto measured,2 and vary very widely with the nature of the
liquid. The increase of viscosity produced by 12000 kg varies from two or three fold to
millions of fold for the liquids investigated here, whereas such properties as the volume
decrease under 12000 kg seldom vary by as much as a factor of two from substance to
substance.

As early as 1893, based on experiments on marine glue, Barus [6] proposed an
empirical relation between the viscosity μ and the pressure p of the form

μ( p, θ) = μref exp[β(θ)( p − pref)], (12)

where μref is the viscosity at the reference pressure pref, and the piezo-viscous coef-
ficient β is temperature dependent. Later, Andrade [2] proposed a model expressing
the viscosity in terms of the pressure, the mass density and the temperature, namely

μ( p, ρ, θ) = Aρ1/2 exp[( p + ρr2)s/θ ], (13)

where r, s and A are constants. References to much of the literature concerning the
pressure dependence of the viscosity of fluids prior 1931 can be found in the book
of Bridgman [11]. More recently, Laun has modeled the viscosity of polymer melts
through

μ( p, θ) = μref exp[β( p − pref)− δ(θ − θref)], (14)

where μref is the viscosity at the reference state (pref, θref), and β and δ are positive
constants. There have been numerous other experiments by Bair and coworkers
that shows that the dependence of the viscosity on pressure is exponential (see
the experiments of Bair and Kottke [4]). Mention must be made of the work of

2The other physical properties measured by Bridgman are the isothermal compressibility, the
thermal expansion coefficient, the specific heat and the thermal conductivity.



Old Problems Revisited from New Perspectives 51

Martín-Alfonso and co-workers [26] wherein an intricate relationship among the
temperature, viscosity and pressure is provided for bitumen. In this context, it ought
to be pointed out that the pressure dependence of the properties of bitumen was
recognized very early. For instance, Saal and Koens [46] not only allowed for
viscosity to depend on pressure (and hence on the mean normal stress), they also
allowed it to depend on the shear stresses.

In virtue of the experimental evidences reported above, it is then reasonable
to assume that the viscosity of a fluid depends on pressure and temperature.
Consequently, since we have defined the pressure as the negative mean normal
stress, the constitutive model (9) with μ = μ(p, θ) prescribes the Cauchy stress
tensor in terms of the strain-rate tensor and temperature through the implicit relation

T − 1

3
tr(T)I − 2μ

(
−1

3
tr(T), θ

)
D = O. (15)

In the following sections, we shall mainly use the implicit model (15) or its
variants. However, for the sake of generality, we now determine the most general
implicit model for the Cauchy stress of an isotropic fluid. We start with an implicit
relation of the form

G(T,D, θ) = O. (16)

Since the fluid is isotropic,G is an isotropic tensor function of the two second-order
tensors T and D, i.e. G satisfies the property

G(QTQT,QDQT, θ) = QG(T,D, θ)QT, (17)

for all proper orthogonal tensors Q. Next, following Spencer [48], the most general
implicit model for the Cauchy stress tensor of an isotropic fluid can be written as

α0I + α1T + α2D + α3T2 + α4D2 + α5(TD + DT) (18)

+α6(T2D + DT2)+ α7(TD2 + D2T)+ α8(T2D2 + D2T2) = O,

where the coefficients αi, i = 0, 1, . . . , 8, depend on θ and the integrity basis
of the two tensors T and D. The integrity basis consists of the invariants of any
combination of tensor products up to second order. For the current problem, these
are given by

tr(T), tr(D), tr(T2), tr(D2), tr(T3), tr(D3),

tr(TD), tr(T2D), tr(TD2), tr(T2D2).
(19)

This is a minimal set of invariants since the trace of the product of two second-order
Cartesian tensors is equal to the trace of the tensor product with the factors written
in reverse.
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When we consider fluid models of the form (18)–(19), with

α0 = −1

3
tr(T)+ 2μ

(
−1

3
tr(T), θ

)
tr(D),

α1 = 1, α2 = −2μ

(
−1

3
tr(T), θ

)
, (20)

and all the remaining αi equal to zero, we recover the model (15) for a piezo-viscous
fluid.

It might seem that the previous discussion on implicit constitutive models for
the Cauchy stress tensor is valid only for compressible isotropic fluids. The reader
might be led to such a conclusion by the usual practice in continuum mechanics
to associate a Lagrange multiplier with the constraint of incompressibility, split the
stress tensor into the sum of the constraint stress TC and the extra stress TE, and
assume that the constraint stress is workless and independent of the state variables,
and the extra stress is independent of TC [52]. This conclusion is not right and the
discussion above can be easily adapted to incompressible isotropic fluids. In fact,
Rajagopal [35] showed that, when dealing with incompressible fluids, appropriate
choices of the material parameters αi in (18) guarantee the incompressibility without
the introduction of a Lagrange multiplier and any split of the stress tensor. In these
notes we shall not introduce special models for incompressible fluids because, as
we shall show in the following section, incompressibility is an approximation that is
valid under specific flow regimes. Therefore, when dealing with these flow regimes,
there is no need at all to introduce a priori appropriate models which automatically
meet the kinematic restriction of invariability of volume elements during motion.

3 Isochoric Motions of Fluids as Approximations Under
Different Flow Regimes

All real bodies are compressible. In fact, if a sufficiently high pressure is employed,
the body undergoes a reduction in volume. On the contrary, for most liquids
in Nature, experience teaches that volume increases with increasing temperature.
However, it is possible that some bodies do not undergo a significant change in
volume over a sufficiently large ranges of pressures or temperatures and can hence
be approximated as being incompressible in those ranges. When the ranges of
pressures and temperatures are what is considered ‘normal’, in view of day to day
applications, the body is considered to be incompressible. Of course, what is deemed
to be a ‘significant change in volume’ is quite arbitrary and it boils down to whether
neglecting the volume change and modeling the body as an incompressible body yet
captures the essential features of the response of the body when subject to external
stimuli. Most liquids can be approximated as incompressible liquids provided the
pressures to which they are subject to are not very high and temperature changes
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are small enough. On the other hand, if the ranges of pressures and temperatures
to which the liquid is subject are large, then volume changes do take place and,
moreover, all the properties that characterize a fluid must be considered pressure-
and temperature-dependent.

Müller [29] defined a body to be incompressible if the density and the internal
energy depend only on temperature and do not depend on pressure. Appealing to
the material frame indifference and the entropy principle Müller [29] showed that a
Navier-Stokes-Fourier fluid cannot undergo changes in volume due to temperature
changes. Such a behavior is clearly contradicted by experiments which show
that volume changes do take place with temperature. Motivated by the fact that
experimental evidence clearly contradicts Müller’s conclusion (often referred to as
theMüller paradox), Gouin et al. [16] studied a class of Navier-Stokes-Fourier fluids
for which the internal energy, shear and bulk viscosities, and thermal conductivity
depend on pressure and temperature, while the density depends only on temperature.
They referred to such materials as quasi-thermally compressible fluids and found
a critical value of the pressure, denoted by pcr, below which a quasi-thermally
compressible fluid behaves like a perfectly compressible fluid in Müller’s sense.
Since the value of pcr is large with respect to the normal pressure conditions (for
instance, for water at 20 ◦C, pcr � 2 × 105 atm), Gouin et al. [16] concluded
that a quasi thermal-incompressible fluid is experimentally similar to a perfectly
incompressible fluid, removing in a such a way the Müller paradox.

The analysis of Gouin et al. [16] is based on the assumption that the density
depends only on the temperature. Clearly, for a homogeneous fluid this assumption
is equivalent to assuming that the deformation gradient F depends only on the
temperature, i.e.

detF = ϕ(θ). (21)

Recently, Rajagopal et al. [42] proved that assumption (21) leads to three physically
unrealistic deductions:

• the specific heat at constant volume is zero,
• thermodynamic instability (the specific entropy fails to be a concave function of

the pressure and specific volume),
• imaginary speed of sound.

To overcome these drawbacks Rajagopal et al. [42] modified the assumption (21)
by postulating that

detF = ϕ( p, θ), (22)

and showed that, for several classes of flow regimes of interest in the applications,
the velocity field of a fluid with pressure and temperature dependent material
properties is, to a first approximation, solenoidal. Therefore, in comparison to the
findings by Gouin et al. [16], instead of determining pressure ranges in which
a real fluid behaves like an idealized incompressible fluid, Rajagopal et al. [42]
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determined the flow regimes in which the motions of a fluid can be regarded, to a
first approximation, as isochoric.

3.1 Equations Governing the Flows in a Piezo-Viscous Fluid

To rigorously derive the sets of approximated equations we shall employ in
the following sections, we follow the same procedure as in [42]. We start by
assuming that the fluid is slightly compressible due to variations in the pressure
and temperature and thus assume that (22) holds.

We also assume that the motion of the fluid is sufficiently smooth so that the
derivatives that are taken are meaningful. Then, differentiating the determinant of
the deformation gradient with respect to time yields

divv = −kT( p, θ)ṗ + α( p, θ)θ̇ , (23)

where

kT = − 1

ϕ

∂ϕ

∂p
, α = 1

ϕ

∂ϕ

∂θ
(24)

are the isothermal compressibility and the coefficient of thermal expansion, respec-
tively. Clearly, kT and α are related through the integrability condition

∂kT
∂θ

= −∂α

∂p
. (25)

From (1) and (23) we deduce that

ρ̇

ρ
= kT ṗ − αθ̇ . (26)

Hence

dρ = ρ(kTdp − αdθ), (27)

and, denoting v = 1/ρ the specific volume,

dv = −kT
ρ
dp + α

ρ
dθ. (28)

Next, we introduce the enthalpy

h = e + pv, (29)
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and the Gibbs free enthalpy

g = h − θη, (30)

and combine these two thermodynamic potentials with the balance equations (1)–(3)
and the Clausius-Duhem inequality (4) to get

ρ(ġ + ηθ̇)− ṗ − pdivv − T · D + q
θ

· ∇θ ≤ 0. (31)

In our analysis we shall regard the mechanical pressure and the temperature
as independent variables on which the material parameters of the fluid depend,
and, since we are interested in fluids of grade 1 (see Truesdell and Noll [52]),
the requirement of material frame indifference and the representation theorems for
isotropic functions lead us to consider the Cauchy stress tensor to be constitutively
prescribed by the implicit relation (15), the response functions of the specific
internal energy and entropy to be of the form

e = ê( p, θ, tr(D)), η = η̂( p, θ, tr(D)), (32)

and the heat flux vector given by the Fourier law

q = −k( p, θ)∇θ, (33)

with k being the thermal conductivity. Finally, we introduce the specific heats at
constant pressure and at constant volume through

cp =
(
∂h

∂θ

)

p
, cv =

(
∂e

∂θ

)

v

, (34)

respectively, and the specific heat ratio γ = cp/cv [15].
Inserting (9), (23) and (33) into (31) yields the inequality

(
ρ
∂g

∂p
− 1

)
ṗ + ρ

(
∂g

∂θ
+ η

)
θ̇ + ρ

∂g

∂ tr(D)
˙tr(D) (35)

−2μ

{
‖D‖2 − 1

3
[tr(D)]2

}
− k

θ
‖∇θ‖2 ≤ 0,

that holds true for any thermodynamical processes, i.e. for any fields ρ, v and θ
satisfying the balance equations (1)–(3). Therefore, by using standard arguments in
continuum thermodynamics, we deduce that

∂g

∂p
= 1

ρ
,

∂g

∂θ
= −η, ∂g

∂ tr(D)
= 0, (36)

and the constitutive functions for the viscosity of the fluid μ and the thermal
conductivity k are non-negative.
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From (36) we deduce that the differential of the Gibbs free enthalpy is

dg = 1

ρ
dp − ηdθ (37)

and the constitutive functions for the specific internal energy and entropy are,
respectively, of the form e = ê(p, θ) and η = η̂(p, θ) (namely, both the specific
internal energy and the specific entropy do not depend on tr(D)), with

(
∂η

∂p

)

θ

= −α

ρ
. (38)

Next, combining (29) and (30) with (37) yields

θdη = de + pdv (39)

which in turn leads to

θ

(
∂η̂

∂θ

)

v

=
(
∂ ê

∂θ

)

v

= cv, (40)

and then by virtue of (27) and (28) we obtain

θ

(
∂η̂

∂θ

)

p
=
(
∂ ê

∂θ

)

p
+ α

ρ
p =

(
∂h

∂θ

)

p
= cp. (41)

As far the specific internal energy is concerned, from (36)1, (38) and (41) we have

(
∂ ê

∂p

)

θ

= kTp − αθ

ρ
,

(
∂ ê

∂θ

)

p
= cp − α

ρ
p. (42)

Finally, by using (9), (23) and (42) the equations of balance of linear momen-
tum (2) and energy (3) can be expressed as

ρv̇ = −∇p + 2div

{
μ

[
D − 1

3
(divv)I

]}
+ ρb (43)

and

− αθ ṗ + ρcpθ̇ = div(k∇θ)+ 2μ

[
‖D‖2 − 1

3
(divv)2

]
+ ρr, (44)

respectively. Equations (26), (23), (43) and (44) constitute a system of partial
differential equations for determining the thermodynamic fields ρ, v, p and θ .
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3.2 Approximations

In order to introduce the most appropriate non-dimensionalization, it is necessary
to record before some thermodynamic identities. Rajagopal et al. [42] observed that
the specific heats ratio γ > 1, the isothermal compressibility is related to the speed
of sound C in the fluid through

kT = γ

ρC2 , (45)

and the square of the coefficient of thermal expansion can be written as

α2 = cp(γ − 1)

C2θ
. (46)

Let Oxyz be a Cartesian frame of reference with orthonormal basis {i, j, k}. Let
Ωd = R

2×[0, d] be a horizontal fluid layer of thickness d and assume that gravity is
the only body force acting on the fluid, namely b = −gk, where g is the acceleration
due to gravity.3 We assume also that no heat is supplied, i.e., r = 0. To non-
dimensionalize the equations governing the fluid motion, we choose a convenient
reference state (pref, θref) and introduce the following scales

x∗ = x
d
, v∗ = v

V
, ρ∗ = ρ

ρref
, t∗ = V

d
t,

p∗ = p − pref
ρrefgd

, θ∗ = θ − θref

θM − θm
, α∗ = α

α ref
, C∗ = C

C ref
,

μ∗ = μ

μ ref
, c∗

p = cp
cpref

, k∗
T = ρrefC2

ref

γref
kT .

(47)

In (47) the subscript ‘ref’ indicates that the corresponding material parameters are
evaluated at the reference state (pref, θref), V is the reference velocity, θM = maxΩ θ ,
θm = minΩ θ and the isothermal compressibility has been scaled by taking into
account (45). Hereinafter, we choose θM as the reference temperature, viz θref = θM .

Substituting (47) into (23), (26), (43) and (44) yields the dimensionless equations
(omitting the asterisks for convenience)

divv = −γrefMa2

Fr2
ρkT ṗ + αref(θM − θm)αθ̇ , (48)

ρ̇ = γref
Ma2

Fr2
ρkT ṗ − αref(θM − θm)ραθ̇, (49)

3Assuming that Ω is a horizontal layer is convenient for deriving the set of approximations we
shall adopt in this paper. However, the analysis we are going to perform can be adapted, by means
of slight changes, to the case in whichΩ is bounded in one direction provided that such a direction
is non-horizontal.
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Fr2ρv̇ = −∇p + 2
Fr2

Re
div

{
μ

[
D − 1

3
(divv)I

]}
− ρk, (50)

− αref(θM − θm)
ReBr

Fr2
α

(
θ + 1

Ca

)
ṗ + Peρcpθ̇ = div(k∇θ) (51)

+ 2Brμ

[
‖D‖2 − 1

3
(divv)2

]
,

where

Ma = V

Cref
, Fr2 = V2

gd
, Re = ρrefVd

μref
,

Br = μrefV2

kref(θM − θm)
, Pe = ρrefcprefVd

kref
, Ca = θM − θm

θM

(52)

are the Mach, second Froude, Reynolds, Brinkman, Péclet and Carnot numbers,
respectively.

We now assume that the material parameters α, kT , cp and k are analytic functions
and limit our analysis to the departures of the pressure and temperature from the
reference state (pref, θM) for which we can write

α( p, θ) =
+∞∑

j1,j2=0

1

j1!j2!
∂ j1+j2α

∂p j1∂θ j2
(0, 0)p j1θ j2, (53)

kT( p, θ) =
+∞∑

j1,j2=0

1

j1!j2!
∂ j1+j2kT
∂p j1∂θ j2

(0, 0)p j1θ j2, (54)

cp( p, θ) =
+∞∑

j1,j2=0

1

j1!j2!
∂ j1+j2cp
∂p j1∂θ j2

(0, 0)p j1θ j2, (55)

and

k( p, θ) =
+∞∑

j1,j2=0

1

j1!j2!
∂ j1+j2k

∂p j1∂θ j2
(0, 0)p j1θ j2 . (56)

From the integrability condition (25), the expansions (53) and (54) and the
scales (47) we deduce that

γref
Ma2

Fr2
∂ j1+j2kT

∂p j1−1∂θ j2+1
(0, 0) = −αref(θM − θm)

∂ j1+j2α

∂p j1∂θ j2
(0, 0), (57)
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for all ( j1, j2) ∈ N × N0. In virtue of (57) we can integrate equation (49) to obtain

ρ = exp

[
− αref(θM − θm)

+∞∑
j1,j2=0

1

j1!( j2 + 1)!
∂ j1+j2α

∂p j1∂θ j2
(0, 0)p j1θ j2+1 (58)

+ γref
Ma2

Fr2

+∞∑
j1=0

1

( j1 + 1)!
∂ j1kT
∂p j1

(0, 0)p j1+1
]
.

Evaluating the identity (46) at the reference state (pref, θM) yields the following
relation

α2ref(θM − θm)
2 = Ma2

E
Ca(γref − 1), (59)

where

E = V2

cpref(θM − θm)
(60)

is the Eckert number. We henceforth consider thermodynamic processes for which

αref(θM − θm) ≡ ε � 1. (61)

Therefore, as long as E/[Fr2Ca(γref − 1)] is of order O(1) or smaller, from (59) we
deduce that Ma2/Fr2 is of order O(ε2) or smaller.

We are now in position to carry out a perturbation analysis with respect to the
small parameter ε. Let

v =
+∞∑
n=0

ε2vn, p =
+∞∑
n=0

εnpn, θ =
+∞∑
n=0

εnθn (62)

be the power series in ε of the thermodynamic fields v, p and θ . As far as the
power series expansion of the fluid density is concerned, it may be derived from (58)
and (62)2,3 by taking into account the fact that Ma2/Fr2 is of orderO(ε2). However,
the expression is quite complicated and of no interest to our analysis. In our
analytical scheme it suffices to know that

ρ = 1 − ε

+∞∑
j1,j2=0

1

j1!( j2 + 1)!
∂ j1+j2α

∂p j1∂θ j2
(0, 0)pj10 θ

j2+1
0 + o(ε) (63)

= 1 − ε

∫ θ0

0
α( p0, θ0)dθ0 + o(ε),
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where o(ε) accounts for terms of order O(ε2) and higher. Therefore, by insert-
ing (62) and (63) into (48), (50) and (51) we deduce a system of equations from
which different approximations can be derived:

+∞∑
n=0

εndivvn = − γref
Ma2

Fr2

+∞∑
n=0

εn
[
kT( p, θ)

(
∂p

∂ t
+ v · ∇p

)]

n
(64)

+
+∞∑
n=0

εn+1
[
α( p, θ)

(
∂θ

∂ t
+ v · ∇θ

)]

n
,

Fr2
+∞∑
n=0

εn
{
ρ

[
∂v

∂ t
+ (v · ∇)v

]}

n

= −
+∞∑
n=0

εn∇pn + 2
Fr2

Re

+∞∑
n=0

εn
{
div

[
μ( p, θ)

(
D − 1

3
(divv)I

)]}

n

−
[
1 − ε

∫ θ0

0
α( p0, θ0)dθ0 + o(ε)

]
k (65)

and

−ReBr

Fr2

+∞∑
n=0

εn+1
[
α( p, θ)

(
θ + 1

Ca

)(
∂p

∂ t
+ v · ∇p

)]

n

+Pe
+∞∑
n=0

εn
[
ρcp( p, θ)

(
∂θ

∂ t
+ v · ∇θ

)]

n

=
+∞∑
n=0

εn{div[k( p, θ)∇θ ]}n + 2Br
+∞∑
n=0

εn
{
μ( p, θ)

[
‖D‖2 − 1

3
(divv)2

]}

n
.

(66)

Since γrefMa2/Fr2 is of order O(ε2) or smaller, collecting terms of order O(1)
in (64) yields

divv0 = 0, (67)

whence the fluid motions can be regarded as isochoric to a first approximation.
According to the magnitude of the dimensionless numbers occurring in (64)

and (65), we can derive different sets of approximate equations such as, just to
mention a few of them, those which have been employed in the last few years
to study the flows at low Reynolds and Froude numbers [42, 53], the effects of
viscous dissipation in a piezo-viscous fluid [40], viscous stratified flows [17, 56]
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turbulence in forced convection [55], and heat transfer in turbulentmixed convection
[54]. Here, we instead derive the flow regimes for which (63)–(66) approximate
to generalizations of the celebrated Oberbeck-Boussinesq approximation and the
Navier-Stokes-Fourier equations for fluids with variable material properties.

3.2.1 Generalized Oberbeck-Boussinesq Approximation

If the second Froude number is of orderO(ε), the Reynolds number of order of unity,
the Brinkman number of order O(ε) or smaller and the Péclet number of order of
unity or greater, then at the leading order equations (65) and (66) are

∇p0 + k = 0 (68)

and

Pecp( p0, θ0)θ̇0 = div[k( p0, θ0)∇θ0]. (69)

Obviously, Eq. (68) can be integrated and, taking the atmospheric pressure as the
reference pressure, we deduce that p0 coincides with the hydrostatic pressure ph =
1 − z. We now notice that Eqs. (67) and (69) are not sufficient to determine all the
thermodynamic fields at O(1). Therefore, in order to attain the closure, we collect
the terms of order O(ε) in (65) and, in view of (67), get

Fr2v̇0 = ε∇p1 + 2
Fr2

Re
div[μ( ph, θ0)D0] + ε

[∫ θ0

0
α( ph, θ0)dθ0

]
k. (70)

Now equations (67), (69) and (70) form a closed system, in which p1 can be regarded
as the hydrodynamic pressure. Finally, setting P = εp1, re-dimensionalizing (67),
(69) and (70), and omitting the subscript ‘0’ yield the generalized Oberbeck-
Boussinesq approximation derived by Rajagopal et al. [39]

⎧
⎪⎪⎨
⎪⎪⎩

ρrefv̇ = −∇P + 2div[μ( ph, θ)D] + ρrefg

[∫ θ

θref

α( ph, θ)dθ

]
k,

divv = 0,
ρrefcp( ph, θ)θ̇ = div[k( ph, θ)∇θ ],

(71)

where the dimensionalized hydrostatic pressure is given by the well-known Stevin’s
law ph = ρrefg(d − z).
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3.2.2 Generalized Navier-Stokes-Fourier Equations

Suppose that Fr2, Fr2/Re and Pe are of order of unity or greater, and the Brinkman
number is of order O(ε) or smaller. Then collecting the terms of order O(1) in
Eqs. (65) and (66) and re-dimensionalizing lead to the Navier-Stokes-Fourier equa-
tions for a fluid with material properties depending on pressure and temperature:

⎧⎨
⎩
ρrefv̇ = −∇p + 2div[μ( p, θ)D] − ρrefgk,
divv = 0,
ρrefcpθ̇ = div[k( p, θ)∇θ ].

(72)

Obviously, in isothermal conditions (72) reduces to the Navier-Stokes equations
for piezo-viscous fluids

{
ρrefv̇ = −∇p + 2div[μ( p)D] − ρrefgk,
divv = 0.

(73)

4 Rayleigh-Bénard Problem for Fluids
with Pressure- and Temperature Dependent Viscosities

Problems involving thermal convection are amongst those that have been studied
most assiduously in mechanics in virtue of their relevance to a plethora of problems
in astrophysics and geophysics. Understanding thermal-convection is at the heart
of explaining weather patterns, solar winds, flows in the interior of stars, thermal
currents in oceans, as well as numerous important industrial applications. The
prototypical theoretical model as well as experimental set up, within which one can
systematically investigate the effect of thermal-convection, is the flow that occurs in
a fluid layer due to a thermal gradient that is present across the layer. The earliest
experiments of thermal-convection in a fluid layer, heated from below, were carried
out by Bénard [7]. He found a pattern of polygonal cells, predominantly hexagonal,
though a few rectangular, pentagonal and septagonal cellular structures were also
present. Bénard also found that these cellular structures were also quite stable modes
under certain circumstances. Lord Rayleigh [43] studied the stability of the flow in
a fluid layer heated from below, when the upper layer was stress-free.

There have been numerous studies concerning the stability/instability of
‘Rayleigh-Bénard flows’. Until a critical difference in temperature is reached,
the main process for the transfer of heat is conduction and upon reaching the critical
temperature gradient convective rolls set in. Depending on the nature of boundary
conditions (flow between solid boundaries, flow when one boundary is free of
stress, etc.) one finds various types of flows are possible. A detailed discussion of
the literature pertinent to various aspects of Bénard convection can be found in
[8, 12, 14, 23, 25, 30]. An elegant introduction to the problem can be found in the
treatise by Chandrasekhar [13].
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The governing equations for the study of Bénard convection are obtained by
appealing to an approximation that was independently established by Oberbeck
[31, 32] and Boussinesq [9]. Such an approximation was established for fluids with
constant material parameters. Thus, since here we aim at studying the problem
of the onset of convection in a fluid whose viscosity varies with pressure and
temperature, we cannot appeal to the classical Oberbeck-Boussinesq approximation
but we have to employ its generalization derived in Sect. 3.2.1. We shall next find a
necessary and sufficient condition for the linear stability of the conduction solution
and compare the critical thresholds for the onset of convection in fluids with pressure
and temperature dependent viscosities with the classical results for fluids whose
viscosity is constant.

4.1 Conduction Solution: Evolution Equations
of Perturbations

Assume that the viscosity of the horizontal fluid layer Ωd (see Sect. 3.2.1) is an
analytic function of pressure and temperature, while the coefficient of thermal
expansion, the specific heat at constant pressure and the thermal conductivity are
constant. It is worth noting that this assumption is coherent with the experimental
evidences by Bridgman [10] reported in Sect. 2 and permits to appreciate the effects
of a variable viscosity on the critical threshold for the onset of convection. In this
framework, the generalized Oberbeck-Boussinesq approximation (71) becomes

⎧
⎨
⎩
ρrefv̇ = −∇P + 2div[μ( ph, θ)D] + ρrefgα(θ − θref)k,
divv = 0,
ρrefcpθ̇ = kΔθ.

(74)

The appropriate boundary conditions for the temperature and hydrodynamic pres-
sure to add to system (74) are

{
θ(x, y, 0, t) = θL, θ(x, y, d, t) = θU,

P(x, y, d, t) = 0,
(75)

with θL > θU . Our aim is the study of stability of the steady static conduction
solution m0 to (74)–(75):

⎧
⎪⎪⎨
⎪⎪⎩

ṽ = 0,

θ̃ = θL − θL − θU

d
z,

P̃ = ρrefgα(θL − θU)z
(
1 − z

2d

)
.

(76)
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In order to study the stability of the conduction solution m0 we introduce the
perturbations u = ui + vj + wk, ϑ and Π to v̄, θ̄ and P̄, respectively, i.e.

v = ṽ + u, θ = θ̃ + ϑ, P = P̃ +Π. (77)

Then, inserting (77) into (74) gives the evolution equations of perturbations

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρref(ut + u · ∇u) = −∇Π + μ( ph, θ̃ + ϑ)Δu
+[∇u + (∇u)T ]∇μ( ph, θ̃ + ϑ)+ ρrefgαϑk,

divu = 0,

ρrefcp

(
ϑt + u · ∇ϑ − θL − θU

d
w

)
= kΔϑ,

(78)

that are valid for all (x, y, z, t) ∈ R
2 × [0, d] × [0,+∞[. To (78) we append the

initial conditions

u(x, 0) = u0(x), ϑ(x, 0) = ϑ0(x), (79)

and the boundary conditions

Π(x, y, d, t) = 0, ϑ(x, y, 0, t) = ϑ(x, y, d, t) = 0, (80)

and

u(x, y, 0, t) = u(x, y, d, t) = 0 (81)

for rigid boundaries, or

uz = vz = 0 and w = 0 on z = 0, d (82)

for stress-free bounding surfaces. We refer to [13] for the derivation of the boundary
conditions (81) and (82). In (79) u0 and ϑ0 are regular fields, with u0 being
divergence-free.

4.2 Linear Stability Analysis

Since the viscosity is an analytic function of the temperature and pressure, for
sufficiently small disturbances we can approximate the two terms containing μ

in (78)1 as:

μ( ph, θ̃ + ϑ)Δu =
[+∞∑
n=0

1

n!
∂nμ

∂θn
( ph, θ̃ )ϑ

n

]
Δu ≈ μ( ph, θ̃ )Δu ≡ μ̂(z)Δu,

(83)
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and

[∇u + (∇u)T ]∇μ( ph, θ̃ + ϑ) = [∇u + (∇u)T ]
{+∞∑
n=0

1

n!∇
[
∂nμ

∂θn
( ph, θ̃ )ϑ

n
]}

≈ μ̂′(z)
[
(uz + wx)i + (vz + wy)j + 2wzk

]
, (84)

where, henceforth, a prime denotes the derivative of a function which depends only
on one variable.

Thanks to (83) and (84) we can linearize the evolution equations of perturba-
tions (78) to obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρrefut = −∇Π + μ̂(z)Δu
+μ̂′(z)

[
(uz + wx)i + (vz + wy)j + 2wzk

]+ ρrefgαϑk,
divu = 0,

ρrefcp

(
ϑt − θL − θU

d
w

)
= kΔϑ.

(85)

It is now convenient to non-dimensionalize (85) and the boundary condi-
tions (80)–(82) by introducing the following scales:

x∗ = x
d
, t∗ = μref

ρrefd2
t, u∗ = ρrefd

μref
u, μ∗ = μ

μref
,

p∗
h = ph

ρrefgd
= 1 − z∗, θ̄∗ = θ − θU

θL − θU
= 1 − z∗,

Π∗ = ρrefd2

μ2
ref

Π, ϑ∗ = ϑ

θL − θU
.

(86)

Inserting the dimensionless quantities (86) into (85) and (80)–(82) yields the non-
dimensional equations (omitting the asterisks)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = −∇Π + μ̂(z)Δu

+μ̂′(z)
[
(uz + wx)i + (vz + wy)j + 2wzk

]+ R
Pr
ϑk,

divu = 0,
Pr (ϑt − w) = Δϑ,

(87)

where

R = ρ2refgd
3cpα(θL − θU)

μrefk
and Pr = cpμref

k
(88)

are the Rayleigh and Prandtl numbers, respectively, and the dimensionless boundary
conditions

Π(x, y, 1, t) = 0, u = v = w = ϑ = 0 on z = 0, 1 (89)
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for rigid boundaries, and

Π(x, y, 1, t) = 0, uz = vz = w = ϑ = 0 on z = 0, 1 (90)

for bounding surfaces free of stress.
As common praxis in the linear stability analysis of isochoric flows, we take the

third component of the curlcurl of (87) to eliminate the disturbance Π and obtain
the following coupled system in w and ϑ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂ t
Δw = 2μ̂′(z) ∂

∂z
Δw + μ̂(z)ΔΔw + μ̂′′(z)∂

2w

∂z2

−μ̂′′(z)Δsw + R
Pr
Δsϑ,

Pr(θt − w) = Δϑ,

(91)

whereΔs = ∂2

∂x2
+ ∂2

∂y2
is the so-called horizontal Laplacian. Since the coefficients

in equations (91) depend only on z, the equations admit solutions which depend on
x, y and t exponentially. We therefore look for solutions of the form:

⎧
⎪⎪⎨
⎪⎪⎩

w(x, y, z, t) = W(z)

Pr
exp[i(axx + ayy)+ σ t],

ϑ(x, y, z, t) = Θ(z)√R exp[i(axx + ayy)+ σ t],
(92)

in which it is understood that the real parts of these expressions must be taken into
consideration to obtain physical quantities. The wave speed σ may be complex, say
σ = σr + iσi. Thus, expressions (92) represent waves which travel in the x and

y co-ordinate directions with phase speed σi/a, where a =
√
a2x + a2y is the two-

dimensional wave number, and whose growth or decay in time is given by exp(σrt).
A wave of the form (92) is then stable if σr ≤ 0 (marginally stable if σr = 0), and
unstable if σr > 0.

Setting D = d/dz and inserting (92) into (91) gives the system of ordinary
differential equations

⎧
⎨
⎩
σ(D2 − a2)W = μ̂(z)(D2 − a2)2W + 2μ̂′(z)D(D2 − a2)W

+μ̂′′(z)(D2 + a2)W − √
Ra2Θ,

σPrΘ − √RW = (D2 − a2)Θ,
(93)

to which we add the boundary conditions

W = DW = Θ = 0 at z = 0, 1 (94)
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for rigid boundaries, or

W = D2W = Θ = 0 at z = 0, 1 (95)

for stress-free boundaries.
Denoting by the superscript � the complex conjugate, multiplying (93)1 by W�,

(93)2 by a
2Θ�, summing and integrating over the interval [0, 1] taking into account

the boundary conditions (94) or (95), we obtain

σ

∫ 1

0
[|DW|2 + a2(|W|2 + Pr|Θ|2)]dz = a2

√
R
∫ 1

0
(WΘ� + W�Θ)dz (96)

−
∫ 1

0
μ̂(z)[|(D2 + a2)W|2 + 4a2|DW|2]dz − a2

∫ 1

0
(|DΘ|2 + a2|Θ|2)dz.

Considering the imaginary part of (96) yields that σi = 0, that is the wave speed of
the perturbation is real. Therefore the linearized equations of Bénard convection (85)
satisfy the strong form of principle of exchange of stabilities [50] also in the
case of fluids with pressure- and temperature-dependent viscosity. In addition,
rewriting (96) as

σL(W,Θ; a2) =
[√

R I(W,Θ; a2)
D(W,Θ; a2) − 1

]
D(W,Θ; a2), (97)

with

L(W,Θ; a2) =
∫ 1

0
[|DW|2 + a2(|W|2 + Pr|Θ|2)]dz, (98)

I(W,Θ; a2) = a2
∫ 1

0
(WΘ� + W�Θ)dz (99)

and

D(W,Θ; a2) =
∫ 1

0
μ̂(z)[|(D2 + a2)W|2 + 4a2|DW|2]dz (100)

+a2
∫ 1

0
(|DΘ|2 + a2|Θ|2)dz,

we deduce that the modes (92) with two-dimensional wave number a are linearly
stable if and only if

R ≤ RL(a) ≡
[

max
(W,Θ)∈H

I(W,Θ; a2)
D(W,Θ; a2)

]−2

, (101)
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whereH is the space of kinematically admissible disturbances:

H =
{
(W,Θ) ∈ H2(0, 1)× H1(0, 1) : W = DW = Θ = 0 at z = 0, 1

}
(102)

for rigid boundaries, or

H =
{
(W,Θ) ∈ H2(0, 1)× H1(0, 1) : W = D2W = Θ = 0 at z = 0, 1

}

(103)

for stress-free bounding surfaces. The existence of the maximum of the functional
I/D in H can be proved by following similar arguments as in [45].

It is easy to check that the Euler-Lagrange equations associated with the
variational problem (101) coincide with (93) with σ = 0 giving the marginally
stable states. Following [13], (93) with σ = 0 can be simplified further to the
following sixth-order ordinary differential equation

μ̂(z)(D2−a2)3Θ+2μ̂′(z)D(D2−a2)2Θ+μ̂′′(z)(D4−a4)Θ+Ra2Θ = 0 (104)

to which we add the boundary conditions

Θ = D2Θ = D(D2 − a2)Θ = 0 at z = 0, 1 (105)

for rigid boundaries, or

Θ = D2Θ = D4Θ = 0 at z = 0, 1 (106)

for stress-free boundaries. The square of the maximum of the functional I/D is
then the reciprocal of the least eigenvalue of the characteristic-value problem (104)
with boundary conditions (105) or (106) and thus the marginal stability curve has
equationR = RL(a). Finally, we introduce the so-called critical Rayleigh number

Rcr = min
a>0

RL(a), (107)

and note that ifR ≤ Rcr then all modes are stable, while ifR > Rcr there exists at
least one unstable mode. Thus, we may conclude that the conduction solution m0 is
linearly stable if and only if

R ≤ Rcr. (108)

To appreciate the departures from the classical results for fluids with constant
viscosities, in Table 1 we display the critical thresholds for the Rayleigh number
for rigid and stress-free boundaries when the viscosity depends exponentially
on pressure and temperature according to (14). In this case, the nondimensional
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Table 1 Approximations of
the critical Rayleigh and
two-dimensional wave
numbers against the
dimensionless parameter Γ
for (a) rigid and (b)
stress-free boundaries

(a)

Γ Rcr acr
0.5 2200.315 3.115

0.3 1986.687 3.116

0.2 1888.573 3.116

0.1 1795.744 3.116

0 1707.937 3.116

−0.1 1624.857 3.116

−0.2 1546.233 3.116

−0.3 1471.774 3.116

−0.5 1334.559 3.115

(b)

Γ Rcr acr
0.5 850.079 2.216

0.3 765.847 2.219

0.2 727.500 2.221

0.1 691.451 2.221

0 657.548 2.221

−0.1 625.651 2.221

−0.2 595.627 2.221

−0.3 567.353 2.219

−0.5 515.599 2.216

viscosity function μ̂ reads

μ̂ = exp[Γ (1 − z)] with Γ = βρrefgd − δ(θL − θU). (109)

The critical thresholdsRcr have been found for different values of the dimensionless
parameter Γ by solving the eigenvalue problems (104) and (105) or (106) with
the aid of the MATLAB www.bvp4c solver. Observe that, both in the rigid and
stress-free case the critical threshold Rcr increases with increasing Γ and equals
the critical thresholds for fluids with constant viscosities when Γ = 0. This result
is physically reasonable as the viscosity, and hence the resistance to motion from
the rest state, increases as Γ increases. From the definition of Γ we can then assert
that the pressure dependence of viscosity has a stabilizing effect on the onset of
convection, in the sense that the critical threshold for the Rayleigh number is greater
than the one that can be predicted starting from the assumption that viscosity is
constant or dependent only on temperature.

The nonlinear stability of the conduction solutionm0 in a fluid whose viscosity is
an analytic function of the pressure and temperature has been studied by Rajagopal
et al. [38]. They proved that, under appropriate conditions on the initial disturbance
of the temperature field ϑ0, the conduction solution is nonlinearly stable with respect
to the energy of the perturbations if inequality (108) holds. In this way, Rajagopal
et al. proved that (108) is a necessary and sufficient condition for the local nonlinear
stability of m0.

5 Parallel Shear Flows of Piezo-Viscous Fluids

In the last two sections we shall consider isothermal flows in fluids with variable
viscosities. In particular, in this section the viscosity will be assumed to depend only
on pressure, while in the next section, to include shear-thickening/thinning effects,
viscosity will be expressed in terms of pressure and shear.

www.bvp4c
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The main goal of this section is the determination of some classes of steady
unidirectional shear flows that are possible in a piezo-viscous fluid. We shall show
that, under the assumption that gravity is the only body force acting on the fluid,
Couette flows are possible for any constitutive model of the viscosity, whereas
Poiseuille flows are possible only in fluids with constant viscosity. To the best of
our knowledge, this result is novel as results on the existence of Poiseuille flows in
piezo-viscous fluids are available only in the absence of body forces. Assuming that
body forces are negligible compared to viscous forces and pressure gradients, Bair
et al. [3] claimed to have proven that Poiseuille flows in piezo-viscous fluids are
not possible, a secondary flow being necessary. This claim is not true in general.
In fact, Hron et al. [19] showed that steady unidirectional flows are possible if
the dependence of the viscosity on pressure is linear, and explicit exact continuous
solutions can be established even if shear-thinning effects are included. On the other
hand, for other forms of the viscosity, with polynomial and exponential dependence
on the pressure, Hron et al. [19] reconfirmed the results of Bair et al. [3]. Two
years later, Renardy [44] gave an elegant proof on the existence/nonexistence of
Poiseuille flows in piezo-viscous fluids. He proved that, in the absence of body
forces, Poiseuille flows are possible only if viscosity depends linearly on pressure.
In what follows we shall consider also the case in which body forces are negligible
and give an alternative proof of the result by Renardy [44].

5.1 Governing Equations

When gravity is the only force acting on the fluid, the equations governing the
isothermal flows in the horizontal fluid layer Ωd are the generalized Navier-Stokes
equation (73).

We are here interested in two types of unidirectional flow: Couette flow, when one
plate is fixed (z = 0) and the other one (z = d) moves with a prescribed velocity;
and Poiseuille flow, when homogeneous Dirichlet boundary conditions at the plates
z = 0, d are considered. We then look for solutions to (73) of the form

v = u(z)i, p = p(x, y, z), (110)

which satisfy the following boundary conditions

u(0) = 0, u(d) = V, (Couette flow), (111)

or

u(0) = u(d) = 0, (Poiseuille flow). (112)
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Inserting the ansatz (110) into (73) and non-dimensionalizing the resulting
system of pdes by means of the scales

x∗ = x
d
, u∗ = u

U
, p∗ = p − pref

ρrefgd
,

μ∗ = μ

μ ref
, U = ρrefgd2

μref
, μref = μ( pref),

(113)

yield (omitting the asterisks for simplicity of notation) the dimensionless equations

⎧⎨
⎩
px = τz,

py = 0,
pz = τx − 1,

(114)

where

τ = μ( p)uz (115)

is the shear stress. To (114) we add the dimensionless boundary conditions

u(0) = 0, u(1) = V∗ ≡ V

U
, (Couette flow), (116)

or

u(0) = u(1) = 0 ( Poiseuille flow). (117)

From (114) we easily deduce that p = p(x, z) and that both the shear stress and
the pressure are solutions of the wave equation ψxx − ψzz = 0. This leads to the
representations

{
p = Ξ(x + z)+ Ψ (x − z)− z,
τ = Ξ(x + z)− Ψ (x − z).

(118)

5.2 Couette Flows

Let us first consider the Couette flows. Assuming that the pressure at the upper
boundary is constant and equal to the reference pressure, namely p(1) = 0,
from (118)1 the functions Ξ and Ψ are such that Ξ(x + 1) + Ψ (x − 1) = 1 for
all x ∈ R, by which one deduces that Ξ and Ψ are of the form

Ξ(x + z) = a(x + z)+ b, Ψ (x − z) = −a(x − z)+ 1 − 2a − b, (119)
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with a and b constants. Hence, inserting (119) into (118) we deduce that the
pressure, and thus the shear stress, do not depend on x, whence a = 0 and

{
p = 1 − z,
τ = 2b − 1.

(120)

Finally, from (115), (116) and (120)2 the velocity component u is found to be

u(z) = V∗

∫ z

0

dz

μ(1 − z)∫ 1

0

dz

μ(1 − z)

. (121)

Couette flows are then possible in a piezo-viscous fluid with a very general response
function of the viscosity. As examples, if the (dimensionless) viscosity is given by a
power law of the form

μ( p) = 1 +�pn (� ≥ 0, n > 0), (122)

then

u(z) = 1 −
Lerch�

(
−�(1 − z)n, 1,

1

n

)

Lerch�

(
−�, 1,

1

n

) (1 − z), (123)

where Lerch� is the Lerch Phi function; while if viscosity depends exponentially
on the pressure according to the Barus law

μ( p) = e�p (� ≥ 0), (124)

then

u(z) = e� z − 1

e� − 1
. (125)

Figure 1 displays the velocity profiles of the Couette flow for different models of
the viscosity.

5.3 Poiseuille Flows

We now consider the Poiseuille flows and observe that, since the velocity field
satisfies the boundary conditions (117), the assumption that either Ξ or Ψ is
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Fig. 1 Velocity profiles of the Couette flow when the dimensionless viscosity is constant (i.e.
the classical Navier-Stokes (NS) model), or of the form (122) or (124). The dimensionless piezo-
viscous coefficient � is taken to be equal to unity

constant leads to the trivial flow u ≡ 0 (no motion). Thus, we have

Ξ ′(x + z) �= 0 and Ψ ′(x − z) �= 0. (126)

Moreover, it can be easily proven that also the assumption μ′(p)uz =
μ′(p)τ/μ(p) =constant leads to the trivial motionless flow. Hence,

∇
(
μ′( p)
μ( p)

τ

)
�= 0. (127)

Next, from (115) we deduce that

0 = ∂uz
∂x

= ∂

∂x

(
τ

μ( p)

)
= τx

μ( p)
− μ′( p)
μ2( p)

τpx, (128)

whence, on using (114)1,

μ( p)τx − μ′( p)ττz = 0. (129)
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In the light of (126) and (127), on using the representations of p and τ (118), (129)
can be rewritten as

Ξ ′(x + z)

Ψ ′(x − z)
= μ( p)+ μ′( p)[Ξ(x + z)− Ψ (x − z)]

μ( p)− μ′( p)[Ξ(x + z)− Ψ (x − z)] , (130)

with p as in (118)1. Therefore, because of the explicit dependence of the pressure
on the vertical variable z (and not only throughΞ(x+ z) and Ψ (x− z)), (130) holds
if and only if the viscosity of the fluid is constant. Consequently, when gravity is the
only body force acting on the fluid, Poiseuille flows are possible only if the viscosity
is constant, in which case

⎧⎨
⎩
p = A0x − z + κ,

u = A0

2
z(z − 1),

(131)

where A0 is the constant pressure gradient that induces the flow, and κ is an
integration constant that, once A0 is known, can be determined by measuring the
pressure at a single point on the boundary.

Assume now that body forces are negligible compared to the viscous forces and
pressure gradients. Then, following the same arguments as in the case in which the
effects due gravity are taken into account we arrive at (130) with p given by

p = Ξ(x + z)+ Ψ (x − z). (132)

Since in the absence of body forces the pressure does not depend explicitly on z but
only throughΞ(x + z) and Ψ (x− z), (130) with p as in (132) holds if and only if μ
is a linear function of pressure. In other words, the dimensionless viscosity must be
of the form

μ( p) = 1 +�p (� ≥ 0). (133)

For such a dependency on the pressure, a simple manipulation of (114) and (115)
gives

⎧
⎪⎨
⎪⎩

px
1 +�p

= uzz
1 − � 2u2z

,

pz
1 +�p

= �uzuzz
1 − � 2u2z

.
(134)

Integrating (134)2 yields

p = 1

�

⎡
⎣ φ(x)√

1 −� 2u2z

− 1

⎤
⎦ , (135)
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where φ(x) is an arbitrary function to be determined with the aid of (134)1. Indeed,
inserting (135) into (134)1 we obtain

1

�

φ′(x)
φ(x)

= uzz
1 − � 2u2z

, (136)

which holds if and only if

1

�

φ′(x)
φ(x)

= A0 and
uzz

1 − � 2u2z
= A0, (137)

with A0 being constant. Next, integrating (137) and taking into account the boundary
conditions (117), we derive the Poiseuille flow

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p = 1

�

{
κ exp(�A0x) cosh

[
�A0

(
z − 1

2

)]
− 1

}
,

u = 1

� 2A0
ln

cosh

[
�A0

(
z − 1

2

)]

cosh
�A0

2

,

(138)

where κ is an integration constant that, as indicated before, can be determined once
A0 is known. Finally, from (138)2 it follows that the maximum speed in a Poiseuille
flow decreases with increasing � , and, in the limit as � → 0, the velocity profile
tends to the one which has been determined for a fluid with constant viscosity (see
Fig. 2).

6 Flow of Fluids with Pressure and Shear Dependent
Viscosity Down an Inclined Plane

In this final section, we carry out an analysis of the flow of a fluid with a pressure
and shear dependent viscosity down an inclined plane within the context of the
lubrication approximation. It is legitimate to ask where the pressure dependence
of viscosity could become important within the context of the lubrication approx-
imation. Thin film flows are ubiquitous in engineering, geophysics, biology and
elsewhere, and low aspect ratios are often the basis for simplified fluid dynamical
models. An important relevant application in geophysics is the flow of glaciers
and ice sheets as well as rock glaciers. For instance, while the ice sheet covering
Antarctica is several kilometers thick, it however has a horizontal extent of several
thousand kilometres, yielding a length scale ratio epsilon of order 10−3 [47].
These glaciers clearly exhibit non-Newtonian characteristics in that their viscosities
depend on the shear rate so that their flows are modelled using a shallow-ice
approximation and Glen’s flow law [33]: in other words, as gravity currents with
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Fig. 2 Poiseuille flow. Velocity profiles for different values of the piezo-viscous coefficient� and
(a) A0 = −10 and (b) A0 = −100

non-Newtonian (power law) rheology. On the other hand, there are several papers
that investigate the possibility of normal stress effects in the creep of polycrystalline
ice (see, for instance, [27] and [24]). In particular, Jones and Chew [22] have shown
that hydrostatic pressure decreases the creep of polycristalline ice slightly and, then,
above 15 MPa, a minimum creep rate is reached followed by an increase in rate
with increasing hydrostatic pressure. Therefore, in view of the depths of glaciers we
would expect that the pressure would also influence the viscosity. As the viscosity
depends on both the shear rate as well as the pressure, it is possible that these two
effects could either compete against each other thereby mitigating their effects, or
join forces to enhance the qualitative and quantitative differences. As the fluid can
shear-thin or shear-thicken, both possibilities may come to pass.
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6.1 Basic Equations

We consider a fluid moving on an inclined plane, whose angle of inclination is ι. Let
now Oxyz be a Cartesian frame of reference with fundamental unit vectors i, j and
k, where the coordinate z is perpendicular to the plane, the x and y coordinates lie in
the plane, y is horizontal and x increasing downward. We denote the components of
the velocity v of the fluid in the directions x, y and z as u, v and w, respectively. The
generalized Navier-Stokes equations read then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

ρ

(
∂u

∂ t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ ∂Sxx

∂x
+ ∂Sxy

∂y
+ ∂Sxz

∂z
+ ρg sin ι,

ρ

(
∂v

∂ t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ ∂Syx

∂x
+ ∂Syy

∂y
+ ∂Syz

∂z
,

ρ

(
∂w

∂ t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+ ∂Szx

∂x
+ ∂Szy

∂y
+ ∂Szz

∂z
− ρg cos ι,

(139)

where the Cauchy stress is now given by the implicit relation

T − 1

3
tr(T)− μ

(
−1

3
tr(T), tr(D2)

)
D = O, (140)

or, equivalently, since ‖D‖ = [tr(D2)]1/2,

T = −pI + 2μ( p, ‖D‖)D ≡ −pI + S. (141)

The viscosity is taken of the form

μ( p, ‖D‖) = ς( p − pref)‖D‖(1−χ)/χ , (142)

with χ > 0, pref the reference pressure and, as is reasonable to expect since the fluid
viscosity increases as the pressure increases, ς is a positive function whose value
increases with increasing pressure. Model (141), with a viscosity of the type (142),
allows for a fluid that is capable of shear thinning, when χ > 1, or shear thickening,
when χ ∈ (0, 1). Here, for the sake of definiteness, we shall consider the following
forms for ς :

(exponential model) ς( p) = ςrefe
β( p−pref), (143)

( power law model) ς( p) = ςref + β( p − pref)
n, (144)
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where ςref > 0, β ≥ 0 and n ≥ 0 are constants. In general, the material parameters
that appear in (143) and (144) can be obtained by corroboration with experimental
data. Here, in order to illustrate the effects due to the pressure dependence of
viscosity, we merely carry out a parametric study.

We prescribe the following boundary conditions for the velocity and pressure
fields

{
u = v = w = 0 on z = 0,
Tn = −prefn on z = h(x, y, t),

(145)

where

n = 1√
1 +

(
∂h

∂x

)2

+
(
∂h

∂y

)2

(
−∂h

∂x
i − ∂h

∂y
j + k

)
(146)

is the unit normal to the free surface of the current z = h(x, y, t).
LetH and L denote the characteristic thickness and characteristic length along the

plane of the current free surface z = h(x, y, t), respectively. The main assumption
in lubrication approximation is that the lengthscale ratio H/L is small [51]. Here, as
we are interested in fluids whose viscosity depends on the pressure, we assume that
the ratio H/L is small though H is large enough to have a significant dependence of
the viscosity on the pressure.

As a consequence of the smallness of the lengthscale ratio H/L, the component
of the velocity parallel to the plane is much larger than the normal component, so
that

√
u2 + v2 � |w|. (147)

We call U, V and W the characteristic velocities along x, y and z directions,
respectively. Hence, U‖ = √

U2 + V2 and W are the characteristic velocities
parallel and perpendicular to the inclined plane, respectively. From Eqs. (139)1
and (147) we find thatW = HU‖/L.

There are many ways of transforming the governing equation (139) and boundary
conditions (145) into dimensionless expressions. Here we introduce a scaling which
is similar to that introduced in [1]:

⎧
⎪⎪⎨
⎪⎪⎩

x∗ = 1

L
(xi + yj)+ z

H
k, v∗ = 1

U‖
(ui + vj)+ w

W
k, h∗ = h

H
,

W = H

L
U‖, t∗ = U‖

L
t, p∗ = p − pref

ρg cos ιH
, ς∗ = ς

ςref
.

(148)
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Substituting the dimensionless quantities (148) into equations (139), (141)
and (146) and into the boundary conditions (145) leads to (omitting all asterisks)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

εRe

(
∂u

∂ t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ε

Re

Fr2

(
tan ι

ε
− ∂p

∂x

)

+ε ∂Sxx
∂x

+ ε
∂Sxy
∂y

+ ∂Sxz
∂z

,

εRe

(
∂v

∂ t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −ε Re

Fr2
∂p

∂y

+ε ∂Syx
∂x

+ ε
∂Syy
∂y

+ ∂Syz
∂z

,

ε2Re

(
∂w

∂ t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= − Re

Fr2

(
1 + ∂p

∂z

)

+ε ∂Szx
∂x

+ ε
∂Szy
∂y

+ ∂Szz
∂z

,

(149)

⎧
⎨
⎩
u = v = w = 0 on z = 0,

(−pI + S)
(

−ε ∂h
∂x

i − ε
∂h

∂y
j + k

)
= 0 on z = h(x, y, t),

(150)

where ε = H/L � 1, and

S = ς( p)

[
ε2
(
∂u

∂x

)2

+ ε2
(
∂v

∂y

)2

+ ε2
(
∂w

∂z

)2

+ ε2

2

(
∂u

∂y
+ ∂v

∂x

)2
+ 1

2

(
∂u

∂z
+ ε2

∂w

∂x

)2

+1

2

(
∂v

∂z
+ ε2

∂w

∂y

)2 ] 1−χ
2χ ×

[
2ε

(
∂u

∂x
i ⊗ i + ∂v

∂y
j ⊗ j + ∂w

∂z
k ⊗ k

)
(151)

+ε
(
∂u

∂y
+ ∂v

∂x

)
(i ⊗ j + j ⊗ i)+

(
∂u

∂z
+ ε2

∂w

∂x

)
(i ⊗ k + k ⊗ i)

+
(
∂v

∂z
+ ε2

∂w

∂y

)
( j ⊗ k + k ⊗ j)

]
.

In this framework the dimensionless version of ς is an increasing function such that
ς(0) = 1. In particular, (143) and (144) become, respectively,

ς( p) = eωp with ω = βρg cos ιH, (152)

and

ς( p) = 1 + ωpn with ω = β(ρg cos ιH)n. (153)
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The dimensionless quantities

Re = ρU(2χ−1)/χ
‖ H1/χ

ςref
and Fr = U‖√

g cos ιH
(154)

are, respectively, the Reynolds and Froude numbers for a fluid film moving over an
inclined plane.

Depending on the values considered for the characteristic scales, different types
of flow regime occur. Here we shall focus on the following two types of flow
regimes:

1. The nearly steady uniform regime, where the viscous contribution is comparable
to the gravitational effect. In this case, we have

U‖ =
[
ρg sin ιH(χ+1)/χ

ςref

]χ
(155)

and Fr2 = O(Re). Inertial terms and pressure gradient terms must be negligible,
which means εRe � 1. Therefore, from (149) and (151) the approximate
equations are found to be given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

∂

∂z

⎧
⎨
⎩ς( p)

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
](1−χ)/(2χ)

∂u

∂z

⎫
⎬
⎭

+2(1−χ)/(2χ) = 0,

∂

∂z

⎧
⎨
⎩ς( p)

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
](1−χ)/(2χ)

∂v

∂z

⎫
⎬
⎭ = 0,

∂p

∂z
+ 1 = 0.

(156)

2. The viscous regime, where the effect of the pressure gradient is balanced by
stresses induced due to the viscosity within the bulk. In this case, we have

U‖ =
[
ρg cos ιH(2χ+1)/χ

ςrefL

]χ
(157)

and consequently Fr2 = εRe. Inertial terms must be small compared to the
effect of the pressure gradient and the slope must be gentle (tan ι = O(ε)). This
imposes the constraint εRe � 1. In such a way, from (149) and (151) we deduce
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the approximate equations

⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

∂

∂z

⎧⎨
⎩ς( p)

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
](1−χ)/(2χ)

∂u

∂z

⎫⎬
⎭

+2(1−χ)/(2χ)
(
tan ι

ε
− ∂p

∂x

)
= 0,

∂

∂z

⎧⎨
⎩ς( p)

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
](1−χ)/(2χ)

∂v

∂z

⎫⎬
⎭

−2(1−χ)/(2χ) ∂p
∂y

= 0,

∂p

∂z
+ 1 = 0.

(158)

Moreover, from (150) and (151), by virtue of the smallness of ε, the boundary
conditions (145) approximate to

⎧⎪⎪⎨
⎪⎪⎩

u = v = w = 0 on z = 0,
p = 0 on z = h(x, y, t),
∂u

∂z
= ∂v

∂z
= 0 on z = h(x, y, t).

(159)

Finally, we derive the evolution equation for the free surface z = h(x, y, t). We
first integrate the constraint of incompressibility over the flow depth to obtain, by
means of boundary condition (159)1,

∫ h

0

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
dz = ∂

∂x

∫ h

0
udz+ ∂

∂y

∫ h

0
vdz−u|z=h

∂h

∂x
−v|z=h

∂h

∂y
−w|z=h.

(160)

But, obviously,

w|z=h = dh

dt
= ∂h

∂ t
+ u|z=h

∂h

∂x
+ v|z=h

∂h

∂y
. (161)

Therefore, combining (160) and (161) gives the required equation for h:

ht + ∂(hū)

∂x
+ ∂(hv̄)

∂y
= 0, (162)
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where we have introduced the depth-averaged variables defined as

ϕ̄(x, y, t) = 1

h(x, y, t)

∫ h(x,y,t)

0
ϕ(x, y, z, t)dz. (163)

6.2 Nearly Steady Uniform Regime

It is easy to verify that system (156) with boundary conditions (159) admits the
solution

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u = 2(1−χ)/2
∫ z

0

[
h − ζ

ς(h − ζ )

]χ
dζ,

v = 0,

w = −2(1−χ)/2 ∂
∂x

∫ z

0

{∫ ζ1

0

[
h − ζ

ς(h − ζ )

]χ
dζ2

}
dζ1,

p = h − z.

(164)

Therefore

hū = 2(1−χ)/2
∫ h

0
ξ

[
ξ

ς(ξ)

]χ
dξ ≡ F(h) (165)

and (162) becomes

∂h

∂ t
+ F′(h)∂h

∂x
= 0. (166)

Equation (166) is a quasilinear first order partial differential equation whose
general solution can be found by the method of characteristics. If f (ξ) is an initial
profile, then the corresponding solution is given by

h = f (x − F′(h)t). (167)

The wave (167) breaks, i.e. its profile becomes multivalued, at time tB =
−
[
F′′( f (ξB))

df

dξ
(ξB)

]−1

at the point xB = ξB + F′( f (ξB))tB, provided that ξB

satisfies the following two conditions

⎧
⎪⎪⎨
⎪⎪⎩

F′′( f (ξB))
df

dξ
(ξB) < 0

∣∣∣∣F′′( f (ξB))
df

dξ
(ξB)

∣∣∣∣ = max

∣∣∣∣
dF′( f (ξ))

dξ

∣∣∣∣ .
(168)
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Fig. 3 Ratio tB/tBN as a function of (a) χ and (b) the piezo-viscous coefficient ω. The pressure-
dependent parameter ς is assumed to be of the form (143) and the initial profile considered is
h(x, 0) = 1 − x2

Since ς is a positive increasing function, from (168) we deduce that the pressure
dependence of the viscosity has the effect of delaying the time at which the wave
could break. To quantify this delaying effect we consider ς of the form (152) and
assume that h(x, 0) = f (x) = 1 − x2. If the fluid is Newtonian with a constant
viscosity μ0 (i.e., χ = 1 and ς(p − pref) = μref in (142)), it is easy to show that
the wave breaks at time tBN = 3

√
3/8. In order to make the differences between

the non-Newtonian case that is being considered and the classical Newtonian case
more evident, we have plotted the ratio between the breaking time tB in the non-
Newtonian case and tBN as a function of χ (Fig. 3a) and as a function of the non-
dimensional piezo-viscous coefficient ω (Fig. 3b). Furthermore, the solutions to the
wave equation (166) with χ = 0.5 (Fig. 4a) and χ = 1.5 (Fig. 4b) are plotted
at different times together with the profiles of the free surface z = h(x, t) in the
classical Newtonian case. We find that the solutions are qualitatively similar, though
quantitatively different.

Fig. 4 Solutions of (166) with an initial profile f (x) = 1− x2 at t = 0, t = 0.5, t = 1. The dashed
line represents the solution in the classical Newtonian case, whereas the solid line represents the
solution in the case in which the dimensionless parameter ς depends on the pressure according to
the law ς(p) = e0.1p and (a) χ = 0.5 and (b) χ = 1.5
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Finally, in order to look for self-similar solutions of (166), we need to know
whether F′ is invertible. The invertibility of F′ is linked with the equation

χhς ′(h)− (χ + 1)ς(h) = 0. (169)

Indeed, if (169) admits positive roots, the least of which we denote by ĥ, then F′ is
invertible in [0, ĥ[. On the contrary, if (169) does not admit positive roots, then F′ is
invertible in [0,+∞[. In any case F′ is continuous and increasing. It is interesting
to show that some time after the initiation of the current, no matter what the initial
shape, the solution tends to the unique self-similar solution of Eq. (166), i.e.

h(x, t) → F′−1
(x
t

)
as t → +∞. (170)

In order to prove (170), from (166) we deduce that h is constant along the
characteristics given by

dx

dt
= F′(h). (171)

Thus, if initially h(x, 0) = f (x), the characteristics are straight lines

x = x0 + F′[ f (x0)]t, (172)

with x0 being the initial value of the characteristic. The solution of (166) is then

h(x, t) = F′−1
(
x − x0

t

)
→ F′−1

(x
t

)
as t → +∞. (173)

If the viscosity does not depend on the pressure, Eq. (170) reduces to the self-
similar solution found by Perazzo and Gratton [34] that in turn is the non-Newtonian
counterpart of the self-similar solution derived by Huppert [21] for Newtonian
fluids.

6.3 Viscous Regime

A lengthy but straightforward algebraic manipulation allows us to obtain the
solution to the boundary-value problem (158)–(159):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = 2(1−χ)/2
(
tan ι

ε
− ∂h

∂x

)[(
∂h

∂x
− tan ι

ε

)2

+
(
∂h

∂y

)2
](χ−1)/2 ∫ z

0

[
h − ζ

ς (h − ζ )

]χ
dζ,

v = −2(1−χ)/2
∂h

∂y

[(
∂h

∂x
− tan ι

ε

)2

+
(
∂h

∂y

)2
](χ−1)/2 ∫ z

0

[
h − ζ

ς (h − ζ )

]χ
dζ,

w = −2(1−χ)/2∇s ·
{∣∣∣∣

tan ι

ε
i − ∇sh

∣∣∣∣
χ−1 ( tan ι

ε
i − ∇sh

)∫ z

0

[∫ ζ1

0

(
h − ζ2

ς(h − ζ2)

)χ
dζ2

]
dζ1

}
,

p = h − z,
(174)

where ∇s is the two-dimensional gradient:

∇sϕ = ∂ϕ

∂x
i + ∂ϕ

∂y
j. (175)

Then

hū = F(h)

(
tan ι

ε
− ∂h

∂x

)[(
∂h

∂x
− tan ι

ε

)2

+
(
∂h

∂y

)2
](χ−1)/2

, (176)

hv̄ = −F(h)
∂h

∂y

[(
∂h

∂x
− tan ι

ε

)2

+
(
∂h

∂y

)2
](χ−1)/2

, (177)

so that (162) becomes

∂h

∂ t
+ ∇s ·

{
F(h)

∣∣∣∣
tan ι

ε
i − ∇sh

∣∣∣∣
χ−1 ( tan ι

ε
i − ∇sh

)}
= 0. (178)

Now let us make the further assumption that the flow depends only on the x

coordinate. Then
∂h

∂y
= 0 (so that v = 0) and (178) reduces to

∂h

∂ t
+ ∂

∂x

{
F(h)

∣∣∣∣
tan ι

ε
− ∂h

∂x

∣∣∣∣
χ−1 ( tan ι

ε
− ∂h

∂x

)}
= 0. (179)

To find traveling wave solutions we assume that h depends on the single variable
s ≡ x − ct, where c is a constant which represents the wave speed. Since in what
follows we shall assume that the inclined plane is infinite and limit our analysis to
waves propagating downwards, we take c > 0. We refer the interested reader to
[41] for a more detailed study of downslope and upslope traveling wave solutions.
Inserting the ansatz h = h(s) into (179) and integrating once, one obtains

∣∣∣∣
tan ι

ε
− dh

ds

∣∣∣∣
χ−1 ( tan ι

ε
− dh

ds

)
= c1 + ch

F(h)
, (180)
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c1 being an integration constant. Let c1 = 0 in (180). Then, (180) may be written as

dh

ds
= tan ι

ε
−
[

ch

F(h)

]1/χ
. (181)

In order to discuss the integrability of Eq. (181) with c > 0, we have to find the
positive roots of the following equation

(
tan ι

ε

)χ
F(h)− ch = 0. (182)

The roots of (182) may be found numerically. Nevertheless, we can deduce the num-
ber of positive roots of (182) by studying the functionF (h) ≡ (tan ι/ε)χF(h)/h.F
is a continuous differentiable function that tends to zero as h → 0, whose derivative
may be written as

F ′(h) =
(
tan ι

ε

)χ 1

h2

∫ h

0
ξF′′(ξ)dξ (183)

= 2(1−χ)/2
(
tan ι

ε

)χ 1

h2

∫ h

0

(
ξ

ς(ξ)

)χ+1 [
(χ + 1)ς(ξ)− χξς ′(ξ)

]
dξ.

From (183) it follows that F ′ is positive in a neighbourhood of h = 0, but it
might change sign away from zero if (169) admits positive roots. Here, for the sake
of simplicity, we shall limit our analysis to the constitutive functions for which (169)
admits at most one positive root. It is easy to recognize that models (152) and (153)
meet this requirement.

We are now able to say how many positive roots (182) admits. In fact:

1. if [ς(h)/h]χ has linear growth as h → +∞, then F is increasing and tends to
l > 0 as h → +∞ so that (182) with c ∈]0, l[ admits only one positive root,
whereas it does not admit a positive root for c ≥ l;

2. if [ς(h)/h]χ has sublinear growth as h → +∞, then F is increasing and tends
to +∞ as h → +∞ so that, for any c > 0, (182) admits a unique positive root;

3. if [ς(h)/h]χ has superlinear growth as h → +∞, then F attains its absolute
maximum at h = h∗ > 0 and tends to zero as h → +∞ so that (182) admits
two positive roots if c ∈]0,F (h∗)[, only one positive root if c = F (h∗), and no
positive root for c > F (h∗).

According to the number of positive roots of (182), one, two or three families of
solutions to (180) may arise.

If (182) does not admit a positive root, then Eq. (180) may be numerically
integrated over the range (0, h̄) for all h̄ > 0. In this case the general solution is
a decreasing function defined over the interval (−∞, c2), c2 being an integration
constant and tends to +∞ as s → −∞. Therefore, we do not consider these
solutions as they do not satisfy the lubrication approximation.



Old Problems Revisited from New Perspectives 87

-7 -6 -5 -4 -3 -2 -1

0.5

1.5

2

1

Fig. 5 Profiles of downslope traveling waves behind a front. The solid line represents the traveling
wave solution when χ = 1.5 and ς(p) = 1+0.2p, whereas the dashed line represents the traveling
wave solution in the classical Newtonian case. We have considered (tan ι)/ε = 1 and c = 1
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Fig. 6 Profiles of downslope traveling waves solutions for χ = 1.1, ς(p) = 1+ 0.05p3, tan ι/ε =
0.5 and c = 1. In the case we are considering two families of downslope traveling wave solutions
that satisfy the lubrication approximation arise (see the text): downslope traveling waves behind a
front (solid line) and compressive shock waves (dashed line)

If (182) admits only one positive root hm, then two families of solutions to (180)
arise. The first is formed by bounded decreasing functions defined over the range
(−∞, c2) satisfying the inequality 0 ≤ h ≤ hm. For these solutions we have h → hm
as s → −∞. Then they represent traveling waves behind a front running downslope
that, far behind the front (s → −∞), tend to the steady downslope flow h = hm (see
Fig. 5). The other family is formed by increasing functions bounded from below for
which h ≥ hm. These solutions represents downslope traveling waves with no front
for which h → hm as s → −∞ and h → +∞ as s → +∞. Therefore, they do not
satisfy the lubrication approximation.

If (182) admits two positive roots, hm < hM , then, as well as the downslope
traveling waves behind a front, two other families of solutions to (180) arise,
representing downslope traveling waves with no front (Fig. 6). The former is
constituted by bounded increasing functions satisfying the inequality hm ≤ h ≤ hM
and for which we have h → hm as s → −∞ and h → hM as s → +∞. The
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latter is formed by decreasing functions that are bounded from below as they satisfy
the inequality h ≥ hM and for which we have h → +∞ as s → −∞ and
h → hM as s → +∞. We disregard the traveling wave solutions belonging to
this family as the length-scale ratio fails to be small as s → −∞. On the contrary,
the former class of downslope travelling waves with no front satisfies the lubrication
approximation. Furthermore, as shown by Rajagopal et al. [41], the waves belonging
to this family are compressive shock waves which can also be viewed as heteroclinic
orbits connecting the two equilibria h = hm and h = hM of (181) (see Fig. 6).

We finally observe that

F(h) � 2(χ−1)/2 hχ+2

χ + 2
as h → 0. (184)

Therefore near the wave front, where the effects of pressure can be neglected, the
solution to Eq. (180) is approximated by that found by Perazzo and Gratton [34],
namely

tan ι

ε
(s − c2)

= h

{
1 − 2F1

[
χ

χ + 1
, 1,

2χ + 1

χ + 1
,
tan ι

ε

(
c(χ + 2)

2(1−χ)/2

)−1/χ

h1+1/χ

]}
,

(185)

with 2F1(a, b, c, d) being the hypergeometric function. From (185) we deduce that
h′ tends to infinity as s → c2. Hence, near the wave front, the component of the fluid
velocity normal to the incline is not small with respect to the parallel component and
thus the solution does not satisfy the lubrication approximation.
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