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Abstract Experimental studies over many years have shown that blood flow
exhibits non-Newtonian characteristics such as shear-thinning, viscoelasticity, yield
stress and thixotropy. The complex rheology of blood is influenced by numerous
factors including plasma viscosity, hematocrit and in particular, the ability of
erythrocytes to form aggregates when at rest or at low shear rates and to deform at
high shear rates, storing and releasing energy. Hemodynamic analysis of blood flow
in vascular beds and prosthetic devices requires the rheological behavior of blood
to be characterized by phenomenological constitutive equations relating the stress
to the rate of deformation and flow. The objective of this chapter is to present a
short overview of some macroscopic constitutive models that can mathematically
characterize the rheology of blood and describe their known phenomenological
properties. Some test cases formulated in idealized and anatomically realistic
vessels will be considered to investigate the impact of the most significant non-
Newtonian characteristics of blood on its flow behavior, based on numerical
simulations of different blood constitutive equation under given sets of physiological
flow conditions.

1 Introduction

Rheology is the science of the flow and deformation behavior of solid or fluid
materials, including liquids and gases. This field deals with the theoretical notions of
kinematics and dynamics, conservation laws and constitutive equations, describing
the cross links between force, deformation and flow. It is also considered to be
the study of stress-strain relationship in materials. When rheology is applied to the
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analysis of the properties of blood flow and its formed cellular elements it is called
hemorheology. It involves the investigation of the macroscopic bulk properties of
blood, determined in rheometric experiments, and its microscopic properties in
vitro and in vivo (e.g. [129]). It also includes interactions among blood cellular
components and between these components and endothelial cells that line blood
vessels (microhemorheology).

The unceasing progress in the field of hemorheology is derived from its clinical
interest since many cardiovascular diseases have their primary cause in blood flow
pathologies. On the other hand, hemorheological abnormalities can be considered
as a result (or a sign) of insufficient circulatory function. Basically, pathologies with
hematological origin like leukemia, hemolytic anemia, thalassemia or pathologies
associated with the risk factors of thrombosis and atherosclerosis like myocardial
infarction, hypertension, strokes or diabetes are mainly related to disturbances of
local homeostasis. For instance, small size lesions that may occur spontaneously
in blood vessels due to endothelial injuries are quite common in small vessels.
They can result in internal bleeding, infections or irreversible malfunction in the
microcirculation (for example in the brain) and can lead to death. Cardiovascular
diseases, including microcirculatory or macrocirculatory disorders are major causes
of morbidity and mortality in developed countries and constitute a significant part
of total health costs.

Human blood accounts for about 8% of total body weight, averaging 5200 ml.
The circulatory system forms a closed loop for the flow of blood that achieves
important functions, carrying oxygen, nutrients and various substances from the
lungs to the tissues of the body and carbon dioxide back to the lungs, removing
waste products of cells metabolism. Blood also plays a key role as a immune
protection against foreign bodies (see e.g. [121]). The circulatory system consists
of two separate parts, the systemic circulation and the pulmonary circulation,
connected by the heart, a complex organ that acts like a pump to maintain a constant
flow and is affected by the rest of the circulatory system. Oxygenated blood from
the lungs is pumped by the left heart through the pulmonary veins into the systemic
arteries, which form a tree of progressively smaller vessels, beginningwith the aorta,
branching to the small arteries, then to the arterioles and finally to the capillaries,
where the exchange of gases takes place. Leaving the capillaries, the blood enters
the systemic veins, through which it flows in vessels of progressively increasing size
toward the right heart. The systemic veins consist of venules, small veins and the
vena cava. The right heart pumps blood into the pulmonary arteries, which form a
tree that distributes blood to the lungs, where blood leaves carbon dioxide and is
purified with oxygen (e.g. [120]). A representation of the human circulatory system
is shown in Fig. 1.

There are significant quantitative differences in pressure and blood volume,
between the pulmonary and systemic circuits, but the output of the right and left
sides of the heart must be in equilibrium. Veins are low pressure vessels with a
low flow and their vessel walls are thin, in contrast to arteries. Table 1 (see [38])
displays average dimensions collected from different sources (Gabe et al. [46],
Mao et al. [79], Feher [40], Caro et al. [24], Fung [45], Guyton [55], Gregg [54]),
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Fig. 1 Circulatory system diagram [Anatomy & Physiology, OpenStax College]

Table 1 Systemic circulation: average physiological parameters

Cross-sectional Wall Mean Mean

area thickness pressure velocity

Vessel Nr. Diam. (cm) (cm2) (cm) (kPa) (cm/s)

Aorta 1 3 7 2 × 10−1 12.5 12

Arteries 8 × 103 10−1 8 × 10−3 10−1 12 45

Arterioles 107 5 × 10−3 2 × 10−5 2 × 10−3 7 5

Capillaries 1010 8 × 10−4 5 × 10−7 10−4 3 0.1

Venules 4 × 107 10−2 7.9 × 10−5 2 × 10−4 1.5 2

Veins 8 × 103 1.8 × 10−1 10−1 5 × 10−2 1 10

Venae cavae 2 3 6 0.15 0.5 14

McDonald [82]). It is quite difficult to find complete and coherent parameters of
this type when we compare all data provided by the different authors (see also
e.g. [94, 122, 123]). In fact, all data concerning human blood are subjected to large
variations, according to sex, body weight, and health conditions.

Despite the research and development efforts of many laboratories around the
world, no blood substitute has yet been developed that can carry out the essential
functions that whole blood performs in the circulatory system, and most specially
for delivery and exchange in the microcirculation. Clearly there is a need for a
better understanding of the special characteristics of blood and its flow properties.
Therefore, together with laboratory trials, the mathematical and numerical study of
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constitutive models that can capture the rheological response of blood over a range
of flow conditions is ultimately recognised as an important tool for clinical diagnosis
and therapeutic planning (see e.g. [33, 76]).

The aim of this chapter is to present an overview of the rheological properties of
blood and its formed cellular elements, including the non-Newtonian characteristics
of blood, and discuss some of the phenomenologicalmacroscopic constitutive mod-
els that have been proposed in the literature to capture these properties. Moreover,
in order to investigate the influence of the most significant non-Newtonian effects
on blood flow behavior, some numerical test cases will be considered.

A review of blood rheology and of some of the most relevant constitutive models
for blood can be found in e.g. [108, 109]. For a concise historical background about
the development of hematology from the antiquity to the nineteenth century, see
[38].

2 Blood Rheology

2.1 Blood Components

Blood is a concentrated heterogeneous suspension of several formed cellular
elements, the blood cells or hematocytes, red blood cells (RBCs or erythrocytes),
white blood cells (WBCs or leukocytes) and platelets (thrombocytes), in an aqueous
polymeric and ionic solution (mainly Na+, K+, Ca2+ and CI−), the plasma.
Plasma represents ∼55% of the blood volume and is composed of ∼92% water
and ∼3% particles, namely, electrolytes, organic molecules, numerous proteins
(albumin, globulins and fibrinogen) and waste products. Plasma represents ∼55%
of the blood volume and its central physiological function is to transport these
dissolved substances, nutrients, wastes and the formed cellular elements throughout
the circulatory system.

Normal erythrocytes are biconcave discs with a typical diameter of 6–8μm and
a maximal thickness of 1.9μm [75]. In mammals these cells are non-nucleated
and consist of a concentrated hemoglobin solution enveloped by a highly flexible
membrane. The average volume of an erythrocyte is 90μm3 ([24]). Their number
per cubic millimetre of blood is approximately 5 to 6 × 106 and they represent
approximately 40 to 45% by volume of the normal human blood and more than 99%
of all blood cells. The first percentage is called hematocrit. The primary function of
erythrocytes is to transport oxygen and carbon dioxide carrying hemoglobin and a
small portion of carbonic anhydrase, which catalyzes the reversible formation of
carbonic acid from carbon dioxide and water.

Leukocytes are roughly spherical and much larger than erythrocytes, but they
exist in a smaller number in blood: their diameter ranges between 6 and 17μm
and there are approximately 7 to 11 × 103 per cubic millimetre in a normal adult.
Leukocytes are subdivided into main classes: granulocytes (65%) and agranulo-
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cytes, comprising lymphocytes (30%), monocytes (5%) and natural killer cells.
Granulocytes are further subdivided into neutrophils (95%), eosinophils (4%) and
basophils (1%). The leukocytes maintain adhesion to the endothelium through
rolling and play a vital role in fighting infection and thus are able to migrate out of
the blood vessels and into the tissues. They have a slight influence on the rheology
of blood, except in the capillaries or in disease states. For a better understanding of
leukocytes biomechanical behavior, see e.g. [9, 34, 69, 72, 113]).

Thrombocytes are small discoid non-nucleated cell fragments, much smaller
than erythrocytes and leukocytes, having a diameter 2–4μm (and approximately
2–3μm3 in volume). Despite their smallness, thrombocytes (platelets) can perform
an incredible number of actions, interacting with the environment by means of a
rich array of receptors on their membrane and they are a vital component of the
blood clotting mechanism. Blood coagulation is an extremely complex biological
process in which blood forms clots (thrombus) to prevent bleeding (hemostasis); it
is followed by their dissolution (fibrinolysis) and the subsequent repair of the injured
tissue. The process involves large sequences of chemical reactions of complicated
nature (cascades) and different interactions between the plasma, the vessel wall and
activated thrombocytes (platelets), with a huge impact of the flowing blood on the
resulting fibrin-platelets thrombus production and growth. There is a large number
of books and review chapters on hemostasis (see e.g. [20, 38, 39, 66, 80, 135] and
the references cited therein.

The total volume concentration of leukocytes and thrombocytes is only about
1%. All these cells are deformable but erythrocytes undergo a higher deformation,
in particular when they pass through the capillaries. Deformations occur through a
rearrangement of the cytoskeleton that supports cells shape avoiding rupture of the
cell membranes.

Blood cells are continuously produced by the bone marrow over a human’s life
and they all reach ultimate maturity via a process called hematocytopoiesis. For
example, erythrocytes have an average lifetime of 120 days and the body must
produce about 3 × 109 new erythrocytes for each kilogram of body weight every
day. Due to ageing and rupturing they must be constantly replaced (see e.g. [65]).

2.2 Non-Newtonian Properties of Blood

The non-Newtonian behavior of blood is largely due to three characteristics of
RBCs: their ability to form aggregateswhen at rest or at low shear rates, their general
distribution in the flowing plasma, namely the ability of these 3D microstructures
to deform and store energy and their tendency to align in the flow direction, at high
shear rates (e.g. [29, 111]). The high deformability of RBCs is due to the absence of
a nucleus, to the elastic and viscous properties of its membrane and also to geometric
factors such as the shape, volume and membrane surface area [27].

Rheometers are precision instruments applied to measure wide ranges of stress,
strain, and strain rate of a material. The following kinds of rheometers are the
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Fig. 2 Representation of the three mostly used rheometers in blood measurements (from [109])

mostly used to measure blood flow properties: the concentric cylindrical rheometer
(Couette rheometer), the cone and plate rheometer and the capillary rheometer,
Fig. 2. In the Couette rheometer, blood is placed in the annulus between two
concentric cylinders and it’s motion is driven by the rotation of one or both
cylinders; In the cone and plate rheometer, blood is loaded between the cone and
the plate and driven by the rotation of the cone; the capillary rheometer is of simple
use and the test fluid is driven by gravity, compressed gas or a piston from a reservoir
through a cylinder rigid tube. These rheometers can be used to obtain approximate
measurements of viscometric and viscoelastic material functions (see e.g [109]).

As discussed below, it has been experimentally verified that the response of RBCs
in shear flows undergoes three flow regimes: at low shear rates, in the presence
of fibrinogen and large globulins (proteins found in plasma) erythrocytes form a
complex three dimensional microstructure (rouleaux), while at high shear rates,
this microstructure is lost and flow induced radial migration may lead to a non-
homogeneous distribution of erythrocytes. A transition in microstructure is found
between these two regimes.

To better analyze the experimental data on blood it is helpful to explore the
literature on the rheology of particle suspensions. For rigid particles, a vast amount
of published literature exists (see e.g. [35, 110]). However, the study of suspensions
of multiple, interacting and highly deformable particles such as blood, has received
less attention and presents a challenge for researchers in both theoretical and
computational fluid dynamics.

2.2.1 Viscosity of Blood

Here we refer to the apparent viscosity of blood (or, more generally of a non-
Newtonian fluid, independently of the specific rheological model), as the quantity
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measured by a viscometer, for shear rates in the expected natural range. This is
approximately an average measure of the fluid resistance to flow. The expression
relative viscosity is also used for blood, denoting the ratio of the suspension
viscosity (apparent viscosity) to the viscosity of the suspending fluid (plasma).
Commonly used viscosity units are: poise (P), centipoise (cP), which is 0.01 P and
pascal-second (Pa s), the SI unit of viscosity equivalent to Newton-second per square
metre (N s/m2). One poise is exactly 0.1 Pa s.

Usually blood has higher viscosity than plasma, and when the hematocrit rises,
the viscosity of the suspension increases and the non-Newtonian behavior of blood
becomes more relevant, in particular at very low shear rates. As mentioned above,
for blood at rest or at very low shear rates the erythrocytes have the ability to form
a primary aggregate structure of rod shaped stacks of individual cells (rouleaux),
that align to each other and form a secondary structure consisting of branched
three-dimensional (3D) aggregates [112]. The apparent viscosity (measured by a
viscometer) increases slowly until a shear rate less than 1 s−1, and then it increases
significantly [24]. It has been experimentally observed that rouleaux will not form
if the erythrocytes have been hardened or in the absence of fibrinogen and globulins
[28]. In fact, suspensions of erythrocytes in plasma demonstrate a strong non-
Newtonian behavior whereas when they are in suspension in physiological saline
(with no fibrinogen or globulins) the behavior of the fluid is Newtonian [32, 85].
For standing blood subjected to a shear stress lower than a critical value, these 3D
structures resist to flow until a certain force is applied and blood exhibits a yield
stress behavior. This can happen only if the hematocrit is high enough. The existence
of yield stress for blood will be discussed below (see Sect. 2.2.2).

At moderate to high shear rates, RBCs are dispersed in the plasma and the
properties of the blood are influenced by their tendency to align and form layers
in the flow, as well as by their deformation. The effect of RBC deformability on the
viscosity of suspensions was clearly described in [28].

For shear rates above 400 s−1, erythrocytes lose their biconcave shape, become
fully elongated and are transformed into ellipsoids with major axes parallel to
the flow direction. The tumbling of the erythrocytes is absent, there are almost
no collisions, and their contours change according to the tank-trading motion of
the cells membranes about their interior. The apparent viscosity decreases and this
becomes more evident in smaller than in larger vessels. This happens with vessels
of internal diameter less than 1mm and it is even more pronounced in vessels with
a diameter of 100–200μm. The geometric packing effects and radial migration
of erythrocytes can act to lower the hematocrit adjacent to the vessel wall and
contribute to decrease the blood viscosity. This is known as the Fåhraeus–Lindqvist
effect, [41, 42]. Plasma skimming is another effect that results in diminishing the
viscosity when blood flows into small lateral vessels compared with the parent
vessel.

As a consequence of this behavior we can say that one of the most important non-
Newtonian characteristics of blood is the shear-thinning viscosity. This happens in
small size vessels or in regions of stable recirculation, like in the venous system and
parts of the arterial vasculature where geometry has been altered and erythrocyte
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aggregates become more stable, like downstream a stenosis or inside a saccular
aneurysm. However, in most parts of the arterial system, blood flow is Newtonian
in normal physiological conditions.

Numerous techniques have been developed to quantify erythrocytes aggregation
in a flow field, with applications to in vitro flow models or to in vitro microvascular
measurements.These include estimates of aggregate size from direct measurements,
Fourier analysis of spatial variation in light intensity, analysis of transmitted and
reflected light, and measurement of the light scattering properties of RBCs (see e.g.
[15, 51, 93, 96]).

Experiments on blood at low shear rates are very difficult to perform and there
remains a controversy over the blood flow behavior in the limit of shear rate
tending to zero. Figure 3 displays the shear-thinning behavior of whole blood as
experimentally observed by Chien et al. [28]. Each of these data points represents
an equilibrium value obtained at a fixed shear rate.

In addition, it is important to point out that, like in many other liquids, the
viscosity of whole blood is also strongly dependent on temperature and, when
comparing blood viscosity data from different sources, the temperature at which
data was obtained must be considered. The dependence of blood viscosity on
temperature is similar to that of water for temperatures ranging from 10 ◦C to 40 ◦C
and shear rates from 1 to 100 s−1[84]. The variation of plasma temperature follows
approximately that of water [25] and, consequently, blood viscosity is often related
to plasma or water viscosity, at the same temperature.

Fig. 3 Variation of the relative viscosity as a function of the shear rate for normal RBC in
heparinised plasma (NP), normal RBC in albumin-Ringer solution (NA) and hardened RBCs in
albumin-Ringer solution (HA) at a temperature of 37◦C, hematocrit Ht = 45% using a Couette
viscometer (reproduced from [28])
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2.2.2 Yield Stress of Blood

Some bodies, like pastes, do not deform when the shear stress is below a critical
value, while they start flowing like a fluid if the stress exceeds that threshold. The
phenomenon is explained by the rupture of inner bonds. Systems with an yield stress
are called Bingham fluids [14]. This critical stress level, called the yield value or
yield, is typically treated as a constant material property of the fluid. An extensive
description of methods for measuring yield stress is given in [89, 92].

Blood also demonstrates yield stress although there is a controversy about this
issue. Reported values for the yield stress of blood have a great variation ranging
from 0.002 to 0.40 dynes/cm2, see e.g. [32]. This variation has been attributed
to artifacts arising from interactions between the erythrocytes and surfaces of the
rheometer as well as to the experimental methods used to measure the yield stress
and the length of time over which the experiments are run [11]. Rather than treating
the yield stress as a constant, it should be considered as a function of time and
linked to thixotropy, as later proposed by other researchers [88]. Some studies
have indicated that yield stress is correlated to the hematocrit level and to the
concentration of fibrinogen in blood plasma. When the hematocrit level falls below
a critical level, the yield stress characteristic of blood becomes negligible [83].

2.2.3 Viscoelasticity and Thixotropy of Blood

Viscoelastic fluids are viscous fluids which have the ability to store and release
energy. The viscoelasticity of blood at normal hematocrits is primarily attributed to
the reversible deformation of the RBCs 3Dmicrostructures [30, 128]. Elastic energy
is due to the properties of the RBC membrane which exhibits stress relaxation
[36, 119] and the bridging mechanisms within the 3D structure. Moreover, the
experimental results of Thurston [124] have shown that the relaxation time depends
on the shear rate. Thurston was the first to measure the viscoelastic properties of
blood and the dependence of blood viscoelasticity on factors such as temperature,
hematocrit and RBC properties. He has contributed to most of the experimental
work developed in this area (see [128] and the references cited therein).

The viscoelastic effects in blood circulation are magnified by its pulsatile nature
and by the elastic properties of the blood vessels and the porous tissue through
which blood is transported [23] and there is an interaction between the viscoelastic
behavior of blood with that of the vessel wall and porous tissue.

In view of the available experimental evidence, it is reasonable to develop non-
Newtonian fluid models for blood that are capable of shear-thinning and stress
relaxation, with the relaxation time depending on the shear rate. To date, very little
is known concerning the response of such fluids. In fact, viscoelastic properties
are of relatively small magnitude and they have generally only been measured
in the context of linear viscoelasticity. By shear rates of the order of 10 s−1 the
elastic nature of blood is negligible as evidenced by a merging of the oscillatory
and steady flow viscosities. However, if viscoelastic constitutive equations are used
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to model blood in the circulatory system in higher shear rates conditions, the
finite viscoelastic behavior of blood should be considered. Viscoelastic constitutive
models for blood will be discussed below (see Sect. 2.3.4).

Another important non-Newtonian property of blood closely related to shear-
thinning, is the thixotropic behavior, essentially due to the finite time required for
the formation and dissolution of the 3D aggregates of erythrocytes. Indeed, the
build-up and breakdown of the 3D microstructures, their elongation and recovery,
and the formation and breakdown of layers of the aligned erythrocytes evolve in
a finite time, and these processes can play an important role in blood rheometry
[11]. There is a large variety of published definitions for thixotropy, in the fields
of industrial or biological applications. The following definition can be found in
[12]: “When a reduction in magnitude of rheological properties of a system, such
as elastic modulus, yield stress, and viscosity, for example, occurs reversibly and
isothermally with a distinct time dependence on application of shear strain, the
system is described as thixotropic”. Fluids whose behavior is opposite to thixotropic
fluid (i.e. thickening under stress) are called rheopectic.

Thixotropy is more pronounced at low shear rates with a long time scale. The
effect in blood flow is less pronounced than other non-Newtonian effects [78] and
this can explain the limited studies devoted to this property.

It should be emphasized that most of the reported non-Newtonian properties and
rheological parameters of blood are obtained in vitro, as indicators of in vivo real
measurements. Experimenting with blood out of the body can find many obstacles.
The simple process of extracting blood may apply high stresses, altering the original
rheological properties. Then partial coagulation, particularly in the absence of flow,
can severely influence the values of viscosity, viscoelastic or yield stress parameters.
Moreover, the consistency of these approximations depends on the information
about experimental and individual conditions. Complementary studies of sensitivity
analysis and uncertainty quantification should be performed, especially when those
values are used for patient-specific modeling and simulations.

2.3 Constitutive Models for Blood

The mechanical properties of blood should be studied by considering a fluid
containing a suspension of particles. A fluid is said to be Newtonian if it satisfies the
Newton’s law of viscosity (the shear stress is proportional to the rate of shear and the
viscosity is the constant of proportionality). Blood plasma, which consists mostly
of water, is a Newtonian fluid. However, the whole blood has complex mechanical
properties which become particularly significant when the particles size is much
larger, or at least comparable, with the lumen size. In this case, which happens at
the microcirculation level (in the small arterioles and capillaries) blood cannot be
modelled has a homogeneous fluid and it is essential to consider it as a suspension
of blood cells (specially erythrocytes) in plasma. The presence of the blood cellular
elements and their interactions leads to significant changes in the blood rheological
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properties and reliable measurements need to be performed to derive appropriate
microstructural models (see e.g. [101, 115, 134]).

Blood is a non-Newtonian fluid, but it can however be regarded as Newtonian
depending on the size of the blood vessels and the flow behavior, as in arteries with
diameters larger than 100 μm where measurements of the apparent viscosity show
that it ranges from 0.003 to 0.004 Pa s and the typical Reynolds number is about 0.5.

Here we assume that all macroscopic length and time scales are sufficiently large
compared to length and time scales at the level of an individual erythrocyte so that
the continuum hypothesis holds. Thus the models presented here are not appropriate
in the capillary network. For an overview of hemorheology in the microcirculation
we refer the reader to the review article of Popel and Johnson [101], as already
referred.

2.3.1 Constant Viscosity Models

As a first step towards the macroscopicmodeling of blood flowwe consider the most
general form of constitutive equations for incompressible viscous fluids, defining the
Cauchy stress tensor T such that

T = −pI + τ , (1)

where p (pressure) is the Lagrange multiplier arising from the incompressibility
constraint, I is the identity matrix and τ is the extra-stress (or deviatoric stress)
tensor, representing the forces which the material develops in response to being
deformed.

In large vessels normal blood has a Newtonian behavior, meaning that the extra-
stress is proportional to the symmetric part of the velocity gradient,

τ = 2μD(u), (2)

where μ is the (constant) dynamic viscosity of blood and the tensor D(u) ≡ D =
(∇u + ∇uT)/2 is the symmetric part of the velocity gradient (rate of deformation
or strain rate) [118]. Taking into account the principles of conservation of linear
momentum and conservation of mass (reduced to a divergence-free constraint) for
isothermal incompressible flows, the substitution of τ given by (2) in the Cauchy
stress equation (1) leads to the system

⎧
⎨

⎩

ρ
∂u
∂ t

+ ρ(u · ∇)u = −∇p + ∇ · 2μD(u),

∇ · u = 0,
(3)

where u and p denote the blood velocity and pressure, with t ≥ 0 and ρ is the blood
density.
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In this case, since μ is constant, from the continuity equation we obtain

∇ · [μ(∇u + ∇uT)] = μ(Δu + ∇∇.u) = μΔu

and system (3) is written in form
⎧
⎨

⎩

ρ
∂u
∂ t

− μΔu + ρ(u · ∇)u + ∇p = 0,

∇ · u = 0.
(4)

These are the well-known incompressible Navier-Stokes (NS) equations (proposed
by Navier in 1822 and later by Stokes in 1845). Here ρ(u · ∇)u is the nonlinear
convective term and ∇ · [μ(∇u + ∇uT )] is the diffusion term showing the role
of viscosity in propagating momentum. In the larger arteries and veins there is a
predominance of inertial effects over the viscous ones. System (4) must be closed
with appropriate initial and boundary conditions.

The NS equations can also be rescaled and written in a non-dimensional form by
introducing the following quantities:

x = x̃

R
, t = Ut̃

R
, p = p̃Rμ

U
,

where the symbol ˜ is attached to dimensional parameters (R represents a reference
length—the radius of the vessel, U is a characteristic velocity—the mean blood
flow velocity). We also introduce the important dimensionless quantity used in fluid
mechanics, the Reynolds number—Re defined as Re = ρUR

μ
, that means the ratio of

momentum forces to viscous forces, and quantifies the relation between these two
forces for given flow conditions. More precisely, the NS equations can be written in
a simplified form as

⎧
⎨

⎩

Re

(
∂u
∂ t

+ (u · ∇)u
)

− Δu + ∇p = 0,

∇ · u = 0.
(5)

When Re � 1 (for instance blood flow in smaller arteries), we may neglect
the convective term compared to the viscous contribution. Then blood could be
modeled by the simpler Stokes equations (creeping flow or Stokes flow). However,
as already mentioned, in the smaller arteries the non-Newtonian behavior of blood
becomes relevant. On the other hand, when Re � 1 (high Reynolds number flows)
the flow becomes unstable. In normal physiological conditions instabilities can
occur in some vascular regions, in particular in the systolic phase at the exit of the
aortic valve or in bifurcations, but normally there is no time for the flow to develop
turbulence. In pathological conditions, like in case of severe anaemia (low blood
viscosity) or due to the presence of a stenosis (stenotic artery), the transition from
laminar to turbulent flow can occur [44]. Such conditions are nevertheless rare and
consequently turbulent flow models are not used in cardiovascular modeling and
simulations.
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From the analytical and numerical view points the Navier-Stokes system with
appropriate initial and boundary conditions has been the object of intensive research,
but there are still important issues to be solved. In the mathematical theory, we
emphasize the famous global in time uniqueness in 3D, related to the regularity of
solution. (see e.g. [47, 48]).

Since the pioneering work of Perktold in the late 1980s and early 1990s [97, 98],
much of the research in modeling blood flow in the human arterial system has
focused on the numerical solution of the 3D Navier-Stokes system which provides
hemodynamic factors like blood flow velocity and pressure fields, and wall shear
stress (WSS) or the wall compliance (e.g. [99, 100]), difficult to extract using
simpler models and experimental measurements.

2.3.2 Generalized Newtonian Models

As already discussed, this set of equations is commonly used to describe blood
flow in healthy arteries. However, under certain experimental or physiological
conditions, particularly at low shear rates, blood exhibits relevant non-Newtonian
characteristics and more complex constitutive models need to be used. In this case,
we require a more general constitutive equation relating the state of stress to the rate
of deformation. It can be shown that the most general model of the form (1) with
τ = τ (∇u), satisfying invariance requirements, can be written as [10]

τ = φ1(IID, IIID)D(u) + φ2(IID, IIID)D(u)2 (6)

where IID and IIID are the second and third principal invariants of the rate of
deformation tensor D = D(u). These invariants are given by

IID = 1/2 ((trD(u))2 − tr (D(u))2), IIID = det(D(u)). (7)

where ttrD = ID = 0 for divergence free velocity fields, essential for incompress-
ible fluids (isochoric motions). To simplify the notation, from now on D(u) will be
replaced by D,
Incompressible fluids of the form (6) are typically called Reiner-Rivlin fluids. We
remark that the presence of φ2 in (6) is necessary to match experimental results on
“real” fluids and the dependence on the value of IID is often neglected [10].

Therefore, attention is particularly given to a special class of Reiner-Rivlin fluids
called generalized Newtonian fluids, for which

τ = 2μ(IID, IIID)D, (8)

Since for “real” fluids IIID is identically zero and IID is not a positive constant,
it is useful to introduce a measure of the rate of deformation, the shear rate denoted
by γ̇ and defined by

γ̇ =
√
2 tr (D2) = √−4 IID. (9)
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and write the stress tensor for the generalized Newtonian model (8) in the form

τ = 2μ(γ̇ )D, (10)

where μ(γ̇ ) is a shear dependent viscosity function.
A simple example of a generalized Newtonian fluid is the power-law fluid, for

which the viscosity function is given by

μ(γ̇ ) = K γ̇ n−1, (11)

the positive constants n and K being the power-law index and the consistency,
respectively. This model includes, as a particular case, the constant viscosity fluid
(Newtonian) when n = 1. For n < 1 it leads to a monotonic decreasing function of
the shear rate (shear-thinning fluid) and for n > 1 the viscosity increases with shear
rate (shear thickening fluid). The shear-thinning power-law model is often used for
blood, due to the analytical solutions easily obtained for its governing equations,
but there is a shortcoming since it predicts an unbounded viscosity at zero shear rate
and zero viscosity when γ̇ → ∞, which is unphysical.

One of the important extensions of the power-law model is due to Walburn and
Schneck [133] who considered the dependence of the viscosity on the hematocrit
(Ht) and total protein minus albumin (TPMA) in the constants n and K, based on
nonlinear regression analysis, and found

K = C1exp(C2Ht), n = 1 − C3Ht. (12)

According to Cho and Kensey [31] commonly used values in the literature for
blood density ρ and for the asymptotic viscosities at zero and infinity shear rates μo

and μ∞, at 37 ◦C, are the following

ρ = 1056 kg/m3, μo = 0.056 Pa s, μ∞ = 0.00345 Pas, (13)

where the values of

μ0 = lim
γ̇→0

μ(γ̇ ), μ∞ = lim
γ̇→∞ μ(γ̇ ).

were obtained from a set of data including both human and canine blood and for
hematocrits ranging from 33–45%.

Note that the values in (13) are only significant for theoretical constitutive
models. In practice, the lower limit in shear rate at which viscosity can be measured
is limited by experimental trials. The high shear rate limit has no real physical
meaning and it is taken as the highest shear value.

As discussed earlier in this chapter (Sect. 2.2) the material parameters of blood
are quite sensitive to the state of blood constituents as well as temperature [84].
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Table 2 Material constants for power-law model obtained by various researchers using fit of (11)
to human blood data at different hematocrits

Ht (%) n k Source

40.5 0.828 0.009267 Kim et al. [67], 37 ◦C
35 0.8254 0.0880 Walburn and Schneck [133], 37 ◦C
40 0.8004 0.1147

45 0.7755 0.1482

45 0.61 0.42 Liepsch and Moravec [73], 23 ◦C
For comparison, results predicted from the Walburn-Schneck model (12) are shown

The dependence on hematocrit is included in material parameters for the power-
law model that were obtained for human blood, Table 2. The corresponding
viscosity functions are shown in Fig. 2. The viscosity functions obtained from [67]
for Ht = 40, 5% and [133] for Ht = 40%, are quite close. In contrast, those in [73]
and [133] for Ht = 45% are substantially different, possibly due to the difference in
temperatures.

Other viscosity functions with bounded and non-zero limiting values of viscosity
can be written in the general form

μ(γ̇ ) = μ∞ + (μ0 − μ∞)F(γ̇ )

or, in non-dimensional form as

μ(γ̇ ) − μ∞
μ0 − μ∞

.

Here, F(γ̇ ) is a shear dependent function, satisfying the following natural limit
conditions

lim
γ̇→0

F(γ̇ ) = 1, lim
γ̇→∞ F(γ̇ ) = 0.

Different choices of the function F(γ̇ ) correspond to different models for blood
flow, with material constants quite sensitive and depending on a number of factors
including hematocrit, temperature, plasma viscosity, age of erythrocytes, exercise
level, gender or disease state (Fig. 4).

Table 3 includes some of the most common generalized Newtonian models that
have been considered in the literature for the shear dependent viscosity of whole
blood. Values for the material constants given in this table were obtained by Cho and
Kensey[31]. As mentioned above those set of values were obtained for human and
canine blood (Ht ranging from 33%–45%), using a nonlinear least squares analysis.
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Fig. 4 Comparison of
viscosity functions of γ̇ for
extensions of the power-law
model (11) using material
constants given by different
authors (Table 2) obtained by
curve fit to experiments
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Table 3 Material constants for various generalized Newtonian models for blood with μ0 =
0.056 Pa s, μ∞ = 0.00345 Pa s

Model

μ(γ̇ ) − μ∞
μ0 − μ∞ Material constants for blood

Powell-Eyring

sinh−1(λγ̇ )

λγ̇ λ = 5.383 s

Cross

1

1 + (λγ̇ )m λ = 1.007 s, m = 1.028

Modified cross

1

(1 + (λγ̇ )m)a λ = 3.736 s, m = 2.406, a = 0.254

Carreau (1 + (λγ̇ )2)(n−1)/2 λ = 3.313 s, n = 0.3568

Carreau-Yasuda (1 + (λγ̇ )a)(n−1)/a λ = 1.902 s, n = 0.22, a = 1.25

2.3.3 Yield Stress Models

Yield stress models can be useful to model blood flow in capillaries and some porous
structures where flow at very low shear rates occurs. Yield stress materials require
a finite shear stress τY (the yield stress) to start flowing. A relatively simple, and
physically relevant yield criterion is given by

√|IIτ | = τY , (14)

where IIτ is the second invariant of the extra stress tensor, τ (defined in (7)).
Therefore, for

√|IIτ | < τY , the fluid will not flow.
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The most usual yield stress model for blood is the Casson model (e.g. [86, 114])
which, for simple shear flow, has the form

√|IIτ | < τY �⇒ D = 0

√|IIτ | ≥ τY �⇒

⎧
⎪⎨

⎪⎩

D = 1
2μN

(
1 −

√
τY

4√|IIτ |
)2

τ

τ = 2
(√

μN +
√

τY
4√4|IID|

)2
D.

(15)

The Newtonian constitutive equation is a special case of (15) for τY equal to zero,
μN being the Newtonian viscosity. The Casson fluid behaves rigidly until the yield
criterion (14) is verified, and after that it displays a shear-thinning behavior.

Other yield stress models used for blood are the Bingham model [102] given by

√|IIτ | < τY �⇒ D = 0

√|IIτ | ≥ τY �⇒
⎧
⎨

⎩

D = 1
2μ

(
1 −

√
τY√|IIτ |

)
τ

τ = 2
(
μ + τY

2
√|IID|

)
D.

(16)

where μ is the constant viscosity attained once the material flows, or the Herschel-
Bulkley model (see e.g. [56]) which is similar to the Bingham model (16) which
behaves as a power-law viscosity model once it begins to flow (μ in (16) is replaced
by the power-law viscosity μ(γ̇ ) = K γ̇ n−1, defined in (11)

√|IIτ | < τY �⇒ D = 0

√|IIτ | ≥ τY �⇒

⎧
⎪⎨

⎪⎩

D = 1
2K γ̇ n−1

(
1 −

√
τY√|IIτ |

)
τ

τ = 2
(

K γ̇ n−1 + τY
2
√|IID|

)
D.

(17)

Quemada [105] also developed a constitutive model suitable for blood, using an
approach with the apparent viscosity μ given by

μ(γ̇ ) = μF

(

1 − 1

2

k0 + k∞
√

γ̇ /γ̇c

1 + √
γ̇ /γ̇c

ϕ

)−2

, (18)

where μF, ϕ and γ̇c are the viscosity of the suspending fluid, the volume concentra-
tion of the dispersed phase and a critical shear rate, respectively. Table 4 provides
material parameters for the Quemada and Casson models for blood used in [91].

Table 4 Material constants
for Quemada (18) and
Casson (15) models:
Ht = 45% and temperature
T = 37 ◦C

Model Material constants for blood

Quemada μF = 1.2mPa s k∞ = 2.07 k0 = 4.33

γ̇c = 1.88 s−1 ϕ = 0.45

Casson μN = 3.1mPa s
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As discussed above, the existence of a yield stress and its use as a material
parameter is still nowadays a controversial issue, due to the sensitivity of yield stress
measurements.

2.3.4 Viscoelastic Models

There is a large number of in vitro experiments confirming that blood can store
and dissipate energy during the aggregation of the erythrocytes and the distortion
of the formed 3D microstructures (e.g. [30, 77, 125, 131]. As previously mentioned
in Sect. 2.2.3, Thurston [124] was among the earliest to recognise the viscoelastic
nature of blood and that the viscoelastic behaviour is less prominent with increasing
shear rate. In view of the available experimental evidence, it is reasonable to develop
non-Newtonian fluid models for blood that are capable of shear-thinning and stress
relaxation, with the relaxation time depending on the shear rate.

None of the models already presented in the previous sections re able to capture
the viscoelastic response of blood. One of the simplest quasi-linear rate-type
viscoelastic models accounting for the viscoelasticity of blood is theMaxwell model

τ + λ1
δτ

δt
= 2μD, (19)

where λ1 is the relaxation time and the operator δ(.)/δt stands for the so-called
upper-convected derivative defined by

δτ/δt =�
τ=: Dτ

Dt
− Lτ − τLT (20)

with L = ∇u+∇uT =: 2D. This is a generalization of the material time derivative,

Dτ

Dt
= ∂τ

∂ t
+ ∂τ

∂x
dx
dt

. (21)

δτ/δt is chosen to be objective under a superposed rigid body motion, meaning
that it is frame indifferent or that the response of the material is not affected by its
location and orientation. The resulting second-order tensor is symmetric [108].

A generalized Maxwell model that was applicable to one dimensional flow
simulations was proposed by Thurston [127] who observed later that, beyond a
critical shear rate, the nonlinear behavior is related to the microstructural changes
that occur in blood. Thurston’s work was suggested to be more applicable to venous
or low shear unhealthy blood flow than to arterial flows. Recently, a generalized
Maxwell model related to the microstructure of blood, inspired on the behaviour of
transient networks in polymers, and exhibiting shear-thinning, viscoelasticity and
thixotropy, has been derived by Owens [95].
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A more general class of rate-type models, called Oldroyd type models, is defined
by

τ + λ1
δτ

δt
= 2μ(D + λ2

δD
δt

), (22)

where λ2 denotes the retardation time, λ1 is the relaxation time and these material
coefficients are such that 0 ≤ λ2 < λ1. The Oldroyd type fluids can be considered
as Maxwell fluids with additional viscosity. This type of models (22) contain the
previous (19) model and (2) as particular cases.

In order to better understand the theory of viscoelasticity it is useful to illustrate
the typical behavior of viscoelastic materials by simple mechanical models, where
a dashpot (piston moving inside a cylinder filled with liquid) represents a viscous
(Newtonian) fluid and a spring stands for an elastic (Hookean) solid. These elements
can be connected in series or in parallel and the analysis of the behavior of different
viscoelastic materials can be done through their combinations representing various
deformation-stress models [43, 81]. Figure 5 shows an elastic spring and a dashpot
in series, representing the one-dimensional mechanical analogue to (19). Here, the
speed of movement γV is an analogue of the rate of deformation, the coefficient of
proportionality μ (for the viscous element) is an analogue of viscosity, γE can be
treated as a relative deformation, G as the elastic modulus and the force τ is an
analogue of the extra stress τ in (19). The ratio between the viscosity μ and elastic
modulus G is hidden in the relaxation time parameter λ1.

The combination of the Newtonian and the Maxwell models joined in parallel
is shown in Fig. 6 which represents the mechanical analogue to the Oldroyd
model (22).

Here the total viscosity μ is defined as μ = μs + μe, where μs and μe are the
solvent and the elastic (or polymeric) viscosity coefficients, respectively.Moreover,

Fig. 5 Mechanical analogue
of the Maxwell model
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Fig. 6 Mechanical analogue
of an Oldroyd-type model
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parameters λ1, λ2 are defined by

λ1 = μe

G
, λ2 = λ1

μs

μs + μe
(23)

and, as stated above, they verify the inequality 0 ≤ λ2 < λ1 (assuming μe is not
zero).

The total force τ can be expressed as the sum of the Newtonian solvent
contribution τ s and its viscoelastic counterpart τ e. In a similar manner, the extra
stress tensor τ in Eq. (22) is decomposed into its Newtonian part τ s and its elastic
part τ e,

τ = τ s + τ e, (24)

such that

τ s = 2μsD (25)

and τ e satisfies a constitutive equation of Maxwell type, namely

τ e + λ1
δτ e

δt
= 2μeD. (26)

A one-parameter family of frame indifferent convected derivatives of a tensor τ

takes the general form

(
δτ

δt

)

a
= Dτ

Dt
− Wτ + τW + a(Dτ + τD), a ∈ [−1, 1] (27)

whereW represents the anti-symmetric part of the velocity gradient. The particular
value a = −1 corresponds to the upper-convected time derivative (20) (see e.g.
[64]).

We now recall Eq. (26) for the elastic part of the extra stress tensor. It can be
rewritten as

δτ e

δt
= 2μe

λ1
D − 1

λ
τ e (28)

or, in terms of the classical material time derivative, as

Dτ e

Dt
+

(
δτ e

δt
− Dτ e

Dt

)

= 2μe

λ1
D − 1

λ1
τ e, (29)

with the term in brackets representing a kind of “objective correction” of the
material time derivative. Moving this term to the right-hand side and expanding
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the remaining time derivative on the left, we get the following transport equation
for τ e

∂τ e

∂ t
+ (u · ∇) τ e = 2μe

λ1
D − 1

λ1
τ e −

(
δτ e

δt
− Dτ e

Dt

)

. (30)

Using Eq. (27) with a = −1, corresponding to the upper-convected time derivative,
transport equation (30) becomes

∂τ e

∂ t
+ (u · ∇) τ e = 2μe

λ1
D − 1

λ1
τ e + (Wτ e − τ eW) + (Dτ e + τ eD). (31)

This is the constitutive equation for the viscoelastic isothermal Oldroyd-B fluid.
The governing equations for the Oldroyd-B fluid are obtained by considering

the basic principles of conservation of linear momentum and mass for isothermal
incompressible flows, where the extra stress τ is decomposed as in (24), the
Newtonian part τ s being represented by (25) and the viscoelastic component τ e

satisfying the constitutive equation (31).

Remark 1 An important non-dimensional parameter characterizing the viscoelastic
effects in the flow is the Weissenberg number defined as We = λ1U

L , whereU denotes
a characteristic velocity and L is a characteristic length of the flow. In this case
the Weissenberg number can be interpreted as the ratio between “memory” and
advection time-scales. It relates the relaxation time to the time the fluid particle
needs to pass the distance L while advected at speed U.

The Oldroyd-B model accounts for the viscoelasticity of blood but not for its
shear-thinning behavior. However, replacing the constant viscosity μ in τ s by a
shear dependent viscosity function μ(γ̇ ), i. e.

τ s = 2μ(γ̇ )D, (32)

using, for instance one of the generalized Newtonian models listed in Table 3 with
the corresponding parameters, we obtain a generalized Oldroyd-B (GOB) model
that can be appropriate to describe blood flow behavior.

Other viscoelastic constitutive models of differential type, suitable to account for
blood rheology have been proposed in the recent literature. The empirical five—
constant generalized Oldroyd -B model studied in [132] belongs to this class. It is
a shear-thinning Oldroyd-B model with the shear-dependent viscosity μ(γ̇ ) in (32)
defined by

μ(γ̇ ) = μ∞ + (μ0 − μ∞)

[
1 + ln(1 + Λγ̇ )

(1 + Λγ̇ )

]

. (33)
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This viscosity function has been derived by fitting experimental data for steady
capillary one-dimensional flows to determine the constants, μ0 = 200mPa s,
μ∞ = 6.5mPa s and Λ = 11.14 s, and generalizing such curve fits to three
dimensions.

The previous model captures the shear-thinning behavior of blood over a large
range of shear rates but it has some limitations, since the relaxation times do not
depend on the shear rate, which does not agree with experimental observations for
blood. An appropriate model should consider blood as a viscoelastic fluid capable
of instantaneous elastic response. The theory developed by Rajagopal and Srinivasa
in [107] is particularly well suited to develop a model for blood. This framework
needs the specification of how the body stores and dissipates energy, by introducing
a precise Helmholtz potential associated with the body and a rate of dissipation
function, respectively. However, not all viscoelastic fluids can be described within
that earlier framework (see [107] for further details).

The model developed by Anand and Rajagopal [2], derived from the general
thermodynamic framework stated in [107], includes relaxation times depending on
the shear rate, gives good agreement with experimental data in steady Poiseuille
and oscillatory flows and has proven to be successful in describing the response
of blood. This model contains the Oldroyd-B model as a special sub-class and is
particularlywell suited to describe the instantaneous elastic response of blood, under
physiological conditions. Numerical simulations in some idealized geometries to
investigate the combined effects of flow inertia, viscosity and viscoelasticity, can be
found in [19]. Anand et al. [1, 3] have also studied the problem of the formation and
lysis of blood clots, as well as the problem of ATIII and protein C deficiency [4]
within the context of the above model. See also numerical simulations in [117]. An
improvement of this model can be found in [5].

The set of governing equations derived in [2], the so-called (BModel), are based
on the principles of conservation of linear momentum and mass for an isothermal
incompressible fluid, with the extra stress tensor decomposed as follows:

T = −pI + ηBκp(t) + μsD (34)

where η and μs are positive material parameters (μs is the Newtonian viscosity),
Bκp(t) is the elastic stretch tensor and the subscript κp(t) is used to emphasize that
the stretch is expressed with respect to the natural (time dependent) configuration
κp(t).

The upper-convected time derivative of the elastic stretch tensor Bκp(t) can be
written as

δBκp(t)/δt =�
Bκp(t)=: − 1

τ (Bκp(t))

[
Bκp(t) − λI

]
. (35)

Here τ = τ (Bκp(t)) defined by

1

τ (Bκp(t))
= 2K

(
tr(Bκp(t)) − 3λ

)n
. (36)
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(where K is a material parameter) has the dimension of time and plays a role similar
to the relaxation time λ1 in the classical Oldroyd-B (22) or Maxwell (19) models.
The coefficient λ depends on the trace of the inverse of the tensor Bκp(t) according
to

λ = 3

tr
(
B−1

κp(t)

) . (37)

Using the definition of the upper-convected time derivative (20), the left-hand
side of (35) can be rewritten in a more conventional form in terms of the material
time derivative:

DBκp(t)

Dt
−

[
LBκp(t) + Bκp(t)L

T
]

= − 1

τ (Bκp(t))

[
Bκp(t) − λI

]
(38)

Finally, expanding the material time derivative on the left-hand side we end up with

∂Bκp(t)

∂ t
+ (u · ∇) Bκp(t) = −1

τ

[
Bκp(t) − λI

] +
[
LBκp(t) + Bκp(t)L

T
]

(39)

where the coefficients λ and τ are scalar functions of the tensor Bκp(t) and its
invariants, according to (37) and (36), respectively.

It is interesting to remark that the constitutive equations (39) for the (BModel)
and (31) for the classical Oldroyd-B (upper-convected Maxwell) model have a
similar form.

Predictions of the coefficients for the proposed (BModel) in [2]

μs = 0.01 Pa s; η = 0.0227N/m2; n = 0.7525; K = 1.2056 s−1 (40)

(with n positive to ensure the shear-thinning behavior) have been compared with the
data for human blood [126].

More details related to the (BModel) and the notation used here can be found in
[2, 107] and also in [16, 19] where its implementation has been performed and some
numerical results have been obtained.

All models considered above can be solved for the variables velocity, pressure
and shear stress, provided the viscosity function, flow parameters and appropriate
boundary conditions are given.

With respect to boundary conditions for the Navier-Stokes and generalized
Navier-Stokes equations, it is necessary to prescribe either the velocity or the
surface traction force (Dirichlet or Neumann boundary conditions, respectively)
at the inflow boundary. Usually, physiological data are not available and a fully
developed Poiseuille velocity profile (or the Womersley solution, in the unsteady
case) can be prescribed. This is an acceptable idealization of the inflow condition
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in relatively long straight vessel segments. At the vessel wall, the no-slip condition,
expressing that the velocity at the wall boundary is the wall velocity, is appropriate,
if we consider rigid wall vessels. At the outflow boundary, a condition prescribing
surface traction force can be applied.

The Oldroyd-B and generalized Oldroyd-B models are of mixed elliptic-
hyperbolic type (or parabolic-hyperbolic, in the unsteady case). The extra stresses
behave hyperbolic, which means that they are only determined by past time. For
these models the boundary conditions are the same as for the Navier-Stokes and
generalized Navier-Stokes equations, supplemented by the specification of all the
stress components representing the fluid memory at the inlet boundary [64].

3 Numerical Simulations of Non-Newtonian Blood Flow
Models

Several methods have been used in modeling and simulation of the Non-Newtonian
effects in blood rheology, including analytical, stochastic and numerical methods
(finite elements, finite differences, finite volumes, spectral collocation, particle
methods). No single model can capture the complex blood characteristics and
different models have been used to represent blood rheology. Since most of
the Non-Newtonian characteristics derive from the behavior of RBCs in shear
flows, in particular their concentration, distribution and mechanical properties,
generalized Newtonian models, namely Carreau, Carreau-Yasuda and Cross (e.g.
[8, 9, 16, 21, 22, 26, 49, 50, 52, 53, 61–63, 68, 74, 87, 106, 116]) are the most popular
models found in literature. However, Casson (e.g. [57, 70, 83, 86, 87]) and shear-
thinning viscoelastic models (e.g. [2–5, 18, 19, 58, 90, 132]) have also been largely
used.

A comparative numerical study of three different test cases is presented to illus-
trate the influence of the shear-thinning and viscoelastic effects on the qualitative
behavior of blood flow in rigid-walled medium sized idealized and realistic vessels,
using some of the models described in the previous section.

Remark 2 Blood flow interacts mechanically with the vessel wall, resulting in
pressure waves propagating in arteries, which deform under the action of blood
pressure. In order to capture these phenomena, complex fluid-structure interaction
(FSI) problems must be considered, coupling physiologically meaningful models
for both the blood and the vessel wall. To simplify the presentation wall compliance
is not considered in the test cases.
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3.1 Numerical Simulations in Idealized Geometries

3.1.1 Stenosed Vessel

The first test case is a simple 2D non-symmetric (with respect to the bulk flow
direction) channel with a local constriction, modeling a cosine-shape stenosed blood
vessel, with 75% area reduction, represented in Fig. 7.

To account for the shear-thinning behavior of blood we choose the generalized
Newtonian Carreau model defined in Sect. 2.3.2 (see Table 3)

μ(γ̇ ) = μ∞ + (μ0 − μ∞)(1 + (λγ̇ )2)(n−1)/2 (41)

with material parameters

μ0 = 0.639 Pa s; μ∞ = 0.0045 Pa s; λ = 10.03 s; n = 0.35 (42)

and, for the purpose of comparison, blood is also modeled as a Newtonian fluid
with a constant viscosity μ = 0.0035 Pa s, corresponding an average experimental
viscosity in the range γ̇ ∈ [2, 1000] s−1. Blood density is ρ = 1.06 g cm−3, in both
cases.

The experimental viscosity data used in this test case were obtained by M.
Kameneva (Univ. Pittsburgh) for normal human blood at temperature T = 23 ◦C
and hematocrit Ht = 40% (see [108]. The main goal is to investigate the influence
of inertia and shear-thinning effects on the qualitative behavior of blood flow in this
idealized stenosed vessel.

For the numerical approximation of each one of the governing systems of PDEs,
a backward Euler scheme is used for time discretization and, at each time step, a
finite element space discretization of the velocity-pressure formulation (with P2−P1
elements) is implemented, using a splitting scheme with algebraic factorization
(e.g. [103]). The computational domain is discretized into 2858 internal triangular
elements and a boundary layer mesh consisting of 472 quadrilateral elements
(Fig. 7). A fully developed Poiseuille parabolic velocity profile with flow rate
Q = 2.0 cm3/s is prescribed at the inlet and homogeneous Neumann conditions
for the velocity components (zero normal stresses) are imposed at the outlet. The
initial-boundary value problems are also endowed with an initial condition u = u0,
for t = 0, and with a no-slip boundary condition u = 0 prescribed at the vessel wall.

Fig. 7 Stenosed vessel: computational grid structure
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Figures 8, 9 show a comparison between the velocity contours corresponding
to the Newtonian (NS) and the Carreau models, with parameters introduced above,
using the same color scale (units in m/s). As expected, in both figures we observe
a similar behavior at the stenosis site, but the area reduction in the stenosed region
leads to a significant local flow acceleration near the wall and the appearance of
recirculation patterns corresponding to two regions of reversal flow, downstream
the stenosis. In the two cases the flow structure is similar but the impact of the non-
Newtonian effects in the flow separation behind the stenosis is non-negligible, with
the velocity close to the wall developing a slower backflow in a larger region for the
(NS) flow model than for the generalized Newtonian Carreau model. In the vessel’s
centreline the velocity profile is flatter for the Carreau flow, which corresponds to
a reduction in the maximum velocity magnitude. As a result, the near wall flow is
accelerated and thus the recirculation zones become shorter, compared to those for
the (NS) flow.

This is a simple numerical study of the shear-thinning effects of the Carreau flow
model compared to the inertial effects of the (NS) model. It could be completed
by choosing different flow rates at the inflow boundary, other shear-thinning or
viscoelastic shear-thinning models, as those derived in the previous Section, and
the effect of the stenosis severity on the recirculation zone length downstream
the stenosis. Moreover, hemodynamic flow indicators like the wall-shear stress
(WSS) exerted on the wall, defined below (44), the time-averaged wall shear stress
(TAWSS) or the oscillatory shear index (OSI) during a cardiac cycle, could also be
investigated. This will be partially explored in the next test cases.

Fig. 8 Velocity magnitude contours and recirculation streamlines behind the stenosis for the
Newtonian flow. A velocity legend is shown on the right
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Fig. 9 Velocity magnitude contours and recirculation streamlines behind the stenosis for the
generalized Newtonian flow. A velocity legend is shown on the right

outL

2R

Lin

6R

Fig. 10 Geometric representation of a curved vessel

3.1.2 Curved Vessel

Flows in curved vessels are significantly more complex than flows in straight
vessels. For inertial Newtonian flows it is well known that a slight curvature of
the vessel axis induces centrifugal forces on the fluid and, in addition to the primary
initial flow, a secondary motion appears, sending fluid outward along the symmetry
axis and returning along the upper and lower curved surfaces. This secondary
motion is induced by a discrepancy between the cross-stream pressure gradient
and the centrifugal forces developed at the curvature sites, and consists of a pair
of symmetrical counter-rotating vortices that is superposed to the axial flow. This
results in asymmetrical wall stresses with high shear and low pressure regions (see
e.g. [6, 7, 13, 37]).

A 90◦ 3D curved vessel with circular cross-section (Fig. 10) has been chosen as a
second test case, to study the shear-thinning and viscoelastic effects in the presence
of high streamline curvature and non-negligible secondary flows (see [19]).
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Numerical simulations have been performed to compare the predictions of
the above described shear-thinning viscoelastic fluid model for blood flow (39),
further denoted as (BModel), with those of the classical Newtonian (NS) model
and a generalized Oldroyd-B (GOB) model. The material parameters used for the
(BModel) are those listed in (40). The (GOB) model used here is obtained from
the Oldroyd-B model (31) replacing the total (constant) viscosity by the shear
dependent viscosity given by the modified Cross function defined in Sect. 2.3.2

μ(γ̇ ) = μ∞ + (μ0 − μ∞)
1

(1 + (λγ̇ )m)a (43)

The asymptotic viscosities μ0 and μ∞ at low and high shear rates, have been
adjusted to fit the bModel’s parameters, namely μ0 = 0.0736 Pa s and μ∞ =
0.005 Pa s and the parameters λ, m and a, estimated by curve fitting of experimental
data, have been taken from [17] (see also [71]).

The numerical method used to solve the governing equations is based on a spatial
finite-volume discretization on structured grids and an explicit Runge-Kutta time-
stepping scheme, namely a robust modified Runge-Kutta four-stage method [60].
The computational mesh is structured and consists of hexahedral primary control
volumes. To evaluate the viscous numerical fluxes also dual finite volumes with
octahedral shape and centered around the primary cell faces are used.

The space discretization is based on a simple central finite-volume discretization
on a structured wall-fitted mesh with hexahedral cells and non-uniform axial cell
spacing. A multiblock grid topology was used to avoid high distortion of cells. The
viscous fluxes are also discretized in a finite-volume style over a diamond-shaped
cells adjoint to primary control volumes faces.

A pressure stabilization technique has been used in the present simulations (see
e.g. [130]) to avoid numerical oscillations in the pressure, which are mainly due
to the presence of strong gradients. Moreover, since the Reynolds number used in
the simulations was quite low (of the order of 102), no additional stabilization was
needed for the flow variables. This approach has been adopted in earlier papers. For
further details see e.g. [16–19] and the references therein.

A parabolic velocity profile with flow rate Q = 2.0 cm3/s, prescribed at the inlet
of the curved vessel has been considered for the simulations of the bModel and the
GOB and NS models. This flow rate is sufficiently high to capture the secondary
flows pattern (see Fig. 12). Homogeneous Neumann conditions for the velocity
components were imposed at the outlet and no-slip conditions were prescribed
at the vessel wall. Pressure was fixed at the outlet and extrapolated at the other
boundaries. Moreover, in the case of the bModel, homogeneous Neumann boundary
conditions were prescribed at all boundaries for the components of tensor Bκp(t).
As an alternative, some simulations have been performed using a Dirichlet type
boundary condition Bκp(t) = 1 prescribed at the inlet, but no significant impact on
the solution has been found.

One of the important features of the flow predicted by the bModel is related to the
axial velocity profile. This can clearly be observed in Fig. 11 showing, for the three
models NS, GOB and bModel, plots of the axial velocity profiles in three different
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Fig. 11 Axial velocity profiles for NS flows (top row), GOB flows (middle row) and bModel flows
(bottom row) in three different cross-sections at the bended part of the curved vessel (30◦, 60◦,
90◦)

cross-sections of the curved vessel, placed at 30◦, 60◦ and 90◦. In the case of the
bModel and GOB model flatter axial velocity profiles are obtained when compared
to the NS model. As in the case of the flow in the stenosed vessel, this effect can
be attributed to the shear-thinning behavior predicted by the first two models where
the low shear rates around the centerline of the vessel lead to a local increase of
the apparent viscosity. Based on these simulations, we can conclude that the shear-
thinning effect is dominant when compared to the viscoelastic one. However, further
numerical experiments could be performed to confirm this assumption.

Curvature effects are observed in the contours of the axial velocity, which are
shifted away from the central axis as the curvature of the vessel increases from 30◦
to 90◦ (see Fig. 12 and, more clearly, Fig. 13). Secondary flow streamlines have a
similar qualitative behavior for the three models NS, GOB and bModel, as shown in
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Fig. 12 Axial velocity magnitude contours and secondary flow streamlines for the NS (top row),
GOB (middle row) and the bModel flows (bottom row) in three different cross-sections at the
bended part of the curved vessel (30◦, 60◦, 90◦)

Fig. 12. Further differences are visible while comparing the axial and radial velocity
contours shown in Figs. 13 and 14. From Fig. 14 we realize that the magnitude of the
secondary flow velocities is clearly lower for the models GOB and bModel than for
the NS model, due to the shear-thinning behavior captured by the first two models
for which lower shear rates lead to a higher apparent viscosity.

Figures 15 and 16 show the relative axial velocity differences (normalized by the
characteristic velocity U) between the bModel and the classical NS model (Fig. 15,
left and Fig. 16, top row) and between the two shear-thinning viscoelastic models
bModel and GOB (Fig. 15, right and Fig. 16, bottom row). The color scale (in
physical units m/s) is used to emphasize the set of flow regions varying from those
where differences of solutions can be neglected (in black) to regions of the highest
difference in the flow regime (in red or dark blue). The differences on the axial
velocity between the bModel and the Newtonian model along the curved vessel
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Fig. 13 Axial velocity magnitude contours for the NS (top row), GOB (middle row) and the
bModel flows (bottom row) in three different cross-sections at the bended part of the curved vessel
(30◦, 60◦, 90◦)

(Fig. 15, left) show the expected slow-down of the core flow (caused by the shear-
thinning behavior) in the straight inlet part of the vessel. This is compensated by
a faster near-wall flow. As soon as the flow reaches the bended part of the curved
vessel, the slow core of the flow is pushed towards the outer wall (see top row in
Fig. 16 for a more detailed view), while close to the inner radius of the bend, the
flow accelerates. A similar (although weaker) tendency of the flow behavior can
also be seen for the difference between the bModel and GOB models (Fig. 15, right
and Fig. 16, low row). This is mainly due to the fact that both models have a shear-
thinning viscosity. In the bModel shear-thinning effects seem to be slightly more
pronounced than in the GOB model.

To summarize, we conclude that results obtained with both bModel and GOB
blood flow models are very similar, when compared to those obtained with the
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Fig. 14 Radial velocity magnitude contours for the NS (top row), GOB (middle row) and the
bModel flows (bottom row) in three different cross-sections at the bended part of the curved vessel
(30◦, 60◦, 90◦)

NS model, showing in particular that the more complex bModel has been properly
implemented and that the shear-thinning and viscoelastic rheological characteristics
are dominant with respect to inertia. Future numerical simulations in curved vessels
with different curvatures can provide a deeper insight into this investigation.

3.2 Numerical Simulations in a Realistic Geometry: Stenosed
Carotid Bifurcation

Now we consider an anatomically 3D realistic model of a diseased human carotid
bifurcation, smoothly reconstructed from an MRI medical image, as shown in
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Fig. 15 Relative difference of the axial velocity along the curved vessel (ubModel − uNS)/U (left)
and (ubNOB − uGOB)/U (right)

Fig. 17. The common carotid artery bifurcates into the internal and external carotid
arteries that supply blood into the brain and the face, respectively. A stenosis
of about 75% has been generated in the internal carotid artery (ICA), near the
bifurcation region, where narrowing or constrictions of the arterial inner surface,
caused by atherosclerosis usually occur and are responsible for about 10% of
ischemic strokes. The accumulation of plaques on the arterial wall is a progressive
disease accelerated by local irregular flow fields such as separation and flow-reversal
zones, which already occur at milder degrees of stenosis. It is well established that
once a mild stenosis is formed in the artery, altered blood flow and stress distribution
in the arterial wall contribute to further progression of the disease.The present
study can be regarded as a follow-up investigation of the influence of hemodynamic
factors on atherosclerosis development, after the disease has been recognized.

The main goal is to investigate inertial and shear-thinning effects in unsteady
simulations using the time-dependent incompressible Newtonian (NS) and the
generalized Newtonian Carreau models defined in Sect. 2.3.2, see also (41). The
shear-thinning viscosity parameters used in this study are the physiological values
previously used for the Carreau model in the first test case (42), Sect. 3.1. For the
Newtonian model we also impose a constant viscosity μ = 0.0035 Pa s, and blood
density is ρ = 1.06 g cm−3, in both cases. A fully developed laminar velocity profile
with flow rate Q = 5.5 cm3/s is imposed at the inlet of the central carotid artery
(main branch before bifurcation). Since the inflow diameter is 0.62 cm, this mean
physiologic flow rate Q = 5.5 cm3/s results in a Reynolds number Re = 300 in the
Newtonian case. The diameters of the outflow sections of the internal and external
carotid arteries are equal to 0.25 cm and 0.22 cm, respectively. The total length of the
domain, from upstream to downstream is approximately 5.4 cm. No-slip boundary
conditions are imposed at the vessel wall.
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Fig. 17 Computational mesh used for the blood flow simulations in a stenosed carotid artery
bifurcation

The conditions applied at the outlets are usually imposed in order to guarantee the
well-posedness of the differential problems, for sufficiently smooth and small data.
As in the previous test cases, we impose the “standard” homogeneous Neumann
conditions at the outlets. However, these conditions are unphysical for the case of
a human vessel, since they neglect completely the presence of the remaining part
of the circulatory system, which is usually not implemented using a 3D model
due to the limited capacity of current computers. Moreover, only averaged data
(mean velocity and mean pressure values) are available at the artificial boundaries
and alternative boundary conditions need to be used, reflecting the physics of
the given problem. A possible strategy consists in coupling the 3D Navier-
Stokes (or the generalized Navier-Stokes) equations with reduced 1D (distributed
parameter) or 0D (lumped parameter) approximations of the full equations that,
in a simplified way, can represent the remaining part of the circulatory system
and act as absorbing boundary conditions. The coupling of these heterogeneous
models, using appropriate transmission conditions and efficient techniques for their
numerical computation, usually called geometrical multiscale approach, represents
a decreased level of accuracy which is compensated by its lower computational cost.
This issue has been addressed by several authors and is still nowadays a matter of
active research (see e.g. [104] for a recent overview referring to the original works
on the subject)

A finite element approach has been adopted for the numerical solution of
the governing equations associated to both models. The patient-specific geometry
is discretized with 327,896 tetrahedral elements. A backward Euler scheme is
used for time discretization and, at each time step (0.5 × 10−3 s), a velocity-
pressure splitting scheme with algebraic factorization is implemented to discretize
in space (see, e.g. [103]). Lagrange low order P1 − P1 elements have been
adopted and this requires stabilization techniques like the Streamline upwind/Petrov
Galerkin method (SUPG-method) in order to avoid oscillations in the numerical
solutions [59]. The SUPG-method yields a substantial increase in accuracy because
stabilizing artificial diffusivity is added only in the direction of the streamlines and
crosswind diffusion effects are avoided.

An important commonly adopted flow indicator is the wall shear stress (WSS).
Knowing the velocity and pressure fields it is possible to obtain stresses, in particular
WSS which represents the tangential component of the surface force at the vessel
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wall, acting against the fluid flow.

WSS := −(τ · n) · t. (44)

Here n is the local wall-normal unit vector (pointing towards the fluid domain) and
t is the corresponding unit tangential vector.

WSS may cause alterations in the endothelium and has a great influence in many
inflammatory diseases, including atherosclerosis, the development of aneurysms
and clotting.

Hemodynamics in the stenosed carotid bifurcation was assessed in terms of
the streamlines, magnitude of the velocity vector field and WSS distribution
downstream the stenosis.

The difference between the solutions obtained using the NS model and gen-
eralized Newtonian Carreau model can be observed in Fig. 18 representing the

Fig. 18 Streamlines in the recirculation area downstream the stenosis in the ICA branch: for the
NS flow (top); for the generalized Newtonian flow (bottom)
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streamlines behind the stenosed region of ICA for both models. As expected, the
flow behavior behind the stenosis site is quite similar, with the presence of reversal
flow streamlines due to the local flow acceleration. However, the shear-thinning
effects are quite visible, since the density of recirculating streamlines for the
Newtonian flow is higher than for the non-Newtonian one, due to the local increase
of the apparent viscosity at low shear rates, which become closer to μ0. This also
results in a larger recirculation region for the Newtonian flow, as seen in Fig. 19,
when compared to Fig. 20, where the recirculation zones are marked in grey color.

Comparing the wall shear stress distribution, depicted in Figs. 21 and 22 we
conclude that the higher WSS values are located in the stenosed region predicted by

Fig. 19 Axial velocity magnitude contours and recirculation area downstream the stenosis in the
ICA branch for the NS flow

Fig. 20 Axial velocity magnitude contours and recirculation area downstream the stenosis in the
ICA branch for the generalized Newtonian flow
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Fig. 21 Contours of the wall shear stress (WSS) distribution for the NS flow

Fig. 22 Contours of the wall shear stress (WSS) distribution for the generalized Newtonian flow
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the generalized Newtonian model. Also in the curved part of the stenosed branch,
WSS seems to be slightly higher in the shear-thinning case. The reason for this
is likely related to the non-uniform viscosity distribution along the vessel, leading
to important discrepancies between Newtonian and generalized Newtonian model
predictions. Therefore, it is of major importance to understand the influence of the
viscosity distribution in complex flow situations.
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