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Preface

CIME activity is carried out with the collaboration and financial support of INdAM
(Istituto Nazionale di Alta Matematica), partially supported by the University of
Firenze under the Fondi di Ateneo research grants.

The CIME-CIRM Course on “New Trends in Non-Newtonian Fluid Mechanics
and Complex Flows” was held in Levico Terme (Italy) from August 29 to September
2, 2016. The course was codirected by Andro Mikelić (Université Claude Bernard
Lyon 1, France), Fabio Rosso, and Angiolo Farina (Università di Firenze, Italy).

The course was attended by 32 participants, about half of them not coming from
Italy.

All the lecturers tried to emphasize physical and mathematical methods that cross
disciplinary boundaries, putting in evidence those aspects of flow problems relevant
to biology and industrial processes.

The following topics were treated:

1. Hemorheology: Non-Newtonian Constitutive Models for Blood Flow Simula-
tions (Adélia Sequeira, Instituto Superior Técnico, Lisboa, Portugal)

2. Old problems revisited from new perspectives in implicit theories of fluids
(Giuseppe Saccomandi and Luigi Vergori, Università di Perugia, Italy).

3. Lectures on Hyperbolic Equations and their Numerical Approximation (Eleuterio
F. Toro, Università di Trento, Italy).

4. An Introduction to the Homogenization Modeling of Non-Newtonian and Elec-
trokinetic Flows in Porous Media (Andro Mikelić, Université Lyon 1, France).

5. Viscoplastic Fluids: Mathematical Modeling and Applications (Angiolo Farina
and Lorenzo Fusi, Università di Firenze, Italy).

The focus was largely on non-Newtonian fluids and their applications on blood
flow, with some digression to the numerical approximation of hyperbolic equations.
Actually, the goal of the course was to present a series of challenging mathematical
problems arising in non-Newtonian fluid dynamics. Essentially the lectures focused
on (i) mathematical and physical modeling of a variety of problems that address
current work and (ii) the numerical and analytical treatment of some of these
problems.
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vi Preface

Although the course presented a remarkable review of quite advanced problems
in non-Newtonian flows and in the mathematics involved, one easily realizes that
such a research area is extremely rich and calls for an impressively large variety of
mathematical methods.

This volume collects lecture notes of the courses and therefore focuses only
on a limited number of problems which, however, are typical in the field of
non-Newtonian flows. Such volume can certainly be useful not only to applied
mathematicians but also to physicists, biologists, and engineers, who can find in
it an overview of the most advanced models and methods.

The first chapter is devoted to the lectures given by Adélia Sequeira. She
presented a fascinating and quite difficult lecture about the rheology of the blood
and some recent advances in this field (which is very active because of the numerous
applications to the circulatory system diseases). The audience was very excited by
her colorful slides and videos showing blood flow in very complex geometries such
as those seen in aneurysms. She posed stimulating questions about the impact of the
most significant non-Newtonian characteristics of blood on its flow behavior. We
had exciting afternoon sessions discussing such problems.

Giuseppe Saccomandi gave a series of lectures on implicit constitutive models
for the Cauchy stress tensor which provided an excellent complementary view of
the subjects treated by Farina and Fusi. He investigated some classical problems in
fluid mechanics (such as the onset of Rayleigh–Bénard convection, laminar flows,
and flows over an inclined plane) by employing implicit constitutive relations for
the stress tensor.

The chapter by Eleuterio F. Toro illustrates some recent techniques for the
numerical solution of mathematical equations arising in all areas of physics
especially in the mechanics of non-Newtonian fluids. Actually the issues of accurate
solutions and efficiency are becoming increasingly important given the growing
trend to use mathematical models (PDEs) and the physics they embody. Only very
accurate solutions of the PDEs will achieve this and also reveal limitations of the
mathematical models (the governing equations and their parameters).

Then we have a chapter by A. Mikelić on the flow of complex fluids (quasi-
Newtonian and electrokinetic flows) through porous media (a problem common
to many engineering applications). The modeling of filtration was developed
exploiting a homogenization technique.

The last chapter, by A. Farina and L. Fusi, deals with the flow of Bingham fluids
in geometry characterized by a small aspect ratio. The so-called lubrication paradox
is analyzed and the way of circumventing this difficulty is explained.

We must abstain from commenting the scientific level of this volume, since we
are among the contributors, but at least we wish to express our deep gratitude to
the authors for their valuable work. Finally, we wish to thank CIRM and CIME
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for having made this course possible. Particular thanks to the Director of CIME,
Prof. Elvira Mascolo, to the Director of CIRM Prof. Marco Andreatta, and to the
Secretary of CIRM, Mr. Augusto Micheletti who took care of so many details.

Firenze, Italy Angiolo Farina
Villeurbanne, France Andro Mikelić
Firenze, Italy Fabio Rosso

The original version of the book was revised. The correction to the book is available at https://doi.
org/10.1007/978-3-319-74796-5_6

https://doi.org/10.1007/978-3-319-74796-5_6
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Hemorheology: Non-Newtonian
Constitutive Models for Blood Flow
Simulations

Adélia Sequeira

Abstract Experimental studies over many years have shown that blood flow
exhibits non-Newtonian characteristics such as shear-thinning, viscoelasticity, yield
stress and thixotropy. The complex rheology of blood is influenced by numerous
factors including plasma viscosity, hematocrit and in particular, the ability of
erythrocytes to form aggregates when at rest or at low shear rates and to deform at
high shear rates, storing and releasing energy. Hemodynamic analysis of blood flow
in vascular beds and prosthetic devices requires the rheological behavior of blood
to be characterized by phenomenological constitutive equations relating the stress
to the rate of deformation and flow. The objective of this chapter is to present a
short overview of some macroscopic constitutive models that can mathematically
characterize the rheology of blood and describe their known phenomenological
properties. Some test cases formulated in idealized and anatomically realistic
vessels will be considered to investigate the impact of the most significant non-
Newtonian characteristics of blood on its flow behavior, based on numerical
simulations of different blood constitutive equation under given sets of physiological
flow conditions.

1 Introduction

Rheology is the science of the flow and deformation behavior of solid or fluid
materials, including liquids and gases. This field deals with the theoretical notions of
kinematics and dynamics, conservation laws and constitutive equations, describing
the cross links between force, deformation and flow. It is also considered to be
the study of stress-strain relationship in materials. When rheology is applied to the
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2 A. Sequeira

analysis of the properties of blood flow and its formed cellular elements it is called
hemorheology. It involves the investigation of the macroscopic bulk properties of
blood, determined in rheometric experiments, and its microscopic properties in
vitro and in vivo (e.g. [129]). It also includes interactions among blood cellular
components and between these components and endothelial cells that line blood
vessels (microhemorheology).

The unceasing progress in the field of hemorheology is derived from its clinical
interest since many cardiovascular diseases have their primary cause in blood flow
pathologies. On the other hand, hemorheological abnormalities can be considered
as a result (or a sign) of insufficient circulatory function. Basically, pathologies with
hematological origin like leukemia, hemolytic anemia, thalassemia or pathologies
associated with the risk factors of thrombosis and atherosclerosis like myocardial
infarction, hypertension, strokes or diabetes are mainly related to disturbances of
local homeostasis. For instance, small size lesions that may occur spontaneously
in blood vessels due to endothelial injuries are quite common in small vessels.
They can result in internal bleeding, infections or irreversible malfunction in the
microcirculation (for example in the brain) and can lead to death. Cardiovascular
diseases, including microcirculatory or macrocirculatory disorders are major causes
of morbidity and mortality in developed countries and constitute a significant part
of total health costs.

Human blood accounts for about 8% of total body weight, averaging 5200 ml.
The circulatory system forms a closed loop for the flow of blood that achieves
important functions, carrying oxygen, nutrients and various substances from the
lungs to the tissues of the body and carbon dioxide back to the lungs, removing
waste products of cells metabolism. Blood also plays a key role as a immune
protection against foreign bodies (see e.g. [121]). The circulatory system consists
of two separate parts, the systemic circulation and the pulmonary circulation,
connected by the heart, a complex organ that acts like a pump to maintain a constant
flow and is affected by the rest of the circulatory system. Oxygenated blood from
the lungs is pumped by the left heart through the pulmonary veins into the systemic
arteries, which form a tree of progressively smaller vessels, beginning with the aorta,
branching to the small arteries, then to the arterioles and finally to the capillaries,
where the exchange of gases takes place. Leaving the capillaries, the blood enters
the systemic veins, through which it flows in vessels of progressively increasing size
toward the right heart. The systemic veins consist of venules, small veins and the
vena cava. The right heart pumps blood into the pulmonary arteries, which form a
tree that distributes blood to the lungs, where blood leaves carbon dioxide and is
purified with oxygen (e.g. [120]). A representation of the human circulatory system
is shown in Fig. 1.

There are significant quantitative differences in pressure and blood volume,
between the pulmonary and systemic circuits, but the output of the right and left
sides of the heart must be in equilibrium. Veins are low pressure vessels with a
low flow and their vessel walls are thin, in contrast to arteries. Table 1 (see [38])
displays average dimensions collected from different sources (Gabe et al. [46],
Mao et al. [79], Feher [40], Caro et al. [24], Fung [45], Guyton [55], Gregg [54]),
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Fig. 1 Circulatory system diagram [Anatomy & Physiology, OpenStax College]

Table 1 Systemic circulation: average physiological parameters

Cross-sectional Wall Mean Mean

area thickness pressure velocity

Vessel Nr. Diam. (cm) (cm2) (cm) (kPa) (cm/s)

Aorta 1 3 7 2 × 10−1 12.5 12

Arteries 8 × 103 10−1 8 × 10−3 10−1 12 45

Arterioles 107 5 × 10−3 2 × 10−5 2 × 10−3 7 5

Capillaries 1010 8 × 10−4 5 × 10−7 10−4 3 0.1

Venules 4 × 107 10−2 7.9 × 10−5 2 × 10−4 1.5 2

Veins 8 × 103 1.8 × 10−1 10−1 5 × 10−2 1 10

Venae cavae 2 3 6 0.15 0.5 14

McDonald [82]). It is quite difficult to find complete and coherent parameters of
this type when we compare all data provided by the different authors (see also
e.g. [94, 122, 123]). In fact, all data concerning human blood are subjected to large
variations, according to sex, body weight, and health conditions.

Despite the research and development efforts of many laboratories around the
world, no blood substitute has yet been developed that can carry out the essential
functions that whole blood performs in the circulatory system, and most specially
for delivery and exchange in the microcirculation. Clearly there is a need for a
better understanding of the special characteristics of blood and its flow properties.
Therefore, together with laboratory trials, the mathematical and numerical study of
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constitutive models that can capture the rheological response of blood over a range
of flow conditions is ultimately recognised as an important tool for clinical diagnosis
and therapeutic planning (see e.g. [33, 76]).

The aim of this chapter is to present an overview of the rheological properties of
blood and its formed cellular elements, including the non-Newtonian characteristics
of blood, and discuss some of the phenomenological macroscopic constitutive mod-
els that have been proposed in the literature to capture these properties. Moreover,
in order to investigate the influence of the most significant non-Newtonian effects
on blood flow behavior, some numerical test cases will be considered.

A review of blood rheology and of some of the most relevant constitutive models
for blood can be found in e.g. [108, 109]. For a concise historical background about
the development of hematology from the antiquity to the nineteenth century, see
[38].

2 Blood Rheology

2.1 Blood Components

Blood is a concentrated heterogeneous suspension of several formed cellular
elements, the blood cells or hematocytes, red blood cells (RBCs or erythrocytes),
white blood cells (WBCs or leukocytes) and platelets (thrombocytes), in an aqueous
polymeric and ionic solution (mainly Na+, K+, Ca2+ and CI−), the plasma.
Plasma represents ∼55% of the blood volume and is composed of ∼92% water
and ∼3% particles, namely, electrolytes, organic molecules, numerous proteins
(albumin, globulins and fibrinogen) and waste products. Plasma represents ∼55%
of the blood volume and its central physiological function is to transport these
dissolved substances, nutrients, wastes and the formed cellular elements throughout
the circulatory system.

Normal erythrocytes are biconcave discs with a typical diameter of 6–8 μm and
a maximal thickness of 1.9 μm [75]. In mammals these cells are non-nucleated
and consist of a concentrated hemoglobin solution enveloped by a highly flexible
membrane. The average volume of an erythrocyte is 90 μm3 ([24]). Their number
per cubic millimetre of blood is approximately 5 to 6 × 106 and they represent
approximately 40 to 45% by volume of the normal human blood and more than 99%
of all blood cells. The first percentage is called hematocrit. The primary function of
erythrocytes is to transport oxygen and carbon dioxide carrying hemoglobin and a
small portion of carbonic anhydrase, which catalyzes the reversible formation of
carbonic acid from carbon dioxide and water.

Leukocytes are roughly spherical and much larger than erythrocytes, but they
exist in a smaller number in blood: their diameter ranges between 6 and 17 μm
and there are approximately 7 to 11 × 103 per cubic millimetre in a normal adult.
Leukocytes are subdivided into main classes: granulocytes (65%) and agranulo-
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cytes, comprising lymphocytes (30%), monocytes (5%) and natural killer cells.
Granulocytes are further subdivided into neutrophils (95%), eosinophils (4%) and
basophils (1%). The leukocytes maintain adhesion to the endothelium through
rolling and play a vital role in fighting infection and thus are able to migrate out of
the blood vessels and into the tissues. They have a slight influence on the rheology
of blood, except in the capillaries or in disease states. For a better understanding of
leukocytes biomechanical behavior, see e.g. [9, 34, 69, 72, 113]).

Thrombocytes are small discoid non-nucleated cell fragments, much smaller
than erythrocytes and leukocytes, having a diameter 2–4 μ m (and approximately
2–3 μ m3 in volume). Despite their smallness, thrombocytes (platelets) can perform
an incredible number of actions, interacting with the environment by means of a
rich array of receptors on their membrane and they are a vital component of the
blood clotting mechanism. Blood coagulation is an extremely complex biological
process in which blood forms clots (thrombus) to prevent bleeding (hemostasis); it
is followed by their dissolution (fibrinolysis) and the subsequent repair of the injured
tissue. The process involves large sequences of chemical reactions of complicated
nature (cascades) and different interactions between the plasma, the vessel wall and
activated thrombocytes (platelets), with a huge impact of the flowing blood on the
resulting fibrin-platelets thrombus production and growth. There is a large number
of books and review chapters on hemostasis (see e.g. [20, 38, 39, 66, 80, 135] and
the references cited therein.

The total volume concentration of leukocytes and thrombocytes is only about
1%. All these cells are deformable but erythrocytes undergo a higher deformation,
in particular when they pass through the capillaries. Deformations occur through a
rearrangement of the cytoskeleton that supports cells shape avoiding rupture of the
cell membranes.

Blood cells are continuously produced by the bone marrow over a human’s life
and they all reach ultimate maturity via a process called hematocytopoiesis. For
example, erythrocytes have an average lifetime of 120 days and the body must
produce about 3 × 109 new erythrocytes for each kilogram of body weight every
day. Due to ageing and rupturing they must be constantly replaced (see e.g. [65]).

2.2 Non-Newtonian Properties of Blood

The non-Newtonian behavior of blood is largely due to three characteristics of
RBCs: their ability to form aggregates when at rest or at low shear rates, their general
distribution in the flowing plasma, namely the ability of these 3D microstructures
to deform and store energy and their tendency to align in the flow direction, at high
shear rates (e.g. [29, 111]). The high deformability of RBCs is due to the absence of
a nucleus, to the elastic and viscous properties of its membrane and also to geometric
factors such as the shape, volume and membrane surface area [27].

Rheometers are precision instruments applied to measure wide ranges of stress,
strain, and strain rate of a material. The following kinds of rheometers are the
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Fig. 2 Representation of the three mostly used rheometers in blood measurements (from [109])

mostly used to measure blood flow properties: the concentric cylindrical rheometer
(Couette rheometer), the cone and plate rheometer and the capillary rheometer,
Fig. 2. In the Couette rheometer, blood is placed in the annulus between two
concentric cylinders and it’s motion is driven by the rotation of one or both
cylinders; In the cone and plate rheometer, blood is loaded between the cone and
the plate and driven by the rotation of the cone; the capillary rheometer is of simple
use and the test fluid is driven by gravity, compressed gas or a piston from a reservoir
through a cylinder rigid tube. These rheometers can be used to obtain approximate
measurements of viscometric and viscoelastic material functions (see e.g [109]).

As discussed below, it has been experimentally verified that the response of RBCs
in shear flows undergoes three flow regimes: at low shear rates, in the presence
of fibrinogen and large globulins (proteins found in plasma) erythrocytes form a
complex three dimensional microstructure (rouleaux), while at high shear rates,
this microstructure is lost and flow induced radial migration may lead to a non-
homogeneous distribution of erythrocytes. A transition in microstructure is found
between these two regimes.

To better analyze the experimental data on blood it is helpful to explore the
literature on the rheology of particle suspensions. For rigid particles, a vast amount
of published literature exists (see e.g. [35, 110]). However, the study of suspensions
of multiple, interacting and highly deformable particles such as blood, has received
less attention and presents a challenge for researchers in both theoretical and
computational fluid dynamics.

2.2.1 Viscosity of Blood

Here we refer to the apparent viscosity of blood (or, more generally of a non-
Newtonian fluid, independently of the specific rheological model), as the quantity
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measured by a viscometer, for shear rates in the expected natural range. This is
approximately an average measure of the fluid resistance to flow. The expression
relative viscosity is also used for blood, denoting the ratio of the suspension
viscosity (apparent viscosity) to the viscosity of the suspending fluid (plasma).
Commonly used viscosity units are: poise (P), centipoise (cP), which is 0.01 P and
pascal-second (Pa s), the SI unit of viscosity equivalent to Newton-second per square
metre (N s/m2). One poise is exactly 0.1 Pa s.

Usually blood has higher viscosity than plasma, and when the hematocrit rises,
the viscosity of the suspension increases and the non-Newtonian behavior of blood
becomes more relevant, in particular at very low shear rates. As mentioned above,
for blood at rest or at very low shear rates the erythrocytes have the ability to form
a primary aggregate structure of rod shaped stacks of individual cells (rouleaux),
that align to each other and form a secondary structure consisting of branched
three-dimensional (3D) aggregates [112]. The apparent viscosity (measured by a
viscometer) increases slowly until a shear rate less than 1 s−1, and then it increases
significantly [24]. It has been experimentally observed that rouleaux will not form
if the erythrocytes have been hardened or in the absence of fibrinogen and globulins
[28]. In fact, suspensions of erythrocytes in plasma demonstrate a strong non-
Newtonian behavior whereas when they are in suspension in physiological saline
(with no fibrinogen or globulins) the behavior of the fluid is Newtonian [32, 85].
For standing blood subjected to a shear stress lower than a critical value, these 3D
structures resist to flow until a certain force is applied and blood exhibits a yield
stress behavior. This can happen only if the hematocrit is high enough. The existence
of yield stress for blood will be discussed below (see Sect. 2.2.2).

At moderate to high shear rates, RBCs are dispersed in the plasma and the
properties of the blood are influenced by their tendency to align and form layers
in the flow, as well as by their deformation. The effect of RBC deformability on the
viscosity of suspensions was clearly described in [28].

For shear rates above 400 s−1, erythrocytes lose their biconcave shape, become
fully elongated and are transformed into ellipsoids with major axes parallel to
the flow direction. The tumbling of the erythrocytes is absent, there are almost
no collisions, and their contours change according to the tank-trading motion of
the cells membranes about their interior. The apparent viscosity decreases and this
becomes more evident in smaller than in larger vessels. This happens with vessels
of internal diameter less than 1 mm and it is even more pronounced in vessels with
a diameter of 100–200 μ m. The geometric packing effects and radial migration
of erythrocytes can act to lower the hematocrit adjacent to the vessel wall and
contribute to decrease the blood viscosity. This is known as the Fåhraeus–Lindqvist
effect, [41, 42]. Plasma skimming is another effect that results in diminishing the
viscosity when blood flows into small lateral vessels compared with the parent
vessel.

As a consequence of this behavior we can say that one of the most important non-
Newtonian characteristics of blood is the shear-thinning viscosity. This happens in
small size vessels or in regions of stable recirculation, like in the venous system and
parts of the arterial vasculature where geometry has been altered and erythrocyte
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aggregates become more stable, like downstream a stenosis or inside a saccular
aneurysm. However, in most parts of the arterial system, blood flow is Newtonian
in normal physiological conditions.

Numerous techniques have been developed to quantify erythrocytes aggregation
in a flow field, with applications to in vitro flow models or to in vitro microvascular
measurements.These include estimates of aggregate size from direct measurements,
Fourier analysis of spatial variation in light intensity, analysis of transmitted and
reflected light, and measurement of the light scattering properties of RBCs (see e.g.
[15, 51, 93, 96]).

Experiments on blood at low shear rates are very difficult to perform and there
remains a controversy over the blood flow behavior in the limit of shear rate
tending to zero. Figure 3 displays the shear-thinning behavior of whole blood as
experimentally observed by Chien et al. [28]. Each of these data points represents
an equilibrium value obtained at a fixed shear rate.

In addition, it is important to point out that, like in many other liquids, the
viscosity of whole blood is also strongly dependent on temperature and, when
comparing blood viscosity data from different sources, the temperature at which
data was obtained must be considered. The dependence of blood viscosity on
temperature is similar to that of water for temperatures ranging from 10 ◦C to 40 ◦C
and shear rates from 1 to 100 s−1[84]. The variation of plasma temperature follows
approximately that of water [25] and, consequently, blood viscosity is often related
to plasma or water viscosity, at the same temperature.

Fig. 3 Variation of the relative viscosity as a function of the shear rate for normal RBC in
heparinised plasma (NP), normal RBC in albumin-Ringer solution (NA) and hardened RBCs in
albumin-Ringer solution (HA) at a temperature of 37◦C, hematocrit Ht = 45% using a Couette
viscometer (reproduced from [28])
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2.2.2 Yield Stress of Blood

Some bodies, like pastes, do not deform when the shear stress is below a critical
value, while they start flowing like a fluid if the stress exceeds that threshold. The
phenomenon is explained by the rupture of inner bonds. Systems with an yield stress
are called Bingham fluids [14]. This critical stress level, called the yield value or
yield, is typically treated as a constant material property of the fluid. An extensive
description of methods for measuring yield stress is given in [89, 92].

Blood also demonstrates yield stress although there is a controversy about this
issue. Reported values for the yield stress of blood have a great variation ranging
from 0.002 to 0.40 dynes/cm2, see e.g. [32]. This variation has been attributed
to artifacts arising from interactions between the erythrocytes and surfaces of the
rheometer as well as to the experimental methods used to measure the yield stress
and the length of time over which the experiments are run [11]. Rather than treating
the yield stress as a constant, it should be considered as a function of time and
linked to thixotropy, as later proposed by other researchers [88]. Some studies
have indicated that yield stress is correlated to the hematocrit level and to the
concentration of fibrinogen in blood plasma. When the hematocrit level falls below
a critical level, the yield stress characteristic of blood becomes negligible [83].

2.2.3 Viscoelasticity and Thixotropy of Blood

Viscoelastic fluids are viscous fluids which have the ability to store and release
energy. The viscoelasticity of blood at normal hematocrits is primarily attributed to
the reversible deformation of the RBCs 3D microstructures [30, 128]. Elastic energy
is due to the properties of the RBC membrane which exhibits stress relaxation
[36, 119] and the bridging mechanisms within the 3D structure. Moreover, the
experimental results of Thurston [124] have shown that the relaxation time depends
on the shear rate. Thurston was the first to measure the viscoelastic properties of
blood and the dependence of blood viscoelasticity on factors such as temperature,
hematocrit and RBC properties. He has contributed to most of the experimental
work developed in this area (see [128] and the references cited therein).

The viscoelastic effects in blood circulation are magnified by its pulsatile nature
and by the elastic properties of the blood vessels and the porous tissue through
which blood is transported [23] and there is an interaction between the viscoelastic
behavior of blood with that of the vessel wall and porous tissue.

In view of the available experimental evidence, it is reasonable to develop non-
Newtonian fluid models for blood that are capable of shear-thinning and stress
relaxation, with the relaxation time depending on the shear rate. To date, very little
is known concerning the response of such fluids. In fact, viscoelastic properties
are of relatively small magnitude and they have generally only been measured
in the context of linear viscoelasticity. By shear rates of the order of 10 s−1 the
elastic nature of blood is negligible as evidenced by a merging of the oscillatory
and steady flow viscosities. However, if viscoelastic constitutive equations are used
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to model blood in the circulatory system in higher shear rates conditions, the
finite viscoelastic behavior of blood should be considered. Viscoelastic constitutive
models for blood will be discussed below (see Sect. 2.3.4).

Another important non-Newtonian property of blood closely related to shear-
thinning, is the thixotropic behavior, essentially due to the finite time required for
the formation and dissolution of the 3D aggregates of erythrocytes. Indeed, the
build-up and breakdown of the 3D microstructures, their elongation and recovery,
and the formation and breakdown of layers of the aligned erythrocytes evolve in
a finite time, and these processes can play an important role in blood rheometry
[11]. There is a large variety of published definitions for thixotropy, in the fields
of industrial or biological applications. The following definition can be found in
[12]: “When a reduction in magnitude of rheological properties of a system, such
as elastic modulus, yield stress, and viscosity, for example, occurs reversibly and
isothermally with a distinct time dependence on application of shear strain, the
system is described as thixotropic”. Fluids whose behavior is opposite to thixotropic
fluid (i.e. thickening under stress) are called rheopectic.

Thixotropy is more pronounced at low shear rates with a long time scale. The
effect in blood flow is less pronounced than other non-Newtonian effects [78] and
this can explain the limited studies devoted to this property.

It should be emphasized that most of the reported non-Newtonian properties and
rheological parameters of blood are obtained in vitro, as indicators of in vivo real
measurements. Experimenting with blood out of the body can find many obstacles.
The simple process of extracting blood may apply high stresses, altering the original
rheological properties. Then partial coagulation, particularly in the absence of flow,
can severely influence the values of viscosity, viscoelastic or yield stress parameters.
Moreover, the consistency of these approximations depends on the information
about experimental and individual conditions. Complementary studies of sensitivity
analysis and uncertainty quantification should be performed, especially when those
values are used for patient-specific modeling and simulations.

2.3 Constitutive Models for Blood

The mechanical properties of blood should be studied by considering a fluid
containing a suspension of particles. A fluid is said to be Newtonian if it satisfies the
Newton’s law of viscosity (the shear stress is proportional to the rate of shear and the
viscosity is the constant of proportionality). Blood plasma, which consists mostly
of water, is a Newtonian fluid. However, the whole blood has complex mechanical
properties which become particularly significant when the particles size is much
larger, or at least comparable, with the lumen size. In this case, which happens at
the microcirculation level (in the small arterioles and capillaries) blood cannot be
modelled has a homogeneous fluid and it is essential to consider it as a suspension
of blood cells (specially erythrocytes) in plasma. The presence of the blood cellular
elements and their interactions leads to significant changes in the blood rheological
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properties and reliable measurements need to be performed to derive appropriate
microstructural models (see e.g. [101, 115, 134]).

Blood is a non-Newtonian fluid, but it can however be regarded as Newtonian
depending on the size of the blood vessels and the flow behavior, as in arteries with
diameters larger than 100 μ m where measurements of the apparent viscosity show
that it ranges from 0.003 to 0.004 Pa s and the typical Reynolds number is about 0.5.

Here we assume that all macroscopic length and time scales are sufficiently large
compared to length and time scales at the level of an individual erythrocyte so that
the continuum hypothesis holds. Thus the models presented here are not appropriate
in the capillary network. For an overview of hemorheology in the microcirculation
we refer the reader to the review article of Popel and Johnson [101], as already
referred.

2.3.1 Constant Viscosity Models

As a first step towards the macroscopic modeling of blood flow we consider the most
general form of constitutive equations for incompressible viscous fluids, defining the
Cauchy stress tensor T such that

T = −pI + τ , (1)

where p (pressure) is the Lagrange multiplier arising from the incompressibility
constraint, I is the identity matrix and τ is the extra-stress (or deviatoric stress)
tensor, representing the forces which the material develops in response to being
deformed.

In large vessels normal blood has a Newtonian behavior, meaning that the extra-
stress is proportional to the symmetric part of the velocity gradient,

τ = 2μD(u), (2)

where μ is the (constant) dynamic viscosity of blood and the tensor D(u) ≡ D =
(∇u + ∇uT)/2 is the symmetric part of the velocity gradient (rate of deformation
or strain rate) [118]. Taking into account the principles of conservation of linear
momentum and conservation of mass (reduced to a divergence-free constraint) for
isothermal incompressible flows, the substitution of τ given by (2) in the Cauchy
stress equation (1) leads to the system

⎧
⎨

⎩

ρ
∂u
∂ t

+ ρ(u · ∇)u = −∇p + ∇ · 2μD(u),

∇ · u = 0,
(3)

where u and p denote the blood velocity and pressure, with t ≥ 0 and ρ is the blood
density.
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In this case, since μ is constant, from the continuity equation we obtain

∇ · [μ(∇u + ∇uT)] = μ(Δu + ∇∇.u) = μΔu

and system (3) is written in form
⎧
⎨

⎩

ρ
∂u
∂ t

− μΔu + ρ(u · ∇)u + ∇p = 0,

∇ · u = 0.
(4)

These are the well-known incompressible Navier-Stokes (NS) equations (proposed
by Navier in 1822 and later by Stokes in 1845). Here ρ(u · ∇)u is the nonlinear
convective term and ∇ · [μ(∇u + ∇uT )] is the diffusion term showing the role
of viscosity in propagating momentum. In the larger arteries and veins there is a
predominance of inertial effects over the viscous ones. System (4) must be closed
with appropriate initial and boundary conditions.

The NS equations can also be rescaled and written in a non-dimensional form by
introducing the following quantities:

x = x̃

R
, t = Ut̃

R
, p = p̃Rμ

U
,

where the symbol ˜ is attached to dimensional parameters (R represents a reference
length—the radius of the vessel, U is a characteristic velocity—the mean blood
flow velocity). We also introduce the important dimensionless quantity used in fluid
mechanics, the Reynolds number—Re defined as Re = ρUR

μ
, that means the ratio of

momentum forces to viscous forces, and quantifies the relation between these two
forces for given flow conditions. More precisely, the NS equations can be written in
a simplified form as

⎧
⎨

⎩

Re

(
∂u
∂ t

+ (u · ∇)u
)

−Δu + ∇p = 0,

∇ · u = 0.
(5)

When Re � 1 (for instance blood flow in smaller arteries), we may neglect
the convective term compared to the viscous contribution. Then blood could be
modeled by the simpler Stokes equations (creeping flow or Stokes flow). However,
as already mentioned, in the smaller arteries the non-Newtonian behavior of blood
becomes relevant. On the other hand, when Re � 1 (high Reynolds number flows)
the flow becomes unstable. In normal physiological conditions instabilities can
occur in some vascular regions, in particular in the systolic phase at the exit of the
aortic valve or in bifurcations, but normally there is no time for the flow to develop
turbulence. In pathological conditions, like in case of severe anaemia (low blood
viscosity) or due to the presence of a stenosis (stenotic artery), the transition from
laminar to turbulent flow can occur [44]. Such conditions are nevertheless rare and
consequently turbulent flow models are not used in cardiovascular modeling and
simulations.
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From the analytical and numerical view points the Navier-Stokes system with
appropriate initial and boundary conditions has been the object of intensive research,
but there are still important issues to be solved. In the mathematical theory, we
emphasize the famous global in time uniqueness in 3D, related to the regularity of
solution. (see e.g. [47, 48]).

Since the pioneering work of Perktold in the late 1980s and early 1990s [97, 98],
much of the research in modeling blood flow in the human arterial system has
focused on the numerical solution of the 3D Navier-Stokes system which provides
hemodynamic factors like blood flow velocity and pressure fields, and wall shear
stress (WSS) or the wall compliance (e.g. [99, 100]), difficult to extract using
simpler models and experimental measurements.

2.3.2 Generalized Newtonian Models

As already discussed, this set of equations is commonly used to describe blood
flow in healthy arteries. However, under certain experimental or physiological
conditions, particularly at low shear rates, blood exhibits relevant non-Newtonian
characteristics and more complex constitutive models need to be used. In this case,
we require a more general constitutive equation relating the state of stress to the rate
of deformation. It can be shown that the most general model of the form (1) with
τ = τ (∇u), satisfying invariance requirements, can be written as [10]

τ = φ1(IID, IIID)D(u) + φ2(IID, IIID)D(u)2 (6)

where IID and IIID are the second and third principal invariants of the rate of
deformation tensor D = D(u). These invariants are given by

IID = 1/2 ((tr D(u))2 − tr (D(u))2), IIID = det(D(u)). (7)

where ttr D = ID = 0 for divergence free velocity fields, essential for incompress-
ible fluids (isochoric motions). To simplify the notation, from now on D(u) will be
replaced by D,
Incompressible fluids of the form (6) are typically called Reiner-Rivlin fluids. We
remark that the presence of φ2 in (6) is necessary to match experimental results on
“real” fluids and the dependence on the value of IID is often neglected [10].

Therefore, attention is particularly given to a special class of Reiner-Rivlin fluids
called generalized Newtonian fluids, for which

τ = 2μ(IID, IIID)D, (8)

Since for “real” fluids IIID is identically zero and IID is not a positive constant,
it is useful to introduce a measure of the rate of deformation, the shear rate denoted
by γ̇ and defined by

γ̇ =
√

2 tr (D2) = √−4 IID. (9)
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and write the stress tensor for the generalized Newtonian model (8) in the form

τ = 2μ(γ̇ )D, (10)

where μ(γ̇ ) is a shear dependent viscosity function.
A simple example of a generalized Newtonian fluid is the power-law fluid, for

which the viscosity function is given by

μ(γ̇ ) = K γ̇ n−1, (11)

the positive constants n and K being the power-law index and the consistency,
respectively. This model includes, as a particular case, the constant viscosity fluid
(Newtonian) when n = 1. For n < 1 it leads to a monotonic decreasing function of
the shear rate (shear-thinning fluid) and for n > 1 the viscosity increases with shear
rate (shear thickening fluid). The shear-thinning power-law model is often used for
blood, due to the analytical solutions easily obtained for its governing equations,
but there is a shortcoming since it predicts an unbounded viscosity at zero shear rate
and zero viscosity when γ̇ → ∞, which is unphysical.

One of the important extensions of the power-law model is due to Walburn and
Schneck [133] who considered the dependence of the viscosity on the hematocrit
(Ht) and total protein minus albumin (TPMA) in the constants n and K, based on
nonlinear regression analysis, and found

K = C1exp(C2Ht), n = 1 − C3Ht. (12)

According to Cho and Kensey [31] commonly used values in the literature for
blood density ρ and for the asymptotic viscosities at zero and infinity shear rates μo

and μ∞, at 37 ◦C, are the following

ρ = 1056 kg/m3, μo = 0.056 Pa s, μ∞ = 0.00345 Pas, (13)

where the values of

μ0 = lim
γ̇→0

μ(γ̇ ), μ∞ = lim
γ̇→∞μ(γ̇ ).

were obtained from a set of data including both human and canine blood and for
hematocrits ranging from 33–45%.

Note that the values in (13) are only significant for theoretical constitutive
models. In practice, the lower limit in shear rate at which viscosity can be measured
is limited by experimental trials. The high shear rate limit has no real physical
meaning and it is taken as the highest shear value.

As discussed earlier in this chapter (Sect. 2.2) the material parameters of blood
are quite sensitive to the state of blood constituents as well as temperature [84].
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Table 2 Material constants for power-law model obtained by various researchers using fit of (11)
to human blood data at different hematocrits

Ht (%) n k Source

40.5 0.828 0.009267 Kim et al. [67], 37 ◦C

35 0.8254 0.0880 Walburn and Schneck [133], 37 ◦C

40 0.8004 0.1147

45 0.7755 0.1482

45 0.61 0.42 Liepsch and Moravec [73], 23 ◦C

For comparison, results predicted from the Walburn-Schneck model (12) are shown

The dependence on hematocrit is included in material parameters for the power-
law model that were obtained for human blood, Table 2. The corresponding
viscosity functions are shown in Fig. 2. The viscosity functions obtained from [67]
for Ht = 40, 5% and [133] for Ht = 40%, are quite close. In contrast, those in [73]
and [133] for Ht = 45% are substantially different, possibly due to the difference in
temperatures.

Other viscosity functions with bounded and non-zero limiting values of viscosity
can be written in the general form

μ(γ̇ ) = μ∞ + (μ0 − μ∞)F(γ̇ )

or, in non-dimensional form as

μ(γ̇ )− μ∞
μ0 − μ∞

.

Here, F(γ̇ ) is a shear dependent function, satisfying the following natural limit
conditions

lim
γ̇→0

F(γ̇ ) = 1, lim
γ̇→∞ F(γ̇ ) = 0.

Different choices of the function F(γ̇ ) correspond to different models for blood
flow, with material constants quite sensitive and depending on a number of factors
including hematocrit, temperature, plasma viscosity, age of erythrocytes, exercise
level, gender or disease state (Fig. 4).

Table 3 includes some of the most common generalized Newtonian models that
have been considered in the literature for the shear dependent viscosity of whole
blood. Values for the material constants given in this table were obtained by Cho and
Kensey[31]. As mentioned above those set of values were obtained for human and
canine blood (Ht ranging from 33%–45%), using a nonlinear least squares analysis.
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Fig. 4 Comparison of
viscosity functions of γ̇ for
extensions of the power-law
model (11) using material
constants given by different
authors (Table 2) obtained by
curve fit to experiments
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Table 3 Material constants for various generalized Newtonian models for blood with μ0 =
0.056 Pa s, μ∞ = 0.00345 Pa s

Model

μ(γ̇ )− μ∞
μ0 − μ∞ Material constants for blood

Powell-Eyring

sinh−1(λγ̇ )

λγ̇ λ = 5.383 s

Cross

1

1 + (λγ̇ )m λ = 1.007 s,m = 1.028

Modified cross

1

(1 + (λγ̇ )m)a λ = 3.736 s,m = 2.406, a = 0.254

Carreau (1 + (λγ̇ )2)(n−1)/2 λ = 3.313 s, n = 0.3568

Carreau-Yasuda (1 + (λγ̇ )a)(n−1)/a λ = 1.902 s, n = 0.22, a = 1.25

2.3.3 Yield Stress Models

Yield stress models can be useful to model blood flow in capillaries and some porous
structures where flow at very low shear rates occurs. Yield stress materials require
a finite shear stress τY (the yield stress) to start flowing. A relatively simple, and
physically relevant yield criterion is given by

√|IIτ | = τY , (14)

where IIτ is the second invariant of the extra stress tensor, τ (defined in (7)).
Therefore, for

√|IIτ | < τY , the fluid will not flow.
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The most usual yield stress model for blood is the Casson model (e.g. [86, 114])
which, for simple shear flow, has the form

√|IIτ | < τY �⇒ D = 0

√|IIτ | ≥ τY �⇒

⎧
⎪⎨

⎪⎩

D = 1
2μN

(
1 −

√
τY

4√|IIτ |
)2

τ

τ = 2
(√

μN +
√

τY
4√4|IID|

)2
D.

(15)

The Newtonian constitutive equation is a special case of (15) for τY equal to zero,
μN being the Newtonian viscosity. The Casson fluid behaves rigidly until the yield
criterion (14) is verified, and after that it displays a shear-thinning behavior.

Other yield stress models used for blood are the Bingham model [102] given by

√|IIτ | < τY �⇒ D = 0

√|IIτ | ≥ τY �⇒
⎧
⎨

⎩

D = 1
2μ

(
1 −

√
τY√|IIτ |
)

τ

τ = 2
(
μ+ τY

2
√|IID|

)
D.

(16)

where μ is the constant viscosity attained once the material flows, or the Herschel-
Bulkley model (see e.g. [56]) which is similar to the Bingham model (16) which
behaves as a power-law viscosity model once it begins to flow (μ in (16) is replaced
by the power-law viscosity μ(γ̇ ) = K γ̇ n−1, defined in (11)

√|IIτ | < τY �⇒ D = 0

√|IIτ | ≥ τY �⇒

⎧
⎪⎨

⎪⎩

D = 1
2K γ̇ n−1

(
1 −

√
τY√|IIτ |
)

τ

τ = 2
(

K γ̇ n−1 + τY
2
√|IID|

)
D.

(17)

Quemada [105] also developed a constitutive model suitable for blood, using an
approach with the apparent viscosity μ given by

μ(γ̇ ) = μF

(

1 − 1

2

k0 + k∞
√
γ̇ /γ̇c

1 + √
γ̇ /γ̇c

ϕ

)−2

, (18)

where μF, ϕ and γ̇c are the viscosity of the suspending fluid, the volume concentra-
tion of the dispersed phase and a critical shear rate, respectively. Table 4 provides
material parameters for the Quemada and Casson models for blood used in [91].

Table 4 Material constants
for Quemada (18) and
Casson (15) models:
Ht = 45% and temperature
T = 37 ◦C

Model Material constants for blood

Quemada μF = 1.2 mPa s k∞ = 2.07 k0 = 4.33

γ̇c = 1.88 s−1 ϕ = 0.45

Casson μN = 3.1 mPa s
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As discussed above, the existence of a yield stress and its use as a material
parameter is still nowadays a controversial issue, due to the sensitivity of yield stress
measurements.

2.3.4 Viscoelastic Models

There is a large number of in vitro experiments confirming that blood can store
and dissipate energy during the aggregation of the erythrocytes and the distortion
of the formed 3D microstructures (e.g. [30, 77, 125, 131]. As previously mentioned
in Sect. 2.2.3, Thurston [124] was among the earliest to recognise the viscoelastic
nature of blood and that the viscoelastic behaviour is less prominent with increasing
shear rate. In view of the available experimental evidence, it is reasonable to develop
non-Newtonian fluid models for blood that are capable of shear-thinning and stress
relaxation, with the relaxation time depending on the shear rate.

None of the models already presented in the previous sections re able to capture
the viscoelastic response of blood. One of the simplest quasi-linear rate-type
viscoelastic models accounting for the viscoelasticity of blood is the Maxwell model

τ + λ1
δτ

δt
= 2μD, (19)

where λ1 is the relaxation time and the operator δ(.)/δt stands for the so-called
upper-convected derivative defined by

δτ/δt =�
τ=: Dτ

Dt
− Lτ − τLT (20)

with L = ∇u +∇uT =: 2D. This is a generalization of the material time derivative,

Dτ

Dt
= ∂τ

∂ t
+ ∂τ

∂x
dx
dt
. (21)

δτ/δt is chosen to be objective under a superposed rigid body motion, meaning
that it is frame indifferent or that the response of the material is not affected by its
location and orientation. The resulting second-order tensor is symmetric [108].

A generalized Maxwell model that was applicable to one dimensional flow
simulations was proposed by Thurston [127] who observed later that, beyond a
critical shear rate, the nonlinear behavior is related to the microstructural changes
that occur in blood. Thurston’s work was suggested to be more applicable to venous
or low shear unhealthy blood flow than to arterial flows. Recently, a generalized
Maxwell model related to the microstructure of blood, inspired on the behaviour of
transient networks in polymers, and exhibiting shear-thinning, viscoelasticity and
thixotropy, has been derived by Owens [95].
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A more general class of rate-type models, called Oldroyd type models, is defined
by

τ + λ1
δτ

δt
= 2μ(D + λ2

δD
δt

), (22)

where λ2 denotes the retardation time, λ1 is the relaxation time and these material
coefficients are such that 0 ≤ λ2 < λ1. The Oldroyd type fluids can be considered
as Maxwell fluids with additional viscosity. This type of models (22) contain the
previous (19) model and (2) as particular cases.

In order to better understand the theory of viscoelasticity it is useful to illustrate
the typical behavior of viscoelastic materials by simple mechanical models, where
a dashpot (piston moving inside a cylinder filled with liquid) represents a viscous
(Newtonian) fluid and a spring stands for an elastic (Hookean) solid. These elements
can be connected in series or in parallel and the analysis of the behavior of different
viscoelastic materials can be done through their combinations representing various
deformation-stress models [43, 81]. Figure 5 shows an elastic spring and a dashpot
in series, representing the one-dimensional mechanical analogue to (19). Here, the
speed of movement γV is an analogue of the rate of deformation, the coefficient of
proportionality μ (for the viscous element) is an analogue of viscosity, γE can be
treated as a relative deformation, G as the elastic modulus and the force τ is an
analogue of the extra stress τ in (19). The ratio between the viscosity μ and elastic
modulus G is hidden in the relaxation time parameter λ1.

The combination of the Newtonian and the Maxwell models joined in parallel
is shown in Fig. 6 which represents the mechanical analogue to the Oldroyd
model (22).

Here the total viscosity μ is defined as μ = μs + μe, where μs and μe are the
solvent and the elastic (or polymeric) viscosity coefficients, respectively. Moreover,

Fig. 5 Mechanical analogue
of the Maxwell model
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Fig. 6 Mechanical analogue
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parameters λ1, λ2 are defined by

λ1 = μe

G
, λ2 = λ1

μs

μs + μe
(23)

and, as stated above, they verify the inequality 0 ≤ λ2 < λ1 (assuming μe is not
zero).

The total force τ can be expressed as the sum of the Newtonian solvent
contribution τ s and its viscoelastic counterpart τ e. In a similar manner, the extra
stress tensor τ in Eq. (22) is decomposed into its Newtonian part τ s and its elastic
part τ e,

τ = τ s + τ e, (24)

such that

τ s = 2μsD (25)

and τ e satisfies a constitutive equation of Maxwell type, namely

τ e + λ1
δτ e

δt
= 2μeD. (26)

A one-parameter family of frame indifferent convected derivatives of a tensor τ

takes the general form

(
δτ

δt

)

a
= Dτ

Dt
− Wτ + τW + a(Dτ + τD), a ∈ [−1, 1] (27)

where W represents the anti-symmetric part of the velocity gradient. The particular
value a = −1 corresponds to the upper-convected time derivative (20) (see e.g.
[64]).

We now recall Eq. (26) for the elastic part of the extra stress tensor. It can be
rewritten as

δτ e

δt
= 2μe

λ1
D − 1

λ
τ e (28)

or, in terms of the classical material time derivative, as

Dτ e

Dt
+
(
δτ e

δt
− Dτ e

Dt

)

= 2μe

λ1
D − 1

λ1
τ e, (29)

with the term in brackets representing a kind of “objective correction” of the
material time derivative. Moving this term to the right-hand side and expanding



Blood Rheology and Simulations 21

the remaining time derivative on the left, we get the following transport equation
for τ e

∂τ e

∂ t
+ (u · ∇) τ e = 2μe

λ1
D − 1

λ1
τ e −

(
δτ e

δt
− Dτ e

Dt

)

. (30)

Using Eq. (27) with a = −1, corresponding to the upper-convected time derivative,
transport equation (30) becomes

∂τ e

∂ t
+ (u · ∇) τ e = 2μe

λ1
D − 1

λ1
τ e + (Wτ e − τ eW)+ (Dτ e + τ eD). (31)

This is the constitutive equation for the viscoelastic isothermal Oldroyd-B fluid.
The governing equations for the Oldroyd-B fluid are obtained by considering

the basic principles of conservation of linear momentum and mass for isothermal
incompressible flows, where the extra stress τ is decomposed as in (24), the
Newtonian part τ s being represented by (25) and the viscoelastic component τ e

satisfying the constitutive equation (31).

Remark 1 An important non-dimensional parameter characterizing the viscoelastic
effects in the flow is the Weissenberg number defined as We = λ1U

L , where U denotes
a characteristic velocity and L is a characteristic length of the flow. In this case
the Weissenberg number can be interpreted as the ratio between “memory” and
advection time-scales. It relates the relaxation time to the time the fluid particle
needs to pass the distance L while advected at speed U.

The Oldroyd-B model accounts for the viscoelasticity of blood but not for its
shear-thinning behavior. However, replacing the constant viscosity μ in τ s by a
shear dependent viscosity function μ(γ̇ ), i. e.

τ s = 2μ(γ̇ )D, (32)

using, for instance one of the generalized Newtonian models listed in Table 3 with
the corresponding parameters, we obtain a generalized Oldroyd-B (GOB) model
that can be appropriate to describe blood flow behavior.

Other viscoelastic constitutive models of differential type, suitable to account for
blood rheology have been proposed in the recent literature. The empirical five—
constant generalized Oldroyd -B model studied in [132] belongs to this class. It is
a shear-thinning Oldroyd-B model with the shear-dependent viscosity μ(γ̇ ) in (32)
defined by

μ(γ̇ ) = μ∞ + (μ0 − μ∞)

[
1 + ln(1 +Λγ̇ )

(1 +Λγ̇ )

]

. (33)
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This viscosity function has been derived by fitting experimental data for steady
capillary one-dimensional flows to determine the constants, μ0 = 200 mPa s,
μ∞ = 6.5 mPa s and Λ = 11.14 s, and generalizing such curve fits to three
dimensions.

The previous model captures the shear-thinning behavior of blood over a large
range of shear rates but it has some limitations, since the relaxation times do not
depend on the shear rate, which does not agree with experimental observations for
blood. An appropriate model should consider blood as a viscoelastic fluid capable
of instantaneous elastic response. The theory developed by Rajagopal and Srinivasa
in [107] is particularly well suited to develop a model for blood. This framework
needs the specification of how the body stores and dissipates energy, by introducing
a precise Helmholtz potential associated with the body and a rate of dissipation
function, respectively. However, not all viscoelastic fluids can be described within
that earlier framework (see [107] for further details).

The model developed by Anand and Rajagopal [2], derived from the general
thermodynamic framework stated in [107], includes relaxation times depending on
the shear rate, gives good agreement with experimental data in steady Poiseuille
and oscillatory flows and has proven to be successful in describing the response
of blood. This model contains the Oldroyd-B model as a special sub-class and is
particularly well suited to describe the instantaneous elastic response of blood, under
physiological conditions. Numerical simulations in some idealized geometries to
investigate the combined effects of flow inertia, viscosity and viscoelasticity, can be
found in [19]. Anand et al. [1, 3] have also studied the problem of the formation and
lysis of blood clots, as well as the problem of ATIII and protein C deficiency [4]
within the context of the above model. See also numerical simulations in [117]. An
improvement of this model can be found in [5].

The set of governing equations derived in [2], the so-called (BModel), are based
on the principles of conservation of linear momentum and mass for an isothermal
incompressible fluid, with the extra stress tensor decomposed as follows:

T = −pI + ηBκp(t) + μsD (34)

where η and μs are positive material parameters (μs is the Newtonian viscosity),
Bκp(t) is the elastic stretch tensor and the subscript κp(t) is used to emphasize that
the stretch is expressed with respect to the natural (time dependent) configuration
κp(t).

The upper-convected time derivative of the elastic stretch tensor Bκp(t) can be
written as

δBκp(t)/δt =�
Bκp(t)=: − 1

τ (Bκp(t))

[
Bκp(t) − λI

]
. (35)

Here τ = τ (Bκp(t)) defined by

1

τ (Bκp(t))
= 2K

(
tr(Bκp(t)) − 3λ

)n
. (36)
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(where K is a material parameter) has the dimension of time and plays a role similar
to the relaxation time λ1 in the classical Oldroyd-B (22) or Maxwell (19) models.
The coefficient λ depends on the trace of the inverse of the tensor Bκp(t) according
to

λ = 3

tr
(
B−1

κp(t)

) . (37)

Using the definition of the upper-convected time derivative (20), the left-hand
side of (35) can be rewritten in a more conventional form in terms of the material
time derivative:

DBκp(t)

Dt
−
[
LBκp(t) + Bκp(t)L

T
]

= − 1

τ (Bκp(t))

[
Bκp(t) − λI

]
(38)

Finally, expanding the material time derivative on the left-hand side we end up with

∂Bκp(t)

∂ t
+ (u · ∇) Bκp(t) = −1

τ

[
Bκp(t) − λI

]+
[
LBκp(t) + Bκp(t)L

T
]

(39)

where the coefficients λ and τ are scalar functions of the tensor Bκp(t) and its
invariants, according to (37) and (36), respectively.

It is interesting to remark that the constitutive equations (39) for the (BModel)
and (31) for the classical Oldroyd-B (upper-convected Maxwell) model have a
similar form.

Predictions of the coefficients for the proposed (BModel) in [2]

μs = 0.01 Pa s; η = 0.0227 N/m2; n = 0.7525; K = 1.2056 s−1 (40)

(with n positive to ensure the shear-thinning behavior) have been compared with the
data for human blood [126].

More details related to the (BModel) and the notation used here can be found in
[2, 107] and also in [16, 19] where its implementation has been performed and some
numerical results have been obtained.

All models considered above can be solved for the variables velocity, pressure
and shear stress, provided the viscosity function, flow parameters and appropriate
boundary conditions are given.

With respect to boundary conditions for the Navier-Stokes and generalized
Navier-Stokes equations, it is necessary to prescribe either the velocity or the
surface traction force (Dirichlet or Neumann boundary conditions, respectively)
at the inflow boundary. Usually, physiological data are not available and a fully
developed Poiseuille velocity profile (or the Womersley solution, in the unsteady
case) can be prescribed. This is an acceptable idealization of the inflow condition
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in relatively long straight vessel segments. At the vessel wall, the no-slip condition,
expressing that the velocity at the wall boundary is the wall velocity, is appropriate,
if we consider rigid wall vessels. At the outflow boundary, a condition prescribing
surface traction force can be applied.

The Oldroyd-B and generalized Oldroyd-B models are of mixed elliptic-
hyperbolic type (or parabolic-hyperbolic, in the unsteady case). The extra stresses
behave hyperbolic, which means that they are only determined by past time. For
these models the boundary conditions are the same as for the Navier-Stokes and
generalized Navier-Stokes equations, supplemented by the specification of all the
stress components representing the fluid memory at the inlet boundary [64].

3 Numerical Simulations of Non-Newtonian Blood Flow
Models

Several methods have been used in modeling and simulation of the Non-Newtonian
effects in blood rheology, including analytical, stochastic and numerical methods
(finite elements, finite differences, finite volumes, spectral collocation, particle
methods). No single model can capture the complex blood characteristics and
different models have been used to represent blood rheology. Since most of
the Non-Newtonian characteristics derive from the behavior of RBCs in shear
flows, in particular their concentration, distribution and mechanical properties,
generalized Newtonian models, namely Carreau, Carreau-Yasuda and Cross (e.g.
[8, 9, 16, 21, 22, 26, 49, 50, 52, 53, 61–63, 68, 74, 87, 106, 116]) are the most popular
models found in literature. However, Casson (e.g. [57, 70, 83, 86, 87]) and shear-
thinning viscoelastic models (e.g. [2–5, 18, 19, 58, 90, 132]) have also been largely
used.

A comparative numerical study of three different test cases is presented to illus-
trate the influence of the shear-thinning and viscoelastic effects on the qualitative
behavior of blood flow in rigid-walled medium sized idealized and realistic vessels,
using some of the models described in the previous section.

Remark 2 Blood flow interacts mechanically with the vessel wall, resulting in
pressure waves propagating in arteries, which deform under the action of blood
pressure. In order to capture these phenomena, complex fluid-structure interaction
(FSI) problems must be considered, coupling physiologically meaningful models
for both the blood and the vessel wall. To simplify the presentation wall compliance
is not considered in the test cases.
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3.1 Numerical Simulations in Idealized Geometries

3.1.1 Stenosed Vessel

The first test case is a simple 2D non-symmetric (with respect to the bulk flow
direction) channel with a local constriction, modeling a cosine-shape stenosed blood
vessel, with 75% area reduction, represented in Fig. 7.

To account for the shear-thinning behavior of blood we choose the generalized
Newtonian Carreau model defined in Sect. 2.3.2 (see Table 3)

μ(γ̇ ) = μ∞ + (μ0 − μ∞)(1 + (λγ̇ )2)(n−1)/2 (41)

with material parameters

μ0 = 0.639 Pa s; μ∞ = 0.0045 Pa s; λ = 10.03 s; n = 0.35 (42)

and, for the purpose of comparison, blood is also modeled as a Newtonian fluid
with a constant viscosity μ = 0.0035 Pa s, corresponding an average experimental
viscosity in the range γ̇ ∈ [2, 1000] s−1. Blood density is ρ = 1.06 g cm−3, in both
cases.

The experimental viscosity data used in this test case were obtained by M.
Kameneva (Univ. Pittsburgh) for normal human blood at temperature T = 23 ◦C
and hematocrit Ht = 40% (see [108]. The main goal is to investigate the influence
of inertia and shear-thinning effects on the qualitative behavior of blood flow in this
idealized stenosed vessel.

For the numerical approximation of each one of the governing systems of PDEs,
a backward Euler scheme is used for time discretization and, at each time step, a
finite element space discretization of the velocity-pressure formulation (with P2−P1
elements) is implemented, using a splitting scheme with algebraic factorization
(e.g. [103]). The computational domain is discretized into 2858 internal triangular
elements and a boundary layer mesh consisting of 472 quadrilateral elements
(Fig. 7). A fully developed Poiseuille parabolic velocity profile with flow rate
Q = 2.0 cm3/s is prescribed at the inlet and homogeneous Neumann conditions
for the velocity components (zero normal stresses) are imposed at the outlet. The
initial-boundary value problems are also endowed with an initial condition u = u0,
for t = 0, and with a no-slip boundary condition u = 0 prescribed at the vessel wall.

Fig. 7 Stenosed vessel: computational grid structure
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Figures 8, 9 show a comparison between the velocity contours corresponding
to the Newtonian (NS) and the Carreau models, with parameters introduced above,
using the same color scale (units in m/s). As expected, in both figures we observe
a similar behavior at the stenosis site, but the area reduction in the stenosed region
leads to a significant local flow acceleration near the wall and the appearance of
recirculation patterns corresponding to two regions of reversal flow, downstream
the stenosis. In the two cases the flow structure is similar but the impact of the non-
Newtonian effects in the flow separation behind the stenosis is non-negligible, with
the velocity close to the wall developing a slower backflow in a larger region for the
(NS) flow model than for the generalized Newtonian Carreau model. In the vessel’s
centreline the velocity profile is flatter for the Carreau flow, which corresponds to
a reduction in the maximum velocity magnitude. As a result, the near wall flow is
accelerated and thus the recirculation zones become shorter, compared to those for
the (NS) flow.

This is a simple numerical study of the shear-thinning effects of the Carreau flow
model compared to the inertial effects of the (NS) model. It could be completed
by choosing different flow rates at the inflow boundary, other shear-thinning or
viscoelastic shear-thinning models, as those derived in the previous Section, and
the effect of the stenosis severity on the recirculation zone length downstream
the stenosis. Moreover, hemodynamic flow indicators like the wall-shear stress
(WSS) exerted on the wall, defined below (44), the time-averaged wall shear stress
(TAWSS) or the oscillatory shear index (OSI) during a cardiac cycle, could also be
investigated. This will be partially explored in the next test cases.

Fig. 8 Velocity magnitude contours and recirculation streamlines behind the stenosis for the
Newtonian flow. A velocity legend is shown on the right
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Fig. 9 Velocity magnitude contours and recirculation streamlines behind the stenosis for the
generalized Newtonian flow. A velocity legend is shown on the right

outL

2R

Lin

6R

Fig. 10 Geometric representation of a curved vessel

3.1.2 Curved Vessel

Flows in curved vessels are significantly more complex than flows in straight
vessels. For inertial Newtonian flows it is well known that a slight curvature of
the vessel axis induces centrifugal forces on the fluid and, in addition to the primary
initial flow, a secondary motion appears, sending fluid outward along the symmetry
axis and returning along the upper and lower curved surfaces. This secondary
motion is induced by a discrepancy between the cross-stream pressure gradient
and the centrifugal forces developed at the curvature sites, and consists of a pair
of symmetrical counter-rotating vortices that is superposed to the axial flow. This
results in asymmetrical wall stresses with high shear and low pressure regions (see
e.g. [6, 7, 13, 37]).

A 90◦ 3D curved vessel with circular cross-section (Fig. 10) has been chosen as a
second test case, to study the shear-thinning and viscoelastic effects in the presence
of high streamline curvature and non-negligible secondary flows (see [19]).
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Numerical simulations have been performed to compare the predictions of
the above described shear-thinning viscoelastic fluid model for blood flow (39),
further denoted as (BModel), with those of the classical Newtonian (NS) model
and a generalized Oldroyd-B (GOB) model. The material parameters used for the
(BModel) are those listed in (40). The (GOB) model used here is obtained from
the Oldroyd-B model (31) replacing the total (constant) viscosity by the shear
dependent viscosity given by the modified Cross function defined in Sect. 2.3.2

μ(γ̇ ) = μ∞ + (μ0 − μ∞)
1

(1 + (λγ̇ )m)a (43)

The asymptotic viscosities μ0 and μ∞ at low and high shear rates, have been
adjusted to fit the bModel’s parameters, namely μ0 = 0.0736 Pa s and μ∞ =
0.005 Pa s and the parameters λ, m and a, estimated by curve fitting of experimental
data, have been taken from [17] (see also [71]).

The numerical method used to solve the governing equations is based on a spatial
finite-volume discretization on structured grids and an explicit Runge-Kutta time-
stepping scheme, namely a robust modified Runge-Kutta four-stage method [60].
The computational mesh is structured and consists of hexahedral primary control
volumes. To evaluate the viscous numerical fluxes also dual finite volumes with
octahedral shape and centered around the primary cell faces are used.

The space discretization is based on a simple central finite-volume discretization
on a structured wall-fitted mesh with hexahedral cells and non-uniform axial cell
spacing. A multiblock grid topology was used to avoid high distortion of cells. The
viscous fluxes are also discretized in a finite-volume style over a diamond-shaped
cells adjoint to primary control volumes faces.

A pressure stabilization technique has been used in the present simulations (see
e.g. [130]) to avoid numerical oscillations in the pressure, which are mainly due
to the presence of strong gradients. Moreover, since the Reynolds number used in
the simulations was quite low (of the order of 102), no additional stabilization was
needed for the flow variables. This approach has been adopted in earlier papers. For
further details see e.g. [16–19] and the references therein.

A parabolic velocity profile with flow rate Q = 2.0 cm3/s, prescribed at the inlet
of the curved vessel has been considered for the simulations of the bModel and the
GOB and NS models. This flow rate is sufficiently high to capture the secondary
flows pattern (see Fig. 12). Homogeneous Neumann conditions for the velocity
components were imposed at the outlet and no-slip conditions were prescribed
at the vessel wall. Pressure was fixed at the outlet and extrapolated at the other
boundaries. Moreover, in the case of the bModel, homogeneous Neumann boundary
conditions were prescribed at all boundaries for the components of tensor Bκp(t).
As an alternative, some simulations have been performed using a Dirichlet type
boundary condition Bκp(t) = 1 prescribed at the inlet, but no significant impact on
the solution has been found.

One of the important features of the flow predicted by the bModel is related to the
axial velocity profile. This can clearly be observed in Fig. 11 showing, for the three
models NS, GOB and bModel, plots of the axial velocity profiles in three different
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Fig. 11 Axial velocity profiles for NS flows (top row), GOB flows (middle row) and bModel flows
(bottom row) in three different cross-sections at the bended part of the curved vessel (30◦, 60◦,
90◦)

cross-sections of the curved vessel, placed at 30◦, 60◦ and 90◦. In the case of the
bModel and GOB model flatter axial velocity profiles are obtained when compared
to the NS model. As in the case of the flow in the stenosed vessel, this effect can
be attributed to the shear-thinning behavior predicted by the first two models where
the low shear rates around the centerline of the vessel lead to a local increase of
the apparent viscosity. Based on these simulations, we can conclude that the shear-
thinning effect is dominant when compared to the viscoelastic one. However, further
numerical experiments could be performed to confirm this assumption.

Curvature effects are observed in the contours of the axial velocity, which are
shifted away from the central axis as the curvature of the vessel increases from 30◦
to 90◦ (see Fig. 12 and, more clearly, Fig. 13). Secondary flow streamlines have a
similar qualitative behavior for the three models NS, GOB and bModel, as shown in
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Fig. 12 Axial velocity magnitude contours and secondary flow streamlines for the NS (top row),
GOB (middle row) and the bModel flows (bottom row) in three different cross-sections at the
bended part of the curved vessel (30◦, 60◦, 90◦)

Fig. 12. Further differences are visible while comparing the axial and radial velocity
contours shown in Figs. 13 and 14. From Fig. 14 we realize that the magnitude of the
secondary flow velocities is clearly lower for the models GOB and bModel than for
the NS model, due to the shear-thinning behavior captured by the first two models
for which lower shear rates lead to a higher apparent viscosity.

Figures 15 and 16 show the relative axial velocity differences (normalized by the
characteristic velocity U) between the bModel and the classical NS model (Fig. 15,
left and Fig. 16, top row) and between the two shear-thinning viscoelastic models
bModel and GOB (Fig. 15, right and Fig. 16, bottom row). The color scale (in
physical units m/s) is used to emphasize the set of flow regions varying from those
where differences of solutions can be neglected (in black) to regions of the highest
difference in the flow regime (in red or dark blue). The differences on the axial
velocity between the bModel and the Newtonian model along the curved vessel
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Fig. 13 Axial velocity magnitude contours for the NS (top row), GOB (middle row) and the
bModel flows (bottom row) in three different cross-sections at the bended part of the curved vessel
(30◦, 60◦, 90◦)

(Fig. 15, left) show the expected slow-down of the core flow (caused by the shear-
thinning behavior) in the straight inlet part of the vessel. This is compensated by
a faster near-wall flow. As soon as the flow reaches the bended part of the curved
vessel, the slow core of the flow is pushed towards the outer wall (see top row in
Fig. 16 for a more detailed view), while close to the inner radius of the bend, the
flow accelerates. A similar (although weaker) tendency of the flow behavior can
also be seen for the difference between the bModel and GOB models (Fig. 15, right
and Fig. 16, low row). This is mainly due to the fact that both models have a shear-
thinning viscosity. In the bModel shear-thinning effects seem to be slightly more
pronounced than in the GOB model.

To summarize, we conclude that results obtained with both bModel and GOB
blood flow models are very similar, when compared to those obtained with the
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Fig. 14 Radial velocity magnitude contours for the NS (top row), GOB (middle row) and the
bModel flows (bottom row) in three different cross-sections at the bended part of the curved vessel
(30◦, 60◦, 90◦)

NS model, showing in particular that the more complex bModel has been properly
implemented and that the shear-thinning and viscoelastic rheological characteristics
are dominant with respect to inertia. Future numerical simulations in curved vessels
with different curvatures can provide a deeper insight into this investigation.

3.2 Numerical Simulations in a Realistic Geometry: Stenosed
Carotid Bifurcation

Now we consider an anatomically 3D realistic model of a diseased human carotid
bifurcation, smoothly reconstructed from an MRI medical image, as shown in
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Fig. 15 Relative difference of the axial velocity along the curved vessel (ubModel − uNS)/U (left)
and (ubNOB − uGOB)/U (right)

Fig. 17. The common carotid artery bifurcates into the internal and external carotid
arteries that supply blood into the brain and the face, respectively. A stenosis
of about 75% has been generated in the internal carotid artery (ICA), near the
bifurcation region, where narrowing or constrictions of the arterial inner surface,
caused by atherosclerosis usually occur and are responsible for about 10% of
ischemic strokes. The accumulation of plaques on the arterial wall is a progressive
disease accelerated by local irregular flow fields such as separation and flow-reversal
zones, which already occur at milder degrees of stenosis. It is well established that
once a mild stenosis is formed in the artery, altered blood flow and stress distribution
in the arterial wall contribute to further progression of the disease.The present
study can be regarded as a follow-up investigation of the influence of hemodynamic
factors on atherosclerosis development, after the disease has been recognized.

The main goal is to investigate inertial and shear-thinning effects in unsteady
simulations using the time-dependent incompressible Newtonian (NS) and the
generalized Newtonian Carreau models defined in Sect. 2.3.2, see also (41). The
shear-thinning viscosity parameters used in this study are the physiological values
previously used for the Carreau model in the first test case (42), Sect. 3.1. For the
Newtonian model we also impose a constant viscosity μ = 0.0035 Pa s, and blood
density is ρ = 1.06 g cm−3, in both cases. A fully developed laminar velocity profile
with flow rate Q = 5.5 cm3/s is imposed at the inlet of the central carotid artery
(main branch before bifurcation). Since the inflow diameter is 0.62 cm, this mean
physiologic flow rate Q = 5.5 cm3/s results in a Reynolds number Re = 300 in the
Newtonian case. The diameters of the outflow sections of the internal and external
carotid arteries are equal to 0.25 cm and 0.22 cm, respectively. The total length of the
domain, from upstream to downstream is approximately 5.4 cm. No-slip boundary
conditions are imposed at the vessel wall.
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Fig. 17 Computational mesh used for the blood flow simulations in a stenosed carotid artery
bifurcation

The conditions applied at the outlets are usually imposed in order to guarantee the
well-posedness of the differential problems, for sufficiently smooth and small data.
As in the previous test cases, we impose the “standard” homogeneous Neumann
conditions at the outlets. However, these conditions are unphysical for the case of
a human vessel, since they neglect completely the presence of the remaining part
of the circulatory system, which is usually not implemented using a 3D model
due to the limited capacity of current computers. Moreover, only averaged data
(mean velocity and mean pressure values) are available at the artificial boundaries
and alternative boundary conditions need to be used, reflecting the physics of
the given problem. A possible strategy consists in coupling the 3D Navier-
Stokes (or the generalized Navier-Stokes) equations with reduced 1D (distributed
parameter) or 0D (lumped parameter) approximations of the full equations that,
in a simplified way, can represent the remaining part of the circulatory system
and act as absorbing boundary conditions. The coupling of these heterogeneous
models, using appropriate transmission conditions and efficient techniques for their
numerical computation, usually called geometrical multiscale approach, represents
a decreased level of accuracy which is compensated by its lower computational cost.
This issue has been addressed by several authors and is still nowadays a matter of
active research (see e.g. [104] for a recent overview referring to the original works
on the subject)

A finite element approach has been adopted for the numerical solution of
the governing equations associated to both models. The patient-specific geometry
is discretized with 327,896 tetrahedral elements. A backward Euler scheme is
used for time discretization and, at each time step (0.5 × 10−3 s), a velocity-
pressure splitting scheme with algebraic factorization is implemented to discretize
in space (see, e.g. [103]). Lagrange low order P1 − P1 elements have been
adopted and this requires stabilization techniques like the Streamline upwind/Petrov
Galerkin method (SUPG-method) in order to avoid oscillations in the numerical
solutions [59]. The SUPG-method yields a substantial increase in accuracy because
stabilizing artificial diffusivity is added only in the direction of the streamlines and
crosswind diffusion effects are avoided.

An important commonly adopted flow indicator is the wall shear stress (WSS).
Knowing the velocity and pressure fields it is possible to obtain stresses, in particular
WSS which represents the tangential component of the surface force at the vessel
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wall, acting against the fluid flow.

WSS := −(τ · n) · t. (44)

Here n is the local wall-normal unit vector (pointing towards the fluid domain) and
t is the corresponding unit tangential vector.

WSS may cause alterations in the endothelium and has a great influence in many
inflammatory diseases, including atherosclerosis, the development of aneurysms
and clotting.

Hemodynamics in the stenosed carotid bifurcation was assessed in terms of
the streamlines, magnitude of the velocity vector field and WSS distribution
downstream the stenosis.

The difference between the solutions obtained using the NS model and gen-
eralized Newtonian Carreau model can be observed in Fig. 18 representing the

Fig. 18 Streamlines in the recirculation area downstream the stenosis in the ICA branch: for the
NS flow (top); for the generalized Newtonian flow (bottom)
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streamlines behind the stenosed region of ICA for both models. As expected, the
flow behavior behind the stenosis site is quite similar, with the presence of reversal
flow streamlines due to the local flow acceleration. However, the shear-thinning
effects are quite visible, since the density of recirculating streamlines for the
Newtonian flow is higher than for the non-Newtonian one, due to the local increase
of the apparent viscosity at low shear rates, which become closer to μ0. This also
results in a larger recirculation region for the Newtonian flow, as seen in Fig. 19,
when compared to Fig. 20, where the recirculation zones are marked in grey color.

Comparing the wall shear stress distribution, depicted in Figs. 21 and 22 we
conclude that the higher WSS values are located in the stenosed region predicted by

Fig. 19 Axial velocity magnitude contours and recirculation area downstream the stenosis in the
ICA branch for the NS flow

Fig. 20 Axial velocity magnitude contours and recirculation area downstream the stenosis in the
ICA branch for the generalized Newtonian flow
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Fig. 21 Contours of the wall shear stress (WSS) distribution for the NS flow

Fig. 22 Contours of the wall shear stress (WSS) distribution for the generalized Newtonian flow
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the generalized Newtonian model. Also in the curved part of the stenosed branch,
WSS seems to be slightly higher in the shear-thinning case. The reason for this
is likely related to the non-uniform viscosity distribution along the vessel, leading
to important discrepancies between Newtonian and generalized Newtonian model
predictions. Therefore, it is of major importance to understand the influence of the
viscosity distribution in complex flow situations.
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Old Problems Revisited from New
Perspectives in Implicit Theories of
Fluids

Giuseppe Saccomandi and Luigi Vergori

Abstract Three of the most studied problems in fluid dynamics are revisited within
implicit theories of fluids. Specifically, the onset of convection, the determination of
laminar flows and the motion of a fluid down an inclined plane are studied under
the assumption that the Cauchy stress tensor and the rate-of-strain tensor are related
through implicit constitutive equations. Particular attention is paid to fluids whose
viscosities are pressure-dependent.

1 Introduction

The principium reddendae rationis is one of the most powerful tool that have
been used in philosophical argumentations [28]. It has been used as principle by
many philosophers (Spinoza, Liebniz, Descartes, Hamilton, to cite a few of them)
and is very useful also in Science. Anaximander of Miletus suggestively used the
principium reddendae rationis to argue that Earth was a round cylinder statically
floating at the center of Universe without any support. In Anaximander’s reasoning,
since Earth was equidistant from all other bodies there was no reason why it should
move in any one direction.

The principium reddendae rationis has been applied more rigorously in classical
continuum mechanics, and, here, we shall appeal to it to sustain the suitability of
introducing implicit constitutive relations rather than explicit models. The main aim
of these notes is indeed the introduction, in the framework of implicit theories of
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fluids, of the class of fluids whose viscosities depend on pressure and that, for such
a peculiarity, are called piezo-viscous fluids [10].

It is well known that in any continuum theory the motion of a real body B is
governed by the balance laws of mass, linear and angular momenta, and energy as
well as by the second law of Thermodynamics. In particular, if the Cauchy axiom
holds, namely the internal actions in B can be represented only by a vector field,
in the absence of body couples the balance of angular momentum requires that the
Cauchy stress tensor T is symmetric, i.e. T = TT , and the equations of mass, linear
momentum and energy read

ρ̇ + ρdivv = 0, (1)

ρv̇ = divT + ρb, (2)

ρė + divq = T · D + ρr, (3)

respectively. In (1)–(3) ρ denotes the mass density, v the velocity field, b the specific
body force, e the specific internal energy, r the specific radiant heating, q the heat
flux vector, and D the rate-of-strain tensor, i.e. the symmetric part of the velocity
gradient L = ∇v. The superimposed dot denotes the material time derivative.1 The
second law of Thermodynamics is instead usually written as the Clausius-Duhem
inequality

ρη̇ ≥ ρ
r

θ
− div

(q
θ

)
, (4)

with η denoting the specific entropy and θ the temperature.
Regarding the specific body force b as known, Eqs. (1)–(3) provide seven scalar

equations for 13 scalar fields—the mass density ρ, the velocity components vi

(i = 1, 2, 3), and the stress tensor components Tij (i, j = 1, 2, 3). The system
of PDEs (1)–(3) is then not closed. The disparity in the number of equations
and unknowns is however not surprising as (1)–(3) are valid for all the non-polar
materials (i.e. materials satisfying the Cauchy axiom), but do not differentiate the
special material the body is made of. Therefore, to obtain a system the number
of equations of which matches the number of unknowns, one has to introduce
some constitutive equations characterizing the thermomechanical response of the
material.

Constitutive equations are very often referred to as constitutive relations. Accord-
ing to the Cambridge dictionary, a relation is a connection or similarity between
two things. This is exactly what modelers well educated in mechanics usually do.
They connect thermodynamical quantities through an equation which is specific to
a particular material or substance.

1For the sake of self-consistency, if Σ is a smooth scalar, vector or tensor field defined on the
trajectory of the body B, Σ̇ = Σt + (v · ∇)Σ .
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For example, in classical fluid mechanics the stress tensor is related to the rate-
of-strain tensor D, the density of the fluid and the temperature through an equation
of the form

H(T,D, ρ, θ) = O. (5)

Such a relationship is sufficient to close the subsystem (1)–(3) and thus there is no
clear reason (no reddendae rationis) to consider a priori an explicit representation
of the form

T = T̂(D, ρ, θ), (6)

such as the Navier-Stokes constitutive equation:

T = −p|E(ρ, θ)I + λ(ρ, θ)tr(D)I+ 2μ(ρ, θ)D, (7)

where p|E is the pressure at thermodynamic equilibrium, and λ and μ are the bulk
and shear viscosity, respectively. The reason of considering a representation of the
form (6) stands exclusively in its mathematical ease.

The search for models of mathematical ease is common when dealing with
problem of the motion of real bodies. A simple example comes from particle
mechanics. It is well known that the motion of a free particle X is governed by
Newton’s second law

ma = F, (8)

where m is the mass of the particle, a is the acceleration vector, and F is the resultant
force acting on X. In direct problems the resultant force F is usually known, and the
motion is to be determined by solving (8) under prescribed initial conditions for the
position x and the velocity v of X. To solve uniquely the resulting Cauchy problem,
one assumes that any experimental model for the force F depends on the motion
of the particle through a relation of the form F = F̂(x, v, t), where F̂ satisfies the
smoothness assumptions of Cauchy’s theorem for ordinary differential equations.

Behind the introduction of a constitutive relation of the form (6) there is then
the expectation that, in the framework of a field theory like continuum mechanics,
any initial and boundary value problem (IBVP) governing the motion of a real body
admits a unique solution as the Cauchy problem governing the motion of a free
particle in the framework of Newtonian’s particle mechanics.

Jacques Hadamard [18] introduced the concept of well-posedness of IBVPs. An
IBVP is well posed if it admits a unique solution which depends continuously
on the data (that is on initial and boundary conditions). Well-posedness in the
sense of Hadamard has always influenced strongly applied mathematicians and
scholars involved in continuum mechanics research when modeling a real-world
phenomenon. From a mathematical point of view it is clear that well-posedness
is intriguing. From the point of view of continuum mechanics well-posedness is
closely related to the concept of determinism. From this perspective, the principle
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of determinism for the stress stated in Truesdell and Noll’s celebrated handbook
[52],

The stress in a body is determined by the history of the motion of that body,

can be regarded as a sort of ‘pathway’ to well-posedness.
John Ball and Richard James [5] commenting on the concept of well-posedness

in the sense of Hadamard wrote:

Any reader of that paper will see the unmistakable influence of Truesdell. At the end of
the day, perhaps it would have been realized that Hadamard’s notions of well-posedness
are far too restrictive in the nonlinear setting, that non-uniqueness and even non-existence
comprise acceptable behavior, and that there are probably no fundamental restrictions on
the strain-energy function at all besides those arising from material symmetry and frame-
indifference.

This means not only that the principle of determinism is highly questionable
from a physical point of view, but also that mathematical feasibility is not a good
argument to support explicit constitutive equations where stress is given in terms of
motion.

Nature does not care if the relationship at the basis of its phenomena are graphs
or functions. It is our idealization of natural phenomena that sometimes realizes the
fact that relationships in the form of functions are more convenient. Moreover, an
explicit approach rules out a priori the possibility to describe interesting phenomena
like, for instance, constitutive branching. There is then no advantage to sacrifice
the principium reddendae rationis on the altar of mathematical well-posedness and
there are no a priori physical reason to support explicit constitutive equations.

It is well known that in an experiment it is possible to control stress or
deformation. For example, when pulling a bar of steel it is possible to control
the engineering stress and to record the engineering strain (the test is said to be
performed in a soft device), or to control the engineering strain and to record the
engineering stress (test performed in a hard device). Therefore, in the first case why
can we not postulate that the motion in a body is determined by the history of the
stress of that body? The fact that constitutive relationships are described by graphs
and not functions is also confirmed by several experimental works (see [37] and
references therein).

The aim of these lectures is to investigate classical problems in fluid mechanics
(such as the onset of Rayleigh-Bénard convection, laminar flows and flows over an
inclined plane) by employing implicit constitutive relations for the stress tensor. We
do not claim that the use of such implicit constitutive models represents a scientific
revolution. In the light of the previous discussion, we only claim that implicit
constitutive equations are useful tools for investigating real-world phenomena and
there is no a clear and neat reason to throw away a priori this class of relations.

These notes are not meant to be a detailed review of the literature concerning
piezo-viscous fluids. The choices of the topics treated and the literature presented
are based mainly on our personal tastes and pedagogical aims. The level of these
lecture notes is basic and tailored for undergraduate students with an elementary
knowledge of continuum mechanics.
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2 Implicit Constitutive Models for the Cauchy Stress Tensor

Consider the constitutive relation for the Cauchy stress tensor T of a linearly viscous
fluid given by

T = −pI+ 2μ

[

D − 1

3
tr(D)I

]

, (9)

where

p = −1

3
trT (10)

is the pressure and the positive parameter μ is the viscosity.
A quick look reveals that (9)–(10) differs from the classical constitutive model

for the Cauchy stress

T = −pI+ 2μD. (11)

In fact, contrarily to (11), in (9) and (10) it is explicitly stated what it is meant
by “pressure”: the negative of the mean normal stress. On using the terminology
widely adopted in the literature, by “pressure” we mean the “mechanical pressure”.
It is extremely important point out this from the beginning not only because we
are going to examine some aspects of the flows in fluids with material parameters
depending on pressure, but also because, as observed by Rajagopal [36], the term
“pressure” has been used in a plethora of different contexts and, as an unavoidable
consequence, it has been often misused in the literature. Referring the interested
reader to [36] for a detailed discussion on the issues related with the usage of
the word “pressure”, we limit to observe that, as argued by Huilgol [20], if one
wishes to include pressure in the rheological material functions (as we intend to),
defining the pressure through (10) is the only unambiguous way of introducing such
a physical quantity. In addition, this definition can be used to interpret experimental
data systematically both for compressible and incompressible fluids (the motions of
which, as is well known, are subjected to the kinematic constraint divv = tr(D) = 0)
[20].

It is widely accepted that the viscosity of fluids depends on temperature. In
particular, experimental observations have shown that viscosity decreases with
increasing temperature. On the other hand, there is also a vast literature on the
dependence of the viscosity on pressure. For the sake of brevity, below, we report
only some of the most important studies on this topic.

The first scholar to realize that the viscosity of a fluid may depend on pressure
was Stokes. In fact, in his celebrated paper [49] on the constitutive response of
fluids, Stokes stated

Let us now consider in what cases it is allowable to suppose μ to be independent of the
pressure. It has been concluded by Du Buat from his experiments on the motion of water in
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pipes and canals, that the total retardation of the velocity due to friction is not increased by
increasing the pressure. . . I shall therefore suppose that for water, and by analogy for other
incompressible fluids, μ is independent of the pressure.

Stokes’s comment clearly implies that only in special circumstances the viscosity
of a fluid is independent of pressure. While for flows in canals and pipes under
normal conditions inclusion of the dependence of the viscosity on pressure does not
affect the results of the experiments, there are several other situations where one
needs to take this dependence into account. Eight decades later, Bridgman [10] gave
a measure of the effect of pressure on the viscosity of water as well as of other
forty-two pure liquids. In addition, Bridgman observed that, while it is true that
all the physical quantities do vary with pressure, the variation in the viscosity with
pressure may be far more dramatic than the variation of the other quantities with
pressure. To this aim, Bridgman reported:

It may be said in general that the effects of pressure on viscosity are greater than on any
other physical property hitherto measured,2 and vary very widely with the nature of the
liquid. The increase of viscosity produced by 12000 kg varies from two or three fold to
millions of fold for the liquids investigated here, whereas such properties as the volume
decrease under 12000 kg seldom vary by as much as a factor of two from substance to
substance.

As early as 1893, based on experiments on marine glue, Barus [6] proposed an
empirical relation between the viscosity μ and the pressure p of the form

μ( p, θ) = μref exp[β(θ)( p − pref)], (12)

where μref is the viscosity at the reference pressure pref, and the piezo-viscous coef-
ficient β is temperature dependent. Later, Andrade [2] proposed a model expressing
the viscosity in terms of the pressure, the mass density and the temperature, namely

μ( p, ρ, θ) = Aρ1/2 exp[( p + ρr2)s/θ ], (13)

where r, s and A are constants. References to much of the literature concerning the
pressure dependence of the viscosity of fluids prior 1931 can be found in the book
of Bridgman [11]. More recently, Laun has modeled the viscosity of polymer melts
through

μ( p, θ) = μref exp[β( p − pref)− δ(θ − θref)], (14)

where μref is the viscosity at the reference state (pref, θref), and β and δ are positive
constants. There have been numerous other experiments by Bair and coworkers
that shows that the dependence of the viscosity on pressure is exponential (see
the experiments of Bair and Kottke [4]). Mention must be made of the work of

2The other physical properties measured by Bridgman are the isothermal compressibility, the
thermal expansion coefficient, the specific heat and the thermal conductivity.
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Martín-Alfonso and co-workers [26] wherein an intricate relationship among the
temperature, viscosity and pressure is provided for bitumen. In this context, it ought
to be pointed out that the pressure dependence of the properties of bitumen was
recognized very early. For instance, Saal and Koens [46] not only allowed for
viscosity to depend on pressure (and hence on the mean normal stress), they also
allowed it to depend on the shear stresses.

In virtue of the experimental evidences reported above, it is then reasonable
to assume that the viscosity of a fluid depends on pressure and temperature.
Consequently, since we have defined the pressure as the negative mean normal
stress, the constitutive model (9) with μ = μ(p, θ) prescribes the Cauchy stress
tensor in terms of the strain-rate tensor and temperature through the implicit relation

T − 1

3
tr(T)I− 2μ

(

−1

3
tr(T), θ

)

D = O. (15)

In the following sections, we shall mainly use the implicit model (15) or its
variants. However, for the sake of generality, we now determine the most general
implicit model for the Cauchy stress of an isotropic fluid. We start with an implicit
relation of the form

G(T,D, θ) = O. (16)

Since the fluid is isotropic, G is an isotropic tensor function of the two second-order
tensors T and D, i.e. G satisfies the property

G(QTQT,QDQT, θ) = QG(T,D, θ)QT, (17)

for all proper orthogonal tensors Q. Next, following Spencer [48], the most general
implicit model for the Cauchy stress tensor of an isotropic fluid can be written as

α0I+ α1T + α2D + α3T2 + α4D2 + α5(TD + DT) (18)

+α6(T2D + DT2)+ α7(TD2 + D2T)+ α8(T2D2 + D2T2) = O,

where the coefficients αi, i = 0, 1, . . . , 8, depend on θ and the integrity basis
of the two tensors T and D. The integrity basis consists of the invariants of any
combination of tensor products up to second order. For the current problem, these
are given by

tr(T), tr(D), tr(T2), tr(D2), tr(T3), tr(D3),

tr(TD), tr(T2D), tr(TD2), tr(T2D2).
(19)

This is a minimal set of invariants since the trace of the product of two second-order
Cartesian tensors is equal to the trace of the tensor product with the factors written
in reverse.
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When we consider fluid models of the form (18)–(19), with

α0 = −1

3
tr(T)+ 2μ

(

−1

3
tr(T), θ

)

tr(D),

α1 = 1, α2 = −2μ

(

−1

3
tr(T), θ

)

, (20)

and all the remaining αi equal to zero, we recover the model (15) for a piezo-viscous
fluid.

It might seem that the previous discussion on implicit constitutive models for
the Cauchy stress tensor is valid only for compressible isotropic fluids. The reader
might be led to such a conclusion by the usual practice in continuum mechanics
to associate a Lagrange multiplier with the constraint of incompressibility, split the
stress tensor into the sum of the constraint stress TC and the extra stress TE, and
assume that the constraint stress is workless and independent of the state variables,
and the extra stress is independent of TC [52]. This conclusion is not right and the
discussion above can be easily adapted to incompressible isotropic fluids. In fact,
Rajagopal [35] showed that, when dealing with incompressible fluids, appropriate
choices of the material parameters αi in (18) guarantee the incompressibility without
the introduction of a Lagrange multiplier and any split of the stress tensor. In these
notes we shall not introduce special models for incompressible fluids because, as
we shall show in the following section, incompressibility is an approximation that is
valid under specific flow regimes. Therefore, when dealing with these flow regimes,
there is no need at all to introduce a priori appropriate models which automatically
meet the kinematic restriction of invariability of volume elements during motion.

3 Isochoric Motions of Fluids as Approximations Under
Different Flow Regimes

All real bodies are compressible. In fact, if a sufficiently high pressure is employed,
the body undergoes a reduction in volume. On the contrary, for most liquids
in Nature, experience teaches that volume increases with increasing temperature.
However, it is possible that some bodies do not undergo a significant change in
volume over a sufficiently large ranges of pressures or temperatures and can hence
be approximated as being incompressible in those ranges. When the ranges of
pressures and temperatures are what is considered ‘normal’, in view of day to day
applications, the body is considered to be incompressible. Of course, what is deemed
to be a ‘significant change in volume’ is quite arbitrary and it boils down to whether
neglecting the volume change and modeling the body as an incompressible body yet
captures the essential features of the response of the body when subject to external
stimuli. Most liquids can be approximated as incompressible liquids provided the
pressures to which they are subject to are not very high and temperature changes
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are small enough. On the other hand, if the ranges of pressures and temperatures
to which the liquid is subject are large, then volume changes do take place and,
moreover, all the properties that characterize a fluid must be considered pressure-
and temperature-dependent.

Müller [29] defined a body to be incompressible if the density and the internal
energy depend only on temperature and do not depend on pressure. Appealing to
the material frame indifference and the entropy principle Müller [29] showed that a
Navier-Stokes-Fourier fluid cannot undergo changes in volume due to temperature
changes. Such a behavior is clearly contradicted by experiments which show
that volume changes do take place with temperature. Motivated by the fact that
experimental evidence clearly contradicts Müller’s conclusion (often referred to as
the Müller paradox), Gouin et al. [16] studied a class of Navier-Stokes-Fourier fluids
for which the internal energy, shear and bulk viscosities, and thermal conductivity
depend on pressure and temperature, while the density depends only on temperature.
They referred to such materials as quasi-thermally compressible fluids and found
a critical value of the pressure, denoted by pcr, below which a quasi-thermally
compressible fluid behaves like a perfectly compressible fluid in Müller’s sense.
Since the value of pcr is large with respect to the normal pressure conditions (for
instance, for water at 20 ◦C, pcr � 2 × 105 atm), Gouin et al. [16] concluded
that a quasi thermal-incompressible fluid is experimentally similar to a perfectly
incompressible fluid, removing in a such a way the Müller paradox.

The analysis of Gouin et al. [16] is based on the assumption that the density
depends only on the temperature. Clearly, for a homogeneous fluid this assumption
is equivalent to assuming that the deformation gradient F depends only on the
temperature, i.e.

detF = ϕ(θ). (21)

Recently, Rajagopal et al. [42] proved that assumption (21) leads to three physically
unrealistic deductions:

• the specific heat at constant volume is zero,
• thermodynamic instability (the specific entropy fails to be a concave function of

the pressure and specific volume),
• imaginary speed of sound.

To overcome these drawbacks Rajagopal et al. [42] modified the assumption (21)
by postulating that

detF = ϕ( p, θ), (22)

and showed that, for several classes of flow regimes of interest in the applications,
the velocity field of a fluid with pressure and temperature dependent material
properties is, to a first approximation, solenoidal. Therefore, in comparison to the
findings by Gouin et al. [16], instead of determining pressure ranges in which
a real fluid behaves like an idealized incompressible fluid, Rajagopal et al. [42]
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determined the flow regimes in which the motions of a fluid can be regarded, to a
first approximation, as isochoric.

3.1 Equations Governing the Flows in a Piezo-Viscous Fluid

To rigorously derive the sets of approximated equations we shall employ in
the following sections, we follow the same procedure as in [42]. We start by
assuming that the fluid is slightly compressible due to variations in the pressure
and temperature and thus assume that (22) holds.

We also assume that the motion of the fluid is sufficiently smooth so that the
derivatives that are taken are meaningful. Then, differentiating the determinant of
the deformation gradient with respect to time yields

divv = −kT( p, θ)ṗ + α( p, θ)θ̇ , (23)

where

kT = − 1

ϕ

∂ϕ

∂p
, α = 1

ϕ

∂ϕ

∂θ
(24)

are the isothermal compressibility and the coefficient of thermal expansion, respec-
tively. Clearly, kT and α are related through the integrability condition

∂kT

∂θ
= −∂α

∂p
. (25)

From (1) and (23) we deduce that

ρ̇

ρ
= kT ṗ − αθ̇ . (26)

Hence

dρ = ρ(kTdp − αdθ), (27)

and, denoting v = 1/ρ the specific volume,

dv = −kT

ρ
dp + α

ρ
dθ. (28)

Next, we introduce the enthalpy

h = e + pv, (29)
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and the Gibbs free enthalpy

g = h − θη, (30)

and combine these two thermodynamic potentials with the balance equations (1)–(3)
and the Clausius-Duhem inequality (4) to get

ρ(ġ + ηθ̇)− ṗ − pdivv − T ·D + q
θ

· ∇θ ≤ 0. (31)

In our analysis we shall regard the mechanical pressure and the temperature
as independent variables on which the material parameters of the fluid depend,
and, since we are interested in fluids of grade 1 (see Truesdell and Noll [52]),
the requirement of material frame indifference and the representation theorems for
isotropic functions lead us to consider the Cauchy stress tensor to be constitutively
prescribed by the implicit relation (15), the response functions of the specific
internal energy and entropy to be of the form

e = ê( p, θ, tr(D)), η = η̂( p, θ, tr(D)), (32)

and the heat flux vector given by the Fourier law

q = −k( p, θ)∇θ, (33)

with k being the thermal conductivity. Finally, we introduce the specific heats at
constant pressure and at constant volume through

cp =
(
∂h

∂θ

)

p
, cv =

(
∂e

∂θ

)

v

, (34)

respectively, and the specific heat ratio γ = cp/cv [15].
Inserting (9), (23) and (33) into (31) yields the inequality

(

ρ
∂g

∂p
− 1

)

ṗ + ρ

(
∂g

∂θ
+ η

)

θ̇ + ρ
∂g

∂ tr(D)
˙tr(D) (35)

−2μ

{

‖D‖2 − 1

3
[tr(D)]2

}

− k

θ
‖∇θ‖2 ≤ 0,

that holds true for any thermodynamical processes, i.e. for any fields ρ, v and θ

satisfying the balance equations (1)–(3). Therefore, by using standard arguments in
continuum thermodynamics, we deduce that

∂g

∂p
= 1

ρ
,

∂g

∂θ
= −η,

∂g

∂ tr(D)
= 0, (36)

and the constitutive functions for the viscosity of the fluid μ and the thermal
conductivity k are non-negative.
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From (36) we deduce that the differential of the Gibbs free enthalpy is

dg = 1

ρ
dp − ηdθ (37)

and the constitutive functions for the specific internal energy and entropy are,
respectively, of the form e = ê(p, θ) and η = η̂(p, θ) (namely, both the specific
internal energy and the specific entropy do not depend on tr(D)), with

(
∂η

∂p

)

θ

= −α

ρ
. (38)

Next, combining (29) and (30) with (37) yields

θdη = de + pdv (39)

which in turn leads to

θ

(
∂η̂

∂θ

)

v

=
(
∂ ê

∂θ

)

v

= cv, (40)

and then by virtue of (27) and (28) we obtain

θ

(
∂η̂

∂θ

)

p
=
(
∂ ê

∂θ

)

p
+ α

ρ
p =

(
∂h

∂θ

)

p
= cp. (41)

As far the specific internal energy is concerned, from (36)1, (38) and (41) we have

(
∂ ê

∂p

)

θ

= kTp − αθ

ρ
,

(
∂ ê

∂θ

)

p
= cp − α

ρ
p. (42)

Finally, by using (9), (23) and (42) the equations of balance of linear momen-
tum (2) and energy (3) can be expressed as

ρv̇ = −∇p + 2div

{

μ

[

D − 1

3
(divv)I

]}

+ ρb (43)

and

− αθ ṗ + ρcpθ̇ = div(k∇θ)+ 2μ

[

‖D‖2 − 1

3
(divv)2

]

+ ρr, (44)

respectively. Equations (26), (23), (43) and (44) constitute a system of partial
differential equations for determining the thermodynamic fields ρ, v, p and θ .
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3.2 Approximations

In order to introduce the most appropriate non-dimensionalization, it is necessary
to record before some thermodynamic identities. Rajagopal et al. [42] observed that
the specific heats ratio γ > 1, the isothermal compressibility is related to the speed
of sound C in the fluid through

kT = γ

ρC2 , (45)

and the square of the coefficient of thermal expansion can be written as

α2 = cp(γ − 1)

C2θ
. (46)

Let Oxyz be a Cartesian frame of reference with orthonormal basis {i, j, k}. Let
Ωd = R

2×[0, d] be a horizontal fluid layer of thickness d and assume that gravity is
the only body force acting on the fluid, namely b = −gk, where g is the acceleration
due to gravity.3 We assume also that no heat is supplied, i.e., r = 0. To non-
dimensionalize the equations governing the fluid motion, we choose a convenient
reference state (pref, θref) and introduce the following scales

x∗ = x
d
, v∗ = v

V
, ρ∗ = ρ

ρref
, t∗ = V

d
t,

p∗ = p − pref

ρrefgd
, θ∗ = θ − θref

θM − θm
, α∗ = α

α ref
, C∗ = C

C ref
,

μ∗ = μ

μ ref
, c∗

p = cp

cpref
, k∗

T = ρrefC2
ref

γref
kT .

(47)

In (47) the subscript ‘ref’ indicates that the corresponding material parameters are
evaluated at the reference state (pref, θref), V is the reference velocity, θM = maxΩ θ ,
θm = minΩ θ and the isothermal compressibility has been scaled by taking into
account (45). Hereinafter, we choose θM as the reference temperature, viz θref = θM .

Substituting (47) into (23), (26), (43) and (44) yields the dimensionless equations
(omitting the asterisks for convenience)

divv = −γref
Ma2

Fr2 ρkT ṗ + αref(θM − θm)αθ̇ , (48)

ρ̇ = γref
Ma2

Fr2 ρkT ṗ − αref(θM − θm)ραθ̇, (49)

3Assuming that Ω is a horizontal layer is convenient for deriving the set of approximations we
shall adopt in this paper. However, the analysis we are going to perform can be adapted, by means
of slight changes, to the case in which Ω is bounded in one direction provided that such a direction
is non-horizontal.
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Fr2ρv̇ = −∇p + 2
Fr2

Re
div

{

μ

[

D − 1

3
(divv)I

]}

− ρk, (50)

− αref(θM − θm)
ReBr

Fr2
α

(

θ + 1

Ca

)

ṗ + Peρcpθ̇ = div(k∇θ) (51)

+ 2Brμ

[

‖D‖2 − 1

3
(divv)2

]

,

where

Ma = V

Cref
, Fr2 = V2

gd
, Re = ρrefVd

μref
,

Br = μrefV2

kref(θM − θm)
, Pe = ρrefcprefVd

kref
, Ca = θM − θm

θM

(52)

are the Mach, second Froude, Reynolds, Brinkman, Péclet and Carnot numbers,
respectively.

We now assume that the material parameters α, kT , cp and k are analytic functions
and limit our analysis to the departures of the pressure and temperature from the
reference state (pref, θM) for which we can write

α( p, θ) =
+∞∑

j1,j2=0

1

j1!j2!
∂ j1+j2α

∂p j1∂θ j2
(0, 0)p j1θ j2, (53)

kT( p, θ) =
+∞∑

j1,j2=0

1

j1!j2!
∂ j1+j2kT

∂p j1∂θ j2
(0, 0)p j1θ j2, (54)

cp( p, θ) =
+∞∑

j1,j2=0

1

j1!j2!
∂ j1+j2cp

∂p j1∂θ j2
(0, 0)p j1θ j2, (55)

and

k( p, θ) =
+∞∑

j1,j2=0

1

j1!j2!
∂ j1+j2k

∂p j1∂θ j2
(0, 0)p j1θ j2 . (56)

From the integrability condition (25), the expansions (53) and (54) and the
scales (47) we deduce that

γref
Ma2

Fr2

∂ j1+j2kT

∂p j1−1∂θ j2+1
(0, 0) = −αref(θM − θm)

∂ j1+j2α

∂p j1∂θ j2
(0, 0), (57)
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for all ( j1, j2) ∈ N ×N0. In virtue of (57) we can integrate equation (49) to obtain

ρ = exp

[

− αref(θM − θm)

+∞∑

j1,j2=0

1

j1!( j2 + 1)!
∂ j1+j2α

∂p j1∂θ j2
(0, 0)p j1θ j2+1 (58)

+ γref
Ma2

Fr2

+∞∑

j1=0

1

( j1 + 1)!
∂ j1kT

∂p j1
(0, 0)p j1+1

]

.

Evaluating the identity (46) at the reference state (pref, θM) yields the following
relation

α2
ref(θM − θm)

2 = Ma2

E
Ca(γref − 1), (59)

where

E = V2

cpref(θM − θm)
(60)

is the Eckert number. We henceforth consider thermodynamic processes for which

αref(θM − θm) ≡ ε � 1. (61)

Therefore, as long as E/[Fr2Ca(γref − 1)] is of order O(1) or smaller, from (59) we
deduce that Ma2/Fr2 is of order O(ε2) or smaller.

We are now in position to carry out a perturbation analysis with respect to the
small parameter ε. Let

v =
+∞∑

n=0

ε2vn, p =
+∞∑

n=0

εnpn, θ =
+∞∑

n=0

εnθn (62)

be the power series in ε of the thermodynamic fields v, p and θ . As far as the
power series expansion of the fluid density is concerned, it may be derived from (58)
and (62)2,3 by taking into account the fact that Ma2/Fr2 is of order O(ε2). However,
the expression is quite complicated and of no interest to our analysis. In our
analytical scheme it suffices to know that

ρ = 1 − ε

+∞∑

j1,j2=0

1

j1!( j2 + 1)!
∂ j1+j2α

∂p j1∂θ j2
(0, 0)pj1

0 θ
j2+1
0 + o(ε) (63)

= 1 − ε

∫ θ0

0
α( p0, θ0)dθ0 + o(ε),
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where o(ε) accounts for terms of order O(ε2) and higher. Therefore, by insert-
ing (62) and (63) into (48), (50) and (51) we deduce a system of equations from
which different approximations can be derived:

+∞∑

n=0

εndivvn = − γref
Ma2

Fr2

+∞∑

n=0

εn
[

kT( p, θ)

(
∂p

∂ t
+ v · ∇p

)]

n
(64)

+
+∞∑

n=0

εn+1
[

α( p, θ)

(
∂θ

∂ t
+ v · ∇θ

)]

n
,

Fr2
+∞∑

n=0

εn
{

ρ

[
∂v

∂ t
+ (v · ∇)v

]}

n

= −
+∞∑

n=0

εn∇pn + 2
Fr2

Re

+∞∑

n=0

εn
{

div

[

μ( p, θ)

(

D − 1

3
(divv)I

)]}

n

−
[

1 − ε

∫ θ0

0
α( p0, θ0)dθ0 + o(ε)

]

k (65)

and

−ReBr

Fr2

+∞∑

n=0

εn+1
[

α( p, θ)

(

θ + 1

Ca

)(
∂p

∂ t
+ v · ∇p

)]

n

+Pe
+∞∑

n=0

εn
[

ρcp( p, θ)

(
∂θ

∂ t
+ v · ∇θ

)]

n

=
+∞∑

n=0

εn{div[k( p, θ)∇θ ]}n + 2Br
+∞∑

n=0

εn
{

μ( p, θ)

[

‖D‖2 − 1

3
(divv)2

]}

n
.

(66)

Since γrefMa2/Fr2 is of order O(ε2) or smaller, collecting terms of order O(1)
in (64) yields

divv0 = 0, (67)

whence the fluid motions can be regarded as isochoric to a first approximation.
According to the magnitude of the dimensionless numbers occurring in (64)

and (65), we can derive different sets of approximate equations such as, just to
mention a few of them, those which have been employed in the last few years
to study the flows at low Reynolds and Froude numbers [42, 53], the effects of
viscous dissipation in a piezo-viscous fluid [40], viscous stratified flows [17, 56]
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turbulence in forced convection [55], and heat transfer in turbulent mixed convection
[54]. Here, we instead derive the flow regimes for which (63)–(66) approximate
to generalizations of the celebrated Oberbeck-Boussinesq approximation and the
Navier-Stokes-Fourier equations for fluids with variable material properties.

3.2.1 Generalized Oberbeck-Boussinesq Approximation

If the second Froude number is of order O(ε), the Reynolds number of order of unity,
the Brinkman number of order O(ε) or smaller and the Péclet number of order of
unity or greater, then at the leading order equations (65) and (66) are

∇p0 + k = 0 (68)

and

Pecp( p0, θ0)θ̇0 = div[k( p0, θ0)∇θ0]. (69)

Obviously, Eq. (68) can be integrated and, taking the atmospheric pressure as the
reference pressure, we deduce that p0 coincides with the hydrostatic pressure ph =
1 − z. We now notice that Eqs. (67) and (69) are not sufficient to determine all the
thermodynamic fields at O(1). Therefore, in order to attain the closure, we collect
the terms of order O(ε) in (65) and, in view of (67), get

Fr2v̇0 = ε∇p1 + 2
Fr2

Re
div[μ( ph, θ0)D0] + ε

[∫ θ0

0
α( ph, θ0)dθ0

]

k. (70)

Now equations (67), (69) and (70) form a closed system, in which p1 can be regarded
as the hydrodynamic pressure. Finally, setting P = εp1, re-dimensionalizing (67),
(69) and (70), and omitting the subscript ‘0’ yield the generalized Oberbeck-
Boussinesq approximation derived by Rajagopal et al. [39]

⎧
⎪⎪⎨

⎪⎪⎩

ρrefv̇ = −∇P + 2div[μ( ph, θ)D] + ρrefg

[∫ θ

θref

α( ph, θ)dθ

]

k,

divv = 0,
ρrefcp( ph, θ)θ̇ = div[k( ph, θ)∇θ ],

(71)

where the dimensionalized hydrostatic pressure is given by the well-known Stevin’s
law ph = ρrefg(d − z).



62 G. Saccomandi and L. Vergori

3.2.2 Generalized Navier-Stokes-Fourier Equations

Suppose that Fr2, Fr2/Re and Pe are of order of unity or greater, and the Brinkman
number is of order O(ε) or smaller. Then collecting the terms of order O(1) in
Eqs. (65) and (66) and re-dimensionalizing lead to the Navier-Stokes-Fourier equa-
tions for a fluid with material properties depending on pressure and temperature:

⎧
⎨

⎩

ρrefv̇ = −∇p + 2div[μ( p, θ)D] − ρrefgk,
divv = 0,
ρrefcpθ̇ = div[k( p, θ)∇θ ].

(72)

Obviously, in isothermal conditions (72) reduces to the Navier-Stokes equations
for piezo-viscous fluids

{
ρrefv̇ = −∇p + 2div[μ( p)D] − ρrefgk,
divv = 0.

(73)

4 Rayleigh-Bénard Problem for Fluids
with Pressure- and Temperature Dependent Viscosities

Problems involving thermal convection are amongst those that have been studied
most assiduously in mechanics in virtue of their relevance to a plethora of problems
in astrophysics and geophysics. Understanding thermal-convection is at the heart
of explaining weather patterns, solar winds, flows in the interior of stars, thermal
currents in oceans, as well as numerous important industrial applications. The
prototypical theoretical model as well as experimental set up, within which one can
systematically investigate the effect of thermal-convection, is the flow that occurs in
a fluid layer due to a thermal gradient that is present across the layer. The earliest
experiments of thermal-convection in a fluid layer, heated from below, were carried
out by Bénard [7]. He found a pattern of polygonal cells, predominantly hexagonal,
though a few rectangular, pentagonal and septagonal cellular structures were also
present. Bénard also found that these cellular structures were also quite stable modes
under certain circumstances. Lord Rayleigh [43] studied the stability of the flow in
a fluid layer heated from below, when the upper layer was stress-free.

There have been numerous studies concerning the stability/instability of
‘Rayleigh-Bénard flows’. Until a critical difference in temperature is reached,
the main process for the transfer of heat is conduction and upon reaching the critical
temperature gradient convective rolls set in. Depending on the nature of boundary
conditions (flow between solid boundaries, flow when one boundary is free of
stress, etc.) one finds various types of flows are possible. A detailed discussion of
the literature pertinent to various aspects of Bénard convection can be found in
[8, 12, 14, 23, 25, 30]. An elegant introduction to the problem can be found in the
treatise by Chandrasekhar [13].
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The governing equations for the study of Bénard convection are obtained by
appealing to an approximation that was independently established by Oberbeck
[31, 32] and Boussinesq [9]. Such an approximation was established for fluids with
constant material parameters. Thus, since here we aim at studying the problem
of the onset of convection in a fluid whose viscosity varies with pressure and
temperature, we cannot appeal to the classical Oberbeck-Boussinesq approximation
but we have to employ its generalization derived in Sect. 3.2.1. We shall next find a
necessary and sufficient condition for the linear stability of the conduction solution
and compare the critical thresholds for the onset of convection in fluids with pressure
and temperature dependent viscosities with the classical results for fluids whose
viscosity is constant.

4.1 Conduction Solution: Evolution Equations
of Perturbations

Assume that the viscosity of the horizontal fluid layer Ωd (see Sect. 3.2.1) is an
analytic function of pressure and temperature, while the coefficient of thermal
expansion, the specific heat at constant pressure and the thermal conductivity are
constant. It is worth noting that this assumption is coherent with the experimental
evidences by Bridgman [10] reported in Sect. 2 and permits to appreciate the effects
of a variable viscosity on the critical threshold for the onset of convection. In this
framework, the generalized Oberbeck-Boussinesq approximation (71) becomes

⎧
⎨

⎩

ρrefv̇ = −∇P + 2div[μ( ph, θ)D] + ρrefgα(θ − θref)k,
divv = 0,
ρrefcpθ̇ = kΔθ.

(74)

The appropriate boundary conditions for the temperature and hydrodynamic pres-
sure to add to system (74) are

{
θ(x, y, 0, t) = θL, θ(x, y, d, t) = θU,

P(x, y, d, t) = 0,
(75)

with θL > θU . Our aim is the study of stability of the steady static conduction
solution m0 to (74)–(75):

⎧
⎪⎪⎨

⎪⎪⎩

ṽ = 0,

θ̃ = θL − θL − θU

d
z,

P̃ = ρrefgα(θL − θU)z
(

1 − z

2d

)
.

(76)
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In order to study the stability of the conduction solution m0 we introduce the
perturbations u = ui+ vj + wk, ϑ and Π to v̄, θ̄ and P̄, respectively, i.e.

v = ṽ + u, θ = θ̃ + ϑ, P = P̃ +Π. (77)

Then, inserting (77) into (74) gives the evolution equations of perturbations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρref(ut + u · ∇u) = −∇Π + μ( ph, θ̃ + ϑ)Δu
+[∇u+ (∇u)T ]∇μ( ph, θ̃ + ϑ) + ρrefgαϑk,

divu = 0,

ρrefcp

(

ϑt + u · ∇ϑ − θL − θU

d
w

)

= kΔϑ,

(78)

that are valid for all (x, y, z, t) ∈ R
2 × [0, d] × [0,+∞[. To (78) we append the

initial conditions

u(x, 0) = u0(x), ϑ(x, 0) = ϑ0(x), (79)

and the boundary conditions

Π(x, y, d, t) = 0, ϑ(x, y, 0, t) = ϑ(x, y, d, t) = 0, (80)

and

u(x, y, 0, t) = u(x, y, d, t) = 0 (81)

for rigid boundaries, or

uz = vz = 0 and w = 0 on z = 0, d (82)

for stress-free bounding surfaces. We refer to [13] for the derivation of the boundary
conditions (81) and (82). In (79) u0 and ϑ0 are regular fields, with u0 being
divergence-free.

4.2 Linear Stability Analysis

Since the viscosity is an analytic function of the temperature and pressure, for
sufficiently small disturbances we can approximate the two terms containing μ

in (78)1 as:

μ( ph, θ̃ + ϑ)Δu =
[+∞∑

n=0

1

n!
∂nμ

∂θn
( ph, θ̃ )ϑ

n

]

Δu ≈ μ( ph, θ̃ )Δu ≡ μ̂(z)Δu,

(83)
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and

[∇u + (∇u)T ]∇μ( ph, θ̃ + ϑ) = [∇u+ (∇u)T ]
{+∞∑

n=0

1

n!∇
[
∂nμ

∂θn
( ph, θ̃ )ϑ

n
]}

≈ μ̂′(z)
[
(uz + wx)i + (vz + wy)j + 2wzk

]
, (84)

where, henceforth, a prime denotes the derivative of a function which depends only
on one variable.

Thanks to (83) and (84) we can linearize the evolution equations of perturba-
tions (78) to obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρrefut = −∇Π + μ̂(z)Δu
+μ̂′(z)

[
(uz + wx)i + (vz + wy)j + 2wzk

]+ ρrefgαϑk,
divu = 0,

ρrefcp

(

ϑt − θL − θU

d
w

)

= kΔϑ.

(85)

It is now convenient to non-dimensionalize (85) and the boundary condi-
tions (80)–(82) by introducing the following scales:

x∗ = x
d
, t∗ = μref

ρrefd2 t, u∗ = ρrefd

μref
u, μ∗ = μ

μref
,

p∗
h = ph

ρrefgd
= 1 − z∗, θ̄∗ = θ − θU

θL − θU
= 1 − z∗,

Π∗ = ρrefd2

μ2
ref

Π, ϑ∗ = ϑ

θL − θU
.

(86)

Inserting the dimensionless quantities (86) into (85) and (80)–(82) yields the non-
dimensional equations (omitting the asterisks)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = −∇Π + μ̂(z)Δu

+μ̂′(z)
[
(uz + wx)i + (vz + wy)j + 2wzk

]+ R
Pr
ϑk,

divu = 0,
Pr (ϑt − w) = Δϑ,

(87)

where

R = ρ2
refgd3cpα(θL − θU)

μrefk
and Pr = cpμref

k
(88)

are the Rayleigh and Prandtl numbers, respectively, and the dimensionless boundary
conditions

Π(x, y, 1, t) = 0, u = v = w = ϑ = 0 on z = 0, 1 (89)
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for rigid boundaries, and

Π(x, y, 1, t) = 0, uz = vz = w = ϑ = 0 on z = 0, 1 (90)

for bounding surfaces free of stress.
As common praxis in the linear stability analysis of isochoric flows, we take the

third component of the curlcurl of (87) to eliminate the disturbance Π and obtain
the following coupled system in w and ϑ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂

∂ t
Δw = 2μ̂′(z) ∂

∂z
Δw + μ̂(z)ΔΔw + μ̂′′(z)∂

2w

∂z2

−μ̂′′(z)Δsw + R
Pr
Δsϑ,

Pr(θt − w) = Δϑ,

(91)

where Δs = ∂2

∂x2
+ ∂2

∂y2
is the so-called horizontal Laplacian. Since the coefficients

in equations (91) depend only on z, the equations admit solutions which depend on
x, y and t exponentially. We therefore look for solutions of the form:

⎧
⎪⎪⎨

⎪⎪⎩

w(x, y, z, t) = W(z)

Pr
exp[i(axx + ayy)+ σ t],

ϑ(x, y, z, t) = Θ(z)√R exp[i(axx + ayy)+ σ t],
(92)

in which it is understood that the real parts of these expressions must be taken into
consideration to obtain physical quantities. The wave speed σ may be complex, say
σ = σr + iσi. Thus, expressions (92) represent waves which travel in the x and

y co-ordinate directions with phase speed σi/a, where a =
√

a2
x + a2

y is the two-

dimensional wave number, and whose growth or decay in time is given by exp(σrt).
A wave of the form (92) is then stable if σr ≤ 0 (marginally stable if σr = 0), and
unstable if σr > 0.

Setting D = d/dz and inserting (92) into (91) gives the system of ordinary
differential equations

⎧
⎨

⎩

σ(D2 − a2)W = μ̂(z)(D2 − a2)2W + 2μ̂′(z)D(D2 − a2)W
+μ̂′′(z)(D2 + a2)W − √

Ra2Θ,

σPrΘ − √RW = (D2 − a2)Θ,

(93)

to which we add the boundary conditions

W = DW = Θ = 0 at z = 0, 1 (94)
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for rigid boundaries, or

W = D2W = Θ = 0 at z = 0, 1 (95)

for stress-free boundaries.
Denoting by the superscript � the complex conjugate, multiplying (93)1 by W�,

(93)2 by a2Θ�, summing and integrating over the interval [0, 1] taking into account
the boundary conditions (94) or (95), we obtain

σ

∫ 1

0
[|DW|2 + a2(|W|2 + Pr|Θ|2)]dz = a2

√
R
∫ 1

0
(WΘ� + W�Θ)dz (96)

−
∫ 1

0
μ̂(z)[|(D2 + a2)W|2 + 4a2|DW|2]dz − a2

∫ 1

0
(|DΘ|2 + a2|Θ|2)dz.

Considering the imaginary part of (96) yields that σi = 0, that is the wave speed of
the perturbation is real. Therefore the linearized equations of Bénard convection (85)
satisfy the strong form of principle of exchange of stabilities [50] also in the
case of fluids with pressure- and temperature-dependent viscosity. In addition,
rewriting (96) as

σL(W,Θ; a2) =
[√

R I(W,Θ; a2)

D(W,Θ; a2)
− 1

]

D(W,Θ; a2), (97)

with

L(W,Θ; a2) =
∫ 1

0
[|DW|2 + a2(|W|2 + Pr|Θ|2)]dz, (98)

I(W,Θ; a2) = a2
∫ 1

0
(WΘ� + W�Θ)dz (99)

and

D(W,Θ; a2) =
∫ 1

0
μ̂(z)[|(D2 + a2)W|2 + 4a2|DW|2]dz (100)

+a2
∫ 1

0
(|DΘ|2 + a2|Θ|2)dz,

we deduce that the modes (92) with two-dimensional wave number a are linearly
stable if and only if

R ≤ RL(a) ≡
[

max
(W,Θ)∈H

I(W,Θ; a2)

D(W,Θ; a2)

]−2

, (101)
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where H is the space of kinematically admissible disturbances:

H =
{
(W,Θ) ∈ H2(0, 1)× H1(0, 1) : W = DW = Θ = 0 at z = 0, 1

}
(102)

for rigid boundaries, or

H =
{
(W,Θ) ∈ H2(0, 1)× H1(0, 1) : W = D2W = Θ = 0 at z = 0, 1

}

(103)

for stress-free bounding surfaces. The existence of the maximum of the functional
I/D in H can be proved by following similar arguments as in [45].

It is easy to check that the Euler-Lagrange equations associated with the
variational problem (101) coincide with (93) with σ = 0 giving the marginally
stable states. Following [13], (93) with σ = 0 can be simplified further to the
following sixth-order ordinary differential equation

μ̂(z)(D2−a2)3Θ+2μ̂′(z)D(D2−a2)2Θ+μ̂′′(z)(D4−a4)Θ+Ra2Θ = 0 (104)

to which we add the boundary conditions

Θ = D2Θ = D(D2 − a2)Θ = 0 at z = 0, 1 (105)

for rigid boundaries, or

Θ = D2Θ = D4Θ = 0 at z = 0, 1 (106)

for stress-free boundaries. The square of the maximum of the functional I/D is
then the reciprocal of the least eigenvalue of the characteristic-value problem (104)
with boundary conditions (105) or (106) and thus the marginal stability curve has
equation R = RL(a). Finally, we introduce the so-called critical Rayleigh number

Rcr = min
a>0

RL(a), (107)

and note that if R ≤ Rcr then all modes are stable, while if R > Rcr there exists at
least one unstable mode. Thus, we may conclude that the conduction solution m0 is
linearly stable if and only if

R ≤ Rcr. (108)

To appreciate the departures from the classical results for fluids with constant
viscosities, in Table 1 we display the critical thresholds for the Rayleigh number
for rigid and stress-free boundaries when the viscosity depends exponentially
on pressure and temperature according to (14). In this case, the nondimensional
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Table 1 Approximations of
the critical Rayleigh and
two-dimensional wave
numbers against the
dimensionless parameter Γ
for (a) rigid and (b)
stress-free boundaries

(a)

Γ Rcr acr

0.5 2200.315 3.115

0.3 1986.687 3.116

0.2 1888.573 3.116

0.1 1795.744 3.116

0 1707.937 3.116

−0.1 1624.857 3.116

−0.2 1546.233 3.116

−0.3 1471.774 3.116

−0.5 1334.559 3.115

(b)

Γ Rcr acr

0.5 850.079 2.216

0.3 765.847 2.219

0.2 727.500 2.221

0.1 691.451 2.221

0 657.548 2.221

−0.1 625.651 2.221

−0.2 595.627 2.221

−0.3 567.353 2.219

−0.5 515.599 2.216

viscosity function μ̂ reads

μ̂ = exp[Γ (1 − z)] with Γ = βρrefgd − δ(θL − θU). (109)

The critical thresholdsRcr have been found for different values of the dimensionless
parameter Γ by solving the eigenvalue problems (104) and (105) or (106) with
the aid of the MATLAB www.bvp4c solver. Observe that, both in the rigid and
stress-free case the critical threshold Rcr increases with increasing Γ and equals
the critical thresholds for fluids with constant viscosities when Γ = 0. This result
is physically reasonable as the viscosity, and hence the resistance to motion from
the rest state, increases as Γ increases. From the definition of Γ we can then assert
that the pressure dependence of viscosity has a stabilizing effect on the onset of
convection, in the sense that the critical threshold for the Rayleigh number is greater
than the one that can be predicted starting from the assumption that viscosity is
constant or dependent only on temperature.

The nonlinear stability of the conduction solution m0 in a fluid whose viscosity is
an analytic function of the pressure and temperature has been studied by Rajagopal
et al. [38]. They proved that, under appropriate conditions on the initial disturbance
of the temperature field ϑ0, the conduction solution is nonlinearly stable with respect
to the energy of the perturbations if inequality (108) holds. In this way, Rajagopal
et al. proved that (108) is a necessary and sufficient condition for the local nonlinear
stability of m0.

5 Parallel Shear Flows of Piezo-Viscous Fluids

In the last two sections we shall consider isothermal flows in fluids with variable
viscosities. In particular, in this section the viscosity will be assumed to depend only
on pressure, while in the next section, to include shear-thickening/thinning effects,
viscosity will be expressed in terms of pressure and shear.

www.bvp4c
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The main goal of this section is the determination of some classes of steady
unidirectional shear flows that are possible in a piezo-viscous fluid. We shall show
that, under the assumption that gravity is the only body force acting on the fluid,
Couette flows are possible for any constitutive model of the viscosity, whereas
Poiseuille flows are possible only in fluids with constant viscosity. To the best of
our knowledge, this result is novel as results on the existence of Poiseuille flows in
piezo-viscous fluids are available only in the absence of body forces. Assuming that
body forces are negligible compared to viscous forces and pressure gradients, Bair
et al. [3] claimed to have proven that Poiseuille flows in piezo-viscous fluids are
not possible, a secondary flow being necessary. This claim is not true in general.
In fact, Hron et al. [19] showed that steady unidirectional flows are possible if
the dependence of the viscosity on pressure is linear, and explicit exact continuous
solutions can be established even if shear-thinning effects are included. On the other
hand, for other forms of the viscosity, with polynomial and exponential dependence
on the pressure, Hron et al. [19] reconfirmed the results of Bair et al. [3]. Two
years later, Renardy [44] gave an elegant proof on the existence/nonexistence of
Poiseuille flows in piezo-viscous fluids. He proved that, in the absence of body
forces, Poiseuille flows are possible only if viscosity depends linearly on pressure.
In what follows we shall consider also the case in which body forces are negligible
and give an alternative proof of the result by Renardy [44].

5.1 Governing Equations

When gravity is the only force acting on the fluid, the equations governing the
isothermal flows in the horizontal fluid layer Ωd are the generalized Navier-Stokes
equation (73).

We are here interested in two types of unidirectional flow: Couette flow, when one
plate is fixed (z = 0) and the other one (z = d) moves with a prescribed velocity;
and Poiseuille flow, when homogeneous Dirichlet boundary conditions at the plates
z = 0, d are considered. We then look for solutions to (73) of the form

v = u(z)i, p = p(x, y, z), (110)

which satisfy the following boundary conditions

u(0) = 0, u(d) = V, (Couette flow), (111)

or

u(0) = u(d) = 0, (Poiseuille flow). (112)
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Inserting the ansatz (110) into (73) and non-dimensionalizing the resulting
system of pdes by means of the scales

x∗ = x
d
, u∗ = u

U
, p∗ = p − pref

ρrefgd
,

μ∗ = μ

μ ref
, U = ρrefgd2

μref
, μref = μ( pref),

(113)

yield (omitting the asterisks for simplicity of notation) the dimensionless equations

⎧
⎨

⎩

px = τz,

py = 0,
pz = τx − 1,

(114)

where

τ = μ( p)uz (115)

is the shear stress. To (114) we add the dimensionless boundary conditions

u(0) = 0, u(1) = V∗ ≡ V

U
, (Couette flow), (116)

or

u(0) = u(1) = 0 ( Poiseuille flow). (117)

From (114) we easily deduce that p = p(x, z) and that both the shear stress and
the pressure are solutions of the wave equation ψxx − ψzz = 0. This leads to the
representations

{
p = Ξ(x + z) + Ψ (x − z) − z,
τ = Ξ(x + z) − Ψ (x − z).

(118)

5.2 Couette Flows

Let us first consider the Couette flows. Assuming that the pressure at the upper
boundary is constant and equal to the reference pressure, namely p(1) = 0,
from (118)1 the functions Ξ and Ψ are such that Ξ(x + 1) + Ψ (x − 1) = 1 for
all x ∈ R, by which one deduces that Ξ and Ψ are of the form

Ξ(x + z) = a(x + z) + b, Ψ (x − z) = −a(x − z) + 1 − 2a − b, (119)
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with a and b constants. Hence, inserting (119) into (118) we deduce that the
pressure, and thus the shear stress, do not depend on x, whence a = 0 and

{
p = 1 − z,
τ = 2b − 1.

(120)

Finally, from (115), (116) and (120)2 the velocity component u is found to be

u(z) = V∗

∫ z

0

dz

μ(1 − z)
∫ 1

0

dz

μ(1 − z)

. (121)

Couette flows are then possible in a piezo-viscous fluid with a very general response
function of the viscosity. As examples, if the (dimensionless) viscosity is given by a
power law of the form

μ( p) = 1 +�pn (� ≥ 0, n > 0), (122)

then

u(z) = 1 −
Lerch�

(

−�(1 − z)n, 1,
1

n

)

Lerch�

(

−�, 1,
1

n

) (1 − z), (123)

where Lerch� is the Lerch Phi function; while if viscosity depends exponentially
on the pressure according to the Barus law

μ( p) = e�p (� ≥ 0), (124)

then

u(z) = e� z − 1

e� − 1
. (125)

Figure 1 displays the velocity profiles of the Couette flow for different models of
the viscosity.

5.3 Poiseuille Flows

We now consider the Poiseuille flows and observe that, since the velocity field
satisfies the boundary conditions (117), the assumption that either Ξ or Ψ is
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Fig. 1 Velocity profiles of the Couette flow when the dimensionless viscosity is constant (i.e.
the classical Navier-Stokes (NS) model), or of the form (122) or (124). The dimensionless piezo-
viscous coefficient � is taken to be equal to unity

constant leads to the trivial flow u ≡ 0 (no motion). Thus, we have

Ξ ′(x + z) �= 0 and Ψ ′(x − z) �= 0. (126)

Moreover, it can be easily proven that also the assumption μ′(p)uz =
μ′(p)τ/μ(p) =constant leads to the trivial motionless flow. Hence,

∇
(
μ′( p)

μ( p)
τ

)

�= 0. (127)

Next, from (115) we deduce that

0 = ∂uz

∂x
= ∂

∂x

(
τ

μ( p)

)

= τx

μ( p)
− μ′( p)

μ2( p)
τpx, (128)

whence, on using (114)1,

μ( p)τx − μ′( p)ττz = 0. (129)
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In the light of (126) and (127), on using the representations of p and τ (118), (129)
can be rewritten as

Ξ ′(x + z)

Ψ ′(x − z)
= μ( p)+ μ′( p)[Ξ(x + z) − Ψ (x − z)]

μ( p)− μ′( p)[Ξ(x + z) − Ψ (x − z)] , (130)

with p as in (118)1. Therefore, because of the explicit dependence of the pressure
on the vertical variable z (and not only through Ξ(x + z) and Ψ (x − z)), (130) holds
if and only if the viscosity of the fluid is constant. Consequently, when gravity is the
only body force acting on the fluid, Poiseuille flows are possible only if the viscosity
is constant, in which case

⎧
⎨

⎩

p = A0x − z + κ,

u = A0

2
z(z − 1),

(131)

where A0 is the constant pressure gradient that induces the flow, and κ is an
integration constant that, once A0 is known, can be determined by measuring the
pressure at a single point on the boundary.

Assume now that body forces are negligible compared to the viscous forces and
pressure gradients. Then, following the same arguments as in the case in which the
effects due gravity are taken into account we arrive at (130) with p given by

p = Ξ(x + z) + Ψ (x − z). (132)

Since in the absence of body forces the pressure does not depend explicitly on z but
only through Ξ(x + z) and Ψ (x − z), (130) with p as in (132) holds if and only if μ
is a linear function of pressure. In other words, the dimensionless viscosity must be
of the form

μ( p) = 1 +�p (� ≥ 0). (133)

For such a dependency on the pressure, a simple manipulation of (114) and (115)
gives

⎧
⎪⎨

⎪⎩

px

1 +�p
= uzz

1 − � 2u2
z
,

pz

1 +�p
= �uzuzz

1 − � 2u2
z
.

(134)

Integrating (134)2 yields

p = 1

�

⎡

⎣
φ(x)

√

1 −� 2u2
z

− 1

⎤

⎦ , (135)
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where φ(x) is an arbitrary function to be determined with the aid of (134)1. Indeed,
inserting (135) into (134)1 we obtain

1

�

φ′(x)
φ(x)

= uzz

1 − � 2u2
z
, (136)

which holds if and only if

1

�

φ′(x)
φ(x)

= A0 and
uzz

1 − � 2u2
z

= A0, (137)

with A0 being constant. Next, integrating (137) and taking into account the boundary
conditions (117), we derive the Poiseuille flow

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p = 1

�

{

κ exp(�A0x) cosh

[

�A0

(

z − 1

2

)]

− 1

}

,

u = 1

� 2A0
ln

cosh

[

�A0

(

z − 1

2

)]

cosh
�A0

2

,

(138)

where κ is an integration constant that, as indicated before, can be determined once
A0 is known. Finally, from (138)2 it follows that the maximum speed in a Poiseuille
flow decreases with increasing � , and, in the limit as � → 0, the velocity profile
tends to the one which has been determined for a fluid with constant viscosity (see
Fig. 2).

6 Flow of Fluids with Pressure and Shear Dependent
Viscosity Down an Inclined Plane

In this final section, we carry out an analysis of the flow of a fluid with a pressure
and shear dependent viscosity down an inclined plane within the context of the
lubrication approximation. It is legitimate to ask where the pressure dependence
of viscosity could become important within the context of the lubrication approx-
imation. Thin film flows are ubiquitous in engineering, geophysics, biology and
elsewhere, and low aspect ratios are often the basis for simplified fluid dynamical
models. An important relevant application in geophysics is the flow of glaciers
and ice sheets as well as rock glaciers. For instance, while the ice sheet covering
Antarctica is several kilometers thick, it however has a horizontal extent of several
thousand kilometres, yielding a length scale ratio epsilon of order 10−3 [47].
These glaciers clearly exhibit non-Newtonian characteristics in that their viscosities
depend on the shear rate so that their flows are modelled using a shallow-ice
approximation and Glen’s flow law [33]: in other words, as gravity currents with
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Fig. 2 Poiseuille flow. Velocity profiles for different values of the piezo-viscous coefficient � and
(a) A0 = −10 and (b) A0 = −100

non-Newtonian (power law) rheology. On the other hand, there are several papers
that investigate the possibility of normal stress effects in the creep of polycrystalline
ice (see, for instance, [27] and [24]). In particular, Jones and Chew [22] have shown
that hydrostatic pressure decreases the creep of polycristalline ice slightly and, then,
above 15 MPa, a minimum creep rate is reached followed by an increase in rate
with increasing hydrostatic pressure. Therefore, in view of the depths of glaciers we
would expect that the pressure would also influence the viscosity. As the viscosity
depends on both the shear rate as well as the pressure, it is possible that these two
effects could either compete against each other thereby mitigating their effects, or
join forces to enhance the qualitative and quantitative differences. As the fluid can
shear-thin or shear-thicken, both possibilities may come to pass.
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6.1 Basic Equations

We consider a fluid moving on an inclined plane, whose angle of inclination is ι. Let
now Oxyz be a Cartesian frame of reference with fundamental unit vectors i, j and
k, where the coordinate z is perpendicular to the plane, the x and y coordinates lie in
the plane, y is horizontal and x increasing downward. We denote the components of
the velocity v of the fluid in the directions x, y and z as u, v and w, respectively. The
generalized Navier-Stokes equations read then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

ρ

(
∂u

∂ t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= −∂p

∂x
+ ∂Sxx

∂x
+ ∂Sxy

∂y
+ ∂Sxz

∂z
+ ρg sin ι,

ρ

(
∂v

∂ t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= −∂p

∂y
+ ∂Syx

∂x
+ ∂Syy

∂y
+ ∂Syz

∂z
,

ρ

(
∂w

∂ t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= −∂p

∂z
+ ∂Szx

∂x
+ ∂Szy

∂y
+ ∂Szz

∂z
− ρg cos ι,

(139)

where the Cauchy stress is now given by the implicit relation

T − 1

3
tr(T) − μ

(

−1

3
tr(T), tr(D2)

)

D = O, (140)

or, equivalently, since ‖D‖ = [tr(D2)]1/2,

T = −pI+ 2μ( p, ‖D‖)D ≡ −pI+ S. (141)

The viscosity is taken of the form

μ( p, ‖D‖) = ς( p − pref)‖D‖(1−χ)/χ , (142)

with χ > 0, pref the reference pressure and, as is reasonable to expect since the fluid
viscosity increases as the pressure increases, ς is a positive function whose value
increases with increasing pressure. Model (141), with a viscosity of the type (142),
allows for a fluid that is capable of shear thinning, when χ > 1, or shear thickening,
when χ ∈ (0, 1). Here, for the sake of definiteness, we shall consider the following
forms for ς :

(exponential model) ς( p) = ςrefe
β( p−pref), (143)

( power law model) ς( p) = ςref + β( p − pref)
n, (144)
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where ςref > 0, β ≥ 0 and n ≥ 0 are constants. In general, the material parameters
that appear in (143) and (144) can be obtained by corroboration with experimental
data. Here, in order to illustrate the effects due to the pressure dependence of
viscosity, we merely carry out a parametric study.

We prescribe the following boundary conditions for the velocity and pressure
fields

{
u = v = w = 0 on z = 0,
Tn = −prefn on z = h(x, y, t),

(145)

where

n = 1
√

1 +
(
∂h

∂x

)2

+
(
∂h

∂y

)2

(

−∂h

∂x
i− ∂h

∂y
j + k

)

(146)

is the unit normal to the free surface of the current z = h(x, y, t).
Let H and L denote the characteristic thickness and characteristic length along the

plane of the current free surface z = h(x, y, t), respectively. The main assumption
in lubrication approximation is that the lengthscale ratio H/L is small [51]. Here, as
we are interested in fluids whose viscosity depends on the pressure, we assume that
the ratio H/L is small though H is large enough to have a significant dependence of
the viscosity on the pressure.

As a consequence of the smallness of the lengthscale ratio H/L, the component
of the velocity parallel to the plane is much larger than the normal component, so
that

√
u2 + v2 � |w|. (147)

We call U, V and W the characteristic velocities along x, y and z directions,
respectively. Hence, U‖ = √

U2 + V2 and W are the characteristic velocities
parallel and perpendicular to the inclined plane, respectively. From Eqs. (139)1
and (147) we find that W = HU‖/L.

There are many ways of transforming the governing equation (139) and boundary
conditions (145) into dimensionless expressions. Here we introduce a scaling which
is similar to that introduced in [1]:

⎧
⎪⎪⎨

⎪⎪⎩

x∗ = 1

L
(xi+ yj)+ z

H
k, v∗ = 1

U‖
(ui+ vj)+ w

W
k, h∗ = h

H
,

W = H

L
U‖, t∗ = U‖

L
t, p∗ = p − pref

ρg cos ιH
, ς∗ = ς

ςref
.

(148)
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Substituting the dimensionless quantities (148) into equations (139), (141)
and (146) and into the boundary conditions (145) leads to (omitting all asterisks)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

εRe

(
∂u

∂ t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= ε
Re

Fr2

(
tan ι

ε
− ∂p

∂x

)

+ε
∂Sxx

∂x
+ ε

∂Sxy

∂y
+ ∂Sxz

∂z
,

εRe

(
∂v

∂ t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= −ε
Re

Fr2

∂p

∂y

+ε
∂Syx

∂x
+ ε

∂Syy

∂y
+ ∂Syz

∂z
,

ε2Re

(
∂w

∂ t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= − Re

Fr2

(

1 + ∂p

∂z

)

+ε
∂Szx

∂x
+ ε

∂Szy

∂y
+ ∂Szz

∂z
,

(149)

⎧
⎨

⎩

u = v = w = 0 on z = 0,

(−pI+ S)
(

−ε
∂h

∂x
i− ε

∂h

∂y
j + k

)

= 0 on z = h(x, y, t),
(150)

where ε = H/L � 1, and

S = ς( p)

[

ε2
(
∂u

∂x

)2

+ ε2
(
∂v

∂y

)2

+ ε2
(
∂w

∂z

)2

+ ε2

2

(
∂u

∂y
+ ∂v

∂x

)2

+ 1

2

(
∂u

∂z
+ ε2 ∂w

∂x

)2

+1

2

(
∂v

∂z
+ ε2 ∂w

∂y

)2 ] 1−χ
2χ ×

[

2ε

(
∂u

∂x
i⊗ i+ ∂v

∂y
j ⊗ j+ ∂w

∂z
k ⊗ k

)

(151)

+ε

(
∂u

∂y
+ ∂v

∂x

)

(i⊗ j + j ⊗ i)+
(
∂u

∂z
+ ε2 ∂w

∂x

)

(i ⊗ k+ k⊗ i)

+
(
∂v

∂z
+ ε2 ∂w

∂y

)

( j ⊗ k + k ⊗ j)
]

.

In this framework the dimensionless version of ς is an increasing function such that
ς(0) = 1. In particular, (143) and (144) become, respectively,

ς( p) = eωp with ω = βρg cos ιH, (152)

and

ς( p) = 1 + ωpn with ω = β(ρg cos ιH)n. (153)
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The dimensionless quantities

Re = ρU(2χ−1)/χ
‖ H1/χ

ςref
and Fr = U‖√

g cos ιH
(154)

are, respectively, the Reynolds and Froude numbers for a fluid film moving over an
inclined plane.

Depending on the values considered for the characteristic scales, different types
of flow regime occur. Here we shall focus on the following two types of flow
regimes:

1. The nearly steady uniform regime, where the viscous contribution is comparable
to the gravitational effect. In this case, we have

U‖ =
[
ρg sin ιH(χ+1)/χ

ςref

]χ

(155)

and Fr2 = O(Re). Inertial terms and pressure gradient terms must be negligible,
which means εRe � 1. Therefore, from (149) and (151) the approximate
equations are found to be given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

∂

∂z

⎧
⎨

⎩
ς( p)

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
](1−χ)/(2χ)

∂u

∂z

⎫
⎬

⎭

+2(1−χ)/(2χ) = 0,

∂

∂z

⎧
⎨

⎩
ς( p)

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
](1−χ)/(2χ)

∂v

∂z

⎫
⎬

⎭
= 0,

∂p

∂z
+ 1 = 0.

(156)

2. The viscous regime, where the effect of the pressure gradient is balanced by
stresses induced due to the viscosity within the bulk. In this case, we have

U‖ =
[
ρg cos ιH(2χ+1)/χ

ςrefL

]χ

(157)

and consequently Fr2 = εRe. Inertial terms must be small compared to the
effect of the pressure gradient and the slope must be gentle (tan ι = O(ε)). This
imposes the constraint εRe � 1. In such a way, from (149) and (151) we deduce
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the approximate equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

∂

∂z

⎧
⎨

⎩
ς( p)

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
](1−χ)/(2χ)

∂u

∂z

⎫
⎬

⎭

+2(1−χ)/(2χ)
(

tan ι

ε
− ∂p

∂x

)

= 0,

∂

∂z

⎧
⎨

⎩
ς( p)

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
](1−χ)/(2χ)

∂v

∂z

⎫
⎬

⎭

−2(1−χ)/(2χ) ∂p

∂y
= 0,

∂p

∂z
+ 1 = 0.

(158)

Moreover, from (150) and (151), by virtue of the smallness of ε, the boundary
conditions (145) approximate to

⎧
⎪⎪⎨

⎪⎪⎩

u = v = w = 0 on z = 0,
p = 0 on z = h(x, y, t),
∂u

∂z
= ∂v

∂z
= 0 on z = h(x, y, t).

(159)

Finally, we derive the evolution equation for the free surface z = h(x, y, t). We
first integrate the constraint of incompressibility over the flow depth to obtain, by
means of boundary condition (159)1,

∫ h

0

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)

dz = ∂

∂x

∫ h

0
udz+ ∂

∂y

∫ h

0
vdz−u|z=h

∂h

∂x
−v|z=h

∂h

∂y
−w|z=h.

(160)

But, obviously,

w|z=h = dh

dt
= ∂h

∂ t
+ u|z=h

∂h

∂x
+ v|z=h

∂h

∂y
. (161)

Therefore, combining (160) and (161) gives the required equation for h:

ht + ∂(hū)

∂x
+ ∂(hv̄)

∂y
= 0, (162)
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where we have introduced the depth-averaged variables defined as

ϕ̄(x, y, t) = 1

h(x, y, t)

∫ h(x,y,t)

0
ϕ(x, y, z, t)dz. (163)

6.2 Nearly Steady Uniform Regime

It is easy to verify that system (156) with boundary conditions (159) admits the
solution

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u = 2(1−χ)/2
∫ z

0

[
h − ζ

ς(h − ζ )

]χ

dζ,

v = 0,

w = −2(1−χ)/2 ∂

∂x

∫ z

0

{∫ ζ1

0

[
h − ζ

ς(h − ζ )

]χ

dζ2

}

dζ1,

p = h − z.

(164)

Therefore

hū = 2(1−χ)/2
∫ h

0
ξ

[
ξ

ς(ξ)

]χ

dξ ≡ F(h) (165)

and (162) becomes

∂h

∂ t
+ F′(h)∂h

∂x
= 0. (166)

Equation (166) is a quasilinear first order partial differential equation whose
general solution can be found by the method of characteristics. If f (ξ) is an initial
profile, then the corresponding solution is given by

h = f (x − F′(h)t). (167)

The wave (167) breaks, i.e. its profile becomes multivalued, at time tB =
−
[

F′′( f (ξB))
df

dξ
(ξB)

]−1

at the point xB = ξB + F′( f (ξB))tB, provided that ξB

satisfies the following two conditions

⎧
⎪⎪⎨

⎪⎪⎩

F′′( f (ξB))
df

dξ
(ξB) < 0

∣
∣
∣
∣F

′′( f (ξB))
df

dξ
(ξB)

∣
∣
∣
∣ = max

∣
∣
∣
∣
d F′( f (ξ))

dξ

∣
∣
∣
∣ .

(168)
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Fig. 3 Ratio tB/tBN as a function of (a) χ and (b) the piezo-viscous coefficient ω. The pressure-
dependent parameter ς is assumed to be of the form (143) and the initial profile considered is
h(x, 0) = 1 − x2

Since ς is a positive increasing function, from (168) we deduce that the pressure
dependence of the viscosity has the effect of delaying the time at which the wave
could break. To quantify this delaying effect we consider ς of the form (152) and
assume that h(x, 0) = f (x) = 1 − x2. If the fluid is Newtonian with a constant
viscosity μ0 (i.e., χ = 1 and ς(p − pref) = μref in (142)), it is easy to show that
the wave breaks at time tBN = 3

√
3/8. In order to make the differences between

the non-Newtonian case that is being considered and the classical Newtonian case
more evident, we have plotted the ratio between the breaking time tB in the non-
Newtonian case and tBN as a function of χ (Fig. 3a) and as a function of the non-
dimensional piezo-viscous coefficient ω (Fig. 3b). Furthermore, the solutions to the
wave equation (166) with χ = 0.5 (Fig. 4a) and χ = 1.5 (Fig. 4b) are plotted
at different times together with the profiles of the free surface z = h(x, t) in the
classical Newtonian case. We find that the solutions are qualitatively similar, though
quantitatively different.

Fig. 4 Solutions of (166) with an initial profile f (x) = 1 − x2 at t = 0, t = 0.5, t = 1. The dashed
line represents the solution in the classical Newtonian case, whereas the solid line represents the
solution in the case in which the dimensionless parameter ς depends on the pressure according to
the law ς(p) = e0.1p and (a) χ = 0.5 and (b) χ = 1.5
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Finally, in order to look for self-similar solutions of (166), we need to know
whether F′ is invertible. The invertibility of F′ is linked with the equation

χhς ′(h)− (χ + 1)ς(h) = 0. (169)

Indeed, if (169) admits positive roots, the least of which we denote by ĥ, then F′ is
invertible in [0, ĥ[. On the contrary, if (169) does not admit positive roots, then F′ is
invertible in [0,+∞[. In any case F′ is continuous and increasing. It is interesting
to show that some time after the initiation of the current, no matter what the initial
shape, the solution tends to the unique self-similar solution of Eq. (166), i.e.

h(x, t) → F′−1
(x

t

)
as t → +∞. (170)

In order to prove (170), from (166) we deduce that h is constant along the
characteristics given by

dx

dt
= F′(h). (171)

Thus, if initially h(x, 0) = f (x), the characteristics are straight lines

x = x0 + F′[ f (x0)]t, (172)

with x0 being the initial value of the characteristic. The solution of (166) is then

h(x, t) = F′−1
(

x − x0

t

)

→ F′−1
(x

t

)
as t → +∞. (173)

If the viscosity does not depend on the pressure, Eq. (170) reduces to the self-
similar solution found by Perazzo and Gratton [34] that in turn is the non-Newtonian
counterpart of the self-similar solution derived by Huppert [21] for Newtonian
fluids.

6.3 Viscous Regime

A lengthy but straightforward algebraic manipulation allows us to obtain the
solution to the boundary-value problem (158)–(159):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = 2(1−χ)/2
(

tan ι

ε
− ∂h

∂x

)[(
∂h

∂x
− tan ι

ε

)2

+
(
∂h

∂y

)2
](χ−1)/2 ∫ z

0

[
h − ζ

ς (h − ζ )

]χ

dζ,

v = −2(1−χ)/2 ∂h

∂y

[(
∂h

∂x
− tan ι

ε

)2

+
(
∂h

∂y

)2
](χ−1)/2 ∫ z

0

[
h − ζ

ς (h − ζ )

]χ

dζ,

w = −2(1−χ)/2∇s ·
{∣
∣
∣
∣
tan ι

ε
i − ∇sh

∣
∣
∣
∣

χ−1 ( tan ι

ε
i − ∇sh

)∫ z

0

[∫ ζ1

0

(
h − ζ2

ς(h − ζ2)

)χ

dζ2

]

dζ1

}

,

p = h − z,
(174)

where ∇s is the two-dimensional gradient:

∇sϕ = ∂ϕ

∂x
i+ ∂ϕ

∂y
j. (175)

Then

hū = F(h)

(
tan ι

ε
− ∂h

∂x

)[(
∂h

∂x
− tan ι

ε

)2

+
(
∂h

∂y

)2
](χ−1)/2

, (176)

hv̄ = −F(h)
∂h

∂y

[(
∂h

∂x
− tan ι

ε

)2

+
(
∂h

∂y

)2
](χ−1)/2

, (177)

so that (162) becomes

∂h

∂ t
+ ∇s ·

{

F(h)

∣
∣
∣
∣
tan ι

ε
i− ∇sh

∣
∣
∣
∣

χ−1 ( tan ι

ε
i− ∇sh

)}

= 0. (178)

Now let us make the further assumption that the flow depends only on the x

coordinate. Then
∂h

∂y
= 0 (so that v = 0) and (178) reduces to

∂h

∂ t
+ ∂

∂x

{

F(h)

∣
∣
∣
∣
tan ι

ε
− ∂h

∂x

∣
∣
∣
∣

χ−1 ( tan ι

ε
− ∂h

∂x

)}

= 0. (179)

To find traveling wave solutions we assume that h depends on the single variable
s ≡ x − ct, where c is a constant which represents the wave speed. Since in what
follows we shall assume that the inclined plane is infinite and limit our analysis to
waves propagating downwards, we take c > 0. We refer the interested reader to
[41] for a more detailed study of downslope and upslope traveling wave solutions.
Inserting the ansatz h = h(s) into (179) and integrating once, one obtains

∣
∣
∣
∣
tan ι

ε
− dh

ds

∣
∣
∣
∣

χ−1 ( tan ι

ε
− dh

ds

)

= c1 + ch

F(h)
, (180)
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c1 being an integration constant. Let c1 = 0 in (180). Then, (180) may be written as

dh

ds
= tan ι

ε
−
[

ch

F(h)

]1/χ

. (181)

In order to discuss the integrability of Eq. (181) with c > 0, we have to find the
positive roots of the following equation

(
tan ι

ε

)χ

F(h)− ch = 0. (182)

The roots of (182) may be found numerically. Nevertheless, we can deduce the num-
ber of positive roots of (182) by studying the function F (h) ≡ (tan ι/ε)χF(h)/h. F
is a continuous differentiable function that tends to zero as h → 0, whose derivative
may be written as

F ′(h) =
(

tan ι

ε

)χ 1

h2

∫ h

0
ξF′′(ξ)dξ (183)

= 2(1−χ)/2
(

tan ι

ε

)χ 1

h2

∫ h

0

(
ξ

ς(ξ)

)χ+1 [
(χ + 1)ς(ξ)− χξς ′(ξ)

]
dξ.

From (183) it follows that F ′ is positive in a neighbourhood of h = 0, but it
might change sign away from zero if (169) admits positive roots. Here, for the sake
of simplicity, we shall limit our analysis to the constitutive functions for which (169)
admits at most one positive root. It is easy to recognize that models (152) and (153)
meet this requirement.

We are now able to say how many positive roots (182) admits. In fact:

1. if [ς(h)/h]χ has linear growth as h → +∞, then F is increasing and tends to
l > 0 as h → +∞ so that (182) with c ∈]0, l[ admits only one positive root,
whereas it does not admit a positive root for c ≥ l;

2. if [ς(h)/h]χ has sublinear growth as h → +∞, then F is increasing and tends
to +∞ as h → +∞ so that, for any c > 0, (182) admits a unique positive root;

3. if [ς(h)/h]χ has superlinear growth as h → +∞, then F attains its absolute
maximum at h = h∗ > 0 and tends to zero as h → +∞ so that (182) admits
two positive roots if c ∈]0,F (h∗)[, only one positive root if c = F (h∗), and no
positive root for c > F (h∗).

According to the number of positive roots of (182), one, two or three families of
solutions to (180) may arise.

If (182) does not admit a positive root, then Eq. (180) may be numerically
integrated over the range (0, h̄) for all h̄ > 0. In this case the general solution is
a decreasing function defined over the interval (−∞, c2), c2 being an integration
constant and tends to +∞ as s → −∞. Therefore, we do not consider these
solutions as they do not satisfy the lubrication approximation.
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Fig. 5 Profiles of downslope traveling waves behind a front. The solid line represents the traveling
wave solution when χ = 1.5 and ς(p) = 1+0.2p, whereas the dashed line represents the traveling
wave solution in the classical Newtonian case. We have considered (tan ι)/ε = 1 and c = 1
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Fig. 6 Profiles of downslope traveling waves solutions for χ = 1.1, ς(p) = 1+ 0.05p3, tan ι/ε =
0.5 and c = 1. In the case we are considering two families of downslope traveling wave solutions
that satisfy the lubrication approximation arise (see the text): downslope traveling waves behind a
front (solid line) and compressive shock waves (dashed line)

If (182) admits only one positive root hm, then two families of solutions to (180)
arise. The first is formed by bounded decreasing functions defined over the range
(−∞, c2) satisfying the inequality 0 ≤ h ≤ hm. For these solutions we have h → hm

as s → −∞. Then they represent traveling waves behind a front running downslope
that, far behind the front (s → −∞), tend to the steady downslope flow h = hm (see
Fig. 5). The other family is formed by increasing functions bounded from below for
which h ≥ hm. These solutions represents downslope traveling waves with no front
for which h → hm as s → −∞ and h → +∞ as s → +∞. Therefore, they do not
satisfy the lubrication approximation.

If (182) admits two positive roots, hm < hM , then, as well as the downslope
traveling waves behind a front, two other families of solutions to (180) arise,
representing downslope traveling waves with no front (Fig. 6). The former is
constituted by bounded increasing functions satisfying the inequality hm ≤ h ≤ hM

and for which we have h → hm as s → −∞ and h → hM as s → +∞. The
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latter is formed by decreasing functions that are bounded from below as they satisfy
the inequality h ≥ hM and for which we have h → +∞ as s → −∞ and
h → hM as s → +∞. We disregard the traveling wave solutions belonging to
this family as the length-scale ratio fails to be small as s → −∞. On the contrary,
the former class of downslope travelling waves with no front satisfies the lubrication
approximation. Furthermore, as shown by Rajagopal et al. [41], the waves belonging
to this family are compressive shock waves which can also be viewed as heteroclinic
orbits connecting the two equilibria h = hm and h = hM of (181) (see Fig. 6).

We finally observe that

F(h) � 2(χ−1)/2 hχ+2

χ + 2
as h → 0. (184)

Therefore near the wave front, where the effects of pressure can be neglected, the
solution to Eq. (180) is approximated by that found by Perazzo and Gratton [34],
namely

tan ι

ε
(s − c2)

= h

{

1 − 2F1

[
χ

χ + 1
, 1,

2χ + 1

χ + 1
,

tan ι

ε

(
c(χ + 2)

2(1−χ)/2

)−1/χ

h1+1/χ

]}

,

(185)

with 2F1(a, b, c, d) being the hypergeometric function. From (185) we deduce that
h′ tends to infinity as s → c2. Hence, near the wave front, the component of the fluid
velocity normal to the incline is not small with respect to the parallel component and
thus the solution does not satisfy the lubrication approximation.
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1 Hyperbolic Equations

Many problems in science and engineering (e.g. wave propagation and transport
phenomena) are governed by advection-diffusion-reaction partial differential equa-
tions (PDEs). In the scalar case (a single equation) we may write

∂tq(x, t) + ∂x f (q(x, t)) = s(x, t, q(x, t)) + ∂x(α(x, t, q(x, t))∂xq(x, t)) , (1)

where q(x, t) is the unknown, called the dependent variable; q(x, t) is a function
of two independent variables x and t; f (q) is a prescribed function of q called the
flux, or physical flux; s(x, t, q) is also a prescribed function, called the source term.
The last term is called the diffusion term; α(x, t, q(x, t)) is the diffusion coefficient.
Equation (1) is parabolic due to the presence of the viscous term, a second-order
term. In the rest of these lectures we shall be concerned exclusively with hyperbolic
equations.

1.1 The Linear Advection Equation and Basic Concepts

A particular example of (1) is obtained by choosing

f (q) = λq , s(q) = 0 , α = 0 , (2)

with λ a constant wave propagation speed, which leads to the linear advection
equation (LAE)

∂tq + λ∂xq = 0 , −∞ < x < ∞ , t > 0 . (3)

Initial Value Problem (IVP) for the Linear Advection Equation We study the
simplest case of (1), the linear advection equation, in which the spatial domain is
infinite and an initial condition at the initial time t = 0 is prescribed, namely

PDE: ∂tq + λ∂xq = 0 , −∞ < x < ∞ , t > 0 ,

IC: q(x, 0) = h(x) , −∞ < x < ∞ ,

}

(4)

where h(x) is a prescribed function of distance x. Equation (4) defines a pure initial-
value problem or Cauchy problem.

Characteristic Curves and the Solution Characteristic curves, or characteristics,
are functions x(t) in the x-t half-plane of independent variables satisfying the IVP
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Fig. 1 Characteristic x(t) in
the t-x plane given by (6); x0:
foot of characteristic; positive
characteristic speed λ

x(t)

t

x(t) = x0 + λt

t = 0

x = x0

Fig. 2 Family of
characteristic curves x(t) in
the x-t plane, for the case of
positive characteristic speed
λ. Compare with Fig. 1

t

xx
(1)
0 x

(2)
0 x

(3)
0 x

(4)
0

x(t) = x
(k)
0 + λt

for an ordinary differential equation (ODE), namely

ODE:
dx

dt
= λ , t > 0 ,

IC: x(0) = x0 ,

⎫
⎬

⎭
(5)

whose solution is immediate and reads

x = x0 + λt . (6)

Figure 1 illustrates solution (6). In practice it is more common to represent
characteristics in the x-t plane. The inclination of the characteristics depends on the
characteristic speed λ, in fact on 1/λ. In the linear case with constant coefficients,
characteristics are all parallel to each other, as seen in Fig. 2.

Consider now the time-rate of change (or total derivative) of q(x(t), t) along a
characteristic curve x = x(t)

dq

dt
= ∂q

∂ t

dt

dt
+ ∂q

∂x

dx

dt
. (7)

But the curve x(t) satisfies the ODE in (5). Then (7) becomes

dq

dt
= ∂tq + λ∂xq = 0 . (8)
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That is, q(x, t) is constant along x = x0 +λt. Consequently, the PDE in (4) becomes
an ODE, namely

dq

dt
= 0 along the characteristic x = x0 + λt .

This ODE states that q(x, t) is constant along the characteristic. From the above
observations, the value of q(x, t) at a point (x, t) on the characteristic curve passing
through (x, t) is equal to the value of q at the point x0 called the foot of the
characteristic. That is

q(x, t) = q(x0, 0) = h(x0) . (9)

But from (6)

x0 = x − λt

and therefore the solution of IVP (4) is

q(x, t) = h(x − λt) , (10)

which is the initial condition h in (4) evaluated at the position x−λt. Figure 3 shows
the three possible cases that can occur due to the value of the characteristic speed.

IVP Example Here we study in detail the following IVP

PDE: ∂tq + λ∂xq = 0 , −∞ < x < ∞ , t > 0 ,

IC: q(x, 0) = h(x) =
⎧
⎨

⎩

0 if x < −1 ,

1 − x2 if −1 ≤ x ≤ 1 ,

0 if x > 1 .

⎫
⎪⎪⎬

⎪⎪⎭

(11)

Solution According to formula (10) the solution of (11) is

q(x, t) = h(x − λt) =
⎧
⎨

⎩

0 if x < −1 + λt ,
1 − (x − λt)2 if −1 + λt ≤ x ≤ 1 + λt ,

0 if x > 1 + λt .
(12)

Note that for a given speed λ and a chosen time t, the solution is simply a function
of x, called a profile. See Fig. 4.
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Fig. 3 The solution at point
(x̂, t̂) is found by tracing the
characteristic from (x̂, t̂) back
to its foot x0. There are three
possibilities: (a) λ > 0, (b)
λ = 0, (c) λ < 0

t

x

(c)

x̂ = x0 + λt̂, λ < 0

x̂ x0

t̂

t

x

(b)

x̂ = x0 + 0 · t̂

x̂ = x0

t̂

t

x

(a)

x̂ = x0 + λt̂, λ > 0

x̂x0

t̂

The Riemann Problem Riemann problem for the linear advection equation is the
special IVP

PDE: ∂tq + λ∂xq = 0 , −∞ < x < ∞ , t > 0 ,

IC: q(x, 0) = h(x) =
{

qL (constant) if x < 0 ,

qR (constant) if x > 0 ,

⎫
⎬

⎭
(13)

where qL (left of 0) and qR (right of 0) are constants.

Solution of the Riemann Problem From (10) it is obvious that the solution is

q(x, t) = h(x − λt) =
{

qL if x − λt < 0 ↔ x
t < λ ,

qR if x − λt > 0 ↔ x
t > λ .

(14)

See Fig. 5.
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t

x

x = −1 + λt x = 1 + λt

R0 R1 R2
(b)

q(x, 0)

x−1 0 1

(a)

q(x, t)

x−1 0 1

t

(c)

Fig. 4 Solution (12) of initial value problem (11). Frame (a) displays the initial condition q(x, 0);
frame (b) displays picture of characteristics in x-t space and frame (c) shows solution profiles
q(x, tk) at different times tk

1.2 Linear Systems

We now consider a general one-dimensional, time-dependent system of m linear
hyperbolic equations with source terms, namely

∂tQ(x, t) + A∂xQ(x, t) = S(Q(x, t)) . (15)

Here Q: unknowns, A: matrix of coefficients (constant) and S(Q): source terms.
These are given as follows

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

q1

. . .

qi

. . .

qm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a11 . . . a1i . . . a1m

. . . . . . . . . . . . . . .

ai1 . . . aii . . . aim

. . . . . . . . . . . . . . .

am1 . . . ami . . . amm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, S(Q) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s1

. . .

si

. . .

sm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (16)

Note that the linear advection equation (3) is a special case of (15).
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t

x

(b)

x = 0 + λt

R0 R1

x

q(x, 0)

0

(a)

q(x, t)

x0

t

(c)

Fig. 5 Solution of Riemann problem (13). Frame (a) displays piece-wise constant initial condition
q(x, 0). Frame (b) displays picture of characteristics in x-t space. Frame (c) shows solution profiles
q(x, tk) at different times tk

Eigenvalues and Eigenvectors The eigenvalues of system (15) are the roots of the
characteristic polynomial

P(λ̂) ≡ Det(A − λ̂I) = 0 . (17)

Here I: m × m unit matrix; λ̂: a parameter; λi: eigenvalues, that is roots of (17),
which if real numbers, are conventionally written in increasing order

λ1 ≤ λ2 ≤ . . . ≤ λi ≤ . . . ≤ λm−1 ≤ λm . (18)

A right eigenvector Ri of A corresponding to λi is column vector

Ri = [r1i , r2i , . . . , rii , . . . , rmi]T , (19)

such that

ARi = λiRi . (20)
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The full set of m right eigenvectors corresponding to the eigenvalues (18) are

R1 ,R2 , . . . ,Ri , . . . ,Rm−1 ,Rm . (21)

A left eigenvector Li of A corresponding to λi is the row vector

Li = [li1 , li2 , . . . , lii , . . . , lim] , (22)

such that

LiA = λiLi . (23)

The m eigenvalues (18) generate corresponding m left eigenvectors

L1 ,L2 , . . . ,Li , . . . ,Lm−1 ,Lm . (24)

Hyperbolic System A system (15) is said to be hyperbolic if A has m
real eigenvalues and a corresponding complete set of m linearly independent
eigenvectors.

Note that for hyperbolicity, the eigenvalues are not required to be all distinct. What
is important is that there is a complete set of linearly independent eigenvectors,
corresponding to the real eigenvalues.

Strictly Hyperbolic System A hyperbolic system is said to be strictly hyperbolic
if all eigenvalues of the system are distinct.

Weakly Hyperbolic System A system may have real but not distinct eigenvalues
and still be hyperbolic if a complete set of linearly independent eigenvectors exists.
However if all eigenvalues are real but no complete set of linearly independent
eigenvectors exists then the system is called weakly hyperbolic, not to be mistaken
with non-strictly hyperbolic.

Orthonormality of Eigenvectors The eigenvectors Li and Rj are orthonormal if

Li • Rj =
{

1 if i = j ,
0 if i �= j .

(25)

Diagonalization and Characteristic Variables Consider R = [R1 , . . . ,Ri , . . . ,

Rm]: matrix whose columns are the right eigenvectors; Λ: diagonal matrix formed
by eigenvalues. In full

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

r11 . . . r1i . . . r1m

. . . . . . . . . . . . . . .

ri1 . . . rii . . . rim

. . . . . . . . . . . . . . .

rm1 . . . rmi . . . rmm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ1 . . . 0 . . . 0
. . . . . . . . . . . . . . .

0 . . . λi . . . 0
. . . . . . . . . . . . . . .

0 . . . 0 . . . λm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (26)
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Proposition If A is the coefficient matrix of a hyperbolic system (15) then

A = RΛR−1 or Λ = R−1AR . (27)

In this case A is said to be diagonalisable and consequently system (15) is said to
be diagonalisable. The proof is left as an exercise.

Characteristic Variables The existence of R−1 makes it possible to define the
characteristic variables C = [c1, c2, . . . , cm]T via

C = R−1Q ↔ Q = RC . (28)

Calculating the partial derivatives, recalling that the coefficient matrix is constant,
we have

∂tQ = R∂tC , ∂xQ = R∂xC

and direct substitution of the these expressions into Eq. (15) gives

R∂tC + AR∂xC = S .

Multiplication of this equation from the left by R−1 and use of (27) gives

∂tC + Λ∂xC = Ŝ , Ŝ = R−1S . (29)

This is called the canonical form or characteristic form of system (15). Assuming
Ŝ = 0 and writing the equations in full, we have

∂t

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c1

. . .

ci

. . .

cm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ1 . . . 0 . . . 0
. . . . . . . . . . . . . . .

0 . . . λi . . . 0
. . . . . . . . . . . . . . .

0 . . . 0 . . . λm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∂x

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c1

. . .

ci

. . .

cm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
. . .

0
. . .

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (30)

Clearly, each equation i-th of this system is of the form

∂tci + λi∂xci = 0 , i = 1, . . . ,m (31)

and involves the single unknown ci(x, t), which is decoupled from the remaining
variables. Moreover, this equations is identical to the linear advection equation (3),
with characteristic speed λi.

We have m decoupled equations, each one defining a characteristic curve. Thus,
at any chosen point (x̂, t̂) in the x-t half-plane there are m characteristic curves xi(t)
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t

x

(x̂, t̂)

x̂

t̂

x
(0)
1x

(0)
ix

(0)
m

dx1

dt
= λ1

dxi

dt
= λi

dxm

dt
= λm

Fig. 6 The solution at a point (x̂, t̂) depends on the initial condition at the foot x(0)i of each

characteristic xi(t) = x(0)i + λit

passing through (x̂, t̂) and satisfying the m ODEs

dxi

dt
= λi , for i = 1, . . . ,m , (32)

as depicted in Fig. 6.

Remarks

• Each characteristic curve xi(t) = x(0)i + λit intersects the x-axis at the point x(0)i ,
which is the foot of the characteristic passing through the point (x̂, t̂). The point
x(0)i is given as

x(0)i = x̂ − λi t̂ , for i = 1, 2, . . . ,m . (33)

See Fig. 6.
• Each Eq. (31) is just a linear advection equation whose solution at (x̂, t̂) is given

by

ci(x̂, t̂) = c(0)i (x(0)i ) = c(0)i (x̂ − λi t̂) , for i = 1, 2, . . . ,m , (34)

where c(0)i (x) is the initial condition, at the initial time. The initial conditions for
the characteristic variables are obtained from the transformation (28) applied to
the initial condition Q(x, 0).

• Given the assumed order (18) of the distinct eigenvalues the following inequali-
ties are satisfied.

x(0)m < x(0)m−1 < . . . < x(0)2 < x(0)1 . (35)
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Domain of Dependence The interval [x(0)m , x(0)1 ] is called the domain of depen-
dence of the point (x̂, t̂). See Fig. 6. The solution at (x̂, t̂) depends exclusively on
initial data at points in the interval [x(0)m , x(0)1 ]. This is a distinguishing feature of
hyperbolic equations. The initial data outside the domain of dependence can be
changed in any manner we wish but this will not affect the solution at the point
(x̂, t̂).

Proposition: The General Initial-Value Problem The solution of the general IVP
for the linear homogeneous hyperbolic system

PDEs: ∂tQ + A∂xQ = 0 ,−∞ < x < ∞ , t > 0 ,

IC: Q(x, 0) = Q(0)(x)

⎫
⎬

⎭
(36)

is given by

Q(x, t) =
m∑

i=1

ci(x, t)Ri . (37)

The coefficient ci(x, t) of the right eigenvector Ri is a characteristic variable. The
proof is left as an exercise.

Remarks

1. The function ci(x, t) is the coefficient of Ri in an eigenvector expansion of the
solution vector Q(x, t).

2. Given a point (x, t) in the x-t plane, the solution Q(x, t) depends only on the
initial data at the m points x(i)0 = x − λit. See Fig. 6.

3. These points are the intersections of the characteristics of speed λi with the x-
axis.

4. Solution (37) represents superposition of m waves of unchanged shape c(0)i (x)Ri

propagated with speed λi.

Proposition: The Riemann Problem Solution The solution of Riemann problem

PDEs: ∂tQ + A∂xQ = 0 , −∞ < x < ∞ , t > 0 ,

IC: Q(x, 0) = Q(0)(x) =
{

QL if x < 0 ,

QR if x > 0 ,

⎫
⎬

⎭
(38)

with QL and QR two constant vectors, is given by

Q(x, t) =
I∑

i=1

ciRRi +
m∑

i=I+1

ciLRi , (39)
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= λi

x

t
= λm

R0

R1

Ri

Rm

x = 0

QL QR

Fig. 7 Structure of the solution of the Riemann problem. There are m waves that divide the half
x-t plane into m + 1 regions (wedges) Ri, with i = 0, 1, . . . ,m

where

m∑

i=1

ciLRi = QL ,

m∑

i=1

ciRRi = QR (40)

and I = I(x, t) is the maximum value of i for which x − λit > 0. The proof is left as
an exercise.

Remarks on the Solution of the Riemann Problem

1. The initial data consists of two constant vectors QL and QR, separated by a
discontinuity at x = 0.

2. This is a special case of IVP (36).
3. The structure of the solution of the Riemann problem (38) is depicted in Fig. 7,

in the x-t plane.
4. The solution consists of a fan of m waves emanating from the origin, one wave

for each eigenvalue λi. The speed of the wave i is the eigenvalue λi.
5. These m waves divide the x-t half plane into m + 1 constant regions

Ri =
{
(x, t)/ − ∞ < x < ∞; t ≥ 0; λi <

x

t
< λi+1

}
, (41)

for i = 1, . . . ,m − 1; R0 corresponds to the initial data QL and Rm corresponds
to the initial data QR. See Fig. 7.

Solving the Riemann problem means finding constant values for Q in regions Ri

for = 1, . . . ,m − 1.

Corollary The solution of the Riemann problem may be expressed as

Q(x, t) = QL +
I∑

i=1

δiRi = QR −
m∑

i=I+1

δiRi , (42)
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t
= λI+1

x

t
= λm

R0

Ri

Rm

x = 0

QL QR

(x̂, t̂)

x̂

t̂

Fig. 8 The solution of the Riemann problem at a point (x̂, t̂) depends on the associated index
I = I(x̂, t̂)

where the coefficients ΔC = [δ1, . . . , δi, . . . , δm]T are the solution to the linear
algebraic system

m∑

i=1

δiRi = ΔQ ≡ QR − QL . (43)

This form is more convenient. We only need to solve one linear system. The proof
is left as an exercise. Figure 8 illustrates the solution at a point (x̂, t̂).

1.3 Non-linear Scalar Equations: Definitions and Examples

Consider the first-order PDE for the unknown function q(x, t)

∂tq + ∂x f (q) = 0 . (44)

This equation is called a conservation law, in which q is the conserved variable;
f (q) is the flux function or physical flux, a prescribed function of q. The equation
is said to be written in differential, conservative form. One may express (44) in
quasi-linear form as

∂tq + λ(q)∂xq = 0 , λ(q) = d

dq
f (q) ≡ f ′(q) . (45)

Here λ(q) is called characteristic speed.
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Equations of the type (44) may be characterised by the behaviour of the flux f (q)
and its derivative, namely the characteristic speed λ(q) = f ′(q). There are three
cases:

1. Convex flux: λ(q) is a monotone increasing function of q, that is

d

dq
λ(q) = λ′(q) = f ′′(q) > 0 , ∀q . (46)

2. Concave flux: λ(q) is a monotone decreasing function of q, that is

d

dq
λ(q) = λ′(q) = f ′′(q) < 0 , ∀q . (47)

3. Non-convex, non-concave flux: λ(q) vanishes for some q, that is

d

dq
λ(q) = λ′(q) = f ′′(q) = 0 , for some q . (48)

Example: The Inviscid Burgers’ Equation

∂tq + ∂x f (q) = 0 ,

f (q) = 1

2
q2 ,

λ(q) = f ′(q) = q , λ′(q) = f ′′(q) = 1 > 0 , ∀q .

⎫
⎪⎪⎬

⎪⎪⎭

(49)

The flux is convex; the monotone increasing behaviour of λ(q) means that larger
values of q propagate faster than smaller values of q. This leads to wave distortion
and shock formation. We note that the true Burgers equation is viscous, namely

∂tq + ∂x f (q) = α∂(2)x q , f (q) = 1

2
q2 ,

where α is a viscosity (or diffusion) coefficient.

Example: A Traffic Flow Equation

∂tq + ∂x f (q) = 0 ,

f (q) = umax(1 − q/qmax)q ,

λ(q) = f ′(q) = umax(1 − 2q/qmax) ,

λ′(q) = f ′′(q) = −2umax/qmax < 0 , ∀q .

⎫
⎪⎪⎬

⎪⎪⎭

(50)

Here umax ≥ 0 and qmax > 0 are two constants, with 0 < q ≤ qmax. The flux is
concave, larger values of q will propagate more slowly than smaller values of q, the
opposite behaviour to that of Burgers’ equation.
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Solution Along Characteristics Consider the initial-value problem (or Cauchy
problem)

PDE: ∂tq + ∂x f (q) = 0 ,

IC: q(x, 0) = h(x) .

}

(51)

As for LAE, solutions along characteristic curves x = x(t), with

x = x0 + λ(h(x0))t (52)

can be defined as

q(x, t) = h(x0) = h(x − λ(h(x0))t) . (53)

Figure 9 depicts the situation.

Crossing Characteristics For non-linear equations, characteristics are no longer
parallel, as in the linear case. Therefore, characteristic curves may cross, as
illustrated in Fig. 10.

t

x

x = x0 + λ(h(x0))t

x0

Fig. 9 Characteristic curve x(t) = x0 + λ(h(x0)) t emanating from x0: foot of the characteristic

t

xx
(1)
0 x

(2)
0

x = x
(1)
0 + λ

(
h

(
x
(1)
0

))
t

x = x
(2)
0 + λ

(
h

(
x
(2)
0

))
t

h
(
x
(1)
0

)

h
(
x
(2)
0

)

Double-valued
solution here

Fig. 10 Characteristics from x(1)0 and x(2)0 carry different initial values h(x(1)0 ) and h(x(2)0 ), leading
to multi-valued solutions
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Fig. 11 Shock wave
formation from smooth initial
condition at time t = 0.
Burgers’ equation solved
numerically with the
first-order Godunov method
on a very fine mesh

0 2 4 6 8 10
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Shock
Shock

Initial condition

Shock Formation: A Numerical Example For non-linear equations, even if the
initial data is continuous, discontinuities may develop in time. This is illustrated in
Fig. 11 below, where a sequence of profiles corresponding to an increasing sequence
of time values is shown, starting from t = 0, the initial condition.

The phenomenon of shock formation in non-linear equations calls for the
extension of the definition of solution. To this end the equations are reformulated
in terms of integral relations that no longer require continuity of the solution.

Integral Forms of the Equation Consider the general case written in differential
conservative form

∂tq(x, t) + ∂x f (q(x, t)) = s(q(x, t)) . (54)

This equation includes a source term and is thus called a balance law. If s(q(x, t)) =
0 then the equation is a conservation law.

Here we study integral forms, to accommodate discontinuous solutions. We
shall also derive a condition to be satisfied at discontinuities. To this end we consider
a control volume V in the x-t plane, depicted in Fig. 12, defined as

V = [xL, xR] × [t1, t2] . (55)

We integrate Eq. (54) in space and time in the control volume V

∫ xR

xL

∫ t2

t1
[∂tq(x, t) + ∂xf (q(x, t))] dxdt =

∫ xR

xL

∫ t2

t1
s(q(x, t)) dxdt . (56)

On rearranging the space and time integrals we obtain

∫ xR

xL

[∫ t2

t1
∂tq(x, t)dt

]

dx = −
∫ t2

t1

[∫ xR

xL

∂x f (q(x, t))dx

]

dt

+
∫ xR

xL

∫ t2

t1
s(q(x, t))dxdt .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(57)
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t

xxL xR

t1

t2

V

Fig. 12 Control volume V = [xL, xR] × [t1, t2] in x-t space. Equations will be integrated exactly
on this volume to derive integral forms of the conservation laws

Exact space-time integration gives the integral form of the balance law (54),
namely

∫ xR

xL

q(x, t2)dx =
∫ xR

xL

q(x, t1)dx −
[∫ t2

t1
f (q(xR, t))dt −

∫ t2

t1
f (q(xL, t))dt

]

+
∫ xR

xL

∫ t2

t1
s(q(x, t))dxdt .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(58)

In the absence of the source term, the integral form states that the amount of q(x, t)
in the interval [xL, xR] at time t = t2 is equal to the amount of q(x, t) in the interval
[xL, xR] at time t = t1 plus a difference of time integrals of the fluxes at the extreme
points. In the presence of a source term this statement is modified appropriately.

It is also convenient to obtain an averaged version of (58), namely

1

Δx

∫ xR

xL

q(x, t2)dx = 1

Δx

∫ xR

xL

q(x, t1)dx

−Δt

Δx

[
1

Δt

∫ t2

t1
f (q(xR, t))dt − 1

Δt

∫ t2

t1
f (q(xL, t))dt

]

+ Δt

ΔxΔt

∫ xR

xL

∫ t2

t1
s(q(x, t))dxdt .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(59)

The Finite Volume Formula The integral expression (59) can be written as

qnew = qold − Δt

Δx

[
fright − fleft

]+Δt svol , (60)
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which is exact, with the following definitions

qnew = 1
Δx

∫ xR
xL

q(x, t2)dx ,

qold = 1
Δx

∫ xR
xL

q(x, t1)dx ,

fright = 1
Δt

∫ t2
t1

f (q(xR, t))dt ,

fleft = 1
Δt

∫ t2
t1

f (q(xL, t))dt ,

svol = 1
ΔxΔt

∫ xR
xL

∫ t2
t1

s(q(x, t))dxdt .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(61)

Numerical methods called finite volume methods, use the finite volume formula (60)
to compute approximate solutions in which qold is a known average of the solution
at the previous time level and the remaining terms on the right hand side of (60)
are found by appropriate approximations of the integrals in (61). The computational
parameters Δt and Δx must be prescribed to complete the scheme to compute qnew.

Generalised Solutions and Rankine-Hugoniot Conditions A generalised (or
weak) solution of the conservation law (54) is a function q(x, t) that satisfies the
integral form (58). Weak solutions admit discontinuities (shocks), which satisfy the
Rankine-Hugoniot jump condition.

Proposition: Rankine-Hugoniot Condition A discontinuity of a weak solution
of the conservation law (54), no source term, satisfies the Rankine-Hugoniot jump
condition across it, namely

f (q(sR, t)) − f (q(sL, t)) = [q(sR, t) − q(sR, t)] s , (62)

where q(sL, t) and q(sR, t) are limiting values from left and right of the discontinuity;
f (q(sR, t)) and f (q(sL, t)) are the corresponding flux values and s is the speed of the
discontinuity. For the proof see [1].

Summarising in order to admit discontinuous solutions one needs to formulate
the equations in integral form and enforce the Rankine-Hugoniot condition across
discontinuities, while in smooth parts of the solution one may formulate equations
in differential form.

Example: Burgers’s Equation Assume a shock wave of speed s with states qL and
qR. The Rankine-Hugoniot condition gives

f (qR)− f (qL) = 1

2
q2

R − 1

2
q2

L = s(qR − qL) ,
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from which the shock speed is given by

s = 1

2
(qL + qR) . (63)

This is a very special case. The shock speed is a simple arithmetic average of the
characteristic speeds either side of the shock.

A Non-uniqueness Example The enlarged set of solutions of the integral formu-
lation includes smooth (classical) and discontinuous solutions. However, now the
set is too large, it contains spurious, non-physical solutions. Hence this requires
an admissibility criterion to discard unphysical shocks. To illustrate the question of
non-uniqueness we consider the following example:

PDE : ∂tq + ∂x f (q) = 0 , f (q) = 1
2 q2 ,

IC : q(x, 0) = h(x) =
{

qL = 0 if x < 0 ,

qR = 1 if x > 0 .

⎫
⎬

⎭
(64)

Solution 1: Rarefaction Wave One solution of the problem is the rarefaction wave
(smooth)

q(x, t) =
⎧
⎨

⎩

qL = 0 if x/t < 0 ,

x/t if 0 ≤ x/t ≤ 1 ,

qR = 1 if x/t > 1 .

(65)

Figure 13 illustrates solution and the corresponding picture of characteristics.

t

x

Tail x = 0 + 1t
(Head)︷ ︸︸ ︷Rarefaction fan

x = 0

Fig. 13 Illustration of the rarefaction solution (65) to initial-value problem (64)
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t

x

x

t
=

1

2

x

t
= 1

Shock solution

x = 0

Fig. 14 Illustration of the shock solution (66) to problem (64). Characteristics diverge from the
shock path

Solution 2: Shock Wave Another, discontinuous, solution (shock) is given as

q(x, t) =
{

0 if x/t < s = 1/2 ,

1 if x/t > s = 1/2 .
(66)

Figure 14 shows the shock solution to problem (64). Note that characteristics diverge
from the shock and the solution is therefore non-admissible. So the initial value
problem (64) has at least two solutions.

Admissible Shocks: The Lax Entropy Condition The proposed solution (66) is
not accepted as a physical solution. Rarefaction shocks are excluded. Admissible
discontinuities are those arising from compression. This compressibility condition
is ensured by the Lax entropy condition:

λ(qL) > s > λ(qR) . (67)

s: shock speed, λ(qL) and λ(qR) are characteristic speeds. Note that characteristics
run into the shock, which is compressed by the characteristics, see Fig. 15.

The Riemann Problem for Burgers’s Equation The problem is defined as

PDE : ∂tq + ∂x f (q) = 0 , f (q) = 1
2 q2 ,

IC : q(x, 0) =
{

qL if x < 0 ,

qR if x > 0 .

⎫
⎬

⎭
(68)
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t

x0

qL

qR
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dt
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= λ(qL)

dx

dt
= λ(qR)

Fig. 15 Picture of characteristics for an entropy-satisfying shock. Characteristic curves run into
the shock path

The solution is given by the following two cases, shock if qL > qR and rarefaction
otherwise:

q(x, t) =
{

qL if x − st < 0
qR if x − st > 0

s = 1
2 (qL + qR)

⎫
⎪⎪⎬

⎪⎪⎭

if qL > qR ,

q(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qL if
x

t
≤ qL

x

t
if qL <

x

t
< qR

qR if
x

t
≥ qR

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

if qL ≤ qR .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(69)

Figure 16 illustrates the solution structure for the two cases. The bottom frame
shows the shock case while the top frame shows the rarefaction case.

First-Order Non-linear Systems To end this introductory section we state that the
general setting is that of non-linear systems of m hyperbolic balance laws in three
space dimensions, which written in differential conservative form read

∂tQ + ∂xF(Q)+ ∂yG(Q)+ ∂zH(Q) = S(Q) , (70)
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t

xx = 0

qL qR

dx

dt
= s =

1

2
(qL + qR)

(a) qL > qR

t

xx = 0

qL qR

︷ ︸︸ ︷

(b) qL ≤ qR

dx

dt
= λ(qL)

dx

dt
= λ(qR)q(x, t) =

x

t

Fig. 16 Solution of the Riemann problem for the Burgers equation. Frame (a): shock wave if
qL > qR. Frame (b): rarefaction wave if qL ≤ qR

where

Q =

⎡

⎢
⎢
⎣

q1

q2

. . .

qm

⎤

⎥
⎥
⎦ ; F =

⎡

⎢
⎢
⎣

f1
f2
. . .

fm

⎤

⎥
⎥
⎦ ; G =

⎡

⎢
⎢
⎣

g1

g2

. . .

gm

⎤

⎥
⎥
⎦ ; H =

⎡

⎢
⎢
⎣

h1

h2

. . .

hm

⎤

⎥
⎥
⎦ ; S =

⎡

⎢
⎢
⎣

s1

s2

. . .

sm

⎤

⎥
⎥
⎦ .

(71)

Here the independent variables are: x, y, z and t. Q(x, y, z, t) is the vector of
dependent variables, called conserved variables; F(Q) is the flux vector in the
x-direction; G(Q) is the flux vector in the y-direction and H(Q) is the flux vector in
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the z-direction; S(Q) is the vector of source terms. Fluxes and sources are prescribed
functions of Q(x, y, z, t).

In this chapter we deal exclusively with the one-dimensional case (1D). For the
more general case see for example [1–3] and [4].

1.4 Numerical Approximation of Hyperbolic Equations

Here we introduce some basic concepts on numerical discretization methods
for hyperbolic equations, all based on the simplest equation. To this end we
first consider the initial-boundary value problem (IBVP) for the linear advection
equation

PDE: ∂tq + λ∂xq = 0 , x ∈ [a, b] , t > 0 ,

IC: q(x, 0) = h(x) , x ∈ [a, b] , t = 0 ,

BCs: q(a, t) = bL(t) ; q(b, t) = bR(t) , t ≥ 0 .

⎫
⎬

⎭
(72)

Here [a, b] defines the spatial domain; h(x) is the initial condition (IC) at the initial
time t = 0, a prescribed function of x; bL(t) and bR(t) are prescribed functions of
time and define boundary conditions (BCs) at x = a (left) and at x = b (right).

Finite Difference Discretisation One approach to solve problem (72) is by the
method of finite differences, which requires the following steps:

1. Partition of the spatial domain [a, b] into M + 2 equidistant points

xi = a + iΔx , i = 0, . . . ,M + 1 , Δx = b − a

M + 1
, (73)

where M is a chosen positive integer. See Fig. 17. There are M interior points:
x1, x2, . . . , xM ; and two boundary points: x0 = a and xM+1 = b.

2. Partition of the temporal domain [0,Tout] into a set of time points, or time levels,

tn = nΔt , n = 0 , . . . ,Nout , . . . . (74)

See Fig. 17. Here t0 = 0: initial time; Tout = ΔtNout; Δt: timestep. We assume a
fixed relationship between Δt and Δx of the form

Δx = Δt × K , K > 0 : constant . (75)

The spatial mesh parameter Δx is chosen through the choice of M, that is, the
number of interior points. There are no particular constraints in choosing M. The
choice of the time step Δt is constrained by accuracy or stability considerations [4].
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Fig. 17 Finite difference
mesh defining a discrete set
of points (xi, tn) resulting
from partitions of the spatial x
and temporal t domains

Tout

Δx Δt

tn+1

tn–1

x = a x = b xxi– 1 xi xi + 1

tn

Discrete Values The continuous domain [a, b] × [0,∞) has been replaced by
a mesh made up of a finite number of points (xi, tn). We now need to replace
the continuous distribution of the function q(x, t) by a finite number of discrete
values q(xi, tn) associated with these points. Then in order to solve the differential
equation in this discrete setting we also need to represent in discrete form the
partial derivatives ∂tq(x, t) and ∂xq(x, t) in (72). Here we do so by finite difference
approximations. In this manner the partial differential equation is represented by
a difference equation, an expression that relates approximate discrete values of the
solution at neighbouring points. The differential operator is replaced by a numerical
operator, as we shall see.

Consider the generic point (xi, tn) of the mesh, as shown in Fig. 17. We seek an
approximation to q(xi, tn) and this will be denoted by qn

i , that is

qn
i ≈ q(xi, tn) . (76)

The temporal partial derivative ∂tq(x, t) can be approximated in a variety of ways,
such as

∂tq(xi, tn) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q(xi, tn+1) − q(xi, tn)

Δt
+ O(Δt) , Forward ,

q(xi, tn)− q(xi, tn−1)

Δt
+ O(Δt) , Backward ,

q(xi, tn+1) − q(xi, tn−1)

2Δt
+ O(Δt2) , Centred .

(77)

Analogously, for the spatial partial derivative ∂xq(x, t) in (72) at the point (xi, tn) we
write

∂xq(xi, tn) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q(xi+1, tn)− q(xi, tn)

Δx
+ O(Δx) , Forward ,

q(xi, tn) − q(xi−1, tn)

Δx
+ O(Δx) , Backward ,

q(xi+1, tn)− q(xi−1, tn)

2Δx
+ O(Δx2) , Centred .

(78)
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Now, various combinations of these finite difference approximations will lead to
various well-known methods.

The Method of Godunov: Finite Difference Version This method uses the
following approximations to partial derivatives

∂tq(xi, tn) = q(xi, tn+1)− q(xi, tn)

Δt
+ O(Δt) ,

∂xq(xi, tn) =

⎧
⎪⎨

⎪⎩

q(xi, tn)− q(xi−1, tn)

Δx
+ O(Δx) if λ > 0 ,

q(xi+1, tn)− q(xi, tn)

Δx
+ O(Δx) if λ < 0 .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(79)

Remarks

1. The time derivative is approximated by a forward-in-time formula.
2. The space derivative is approximated by a one-sided, upwind, space derivative

discretisation, according to the sign of the wave propagation speed.
3. For linear equations the method was first proposed Courant, Isaacson and Rees

(1952).
4. Godunov [5] extended the upwind method in conservation form to solve non-

linear systems of hyperbolic equations, see Sect. 3.

The differential operator in (72) is

Le(q) ≡ ∂tq(x, t) + λ∂xq(x, t) = 0 , (80)

which when applied to the point (xi, tn) of the mesh, for λ > 0, becomes

Le(q(xi, tn)) = ∂tq(xi, tn)+ λ∂xq(xi, tn)

= q(xi, tn+1)− q(xi, tn)

Δt
+ O(Δt)

+λ[q(xi, tn)− q(xi−1, tn)

Δx
] + O(Δx)

= 0 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(81)

Suppressing O(Δt) + O(Δx) and replacing q(xi, tn) by qn
i gives

qn+1
i − qn

i

Δt
+ λ

(
qn

i − qn
i−1

Δx

)

= 0 .
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i 1 i i + 1
n

n + 1

Fig. 18 Stencil for Godunov’s method for positive characteristic speed λ. Note the one-sided
(upwind) character of the stencil

Solving for qn+1
i we obtain the numerical scheme

qn+1
i = qn

i − λΔt

Δx

(
qn

i − qn
i−1

)
. (82)

The Courant-Friedrichs-Lewy number, or the CFL number, or simply Courant
number is defined as

c = λΔt

Δx
= λ

Δx/Δt
. (83)

This is a dimensionless quantity, it is the ratio of the speed λ in the PDE in (72) and
the mesh speed Δx/Δt. Then the Godunov upwind scheme becomes

qn+1
i = qn

i − c
(
qn

i − qn
i−1

)
. (84)

Figure 18 displays the stencil of scheme (84), which is the set of points of the mesh
that contribute to the scheme
The FTCS method (Forward-in-Time Centred-in-Space) results from the following
approximations to the partial derivatives

∂tq(xi, tn) = q(xi, tn+1)− q(xi, tn)

Δt
+ O(Δt) ,

∂xq(xi, tn) = q(xi+1, tn)− q(xi−1, tn)

2Δx
+ O(Δx2) .

⎫
⎪⎬

⎪⎭
(85)

Substituting of these into the PDE, suppressing error terms and replacing exact
values by approximate values, yields

qn+1
i − qn

i−1

Δt
+ λ

(
qn

i+1 − qn
i−1

2Δx

)

= 0 . (86)

Solving for qn+1
i we obtain the FTCS numerical scheme

qn+1
i = qn

i − 1

2
c(qn

i+1 − qn
i−1) . (87)
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Fig. 19 Stencil for the FTCS
method. Note the symmetric
character of the stencil

i − 1 i i + 1
n

n + 1

Fig. 20 Stencil for the
Lax-Friedrichs method. Note
the symmetry of the stencil
and the missing point (xi, tn)

i 1 i i + 1
n

n + 1

Figure 19 shows the stencil. Unfortunately, FTCS is useless; it is unconditionally
unstable. FTCS uses the same approximation to the time derivative as the Godunov
method, but the spatial derivative is approximated via a centred, second-order
accurate, discretization. Naively, one would have expected a better method than
Godunov’s method. There are two ways to rescue FTCS. One modification results
in the explicit Lax-Friedrichs scheme. The other way is to resort to an implicit
version.

The Lax-Friedrichs method results from replacing qn
i in the approximation to the

time derivative of FTCS by a mean value, that is

qn
i −→ 1

2
(qn

i−1 + qn
i+1) .

Then

qn+1
i − 1

2 (q
n
i−1 + qn

i+1)

Δt
+ λ

(
qn

i+1 − qn
i−1

2Δx

)

= 0 , (88)

yielding the Lax-Friedrichs scheme

qn+1
i = 1

2
(1 + c)qn

i−1 + 1

2
(1 − c)qn

i+1 , (89)

whose stencil is shown in Fig. 20.

The Lax-Wendroff Method The construction of this method follows a different
approach, via the following steps:

1. The solution at (xi, tn+1) is expressed as a Taylor series in time

q(xi, tn+1) = q(xi, tn) +Δt∂tq(xi, tn) + 1

2
Δt2∂(2)t q(xi, tn)+ O(Δt3) . (90)

2. By means of the Cauchy-Kowalewskaya method (or Lax-Wendroff procedure,
as is sometimes called) one uses the PDE in (72) to replace time derivatives by
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Fig. 21 Stencil for the
Lax-Wendroff method. Note
the symmetry of the stencil

i − 1 i i + 1
n

n + 1

space derivatives

∂tq(x, t) = −λ∂xq(x, t) , ∂
(2)
t q(x, t) = λ2∂(2)x q(x, t) . (91)

In fact, for any order k, one can prove

∂
(k)
t q(x, t) = (−λ)k∂(k)x q(x, t) . (92)

3. By substituting (91) into (90) one obtains

q(xi, tn+1) = q(xi, tn)−Δtλ∂xq(xi, tn)+ 1

2
Δt2λ2∂(2)x q(xi, tn)+O(Δt3) (93)

4. The spatial derivatives are approximated by centred finite differences

∂xq(xi, tn) = q(xi+1, tn)− q(xi−1, tn)

2Δx
+ O(Δx2) ,

∂(2)x q(xi, tn) = q(xi+1, tn)− 2q(xi, tn)+ q(xi−1, tn)

Δx2 + O(Δx2) .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(94)

5. Finally, by substituting (94) into (93), neglecting truncation errors and replacing
exact values q(xi, tn) by qn

i one obtains the Lax-Wendroff scheme

qn+1
i = 1

2
c(1 + c)qn

i−1 + (1 − c2)qn
i − 1

2
c(1 − c)qn

i+1 , (95)

whose stencil is shown in Fig. 21.

General Form of a Scheme and Examples All explicit schemes studied so far can
be written in the general form

qn+1
i = H(qn

i−l, . . . , qn
i , . . . , qn

i+r) , (96)

with l, r two non-negative integers and H(. . .) a real-valued function of l + r + 1
arguments and

qn
i ≈ q(xi, tn) , qn

i → 0 as |i| → ∞ (97)
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is a point-wise value that approximates the true solution q(x, t) at the mesh point
(xi, tn), with xi = iΔx, tn = nΔt.

Example: The Godunov Finite Difference Method When the Godunov scheme
is written as in (96), we have

For λ > 0 H = cqn
i−1 + (1 − c)qn

i ,

For λ < 0 H = (1 + c)qn
i − cqn

i+1 .

}

(98)

Linear Schemes Linear schemes are a special class of schemes (96) for the linear
advection equation in (72), of the form

qn+1
i =

k=r∑

k=−l

bkqn
i+k , (99)

in which the coefficients bk are constant, that is, they do not depend on the solution.

Consider now two examples.

1. For the Godunov finite difference method we have two cases: For λ > 0 l = 1,
r = 0, b−1 = c and b0 = 1 − c. For λ < 0 we have l = 0, r = 1, b0 = 1 + c,
b1 = −c.

2. For the Lax-Wendroff method we have l = 1, r = 1, b−1 = 1
2 (1 + c)c, b0 =

1 − c2, b1 = − 1
2 (1 − c)c.

Monotone Schemes A numerical scheme of the form (96) is called monotone if H
satisfies

∂

∂qn
k

H(qn
i−l, qn

i−l+1, . . . , qn
i , . . . , qn

i+r) ≥ 0 , i − l ≤ k ≤ i + r . (100)

Remark a linear scheme is monotone if and only if all its coefficients are non-
negative. This follows from the definitions of linear schemes and monotonicity.

A Shortcut to Accuracy Through the Accuracy Lemma A linear scheme of the
form (99) is p-th order accurate in space and time (p ≥ 0) in the sense of local
truncation error, if and only if

r∑

k=−l

kηbk = (−c)η , η = 0, 1, . . . , p , c : Courant Number. (101)

For notational convenience we introduce 00 = 1.

Proof For the proof and extensions to two and three dimensions see [1].
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Example: The Godunov Upwind Finite Difference Method For λ > 0 the
scheme is

qn+1
i = H(qn

i−l, qn
i ) = cqn

i−l + (1 − c)qn
i . (102)

l = 1, r = 0, b−1 = c, b0 = 1 − c. Then we need to verify identity (101) for all
possible non-negative integer values of η.

η = 0 : (−1)0 × c + 00 × (1 − c) = c + 1 − c = 1 = (−c)0 .

This merely says that the sum of the coefficients of the scheme is unity.

η = 1 : (−1)1 × c + 01 × (1 − c) = −c = (−c)1 .

The Godunov scheme is first-order accurate. But just for fun we try:

η = 2 : (−1)2 × c + 02 × (1 − c) = c �= (−c)2 .

Thus the Godunov scheme is not second-order accurate, except for the trivial cases
c = 0 and c = 1.

Godunov’s Theorem [5] There are no monotone, linear schemes (99) for the linear
advection equation with constant λ, of accuracy two or higher.

Proof It is sufficient to prove that there is no second order, linear, monotone method
for LAE. Proceed by contradiction and assume there is a second order, linear,
monotone method for LAE. From the accuracy lemma we must have:

sη =
r∑

k=−l

kηbk =
⎧
⎨

⎩

s0 = 1 , η = 0 ,

s1 = −c , η = 1 ,

s2 = c2 , η = 2 .

(103)

But, in particular, from (103) plus some algebraic manipulations one obtains

s2 =
r∑

k=−l

k2bk

=
r∑

k=−l

(k + c)2bk − 2c
r∑

k=−l

kbk − c2
r∑

k=−l

bk

=
[

r∑

k=−l

(k + c)2bk

]

− 2cs1 − c2s0 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(104)
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Use of (103) into (104) gives

c2 =
[

r∑

k=−l

(k + c)2bk

]

+ c2 . (105)

This implies a contradiction; for a monotone scheme all coefficients bk are non-
negative but not simultaneously zero. Thus Godunov’s theorem is true �.

Consequences of Godunov’s Theorem From the theorem we have that linear
monotone schemes are at most first-order accurate. But first-order methods are too
inaccurate to be of practical use and therefore one must search for other classes of
schemes. This is down to finding ways of circumventing Godunov’s theorem.The
key to this lies on the assumption of linear schemes. Thus a necessary condition for
a numerical scheme to be oscillation-free (without new extrema) and of high-order
of accuracy ( for smooth solutions) is to be non-linear. In simple terms: Schemes
must be non-linear, even when applied to linear equations.

Recall that schemes can be expressed in the general form (96). In what follows
we introduce other forms.
The conservative form is a particular class of schemes for hyperbolic equations
and can be written in the form

qn+1
i = qn

i − Δt

Δx

(
fi+ 1

2
− fi− 1

2

)
, (106)

where fi+ 1
2

is the numerical flux. See definition (60).

The Viscous Form of a Scheme This requires a function di+ 1
2

of 2k variables

di+ 1
2

= di+ 1
2
(qn

i−k+1, qn
i−k+1, . . . , qn

i , . . . , qn
i+k) , (107)

such that a three-point scheme can be written as

qn+1
i = qn

i − 1

2

Δt

Δx
[ f (qn

i+1)− f (qn
i−1)] + 1

2
(di+ 1

2
Δqi+ 1

2
− di− 1

2
Δqi− 1

2
) . (108)

The function di+ 1
2

is called the coefficient of numerical viscosity.

Viscous Form of a Three-Point Linear Scheme We study the viscous form a
three-point linear scheme of the form

qn+1
i = b−1qn

i−1 + b0qn
i + b1qn

i+1 . (109)

The coefficients b−1, b0 and b1 are constant. Assume the scheme to be at least first-
order. Then from the accuracy lemma, see (101), we have

b−1 + b0 + b1 = 1 , b−1 − b1 = c . (110)
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System (110) gives a one-parameter family of solutions. From the first equation we
introduce d = b−1 + b1 = 1 − b0 and thus

b−1 = 1

2
(d + c) , b0 = 1 − d , b1 = 1

2
(d − c) . (111)

Now in terms of d scheme (109) becomes

qn+1
i = qn

i − 1

2
c(qn

i+1 − qn
i−1)+ 1

2
d(qn

i+1 − 2qn
i + qn

i−1) . (112)

This is the viscous form of scheme (109) and d is the coefficient of numerical
viscosity of the scheme.

Remarks on the Viscous Form

1. Particular values of d give particular schemes, as we shall see.
2. The stability condition becomes

c2 ≤ d ≤ 1 . (113)

3. The monotonicity condition is

c ≤ d ≤ 1 . (114)

4. A truncation error analysis gives coefficient of numerical viscosity

αvisc = 1

2
Δxλ

(
d − c2

c

)

. (115)

Thus effectively the coefficient d measures the truncation error of the scheme.

Proposition The Godunov upwind scheme for the linear advection equation is the
monotone scheme with the smallest truncation error. The proof is left as an exercise.

Well-known schemes are obtained by an appropriate choice d. The following four
choices for d give four well-known numerical schemes:

d =

⎧
⎪⎪⎨

⎪⎪⎩

1 → Lax-Friedrichs ,
1
2 (1 + c2) → FORCE ,

|c| → Godunov upwind ,

c2 → Lax-Wendroff .

(116)

Figure 22 shows the coefficient of numerical viscosity for all four schemes above.
The region of monotone methods is contained in the dark triangular region. Schemes
outside this region are not monotone. Of the monotone methods the least accurate
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Fig. 22 Coefficient of
numerical viscosity d for four
schemes as functions of the
Courant number c. Monote
schemes lie inside the
triangular region defined by
the Godunov method
(bottom) and the
Lax-Friedrichs scheme (top)
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method is the Lax-Friedrichs method and the most accurate method is the Godunov
method. The FORCE method [6] is seen to lie in between these two methods.
The Law-Wendroff method is the most accurate scheme of them all but it is not
monotone. Stable schemes lie above the Lax-Wendroff method.

Sample Numerical Results Figures 23 and 24 show numerical results for the linear
advection equation (symbols) compared to the exact solution (line) for the Lax-
Friedrichs, Godunov and the Lax-Wendroff methods. Figure 23 shows the case of a
smooth solution, while Fig. 24 shows the case of a discontinuous solution. For the
smooth case of Fig. 23 we see that the Lax-Friedrichs method is the least accurate,
just look at the peak value (unity); this is followed by the Godunov method, with
Lax-Wendroff displaying the most accurate result. However, even for this smooth
test problem, the Lax-Wendroff method shows spurious oscillations (overshoots
and undershoots), mainly behind the wave. In fact the numerical solution has some
negative values, which would be unphysical if q(x, t) represented a concentration
variable, for example.

Figure 24 shows results for the discontinuous case. Again the least accurate
method is the Lax-Friedrichs method; note also the pairing of numerical values,
which is a typical feature of this method. The Godunov method is a little bit
more accurate but still far from representing well the square wave with its two
discontinuities. The Lax-Wendroff method shows less spreading of the disconti-
nuities (numerical diffusion) and its peak value is closer to the exact value; however
the spurious oscillations, with negative values, make this method unsuitable for
computing discontinuous solutions.

Note that the Lax-Friedrichs and Godunov methods do not show over and
undershoots; this is due to the fact that these schemes are monotone. This property
will prove useful when computing solutions to general hyperbolic systems. How-
ever, monotone methods are at most first-order accurate and thus they need to be
extended to higher order of accuracy, by circumventing the Godunov theorem via
the construction of non-linear methods. This subject will be addressed in Sect. 4.

Further Reading For further reading we recommend the following books [1–4].
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Fig. 23 Test 1 for smooth solution. Results at time t = 100 from the Lax-Friedrichs, Godunov
and Lax-Wendroff methods. Mesh used M = 25 and Courant number CFL = 0.9
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Fig. 24 Test 2 for discontinuous solution. Results at time t = 100 from the Lax-Friedrichs,
Godunov and Lax-Wendroff methods. Mesh used M = 25 and Courant number CFL = 0.9
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2 The Shallow Water Equations and the Riemann Problem

In this section we study a particular non-linear hyperbolic system of practical
interest, namely the shallow water equations. We first establish the governing
equations and some of their properties and then solve exactly the corresponding
Riemann problem. For further reading see [2].

2.1 Equations, Properties and Wave Relations

The equation for conservation of mass reads

∂th + ∂x(hu) = 0 , (117)

where h(x, t) is water depth and u(x, t) is the particle velocity. The equation for
conservation of momentum reads

∂t(hu)+ ∂x(hu2 + 1

2
gh2) = 0 , (118)

where g is the acceleration due to gravity. Recall that the celerity is defined as

a = √
gh , (119)

which is analogous to the speed of sound in a gas. In certain applications it is of
interest to consider an additional PDE

∂tψ + u∂xψ = 0 . (120)

ψ(x, t) is transported with u(x, t) and is often called a passive scalar. If we assume
that solutions are smooth, then from (117) and (120) we obtain the conservation
equation

∂t(hψ) + ∂x(hψu) = 0 . (121)

Now the three equations of interest are (117), (118) and (121). These can be written
in conservation form as

∂tQ + ∂xF(Q) = 0 , (122)

with

Q =
⎡

⎣
q1

q2

q3

⎤

⎦ =
⎡

⎣
h

hu
hψ

⎤

⎦ , F(Q) =
⎡

⎣
f1
f2
f3

⎤

⎦ =
⎡

⎣
hu

hu2 + 1
2 gh2

hψu

⎤

⎦ . (123)
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Here Q is called the vector of conserved variables and F(Q) if the physical flux
vector.

Quasi-linear Form and Eigenvalues Equation (122) can be written in quasi-linear
form as follows

∂tQ + A(Q)∂xQ = 0 , (124)

where A(Q) is the Jacobian matrix given as

A(Q) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ f1
∂q1

∂ f1
∂q2

∂ f1
∂q3

∂ f2
∂q1

∂ f2
∂q2

∂ f2
∂q3

∂ f3
∂q1

∂ f3
∂q2

∂ f3
∂q3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (125)

From (123) we have

F(Q) =
⎡

⎣
f1(q1, q2, q3)

f2(q1, q2, q3)

f3(q1, q2, q3)

⎤

⎦ =
⎡

⎣
hu

hu2 + 1
2 gh2

hψu

⎤

⎦ =

⎡

⎢
⎢
⎢
⎣

q2

q2
2

q1
+ 1

2
gq2

1

q2q3

q1

⎤

⎥
⎥
⎥
⎦

. (126)

Note that each component fk of the flux vector has been expressed in terms
of the components qj of the vector of conserved variables. This is necessary
before proceeding to calculate the partial derivatives. Calculating now the partial
derivatives in (125) and then using the physical variables u, a and ψ we may write
the Jacobian matrix as

A(Q) =
⎡

⎣
0 1 0

a2 − u2 2u 0
−uψ ψ u

⎤

⎦ . (127)

The eigenvalues are the roots of the characteristic polynomial

P(λ̂) = Det(A − λ̂I) = 0 , (128)

where I is the identity matrix and λ̂ is a parameter. It is easily verified that

P(λ̂) = (u − λ̂)[λ̂(2u − λ̂)+ a2 − u2] = 0 , (129)
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a cubic equation, for which three real solutions exist, and therefore the system has
three real eigenvalues, namely

λ1 = u − a , λ2 = u , λ3 = u + a . (130)

Note that all three roots are distinct if a �= 0.

Right Eigenvectors A right eigenvector R corresponding to λ̂ satisfies

AR = λ̂R . (131)

For a generic R = [r1, r2, r3]T we have

r2 = λ̂r1 ,

(a2 − u2)r1 + 2ur2 = λ̂r2 ,

−uψr1 + ψr2 + ur3 = λ̂r3 .

⎫
⎬

⎭
(132)

To find Ri corresponding to λi we substitute λi into (132) and solve the resulting
system for r1, r2 and r3 in terms of free parameters αi. The result is

R1 = α1

⎡

⎣
1

u − a
ψ

⎤

⎦ , R2 = α2

⎡

⎣
0
0
1

⎤

⎦ , R3 = α3

⎡

⎣
1

u + a
ψ

⎤

⎦ , (133)

where α1, α2 and α3 are arbitrary scaling factors which can be chosen as desired.

Left Eigenvectors To compute a left eigenvector L = [l1, l2, l3] corresponding to
an eigenvalue λ̂, we solve the system of algebraic equations

LA = λ̂L . (134)

The left eigenvectors of A are given by

L1 = β1
[−(u + a) , 1 , 0

]
,

L2 = β2
[−ψ , 0 , 1

]
,

L3 = β3
[−(u − a) , 1 , 0

]
,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(135)

where the coefficients β1, β2, β3 are arbitrary scaling factors.

Bi-orthonormality of Left and Right Eigenvectors The reader can easily verify
that the right and left eigenvectors (133), (135) of the Jacobian matrix A are
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bi-orthonormal, that is they satisfy the relations

Li · Rj =
⎧
⎨

⎩

1 if i = j ,

0 if i �= j ,
(136)

if the scaling factors are chosen thus

β1 = 1

2aα1
, β2 = 1

α2
, β3 = − 1

2aα3
. (137)

Nature of Characteristic Fields First recall that a λi-characteristic field is said to
be linearly degenerate if

∇λi(Q) · Ri(Q) = 0 , ∀Q ∈ �m (138)

∇λi(Q) =
[

∂

∂q1
λi ,

∂

∂q2
λi , . . . ,

∂

∂qm
λi

]T

. (139)

Now we show that the λ2-characteristic field is linearly degenerate.

λ2(Q) = u = hu

h
= q2

q1

∇λ2(Q) =
[

∂

∂q1
λ2 ,

∂

∂q2
λ2 ,

∂

∂q3
λ2

]T

=
[

−u

h
,

1

h
, 0

]T

.

Then

∇λ2(Q) · R2(Q) = 0 (140)

for Q ∈ �3 and thus the λ2-characteristic field is linearly degenerate.

The λ1- and λ3-characteristic fields are genuinely nonlinear. First recall that a λi-
characteristic field is said to be genuinely non-linear if

∇λi(Q) · Ri(Q) �= 0 , ∀Q ∈ �m . (141)

Simple calculations give

∇λ1(Q) · R1(Q) = − 3
2a �= 0 and ∇λ3(Q) · R3(Q) = 3

2a �= 0 . (142)

Therefore the λ1(Q) and λ3(Q) characteristic fields are genuinely non-linear, if
a �= 0.
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Fig. 25 Structure of the
solution of the Riemann
problem for the augmented
1D shallow water equations

t

xx = 0

(λ3 = u + a)
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QL QR
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2.2 The Riemann Problem

The Riemann problem for the shallow water equation (122) is the initial value
problem

PDEs: ∂tQ + ∂xF(Q) = 0 , −∞ < x < ∞ , t > 0 ,

ICs: Q(x, 0) =
{

QL if x < 0 ,

QR if x > 0 .

⎫
⎬

⎭
(143)

The vector of conservative variables Q and the vector of fluxes F(Q) are given
in (123). QL and QR are two constant vectors that define the initial conditions of the
problem.

Structure of the Solution of the Riemann Problem
The structure of the solution in the x− t plane is shown in Fig. 25. Note that there are
three wave families separating four constant regions. The outer waves are non-linear
and are associated with shocks or rarefactions. The middle wave is linear (called
contact discontinuity). The solution in regions R0 and R3 is known, corresponding
to the initial data on the left and right respectively. The solution in regions R1 and
R2 (Star Region) is unknown. The full problem of solving the Riemann problem
is divided into two subproblems: Problem 1: The Star Problem and Problem 2: The
Complete Solution. We start with the The Star Problem for which we first establish
some conventional wave relations.

2.2.1 Wave Relations

Rarefactions and Generalized Riemann Invariants Generalized Riemann
Invariants (GRIs) are relations that apply across the wave structure of simple
waves in x − t space. For a system of m equations consider the λj(Q)-characteristic



Numerical Approximation of Hyperbolic Equations 131

Fig. 26 Left rarefaction
wave connecting states QL
and Q∗L. The characteristic
line x/t = uL − aL defines the
head and the characteristic
line x/t = u∗L − a∗L defines
the tail

t

xx = 0

Q∗L

QL

x

t
= uL − aL

x

t
= u∗L − a∗L

field and the corresponding right eigenvector

Rj = [
r1j, r2j, · · · , rmj

]T
. (144)

The GRIs apply across the wave structure and lead to m − 1 ODEs in phase space:

dq1

r1j
= dq2

r2j
= dq3

r3j
= · · · = dqm

rmj
. (145)

Equation (145) relate ratios of dqi to rij and we emphasize that the ratios are to be
interpreted as meaning proportionality, that is

dqi ∝ rij . (146)

If rij = 0 then dqi = 0 and therefore qi does not change across the respective wave.
We now apply these wave relations to study a particular class of waves.

Left Rarefaction Wave Assume a left rarefaction wave connecting QL (left) and
Q∗L (right). See Fig. 26. The rarefaction wave occupies a wedge RL defined as

RL =
{
(x, t)/ uL − aL ≤ x

t
≤ u∗L − a∗L

}
, (147)

where the characteristic line x/t = uL − aL defines the head and the characteristic
line x/t = u∗L−a∗L defines the tail. λ1(Q) increases monotonically across the wave
from head to tail. Application of GRIs across the λ1-wave with Q = [h, hu, hψ]T

and R1 = [1, u − a, ψ]T gives

dh

1
= d(hu)

u − a
= d(hψ)

ψ
. (148)

From the first and third ratios dψ = 0 and so across the λ1 wave

ψ : constant . (149)
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t

xx = 0x̂

t̂
P̂

x

t
= û − â

Fig. 27 Point P̂ = (x̂, t̂) inside left rarefaction wave. We seek the solution for the celerity a and
the particle velocity u at the point P̂ in terms of its prescribed coordinates x̂, t̂

Analogously, from first and second ratios, along with integration in phase space we
obtain

u + 2a = constant . (150)

From here we establish

u∗L + 2a∗L = uL + 2aL , (151)

which we also express as

u∗L = uL − fL ; fL = 2(a∗L − aL) . (152)

Solution Inside a Rarefaction Consider a left rarefaction wave and a point inside
the wave. See Fig. 27. The point inside the rarefaction wave is P̂ = (x̂, t̂) ∈ RL.
Consider now a characteristic line through P̂ = (x̂, t̂) and the origin (0, 0), of slope
(known)

x̂

t̂
= û − â . (153)

The unknowns of the problem are û = u(x̂, t̂) and â = a(x̂, t̂), noting that h follows
from a. Application of the left Riemann invariant (150) to connect the point P̂ to the
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t

xx = 0

Q∗R

QR

x

t
= uR + aR

x

t
= u∗R + a∗R

Fig. 28 Right rarefaction wave connecting states Q∗R and QR. The characteristic line x/t = uR +
aR defines the head while x/t = u∗R + a∗R defines the tail

left initial condition gives

û + 2â = uL + 2aL . (154)

Equations (153) and (154) are two equations for the two unknowns â and û, whose
solution is

âL = a(x̂, t̂) = 1

3
(uL + 2aL − x̂

t̂
) , ûL = u(x̂, t̂) = 1

3
(uL + 2aL + 2x̂

t̂
) . (155)

Right Rarefaction Wave Assume a right rarefaction wave, as depicted in Fig. 28,
connecting the constant states Q∗R (left) and QR (right). The wave occupies a wedge
RR

RR =
{
(x, t)/ u∗R + a∗R ≤ x

t
≤ uR + aR

}
. (156)

λ3(Q) is monotone. The right generalized Riemann invariant gives

u − 2a = constant , ψ : constant . (157)

From here we obtain

u∗R − 2a∗R = uR − 2aR , (158)

which we also express as

u∗R = uR + fR ; fR = 2(a∗R − aR) . (159)
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t

xx =0

Q∗R

QR

dx

dt
= SR

Fig. 29 Right-facing shock wave of speed SR connecting constant states QR (ahead) and Q∗R
(behind)

The solution at P̂ = (x̂, t̂) ∈ RR inside the right rarefaction wave can easily be
found to be

âR = 1

3
(−uR + 2aR + x̂

t̂
) , ûR = 1

3
(uR − 2aR + 2x̂

t̂
) . (160)

Right-Facing Shock Wave Consider an isolated right-facing shock wave of
speed SR associated with the λ3-characteristic field, as depicted in Fig. 29. For
system (122), across the shock, the Rankine-Hugoniot Conditions apply and thus
we have

SR(QR − Q∗R) = F(QR)− F(Q∗R) . (161)

In addition, the shock must also satisfy the Lax entropy condition

λ3(Q∗R) > SR > λ3(QR) . (162)

Characteristics run into the shock path, as illustrated in Fig. 29. Now we apply the
transformation

û∗R = u∗R − SR , ûR = uR − SR , (163)

which is illustrated in Fig. 30. In the new frame the shock propagation speed is 0
and the vectors of conserved variables and fluxes ahead of the shock are

Q̂R =
⎡

⎣
hR

hRûR

hRψR

⎤

⎦ , F̂R =
⎡

⎣
hRûR

hRû2
R + 1

2 gh2
R

hRûRψR

⎤

⎦ , (164)
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(a) (b)

SR 0

ψ∗R ψR

u∗R uR

h∗R hR

ψ∗R ψR

û∗R = u∗R − SR ûR = uR − SR

h∗R hR

Fig. 30 Right shock wave in two frames of reference. Frame (a) is the original frame of reference
and frame (b) is the moving frame of references in which the shock is stationary

while those behind the shock are

Q̂∗R =
⎡

⎣
h∗R

h∗Rû∗R

h∗Rψ∗R

⎤

⎦ , F̂∗R =
⎡

⎣
h∗Rû∗R

h∗Rû2∗R + 1
2 gh2∗R

h∗Rû∗Rψ∗R

⎤

⎦ . (165)

The Rankine-Hugoniot conditions in the moving frame are

F(Q̂∗R) − F(Q̂R) = 0 × (Q̂∗R − Q̂R) , (166)

which give

F(Q̂∗R) = F(Q̂R) .

The above flux equality written in full gives

h∗Rû∗R = hRûR ,

h∗Rû2∗R + 1
2 gh2∗R = hRû2

R + 1
2 gh2

R ,

h∗Rû∗Rψ∗R = hRûRψR .

⎫
⎬

⎭
(167)

The first equation in (167) says that the mass flux is constant across the shock, that
is

− MR ≡ h∗Rû∗R = hRûR . (168)

Using this into the third of Eq. (167) gives

ψ∗R = ψR . (169)

That is, ψ is constant across the shock wave. Thus we only need to work with the
first two equations in (167); the second one gives

(h∗Rû∗R)û∗R − (hRûR)ûR = 1

2
g(h2

R − h2∗R) . (170)
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Use of (168) into (170) gives

MR =
1
2 g(h2

R − h2∗R)

ûR − û∗R
. (171)

But from (168) we write

û∗R = − MR

h∗R
, ûR = −MR

hR
. (172)

Use of (172) into (171) followed by some manipulations yields

MR =
√

1

2
ghRh∗R(hR + h∗R) . (173)

From (163)

u∗R = uR + (û∗R − ûR) . (174)

Inserting (172) into (174) followed by some algebraic manipulations gives

u∗R = uR + fR ; fR = (h∗R − hR)

√
1

2
g
(h∗R + hR)

hRh∗R
. (175)

From (163) we have

SR = uR − ûR . (176)

Use of (172) into (176) followed by manipulations gives

SR = uR + qRaR , qR =
√

1

2

(hR + h∗R)h∗R

h2
R

. (177)

This expression relates the shock speed to the unknown depth h∗R behind the shock.
Note that for the limiting case h∗R/hR = 1 the shock speed coincides with the
characteristic speed, that is SR = u + a, as expected.

Left-Facing Shock Wave For a left-facing shock of speed SL associated with the
eigenvalue λ1 = u − a the analysis is similar to that of a right shock. See Fig. 31.
First we define the transformation

û∗L = u∗L − SL ; ûL = uL − SL . (178)
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t

xx = 0

Q∗L

QL

dx

dt
= SL

Fig. 31 Left-facing shock wave of speed SL connecting states QL (ahead) and Q∗L (behind)

Then the Rankine-Hugoniot conditions give

h∗Lû∗L = hLûL ,

h∗Lû2∗L + 1
2 gh2∗L = hLû2

L + 1
2 gh2

L ,

h∗Lû∗Lψ∗L = hLûLψL .

⎫
⎬

⎭
(179)

The first of Eq. (179) says that the mass flux

ML ≡ h∗Lû∗L = hLûL (180)

is constant across the shock wave. Using this condition into the third of Eq. (179)
gives

ψ∗L = ψL . (181)

In other words the passive scalar ψ is constant across the right shock. Analogous
manipulations to those for a right-facing shock yield

ML =
√

1

2
ghLh∗L(hL + h∗L) (182)

and

u∗L = uL − fL ; fL = (h∗L − hL)

√
1

2
g
(h∗L + hL)

hLh∗L
. (183)

This relates u∗L to h∗L via the function fL. Also, from (178)

SL = uL − ûL . (184)
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t

xx = 0

Q∗L Q∗R

x

t
= u∗

Fig. 32 Contact wave associated with the linearly degenerate field λ2, connecting states Q∗L and
Q∗R. Characteristics either side of the wave are parallel to the wave, just as in the linear advection
equation

Use of (180) into (184) followed by manipulations gives

SL = uL − qLaL ; qL =
√

1

2

(hL + h∗L)h∗L

h2
L

. (185)

This expression relates SL to h∗L. Again, in the limiting case h∗L/hL = 1 we have
SL = u − a.

Contact Discontinuity Wave An isolated contact discontinuity connecting the
(constant) states Q∗L and Q∗R associated with the λ2-characteristic field is depicted
in Fig. 32. The wave is a single discontinuity travelling with speed u∗ and charac-
teristics either side of the discontinuity run parallel to it, namely

λ2(Q∗L) = u∗ = λ2(Q∗R) . (186)

An eigenvector analysis provides the sought jump conditions across the contact
discontinuity. The right eigenvector corresponding to λ2 is R2 = [0, 0, 1]T , from
which we have

u∗L = u∗R = u∗ ,
h∗L = h∗R = h∗ ,
ψ∗L �= ψ∗R .

⎫
⎬

⎭
(187)

Exercise Show that the above solution for the contact discontinuity wave satisfies
the Rankine-Hugoniot conditions across the wave.
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Fig. 33 Structure of the solution of the Riemann problem for the augmented shallow water
equations

2.2.2 Solution of Problem 1: The Star Problem

Figure 33 depicts the structure of the solution of the Riemann problem in the x − t
plane. The left and right waves can be shocks or rarefactions. The velocity and depth
are constant in the Star Region;ψ is also constant in R1∪R0 and inR2∪R3 but with
a discontinuous jump across the contact wave. To find the velocity u∗ and the depth
h∗ we first assemble together all the wave relations derived for each elementary wave
in isolation. Note that the velocity u∗ is connected to QL via a function fL and that
the velocity u∗ is connected to QR via a function fR; the functions fL and fR depend
on the unknown depth h∗, the wave type (shock or rarefaction) and, parametrically,
on the initial conditions QL and QR, that is

fL = fL(h∗,wL; QL) ; fR = fR(h∗,wR; QR) . (188)

Here wL and wR denote logical variables that identify the wave type; wK denotes
either a shock or a rarefaction, for K = L and K = R. The complete solution
procedure for the Star Problem is then summarised in the following proposition.

Proposition The solution h∗ for the Riemann problem (143) is the root of

f (h) ≡ fL(h,wL; hL) + fR(h,wR; hR) +Δu = 0 , Δu ≡ uR − uL , (189)

fL(h,wL; hL) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(
√

gh − √
ghL) if h ≤ hL (wL: rarefaction) ,

(h − hL)

√
1

2
g
(h + hL)

hhL
if h > hL (wL: shock) ,

(190)
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fR(h,wR; hR) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(
√

gh − √
ghR) if h ≤ hR (wR: rarefaction) ,

(h − hR)

√
1

2
g
(h + hR)

hhR
if h > hR (wR: shock) ,

(191)

Once the depth h∗ has been found the solution for the velocity u∗ follows as

u∗ = 1
2 (uL + uR)+ 1

2 [ fR(h∗,wR; hR)− fL(h∗,wL; hL)] . (192)

Sketch of the Proof First note that the particle velocity u∗ and depth h∗ are constant
across the contact discontinuity according to (187). In fact u∗ and h∗ are constant
in the entire Star region. Then, the function fL is used to relate u∗ to the left initial
condition QL across the left wave. In case the left wave is a shock we have the
relation (183) and if it is a rarefaction we use (152). Analogously, the function fR is
used to relate u∗ to the right initial condition QR across the right wave. If the right
wave is a shock we have the relation (175) and if it is a rarefaction we use (159).
As u∗ = u∗L = u∗R, see (187), we can eliminate u∗ resulting in Eq. (189). Then
the particle velocity could be written in terms of the function fL, for both the shock
and rarefaction cases. See (183) and (152). So we could compute u∗ directly from fL
once h∗ is known. Alternatively, we could compute u∗ directly from fR using (175)
or (159). Solution (192) results from a mean of the two possible solutions. This
concludes the proof.

Iterative Solution for h∗ We need to solve the algebraic non-linear equation (189)
for the unknown h∗ in the Star Region. To my knowledge, there is no general close-
form solution available to this equation and therefore we must solve it numerically
through an iteration procedure. To perform this task there are several methods
available, one choice being the Newton-Raphson method

h(k+1) = h(k) − f (h(k))

f ′(h(k))
, (193)

for k = 0, 1, . . . ,K. Here f ′(h) denotes the derivative of f with respect to h. The
iteration (193) is stopped whenever the change in h is smaller than a prescribed
small positive tolerance TOL, that is when

Δh ≡ |h(k+1) − h(l)|
(h(k+1) + h(l))/2

< TOL . (194)

Usually one takes TOL = 10−6. Having formulated and solved numerically the
Eq. (189) for h∗, the solution for u∗ follows directly from (192).

The Two-Rarefaction Case and Guess Value The iterative procedure (193)
requires a guess value h(0) to start the iteration. To this end we use a two-rarefaction
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type approximation, as we now describe. Assume a-priori that the two non-linear
waves associated with the eigenvalues λ1 and λ3 are both rarefaction waves.
See Fig. 33. Then the functions fL and fR in (190), (191) respectively are those
corresponding to rarefaction waves. Then (189) becomes

f (h) ≡ 2(a − aL) + 2(a − aR)+ uR − uL = 0 , (195)

which has exact solution, called the Two-Rarefaction Solution. For the celerity a
one has

aTR = 1

2
(aL + aR)− 1

4
(uR − uL) . (196)

From the definition of celerity we obtain

h(0) = a2
TR

g
, (197)

which is used as a starting value in the iteration procedure (193).

2.2.3 Solution of Problem 2: The Complete Solution

Now we put together all the components of the solution so as to be able to compute
the solution Q(x, t) for any given point (x, t) in the x-t half plane, −∞ < x < ∞
and t ≥ 0. See Fig. 34. We call this task the solution sampling procedure in which
we assume that the depth h∗ and velocity u∗ in the Star Region are already known.
The solution Q(x, t) is sought at a specified time t̂ for any x in a finite interval [xl, xr]
containing the full wave system, as depicted in Fig. 34. Then Q(x, t̂) is a function
of x alone and gives a profile at time t̂. To sample the solution we make use of the

t

xx = 0xl xr

t = t̂

(λ3 = u + a( )λ2 = u( )λ1 = u − a) x

t
= u∗

R0

R1 R2

R3

RL RR

Fig. 34 Sampling the solution through the complete wave structure, at a chosen time t̂
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contact discontinuity to divide the full domain into the two subregions

RL =
{
(x, t)/

x

t
≤ u∗

}
, RR =

{
(x, t)/ u∗ <

x

t

}
. (198)

To perform the sampling we represent the solution in terms of the vector of physical
variables W = [h, u, ψ]T and make use of the similarity variable

ξ = x/t̂ (199)

to locate the sampling point and assign the corresponding solution W(ξ). Note that
ξ has dimensions of velocity. There are two cases.

• Sampling point lies to the left of the contact. The solution W(ξ) for (x, t̂) ∈ RL

depends on the wave type. There are two possibilities:
Left shock. If the left wave is a shock of speed SL, then RL is again subdivided
into two subregions and the solution is

W(ξ) ≡
{

W∗L = [h∗, u∗, ψL]T if SL ≤ ξ ≤ u∗ ,
WL = [hL, uL, ψL]T if ξ < SL ,

(200)

where the shock speed SL is given by (185).

Left Rarefaction If the left wave is a rarefaction then RL is subdivided into three
subregions and the solution is

W(ξ) =

⎧
⎪⎨

⎪⎩

WL = [hL, uL, ψL]T if ξ ≤ uL − aL ,

WLfan =
[
ĥL, ûL, ψL

]T
if uL − aL ≤ ξ ≤ u∗ − a∗ ,

W∗L = [h∗, u∗, ψL]T if u∗ − a∗ ≤ ξ ≤ u∗ ,
(201)

where ĥL and ûL inside the left rarefaction are obtained from (155).

• Sampling point lies to the right of the contact. The solution W(ξ) for (x, t̂) ∈
RR depends on the type of the left wave present. Again there are two possibilities.
Right shock. If the right wave is a shock of speed SR, then RR is again subdivided
into two subregions and the solution is

W(ξ) ≡
{

W∗R = [h∗, u∗, ψR]T if u∗ ≤ ξ ≤ SR ,

WR = [hR, uR, ψR]T if ξ > SR ,
(202)

where the shock speed SR is given by (177).
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Table 1 Initial conditions for
two Riemann problems for
the shallow water equations

Test x0 Tout hL uL hR uR

1 10.0 7.0 1.0 2.5 0.1 0.0

2 25.0 2.5 1.0 10.0 1.0 -10.0
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Fig. 35 Test 1. Solution profiles for h and u at the output time Tout = 7.0s. The solution consists
of a left rarefaction and a right shock

Right Rarefaction If the right wave is a rarefaction then RR is subdivided into
three subregions and the solution is

W(ξ) =

⎧
⎪⎨

⎪⎩

WR = [hR, uR, ψR]T if ξ > uR + aR ,

WRfan =
[
ĥR, ûR, ψR

]T
if u∗R + a∗ ≤ ξ ≤ uR + aR ,

W∗R = [h∗, u∗, ψR]T if u∗ ≤ ξ ≤ u∗R + a∗ ,
(203)

where ĥR and ûR inside the right rarefaction are derived from (160).

Test Problems Here we solve two specific Riemann problems for the shallow water
equations in a finite channel of length 50 m. Table 1 gives the initial conditions and
computational details. Column 2 gives the position of the initial discontinuity and
column 3 gives the output time. The remaining columns give the initial conditions
for depth h and velocity u. Note that in these examples we have not considered
the equation for a passive scalar. Figures 35 and 36 show profiles for tests 1 and 2
respectively.

2.3 Concluding Remarks

In this section we have introduced the 1D shallow water equations augmented by
a passive scalar, and studied its salient mathematical properties. We have solved
exactly the corresponding Riemann problem, whose solution can be used to con-
struct Godunov-type finite volume numerical methods and discontinuous Galerkin
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Fig. 36 Test 2. Solution profiles for h and u at the output time Tout = 2.5s. The solution consists
of two rarefaction waves

finite element methods. Moreover, this exact solution can be used to construct
approximate solutions (approximate Riemann solvers) to be used in numerical
methods. Note also that the exact solution can be used to assess the correctness
and accuracy of numerical computations intended for solving the shallow water
equations.

Further reading material is found in [2] and [1] and in references therein.

3 Godunov’s Method for the Shallow Water Equations

We study the Godunov method [5] as applied to a general non-linear hyperbolic
system, and in particular as applied to the 1D shallow water equations. We consider
two approaches for computing the Godunov flux: the first requires the calculation
of the Godunov state, that is the state along the t-axis in the solution of the Riemann
problem, see Sect. 2. Then, the numerical flux is simply the physical flux function
evaluated at this Godunov state. In the second approach one calculates a numerical
flux directly.

General Initial-Boundary Value Problem (IBVP) First we apply the Godunov’s
method to a generic nonlinear hyperbolic system. Consider the IBVP for any non-
linear hyperbolic system

PDEs: ∂tQ + ∂xF(Q) = 0 , x ∈ [a, b] , t > 0 ,

ICs: Q(x, 0) = Q(0)(x) , x ∈ [a, b] ,
BCs: Q(a, t) = BL(t) , Q(b, t) = BR(t) , t ≥ 0 .

⎫
⎬

⎭
(204)

Q(x, t) is the vector of conserved variables; F(Q) is the flux function, or physical
flux; Q(0)(x) is the initial condition; BL(t) and BR(t) are the boundary conditions on
the left and right boundaries respectively, two prescribed functions of time.
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3.1 The Finite Volume Method

Unlike the finite difference method introduced in Sect. 1, the finite volume discreti-
sation of the domain considers a partition of the entire x − t domain into space-time
finite volumes, as in Fig. 12 of Sect. 1. In the numerical context these finite volumes
are denoted as Vi = [xi− 1

2
, xi+ 1

2
] × [tn, tn+1]. Figure 37c shows three consecutive

finite volumes. Here Δt = tn+1 − tn denotes the time step and Δ = xi+ 1
2

− xi− 1
2

denotes the cell spatial size, or mesh size; xi+ 1
2

denotes the volume interface. With
this notation, the exact integration of the equations in the generic finite volume Vi

gives the finite volume formula

Qn+1
i = Qn

i − Δt

Δx

(
Fi+ 1

2
− Fi− 1

2

)
, (205)

with

Qn
i ≈ 1

Δx

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx (206)

q(x, tn)

xi − 1 i i + 1

qni−1
qni

qni+1

(a)

t

x

Qi− 1
2
(0) Qi+ 1

2
(0)

(b)

t

x

tn

tn+1

i − 1 i i + 1

Qn
i−1 Qn

i Qn
i+1

Qn+1
i

Fi− 1
2

Fi+ 1
2

(c)

Fig. 37 Godunov’s method for a hyperbolic system: (a) integral averages for one component q of
the vector Q in each interval [xi− 1

2
, xi+ 1

2
] at time tn give piece-wise constant data; (b) structure of

solutions of Riemann problems at intercell boundaries determined by piece wise constant data; (c)
finite volume formula to update averages using numerical fluxes
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and

Fi+ 1
2

≈ 1

Δt

∫ tn+1

tn
F(Q(xi+ 1

2
, t))dt . (207)

See Eqs. (60) and (61) in Sect. 1. Formula (205) serves to update approximations
to spatial integral averages (206) using numerical fluxes that are approximations to
time integral averages (207) at the cell interface xi+ 1

2
. See Fig. 37.

3.1.1 The Godunov Flux

To define the finite volume scheme (205) we prescribe suitable approximations to
the integral (207) to obtain the numerical flux Fi+ 1

2
. The Godunov upwind numerical

flux Fi+ 1
2

is computed from (207), making use of the solution Qi+ 1
2
(x/t) of the local

Riemann problem

PDEs: ∂tQ + ∂xF(Q) = 0 ,

ICs: Q(x, 0) =
⎧
⎨

⎩

QL ≡ Qn
i if x < 0 ,

QR ≡ Qn
i+1 if x > 0 .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(208)

The Godunov flux is computed from (207) and becomes

Fi+ 1
2

= F(Qi+ 1
2
(0)) . (209)

Qi+ 1
2
(0) is called the Godunov state and results from Qi+ 1

2
(x/t) evaluated at the

interface x/t = 0. Note that for convenience, at each interface xi+ 1
2

and time level
tn we use local coordinates through a change from global to local coordinates as
follows:

x̄ = x − xi+ 1
2

, t̄ = t − tn ,

x ∈ [xi, xi+1] , t ∈ [tn, tn+1] ,
x̄ ∈ [−Δx

2 , Δx
2 ] , t̄ ∈ [0,Δt] .

⎫
⎪⎬

⎪⎭
(210)

We then use (x, t) to mean the local coordinates (x̄, t̄). See Fig. 38. In what follows
we specialise Godunov’s method to the shallow water equations.
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Fig. 38 Correspondence
between the global (a) and
local (b) frames of reference
for the solution of the
Riemann problem
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xx
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t n+1 Δ t
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3.1.2 Godunov Flux with the Exact Riemann Solver

One first solves the Star problem; the solution for h∗ and u∗ in the Star Region
is found. To this end one solves the non-linear equation (using Newton-Raphson
method, for example)

f (h) ≡ fL(h)+ fR(h)+Δu = 0 , Δu ≡ uR − uL . (211)

All details on the Riemann problem are given in Sect. 2. Once the water depth h =
h∗ has been found the velocity u∗ is calculated as

u∗ = 1
2 (uL + uR)+ 1

2 [ fR(h∗)− fL(h∗)] . (212)

Note that not always the Godunov state needed for flux evaluation corresponds to
the Star State, for which it is necessary to go through a sampling procedure to find
the Godunov state Qi+ 1

2
(0) for flux evaluation, see Sect. 2.

If a passive scalar is present in the equations, then one simply chooses

ψ(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

ψL if
x

t
< u∗ ,

ψR if
x

t
> u∗ .

(213)

This completes the description of Godunov’s flux as applied to the augmented 1D
shallow water equations, using the exact Riemann solver.

In practice one resorts to approximate solution methods to find a Godunov-type
flux. We next describe several approaches but before doing so we address some
issues that emerge when having to choose an approximate Riemann solver. We first
recall that the Godunov method is the most accurate monotone numerical method,
as shown for the scalar linear case in Sect. 1. For systems, first recall that the
concept of monotone method does not exist, it is only a scalar concept. Then, on the
accuracy question, one knows that this depends crucially on the particular Riemann
solver used. The exact solver is the best but at the cost of (i) complexity and (ii)
computational expense. Computational expense however has to be seen in light of
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efficiency, that is, in relation to the error. The computational expense of the exact
Riemann solver is not excessive for systems such as for blood flow, shallow water
and ideal gas dynamics. Still, approximate Riemann solvers can and are used for
these systems but great care is required in choosing the appropriate approximation.
The following remarks are in order:

1. Good approximate Riemann solvers are required to be:

• Complete: their wave model contains all characteristic fields of the exact
Riemann problem.

• Non-linear. Linearised Riemann solvers have various defects and are thus to
be avoided whenever possible.

2. The simplest Riemann solver is the Rusanov solver, as we shall see its wave
model contains just one wave.

3. At the bottom of the hierarchy of numerical fluxes are centred methods, such as
the Lax-Friedrichs and FORCE fluxes.

4. Centred, or symmetric, methods may be the simplest but not the most efficient,
as we shall see later.

3.2 A Simple Linearised Riemann Solver

As an academic example here, we study a linearised Riemann solver, even if in
practice, such solvers are to be avoided. We look for approximations to h∗ and u∗ in
the Star Region. First we re-write the governing equations in terms of primitive, or
physical, variables h, u and ψ .

∂tP + M(P)∂xP = 0 , (214)

with

P =
⎡

⎣
h
u
ψ

⎤

⎦ , M(P) =
⎡

⎣
u h 0
g u 0
0 0 u

⎤

⎦ . (215)

Denote the initial conditions for the Riemann problem as

PL =
⎡

⎣
hL

uL

ψL

⎤

⎦ , PR =
⎡

⎣
hR

uR

ψR

⎤

⎦ . (216)

Now assume PL is close to PR and linearise system (214) about

h̃ = 1

2
(hL + hR) , ũ = 1

2
(uL + uR) (217)
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so that the nonlinear system (214) becomes the linear system

∂tP + M̂∂xP = 0 , (218)

with constant coefficient matrix

M̂ =
⎡

⎣
û ĥ 0
g û 0
0 0 û

⎤

⎦ . (219)

The linear Riemann problem for (218) with initial conditions (216) is solved exactly
by using standard methods for hyperbolic linear systems, see Sect. 1, to obtain

h∗ = 1

2
(hL + hR) − 1

2
(uR − uL)/C̄ ,

u∗ = 1

2
(uL + uR) − 1

2
(hR − hL)C̄ ,

C̄ =
√

2g

hL + hR
.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(220)

Remarks About the Linearised Solution

1. The solution for ψ(x, y) is as given by (213), though u∗ is an approximation.
2. A sampling procedure to find Qi+ 1

2
(0) for evaluating the numerical flux is

required.
3. This Riemann solver is very simple but not robust enough.
4. It fails for strong rarefactions, near the vacuum state.
5. It fails for trans-critical (or sonic) flow, leading to entropy violating shocks (or

rarefaction shocks).
6. This Riemann solver is complete but linear.
7. In general, linearised Riemann solvers are not recommended for practical use.

3.3 A Two-Rarefaction Riemann Solver

Starting from the exact Riemann solver, by directly assuming that both non-linear
waves are rarefactions, constancy of Riemann invariants leads to

u∗ + 2c∗ = uL + 2cL , u∗ − 2c∗ = uR − 2cR . (221)
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There follows that

u∗ = 1
2 (uL + uR) − (cR − cL) ,

c∗ = 1
2 (cL + cR) − 1

4 (uR − uL) ,

h∗ = 1
g (c∗)2 .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(222)

The solution for ψ(x, y) is as given by (213), though u∗ is an approximation. The
sampling procedure to find Qi+ 1

2
(0) for evaluating the numerical flux is required;

this is the same as for the exact Riemann solver. This Riemann solver is very simple,
complete and non-linear; in practice it is also shown to be very robust.

3.4 The Harten-Lax-van Leer (HLL) Riemann Solver

We want to solve the Riemann problem (208) approximately with the aim of finding
directly a numerical flux of the form

F0 = 1

T

∫ T

0
F(Q(0, t))dt (223)

for an arbitrary time T > 0 and where Q(0, t) is an approximate solution of
the Riemann problem along the t-axis (the Godunov state); see Fig. 39. Here we
construct a numerical flux following the HLL approach proposed by Harten, Lax
and van Leer [7]. We first establish some useful relations obtained by applying the
integral form of the conservation laws on appropriately chosen control volumes.

x
t = SL ≤ 0

x

t
x
t = SR ≥ 0

x = 0

Qn
i

F0

Qn+1
i

T

QHLL

xL = SL xT R = SRT

Fig. 39 Wave pattern used for the derivation of the HLL flux for a subcritical, or subsonic, wave
pattern, SL ≤ 0 and SR ≥ 0
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Consider the control volume [xL, 0] × [0,T] in the space-time configuration
of Fig. 39. Assume the fastest signals perturbing the constant initial states QL ≡
Qn

i and QR ≡ Qn
i+1 emerging from the Riemann problem solution are SL (for

left travelling signals) and SR (for right travelling signals). Assume the wave
configuration is subsonic, that is SL ≤ 0 and SR ≥ 0. Then, for an arbitrary time
T > 0 we define the distances

xL = TSL , xR = TSR . (224)

Applying the integral form of the conservation laws (204) in the control volume
[xL, 0] × [0,T] we obtain

∫ 0

xL

Q(x,T)dx =
∫ 0

xL

Q(x, 0)dx +
∫ T

0
F(Q(xL, t))dt −

∫ T

0
F(Q(0, t))dt . (225)

Evaluation of the first and second terms on the right hand side gives

∫ 0

xL

Q(x, 0)dx = −SLTQL ;
∫ T

0
F(Q(xL, t))dt = TF(QL) . (226)

Inserting these into (225) and dividing through by T gives

F0 = 1

T

∫ T

0
F(Q(0, t))dt = −SLQL + F(QL)− 1

T

∫ 0

xL

Q(x,T))dx . (227)

To define F0 approximately it is sufficient to find an approximation to the integral
on the right hand side of (227). This is accomplished by finding an approximate
state Q(x,T) by adopting an approach analogous to the Lax-Wendroff method, or
to the Godunov centred method; see [1]. Applying the integral form (225) of the
conservation laws (204) in the control volume [xL, xR] × [0,T], see Fig. 39, we
obtain

∫ xR

xL

Q(x,T)dx =
∫ xR

xL

Q(x, 0)dx +
∫ T

0
F(Q(xL, t))dt −

∫ T

0
F(Q(xR, t))dt .

(228)

The first term on the right hand side gives

∫ xR

xL

Q(x, 0)dx = −SLTQL + SRTQR . (229)

Substitution of this expression into (228) and evaluation of the integrals gives

∫ xR

xL

Q(x,T)dx = T[SRQR − SLQL + F(QL)− F(QR)] . (230)
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On division through by xR − xL = T(SR − SL) we obtain the averaged state

QHLL = 1

(xR − xL)

∫ xR

xL

Q(x,T)dx = SRQR − SLQL + F(QL) − F(QR)

SR − SL
.

(231)

We now use the state QHLL to evaluate the integral on the right hand side of (227).
The resulting intercell flux is

F0 = SRF(QL)− SLF(QR) + SLSR(QR − QL)

SR − SL
. (232)

The HLL Flux Finally the HLL flux for the approximate Godunov method is

FHLL
i+ 1

2
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

FL if 0 ≤ SL ,

SRF(QL)− SLF(QR) + SLSR(QR − QL)

SR − SL
, if SL ≤ 0 ≤ SR ,

FR if 0 ≥ SR .

(233)

To complete the HLL scheme it is necessary to find estimates for SL and SR. In [2],
the following estimates are suggested

SL = uL − qLcL , SR = uR + qRcR . (234)

Here qK (K = L,R) are obtained according to the type of non-linear waves present

qK =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
1

2

(h̄∗ + hK)h̄∗
h2

K

if h̄∗ > hK ,

1 if h̄∗ ≤ hK .

(235)

The scheme is complete by defining h̄∗ ≈ h∗, the depth in the Star Region. Here
we suggest to use the simple but robust estimate from (222). Given wave speed
estimates SL and SR, HLL is most easily implemented noting also that HLL is a
non-linear Riemann solver and entropy satisfying. HLL is complete but only for
systems of two equations. For larger systems HLL is incomplete.

HLL Rusanov and Lax-Friedrichs Schemes Well-known methods can be derived
from HLL, as a special cases. For example, The Rusanov flux [8] can be derived
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from HLL by assuming S+ = SR and SL = −S+. Then we obtain

FRus
i+ 1

2
= 1

2
[F(QL)+ F(QR)] − 1

2
S+(QR − QL) . (236)

The Rusanov scheme is the simplest upwind method, it has a 1-wave model and
is non-linear. But obviously the Rusanov method is incomplete for any system of
equations.

The well-known Lax-Friedrichs method can also be derived from HLL and more
specifically from Rusanov by choosing S+ = Δx

Δt , producing the Lax-Friedrichs flux

FLF
i+ 1

2
= 1

2
[F(QL) + F(QR)] − 1

2

Δx

Δt
(QR − QL) . (237)

The wave model of the Lax-Friedrichs method has zero waves. It is the most
diffusive (most inaccurate) stable method for hyperbolic equations. I would not
recommend its use for practical computations.

3.5 The HLLC Riemann Solver

HLL ignores intermediate waves in systems of three or more equations, leading to
excessive numerical dissipation for these waves. A possible improvement, called
HLLC, was first proposed by Toro and collaborators in 1992 [9]; see also [10]
and [11]. The HLLC approximate Riemann solver is a modification of HLL that
accounts for intermediate waves in the solution of the Riemann problem. See
Fig. 40.

t

xx = 0

x

t
= SL

x

t
= S∗

x

t
= SR

QL QR

FL FR

Q∗L Q∗R

F∗L F∗R

Fig. 40 Assumed wave pattern for the HLLC Riemann solver. The Star Region contains two sub-
regions separated by the intermediate wave
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Consider the wave pattern depicted in Fig. 40, where an intermediate wave of
speed S∗ is present. Application of the integral form of the conservation laws in
[xL, 0] × [0,T] and in [0, xR] × [0,T] yield

F∗L = FL + SL(Q∗L − QL) , F∗R = FR + SR(Q∗R − QR) . (238)

Here there are two vector equations for four unknown vectors Q∗L, Q∗R, F∗L

and R∗R. To solve this overdetermined algebraic system we make the following
additional assumptions

h∗L = h∗R = h∗ , u∗L = u∗R = u∗ = S∗ . (239)

As a matter of fact the above assumptions are true for the exact Riemann solver, as
seen in Sect. 2. From the first component of the first vector equation in (238) we
write

h∗u∗ = hLuL + SL(h∗ − hL) . (240)

From the first component of the second vector equation in (238) we write

h∗u∗ = hRuR + SR(h∗ − hR) . (241)

From (240) and (241) we write

h∗ = hR(uR − SR)

u∗ − SR
= hL(uL − SL)

u∗ − SL
. (242)

From here we obtain

u∗ = S∗ = SLhR(uR − SR)− SRhL(uL − SL)

hR(uR − SR) − hL(uL − SL)
. (243)

If SL and SR are prescribed, then h∗ is known from (242)–(243). Then the vectors
Q∗L and Q∗R in (238) are given as

Q∗L = h∗

⎡

⎣
1
S∗
ψL

⎤

⎦ , Q∗R = h∗

⎡

⎣
1
S∗
ψR

⎤

⎦ . (244)

Now the vectors F∗L and F∗R in (238) are determined and finally the HLLC flux is
given as

FHLLC
i+ 1

2
=

⎧
⎪⎪⎨

⎪⎪⎩

FL if 0 ≤ SL ,

F∗L = FL + SL(Q∗L − QL) if SL ≤ 0 ≤ S∗ ,
F∗R = FR + SR(Q∗R − QR) if S∗ ≤ 0 ≤ SR ,

FR if 0 ≥ SR ,

(245)
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where the states Q∗L, Q∗R are given by (244). The wave speed estimates for SL and
SR are as for the HLL flux, see (234), and for S∗ we use (243).

The use of HLLC instead of HLL for a system including the passive scalar
ψ makes a dramatic difference to the resolution of the contact wave. This is
particularly evident for long-time evolution problems.

3.6 The Dumbser-Osher-Toro Riemann Solver: DOT

Here we present a modification of the Osher-Solomon Riemann solver [12] that
makes the approach much more practical and applicable to any hyperbolic system
for which the complete eigenstructure is known, either analytically of numerically.
The resulting scheme is non-linear and complete. The modification is due to
Dumbser and Toro [13, 14].

3.6.1 Definitions and Notation

Consider a general m × m hyperbolic system

∂tQ + ∂xF(Q) = 0 , (246)

with conserved variables and flux vectors respectively denoted as

Q = [q1, q2, . . . , qm]T , F = [ f1, f2, . . . , fm]T . (247)

The real eigenvalues are λi(Q) and the corresponding right eigenvectors are Ri(Q),
for i = 1, 2, . . . ,m. Here we consider Godunov-type finite volume schemes to
solve (246)

Qn+1
i = Qn

i − Δt

Δx
(Fi+ 1

2
− Fi− 1

2
) , (248)

where Fi+ 1
2

is the numerical flux found by solving the Riemann problem for (246)
with initial condition

Q(x, 0) =
{

Q0 if x < 0 ,

Q1 if x > 0 .
(249)

Recall that hyperbolicity of system (246) is equivalent to saying that the Jacobian
matrix A(Q) of the flux F(Q) is diagonalizable, that is

A(Q) = R(Q)Λ(Q)R−1(Q) , (250)
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where R(Q) is the matrix formed by the right eigenvectors Ri(Q), R−1(Q) is its
inverse and Λ(Q) is the diagonal matrix whose diagonal entries are the eigenvalues
λi(Q).

We introduce the definitions

λ+
i (Q) = max(λi(Q), 0) , λ−

i (Q) = min(λi(Q), 0) (251)

and consider the associated diagonal matrices Λ+(Q), Λ−(Q) and |Λ−(Q)|, whose
diagonal entries are λ+

i (Q), λ−
i (Q) and |λi(Q)| respectively. Note that

|λi(Q)| = λ+
i (Q)− λ−

i (Q) (252)

and hence

|Λ(Q)| = Λ+(Q)−Λ−(Q) . (253)

Then we introduce

|A(Q)| = R(Q)|Λ(Q)|R−1(Q) . (254)

Osher and Solomon [12] defined the numerical flux as

Fi+ 1
2

= 1

2
(F(Q0)+ F(Q1)) − 1

2

∫ Q1

Q0

|A(Q)|dQ . (255)

This requires the evaluation of an integral in phase space, which depends on the
chosen integration path joining Q0 to Q1. Originally, Osher and Solomon proposed
two ways of choosing integration paths so as to make the actual integration
tractable, (a) the P-ordering and (b) the O-ordering. However, the analytical
calculations to be performed are still too involved for general hyperbolic systems.
Full details of the original Osher-Solomon Riemann solver are found in Chapter 12
of Toro [1].

3.6.2 The DOT Riemann Solver

Dumbser and Toro [13, 14] made two simple but effective suggestions: (i) choose
any path, without considerations regarding computational tractability of the scheme;
(ii) evaluate matrices by numerical integration in phase space. The simplest path to
evaluate the integral in (255) is the canonical path

ψ(s; Q0,Q1) = Q0 + s(Q1 − Q0) , s ∈ [0, 1] . (256)
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Obviously, other choices are available. Then, under a change of variables we obtain

Fi+ 1
2

= 1

2
(F(Q0)+F(Q1))− 1

2

⎛

⎝

1∫

0

|A(ψ(s; Q0,Q1))| ds

⎞

⎠ (Q1 − Q0) . (257)

Finally, the integral in (257) is computed numerically along the path ψ using a
Gauss type quadrature rule with G points sj and associated weights ωj in the unit
interval I = [0, 1]. We obtain

Fi+ 1
2

= 1

2
(F(Q0) + F(Q1))− 1

2

⎛

⎝
G∑

j=1

ωj
∣
∣A(ψ(sj; Q0,Q1))

∣
∣

⎞

⎠ (Q1 − Q0) .

(258)

Note that
∣
∣A(ψ(sj; Q0,Q1))

∣
∣ must be decomposed as in (254) for each sj.

Remarks on the DOT Scheme

1. The complete eigenstructure of the system is needed and is used at each
integration point in (258).

2. The scheme is non-linear and complete, as it contains all characteristic fields of
the exact problem.

3. The scheme is very general. The original version of Osher and Solomon was
restricted to very simple hyperbolic systems.

4. The new DOT scheme also applies to non-conservative hyperbolic systems.

3.6.3 Sample Numerical Results, Accuracy and Efficiency

The purpose here is to show some numerical results for a wider range of equations
than those studied in these lecture notes. We first show some selected numerical
results for the Euler equations of gas dynamics; see [1] for background. Then we
also address the crucial issues of accuracy and efficiency of Riemann solvers; this is
done in terms of the blood flow equations [15].

Numerical Results for the Euler Equations Figure 41 shows computations from
a linearised Riemann solver not studied here, namely the Roe Riemann solver [16].
Results shown are for the Euler equations [1]. The left frame shows results from
the original Roe scheme without an entropy fix; an entropy violating shock (or
rarefaction shock) is computed, which is not physically admissible. The right frame
shows results from a modified Roe scheme through a so-called entropy fix; now
the results look correct and also accurate, recalling that the corresponding Godunov
method is only first order accurate.
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Fig. 41 Sonic flow test problem for the Euler equations taken from [1]. Comparison between
numerical (symbol) and exact (line) solutions. Left: linearised Roe solver without entropy fix.
Right: linearised Roe solver with entropy fix
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Fig. 42 Test problem for the Euler equations taken from [1]. Comparison between numerical
(symbol) and exact (line) solutions. Left: Original Osher-Solomon scheme. Right: new DOT
scheme

In Fig. 42 we show results for another test problem for the Euler equations taken
from [1]. Comparison between numerical (symbol) and exact (line) solutions is
shown. The left frame shows results from the original Osher-Solomon scheme [12],
which as seen in the figure, are completely wrong. The right frame shows results
from the new DOT scheme [13, 14]; these results are very accurate, especially for
the narrow region between the contact discontinuity and the shock wave.

Figure 43 shows results for a special test problem for the Euler equations, also
taken from [1]. The test problem consists of a single, isolated stationary contact
discontinuity. The left frame shows numerical results from the HLL scheme [7] and
the FORCE scheme [6]. Both numerical methods show large errors due to numerical
diffusion of the intermediate wave in the Riemann problem for the Euler equations.
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Fig. 43 Test problem for the Euler equations containing a single, isolated stationary contact
discontinuity; taken from [1]. Left: FORCE and HLL versus the exact solution. Right: HLL and
HLLC versus the exact solution
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Fig. 44 Efficiency test for the blood flow equations. The test is a Riemann problem containing
two rarefaction waves. Error against CPU time. Results are shown for the Godunov method used in
conjunction with Exact Riemann solver, the HLL Riemann solver, FORCE and the Lax-Friedrichs
flux (Courtesy of PhD student Christian Contarino, University of Trento, Italy)

The right frame shows results from HLL [7] and from HLLC [11], noting that the
latter reproduces the exact solution.

Accuracy and Efficiency We have already mentioned the question of efficiency,
which relates error (or accuracy) to computational cost. Figure 44 shows results
from an efficiency test for the 1D blood flow equations [15], where error is measured
against CPU time. Comparison is made for the Godunov method with four Riemann
solvers: the exact Riemann solver, HLL, FORCE and Lax-Friedrichs.
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What the results of Fig. 44 show is that for this test problem with smooth solution
the Godunov method is the most efficient method. Compared to the Lax-Friedrichs
method, it is about five times more efficient. To see this, imagine a horizontal line
through the last point of the Lax-Friedrichs curve with the smallest error and look for
its intersection with the exact Riemann solver curve; these two intersection points
give two respective CPU times.

3.6.4 Concluding Remarks

The Godunov method for the augmented one-dimensional shallow water equations
has been introduced. The Godunov scheme works with the exact and with approx-
imate Riemann solvers. Examples of approximate Riemann solvers have also been
presented, along with some selected numerical results for the Euler equations and
for the blood flow equations, not studied here. The first-order Godunov schemes
studied in this section can be extended to high order of accuracy following a variety
of procedures available in the literature. In the next section we present the ADER
approach to construct high-order numerical methods.

4 High Order Methods: The ADER Approach

In this section we present one approach, the ADER approach, to construct high-
order accurate extensions of the first-order methods presented previously.

4.1 Overview

We are interested in time-dependent partial differential equations of the form

∂tQ(x, t)+ A(Q(x, t)) = S(Q(x, t))+ D(Q(x, t)) ,

x ∈ Ω , t > 0 , ICs , BCs ,

⎫
⎬

⎭
(259)

along with appropriate initial and boundary conditions. Here Q(x, t) is the vector
of unknowns; A(Q(x, t)) is an advection differential operator in 1D, 2D or 3D;
D(Q(x, t)) is a dissipative operator in 1D, 2D or 3D and S(Q(x, t)) is a source term
vector, a prescribed function of the unknowns.

The ADER approach was first presented by Toro and collaborators [17] for
linear hyperbolic systems in 1D, 2D and 3D on structured meshes; schemes of upto
10th order of accuracy in space and time were constructed and implemented. The
ADER schemes were further developed in [18] and [19] for non-linear systems;
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in [20] ADER was formulated, in a unified manner, in both the finite volume
and the discontinuous Galerkin finite element frameworks. For an introduction to
ADER see Chapters 19 and 20 of [1] and the many references therein, up to 2009.
Distinguishing features of the ADER approach include:

1. Accuracy is arbitrary in both space and time.
2. Schemes are non-linear schemes, in the sense of Godunov; computed shock

waves and other discontinuities have none or controlled spurious oscillations.
3. Schemes are suitable for general geometries in multiple space dimensions,

treated with both structured or unstructured meshes.
4. Schemes work in both the finite volume and the discontinuous Galerkin finite

element frameworks.
5. Schemes are applicable to conservative and non-conservative hyperbolic sys-

tems.

Why is High Accuracy Important? Because of Efficiency Figure 45 shows
computational results for an acoustic problem modelled by the linearised two
dimensional Euler equations solved by ADER schemes taken from [21]. The

Fig. 45 Efficiency plot: error against CPU cost for nine high-order ADER schemes, from the
2nd order to the 24th order of accuracy. For a chosen fixed error there corresponds a horizontal
line (e.g. black horizontal line); its intersection with the various curves gives corresponding times,
which give the cost of the corresponding scheme to compute the solution with that error. Taken
from [21]
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original paper reports computations of orders of accuracy from 1 to 24 in space
and time. Figure 45 displays some selected results from 2nd to 16th order.

4.2 ADER in the Finite Volume Framework

Consider the general system of hyperbolic equations with source terms (hyperbolic
balance laws) in one space dimension

∂tQ(x, t) + F(Q(x, t)) = S(Q(x, t)) . (260)

Exact integration of (260) in the control volume [xi− 1
2
, xi+ 1

2
] × [0,Δt] gives a finite

volume like formula

Q̂n+1
i = Q̂n

i − Δt

Δx
(F̂i+ 1

2
− F̂i− 1

2
) +ΔtŜi , (261)

where

Q̂n
i = 1

Δx

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx ,

F̂i+ 1
2

= 1

Δt

∫ tn+1

tn
F(Q(xi+ 1

2
, t))dt ,

Ŝi = 1

ΔtΔx

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

S(Q(x, t))dxdt .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(262)

Relation (261) with definitions (262) is exact and motivates an approximate formula,
namely

Qn+1
i = Qn

i − Δt

Δx
(Fi+ 1

2
− Fi− 1

2
) +ΔtSi . (263)

See Sect. 1. Equation (263) defines a one-step, fully discrete finite volume numerical
scheme with numerical flux

Fi+ 1
2

≈ 1

Δt

∫ Δt

0
F(Qi+ 1

2
(τ ))dτ (264)

and numerical source

Si ≈ 1

ΔtΔx

∫ Δt

0

∫ x
i+ 1

2

x
i− 1

2

S(Qi(x, τ ))dxdτ . (265)
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Fig. 46 Illustration of the finite volume scheme (263) to solve the system of hyperbolic equa-
tion (260) with source terms. The scheme requires numerical fluxes at interfaces and the numerical
source within the control volume

q(
x
,t

n
)

xxi−1 xi xi+1

pi−1(x)

pi(x) pi+1(x)

qni−1 qni qni+1

Fig. 47 Illustration of the reconstruction procedure for one variable q(x, t) in one space dimension
on a regular mesh. From the set of (constant) integral averages {qn

i } one obtains an interpolant pi(x)
satisfying a conservation property and a non-linear property to circumvent Godunov’s theorem,
using for example criteria such as TVD, ENO and WENO. Note that at each interface one now has
reconstructed data that defines a generalised Riemann problem

Figure 46 illustrates scheme (263) to solve (260). The finite volume ADER
scheme (263) aims at computing approximations (264) and (265) as accurately as
possible.

4.3 Ingredients of ADER

The ADER method to solve (260) is based on the finite volume formula (263) and
requires the accurate evaluation of integrals (264) for the intercell numerical flux
and (265) for the numerical source. In order to achieve this, the following steps are
required.

1. Reconstruction: high-order non-linear spatial reconstruction, once per time
step, using any of the methodologies available, such as TVD, ENO and WENO.
Figure 47 illustrates the reconstruction process. For background on reconstruc-
tion techniques see for example [1, 4, 22, 23] and [24].
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2. Generalised Riemann problem (GRP) and numerical flux. At each interface
one must solve a Riemann problem with piece-wise smooth data, not piece-wise
constant, as in the conventional case. This GRP may also include the source terms
in case these are present in the equations.

3. Numerical source. This is an additional term in the case in which the equations
include source term.

4.4 Generalized Riemann Problem

Starting from reconstructed data, at each interface one defines the following initial
value problem, called the generalized Riemann problem, or GRP

PDEs: ∂tQ + ∂xF(Q) = S(Q) , x ∈ (−∞,∞) , t > 0 ,

ICs: Q(x, 0) =
⎧
⎨

⎩

QL(x) if x < 0 ,

QR(x) if x > 0 .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(266)

In the GRP (266) the governing equations include source terms and the initial
conditions are piece-wise smooth (e.g. polynomials of any degree). This Riemann
problem also generalises the case in which the data is piece-wise linear, which is
associated with the second-order GRP scheme of Ben-Artzi and Falcovitz [25].

Figure 48 illustrates the classical Riemann problem (left) and the generalised
Riemann problem (right). Figure 49 shows an example of a generalised Riemann
problem for the Euler equations of gas dynamics. There are so far several published
methods for solving the generalised Riemann problem for hyperbolic systems. The
first practical solver for non-linear hyperbolic systems with source terms is due to
Toro and Titarev [18]. This solver is suitable for non-stiff source terms. Other solvers
include [26–30]. An important development was that in [27] in which the proposed
solver can deal with stiff source terms, reconciling in this way, stiffness and high-
order of accuracy.

4.5 Numerical Examples

Here we show some sample numerical results, first for the 1D linear advection
equation and then for the 2D Euler equations of gas dynamics with the ideal equation
of state.

Figure 50 shows computed (symbols) and the exact solution (line) for linear
advection equation using a mesh of M = 50 cells, a Courant number coefficient
Ccfl = 0.95 at the output time tout = 1000π . The top frame displays results from a
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Fig. 48 Classical Riemann problem (left) and generalised Riemann problem (right). Bottom
frames depict the initial conditions (for a single variable) and top frames depict the structure of
the solution of the initial value problem in the x − t plane

Fig. 49 Structure of the solution of a generalized Riemann problem for the Euler equations.
Characteristics are curved in the x − t plane (Courtesy of Dr VA Titarev)

second-order TVD method used in conjunction with the MINBEE limiter [1]. The
bottom frame shows results from the 5th-order ADER scheme (5th order in space
and time) with WENO (non-linear) reconstruction. The results speak by themselves.
The second order TVD method is unable to resolve the wave packet and there is not
even a hint of waves; the profile is virtually flat. The killer here is the long evolution
time, tout = 1000π . Long time evolution problems expose the limitations of low
order methods. The fifth order method is just perfect.
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Fig. 50 Computed (symbols) and exact solution (line) of linear advection equation using a mesh
of M = 50 cells, Courant number coefficient Ccfl = 0.95 and output time tout = 1000π . Top frame
displays results from second-order TVD method with the MINBEE limiter. Bottom frame shows
results from the 5th-order ADER scheme with WENO reconstruction

Figure 51 shows computed results for the two-dimensional Euler equations of gas
dynamics with the ideal gas equation of state. This test problem is well known in
the gas dynamics community. The domain is a rectangular region with a solid fixed
triangle in its interior (white object). The top and bottom boundaries are reflecting
fixed walls, while the left and right boundaries are transmissive. The initial condition
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Fig. 51 Shock wave impinging on stationary triangular body. Numerical solution of the Euler
equations of gas dynamics on a triangular mesh using a fourth order ADER method (Courtesy of
Prof. M Dumbser, University of Trento, Italy)

is an isolated shock wave of Mach number 1.3 positioned between the left boundary
and the triangle. The evolution of this initial condition gives rise to a complex
pattern of waves propagating and interacting. There are experimental visualization
results for this problem. The ADER solution represents those experiments well. In
addition to the dominant shock waves everywhere there are also regions of smooth
flow and many low amplitude waves; these are the flow features that are difficult
to capture with low order methods, they are simply wiped out, just as seen for the
linear advection example of Fig. 50.

4.6 Concluding Remarks

In this last section we have given a very brief introduction to one approach to con-
struct high-order numerical methods for hyperbolic equations, namely the ADER
approach. This is a fully discrete approach that requires a spatial reconstruction
procedure and the solution of the generalised Riemann problem. There are indeed
alternative methods to achieve high order of accuracy. Prominent examples are the
ENO and WENO semidiscrete approaches pioneered by Shu and collaborators [22–
24].
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Accumulated experience over the last few years has shown that high-order
methods are much more efficient than low order methods if small errors are sought,
that is if accurate solutions are sought. By efficiency we mean that given an error
deemed acceptable, then high order methods attain that error much more efficiently
on a coarse mesh than low order methods on a fine mesh. This is illustrated in
Fig. 45.

The issues of accurate solutions and efficiency are becoming increasingly
important given the growing trend to use mathematical models (PDEs) to understand
the physics they embody. Only very accurate solutions of the PDEs will achieve this
and also reveal limitations of the mathematical models (the governing equations
and their parameters). Very long time evolution simulations, as in wave propagation
problems for long distances, require the use of high order methods, as illustrated in
Fig. 50.
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An Introduction to the Homogenization
Modeling of Non-Newtonian and
Electrokinetic Flows in Porous Media

Andro Mikelić

Abstract The flow of complex fluids through porous media is common to many
engineering applications. The upscaling is a powerful tool for modeling non-
homogeneous media and we consider homogenization of quasi-Newtonian and
electrokinetic flows through porous media. For the quasi-Newtonian polymeric
fluids, the incompressible Navier-Stokes equations with the invariants dependent
viscosity is supposed to hold the pore scale level. The two-scale asymptotic
expansions and the two-scale convergence of the monotone operators are applied
to derive the reservoir level filtration law, given as a monotone relation between the
filtration velocity and the pressure gradient. The second problem, we consider, is
the quasi-static transport of an electrolyte through an electrically charged medium.
The physical chemistry modeling is presented and used to get a dimensionless form
of the problem. Next the equilibrium solutions are constructed through solving the
Poisson-Boltzmann equation. For the solutions being close to the equilibrium, the
two-scale convergence is applied to obtain the Onsager relations linking gradients
of the pressure and of the chemical potentials to the filtration velocity and the ionic
fluxes.

1 Introduction to the Homogenization

Using the equations of the continuum physics at pore scale for porous media is a
promising approach to derive the overall equations, but meets many difficulties. The
presence of the fluid and the solid parts in the soil obliges us to consider it as a
multiphase medium. The phases are geometrically present in a heterogeneous way,
with small pores and cavities.
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Homogenization applied to heterogeneous media (porous media, composites,
tissues, etc.) is a mathematical method that allows to “upscale” the fundamental
equations from continuum physics, being valid at the microscopic level. Upscaling
or homogenization signifies that the particular phases lose their independent
presence in the model and will get “smeared”. Rather than tracking behavior
of every phase, we search to approximate the model with equations being valid
everywhere. Phases get present in every point through new averaged unknowns
like saturations and concentrations. This way it is not necessary to solve nonlinear
PDEs of the fluid mechanics/elasticity/heat conduction in the complicated geometry
of a heterogeneous medium. Note that, in addition, the pore geometry is usually
unknown and available only through some statistical averages.

The homogenization theory of heterogeneous media studies the effects of the
micro-structure (i.e. of the pore structure) upon solutions of PDEs of the continuum
mechanics. Even in the simplest case of a viscous single phase flow through a
porous medium, we are given a PDE with two natural length scales: a macroscopic
scale (the scale of the piece of reservoir/soil) of size L0 and a microscopic scale
(the pore scale or the scale of perforations) of size ' << L0. This disparity
in length scales is what provides us with our expansion parameter ε = '/L0,
measuring the scale of oscillations. For fixed, but small, characteristic pore length
' = εL0 > 0 the solutions uε of the flow equations will in general be complicated,
having different behaviors on the two length scales.

A closed-form solution is not achievable and a numerical solution would be
nearly impossible to calculate. In the practical simulations of the flows through
porous media, we use PDEs at the macroscale. Information about the pore structure
is only kept through some averaged quantities as porosity and permeability.

Therefore, one of the fundamental questions in the modeling of flows through
porous media is how to get the “averaged” or “upscaled” equations. Next we wish
to calculate the effective coefficients describing the influence of the microstructure.
Finally, it is of interest to know whether our derived model is correct, in the sense
that it should approximate the original problem involving the micro-structure.

In the homogenization theory, the upscaling corresponds to the study of the
limiting behavior uε → u as ε → 0. The idea is that in this limit the micro-structure
(generating the high-frequency oscillations) will “average out”, and there will be a
simple “averaged” or “homogenized” PDE, which will represent a filtration law.

As even the simple example of Darcy’s law confirms, the homogenized PDE can
differ much from the original one. In overcoming this fundamental difficulty it is
useful to use formal multiscale expansions in ε, containing behavior on different
length scales.

The idea is to suppose uε has the following expansion:

uε = εβ
{

u0(x,
x

ε
) + εu1(x,

x

ε
) + ε2u2(x,

x

ε
) + . . .

}

(1)



Homogenization of Complex Porous Media Flows 173

Two-scale expansion (1) is plugged into the PDE and we search for a scale of
equations determining the functions ui, i = 1, . . . . Nevertheless, before plugging
expansion (1) into the PDE, we should somehow determine β.

In order to answer all those questions, we establish the following strategy, which
we are going to apply in the sections which follow:

(A) A description of the geometry of the heterogeneous medium is given. It can be
periodic, statistically homogeneous etc.

(B) A continuum physics model valid at the pore scale is written up. The model
can come either from the well-established textbook modeling or from the
molecular dynamics calculations allowing to go from the molecular structure
to the continuum mechanics at micro/nano-metric scale.

(C) The a priori estimates for solutions of the PDE, uniform with respect to ε, are
established. For the flow problems we usually need:

(C1) A priori estimates for the velocity.
(C2) A priori estimates for the pressure.

(D) Having obtained a priori estimates, a formal multiscale expansion is set up
in the form (1). We shall see that for the linear and monotone problems it
corresponds to passing to the homogenization limit in the sense of the two-
scale convergence.

(E) The upscaled problem is studied. We prove uniqueness and regularity and
undertake separation of the fast and slow scales. A numerical method for
calculating the effective coefficients is proposed.

This short chapter will try to initiate the reader to the applications of the two-
scale convergence technique in the homogenization of complex flow through porous
media. We present three examples of complex flows through a porous medium: the
first is homogenization of a quasi-Newtonian flow, the second is homogenization
of a Bingham flow and the third is a derivation of the Onsager relations for the
electrokinetic flows.

In connection with the homogenization in porous media, we recommend to the
reader the book edited by U. Hornung [38]. It contains number of contributed
chapters, and we mention the chapters on the two-scale convergence and on the
derivation of Darcy’s law by homogenization by G. Allaire, which we are going
to quote frequently in this text. Also there is a chapter on the filtration of non-
Newtonian fluids (see [54]).

As general references on homogenization we recommend the classic text by E.
Sanchez-Palencia [71] and the recent engineering textbook by Mei and Vernescu
[53]. More recent mathematical references are the books by Jikov, Kozlov and
Oleinik [39], Cioranescu and Donato [28] and Pavliotis [66].

Classical references on two-scale convergence are papers by G. Allaire [5] and
by G. Nguetseng [62].
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2 Models for Quasi-Newtonian Fluids and a Derivation
of the Filtration Laws by a Two-Scale Expansion

In this section we first present models of quasi-Newtonian fluids. Then we discuss
their well-posedness and particularities of the geometry. After obtaining a priori
estimates, we propose two-scale expansions. They allow achieving our goal of
deriving formally equations describing filtration of a quasi-Newtonian fluid.

2.1 Continuum Physics Models for Quasi-Newtonian Fluids

We first recall the fluid mechanics equations at the pore level.
The incompressible quasi-Newtonian fluids are characterized by the viscosity

depending on the principal invariants of the symmetric stretching tensor D(v). In
our notation, v is the velocity, p the pressure, ∇v the gradient velocity tensor and
D(v) = (∇v + ∇vt)/2 will denote the rate-of-strain or the symmetric stretching)
tensor. The principal invariants of D(v) are

I1(D) = tr D = div v, I2(D) = 1

2

(
( div v)2 − tr D2) and I3(D) = det D.

σ is the stress tensor σ = −pI + 2ηrD(v). The viscosity ηr is constant for a

Newtonian fluid but dependent on the shear rate
.
γ=

√

|D(v)|2/2 = √
I2(D(v), i.e.

ηr = ηr(
.
γ ), for viscous non-Newtonian fluids. The deviatoric stress tensor τ , i.e. the

part of the total stress tensor that is zero at equilibrium, is then a nonlinear function
of the symmetric stretching tensor D(v),

τ = ηr(
.
γ )D(v).

Two most widely used laws in engineering practice are the power law and the
Carreau-Yasuda law. For more constitutive laws for the viscosity, we refer to [17]
and [18].

The first most popular empiricism is the “power law” or Ostwald-de Waele
model, where the expression for the shear rate dependent viscosity is

ηr(ξ) = λ0|ξ |r−2 = λ1|
.
γ |r−2 = λ1|

.
γ |n−1, ξ ∈ R

9, (2)

where n = r − 1 is the power-law exponent and λ1 is the consistency of the fluid.
For 1 < r < 2 the fluid is a shear thinning and for r > 2 a shear-thickening.

The simple power-law model (Eq. (2)) has a well-known singularity at zero shear
rate, which must be carefully accounted for in kinematic analyses. The Carreau-
Yasuda equation is an alternate generalized Newtonian model that enables the
description of the plateaus in viscosity that are expected when the shear rate is very
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small or very large. The empiricism for the viscosity ηr used in the Carreau-Yasuda
law is

ηr(ξ) = (η0 − η∞) (1 + λ|ξ |2)r/2−1 + η∞, ξ ∈ R
9, (3)

with η0 ≥ η∞ > 0, λ > 0, where η0 is the zero-shear-rate viscosity, η∞ is the
infinite-shear-rate viscosity, λ is a time constant being the inverse of a characteristic
shear rate at which shear thinning becomes important and r − 1 is a dimensionless
constant describing the slope in the “power law region” of log ηr versus log

.
γ .

The incompressible quasi-Newtonian Navier-Stokes system is given by

−∇ · {ηr(
.
γ )D(v)} + ρ(v∇)v + ∇p = ρf in Ωp, (4)

∇ · v = 0 in Ωp, (5)

v = 0 on ∂Ωp, (6)

where Ωp is the pore space of the porous medium.
The corresponding functional space for the velocity is

Vr(Ωp) = {z ∈ W1,r
0 (Ωp)

3 : ∇ · z = 0 in Ωp},

where 1 < r < +∞ and W1,r
0 (Ωp) = {z ∈ Lr(Ωp) | ∇z ∈ Lr(Ωp)

3}. Ωp is a
bounded open set with a smooth boundary and f is a smooth function.

In two and three dimensions the classical theory from Lions, Cattabriga and
Temam (see [25, 43] and [79]), and newly developed techniques from [24] give the
existence of at least one weak solution (v, p) ∈ Vr(Ωp)×Lr′

0 (Ωp) for (2),(4)–(6) (i.e.
the power law) under assumption, r > 2d/(d +2) (i.e. r > 1 in the two dimensional
case and r > 6/5 in three dimension), with r′ = r/(r − 1). For system (3)–(6) (i.e.
for the case of Carreau-Yasuda law) we have existence of at least one weak solution
(v, p) ∈ V2(Ωp)× L2

0(Ωp) for 1 < r ≤ 2 and (v, p) ∈ Vr(Ωp)× Lr′
0 (Ωp) for r > 2.

In order to make modeling more precise, we define the dimensionless geomet-
rical structure of the porous medium. We will divide Ωp, which is a subset of
Ω = (0,L)3, by the characteristic length L0 and obtain Ωε.

2.2 The Geometry of a Periodic Porous Medium and a Priori
Estimates

Now we consider a periodic porous medium Ω = (0,L/L0)
3 in R

3 with a periodic
arrangement of the pores. The formal description goes along the following lines:
First we define the geometrical structure inside the unit cell Y = (0, 1)3. Let Ys (the
solid part) be a closed subset of Ȳ and YF = Y\Ys (the fluid part). The liquid/solid
interface is S = ∂Ys \ ∂Y. See Fig. 1 for a typical unit cell.
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Fig. 1 Periodic cell with
connected solid and liquid
parts in three dimensions

Solid part Fluid part

We make the periodic repetition of Ys all over R3 and set Yk
s = Ys + k, k ∈ Z

3.
Obviously the set ES = ⋃

k∈Z3 Yk
s is a closed subset of R3 and EF = R

3\ES is an
open set in R

3. The following assumptions on YF and EF have been made:

(i) YF is an open connected set of strictly positive measure, with a C1,1 boundary
and Ys has strictly positive measure in Ȳ as well.

(ii) EF and the interior of ES are open sets with the boundary of class C1,1, which
are locally located on one side of their boundary. Moreover EF is connected and
the solid part, ES, is supposed connected in R

3 as well (in two dimensions this
hypothesis is not realistic).

Now we see that Ω = (0,L/L0)
3 is covered with a regular mesh of size ε, each

cell being a cube Yε
i = ε(Y + i), with 1 ≤ i ≤ N(ε) = |Ω |ε−3[1 + 0(1)]. We

define Yε
si

= ε(Ys + i) and Yε
fi

= ε(YF + i). For sufficiently small ε > 0 we consider

Tε = {k ∈ Z
3|Yε

sk
⊂ Ω} and define

Ωε
s =

⋃

k∈Tε

Yε
sk
, Γ ε = ∂Ωε

s , Ωε = Ω \Ωε
s .

Obviously, ∂Ωε = ∂Ω ∪ Γ ε. The domains Ωε
s and Ωε represent, respectively,

the solid and fluid parts of a porous medium Ω .
For simplicity, we will suppose that L/(L0ε) is an integer.

Remark 1 A two-dimensional porous medium could be seen as a section of a bundle
of parallel fibers. Possible geometries are shown on Fig. 2.

The no-slip condition on the pore boundaries is at the origin of velocity
oscillations. They are precisely described by the following, pore-size dependent,
Poincaré’s inequality in a porous medium
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Fig. 2 Examples of two-dimensional porous media

Lemma 1 (See [71]) For each w ∈ W1,q
0 (Ωε)

3, the inequality

‖w‖Lq(Ωε)3 ≤ Cε‖D(w)‖Lq(Ωε)9, 1 < q < +∞, (7)

holds true.

The equivalence between the norms ‖D(w)‖Lq(Ωε)9 and ‖∇w‖Lq(Ωε)9 is due to
Korn’s inequality in porous media

Proposition 1 (See [64] and References Therein) For each w ∈ W1,q
0 (Ωε)

3, 1 <

q < +∞, we have the inequality

‖∇w‖Lq(Ωε)9 ≤ C‖D(w)‖Lq(Ωε)9 . (8)

Next we test Eq. (4) with the solution and obtain

||v||Lr + ε||D(v)||Lr ≤ Cεr/(r−1) (9)

in the case of the power law and

||v||Lr + ε||D(v)||Lr ≤ Cεβ, β = min{r/(r − 1), 2} (10)

in the case of the Carreau-Yosuda law.
Hence the characteristic velocity U is of order O(εβ) and the Reynolds number

Re=ρL0U/η0 is small. Therefore, it is enough to consider the quasi-Newtonian
Stokes equations.
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Consequently, in the case of power law (2) we consider the dimensionless system

−∇ · {|D(vε)|r−2D(vε)} + ∇pε = f in Ωε, (11)

∇ · vε = 0 in Ωε, (12)

vε = 0 on ∂Ωε. (13)

Problem (11)–(13) is equivalent to the minimization problem

min
ϕ∈Vr(Ωε)

J(ϕ) = min
ϕ∈Vr(Ωε)

{1

r

∫

Ωε

|D(ϕ)|r dx −
∫

Ωε

f · ϕ dx
}
. (14)

For 1 < r < +∞, J is strictly convex, proper, continuous and coercive, which
give the existence and the uniqueness of the minimizer vε ∈ Vr(Ωε) (see [33]). The
pressure field is recovered using the De Rham or Tartar’s constructions (see [79]).

2.3 The Filtration Laws via Two-Scale Asymptotic Expansions:
The Power-Law

The conclusion of the previous subsection is that we can take dimensionless
problem (11)–(13) as the starting point for the asymptotic analysis.

vε satisfies a priori estimate (9). Obtaining the a priori estimate for the pressure
field pε is more involved and we address the question in the next section. Motivated
by the classical Darcy law, we expect that there would be a term f − ∇xp in
the filtration law. Hence we expect to have the pressure pε uniformly bounded in
Lr′(Ωε), r′ = r/(r − 1).

After having obtained the a priori estimates, we can proceed with formal two-
scale asymptotic expansions. We will use the two-scale asymptotic expansion (1)
to perform the formal homogenization of the system (11)–(13). Introducing the fast
variable y = x/ε, we assume that the solution of (11)–(13) can be developed in the
following way

{
vε(x) = εr/(r−1){v0(x, y)+ εv1(x, y)+ . . .

}
,

pε(x) = p0(x, y)+ εp1(x, y)+ . . . .

The above two-scale expansion can be considered as a special case of the general
expansions of this type from the monographs by Sanchez-Palencia [71] and
Hornung [38]. In particular, a derivation of Darcy’s law, for a Newtonian fluid, by
formal two-scale expansions goes back to the seminal article by Ene and Sanchez-
Palencia [34]. The differential operators transform as follows

∇· = 1

ε
∇y · +∇x·; D = 1

ε
Dy + Dx;

∇ = 1

ε
∇y + ∇x; |D(vε)|r−2 = ε(r−2)/(r−1)|Dy(v0)+ O(ε)|r−2.
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Insertion of the two-scale asymptotic expansion into the incompressibility
condition (12) yields

1

ε
∇y · v0 + ∇x · v0 + ∇y · v1 = O(ε).

Hence at order O(1/ε) we have

∇y · v0 = 0 in YF; v0 = 0 on S (15)

and at order O(1)

∇x · v0 + ∇y · v1 = 0 in YF; v1 = 0 on S. (16)

Integration of Eq. (16) over YF yields the macroscopic mass conservation equation

∇x · (
∫

YF

v0(x, y) dy
) = 0 in Ω. (17)

Insertion of the two-scale expansion into the momentum equation (11) yields

−{1

ε
∇y · +∇x · } {ε|Dy(v0)+ O(ε)|r−2(Dy(v0)+ O(ε))

}+
1

ε
∇yp0 + ∇xp0 + ∇yp1 + O(ε) = f. (18)

At order O(1/ε), Eq. (18) yields

∇yp0 = 0 ⇒ p0 = p0(x). (19)

At order O(1) Eq. (18) yields

∇yp1 − ∇y · {|Dy(v0)|r−2Dy(v0)
} = f(x)− ∇xp0(x) in YF. (20)

Now we are able to write the resulting homogenized two-scale system.

∇yp1 − ∇y · {|Dy(v0)|r−2Dy(v0)
} = f(x)− ∇xp0(x) in YF ×Ω, (21)

∇y · v0 = 0 in YF × Ω; v0 = 0 on S ×Ω, (22)

{v0, p1} are Y − periodic, (23)

∇x · (
∫

YF

v0(x, y) dy
) = 0 in Ω, (24)

n ·
∫

YF

v0(x, y) dy = 0 on ∂Ω. (25)
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System (21)–(25) is called the two-pressures quasi-Newtonian Stokes problem.
Let

V = {ψ ∈ Lr(Ω; W1,r
per( YF)

3) | ψ satisfies conditions (22)–(25) }.

Then the variational form of system (21)–(25) is
Find v0 ∈ V such that
∫

Ω

∫

YF

|Dy(v0)|r−2Dy(v0) : Dy(ψ) dydx =
∫

Ω

∫

YF

f ·ψ dydx, ∀ψ ∈ V. (26)

After [16] and [33], the strict monotonicity, continuity and coercivity of the operator
yields existence of a unique solution for problem (26).

Similar to the Newtonian case,

−∇y · {|Dy(v0)|r−2Dy(v0)
}− f = 0 in V ′

means that −∇y · {|Dy(v0)|r−2Dy(v0)
}− f is an element of the subspace

Ṽ = {∇xϕ + ∇yψ, ϕ ∈ W1,r/(r−1)(Ω) and ψ ∈ Lr/(r−1)(Ω,Lr/(r−1)
per ( YF)/R)}

of Lr/(r−1)(Ω,W−1,r/(r−1)(YF)
3).

The uniqueness of the pressure field is linked to the following surjectivity
property:

Lemma 2 (See [5]) For any function θ ∈ Lq(Ω)3, 1 < q < +∞, there exists
σθ ∈ Lq(Ω; W1,q

per(YF)
3) such that

∇y · σθ = 0 in YF; σθ = 0 on S;
∫

YF

σθ dy = θ(x) (27)

and ||σ ||
Lq(Ω;W1,q

per(YF)3)
≤ C||θ ||Lq(Ω)3 .

In the uniqueness proof, we get for the pressures differences p = p0
1 − p0

2 and
π = p1

1 − p1
2, ∇xp + ∇yπ = 0. Consequently,

−∇xp ·
∫

YF

ξ(x, y) dy = 0 ∀ξ ∈ W1,r
per( YF)

3,

∇y · ξ = 0 in YF × Ω, ξ = 0 on S × Ω.

Now using Lemma 2 we get ∇xp = 0. It implies p = 0 in Lr/(r−1)
0 (Ω) =

{z ∈ Lr/(r−1)(Ω)| ∫
Ω

z dx = 0}. Finally, ∇yπ = 0 and π = 0.
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Remark 2 After the discussion in [73] and [74], the filtration laws of the form

Ufilt = M(
.
γ eff ,K, ϕ)∇p

are usually used in applications. Ufilt is the filtration velocity and M is the effective
mobility, defined as the ratio of the permeability to the effective viscosity and
depending on the effective shear rate

.
γ eff , permeability K and porosity ϕ. After our

two-scale expansions, it makes sense to link the effective shear rate
.
γ eff to ∇xp0.

The obtained two-scale filtration law (21)–(23) is not of Darcy law type and
generally does not lead to the usual filtration law used in standard engineering
treatment (e.g. as in [27, 80] and [67]):

v = (
K

μeff
[−∂p

∂x
])1/(r−1) (28)

The above filtration law is obtained by modelling a porous medium as a collection
of long capillary tubes through which the fully developed laminar flow occurs.

If we suppose the flow only in the x1 direction then the variables x and y in
two pressures quasi-Newtonian Stokes system (21)–(25) can be separated. Then
solving (21)–(25) leads to a non-linear one dimensional power-like law, identical to
the one used in the engineering literature. In our notation it reads

∫

YF

v(x, y) dy = | f − dp

dx1
|r′−2 · ( f − dp

dx1
)

∫

YF

u( y) dy,

where u is the solution of two pressures quasi-Newtonian Stokes system (21)–(25)
for the right hand side of (21) being e1 = (1, 0, 0).

However, it should be noticed that this argument holds only in the one dimen-
sional case. Our laws, except for a tubular porous medium, are nonlocal and they
cannot be reduced to a multi-dimensional variant of (28), connecting the Darcy
velocity v and some power of ∇p. Most laboratory experiments are performed for
one-dimensional flows, which makes difficult observing any dimensional effect.
From the engineering point of view, it is important to have not only a good
laboratory prediction, but also the filtration laws for the oil fields.

In the case of tube flows, a detailed study of the filtration laws is in [21] and [55].

Remark 3 For more details on the formal two-scale expansions presented above we
refer to [72] and [65].

Remark 4 The impossibility to separate slow scale x and the fast scale y in the
homogenized momentum equation (21)–(23) has consequences to the numerical
simulations. A numerical method of a good performance was introduced in [36].
A study of the analytic properties of the homogenized law was undertaken in [22].
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2.4 The Filtration Laws via Two-Scale Asymptotic Expansions:
Carreau Law

The analogous procedure applies to the case of the Carreau-Yasuda law.
We start with the a priori estimate pour Carreau law. As before, we use Poincaré’s

inequality in a porous medium (7). In the Carreau-Yosuda law η∞ ≈ 0 and we
neglect it. Furthermore, we suppose λ = λ0/ε and 1 < r < 2. Then, after testing
Eq. (4) with the solution we obtain

||v||Lr + ε||D(v)||Lr ≤ Cε2, (29)

in the case of Carreau’s law.
Hence the characteristic velocity U is of order O(ε2) and the Reynolds number

Re=ρL0U/η0 is small. Therefore, it is enough to consider the quasi-Newtonian
Stokes equations.

Consequently, in the case of Carreau law (3), with η∞ = 0, we consider the
dimensionless system

−∇ · {(1 + λ2
0

ε2
|D(vε)|2)r/2−1D(vε)} + ∇pε = f in Ωε, (30)

∇ · vε = 0 in Ωε, (31)

vε = 0 on ∂Ωε. (32)

Problem (30)–(32) is equivalent to the minimization problem

min
ϕ∈Vr(Ωε)

J(ϕ) = min
ϕ∈Vr(Ωε)

{ ε2

rλ2
0

∫

Ωε

(1 + λ2
0

ε2
|D(vε)|2)r/2 dx −

∫

Ωε

f · ϕ dx
}
. (33)

For 1 < r < +∞, J is strictly convex, proper, continuous and coercive, which
yields the existence and the uniqueness of the minimizer vε ∈ Vr(Ωε). The pressure
field is (again) recovered using the De Rham or Tartar’s constructions.

vε satisfies a priori estimate (29) and we make a hypothesis that pε is uniformly
bounded in Lr′(Ωε).

We will use the two-scale asymptotic expansion (1) to perform the formal
homogenization of the system (30)–(32). Introducing the fast variable y = x/ε,
we assume that the solution of (30)–(32) can be developed in the following way

{
vε(x) = ε2{v0(x, y)+ εv1(x, y)+ . . .

}
,

pε(x) = p0(x, y)+ εp1(x, y)+ . . . .
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As before, the differential operators transform as follows

∇· = 1

ε
∇y · +∇x·; D = 1

ε
Dy + Dx; ∇ = 1

ε
∇y + ∇x;

(1 + λ2
0

ε2
|D(vε)|2)r/2−1 = |1 + λ2

0|Dy(v0)+ O(ε)|2|r/2−1.

In the case of Carreau’s law, the formal asymptotic expansion for the mass
conservation equation is identical to the case of the power law:

Insertion of the two-scale expansion into the incompressibility condition (31)
yields

1

ε
∇y · v0 + ∇x · v0 + ∇y · v1 = O(ε).

Hence at order O(1/ε) we have

∇y · v0 = 0 in YF; v0 = 0 on S (34)

and at order O(1)

∇x · v0 + ∇y · v1 = 0 in YF; v1 = 0 on S. (35)

Integration of Eq. (35) over YF yields the macroscopic mass conservation equation

∇x · (
∫

YF

v0(x, y) dy
) = 0 in Ω. (36)

Insertion of the two-scale expansion into the momentum equation (30) is slightly
different and yields

−{1

ε
∇y · +∇x · } {ε|1 + λ2

0|Dy(v0)+ O(ε)|2|r/2−1(Dy(v0)+ O(ε))
}

+1

ε
∇yp0 + ∇xp0 + ∇yp1 + O(ε) = f. (37)

At order O(1/ε), Eq. (37) yields

∇yp0 = 0 ⇒ p0 = p0(x). (38)

At order O(1) Eq. (37) yields

∇yp1 − ∇y · {(1 + λ2
0|Dy(v0)|2)r/2−1Dy(v0)

} = f(x)− ∇xp0(x) in YF. (39)
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Now we are able to write the resulting homogenized two-scale system.

∇yp1 − ∇y · {(1 + λ2
0|Dy(v0)|2)r/2−1Dy(v0)

} = f(x)− ∇xp0(x)

in YF × Ω, (40)

∇y · v0 = 0 in YF × Ω; v0 = 0 on S ×Ω, (41)

{v0, p1} are Y − periodic (42)

∇x · (
∫

YF

v0(x, y) dy
) = 0 in Ω, (43)

n ·
∫

YF

v0(x, y) dy = 0 on ∂Ω. (44)

System (40)–(44) is called the two-pressures Carreau-Stokes problem.
Let

V = {ψ ∈ Lr(Ω; W1,r
per( YF)

3) | ψ satisfies conditions (41)–(44) }.

Then the variational form of system (40)–(44) is
Find v0 ∈ V such that

∫

Ω

∫

YF

(1 + λ2
0|Dy(v0)|2)r/2−1Dy(v0) : Dy(ψ) dydx =
∫

Ω

∫

YF

f · ψ dydx, ∀ψ ∈ V. (45)

After [16] and [33], the strict monotonicity, continuity and coercivity of the operator
yields existence of a unique solution for problem (26).

Similar to the Newtonian case,

−∇y · {(1 + λ2
0|Dy(v0)|2)r/2−1Dy(v0)

}− f = 0 in V ′

means that −∇y · {|Dy(v0)|r−2Dy(v0)
}− f is an element of the subspace

Ṽ = {∇xϕ + ∇yψ, ϕ ∈ W1,r/(r−1) and ψ ∈ Lr/(r−1)(Ω,Lr/(r−1)
per ( YF)/R)}

of Lr/(r−1)(Ω,W−1,r/(r−1)(YF)
3).

The uniqueness of the pressure field is proved similarly like to the power
law case.

Remark 5 Finding the filtration laws of the form

Ufilt = M(
.
γ eff ,K, ϕ)∇p
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is even more complicated in this case. The consideration from [22] apply to the
Carreau law case as well.

2.5 The Filtration Laws via Two-Scale Asymptotic Expansions:
Bingham Fluid Case

In this subsection we discuss briefly the filtration laws for a Bingham fluid (a visco-
plastic fluid) in a porous medium.

As in Sect. 2.3 let v be the velocity, p the pressure and D(v) = (∇v + ∇vt)/2 the
rate-of-strain tensor. In the case of the Bingham fluid, the stress tensor σ is given by

σ = −pI + (2η0 + g
.
γ
)D(v), (46)

where η0 is the viscosity and
.
γ=

√

|D(v)|2/2 is the shear rate. The deviatoric stress
tensor τ , i.e. the part of the total stress tensor that is zero at equilibrium, is then a
nonlinear function of the shear rate D(v),

τ = (2η0 + g
.
γ
)D(v).

Constitutive law (46) is valid only if
.
γ �= 0.

In [32], Duvaut and Lions have shown that this constitutive law is equivalent with
the following one:

{ |τ |2/2 ≤ g ⇒ D(v) = 0,
|τ |2/2 > g ⇒ D(v) = (1 − g/

.
γ )τ/(2η0).

(47)

This is a threshold law: as long as the shear stress is below g, the fluid behaves as a
rigid solid. When the value of the shear stress exceeds g, the fluid flows and obeys a
nonlinear constitutive law. Moreover, the fluid is incompressible.

We will deal with the variational formulation of the problem. Let

V(Ωp) = {ψ|ψ ∈ H1
0(Ωp)

3, ∇ · ψ = 0 in Ωp}.

Then the variational problem reads as follows:
Find v ∈ V(Ω) such that

2η0

∫

Ωp

D(v) : D(ψ − v) dx + 2g
∫

Ωp

(
.
γ (ψ)− .

γ (v)) dx ≥
∫

Ωp

f · (ψ − v) dx,∀ψ ∈ V(Ωp). (48)
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Problem (48) was studied in [32] and existence and uniqueness were proved.
Furthermore, the corresponding differential interpretation result was established:

Proposition 2 Let v be the solution for (48). Then there exist a matrix M (x) and a
function p ∈ L2

0(Ωp) such that

Mij ∈ L∞(Ωp); Mij = Mji, ∀i, j; Tr(M ) = 0;
|M | ≤ 1 a.e. on Ωp; M : D(v) = |D(v)| a.e. on Ωp;

−η0Δv − g
√

2∇ · M = f − ∇p.

Following [44] we will study the following dimensionless Bingham flow model in
a porous medium

Find vε ∈ V(Ωε) such that

2η0ε
2
∫

Ωε

D(vε) : D(ψ − vε) dx + 2gε
∫

Ωε

(
.
γ (ψ)− .

γ (vε)) dx ≥
∫

Ωε

f · (ψ − vε) dx,∀ψ ∈ V(Ωε). (49)

and study the behavior of the problem in the limit ε → 0. The corresponding
two-scale asymptotic expansion was developed in [44] and a detailed study of the
homogenized problem undertaken. The computations are involved and the interested
reader can consult article [44].

We will see that for variational inequality (49) direct use of the two-scale
convergence is rigorous and shorter than using formal asymptotic expansions.

3 An Introduction to the Two-Scale Convergence
with Special Attention to the Two-Scale Lower
Semi-Continuity

We start with recalling basic facts from functional analysis. Let Y = (0, 1)d, d =
1, 2, 3, be the unit cube in R

d and Q a bounded open set in R
d.

Definition 1 A sequence {uε} in Lq(Q), 1 ≤ q < +∞ is said to converge weakly to
u ∈ Lq(Q) if

lim
ε→0

∫

Q
uε(x)v(x) dx =

∫

Q
u(x)v(x) dx, ∀v ∈ Lq∗(Q); q∗ = q/(q − 1).

The notation is uε ⇀ u. If q = +∞, then q∗ = 1 and we have the weak∗
convergence in L∞(Q).
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After [23], the weak topology on a Banach space E is the coarsest topology in
which the linear forms are continuous.

Lemma 3 (A Property of the Mean Value—See e.g. [39]) Let f be a Y−periodic
function. Then

f (
x

ε
) ⇀

1

| Y|
∫

Y
f ( y) dy weakly in Lq(Q), for 1 ≤ q < +∞,

and weak∗ in L∞(Q), as ε → 0. (50)

Example 1 sin x
ε
⇀ 0 weakly in Lq

loc(R
d) for 1 ≤ q < +∞ and weak∗ in L∞(Q),

as ε → 0.

Our difficulty is that in the homogenization problems we will have to calculate
limits of the type

lim
ε→0

∫

Q
A(

x

ε
)∇uεψ dx,

with weakly converging ∇uε and A( x
ε
). Their product will not converge in general

to the product of the weak limits.

Example 2 sin x
ε
⇀ 0 weakly, as ε → 0, but sin2 x

ε
⇀ 1/2 weakly and not to 0.

Therefore the weak convergence is not well adapted to our needs and the strong
convergence is out of reach for problems with oscillations.

There are several methods to pass to the limit in such products, like Tartar’s
energy method and the compensated compactness (see e.g. [39]).

Here we will present the two-scale convergence method, which involves a
convergence which is weaker than the strong convergence but stronger than the
weak convergence. We will see that it captures successfully the oscillations. It was
introduced by Nguetseng in [62] and developed by Allaire in [5].

Definition 2 The bounded sequence {wε} ⊂ Lq(Q), 1 < q < +∞, is said
to two-scale converge to a limit w ∈ Lq(Q × Y) if and only if for any ξ ∈
Lq/(q−1)(Q; C∞

per(Y)) (“per” denotes Y-periodicity) one has

lim
ε→0

∫

Q
wε(x)ξ(x,

x

ε
) dx =

∫

Q

∫

Y
w(x, y)ξ(x, y) dy dx .

We note that for ξ the values on the diagonal y = x/ε have to make sense and for
ξ ∈ L2(Q × Y) it is not the case.

(Admissible functions) A function f belongs to Lq(Q,Cper(Y)), 1 < q < +∞, if
and only if there exists a subset E of measure zero in Q such that

(a) For any x ∈ Q\E, the function y → f (x, y) is continuous and Y− periodic.
(b) For any y ∈ Y, the function x → f (x, y) is measurable.
(c) The function x → supy∈Y | f (x, y)| has finite Lq(Q) norm.
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Furthermore, the function x → f (x, x
ε
) is measurable and

|| f (x,
x

ε
)||L2(Q) ≤ || f ||L2(Q;Cper( Y)); (51)

lim
ε→0

∫

Q
| f (x,

x

ε
)|2 dx =

∫

Q

∫

Y
| f (x, y)|2 dxdy. (52)

The spaces Lq(Q,Cper(Y)), Lq
loc(Y,C(Q)) and C(Q,Cper(Y)), 1 ≤ q < +∞, are

all separable Banach spaces, dense in Lq(Q × Y). We refer to [48] for more details
about the notion of the two-scale convergence in Lq-setting and the admissibility
conditions for the test functions.

Example 3 sin x
ε
⇀ 0 weakly but sin x

ε
→ sin y in two-scales, thus retaining the

information on the shape of oscillations present in the sequence. Note that the two-
scale convergence will not see the oscillations which are not in resonance with those
of test functions: u(x, x/ε2) → ∫

Y u(x, y) dy in two-scales, as ε → 0.

The Basic Compactness Theorem for the Two-Scale Convergence With the
weak convergence/topology, we have less open sets than when using the strong
topology but more compact sets. The situation is similar with the two-scale
convergence. Boundedness of a sequence will be sufficient for relative two-scale
compactness. The proof is based on

The Sequential Banach-Alaoglu Theorem (See [23]) Let X be a separable
Banach space. Then every bounded sequence in X∗ has a weak∗ convergent
subsequence.

Theorem 1 Let {uε} be a bounded sequence in Lq(Q), 1 < q < +∞. Then there
exists a subsequence, denoted by the same subscripts, and u0 ∈ Lq(Q×Y) such that
{uε} two-scales converges to u0.

Proof

Step 1. Let ψ ∈ Lq/(q−1)(Q,Cper(Y)). We define a sequence of functionals {με}
on Lq/(q−1)(Q,Cper(Y)) by

< με,ψ >=
∫

Q
uε(x)ψ(x,

x

ε
) dx.

It is easy to see that

| < με,ψ > | ≤ |
∫

Q
uε(x)ψ(x,

x

ε
) dx| ≤ C||ψ(x, x

ε
)||Lq/(q−1)(Q)

≤ C||ψ(x, y)||Lq/(q−1)(Q,Cper( Y)).

Hence the sequence {με} is bounded in (Lq/(q−1)(Q,Cper(Y)))∗.
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Step 2. Lq/(q−1)(Q,Cper(Y)) is separable and by the sequential Banach-Alaoglu
theorem, there is a subsequence of {με} and a μ ∈ (Lq/(q−1)(Q,Cper(Y)))∗ such
that με ⇀ μ in the weak∗ topology in (Lq/(q−1)(Q,Cper(Y)))∗. Thus

< με,ψ >→< μ,ψ >, ∀ψ ∈ Lq/(q−1)(Q,Cper( Y)).

Step 3. Obviously

| < μ,ψ > | ≤ C
(
∫

Q
|ψ(x, x

ε
)|q/(q−1) dx

)1−1/q ≤ C||ψ(x, y)||Lq/(q−1)(Q×Y).

(53)

Since Lq/(q−1)(Q,Cper(Y)) is dense in Lq/(q−1)(Q × Y), we can extend μ to a
bounded linear functional on Lq/(q−1)(Q × Y). The extension is denoted μ̃.

μ̃ satisfies estimate (53) and by the Riesz representation theorem μ̃ can be
identified with an element u0 ∈ Lq(Q × Y). Then we have

lim
ε→0

∫

Q
uε(x)ψ(x,

x

ε
) dx = lim

ε→0
< με,ψ >=< μ,ψ >

=
∫

Q

∫

Y
u0(x, y)σ (x, y) dy dx ,

for every ψ ∈ Lq/(q−1)(Q,Cper(Y)). This completes the proof.�
It is well-known that for PDEs the weak compactness in Sobolev spaces is of

importance. It is the same with the two-scale compactness. We follow the approach
of Allaire from [5]. Applying the basic compactness theorem for the two-scale
convergence first to the functions and then to their derivatives, and then simply
comparing the limits yields

Proposition 3 (See [5])

(a) Let wε and ε∇wε be bounded sequences in Lq(Q), 1 < q < +∞. Then there
exists a function w ∈ Lq(Q; W1,q

per(Y)) and a subsequence such that both wε and
ε∇wε two-scale converge to w and ∇yw, resp.

(b) Let wε and ∇wε be bounded sequences in Lq(Q), 1 < q < +∞. Then there
exists functions w ∈ W1,q(Q) and w1 ∈ Lq(Q; W1,q

per(Y)) and a subsequence
such that both wε and ∇wε two-scale converge to w and ∇xw + ∇yw1, resp.

(c) Let σ ∈ Lq
per(Y), define σε(x) = σ( x

ε
), and let the sequence {wε} ⊂ Lq(Q) two-

scale converges to a limit w ∈ Lq(Q × Y). Then {σεwε} two-scale converges to
a limit σw.

(d) Let vε be a divergence-free bounded sequence in Lq(Q)d, 1 < q < +∞, which
two-scale convergences to v0 ∈ Lq(Q × Y)d. then, the two-scale limit satisfies
divyv0(x, y) = 0 a.e. in Q × Y and

∫

Y divxv0(x, y) dy = 0.
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Remark 6 Strong Convergence ⇒ Two-scale Convergence ⇒ Weak convergence
Weak Convergence � Two-scale Convergence � Strong convergence

After recalling these basic properties we give a sequential lower semicontinuity
result for two-scale convergence in Lq, 1 < q < +∞.

Proposition 4 (See [5]) Let Φ : R
n → R

+ be a continuous function satisfying
0 ≤ Φ(λ) for all λ ∈ R

n, σ ∈ C∞
0 (Q; C∞

per(Y))
n, and σε(x) = σ(x, x

ε
). Then

lim
ε→0

∫

Q
Φ(σε) dx =

∫

Q

∫

Y
Φ(σ) dy dx. (54)

Furthermore, let Φ in addition be strictly convex and C1 in R
n2

, satisfying

c|λ|q ≤ Φ(λ) ≤ C(1 + |λ|q), ∀λ ∈ R
d, 1 < q < +∞.

Then, if vε is a bounded sequence from Lq(Ω)n which two-scale converges towards
v, we have

lim inf
ε→0

∫

Q
Φ(vε) dx ≥

∫

Q

∫

Y
Φ(v) dy dx. (55)

Remark 7 In fact the two scale semi-continuity result is not directly stated in [5],
but it is contained in the proof of Theorem 3.3, pages 1500–1503. For q = 2 the
result is stated in [6] as theorem 3.7 on page 243. For the confort of the reader we
recall the argument from [5]:

Since Φ is convex and C1, we have

Φ(vε) ≥ Φ(ψ(x,
x

ε
))+ ∇vΦ(ψ(x,

x

ε
))(vε − ψ(x,

x

ε
)),

for every ψ ∈ C∞
0 (Ω; C∞

per(Y))
d , implying

lim inf
ε→0

∫

Q
Φ(vε) dx ≥ lim inf

ε→0

∫

Q
Φ(ψ(x,

x

ε
) dx+

lim inf
ε→0

∫

Q
∇vΦ(ψ(x,

x

ε
))(vε − ψ(x,

x

ε
)) dx =

∫

Q

∫

Y
Φ(ψ(x, y)) dy dx+

∫

Q

∫

Y
∇vΦ(ψ(x, y))(v(x, y)− ψ(x, y)) dxdy. (56)

Next, we take for ψ a sequence of smooth functions ψk ∈ C∞
0 (Ω; C∞

per(Y))
d which

converges to v strongly in Lq(Q × Y)d . Due to the growth conditions on Φ and
smoothness, inequality (56) holds also in the limit ψk → v in the two-scale sense
and we obtain the inequality (55). Note that the coercivity is not required for the
lower semi-continuity.
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In several applications (Bingham flows, friction, . . . ) the functional

ψ →
∫

Q
|ψ(x)| dx

arises. We have

Proposition 5 Let {vε} be a bounded sequence from (Lq(Ω))n, 1 < q < +∞,
which two-scale converges towards v, we have

lim inf
ε→0

∫

Q
|vε(x)| dx ≥

∫

Q

∫

Y
|v(x, y)| dy dx. (57)

Proof The functions fδ = √|x|2 + δ2 − δ are C1 with partial derivatives
∂ fδ
∂xj

=

xj/

√

|x|2 + δ2, j = 1, . . . , n. We have

∫

Q
||vε| − fδ(vε)| dx ≤ cδ

and

√

|vε|2 + δ2 − δ ≥
√

|ψ|2(x, x

ε
) + δ2 − δ +

d∑

j=1

ψj(x, x
ε
)

√
|ψ|2(x, x

ε
)+ δ2

(vεj − ψj(x,
x

ε
))

for every smooth ψ(x, y). Hence we have

lim inf
ε→0

∫

Q
(

√

|vε|2 + δ2 − δ) dx ≥
∫

Q

∫

Y
(

√

|ψ|2(x, y)+ δ2 − δ) dxdy+

d∑

j=1

∫

Q

∫

Y

ψj(x, y)
√|ψ|2(x, y)+ δ2

(vj − ψj(x, y)) dxdy

Now we take a sequence of smooth functions ψ , periodic in y, which strongly
converges to v. It yields

lim inf
ε→0

∫

Q
(

√

|vε|2 + δ2 − δ) dx ≥
∫

Q

∫

Y
(

√

|v|2(x, y) + δ2 − δ) dxdy ⇒

lim inf
ε→0

∫

Q
|vε(x)| dx ≥ lim inf

ε→0

∫

Q
(

√

|vε|2 + δ2 − δ) dx − Cδ ≥
∫

Q

∫

Y
(

√

|v|2(x, y) + δ2 − δ) dxdy − Cδ ≥
∫

Q

∫

Y
|v| dx − Cδ, ∀δ > 0

and the proposition is proved.�
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Remark 8 It is important to note that two-scale convergence is a tool adapted to the
particular problem one wants to solve. Consequently, other two-scale convergences
can be introduced. An example are the problems with chemical reactions/biological
processes on surfaces Γ ε. Then the appropriate tool is the two-scale convergence
on the surfaces developed in [7, 61] and [49]. Another example is the two-scale
convergence with drift, designed to handle homogenization of reaction-diffusion
equations with large Péclet and Damkohler’s numbers. For details we refer to
[10, 50] and [8].

4 The a Priori Estimates for the Pressure and the Two-Scale
Limits in the Case of the Power Law Viscosity

In order to use the two-scale convergence, we first need a priori estimates. We
suppose d = 3 and all result also hold for d = 2.

We recall the estimate (9), valid in the case of the power-law viscosity:

||vε||Lr + ε||D(vε)||Lr ≤ Cεr/(r−1).

In order to investigate the behavior of solutions to (11)–(13), as ε → 0, we need
to extend vε and pε to the whole of Ω . We extend vε by zero in Ω\Ωε. It is well
known that extension by zero preserves Lq and W1,q

0 norms for 1 < q < ∞.
Extending the pressure is a much more difficult task. The extension

is closely related to the construction of the restriction operator Rq ∈
L
(
W1,q(Y)d, W1,q

S (YF)
n
)
, d = 2, 3, where W1,q

S (YF) = {z ∈ W1,q(YF) : z = 0
on S}.

A priori estimates for the pressure are derived using the a priori estimates for the
velocity and the equation:

∇pε = f + ∇ · {|D(vε)|r−2D(vε)} ⇒

< ∇pε, ψ >=
∫

Ωε

(|D(vε)|r−2D(vε) : D(ψ) + f · ψ) dx, ∀ψ ∈ W1,r
0 (Ωε)

3.

(58)

Hence the pressure pε satisfies the inequality

‖∇pε‖W−1,r′ (Ωε)3 ≤ Cε. (59)

The functional space W−1,r′(Ωε)
3 changes with ε and estimate (59) is difficult to

use. Our strategy is to extend the pressure to the solid part of the porous medium.
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Following the idea of Lipton, Avellaneda [45] and using the constructions by
Tartar and Allaire (see [4, 6] and the Appendix of [71]) we define the extension of
pressure pε by

p̃ε =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pε, in Ωε,

1

|ε( YF + i)|
∫

Yε
Fi

pε, in the Yε
Si

for each i,
(60)

where Yε
Fi

is the fluid part of the cell Yε
i . Note that solid part of the porous medium

is an union of all Yε
Si

. We have

Proposition 6 (See [6]) The pressure extension p̃ε ∈ Lr′
0 (Ω) of the function pε,

defined by (60) satisfies the estimate

‖p̃ε‖Lr′ (Ω) + ‖∇p̃ε‖W−1,r′ (Ω)3 ≤ C, n = 2, 3. (61)

Furthermore for arbitrary sequence {wε} ⊂ Lr
0(Ω)3 which converges weakly to

0, we have
∫

Ω

p̃εwε → 0 as ε → 0. (62)

Proposition 7 Let {vε, pε} be corresponding solutions of the power-law sys-
tem (11)–(13). Then there exist subsequences of {vε} and {p̃ε} (again denoted
by the same symbols) and functions v∗

0 ∈ Lr(Ω × Y)3, p∗ ∈ Lr/(r−1)
0 (Ω) and

∇yv∗
0 ∈ Lr(Ω × Y)9 such that

ε−r/(r−1)vε → v∗
0 in the two-scale sense in Lr, (63)

ε−1/(r−1)∇vε → ∇yv∗
0 ∈ Lr(Ω × Y)9 in the two-scale sense in Lr, (64)

ε−r/(r−1)vε → v∗ =
∫

YF

v∗
0 dy weakly in Lr(Ω)3, (65)

p̃ε → p∗ in Lr/(r−1)
0 (Ω), (66)

as ε → 0.

Proof Proof of Proposition 7 follows directly from (9) and (61), through the
compactness results stated in Proposition 3. The pressure convergence (66) follows
the formal two-scale expansion:

Let ψ ∈ C∞
0

(
Ω; C∞

per(YF)
)3

such that ψ(x, y) = 0 on S for (a.e.) x ∈ Ω and set
ψε(x) = ψ(x, x

ε
). We test Eq. (21) with εψε . It yields

0 = lim
ε→0

∫

Ω

p̃ε∇y · ψε dx =
∫

Ω

∫

Y
p∗∇y · ψ(x, y) dx dy =< ∇yp∗, ψ >Ω×Y .
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Hence p∗ is independent of y. The information is enough for passing to the limit
in the terms containing the pressure, but after [71], (62) implies also the strong
convergence of p̃ε. �.

Using the incompressibility and the weak convergence (65), we find out that the
average v∗ satisfies the equations

∇x · v∗ = 0 in Ω, v∗ · n = 0 on ∂Ω. (67)

Lemma 4 v∗
0 ∈ Lr

(
Ω; W1, r

S (YF)
3
)

and ∇y · v∗
0 = 0 in YF.

Proof Let ψ be a smooth function. Then

0 = −
∫

Ωε

ε−r/(r−1)vε · ε∇ψ(x,
x

ε
) dx → −

∫

Ω

∫

YF

v∗
0 · ∇yψ dydx = 0.

⇒ ∇y · v∗
0 = 0 in YF .�

Proposition 8 The functions v∗
0 and p∗ defined, respectively, by (63) and (66)

satisfy the two-pressures quasi-Newtonian Stokes problem (21)–(25).

Proof It remains only to justify the momentum equation (21):

∇ · {|Dy(v∗
0)|r−2Dy(v∗

0)
}+ ∇yπ(x, y) = f − ∇xp∗(x) in YF ×Ω.

We use equation

∫

Ωε

|D(vε)|r−2D(vε) : D(ψ) dx+ < ∇pε − f, ψ >= 0, ∀ψ ∈ W1,r
0 (Ωε). (68)

Using Minty’s lemma1 we write it in as a minimization problem with a given
pressure:

∫

Ω

1

r
|εD(ψ)|r dx −

∫

Ω

1

r
|εD(ε−r/(r−1)vε)|r dx ≥

−〈f − ∇p̃ε, ψ − ε−r/(r−1)vε〉Ω, ∀ψ ∈ W1,r
0 (Ωε)

3. (69)

1Minty’s lemma (see [33]) Let F be a convex lower semi-continuous and proper functional on a
reflexive Banach space B. Then for u ∈ B the following three conditions are equivalent to each
other:

(a) u solves the problem inf
v∈B

F(v).

(b) < F′(u), v − u >≥ 0, ∀ v ∈ B.
(c) < F′(v), v − u >≥ 0, ∀ v ∈ B.
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Next we choose ψ ∈ C∞
0

(
Ω; C∞

per(YF)
)3

such that ψ(x, y) = 0 on S for (a.e.)
x ∈ Ω, ∇y · ψ = 0 in YF and set ψε(x) = ψ(x, x

ε
).

We insert ψ = ψε as a test function in (69). It yields

−〈∇p̃ε, ψε〉Ω =
∫

Ω

p̃ε∇x · ψε →
∫

Ω

∫

Y
p∗∇x · ψ(x, y) dx dy, as ε → 0.

The above limit and Proposition 4 imply

∫

Ω

∫

Y

1

r
|Dy(ψ)|r dx dy −

∫

Ω

∫

Y

1

r
|Dy(v∗

0)|r dx dy ≥

〈f − ∇p∗(x),
∫

Y
(ψ − v∗

0) dy〉Ω. (70)

Using again Minty’s lemma and de Rham’s formula yield

−∇y · {|Dy(v∗
0)|r−2Dy(v∗

0)} + ∇yπ(x, y) = f − ∇p∗(x) in YF

∇y · v∗
0 = 0 in YF, v∗

0 = 0 on S,

and (21) is justified.�
Therefore we justified rigorously the two-pressures quasi-Newtonian Stokes prob-
lem. The uniqueness theorem from Sect. 2.1 implies that the whole sequence
converges towards {v∗

0, p∗} = {v0, p0}.

4.1 A Priori Estimates and the Two-Scale Convergence
for the Case of the Law of Carreau

We recall the Carreau-Stokes system, corresponding to Carreau law (3):

−∇ · {(1 + λ2
0

ε2 |D(vε)|2)r/2−1D(vε)} + ∇pε = f in Ωε, (71)

∇ · vε = 0 in Ωε, (72)

vε = 0 on ∂Ωε. (73)

We also recall the a priori estimate (10) for the velocity:

||vε||Lr + ε||D(vε)||Lr ≤ Cε2.
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In order to investigate the behavior of solutions to (71)–(73), as ε → 0, we need
to extend vε and pε to the whole of Ω . We extend vε by zero in Ω\Ωε. It is well
known that extension by zero preserves Lq and W1,q

0 norms for 1 < q < ∞.
Extending the pressure is a much more difficult task. A priori estimates for the

pressure are derived using the a priori estimates for the velocity and the momentum
equation (30):

∇pε = f + ∇ · {(1 + λ2
0

ε2
|D(vε)|2)r/2−1D(vε)} ⇒

< ∇pε, ψ >=
∫

Ωε

((1 + λ2
0

ε2 |D(vε)|2)r/2−1D(vε) : D(ψ) + f · ψ) dx,

∀ψ ∈ W1,r
0 (Ωε)

3. (74)

Hence the pressure pε satisfies the inequality

‖∇pε‖W−1,r′ (Ωε)3 ≤ Cε, r′ = r/(r − 1). (75)

Extension of the pressure to the solid part of the porous medium is done again using
formula (60) and estimate (61) is valid again..

Furthermore for arbitrary sequence {wε} ⊂ Lr
0(Ω)3 which converges weakly to

0, we have

∫

Ω

p̃εwε → 0 as ε → 0. (76)

Proposition 9 Let {vε, pε} be the corresponding solutions of the Carreau-Stokes
system (71)–(73). Then there exist subsequences of {vε} and {p̃ε} (again denoted
by the same symbols) and functions v∗

0 ∈ Lr(Ω × Y)3, p∗ ∈ Lr′
0 (Ω) and ∇yv∗

0 ∈
Lr(Ω × Y)9 such that

ε−2vε → vC
0 in the two-scale sense in Lr, (77)

ε−1∇vε → ∇yvC
0 ∈ Lr(Ω × Y)9 in the two-scale sense in Lr, (78)

ε−2vε → vC =
∫

YF

vC
0 dy weakly in Lr(Ω)3, (79)

p̃ε → pC in Lr′
0 (Ω), (80)

as ε → 0.

Derivation of the macro and micro level mass conservation laws in the case of
Carreau law is exactly the same as in the case of the power law. Only the momentum
equations differs slightly.
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Proposition 10 The functions vC
0 and pC defined, respectively, by (77) and (80)

satisfy the two-pressures Carreau-Stokes problem (40)–(44).

Proof It remains only to justify the momentum equation (40):

∇yp1 − ∇y · {(1 + λ2
0|Dy(vC

0 )|2)r/2−1Dy(vC
0 )
} = f(x)− ∇xpC(x)

in YF × Ω.

We use the variational equation

∫

Ωε

(1 + λ2
0

ε2 |D(vε)|2)r/2−1D(vε) : D(ψ) dx+ < ∇pε − f, ψ >= 0,

∀ψ ∈ W1,r
0 (Ωε)

3, (81)

and write it in as a minimization problem for a given pressure:

∫

Ω

1

rλ2
0

(1 + λ2
0|εD(ψ)|2)r/2 dx −

∫

Ω

1

rλ2
0

(1 + λ2
0|ε−1D(vε)|2)r/2 dx ≥

−〈 f − ∇p̃ε, ψ − ε−2vε〉Ω, ∀ψ ∈ W1,r
0 (Ωε)

3. (82)

Now we choose ψ ∈ C∞
0

(
Ω; C∞

per(YF)
)3

, such that ψ(x, y) = 0 on S for (a.e.)
x ∈ Ω, ∇y · ψ = 0 in YF , and define ψε(x) = ψ(x, x

ε
).

We insert ψ = ψε in (82). Then

−〈∇p̃ε, ψε〉Ω =
∫

Ω

p̃ε∇x · ψε →
∫

Ω

∫

Y
pC∇x · ψ(x, y) dx dy as ε → 0.

The above limit and Proposition 4 imply

∫

Ω

∫

Y

1

r
|Dy(ψ)|r dx dy −

∫

Ω

∫

Y

1

r
|Dy(vC

0 )|r dx dy ≥

〈f − ∇pC(x),
∫

Y
(ψ − vC

0 ) dy〉Ω. (83)

After recalling Minty’s lemma, using de Rham’s formula yields

−∇y · {(1 + λ2
0|Dy(vC

0 )|2)r/2−1Dy(vC
0 )} + ∇yπ(x, y) = f − ∇pC(x) in YF

∇y · vC
0 = 0 in YF, vC

0 = 0 on S,

and (40) is justified.�
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Therefore we justified rigorously the two-pressures Carreau-Newtonian Stokes
problem. The uniqueness theorem from Sect. 2.1 implies that the whole sequence
converges towards {vC

0 , pC} = {v0, p0}.
Remark 9 We note that other scalings are discussed in [20]. In other cases,
depending on the scaling of λ, the limit could be either the classical Darcy law
or the power law.

4.2 A Priori Estimates and the Two-Scale Convergence
for the Case of the Bingham Flow

In the case of the Bingham flow through a porous medium we study variational
problem (49). The proofs follow reference [19].

Find uε ∈ V(Ωε) such that

2η0ε
2
∫

Ωε

D(uε) : D(ψ − uε) dx + 2gε
∫

Ωε

(
.
γ (ψ)− .

γ (uε)) dx ≥
∫

Ωε

f · (ψ − uε) dx, ∀ψ ∈ V(Ωε). (84)

and study the behavior of the solution uε to problem (84) in the limit ε → 0.
We start with estimates for the velocity uε , then we obtain a priori estimates for

the pressure and extend the pressure to the solid part of the porous medium.

Proposition 11 Let (uε, pε) be a solution for (49). Then we have

‖uε‖L2(Ωε)3 ≤ C, (85)

ε‖∇uε‖L2(Ωε)9 ≤ C, (86)

‖∇pε‖H−1(Ωε)3 ≤ Cε. (87)

Proof Proof of the estimates (85) and (86) is obtained by taking the solution uε as
a test function in (49). Next, from (49)) we get the inequality

| < ∇pε, v >Ωε | ≤ |( f , v)Ωε | + |2η0ε
2
∫

Ωε

D(uε) : D(ψ) dx| + g
√

2ε
∫

Ωε

|D(v)| dx

(88)

and (87) follows.�
We extend velocity uε by zero to the Ω \ Ωε and denote the extension by the

same symbol. Obviously estimates (85) and (86) remain valid and the extension is
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divergence free too. The extension of the pressure pε is constructed as before and
we summarize its properties in the following lemma:

Proposition 12 The pressure extension p̃ε ∈ L2
0(Ω) of the function pε, defined

by (60) satisfies the estimate

‖p̃ε‖L2(Ω) + ‖∇p̃ε‖H−1(Ω)3 ≤ C. (89)

Furthermore for arbitrary sequence {wε} ⊂ L2
0(Ω)3, which converges weakly to 0,

we have
∫

Ω

p̃εw
ε → 0 as ε → 0. (90)

Proposition 13 Let {uε, pε} be the corresponding solutions of the Bingham sys-
tem (49). Then there exist subsequences of {uε} and {p̃ε} (again denoted by the same
symbols) and functions uB

0 ∈ L2(Ω × Y)3, pB ∈ L2
0(Ω) and ∇yuB

0 ∈ L2(Ω × Y)9

such that

uε → uB
0 in the two-scale sense in L2, (91)

ε∇uε → ∇yuB
0 ∈ Lr(Ω × Y)9 in the two-scale sense in L2, (92)

uε → uB =
∫

YF

uB
0 dy weakly in L2(Ω)3, (93)

p̃ε → pB in L2
0(Ω), (94)

as ε → 0.

Derivation of the macro and micro level mass conservation laws in the case of
the Bingham flow is exactly the same as before. Only passing to the limit in the
momentum equation is different.

Proposition 14 Let

V( YF) = {ψ | ψ ∈ H1
per( YF)

3, ψ = 0 on S, ∇y · ψ = 0 in YF},

W = {φ | φ ∈ L2(Ω; V( YF)), ∇x ·
∫

YF

φ dy = 0 in Ω

and n ·
∫

YF

φ dv = 0 on ∂Ω}.
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The functions uB
0 ∈ W and pB defined, respectively, by (91) and (94) satisfy the

following two-pressures Bingham variational inequality

2η0

∫

YF

Dy(uB
0 ) : D(ψ − uB

0 ) dy + 2g
∫

YF

(
.
γ y (ψ)−

.
γ y (uB

0 )) dx ≥
∫

YF

(f − ∇xpB) · (ψ − uB
0 ) dx, ∀ψ ∈ V( YF). (95)

Proof We choose ψ ∈ C∞
0

(
Ω; C∞

per(YF)
)3 such that ψ(x, y) = 0 on S for (a.e.)

x ∈ Ω, ∇y · ψ = 0 in YF and define ψε(x) = ψ(x, x
ε
).

Then we write (49) in the form

2η0ε
2
∫

Ωε

D(uε) : D(ψε) dx +
∫

Ωε

(g
√

2ε|D(ψε)| − pε∇x · ψε − f · ψε) dx ≥
∫

Ωε

(2η0ε
2|D(uε)|2 + g

√
2ε|D(uε)| − f · uε) dx, (96)

Next as ε → 0 we get

∫

Ω

p̃ε∇x · ψε →
∫

Ω

∫

Y
pB(x)∇x · ψ(x, y) dx dy, (97)

∫

Ωε

gε|D(ψε)| dx →
∫

Ω

∫

YF

g|Dy(ψ)| dy. (98)

Next

2η0ε
2
∫

Ωε

D(uε) : D(ψε) dx →
∫

Ω

∫

YF

2η0Dy(uB
0 ) : Dy(ψ) dydx, (99)

∫

Ωε

(2η0ε
2|D(uε)|2 + g

√
2ε|D(uε)|) dx ≥

∫

Ω

∫

YF

(2η0|Dy(uB
0 )|2 + g

√
2|Dy(uB

0 )|) dydx as ε → 0. (100)

Hence we passed to the limit in all terms and the Proposition is proved.�
Therefore we justified rigorously the two-pressures Bingham-Stokes prob-
lem (95), (41)–(44). The uniqueness theorem from [44] implies that the whole
sequence converges towards {uB

0 , pB}.
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4.3 Concluding Remarks on Filtration Laws
for Non-Newtonian Fluids

(a) Solving cell problems in the case of the quasi-Newtonian and Bingham flows
poses numerical difficulties. See [36] for an efficient numerical method and
[22] for an analytic study of the filtration laws, corresponding to the power and
Carreau law viscosities.

(b) For the ( formal) homogenization of a linear Oldroyd fluid in a bundle of
capillary tubes at low Reynolds and Deborah numbers see [42] . Very little
is known concerning filtration laws for non-Newtonian fluids, which are more
complicated than the quasi-Newtonian ones discussed in this chapter.

(c) Homogenization in Orlicz spaces of the quasi-Newtonian flow equations with
more general viscosity laws, was undertaken in [40]. Some viscosity laws, as
e.g. Ellis’ law

ηr(
.
γ ) = η0

1 + (
.
γ ηr(

.
γ ))α−1/τα−1

1/2

(101)

enter into the implicit constitutive laws considered in [24].
(d) An interesting open question is to get a corrector result of the type ε−r/(r−1)vε

−v0(x, x/ε) → 0 in Lr(Ω)3, as ε → 0. For the Newtonian case we refer to [6].

5 Homogenization of the Linearized Ionic Transport
Equations in Rigid Periodic Porous Media

The quasi-static transport of an electrolyte through an electrically charged porous
medium is an important and well-known multiscale problem in geosciences and
porous materials modeling. An N-component electrolyte is a dilute solution of N
species of charged particles, or ions, in a fluid which saturates a charged porous
medium. The porous medium can be either rigid or deformable.

The overall behavior of such a system is controlled by several phenomena. First
there is an effective filtration. It is caused by the hydrodynamic flow in the pore
space, heavily influenced by the charge distributions of the system. Second, there is
a migration of ions because of an electric field. Third, the diffusive transport of the
ions takes place. Finally, we have to take into account electrokinetic phenomena due
to the electric double layer (EDL) which is formed as a result of the interaction of
the electrolyte solution neutralizing the charge of the solid phase at the pore solid-
liquid interface.

The EDL can be split into several parts, depending on the strength of the electro-
static coupling. There is a condensed layer of heavily adsorbed ions depending on
the molecular nature of the interface. It is generally known as the Stern layer and its
characteristic width (the Gouy length) is typically less than one nanometer. Adjacent



202 A. Mikelić

to the Stern layer the electrostatic diffuse layer or Debye’s layer is formed,
where the ion density varies. The EDL is the union of Stern and diffuse layers. The
thickness of the diffuse layer is predicted by the Debye length λD which depends
on the electrolyte concentration. For low to moderate electrolyte concentrations λD

is in the nanometric range. Outside Debye’s layer, in the remaining bulk fluid, the
solvent can be considered as electrically neutral.

A detailed, mathematically oriented, presentation of the fundamental concepts of
electroosmotic flow in nanochannels can be found in the book [41] by Karniadakis
et al., pages 447–470, from which we borrow the notations and definitions.

In the case of porous media with large pores, the electro-osmotic effects are
modeled by introducing an effective slip velocity (the Smoluchowski slip) at the
solid-liquid interfaces. Such models are not valid for numerous systems, such as
clays because the characteristic pore size is also of the order of the EDL size (a
few hundreds of nanometers or even less). Therefore the Debye’s layer fills largely
the pores and its effect cannot anymore be modeled by an effective slip boundary
condition at the liquid-solid interface.

In this section, we consider continuum physics equations as the right model
for the description of porous media at the pore scale where the EDL phenomena
and the pore geometry interact and will search to upscale them. It would allow
to derive and validate the macroscopic models used for engineering simulations
(see the works of Adler and collaborators [2, 3, 15, 29, 37, 51, 70]). The typical
length scale for which the continuum mechanics equations are valid is confirmed
to be both experimentally (see e.g. [26]) and theoretically [31, 52] close to 1 nm.
Therefore, at the microscopic level we couple the incompressible Stokes equations
for the fluid with the electrokinetic model made of a global electrostatic equation
and one convection-diffusion equation for each type of ions of an N-component
electrolyte in a dilute Newtonian solvent.

We start with the following mass conservation laws

div
(

ji + vni

)
= 0 in Ωp, i = 1, . . . ,N, (102)

where Ωp is the pore space of the porous medium, i denotes the solute species, v is
the hydrodynamic velocity and ni is the ith species concentration. For each species
i, vni is its convective flux and ji its migration-diffusion flux.

The solute velocity satisfies the incompressible Stokes equations with a forcing
term consisting of an exterior hydrodynamical force f and of the electric force

ηΔv = f + ∇p + e
N∑

j=1

zjnj∇Ψ in Ωp, (103)

div v = 0 in Ωp and v = 0 on ∂Ωp \ ∂Ω, (104)
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where η > 0 is the shear viscosity, f is the external body force, p is the pressure,
e is the elementary charge, zi is the charge number of the species i and Ψ is the
electrostatic potential.

We assume that all valencies zj are different integers. If not, we lump together
different ions with the same valency. We rank them by increasing order and
we assume that they are both anions and cations, namely positive and negative
valencies,

z1 < z2 < . . . < zN , z1 < 0 < zN, (105)

and we denote by j+ and j− the sets of positive and negative valencies.
The migration-diffusion flux ji is given by the following semi-linear relationship

ji = −
N∑

j=1

Lij(n1, . . . , nN)
(∇μj + zje∇Ψ

)
, i = 1, . . . ,N, (106)

where Lij(n1, . . . , nN) is the Onsager coefficient between i and j and μj is the
chemical potential of the species j given by

μj = μ0
j + kBT ln nj + kBT ln γj(n1, . . . , nN), j = 1, . . . ,N, (107)

with γj being the activity coefficient of the species j, kB is the Boltzmann constant,
μ0

j is the standard chemical potential expressed at infinite dilution and T is the

absolute temperature. The Onsager tensor
[
Lij
]

consists of the linear Onsager
coefficients describing interactions between the species i and j. It is symmetric and
positive definite. Furthermore, on the fluid/solid interfaces the no-flux condition is
imposed

ji · ν = 0 on ∂Ωp \ ∂Ω, i = 1, . . . ,N. (108)

The electrostatic potential is calculated from Poisson equation with the electric
charge density as the bulk source term

EΔΨ = −e
N∑

j=1

zjnj in Ωp, (109)

where E is the dielectric constant of the solvent. The surface charge Σ is assumed
to be given at the pores boundaries and the boundary condition reads

E∇Ψ · ν = −Σ on ∂Ωp \ ∂Ω, (110)

where ν is the unit exterior normal to Ωp.
The various parameters appearing in (102)–(110) are defined in Table 1.
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Table 1 Data description

Quantity Characteristic value

e Electron charge 1.6e−19 C (Coulomb)

D0
i Diffusivity of the ith species D0

i ∈ (1.333, 2.032)e−09 m2/s

kB Boltzmann constant 1.38e−23 J/K

nc Characteristic concentration (6.02 1024, 6.02 1026) particles/m3

T Temperature 293◦K (Kelvin)

E Dielectric constant 6.93e−10 C/(mV)

η Dynamic viscosity 1e−3 kg/(m s)

' Pore size 5e−9 m

λD Debye’s length
√

E kBT/(e2nc) ∈ (0.042, 0.42) nm

zj j-th electrolyte valence Given integer

Σ Surface charge density 0.129 C/m2 (clays)

f Given applied force N/m3

σj j-th hard sphere diameter 2e−10 m

Ψc Characteristic electrokinetic potential 0.02527 V (Volt)

LB Bjerrum length 7.3e−10 m

The activity coefficients γi and the Onsager coefficients Lij depend on the
electrolyte. The large majority of theoretical works are concerned with a simple
(so-called ideal) descriptions of charged porous media. It is based on the Poisson-
Nernst-Planck formalism for which the local activity coefficients of ions are
neglected and the transport properties are modeled solely from the mobility at
infinite dilution. In the ideal description we have

γi = 1 and Lij = δijniD
0
i /(kBT),

where D0
i > 0 is the diffusion coefficient of species i at infinite dilution.

In this section we will suppose that we have an infinite dilution, i.e. an ideal
description.

Remark 10 At finite concentration, the non-ideal effects modify the ion transport
and they are to be taken into account if a good quantitative description of the system
is required. Different models can be used and a widely accepted model is the Mean
Spherical Approximation (MSA) in its simplified form from [30]. It is valid if the
diameters of the ions are not too different. The activity coefficients read

ln γj = − LBΓ z2
j

1 + Γ σj
+ ln γHS, j = 1, . . . ,N, (111)

where σj is the j-th ion diameter, LB is the Bjerrum length, γHS is the hard sphere
term defined by (113), and Γ is the MSA screening parameter defined by

Γ 2 = πLB

N∑

k=1

nkz2
k

(1 + Γ σk)2
. (112)



Homogenization of Complex Porous Media Flows 205

For dilute solutions, i.e., when all nj are small, we have

2Γ ≈ κ = 1

λD
with λD =

√
E kBT

e2
∑N

k=1 nkz2
k

,

where λD is the Debye length. Thus, 1/2Γ generalizes λD at finite concentration
and it represents the size of the ionic spheres when the ion diameters σi are different
from zero. In (111) γHS is the hard sphere term given by

ln γHS = p(ξ) ≡ ξ
8 − 9ξ + 3ξ2

(1 − ξ)3 , with ξ = π

6

N∑

k=1

nkσ
3
k , (113)

where ξ is the solute packing fraction.
The Onsager coefficients Lij are given by

Lij(n1, . . . , nN) = ni

(
D0

i

kBT
δij +Θij

)(

1 + Rij

)

, i, j = 1, . . . ,N, (114)

where Θij = Θc
ij + ΘHS

ij stands for the hydrodynamic interactions in the MSA
formalism. It is divided into two terms: the Coulomb part is

Θc
ij = − 1

3η

zizjLBnj

(1 + Γ σi)(1 + Γ σj)

(

Γ +
N∑

k=1

nk
πLBz2

kσk

(1 + Γ σk)2

) , (115)

and the hard sphere part is

ΘHS
ij = −

(
σi + σj

)2

12η
nj

1 − Ỹ3/5 + (Ỹ3)
2/10

1 + 2Ỹ3
, (116)

with

Ỹ3 = π

6

N∑

i=1

ni
3Y1Y2 + Y3Y0

4Y2
0

and Yk = π

6

N∑

i=1

niσ
k
i . (117)

In (114) Rij is the electrostatic relaxation term given by

Rij = κ2
q e2zizj

3E kBT(σi + σj)(1 + Γ σi)(1 + Γ σj)

1 − e−2κq(σi+σj)

κ2
q + 2Γ κq + 2Γ 2 − 2πLB

N∑

k=1

nk
z2
ke−κqσk

(1 + Γ σk)
2

(118)
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where κq > 0 is defined by

κ2
q = e2

E kBT

∑N
i=1 niz2

i D0
i

∑N
i=1 D0

i

. (119)

Note that when the concentrations nj are small, all entries Lij are first order
perturbations of the ideal values δijniD0

i /(kBT) and thus the Onsager tensor is
positive at first order.

Remark 11 Homogenization of the non-ideal MSA model was undertaken in [14].

At the outer boundary of the porous medium we set

Ψ + Ψ ext(x) , ni , v and p are Ω − periodic. (120)

The applied exterior potential Ψ ext(x) can typically be linear, equal to E · x, where
E is an imposed electrical field. Note that the applied exterior force f in the Stokes
equations (103) can also be interpreted as some imposed pressure drop or gravity
force. Due to the complexity of the geometry and of the equations, it is necessary
for engineering applications to upscale the system (102)–(110), (120) and to replace
the flow equations with a Darcy type law, including electro-osmotic effects.

A representative class of porous media are those having a periodic microstruc-
ture. We suppose the same periodic microstructure as in Sect. 2.2. For such media,
and in the ideal case, formal two-scale asymptotic analysis of system (102)–
(110), (120) has been performed in many previous papers. Many of these works
rely on a preliminary linearization of the problem, introduced by O’Brien et al.
[63]. Let us mention in particular the work of Looker and Carnie in [47], where the
formal two-scale expansions were undertaken and the resulting Onsager relations
written explicitly. We will present the rigorous justification of the homogenization
result, following article [9]. The numerical experiments are provided in [13]. Other
relevant references include [68, 69, 76, 77] and [78] .

Remark 12 in this review we will consider only rigid porous media. In many impor-
tant applications porous media are deformable. Derivations of the homogenized
models for deformable charge porous media were undertaken by Moyne and Murad
in [56–60]. For a mathematically rigourous analysis we refer to [12].

The goal of the section is to present the results from [9] and [13], providing
the homogenized system for a semi-linearized version of (102)–(110), (120) in
a rigid periodic porous medium. The semi-linearization means that we study the
solutions being a perturbation of a so-called equilibrium solution which satisfies the
full nonlinear system (102)–(110), (120) with vanishing fluxes.

The homogenized system is an elliptic system of (N + 1) equations

− divxM∇( p0, {μj}1≤j≤N) = S in Ω, (121)
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where p0 is the pressure, μj the chemical potential of the j-th species, M the
Onsager homogenized tensor and S a source term. Our goal is to derive rigorously
Eq. (121).

Before studying its homogenization, we need a dimensionless form of the
Eqs. (102)–(110), (120). We follow the same approach as in [9] and [13]. The known
data are listed in Table 1 and concern the characteristic pore size ', the characteristic
domain size L, the surface charge density Σ (having the characteristic value Σc), the
characteristic concentrations nc, the static electrical potential Ψ ext and the applied
fluid force f. As usual, we introduce a small parameter ε which is the ratio between
the pore size and the medium size, ε = '/L << 1.

Table 1 permits calculating Debye’s length λD = √
E kBT/(e2nc). Following

[41], we introduce the characteristic potential ζ = kBT/e and the parameter β

related to the Debye-Hückel parameter κ = 1/λD, is given by β =
(

'

λD

)2

.

Next we rescale the space variable by setting x′ = x/L (we shall drop the primes
for simplicity in the sequel). The pore space becomes Ωε = Ωp/L which is a
periodically perforated domain with period ε. Still following [41], we define other
characteristic quantities

Γc = √
πLBnc, pc = nckBT, uc = ε2 kBTncL

η
,

where pc is a pressure equilibrating the electrokinetic forces in (103) and uc is the
velocity corresponding to a Poiseuille flow in a tube of diameter ', length L and
pressure drop pc. We also introduce adimensionalized forcing terms

Ψ ext,∗ = eΨ ext

kBT
, f∗ = fL

pc
, Σ∗ = Σ

Σc
, Nσ = eΣc'

E kBT
,

and adimensionalized unknowns

pε = p

pc
, vε = v

uc
, Ψ ε = eΨ

kBT
, nεj = nj

nc
, jεj = jjL

ncD0
j

.

The dimensionless equations for hydrodynamical and electrostatic part are thus

ε2Δvε − ∇pε = f∗ +
N∑

j=1

zjn
ε
j (x)∇Ψ ε in Ωε, (122)

vε = 0 on ∂Ωε \ ∂Ω, div vε = 0 in Ωε, (123)

−ε2ΔΨ ε = β

N∑

j=1

zjn
ε
j (x) in Ωε, (124)
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ε∇Ψ ε · ν = −NσΣ
∗ on ∂Ωε \ ∂Ω, (125)

(Ψ ε + Ψ ext,∗), nεi , vε and pε are Ω − periodic in x, (126)

div

(

jεi + Pei nεi vε
)

= 0 in Ωε, i = 1, . . . ,N, (127)

jεi · ν = 0 on ∂Ωε \ ∂Ω, i = 1, . . . ,N, (128)

jεi = −nεi ∇Mε
i and Mε

i = ln
(

nεi eziΨ
ε
)
, i = 1, . . . ,N, (129)

where the Péclet number for the i-th species is Pei = ucL

D0
i

= O(1).

Remark 13 Existence results for a coupled Navier–Stokes–Nernst–Planck– Poisson
system are in [75].

Remark 14 After writing the dimensionless form, we are able to precise in which
sense the non-ideal MSA model from Remark 10 is close to the ideal case. The small
parameter is the characteristic value ξc = π

6
ncσ

3
c of the solute packing fraction,

where σc is the characteristic ion diameter. In [14] it was established that, under the
hypothesis that

bi = LB

σc
(Bjerrum’s parameter) and S = kBT

ηD0
cσc

are O(1), then the ideal case model is the vanishing solute packing fraction ξc

limit of our non-ideal MSA model. Note that small ξc means a low concentration,
weighted by the ion size. Namely, we have

(
D0

i

kBT
δij +Θij

)(

1 + Rij

)

= δij + O(
√
ξc), and ln γ ε

j = O(
√
ξc). (130)

5.1 Equilibrium Solution

The goal of this subsection is to find a so-called equilibrium solution of sys-
tem (122)–(129) when the exterior forces are vanishing f = 0 and Ψ ext = 0.
However, the surface charge densityΣ∗ is not assumed to vanish or to be small. This
equilibrium solution will be a reference solution around which we shall linearize
system (122)–(129) in the next subsection.

Then we perform the homogenization of the (partially) linearized system. We
denote by n0,ε

i , Ψ 0,ε, v0,ε,M0,ε
i , p0,ε the equilibrium quantities.
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In the case f = 0 and Ψ ext = 0, one can find an equilibrium solution by choosing
a zero fluid velocity and taking all diffusion fluxes equal to zero. More precisely, we
require

v0,ε = 0 and ∇M0,ε
j = 0, (131)

which obviously implies that j0,ε
i = 0 and Eqs. (127)–(128) are satisfied. From

∇M0,ε
j = 0 and relations (129) we deduce that there exists constant n0

j (∞) > 0
such that

n0,ε
j (x) = n0

j (∞) exp{−zjΨ
0,ε(x)}. (132)

The Stokes equation (122) shall give the corresponding value of the pressure
satisfying

∇p0,ε(x) = −
N∑

j=1

zjn
0,ε
j (x)∇Ψ 0,ε(x) ⇒ p0,ε(x) =

N∑

j=1

n0
j (∞)(x)e−zjΨ

0,ε (x).

The value n0
j (∞) is the reservoir concentration (also called the infinite dilute

concentration) which will be later assumed to satisfy the bulk electroneutrality
condition for zero potential.

Then electrostatic equation (124) reduces to the Poisson-Boltzmann equation
which is a nonlinear partial differential equation for the unknown Ψ 0,ε

⎧
⎪⎪⎨

⎪⎪⎩

−ε2ΔΨ 0,ε = β

N∑

j=1

zjn
0
j (∞) exp

{
−zjΨ

0,ε
}

in Ωε,

ε∇Ψ 0,ε · ν = −NσΣ
∗(

x

ε
) on ∂Ωε \ ∂Ω, Ψ 0,ε is Ω − periodic.

(133)

We note that problem (133) is equivalent to the following minimization problem:

inf
ϕ∈Vε

Jε(ϕ), (134)

with Vε = {ϕ ∈ H1(Ωε), ϕ is Ω − periodic} and

Jε(ϕ) = ε2

2

∫

Ωε

|∇ϕ|2 dx + β

N∑

j=1

∫

Ωε

n0
j (∞)e−zjφ dx + εNσ

∫

Γ ε

Σ∗(x

ε
)ϕ dS.

The functional Jε is strictly convex, which gives the uniqueness of the minimizer.
Nevertheless, for arbitrary non-negative β, n0

j (∞) and Nσ , Jε may be not coercive
on Vε if all zj’s have the same sign (take ϕ to be constant, of the same sign as the zj’s
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and tending to infinity). Therefore, we must put a condition on the zj’s so that the
minimization problem (134) admits a solution. Following the literature, we impose
the bulk electroneutrality condition

N∑

j=1

zjn
0
j (∞) = 0, (135)

which guarantees that for Σ∗ = 0, the unique solution is Ψ 0,ε = 0. Under (135) it
is easy to see that Jε is coercive on Vε .

We recall that we suppose a periodic porous medium as introduced in Sect. 2.2.
By the uniqueness, Ψ 0,ε(x) = Ψ 0(x/ε), where Ψ 0(y) is a solution to the problem

inf
ϕ∈V

J(ϕ), (136)

with V = {ϕ ∈ H1(YF), ϕ is 1 − periodic} and

J(ϕ) = 1

2

∫

YF

|∇yϕ( y)|2 dy + β

N∑

j=1

∫

YF

nc
j exp{−zjϕ} dy + Nσ

∫

S
Σ∗( y)ϕ dS.

Note that J is strictly convex, which gives the uniqueness of the minimizer. Under
condition (135) it is easy to see that J is coercive on V .

Next difficulty is with the continuity of the functional J. In fact it is not defined on
V , but on its proper subspace V1 = {ϕ ∈ H1(YF), exp{maxj |zj||ϕ|} ∈ L1(YF)}. This
situation complicates the solvability of problem (136). The corresponding existence
result was established in [46], using a penalization, with a cut-off of the nonlinear
terms and applying the theory of pseudo-monotone operators. It reads as follows:

Lemma 5 ([46]) Assume that the bulk electroneutrality condition (135) holds true
and Σ∗ ∈ L2(S). Then problem (136) has a unique solution Ψ 0 ∈ V such that

N∑

j=1

zje
−zjΨ

0 ∈ L1( YF) and Ψ 0
N∑

j=1

zje
−zjΨ

0 ∈ L1( YF).

We need that n0
j = nc

j exp{−zjΨ
0} satisfies the lower bound n0

j (y) ≥ C > 0

in YF . It is a consequence of the L∞-estimate for Ψ 0 from [11], proved by using
elementary comparison arguments (a similar result is also proved in [35]).

It is based on the comparison with the solution to the following auxiliary
Neumann problem

⎧
⎪⎪⎨

⎪⎪⎩

−ΔU = 1

| YF|
∫

S
Σ∗ dS in YF,

∇U · ν = −Σ∗ on S,
U is 1 − periodic,

∫

YF
U( y) dy = 0.

(137)
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Problem (137) admits a unique solution U ∈ H1
per(YF) ∩ C(YF). If Σ∗ and S are

C∞, then U is C∞ as well. U achieves its minimum and maximum in YF .
The L∞-bound for Ψ 0 reads as follows

Proposition 15 (See [11]) The solution Ψ 0 of problem (136) satisfies the following
bounds

U( y)− Um − 1

z1
log max

⎛

⎝1,
σ

βz1n0
1(∞)

−
∑

j∈j+

zjn0
j (∞)

z1n0
1(∞)

⎞

⎠ ≥ Ψ 0( y) ≥

U( y)− UM − 1

zN
log max

⎛

⎝1,
σ

βzNn0
N(∞)

−
∑

j∈j−

zjn0
j (∞)

zNn0
N(∞)

⎞

⎠ , (138)

where the symbols j+ and j− denote the sets of positive and negative valences,
respectively, and

σ = 1

| YF|
∫

S
Σ∗ dS , Um = min

y∈YF

U( y) and UM = max
y∈YF

U( y).

By classical regularity theory for elliptic partial differential equations, we easily
deduce that for S ∈ C∞ and σ ∈ C∞

per(S), Ψ
0 ∈ C∞(ȲF).

Remark 15 In [11] the asymptotic analysis of (136), when β goes to zero, was
undertaken. This case corresponds to very small pores, ' << λD. The asymptotic
regime depends on the sign of the averaged charge

∫

S Σ
∗ dS. If it is negative (which

means that the surface is positively charged), then only the anion with the most
negative valence (z1) is important and that the potential behaves as

Ψ 0 ≈ logβ

z1
+ ϕ0,

where ϕ0 is the solution of the reduced system, involving only the species 1,
{
Δϕ0 = −z1n0

1(∞)e−z1ϕ0 in the bulk YF,

∇ϕ0 · ν = −Σ∗( y) on the surface S.

As a consequence, the cation concentrations go to zero while the ion concentrations
blow up as nj = O(β−zj/z1) and n1 >> nj for j �= 1.

Remark 16 The opposite situation, when β goes to infinity, was also addressed in
[11]. This scaling corresponds to very large pores, ' >> λD. The Debye’s layer,
describing the behavior of the solution close to the surface, was constructed in a
general geometric setting and a rigorous error estimate was given. If we choose the
characteristic concentration nc = ∑N

k=1 z2
kn0

k(∞), then
∑N

k=1 z2
kn0

k(∞) = 1 and
locally, close to the surface, the potential behaves as

Ψ ( y) ≈ −Σ∗
√
β

exp
{
−d( y)

√
β
}
,
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where d(y) is the distance between the point y and the surface. Away from
the surface, the concentrations nj are constant and satisfy the so-called bulk
electroneutrality condition.

The boundary condition for the electrostatic interaction between the two phases
is very often simplified by replacing surface charge Σ∗, which corresponds to the
chemistry of the system, by a surface potential. Its boundary value at the no slip
plane is known as the zeta potential ζ . In [11] the asymptotic behavior for large β

was established. It is again a boundary layer but with a totally different profile. More
precisely we established

Ψ ( y) ≈ Ψ0,ζ

(√
βd( y)

)

where d(y) is the distance between the point y and the surface and Ψ0,ζ is the
solution of the nonlinear ordinary differential equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ0,ζ |ξ=0 = ζ, C (x) =
N∑

j=1

n0
j (∞)e−zjx

d

dξ
Ψ0,ζ = −2 sign(ζ )

√

C (Ψ0,ζ )− C (0).

(139)

which, starting from the boundary value ζ on the surface, is exponentially decaying
at infinity. In many situations, the explicit solutions for Ψ0,ζ are known. For
example, in the case −z1 = 1 = z2 and n0

1(∞) = n0
2(∞) = 1/2, we have the

following Gouy-Chapman solution

Ψ0,ζ (q
′, ξ) = 2 ln

1 + tanh(ζ/2)e−ξ

1 − tanh(ζ/2)e−ξ
.

Hence in the case of given potential at the boundary the normal component of the
electrical field will behave as

√
β, which is unrealistic. In fact, it is rather the surface

charge density Σ , proportional to the normal derivative of Ψ , than ζ , which is the
relevant parameter for the physical modeling.

5.2 Linearization and the a Priori Estimates
for the Perturbation

We now proceed to the linearization of electrokinetic equations (122)–(129) around
the equilibrium solution computed in Sect. 5.1. We therefore assume that the
external forces, namely the static electric potential Ψ ext(x) and the hydrodynamic
force f(x), are small. Note that the surface charge density Σ∗ on the pore walls Γ ε

need not to be small since it is part of the equilibrium problem. Such a linearization
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process is classical in the ideal case (see the seminal paper [63] by O’Brien et al.).
For small exterior forces, we write the perturbed electrokinetic unknowns as

nεi (x) = n0,ε
i (x)+ δnεi (x), Ψ ε(x) = Ψ 0,ε(x) + δΨ ε(x),

vε(x) = vs0,ε(x) + δvε(x), pε(x) = p0,ε(x)+ δpε(x),

where n0,ε
i , Ψ 0,ε, v0,ε, p0,ε are the equilibrium quantities, corresponding to f = 0

and Ψ ext = 0. The δ prefix indicates a perturbation. Since the equilibrium velocity
vanishes v0,ε = 0, we identify in the sequel vε = δvε.

Motivated by the form of the Boltzmann equilibrium distribution and the
calculation of n0,ε

i , we follow the lead of [63] and introduce a so-called ionic
potential Φε

i which is defined in terms of nεi by

nεi (x) = n0
i (∞) exp{−zi(Ψ

ε(x)+Φε
i (x) + Ψ ext,∗(x))}, (140)

After linearization (140) yields

δnεi (x) = −zin
0,ε
i (x)(δΨ ε(x) +Φε

i (x)+ Ψ ext,∗(x)). (141)

Introducing (141) into (122)–(127) and linearizing yields the following equations
for δΨ ε , δvε, δpε and Φε

i

−ε2Δ(δΨ ε) + β

( N∑

j=1

z2
j n0,ε

j (x)

)

δΨ ε =

−β

( N∑

j=1

z2
j n0,ε

j (x)(Φε
j + Ψ ext,∗)

)

in Ωε, (142)

ε∇δΨ ε · ν = 0 on ∂Ωε \ ∂Ω, (143)

δΨ ε(x) + Ψ ext,∗(x) is Ω − periodic, (144)

ε2Δδvε − ∇
(

δpε +
N∑

j=1

zjn
0,ε
j (δΨ ε +Φε

j + Ψ ext,∗)
)

=

f∗ −
N∑

j=1

zjn
0,ε
j (x)(∇Φε

j + E∗) in Ωε, (145)

div δvε = 0 in Ωε, δvε = 0 on ∂Ωε \ ∂Ω, (146)

δvε and δpε are Ω − periodic. (147)
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Note that the perturbed velocity is actually equal to the overall velocity and that it is
convenient to introduce a global pressure Pε

δvε = vε, Pε = δpε +
N∑

j=1

zjn
0,ε
j

(
δΨ ε + Φε

j + Ψ ext,∗) . (148)

A straightforward calculation yields for Φε
j

div
(

n0,ε
j (x)

(∇Φε
j + E∗ + Pej

zj
vε
)
)

= 0 in Ωε, (149)

(∇Φε
j + E∗) · ν = 0 on ∂Ωε \ ∂Ω, (150)

Φε
j is Ω − periodic. (151)

δΨ ε does not enter Eqs. (145)–(147), (149)–(151) and thus is decoupled from the
main unknowns vε, Pε and Φε

i . The system (132), (133), (145)–(148), (149)–(151)
is the same microscopic linearized system for the ionic transport as in the work of
Looker and Carnie [47].

Next, we establish the variational formulation of system (145)–(147), (149)–
(151) for the unknowns {vε,Pε, {Φε

j }j=1,...,N} and prove that it admits a unique
solution. The functional spaces related to the velocity field are

Wε = {g ∈ H1(Ωε)
3, g = 0 on ∂Ωε \ ∂Ω, Ω − periodic in x}

and

Hε = {g ∈ Wε, div g = 0 in Ωε}.
The variational formulation of (145)–(151) is:

Find vε ∈ Hε and {Φε
j }j=1,...,N ∈ H1(Ωε)

N , Φε
j being Ω-periodic, such that, for

any test functions g ∈ Hε and b ∈ H1(Ωε)
N , b being Ω-periodic,

a
(
(vε, {Φε

j }), (g,b)
)

= 〈L , (g,b)〉,

where the bilinear form a and the linear form L are defined by

a
(
(vε, {Φε

j }), (g,b)
)

:= ε2
∫

Ωε

∇vε : ∇g dx +
N∑

i=1

z2
i

Pei

∫

Ωε

n0,ε
i ∇Φε

i · ∇bi dx

+
N∑

j=1

zj

∫

Ωε

n0,ε
j

(
vε · ∇bj − g · ∇Φε

j

)
dx, (152)

〈L , (g,b)〉 :=
N∑

i=1

zi

∫

Ωε

n0,ε
i E∗ ·

(

g − zi

Pei
∇φi

)

dx −
∫

Ωε

f∗ · v dx, (153)
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where, for simplicity, we denote by E∗ the electric field corresponding to the
potential Ψ ext,∗, i.e., E∗(x) = ∇Ψ ext,∗(x).

Lemma 6 (See [9]) Let E∗ and f∗ be given elements of L2(Ω)3. The variational
formulation (152)–(153) admits a unique solution (vε, {Φε

j }) ∈ Hε × H1(Ωε)
3,

such that Φε
j are 1-periodic and

∫

Ωε
Φε

j (x) dx = 0. Furthermore, there exists a
positive constant C, independent of ε, such that

‖vε‖L2(Ωε)3 + ε‖∇vε‖L2(Ωε)9 + max
1≤j≤N

‖Φε
j ‖H1(Ωε)

≤

C

(

‖E∗‖L2(Ω)3 + ‖f∗‖L2(Ω)3

)

. (154)

Note that the a priori estimates (154) follow by testing the problem (152)–(153)
by the solution, using the L∞-estimate for Ψ 0 and using the well-known scaled
Poincaré inequality in Ωε (7).

In order to use the two-scale convergence from Sect. 3, we need that our
unknowns are (vε,Pε, {Φε

j }) are defined on Ω . As in Sect. 4, vε is extended by
zero to Ω \ Ωε. The pressure field is reconstructed using de Rham’s theorem
and extended by formula (60) from Sect. 4 to P̃ε, being uniformly bounded, with
respect to ε, in L2

0(Ω). For {Φε
j } we use an extension operator from the perforated

domain Ωε into Ω . As was proved in [1], under the assumptions on the geometry
from Sect. 2.2, there exists such an extension operator Tε from H1(Ωε) in H1(Ω)

satisfying Tε φ|Ωε = φ and the inequalities

‖Tεφ‖L2(Ω) ≤ C‖φ‖L2(Ωε)
, ‖∇(Tεφ)‖L2(Ω) ≤ C‖∇φ‖L2(Ωε)

with a constant C independent of ε, for any φ ∈ H1(Ωε). We keep for the extended
function Tε Φε

j the same notation Φε
j .

Hence the extensions satisfy estimates (154).

5.3 Homogenization via the Two-Scale Convergence

The formal two-scale asymptotic expansion method from Sects. 1 and 2 can be
applied to system (145)–(147), (149)–(151), as in [47] and [9]. Introducing the
fast variable y = x/ε, it assumes that the solution of (145)–(147), (149)–(151) is
given by

⎧
⎨

⎩

vε(x) = v0(x, x/ε) + εv1(x, x/ε) + . . . ,

P̃ε(x) = p0(x)+ εp1(x, x/ε) + . . . ,

Φε
j (x) = Φ0

j (x) + εΦ1
j (x, x/ε) + . . . .

(155)
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We then plug this ansatz in the Eqs. (145)–(147), (149)–(151). In the way analogous
to the calculations in Sect. 2, we identify the various powers of ε and obtain a
cascade of equations from which we retain only the leading ones that constitute
the two-scale homogenized problem. For details we refer to [47]. We will present a
rigorous passing to the limit using the two-scale convergence from Sect. 3.

Lemma 6 and the two-scale compactness Proposition 4 from Sect. 3 imply

Theorem 2 (See [9]) Under the assumptions of Lemma 6, there exist

(v0, p0) ∈ L2(Ω; H1
per( Y)3)× L2

0(Ω) and

{Φ0
j ,Φ

1
j }j=1,...,N ∈

(
H1(Ω)× L2(Ω; H1

per( Y))
)N

such that for a subsequence, denoted by the same indices, the solution of (145)–
(147), (149)–(151) converges in the following sense

vε → v0(x, y) in the two-scale sense

ε∇vε → ∇yv0(x, y) in the two-scale sense

P̃ε → p0(x) strongly in L2(Ω)

Φε
j → Φ0

j (x) weakly in H1(Ω) and strongly in L2(Ω)

∇Φε
j → ∇xΦ

0
j (x)+ ∇yΦ

1
j (x, y) in the two-scale sense

n0,ε
j → n0

j (x, y) and Ψ 0,ε → Ψ 0( y)

in the two-scale sense in Lq, 1 < q < +∞, j = 1, . . . ,N.

Next we rewrite the variational problem (152)–(153) in the equivalent form, where
the velocity test function are not divergence-free and the pressure term is explicitly
present:

ε2
∫

Ωε

∇vε : ∇ξ dx −
∫

Ωε

pε div ξ dx +
N∑

j=1

∫

Ωε

zjn
0,ε
j

(− ξ · ∇Φε
j + vε · ∇bj

)
dx+

N∑

j=1

z2
j

Pej

∫

Ωε

n0,ε
j ∇Φε

j · ∇bj dx = −
N∑

j=1

z2
j

Pej

∫

Ωε

n0,ε
j E∗ · ∇bj dx

+
N∑

j=1

∫

Ωε

zjn
0,ε
j E∗ · ξ dx −

∫

Ωε

f∗ · ξ dx, (156)
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for any test functions ξ ∈ Wε and g ∈ H1(Ωε)
N , bj being 1-periodic, 1 ≤ j ≤ N.

We keep the divergence constraint div vε = 0 in Ωε. Next we define the two-scale
test functions:

ξε(x) = ξ(x,
x

ε
), ξ ∈ C∞

per(Ω; H1
per( Y)3),

ξ = 0 on Ω × S, divyξ(x, y) = 0 on Ω × Y, (157)

bεj (x) = ϕj(x) + εγj(x,
x

ε
), ϕj ∈ C∞

per(Ω), γj ∈ C∞
per(Ω; H1

per( YF)). (158)

We take as test function in Eq. (156) (ξε,bε). Now we can pass to the limit in (156),
along the same lines as in Sect. 4. For the solution we use the convergences from
Theorem 2. After passing to the two-scale limit in (156) we get that the limit
(v0, p0, {Φ0

j ,Φ
1
j }) satisfy the following two-scale variational formulation:

Theorem 3 Let

(v0, p0) ∈ L2(Ω; H1
per( Y)3)× L2

0(Ω) and

{Φ0
j ,Φ

1
j }j=1,...,N ∈

(
H1(Ω)× L2(Ω; H1

per( Y))
)N

be a limit from Theorem 2 . Then it satisfies the two-scale two-pressures homoge-
nized problem

−Δyv0(x, y) + ∇yp1(x, y) = −∇xp0(x)− f∗(x)

+
N∑

j=1

zjn
0
j (y)

(
∇xΦ

0
j (x)+ ∇yΦ

1
j (x, y)+ E∗(x)

)
in Ω × YF, (159)

div yv0(x, y) = 0 in Ω × YF, v0(x, y) = 0 on Ω × S, (160)

divx

(∫

YF

v0(x, y) dy

)

= 0 in Ω, (161)

−divy

(

n0
i ( y)

(∇yΦ
1
i (x, y)+ ∇xΦ

0
i (x) + E∗(x) + Pei

zi
v0(x, y)

)
)

= 0

in Ω × YF, i = 1, . . . ,N, (162)
(∇yΦ

1
i + ∇xΦ

0
i + E∗) · ν( y) = 0 on Ω × S, i = 1, . . . ,N, (163)

−divx

∫

YF

n0
i ( y)

(∇yΦ
1
i (x, y) + ∇xΦ

0
i (x)+ E∗(x)+

Pei

zi
v0(x, y)

)
dy = 0 in Ω, i = 1, . . . ,N, (164)

Φ0
i ,

∫

YF

v0 dy and p0 being Ω-periodic in x, (165)
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with periodic boundary conditions on the unit cell YF for all functions depending
on y and S = ∂YS \ ∂Y.

Remark 17 The limit problem features two incompressibility constraints (160)
and (161) which are exactly dual to the two pressures p0(x) and p1(x, y) which are
their corresponding Lagrange multipliers. Remark that Eqs. (159), (160) and (162)
are just the leading order terms in the ansatz of the original equations. On the other
hand, Eqs. (161) and (164) are averages on the unit cell YF of the next order terms
in the ansatz. For example, (161) is deduced from

divyv1(x, y) + divxv0(x, y) = 0 in Ω × YF

by averaging on YF , recalling that v1(x, y) = 0 on Ω × S.
The detailed proof of convergence and the derivation of the homogenized system

corresponds to Theorem 1 in [9]. The limiting procedure gives us the variational
form of problem (159)–(165) and it deserves to be recalled here in other to prove
the well-posedness of the two-scale homogenized problem.

Following [6], we introduce the functional space for the velocities

V = {v0(x, y) ∈ L2
per

(
Ω; H1

per( YF)
3
)

satisfying (160)–(161)},

which is known to be orthogonal in L2
per

(
Ω; H1

per(YF)
3
)

to the space of gradi-

ents of the form ∇xq(x) + ∇yq1(x, y) with q(x) ∈ H1
per(Ω)/R and q1(x, y) ∈

L2
per

(
Ω; L2

per(YF)/R
)

. We define the functional space

X = V × H1
per(Ω)/R × L2

per(Ω; H1
per( YF)

d/R)

and the variational formulation of (159)–(165) is to find (v0, {Φ0
j ,Φ

1
j }) ∈ X such

that, for any test functions (v, {φ0
j , φ

1
j }) ∈ X,

a
(
(v0, {Φ0

j ,Φ
1
j }), (v, {φ0

j , φ
1
j })
)

= 〈L , (v, {φ0
j , φ

1
j })〉, (166)

where the bilinear form a and the linear form L are defined by

a
(
(v0, {Φ0

j ,Φ
1
j }), (v, {φ0

j , φ
1
j })
)

:=
∫

Ω

∫

YF

∇yv0 : ∇v dx dy

+
N∑

i=1

z2
i

Pei

∫

Ω

∫

YF

n0
i (∇xΦ

0
i + ∇yΦ

1
i ) · (∇xφ

0
i + ∇yφ

1
i ) dx dy (167)

+
N∑

j=1

zj

∫

Ω

∫

YF

n0
j

(
v0 · (∇xφ

0
j + ∇yφ

1
j ) − v · (∇xΦ

0
j + ∇yΦ

1
j )
)

dx dy
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and

< L , (v, {φj}) >:=
N∑

j=1

zj

∫

Ω

∫

YF

n0
j E∗ · v dx dy −

∫

Ω

∫

YF

f∗ · v dx dy

−
N∑

i=1

z2
i

Pei

∫

Ω

∫

YF

n0
i E∗ · (∇xφ

0
i + ∇yφ

1
i ) dx dy,

We apply the Lax-Milgram lemma to prove the existence and uniqueness of the
solution in X of (166). The only point which requires to be checked is the coercivity
of the bilinear form. We take v = v0, φ0

j = Φ0
j and φ1

j = Φ1
j as the test functions

in (166).
Using the incompressibility constraints (161) and the anti-symmetry of the third

integral in (167), we obtain the quadratic form

a
(
(v0, {Φ0

j ,Φ
1
j }), (v0, {Φ0

j ,Φ
1
j })
)

=
∫

Ω×YF

|∇yv0(x, y)|2 dxdy+

N∑

j=1

z2
j

Pej

∫

Ω×YF

n0
j ( y)|∇xΦ

0
j (x)+ ∇yΦ

1
j (x, y)|2 dxdy. (168)

Recalling from Lemma 5 that n0
j (y) ≥ C > 0 in YF , it is easy to check that each

term in the sum on the second line of (168) is bounded from below by

C

(∫

Ω

|∇xΦ
0
j (x)|2 dx +

∫

Ω×YF

|∇yΦ
1
j (x, y)|2 dxdy

)

,

which proves that our bilinear form is V-elliptic.
Hence we have proved

Theorem 4 Problem (159)–(165) has a unique solution

(v0, p0) ∈ L2(Ω; H1
per( Y)3)× L2

0(Ω) and

{Φ0
j ,Φ

1
j }j=1,...,N ∈

(
H1(Ω)× L2(Ω; H1

per( Y))
)N

.

and whole sequence (vε, P̃ε, {Φε
j }) converges towards it.

5.4 The Separation of the Fast and the Slow Scales
and the Onsager Relations

From the point of view of applications, it is important to extract from (159)–(165)
the macroscopic homogenized problem. Obviously, it requires to separate the fast
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and slow scale. It was undertaken by Looker and Carnie in [47] and further improved
in [9] and [13].

The main idea is to recognize in the two-scale homogenized problem (159)–
(165) that there are two different macroscopic fluxes, namely (∇xp0(x)+ f∗(x)) and
{∇xΦ

0
j (x) + E∗(x)}1≤j≤N. Therefore we introduce two families of cell problems,

indexed by k ∈ {1, 2, 3} for each component of these fluxes. We denote by {ek}1≤k≤3
the canonical basis of R3.

The first cell problem, corresponding to the macroscopic pressure gradient, is

−Δyv0,k( y)+ ∇yπ
0,k( y) = ek +

N∑

j=1

zjn
0
j ( y)∇yθ

0,k
j ( y) in YF, (169)

divyv0,k( y) = 0 in YF, v0,k( y) = 0 on S, (170)

−divy
(
n0

i ( y)(∇yθ
0,k
i ( y)+ Pei

zi
v0,k( y))

) = 0 in YF, (171)

∇yθ
0,k
i ( y) · ν = 0 on S. (172)

The second cell problem, corresponding to the macroscopic diffusive flux, is for
each species l ∈ {1, . . . ,N}

−Δyvl,k( y)+ ∇yπ
l,k( y) =

N∑

j=1

zjn
0
j ( y)(δljek + ∇yθ

l,k
j ( y)) in YF, (173)

divyvl,k( y) = 0 in YF, vl,k( y) = 0 on S, (174)

−divy
(
n0

i ( y)(δijek + ∇yθ
i,k
j ( y)

)+ Pei

zi
vi,k( y))

) = 0 in YF, (175)

(
δijek + ∇yθ

i,k
j ( y)

) · ν = 0 on S, (176)

where δij is the Kronecker symbol. As usual the cell problems are complemented
with periodic boundary conditions.

Then, we can decompose the solution of (159)–(165) as

v0(x, y) =
3∑

k=1

(

−v0,k( y)

(
∂p0

∂xk
+ f ∗

k

)

(x) +
N∑

i=1

vi,k( y)

(

E∗
k + ∂Φ0

i

∂xk

)

(x)

)

,

(177)

p1(x, y) =
3∑

k=1

(

−π0,k( y)

(
∂p0

∂xk
+ f ∗

k

)

(x) +
N∑

i=1

π i,k( y)

(

E∗
k + ∂Φ0

i

∂xk

)

(x)

)

,

(178)

Φ1
j (x, y) =

3∑

k=1

(

−θ
0,k
j ( y)

(
∂p0

∂xk
+ f ∗

k

)

(x)+
N∑

i=1

θ
i,k
j ( y)

(

E∗
k + ∂Φ0

i

∂xk

)

(x)

)

.

(179)
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We average (177)–(179) in order to get a purely macroscopic homogenized problem.
We define the homogenized quantities: first, the electrochemical potential

μj(x) = −zj(Φ
0
j (x) + Ψ ext,∗(x)), (180)

then, the ionic flux of the jth species

jj(x) = 1

| YF|
∫

YF

n0
j ( y)

( zj

Pej

(∇yΦ
1
l (x, y)+ ∇xΦ

0
l (x)+ E∗(x)

)+ v0
)

dy, (181)

and finally the filtration velocity

v(x) = 1

| YF|
∫

YF

v0(x, y) dy. (182)

From (177)–(179) we deduce the homogenized or upscaled equations for the above
effective fields.

Proposition 16 Introducing the flux J (x) = (v, {jj}1≤j≤N) and the gradient
F (x) = (∇xp0, {∇xμj}1≤j≤N), the macroscopic equations are

divxJ = 0 in Ω, (183)

J = −MF − M (f∗, {0}), (184)

with a homogenized tensor M defined by

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K
J1

z1
. . .

JN

zN

L1
D11

z1
· · · D1N

zN
...

...
. . .

...

LN
DN1

z1
· · · DNN

zN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (185)

and complemented with periodic boundary conditions for p0 and {Φ0
j }1≤j≤N. The

matrices Ji, K, Dji and Lj are defined by their entries

{Ji}lk = 1

| YF|
∫

YF

vi,k( y) · el dy,

{K}lk = 1

| YF|
∫

YF

v0,k( y) · el dy,

{Dji}lk = 1

| YF|
∫

YF

n0
j ( y)

(
vi,k( y)+ zj

Pej

(
δijek + ∇yθ

i,k
j ( y)

) )
· el dy,

{Lj}lk = 1

| YF|
∫

YF

n0
j ( y)

(
v0,k( y) + zj

Pej
∇yθ

0,k
j ( y)

)
· el dy.
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Furthermore, M is symmetric positive definite, which implies that the homogenized
equations (183)–(184) have a unique solution.

Remark 18 The symmetry of M is equivalent to the famous Onsager reciprocal
relations. The symmetry of the tensor M was proved in [47] and its positive
definiteness in [9].

Proof The conservation law (183) is just a rewriting of (161) and (164). The
constitutive equation (184) is an immediate consequence of the definitions (181)
and (182) of the homogenized fluxes, taking into account the decomposition (177)–
(179).

We now prove that M is positive definite. For any vectors λ0, {λi}1≤i≤N ∈ R
3

let us introduce the following linear combinations of the cell solutions

vλ =
3∑

k=1

(

λ0
kv0,k +

N∑

i=1

λi
kvi,k

)

, θλj =
3∑

k=1

(

λ0
kθ

0,k
j +

N∑

i=1

λi
kθ

i,k
j

)

, (186)

which satisfy

−Δyvλ( y) + ∇yπ
λ( y) = λ0 +

N∑

j=1

zjn
0
j ( y)

(
λj + ∇yθ

λ
j ( y)

)
in YF (187)

divyvλ( y) = 0 in YF, vλ( y) = 0 on S, (188)

−divy

(
n0

i ( y)
(

zi(λ
i + ∇yθ

λ
i ( y))+ Peivλ( y)

))
= 0 in YF (189)

(λi + ∇yθ
λ
i ( y)) · ν = 0 on S. (190)

Multiplying the Stokes equation (187) by vλ, the convection-diffusion equa-
tion (189) by θλj and summing up, we obtain

∫

YF

(

|∇yvλ( y)|2 +
N∑

i=1

z2
i

Pei
n0

i ( y)(∇yθ
λ
i ( y)+ λi) · (∇yθ

λ
i ( y)+ λi)

)

dy

=
∫

YF

λ0 · vλ dy +
N∑

i=1

∫

YF

zin
0
i λ

i · vλ dy +
N∑

i=1

∫

YF

z2
i

Pei
n0

i (∇yθ
λ
i + λi) · λi dy

= Kλ0 · λ0 +
N∑

i=1

Jiλ
i · λ0 +

N∑

i,j=1

ziλ
i · Dijλ

j +
N∑

i=1

ziλ
i · Liλ

0

= M (λ0, {ziλ
i})T · (λ0, {ziλ

i})T .

The left hand side of the above equality is positive. This proves the positive definite
character of M .
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It remains to prove the symmetry of M . For another set of vectors
λ̃0, {λ̃i}1≤i≤N ∈ R

3, we define vλ̃ and θ λ̃j by (186). Multiplying the Stokes equation

for vλ by vλ̃ and the convection-diffusion equation for θ λ̃j by θλj (note the skew-
symmetry of this computation), then adding the two variational formulations yields

∫

YF

∇yvλ · ∇yvλ̃ dy +
N∑

i=1

∫

YF

z2
i

Pei
n0

i ∇yθ
λ̃
i · ∇yθ

λ
i dy =

∫

YF

λ0 · vλ̃ dy +
N∑

j=1

∫

YF

zjn
0
j λ

j · vλ̃ dy −
N∑

i=1

∫

YF

z2
i

Pei
n0

i λ̃
i · ∇yθ

λ
i dy. (191)

Therefore, the left hand side of (191) is symmetric in λ, λ̃. Exchanging the last term
in (191), we deduce by symmetry

∫

YF

λ0 · vλ̃ dy +
N∑

j=1

∫

YF

zjn
0
j λ

j · vλ̃ dy +
N∑

i=1

∫

YF

z2
i

Pei
n0

i λ
i · ∇yθ

λ̃
i dy

=
∫

YF

λ̃0 · vλ dy +
N∑

j=1

∫

YF

zjn
0
j λ̃

j · vλ dy +
N∑

i=1

∫

YF

z2
i

Pei
n0

i λ̃
i · ∇yθ

λ
i dy,

which is equivalent to the desired symmetry

M (λ̃0, {ziλ̃
i})T · (λ0, {ziλ

i})T = M (λ0, {ziλ
i})T · (λ̃0, {ziλ̃

i})T .

The norm-closeness of the solution to the homogenized problem, to the solution of
the original problem is given by the following result.

Theorem 5 ([9]) Let (p0, {Φ0
j }1≤j≤N) be defined by (183)–(184). Let v0 be given

by (177) and {Φ1
j }1≤j≤N by (179). Then in the limit ε → 0 we have

∫

Ωε

(

∣
∣
∣vε(x) − v0(x,

x

ε
)

∣
∣
∣
2 + |P̃ε(x)− p0(x)|2) dx → 0 (192)

and
∫

Ωε

∣
∣
∣∇
(
Φε

j (x)− Φ0
j (x)− εΦ1

j (x,
x

ε
)
)∣
∣
∣
2

dx → 0. (193)
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ion transport in porous media: derivation of the macroscopic equations using upscaling. Phys.
D. 282 , 39–60 (2014)

15. Auriault, J.L. , Strzelecki, T.: On the electro-osmotic flow in a saturated porous medium. Int.
J. Engng Sci. 19, 915–928 (1981)

16. Baranger, J. , Najib, K.: Analyse numérique des écoulements quasi-newtoniens dont la
viscosité obéit à la loi puissance ou la loi de Carreau. Numer. Math. 58, 35–49 (1990)

17. Bird, R.B., Stewart, W.E.N., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (1960)
18. Bird, R.B., Armstrong R.C., Hassager, O.: Dynamics of Polymeric Liquids, Vol.1, Fluid

Mechanics. Wiley, New York, (1987)
19. Bourgeat, A., Mikelić, A.: Note on the homogenization of Bingham flow through porous

medium. J. Math. Pures Appl. 72, 405–414 (1993)
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49. Marciniak-Czochra, A., Ptashnyk, M.: Derivation of a macroscopic receptor-based model using
homogenization techniques. SIAM J. Math. Anal. 40, 215–237 (2008)
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Viscoplastic Fluids: Mathematical
Modeling and Applications

Angiolo Farina and Lorenzo Fusi

Abstract Bingham fluids constitute a very important class of non-Newtonian
fluids. The modeling of Bingham materials is of crucial importance in industrial
applications, since a large variety of materials (e.g. foams, pastes, slurries, oils,
ceramics, etc.) exhibit the fundamental character of viscoplasticity, that is the
capability of flowing only if the stress is above some critical value. The flow of
these materials is difficult to predict, because of the presence of unknown interfaces
separating the yielded and the unyielded regions which are difficult to track. This is
particularly evident when the flow occurs in complex geometries and when major
simplifications, such as lubrication approximation, can be applied. Indeed, in some
cases the Bingham model may even lead to a paradox, known as the “lubrication
paradox”. In this chapter we focus on some practical situations of Bingham
flow which are the subject of a current mathematical research (lubrication flows,
asymptotic expansions, etc.). Such issues and developments arise, for example, in
the petroleum industry and in many natural contexts.

1 Introduction

Bingham fluids, or yield stress fluids, are encountered in a wide range of appli-
cations: toothpastes, cements, mortars, foams, muds, mayonnaise, etc. The funda-
mental character of these fluids is that they are able to deform indefinitely only
if they are submitted to a stress above some critical value. Actually, toothpaste
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visually exhibits the fundamental character of such a fluid model: it flows when
the applied stress exceeds a certain value, otherwise it does not flow, behaving as
a solid body (actually below the critical stress toothpaste deforms in finite way).
Despite the apparent simplicity in the constitutive modeling (especially within the
implicit framework theory developed by Rajagopal and co-workers [22–25]), the
flow characteristics of these materials are difficult to be predicted, since they involve
unknown boundaries separating the liquid and the solid regions. Readers are referred
to the books by Huilgol [14] and by Ionescu, Sofonea [15] where several issues
concerning the Bingham model (constitutive equations, mathematical techniques,
numerical methods and so on) are deeply analyzed.

A well known example of materials which are often modeled as Bingham Fluids
are waxy crude oils (i.e. oils with an high paraffin content). These fluids are known
to cause handling and pipelining difficulties. The flow properties depend strongly
on the yield stress which, in turn, depends on the shear history [31]. This leads to a
definable minimum operating point below which flow in a waxy crude oil pipeline
would cease.

Familiar examples of non-Newtonian fluids described by the Bingham model
include also mud (see [18] and the references therein cited), lubricated pipelining
[13], and materials used in ceramic casting [16].

2 Constitutive Model

The simplest shear-stress experiment that characterizes the Bingham fluid is repre-
sented in Fig. 1. On the top surface of a layer of material a uniform shear force F is
applied. If A is the area of the surface, the applied shear is F/A. If the applied shear
load (i.e. force per unit surface) does not exceed a certain threshold, τo, the material
does not move (the bottom of the layer is fixed on the “floor” ). When the applied
shear load exceeds the τo, the material flows as a linear viscous fluid.

Fig. 1 A schematic representation of the 1D shear stress experiment. F is the shear force and A
which is uniformly applied on a surface A so that the shear stress is F/A. The threshold is τo
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Fig. 2 The shear
stress—shear rate curve for
the Bingham model Bingham
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Actually such a peculiar rheological behavior is well highlighted by the exper-
imental tests performed in cylindrical viscometers. We just mention the recent
review by Coussot [5] and the numerous experimental papers therein cited. Hence,
considering a simple one-dimensional shear flow, if τ denote the modulus of the
shear stress and γ̇ the modulus of the strain rate, the constitutive Bingham model
writes as

τ = τo + μγ̇ , if τ > τo, (flow), (1)

and

γ̇ = 0, if τ ≤ τo, (no flow). (2)

Indeed (2) means, from the physical point of view, rigid behavior [11]. The threshold
τo is usually defined shear yield stress, or simply yield stress, and μ is referred to as
viscosity. In Fig. 2 we have reported the shear stress-shear rate curve for a Bingham
fluid. The model (1), (2) was introduced for the first time by E.C. Bingham [1, 2].
We note that in the Bingham model is much more natural to express the modulus of
the shear rate γ̇ in terms of the modulus of the shear stress τ . Indeed (1), (2) can be
rewritten (see also Fig. 3)

γ̇ = (τ − τo)+
μ

, (3)

where ( )+ denotes the positive part, namely

(τ − τo)+ =
⎧
⎨

⎩

τ − τo, if τ ≥ τo,

0, if τ < τo.
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Fig. 3 Shear stress—shear
rate according to (3)

shear stress

shear rate

Fig. 4 Decomposition of the
force F

In the example of Fig. 1 it is easy to identify the shear stress and formulate the yield
criterion. But how can we formulate the yield criterion in the general 3D case? What
is in this case the shear stress? Let us consider a point P and a small facet of area ds
surrounding. The normal to the facet is n. If we denote by F the force acting on ds
we have

F = T (P) n,

where T (P) is the Cauchy stress. The force vector F can be splitted into its
component along n and in a tangential vector τ (said tangential or shear force)

F = τ + σn,

where σ = F · n = T (P)n ·n (see Fig. 4). Obviously |F|2 = σ 2 + τ 2, where
τ = |τ |. We then consider a reference frame in which T (P) is diagonal, namely

T (P) =
⎛

⎝
T1 0 0
0 T2 0
0 0 T3

⎞

⎠ ,

and assume T1 > T2 > T3. Hence

|F|2 = σ 2 + τ 2 =
∣
∣
∣
∣
∣
∣

⎛

⎝
T1 0 0
0 T2 0
0 0 T3

⎞

⎠

⎛

⎝
n1

n2

n3

⎞

⎠

∣
∣
∣
∣
∣
∣

2

= T2
1 n2

1 + T2
2 n2

2 + T2
3 n2

3,
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and

σ = F ·n = T (P) n · n

=
⎛

⎝
T1 0 0
0 T2 0
0 0 T3

⎞

⎠

⎛

⎝
n1

n2

n3

⎞

⎠ ·
⎛

⎝
n1

n2

n3

⎞

⎠ = T1n2
1 + T2n2

2 + T3n2
3 .

We thus get the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|n|2 = 1,

|F|2 = σ 2 + τ 2,

F · n = σ,

�⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n2
1 + n2

2 + n2
3 = 1,

T2
1 n2

1 + T2
2 n2

2 + T2
3 n2

3 = σ 2 + τ 2,

T1n2
1 + T2n2

2 + T3n2
3 = σ,

which, once solved with respect to n2
1, n2

2, n2
3, gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2
1 =

(

σ − T2 + T3

2

)2

+ τ 2 −
(

T2 − T3

2

)2

(T2 − T1) (T3 − T1)
≥ 0,

n2
2 = −

(

σ − T1 + T3

2

)2

+ τ 2 −
(

T3 − T1

2

)2

(T2 − T3) (T1 − T2)
≥ 0,

n2
3 =

(

σ − T2 + T1

2

)2

+ τ 2 −
(

T2 − T1

2

)2

(T1 − T3) (T2 − T3)
≥ 0.

Thus, in the (σ, τ ) plane a domain is defined

(

σ − T2 + T3

2

)2

+ τ 2 ≥
(

T2 − T3

2

)2

,

(

σ − T1 + T3

2

)2

+ τ 2 ≤
(

T3 − T1

2

)2

,

(

σ − T2 + T1

2

)2

+ τ 2 ≥
(

T2 − T1

2

)2

,
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Fig. 5 Three points on the
horizontal axis correspond to
the three main stresses. The
figure shows that the
maximum shear is equal to
the radius of the largest circle

(n1, n2) = 0

n3 = 0

n

n2 = 0

(n1, n3) = 0 (n2, n3) = 0

t tMAX

tMAX = (maxTi – minTi)/2

s3 s2 s1
s

∀ →

n1 = 0

which corresponds to the area bordered by three circles, the so-called three Mohr
circles (see Fig. 5). Thus, since the maximum shear stress is τMAX , a possible yield
criterion is

⎧
⎪⎪⎨

⎪⎪⎩

τMAX ≤ τo

2
, no flow,

τMAX >
τo

2
, flow,

(4)

where

τMAX = 1

2
max {|T1 − T2| , |T2 − T3| , |T3 − T1|} . (5)

Such a criterion is known as Tresca criterion [3]. The representation in the principal
stress space of the surface (5), known as Tresca Surface, or

[
(T1 − T2)

2 − τ 2
o

] [
(T1 − T3)

2 − τ 2
o

] [
(T3 − T2)

2 − τ 2
o

]
= 0,

is a cylindrical unbounded surface with hexagonal section and axis (1,1,1). So,
according to the Tresca criterion, at every point of the material we have to compute
the eigenvalues of the stress tensor. If all the eigenvalues are within the Tresca
surface then the material is in a rigid state. if at least one of the eigenvalues is
outside the surface then the material is in a fluid state.

The Tresca criterion, unfortunately, is not very practical to use. For this reason it
is preferred to use the Von Mises criterion [30], based on the second invariant of the
stress tensor. The maximum shear stress criterion (4) is replaced by

⎧
⎪⎪⎨

⎪⎪⎩

τVM ≤ τo

2
, no flow,

τVM >
τo

2
, flow,
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where

τVM =
√

1

2

[
(T1 − T2)

2 + (T2 − T3)
2 + (T3 − T1)

2].

Thus, splitting the Cauchy stress as T = −PI + S, where P = 1/3trT and S is the
extra-stress, we immediately realize that σVM coincides with the second invariant of
the extra-stress, namely

σVM = IIS =
√

1

2
tr S2.

Therefore the generalization of the Bingham model (1), (2) to the 3D case is the
following

S =
(

2μ+ τo

IID

)

D, if IIS > τo, (flow), (6)

and

D = 0, if |τ | ≤ τo, (no flow), (7)

where

D = 1

2

(
∇v + ∇v

T
)

IID =
√

1

2
tr D,

and where v is the fluid velocity field. We remark that the Bingham constitutive
equation can be written in the implicit form (see [22–24, 26])

D =
(

IID

2μIID + τo

)

S. (8)

The above constitutive equation allows to express S as a function of D only when
IIS > τo, while D = 0, entails only IIS ≤ τo, the stress being constitutively
undetermined.

3 Flow in a Channel

We consider the flow of an incompressible Bingham fluid in a symmetric channel
of length L and width 2H. We consider a laminar flow so that the velocity field is

v = v( y, t)ex,

where, as shown in Fig. 6, x, y are the longitudinal and transversal coordinates
respectively. Due to symmetry we consider just the upper part of the channel. The
the inlet pressure ΔP is prescribed and we rescale the outlet pressure to 0. Hence



236 A. Farina and L. Fusi

Fig. 6 Sketch of the channel

2H

fo =
ΔP

L

y L

x

Prescribed pressure gradient

n = n (y,t )ex

the pressure gradient driving the flow is given by

fo = ΔP

L
.

In principle fo = fo (t) since ΔP may depend on time. In such a simple setting

D =
⎛

⎝
0 vy 0
vy 0 0
0 0 0

⎞

⎠ , T =
⎛

⎝
−P S12 0
S12 −P 0
0 0 −P

⎞

⎠ ,

so that IIS = |S12| and IID = ∣
∣vy
∣
∣. Hence, (6), (7) give

IIS > τo, �⇒ S12 = −τo + μvy,

IIS ≤ τo, �⇒ vy = 0.

Next, we assume that the viscous region, namely IIS > τo, and the rigid region,
IIS ≤ τo, are separated by a sharp interface y = s(t) a priori unknown, i.e. a free
boundary. In the fluid region, i.e. s (t) < y < H, the motion equation reduces to

ρvt = μvyy + fo,

coupled with the no-slip condition on y = H,

v (H, t) = 0,

and with the threshold condition on the free boundary s (t)

S12|y=s = τo, �⇒ vy
∣
∣
y=s = 0.
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y

H

x

no slip condition

FLUID REGION

RIGID CORE

VELOCITY OF THE
INNER RIGID CORE

n (H, t ) = 0

= 0

y = s (t )

K (t ) = n (s (t ),t )

fo+

s(t )

r
∂n ∂2n

∂n
∂y

∂y2∂t
= m

Fig. 7 The position s(t) of the “fluid – rigid” is unknown. Indeed we deal with a free boundary
problem

In particular, we assume no-slip also at the interface s (t), so that the velocity of the
rigid core is

κ (t) = v (s (t) , t) .

Figure 7 represents a sketch of the problem we have to solve. We need an evolution
for the interface s (t). According to the approach developed in [12], which is based
on the pioneering works by Safronchik [29] and Rubinstein [28], the unyielded
region is treated as an evolving non material volume, whose motion is determined
by using the integral (or global) momentum balance. The dynamics of the unyielded
domain

Ω (t) = {0 < x < L, −s (t) < y < s (t)} ,

is thus given by (see, e.g., [3])

d

dt

∫

Ω(t)
ρvdV =

∫

∂Ω(t)
Tn dS −

∫

∂Ω(t)
ρv [(v − w) · n] dS, (9)
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Fig. 8 The evolving non-material domain Ω

where w is the velocity of the boundary1 ∂Ω and n its outward normal. Taking Fig. 8
into account relation (9) reduces to2

vt (s (t) , t) = 1

ρ

(

fo − τo

s (t)

)

.

We thus end up with this free boundary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρvt = μvyy − fo, s (t) < y < H, t > 0

v (H, t) = 0, t > 0,

vy (s (t) , t) = 0, t > 0,

ρvt (s (t) , t) = fo − τo

s (t)
, t > 0,

v ( y, 0) = vo ( y) 0 < y < so,

s (0) = so.

(10)

The domain of the problem is represented in Fig. 9. The problem (10) is a free
boundary problem but not of Stefan type, because in the evolution equation for the
free boundary ṡ does not appear. However if we consider as new dependent variable

1In the 1D case, considering just the upper part of Ω , w = ṡ (t) ey.
2We remark that κ̇ (t) �= vt (s (t) , t).
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Fig. 9 Sketch of the domain
of problem (10)

t

y

HS0

y = s(t)

z ( y.t) = vt ( y, t), problem (10) rewrites as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρzt = μzyy, s (t) < y < H, t > 0

z (H, t) = 0, t > 0,

ρz (s (t) , t) = fo − τo

s (t)
, t > 0,

zy (s (t) , t) = τo

s (t)
ṡ, t > 0,

v ( y, 0) = vo ( y) 0 < y < so,

s (0) = so.

(11)

In [4] global well posedness of problem (11) has been proved.

4 Bingham Model with Deformable Core

The Bingham model predicts that the material behaves as a rigid body if the shear
stress is less than the threshold τo. It is however evident that the schematization of
the rigid body is not plausible from a physical point of view (think, for example,
to the mayonnaise). Oldroyd [20] and Yoshimura et al. [32] have proposed to treat
the “solid phase” as deformable. In [7] Fusi et al. have studied an extension of
the 1D problem (10) to the case of an elastic core. The model has been developed
within the context of the theory of natural configurations [24, 25]. In [10] Fusi et al.
have extended the problem studied in [7] to a 2D channel flow where the channel
amplitude is not uniform.
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Actually, other models have been proposed for Bingham-like fluids whose
unyielded core is deformable. In [8, 9], for instance, the material in the non-fluid
region has been modeled as a visco-elastic fluid.

4.1 Channel Flow of a Bingham-Like Fluid with Linear
Elastic Core

Here we consider a channel flow of a Bingham-like fluid driven by a known pressure
gradient, assuming that the continuum behaves as a linear viscous fluid if the stress
is above the yield stress and as a linear elastic solid when the stress is below such a
threshold. In particular we assume that the domain may be split in two sub-domains,
see Fig. 10. The inner core, in which the material behaves as a linear elastic material,
and the outer part (i.e. the one close to the channel walls) where a linear viscous
behavior occurs. The two regions are separated by the unknown sharp interfaces
y = ±σ(x, t). Moreover the channel width varies along x, so that the channel walls
are given by the function y = H(x). The channel is finite and we denote its length
by L. As in Sect. 3, we limit our analysis to the upper part of the channel because of
symmetry. The motion equations are obtained by imposing the mass and momentum
balance. The evolution equation of the interface y = σ(x, t), as well as the boundary
conditions, are derived imposing Rankine-Hugoniot conditions and Von Mises yield
criterion. The general mathematical problem is therefore a two-dimensional free
boundary problem. We develop the model assuming that the characteristic height of
the upper part H is far less than L, i.e. the aspect ratio

ε = H

L
� 1

is very small.

Fig. 10 A schematic
representation of the channel
flow with deformable core
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4.2 Kinematics and Constitutive Equation

Consider a two dimensional setting and assume that the motion is given by

x = χ (X, t), (12)

where χ is a differentiable and invertible mapping from R2 → R2. The vectors
x, X are the Eulerian and Lagrangian coordinates, respectively. The deformation
tensor is3

F = gradχ (X, t)

and mechanical incompressibility entails det F = 1.The Eulerian velocity and
acceleration are defined as

v (x, t) = ∂χ

∂ t

∣
∣
∣
∣
X=χ

−1
(x,t)

a (x, t) = ∂2χ

∂ t2

∣
∣
∣
∣
X=χ

−1
(x,t)

respectively. The strain rate tensor is

D =

⎛

⎜
⎜
⎜
⎜
⎝

∂v1

∂x

1

2

(
∂v1

∂y
+ ∂v2

∂x

)

1

2

(
∂v1

∂y
+ ∂v2

∂x

)
∂v2

∂y

⎞

⎟
⎟
⎟
⎟
⎠
,

and mechanical incompressibility gives

tr D = ∂v1

∂x
+ ∂v2

∂y
= 0. (13)

Splitting, as usual, the Cauchy stress as T = −PI + S, with P = 1/3trT, we extend
we extend the constitutive relation (6), (7) to the case in which the region IIS < τo

behaves as a linear elastic material4 (see [7, 10]).

[

S −
(

2μ+ τo

IID

)

D
]

Θ (IIS − τo) + (S − 2ηE)Θ (τo − IIS) = 0, (14)

3Here grad denotes the gradient operator w.r.t. Lagrangian coordinates, while ∇ the gradient w.r.t.
Eulerian coordinates.
4We are considering a linear elastic model even if ‖F‖ may be, in general, not very “small” , as we
shall see in Sect. 4.3.3.
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where

E = 1

2

[
∇f + (∇f )T

]

is the linearized strain tensor, f = χ−X is the displacement , η is the elastic modulus
and Θ is the Heaviside function

Θ(z) =
⎧
⎨

⎩

0, if z < 0,

1, if z � 0.

From (14) it is clear that, whenever IIS ≤ τo, the continuum behaves as a linear
elastic solid whereas the viscous behavior occurs when IIS ≥ τo.

4.3 Flow in a Channel

We rescale the longitudinal variable as

x̃ = x

L
h̃(x) = H(x)

H
σ̃ = σ

H
H = max

x∈[0,L]
H(x)

and we introduce the Reynolds and Bingham number

Re = ρUH

μ
, Bn = τoH

μU
, (15)

where U is the characteristic velocity and ρ is the material density. The we set

ỹ = 1

ε

y

L
t̃ = t

tc
tc = L

U
.

Concerning velocity and pressure, we introduce

ṽ1 = v1

U
, ṽ2 = v2

εU
, P̃ = P

Pc
Pc = μUL

H2

where Pc comes from the classical Poiseuille formula. Rescaling S as

S = μU

H

⎛

⎝
S̃11 S̃12

S̃12 S̃22

⎞

⎠ ,
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the motion equations become5

Re
ε

(
∂v1

∂ t
+ ∂v1

∂x
v1 + ∂v1

∂y
v2

)

= − 1

ε2

∂P

∂x
+ 1

ε

∂

∂x
(S11)+ 1

ε2

∂

∂y
(S12) , (16)

Re
ε

(
∂v2

∂ t
+ ∂v2

∂x
v1 + ∂v2

∂y
v2

)

= − 1

ε4

∂P

∂y
+ 1

ε2

[
∂

∂x
(S12) + 1

ε

∂

∂y
(S22)

]

, (17)

and mass conservation is

∂v1

∂x
+ ∂v2

∂y
= 0. (18)

The displacement is rescaled as

f̃1 = f1
L

f̃2 = 1

ε

f2
L
,

so that6

E =

⎛

⎜
⎜
⎜
⎜
⎝

∂ f1
∂x

1

2

(
1

ε

∂ f1
∂y

+ ε
∂ f2
∂x

)

1

2

(
1

ε

∂ f1
∂y

+ ε
∂ f2
∂x

)
∂ f2
∂y

⎞

⎟
⎟
⎟
⎟
⎠
.

The sharp interface y = σ(x, t) separates the elastic domain from the viscous
domain, as shown in Fig. 2. We remark that the interface σ is unknown and it is
not material. The dimensionless normal velocity of the interface is

w = ε
√

1 + ε2

(
∂σ

∂x

)2

∂σ

∂ t
.

The dimensionless strain rate tensor is

D =

⎛

⎜
⎜
⎜
⎜
⎝

ε
∂v1

∂x

1

2

(
∂v1

∂y
+ ε2 ∂v2

∂x

)

1

2

(
∂v1

∂y
+ ε2 ∂v2

∂x

)

ε
∂v2

∂y

⎞

⎟
⎟
⎟
⎟
⎠
,

5We omit “˜” to keep notation simple.
6Again, we have omitted “ ”.
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while the dimensionless invariant IID is

IID = 1

2

√
√
√
√
(
∂v1

∂y
+ ε2 ∂v2

∂x

)2

+ 2ε2

[(
∂v1

∂x

)2

+
(
∂v2

∂y

)2
]

. (19)

The yield criterion becomes

IIS � Bn. (20)

4.3.1 Boundary Conditions

Let [[ · ]] denotes the “jump” across the surface y = σ . Assuming no-slip on σ we
get

[[ v1 ]] = [[ v2 ]] = 0. (21)

The continuity of the stress gives

−[[ P ]]
(

1 + ε2
(
∂σ

∂x

)2
)

+
[[

ε3S11

(
∂σ

∂x

)2

− 2ε2S12
∂σ

∂x
+ εS22

]]

= 0, (22)

and

[[ S12 ]] + ε
∂σ

∂x

[[

S22 − S11 − εS12
∂σ

∂x

]]

= 0. (23)

Remark 1 If we neglect O (ε) terms, then [[ P ]] = [[ S12 ]] = 0, provided that Sij

are bounded.

On the channel wall y = h the no-slip condition yields v (x, h, t) ≡ 0, while the
boundary conditions for the pressure are

P (0, y, t) = Pin (t) , and P (1, y, t) = Pin (t) − ΔP (t) , with ΔP ≥ 0.

Finally, we impose the symmetry conditions:

∂ f1 (x, 0, t)

∂y
= 0, f2 (x, 0, t) = 0,

∂ f2 (x, 0, t)

∂y
= 0,

∂ f2 (x, 0, t)

∂ t
= 0.

(24)
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4.3.2 The Elastic Domain and the Viscous Domain

Let us first consider the elastic domain y ∈ [0, σ ]. According to (14)

S = Re
λ2

⎛

⎜
⎜
⎜
⎝

2
∂ f1
∂x

1

ε

∂ f1
∂y

+ ε
∂ f2
∂x

1

ε

∂ f1
∂y

+ ε
∂ f2
∂x

2
∂ f2
∂y

⎞

⎟
⎟
⎟
⎠
,

with

λ2 =
(

U

c

)2

c 2 = η

ρ
. (25)

The momentum balance yields

Re
(
∂2f1
∂ t2

+ ∂2f1
∂x∂ t

∂ f1
∂ t

+ ∂2f1
∂y∂ t

∂ f2
∂ t

)

= −1

ε

∂P

∂x
+ Re

λ2

(

2
∂2f1
∂x2 + 1

ε2

∂2f1
∂y2 + 1

ε

∂2f2
∂y∂x

)

, (26)

Re
(
∂2f2
∂ t2

+ ∂2f2
∂x∂ t

∂ f1
∂ t

+ ∂2f2
∂y∂ t

∂ f2
∂ t

)

= − 1

ε3

∂P

∂y
+ Re

λ2

(
1

ε2

∂2f1
∂x∂y

+ ∂2f2
∂x2

+ 2

ε2

∂2f2
∂y2

)

. (27)

In the viscous domain y ∈ [σ, 1]

S =
(

1 + Bn
2IID

)

⎛

⎜
⎜
⎜
⎝

2ε
∂v1

∂x

∂v1

∂y
+ ε2 ∂v2

∂x

∂v1

∂y
+ ε2 ∂v2

∂x
2ε

∂v2

∂y

⎞

⎟
⎟
⎟
⎠
,

The momentum equations are

Re
ε

(
∂v1

∂ t
+ ∂v1

∂x
v1 + ∂v1

∂y
v2

)

= − 1

ε2

∂P

∂x
+ 2

∂

∂x

[(

1 + Bn
2IID

)
∂v1

∂x

]
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+ 1

ε2

∂

∂y

[(

1 + Bn
2IID

)(
∂v1

∂y
ε2 ∂v2

∂x

)]

, (28)

Re
ε

(
∂v2

∂ t
+ ∂v2

∂x
v1 + ∂v2

∂y
v2

)

= − 1

ε4

∂P

∂y

+ 1

ε2

{
∂

∂x

[(

1 + Bn
2IID

)(
∂v1

∂y
+ ε2 ∂v2

∂x

)]

+ 2
∂

∂y

[(

1 + Bn
2IID

)
∂v2

∂y

]}

.

(29)

The model is consistent if IIS < Bn for y ∈ [0, σ ], i.e.

√
√
√
√
(
∂ f1
∂y

+ ε2 ∂ f2
∂x

)2

+ 2ε2

[(
∂ f1
∂x

)2

+
(
∂ f2
∂y

)2
]

≤ Bnλ2ε

Re
. (30)

and if IIS ≥ Bn for y ∈ [σ, 1], i.e. IID ≥ 0. Finally we notice that

ε[[ S12 ]] = ε

[(

1 + Bn
2IID

)(
∂v1

∂y
+ ε2 ∂v2

∂x

)]

y=σ+

− Re
λ2

[
∂ f1
∂y

+ ε2 ∂ f2
∂x

]

y=σ−
. (31)

4.3.3 Asymptotic Expansion

The assumption ε � 1, allows to seek the unknown fields (i.e. v1, v2, P, etc.) in the
following form

φ =
∞∑

j=0

φ( j)εj

Substituting into the governing equations we get a hierarchy of problems that must
be matched together. The matching procedure requires the specification of Re, Bi,
and λ2. We consider: Re ≤ O (1) , i.e. laminar flow and Bn = O (1). We introduce
the dimensionless parameter

Γ = ηH

μU
= Re

λ2
, (32)
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and consider two different cases which correspond to different behaviors of the inner
core:

(1) Γ = O(1).
(2) Γ = O(ε).

When Γ = O (1), namely Re = O
(
λ2
)
, we have an almost rigid inner core, while

the case Γ = O (ε), i.e. Re = O
(
ελ2
)
, corresponds to a “ soft” inner core where

deformations are non-negligible. Let us show that the first case leads to the classical
Bingham model. Indeed, considering Re = O

(
λ2
)

O (1) = Γ = ε
tcη

μ
, ⇒ tcη

μ
= O

(
ε−1

)
. (33)

Evaluating the order of magnitude of the elastic stress Sel and of the viscous stress
Svis we have

Svis = μ
U

H
Sel = δη

L

H
,

where δ is the dimensionless order of magnitude of the longitudinal displacement.
The continuity of the shear stress at the interface yields

Sel

Svis
= O (1) ⇒ δ

tcη

μ
= O (1) . (34)

Hence we find δ = O (ε), meaning an almost uniform longitudinal displacement as
in the classical Bingham model. In the second case

Re = O(ελ2) ⇒ tcη

μ
= O (1)

which entails δ = O (1). As a consequence the longitudinal displacement is not
uniform.

4.3.4 First Case: Γ = O(1)

We start considering the elastic domain, and we focus on the zero order terms.
From (27) we obtain P(0) = P(0) (x, t). Next, since [[ P ]] = 0 on the interface,
we have that in the whole elastic region P(0) = P(0)

(
x, σ+, t

)
. From (26) we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2f (0)
1

∂y2 = 0,

∂ f (0)
1

∂y

∣
∣
∣
∣
∣
y=0

= 0,

�⇒ f (0)
1 = f (0)

1 (x, t) .
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Mass conservation in the elastic domain becomes

∂2f (0)
1

∂x∂ t
+ ∂2f (0)

2

∂y∂ t
= 0. (35)

Recalling (24) it is easy to show that

∂

∂x

(
∂ f (0)

1

∂ t

)

= 0. (36)

Therefore setting

κ = ∂ f (0)
1

∂ t
,

we have κ = κ (t). From (21) we find

κ = v
(0)
1

(
x, σ+, t

)
. (37)

From (35)

∂ f (0)
2

∂ t
depends only on t.

and the transversal velocity vanishes everywhere in the elastic region, so that

v
(0)
2

(
x, σ+, t

) = 0. (38)

Let us now consider relation (31) at the zero order approximation. We get

Re
λ2

∂ f (1)
1

∂y

∣
∣
∣
∣
∣
y=σ−

=
[(

1 + Bn

2II(0)D

)
∂v

(0)
1

∂y

]

y=σ+
. (39)

The latter forces to analyze the first order term in (26), (27), namely

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2f (1)
1

∂y2 = λ2

Re
∂P(0)

∂x
,

∂ f (1)
1

∂y

∣
∣
∣
∣
∣
y=0

= 0,

�⇒ f (1)
1 = λ2

2 Re
∂P(0)

∂x
y2 + B (x, t) .
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Hence (39) becomes

∂P(0)

∂x
σ =

[(

1 + Bn

2II(0)D

)
∂v

(0)
1

∂y

]

y=σ+
. (40)

It is easy to show that

IIS =
∣
∣
∣
∣
∂P(0)

∂x

∣
∣
∣
∣ y + O (ε)

in the elastic region so that condition (30) is fulfilled when

∣
∣
∣
∣
∂P(0)

∂x

∣
∣
∣
∣σ ≤ Bn. (41)

We now focus on the viscous part σ < y < 1. Here (29) entails P(0) = P(0) (x, t),
so that the pressure is uniform on any channel section. Next, we observe that

IIS =
∣
∣
∣
∣
∣

∂v
(0)
1

∂y
+ Bi sign

(
∂v

(0)
1

∂y

)∣
∣
∣
∣
∣
+ O (ε)

and (39) can be rewritten as

∣
∣
∣
∣
∂P(0)

∂x

∣
∣
∣
∣σ

︸ ︷︷ ︸
IIS≤Bn

=
∣
∣
∣
∣
∣
∣

∂v
(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

+ Bi sign

⎛

⎝
∂v

(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

⎞

⎠

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸
IIS≥Bn

.

We conclude that

∂v
(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

= 0
∂P(0)

∂x
σ = Bi sign

⎛

⎝
∂v

(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

⎞

⎠ . (42)

Focussing now on (28) we find

−∂P(0)

∂x
+ ∂

∂y

[
∂v

(0)
1

∂y
+ Bi sign

(
∂v

(0)
1

∂y

)]

= 0,
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so that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂P(0)

∂x
+ ∂2v

(0)
1

∂y2 = 0,

v
(0)
1 (x, h, t) = 0,

∂v
(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

= 0,

(43)

Solving (43) we get

v
(0)
1 (x, y, t) = −1

2

∂P(0)

∂x

(
h2 − y2

)
+ Bi sign

⎛

⎝
∂v

(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

⎞

⎠ (h − y) . (44)

In particular, (37) yields

κ = −1

2

∂P(0)

∂x
(h − σ)2 , with ω = ω (t) . (45)

Remark 2 We remark that

κ = −Bn
2σ

sign

⎛

⎝
∂v

(0)
1

∂y

∣
∣
∣
∣
∣
y=σ+

⎞

⎠ (h − σ)2 . (46)

Therefore the derivative w.r.t. x of the r.h.s. of (46) must vanish and

∂h

∂x
= h + σ

2σ

∂σ

∂x
. (47)

From (18)

∫ h

σ

∂v
(0)
1

∂x
dy = 0, (48)

since v(0)2 (x, h, t) = v
(0)
2

(
x, σ+, t

) = 0. Hence, exploiting (44)

∂v
(0)
1

∂x
= −1

2

∂2P(0)

∂x2

(
h2 − y2

)
− ∂P(0)

∂x

∂h

∂x
h + ∂P(0)

∂x
σ
∂h

∂x
.
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Thus (48) yields

(h − σ)2
[

1

6

∂2P(0)

∂x2 (σ + 2h)+ ∂P(0)

∂x

∂h

∂x

]

= 0. (49)

In case h is uniform we get

∂2P(0)

∂x2 = 0 ⇒ P(0) (x, t) = Pin (t) − xΔP (t) ,

and

σ (t) = Bn
ΔP (t)

,

from which we derive the classical Bingham flow condition we find in [4]

Bn
ΔP (t)

< h,

ensuring the flow within the channel.

Remark 3 In case h does depend on x (49) does not give rise to any solution
consistent with (47) (a well known paradox of the Bingham model). Indeed,
form (42)2

∂2P(0)

∂x2 = − 1

σ

∂σ

∂x

∂P(0)

∂x
,

that inserted into (49) yields

∂P(0)

∂x
(h − σ)2

[
∂h

∂x
− ∂σ

∂x

σ + 2h

6σ

]

= 0.

The above implies

∂σ

∂x

σ + 2h

6σ
= ∂h

∂x
(50)

Inserting (50) into (47) we get h = −2σ , that is a contradiction (lubrication paradox,
see [6, 17, 21, 27]).
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4.3.5 Second Case Γ = O(ε)

Set εΓ̂ = Γ with Γ̂ = O (1). From (31)

[(

1 + Bn
2IID

)(
∂v1

∂y
+ ε2 ∂v2

∂x

)]

y=σ+
= Γ̂

[
∂ f1
∂y

+ ε2 ∂ f2
∂x

]

y=σ−
, (51)

Once again P(0) = P(0) (x, t) in the whole domain. In the elastic part

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2f (0)
1

∂y2
= 1

Γ̂

∂P(0)

∂x
,

∂ f (0)
1

∂y

∣
∣
∣
∣
∣
y=0

= 0,

⇒ f (0)
1 = 1

2 Γ̂

∂P(0)

∂x
y2 + a (x, t) , (52)

so that (51) implies

∂P(0)

∂x
σ =

[(

1 + Bn

2II(0)D

)
∂v

(0)
1

∂y

]

y=σ+
.

The term a (x, t) is unknown at this stage while v(0)1 is

v
(0)
1 = 1

2 Γ̂

∂2P(0)

∂ t∂x
y2 + κ (x, t) ,

where now

κ (x, t) = ∂a (x, t)

∂ t
, (53)

can be interpreted as the uniform part of the longitudinal velocity. Checking
condition (30) we find again (41).

Remark 4 At the leading order the longitudinal displacement is a superposition of
a uniform displacement a (x, t) and a non uniform displacement modulated by the
pressure gradient. The latter becomes negligible for large values of Γ̂ and the first
case is recovered for Γ̂ � 1.

In the fluid region

∂P(0)

∂x
σ = −Bn.
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Moreover

v
(0)
1 (x, y, t) = −1

2

∂P(0)

∂x

(
h2 − y2

)
+ ∂P(0)

∂x
σ (h − y) .

The jump condition (21) yields

1

2 Γ̂

∂2P(0)

∂ t∂x
σ 2 + ω (x, t) = −1

2

∂P(0)

∂x
(h − σ)2 ,

with ω given by (53). From mass balance and boundary conditions

0 =
∫ h

0

∂v
(0)
1

∂x
dy =

∫ σ

0

∂

∂x

(
∂ f (0)

1

∂ t

)

dy +
∫ h

σ

∂v
(0)
1

∂x
dy,

which, after some of algebra, gives

(h − σ)2
[

1

6

∂2P(0)

∂x2 (2h + σ)+ ∂P(0)

∂x

∂h

∂x

]

− σ 3

6 Γ̂

∂3P(0)

∂x2∂ t
− σ

∂ω

∂x
= 0.

Therefore the mathematical problem at the zero order approximation is the
following

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P(0)

∂x
σ = −Bn,

1

2 Γ̂

∂2P(0)

∂ t∂x
σ 2 + κ (x, t) = −1

2

∂P(0)

∂x
(h − σ)2 ,

− (h − σ)2
[

1

6

∂2P(0)

∂x2 (2h + σ) + ∂P(0)

∂x

∂h

∂x

]

+ σ 3

6 Γ̂

∂

∂ t

(
∂2P(0)

∂x2

)

+ σ
∂κ

∂x
= 0.

(54)

Example 1 Consider the stationary problem when h ≡ 1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P(0)

∂x
σ = −Bn, ⇒ ∂σ

∂x

∂P(0)

∂x
= −∂2P(0)

∂x2
σ,

κ (x, t) = −1

2

∂P(0)

∂x
(1 − σ)2 , ⇒ ∂κ

∂x
= −1

2

∂2P(0)

∂x2

(
1 − σ 2

)
,

− (1 − σ)2

6

∂2P(0)

∂x2 (2 + σ) + σ
∂κ

∂x
= 0.

(55)
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We get

1

3

∂2P(0)

∂x2

(
1 − σ 3

)
= 0,

yielding σ = 1 (which we do not consider) and P(0) = Pin −ΔPx, with ΔP known.
Therefore

σ = = Bn
ΔP

, (56)

κ = ΔP

2

(

1 − Bn
ΔP

)2

. (57)

Requiring σ < 1 we get the usual Bingham flow condition.

4.3.6 Stationary Version of (54)

We show that the stationary version of system (54), namely

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P(0)

∂x
σ = −Bn,

ω (x, t) = −1

2

∂P(0)

∂x
(h − σ)2 ,

− (h − σ)2
[

1

6

∂2P(0)

∂x2 (2h + σ)+ ∂P(0)

∂x

∂h

∂x

]

+ σ
∂ω

∂x
= 0,

(58)

admits a unique solution when h is a smooth bounded function of x with h ∈
[hm, hM]. From (58)1

∂2P(0)

∂x2 = Bn
σ 2

∂σ

∂x
, (59)

and from (58)2

κ (x, t) = Bn
2 σ

(h − σ)2 , and
∂κ

∂x
= Bn (h − σ)

2σ 2

[

2σ
∂h

∂x
− ∂σ

∂x
(h + σ)

]

.
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Hence, system (58) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P(0)

∂x
σ = −Bn,

− (h − σ)2
[

1

6

∂2P(0)

∂x2 (2h + σ)+ ∂P(0)

∂x

∂h

∂x

]

+
Bn (h − σ)

2σ

[

2σ
∂h

∂x
− ∂σ

∂x
(h + σ)

]

= 0.

(60)

In [10] it has been proved that there exists a unique pair of sufficiently regular
functions

(
σ (x) ,P(0) (x)

)
such that:

(a) 0 < σ (x) < h (x), for all x ∈ [0, 1].
(b) P(0) (0) = Pin, and P(0) (1) = Pin −ΔP.
(c) σ (x) and P(0) (x) fulfill the equations of (60).

Remark 5 Assuming that (60) is solvable according to the above definition, we find
immediately a new “flow condition”. Indeed, integrating (60)1 between 0 and 1, we
obtain

ΔP

Bn
=
∫ 1

0

dx

σ (x)
.

Since

∫ 1

0

dx

σ (x)
>

∫ 1

0

dx

h (x)
, (61)

if (60) admits a solution, the following inequality holds true

ΔP

Bn
>

∫ 1

0

dx

h (x)
. (62)

Going back to dimension variables we get

ΔP

τo
>

∫ L

0

dx

H (x)
,

which generalizes the classical Bingham flow condition.
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4.4 Numerical Simulations

We present some numerical simulations to investigate the stationary behavior of
σ(x) when Γ = O(1). Suppose following function

h(x) = 1

2
− 1

10
arctan

[

200

(

x − 1

2

)]

,

The channel profile and the free boundary separating the elastic and the viscous
phase are shown in Figs. 11, 12, 13, 14 for different values of ΔP/Bn satisfying
condition (62). We see that

∫ 1

0

dx
′

h(x′
)

= 2.2,

and consequently we perform numerical simulation with ΔP/Bn > 2.2.
The amplitude of the inner core decreases as ΔP/Bn increases. When ΔP/Bn � 1
(Fig. 14), the inner core approximately disappears and the system becomes almost
purely viscous. In the same way, we observe that when ΔP/Bn is close to 2.2 then
σ → h (Fig. 11) and the viscous part tends to disappear. Also in this case we speak
of a limit, since condition (62) must be fulfilled.
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Plot of the free boundary σ 
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Fig. 11 Plot of the free boundary (dashed line) y = σ(x) with ΔP/Bn = 2.5 and with
condition (62) fulfilled
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Fig. 12 Plot of the free boundary (dashed line) y = σ(x) with ΔP/Bn = 3.5 and with
condition (62) fulfilled
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Plot of the free boundary σ 
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Fig. 13 Plot of the free boundary (dashed line) y = σ(x) with ΔP/Bn = 5.5 and with
condition (62) fulfilled
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Fig. 14 Plot of the free boundary (dashed line) y = σ(x) with ΔP/Bn = 9.5 and with
condition (62) fulfilled

5 Two Dimensional Channel Flow: A New Approach

To model the flow of a Bingham fluid one considers the balance of linear momentum
written in the differential form

ρ
Dv
Dt

= −∇P + ∇ · S, (63)

where ρ is density, v is velocity, P is pressure and S is the deviatoric part of the
stress. Equation (63) is typically used in the whole domain, assuming that the
velocity and the stress are continuous across the fluid/rigid interface. Within the
liquid domain the fluid is assumed to behave as a viscous incompressible fluid,
whereas in the rigid part the stress is indetermined. Indeed in the unyielded part we
only know that the strain rate vanishes, i.e. D = 0. Assuming that Eq. (63) holds in
every part of the domain may lead to paradoxes, as the one that occurs in lubrication
regimes, [6, 17].

To avoid this occurrence we propose a novel approach which essentially consists
in using a integral formulation for the balance of linear momentum within the
unyielded part. We apply this approach to study the flow in a bidimensional channel
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of varying amplitude, with the driving force being an applied pressure gradient
(Poiseuille flow). We assume that the aspect ratio of the channel is small, so that
the lubrication approximation is suitable. In this case, Eq. (63) can be simplified
introducing the ratio ε � 1 between the length and the maximum amplitude
and rescaling the problem in a nondimensional form. The solution can be sought
as power series of ε, where the leading order is the one we are interested in.
With this procedure one tacitly assumes that the nondimensional variables and
their derivatives are O(1) in the liquid and solid domain. In particular the stress
components Sij are assumed to be everywhere O(1), but this latter hypothesis can
be checked “a posteriori” only in the liquid part, since in the rigid domain the stress
is not determined.

This point is the central importance for our procedure. Indeed, the assumption
Sij = O(1) and the use of (63) to derive the motion in the rigid part, leads to the
well known “lubrication paradox” , which consists in a plug velocity that depends
on the longitudinal coordinate. Note that the paradox disappears when one considers
a deformable core, as shown in the previous sections. If one does not use Eq. (63)
in the unyielded part and write the balance of linear momentum using an integral
global approach similar to the one presented in [29] and in [28], the paradox is no
longer present. Therefore, the unyielded part is treated as an evolving non material
volume Ωt and its dynamics is modelled writing the balance of linear momentum as

∫

Ωt

∂

∂ t
(ρv) dV +

∫

∂Ωt

ρv (v · n) dS =
∫

∂Ωt

(Tn)dS, (64)

where T = −PI + S, is the Cauchy stress tensor and w the velocity of the boundary
∂Ωt. The advantage of this approach lies in the fact that the knowledge of the stress
inside the rigid part is no longer needed and no guess has to be made on the order of
magnitude of the stress components. Only the stress acting on the boundary of Ωt

is required.
Therefore we need to know: (1) the forces acting on the yield surface σ (see

Fig. 15); (2) the forces acting on the inlet and outlet of the channel. On σ the viscous
stress is given once the problem in the viscous domain is solved. On the channel
inlet and outlet the applied pressure, assumed to be a given datum of the problem,
is required.

When dealing with the leading order approximation in the channel flow, Eq. (64)
becomes an integro-differential equation for the pressure P, whose solution allows
to determine explicit expressions for the velocity field v and the yield surface σ .
We prove that the longitudinal velocity is spatially uniform, while the transversal
velocity vanishes (no paradox). We also show that these results can be also extended
to the case of fluids with constant density and pressure dependent viscosity.
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Fig. 15 Sketch of the
domain of the problem

5.1 The Physical Model

Let us consider the flow of an incompressible Bingham fluid in a channel of length L
and amplitude 2h (x). Because of symmetry, we may limit our analysis to the upper
part of the layer [0, h(x)]. The velocity field is given by

v = v1(x, y, t)i + v2(x, y, t)j,

The Cauchy stress is T = −PI+S, where the deviatoric part is the one of a Bingham
fluid

S =
(

2μ+ τo

IID

)

D. (65)

In the above μ is the viscosity, τo is the yield stress. If D �= 0 we get

IIS = 2μIID + τo

which holds with IIS ≥ τo. Therefore, whenever D = 0, we have IIS ≤ τo and
the stress is not determined. We assume that the viscous and the rigid regions are
separated by a sharp interface y = ±σ(x, t). Assuming incompressibility we write

tr D = ∂v1

∂x
+ ∂v2

∂y
= 0. (66)
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5.2 The Viscous Domain

We write the governing equations in the viscous region neglecting body forces.
These are the incompressibility condition (66) and

ρ

(
∂v1

∂ t
+ v1

∂v1

∂x
+ v2

∂v1

∂y

)

= −∂P

∂x
+ ∂S11

∂x
+ ∂S12

∂y
, (67)

ρ

(
∂v2

∂ t
+ v1

∂v2

∂x
+ v2

∂v∗
2

∂y

)

= −∂P

∂y
+ ∂S12

∂x
+ ∂S22

∂y
, (68)

5.3 The Rigid Domain

The rigid domain Ωt at some time t > 0 is given by

Ωt = {(x, y) : x ∈ [0,L], y ∈ [−σ, σ ]} .

The integral momentum balance for the whole domain Ωt in the absence of body
forces is given by (64). Focussing on the upper part of the domain (y > 0) we find
that (64) can be rewritten as

2
∂

∂ t
(ρv)

∫ L

0
σ(x, t)dx + 2ρv

∫ L

0

∂σ

∂ t
(x, t)dx =

∫

∂Ωt

Tn dS.

The external forces acting on the boundary ∂Ωt are expressed by the surface integral
on the r.h.s. Assuming that Pin, Pout are the (uniform) pressures acting on the inlet
and outlet of the channel, we find

∫

∂Ωt

(Tn)dS = 2
∫ L

0

⎡

⎣
(−σxT11 + T12)σ

0

⎤

⎦ dx

+2
∫ σout

0

⎛

⎝
−Pout

0

⎞

⎠ dy + 2
∫ σin

0

⎛

⎝
Pin

0

⎞

⎠ dy,

where σin = σ(0, t), σout = σ(L, t). Recalling that in the rigid plug velocity is

⎧
⎨

⎩

v1 = k1(t),

v2 = k2(t) = 0 (by symmetry),
(69)
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the dynamics of the whole rigid region is expressed only by the first component
of (64), that is

∫ L

0

∂

∂ t
(ρk1σ) dx =

∫ L

0
[−σxT11 + T12]σ dx + Pinσin − Poutσout, (70)

Hence the prescribed pressure difference driving the flow is

ΔP = Pin − Pout. (71)

The boundary condition on the channel wall is

v(x, h, t) = 0 (72)

i.e. the no-slip condition. On σ we impose

�v · t� y=σ = 0, �v · n� y=σ = 0, (73)

�Tn · t� y=σ = 0, �Tn · n� y=σ = 0, (74)

which express the continuity of the velocity and of the stress across the yield surface
y = σ ( t and n are the tangent and normal unit vector to σ ).

Remark 6 In Sect. 5.10 we will extend our model the case in which the viscosity
depends on pressure, namely μ = μμ (P).

5.4 Scaling

Set

H = sup
x∈[0,L]

h(x),

and introduce

ε = H

L
� 1,

which is crucial for applying the classical thin film approach. We rescale the
problem using the following non dimensional variables

x̃ = x

L
, ỹ = y

εL
, σ̃ = σ

εL
, h̃ = h

εL
, t̃ = t

(L/U)
,
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ṽ1 = v1

U
, v2 = v2

εU
, P̃ = P − Pout

Pc
, ΔP̃ = ΔP

Pc
, (75)

S̃ = S
(μU/H)

, D̃ = D
(U/H)

, ĨID = IID

(U/H)
, ĨIS = IIS

(μU/H)
,

where we select the reference pressure using the Poiseuille formula

Pc = μLU

H2 (76)

After some algebra (and neglecting the tildas) we find

S =
(

2 + Bn
IID

)

D,

where

Bn = τoH

μU

is the Bingham number. Moreover

IID =
√

ε2

(
∂v1

∂x

)2

+ 1

4

(
∂v1

∂y
+ ε2 ∂v2

∂x

)2

.

Equations (66)–(68) become

∂v1

∂x
+ ∂v2

∂y
= 0, (77)

εRe
(
∂v1

∂ t
+ v1

∂v1

∂x
+ v2

∂v1

∂y

)

= −∂P

∂x
+ ε

∂S11

∂x
+ ∂S12

∂y
, (78)

ε3Re
(
∂v2

∂ t
+ v1

∂v2

∂x
+ v2

∂v2

∂y

)

= −∂P

∂y
+ ε2 ∂S12

∂x
+ ε

∂S22

∂y
, (79)

where

Re =
(
ρUH

μ

)

is the Reynolds number. The inner core equation (70) becomes

εRe
∫ 1

0

∂

∂ t
(k1σ)dx =

∫ 1

0
[ Pσx − εσxS11 + S12]σ+ dx +ΔPσin. (80)
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The boundary conditions (72)–(74) become

v(x, h, t) = 0, (81)

�v1�y=σ = �v2�y=σ = 0, (82)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�P�

[

1 + ε2
(
∂σ

∂x

)2
]

y=σ

+
[

ε3S11

(
∂σ

∂x

)2

− 2ε2S12

(
∂σ

∂x

)

+ εS22

]

y=σ

= 0,

�S12�y=σ + ε

(
∂σ

∂x

)[

S22 − S11 − εS12
∂σ

∂x

]

y=σ

= 0.

(83)
In the rigid domain the non dimensional velocity field is

⎧
⎨

⎩

v1 = k1(t),

v2 = 0,
(84)

with k1 = k1/U.

5.5 The Leading Order Approximation

We look for a solution in which the main variables of the problem can be expressed
as power series of ε

v =
∞∑

j=0

v( j)εj P =
∞∑

j=0

P( j)εj σ =
∞∑

j=0

σ ( j)εj

We further assume that h(x) is such that

∂h

∂x
= O (1)

and we limit our analysis to the leading order, assuming that Bi =O (1) and
Re �O (1). We begin by observing that

S(0)12 =
⎡

⎣1 + Bn

|v(0)1y |

⎤

⎦ v
(0)
1y ,
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and, since we are looking for a solution with v
(0)
1y < 0 in the upper part of the

channel, we write

S(0)12 = v
(0)
1y − Bn.

The problem reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
(0)
1

∂x
+ ∂v

(0)
2

∂y
= 0,

−∂P(0)

∂x
+ ∂

∂y

(
∂v

(0)
1

∂y

)

= 0,

−∂P(0)

∂y
= 0,

(85)

with boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂v
(0)
1

∂y

∣
∣
∣
∣
∣
y=σ (0)

= 0,

v
(0)
1 (x, h, t) = 0.

(86)

Integrating we find

v
(0)
1 = −P(0)

x
(h − y)( y − 2σ (0) + h)

6
. (87)

Exploiting the continuity equation we get

v
(0)
2 = − ∂

∂x

[

P(0)
x

( y − h)2( y − 3σ (0) + 2h)

6

]

. (88)

Evaluating the velocity components on the yield surface we get

v
(0)
1

∣
∣
∣
y=σ (0)

= k(0)1 (t) = −P(0)
x

(h − σ (0))2

2
, (89)

v
(0)
2

∣
∣
∣
y=σ (0)

= ∂

∂x

[

−P(0)
x

(h − σ (0))3

3

]

− σ (0)
x P(0)

x
(h − σ (0))2

2
= 0,
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which entails
(

−P(0)
x

(h − σ (0))2

2

)

︸ ︷︷ ︸

k(0)1

· ∂
∂x

[
2

3
(h − σ (0))

]

= −σ (0)
x

(

−P(0)
x

(h − σ (0))2

2

)

︸ ︷︷ ︸

k(0)1

.

Supposing k(0)1 �= 0, we find

σ (0) (x, t) = −2h (x)− C, (90)

where C is unknown. Let us now consider the rigid core equation (80) at the zero
order

1∫

0

P(0)σ (0)
x dx − Bn +ΔPσ (0)

in = 0,

which, after an integration by parts, reduces to

−
∫ 1

0
P(0)

x σ (0)dx = Bn. (91)

Substituting (90) into (91), we obtain

C =
2
∫ 1

0
P(0)

x hdx − Bn

ΔP
.

We thus have

σ (0) = −2h (x)+
Bi−2

∫ 1

0
P(0)

x h dx

ΔP
, (92)

or equivalently

σ (0) = 2(hin − h (x))+ Bi
ΔP

+ 2

ΔP

∫ 1

0
P(0)hxdx, (93)

where hin = h(0). Defining the viscous region width as

'(0) = h (x) − σ (0) (x, t) , (94)



Viscoplastic Fluids: Mathematical Modeling and Applications 267

formula (92) entails

'(0) = 3h (x) +
2
∫ 1

0
P(0)

x h dx − Bn

ΔP
. (95)

Hence

k(0)1 = −P(0)
x

'(0)2

2
. (96)

Now, differentiating(̃96) with respect to x, we obtain

P(0)
xx + 6

hx

'(0)
P(0)

x = 0,

that is the integro-differential equation

P(0)
xx + 6hx

⎡

⎢
⎢
⎣3h +

2
∫ 1

0
P(0)

x h dx − Bn

ΔP (t)

⎤

⎥
⎥
⎦

P(0)
x = 0. (97)

The boundary conditions are P(0)
∣
∣
x=0 = ΔP, and P(0)

∣
∣
x=1 = 0. The solution P(0)

of (97) is then used to evaluate the v(0)1 via (87), v(0)2 via (88) and the yield surface
σ (0) via (93).

Remark 7 From (92) we observe that σ (0)
x = −2hx, meaning that the amplitude

of the rigid core becomes larger as the channel narrows, whereas it shrinks as the
channel becomes wider. This is in accordance with what found in [21].

5.6 Flow Condition

Let us investigate the conditions on ΔP that prevent the system from coming to a
halt. Let h (x) ≡ hin. From (93) we get:

• ΔP >
Bn
hin

, �⇒ σ (0) < hin (the fluid is flowing)

• ΔP <
Bn
hin

, �⇒ σ (0) > hin (no flow)
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When h(x) is not uniform we have to ensure that σ (0) < h (x), in order to prevent
the flow from stopping. Recalling (95) we must impose

'(0) ≥ 3hmin − 2hin − Bn
ΔP

− 2

ΔP

∫ 1

0
P(0)hxdx, (98)

where hmin = minx∈[0,1] h. To estimate the integral in the r.h.s. we remark that
P(0) fulfils Eq. (97), that is an equation of elliptic type. Maximum principle entails
0 ≤ P(0) ≤ ΔP. So, writing

∫ 1

0
P(0)hxdx =

∫

{hx≤0}
P(0)hxdx

︸ ︷︷ ︸
≤0

+
∫

{hx≥0}
P(0)hxdx

︸ ︷︷ ︸
≥0

,

we have

ΔP min
{
h x; 0

} ≤ ΔP max
{
hx; 0

}
,

where

h x = min
x∈[0,1] hx(x), and hx = min

x∈[0,1] hx(x).

In conclusion

2 min
{
h x; 0

} ≤ 2

ΔP

∫ 1

0
P(0)hxdx ≤ 2 max

{
hx; 0

}
. (99)

Therefore, recalling (98), we have

'(0) ≥ 3hmin − 2hin − Bn
ΔP

− 2

ΔP

∫ 1

0
P(0)hxdx

≥ 3hmin − 2 max
{
hx; 0

}− 2hin − Bn
ΔP

, (100)

If we assume

(
3hmin − 2 max

{
hx; 0

}− 2hin
)
> 0

and require that

3hmin − 2 max
{
hx; 0

}− 2hin − Bi
ΔP

> 0,
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which implies

ΔP >
Bn

3hmin − 2 max
{
hx; 0

}− 2hin
, (101)

we are sure that the flow never comes to a stop.

Example 2 If we consider a linear wall profile

h = hin + (hout − hin)︸ ︷︷ ︸
Δh

x,

where hout > 0, there are two possibilities:

• Δh > 0, ⇒ hmin = hin, and max
{
hx; 0

} = Δh. Condition (101) yields

Bn
ΔP

< hin − 2Δh
︸ ︷︷ ︸
2hout−3hin

, ⇔ ΔP >
Bn

2hout − 3hin
,

where, of course, we assume 2hout − 3hin > 0
• Δh < 0, ⇒ hmin = hout, and max

{
hx; 0

} = 0. Inequality (101) entails

Bn
ΔP

< 2Δh + hout︸ ︷︷ ︸
3hout−2hin

, ⇔ ΔP >
Bn

3hout − 2hin
,

where now we require 3hout − 2hin > 0.

5.7 Inner Core Appearance or Disappearance

A non uniform channel profile may cause the appearance/disappearance of the rigid
plug. These phenomena (highlighted also in [6] and [21]) are not possible when the
channel profile is uniform, namely when h (x) ≡ hin. Recalling (93), we set

σ (0) = max

{

0; 2(hin − h)+ Bn
ΔP

+ 2

ΔP

∫ 1

0
P(0)hxdx

}

,

in order to avoid physical inconsistencies. Hence, σ (0) vanishes when

h ≥ hin + Bn
2ΔP

+ 1

ΔP

∫ 1

0
P(0)hxdx. (102)
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The r.h.s. of (102) is a critical value, that we denote as hcrt, such that, whenever
h ≥ hcrt the core disappears.

Example 3 Let us consider the channel profile

h(x) =
arctan

[

5

(
1

2
− x

)]

4 arctan

(
5

2

) + 3

4
. (103)

depicted with the dashed line in Fig. 20. We now estimate hcrt exploiting (102),
when ΔP = 10, and Bi = 5,

h (x) ≥ 1 + Bn
2ΔP

− 1

ΔP

∫ 1

0
P(0) |hx| dx

≥ 1 + Bn
2ΔP

− ‖hx‖L2 ≥ 1 + Bn
2ΔP

− 0.58 ≈ 0.67.

The core-free region is thus obtained solving h ≥ hcrt, which we approximate with
h ≥ 0.67, whose solution is the interval 1 ≤ x ≤ 0.58. Looking at Fig. 20 the
actual core-free region is 1 ≤ x ≤ 0.55, which substantially agrees with the above
estimate.

5.8 Solution for an Almost Flat Channel

When h (x) ≡ hin (i.e. uniform channel) equation (93) gives

σ (0) = Bn
ΔP

. (104)

Equation (97) yields

P(0) = (1 − x)ΔP.

The velocity field becomes7

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v
(0)
1 = −ΔP

[
( y − σ (0))2

2
− (1 − σ (0))2

2

]

,

v
(0)
2 = 0,

(105)

7We set, for the sake of simplicity, hin = 1.
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and we also find

k(0)1 = ΔP

2
(1 − σ (0))2.

Let us now consider a non-uniform channel profile h (x), assuming that amplitude
width variation is small. We thus set

h (x) = 〈h〉 + φ (x) , (106)

where 〈h〉 denotes the spatial average along the channel, i.e.

〈 h 〉 =
1∫

0

h (x) dx

and assume that max |φ (x)| is small, that is we consider an almost flat channel. We
look for P(0) in the form

P(0) = (1 − x)ΔP +Π, (107)

where Π |x=0 = Π |x=1 = 0, and where we expect that both max |Π |, max |Πx| are
small. Inserting (107) into (92) we obtain

σ (0) = Bn
ΔP

− 2φ (x) − 2

ΔP

∫ 1

0
Πxφ dx ≈ Bn

ΔP
− 2φ (x) . (108)

Concerning '(0) we have

'(0) (x, t) ≈ 〈h〉 − Bn
ΔP (t)

+ 3φ (x) . (109)

Exploiting then (97) we compute the pressure field solving

Πxx + 6φx

'(0)
(−ΔP +Πx) = 0.

Neglecting φxΠx we end up with the following problem

⎧
⎪⎪⎨

⎪⎪⎩

Πxx − 2ΔP

[
φx

φ + A

]

= 0, where A = < h >

3
− Bn

3ΔP
,

Π |x=0 = Π |x=1 = 0,
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so that

Πx = (const)+ 2ΔP ln

[

1 + φ (x)

A

]

≈ (const)+ 2ΔP
φ (x)

A
.

In conclusion

Π = 2ΔP (t)

A

∫ x

0
φ(x

′
)dx

′
,

which yields

P(0) = ΔP (1 − x)+ 6ΔP2

〈h〉ΔP − Bn

∫ x

0
φ
(
x′) dx′. (110)

Example 4 Let us consider h (x) = 1 + mx, with m small. We write

h (x) = 1 + m

2︸ ︷︷ ︸
〈h〉

+ m

(

x − 1

2

)

︸ ︷︷ ︸
φ(x)

.

In this case

σ (0) = Bn
ΔP

− 2m

(

x − 1

2

)

,

and

P(0) = ΔP (1 − x) + 3mΔP2

〈h〉ΔP − Bn
x (x − 1) .

We see that σ (0)
x = −2m, i.e. the core amplitude widens for m < 0 and shrinks for

m > 0.

Example 5 Let us consider a wavy channel

h(x) = 1 − θ cos

[

2πδ

(

x − 1

2

)]

, (111)

where δ > 0, and θ � 1. We write

h (x) =
[

1 − θ

πδ
sin (πδ)

]

︸ ︷︷ ︸
〈h〉

+ θ

[
sin (πδ)

πδ
− cos

(

2πδ

(

x − 1

2

))]

︸ ︷︷ ︸
φ(x)

,
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Fig. 16 The channel profile h (x) is (111) and of σ (0) given by (92), (112), with Bn = 5, ΔP =
10.5, δ = 0.2, θ = 0.1

with max |φ| = O (θ) � 1. Exploiting (108) we obtain

σ (0) ≈ Bn
ΔP

− 2θ

[
sin (πδ)

πδ
− cos

(

2πδ

(

x − 1

2

))]

, (112)

The behavior for θ = 0.1, and δ = 1/5 is shown in Figs. 16 and 17. In particular in
Fig. 17 a close-up showing the difference between the approximated solution (112)
and the computed one (see next section) is displayed.

5.9 Numerical Simulations

Setting F = P(0)
x , the elliptic problem (97) can be transformed in the following

integral equation

F = −ΔP
exp

{

−
∫ x

0

6hx′

'F
dx′
}

∫ 1

0
exp

{

−
∫ x

0

6hx′

'F
dx′
}

dx

, (113)
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Fig. 17 Close up for the difference between σ (0) given by (112) and σ (0) given by (92)

where, recalling (95),

'F = min

⎧
⎪⎪⎨

⎪⎪⎩

h (x) , 3h (x)+
2
∫ 1

0
Fh dx − Bn

ΔP

⎫
⎪⎪⎬

⎪⎪⎭

.

Now, if the conditions ensuring that '(0) is strictly positive (Sect. 5.6) are fulfilled,
we can solve (113) through the following iterative procedure:

Step j = 0. Set F0 = −ΔP, and 'F, 0 = min

{

h (x) , 3h (x) − Bn
ΔP

−2
∫ 1

0
h dx

}

.

Step j = 1. F1 = −ΔP

exp

{

−
∫ x

0

6hx′

'F, 0
dx′
}

∫ 1

0
exp

{

−
∫ x

0

6hx′

'F, 0
dx′
}

dx

.

. . . . . .

Step j > 1. Fj = −ΔP

exp

{

−
∫ x

0

6hx′

'F, j−1
dx′
}

∫ 1

0
exp

{

−
∫ x

0

6hx′

'F, j−1
dx′
}

dx

, with
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Fig. 18 Plot of x-component of the velocity, h given by (111), δ = 0.1, θ = 0.02, and Bn = 5,
ΔP = 10.5

'F, j−1 = min

⎧
⎪⎪⎨

⎪⎪⎩

h (x) , 3h (x)+
2
∫ 1

0
Fj−1 h dx − Bi

ΔP

⎫
⎪⎪⎬

⎪⎪⎭

.

Iterating the procedure until the desired tolerance is reached, we determine the
solution F = P(0)

x . Integration then provides the pressure field P(0). We can show
that, under suitable hypotheses, the solution of (113) exists and is unique.

In Figs. 16, 17 we have plotted h(x) and σ (0)(x) for the wavy channel profile
given by (111). In Figs. 18, 19 we have reported the contour plots of v(0)1 , and v

(0)
2 ,

when h(x) is given by (111), with δ = 0.1, θ = 0.02, and Bn = 5.
The solid colored regions of Figs. 18 and 19 denote the core, with vanishing
transversal velocity and uniform longitudinal velocity. Notice also the symmetry
of the transversal velocity shown in Fig. 19. In Figs. 20, 21, 22 we have considered
the profile (103). The yield surface σ (0) and the velocities v

(0)
1 , v(0)2 are reported

respectively.
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Fig. 19 Plot of y-component of the velocity, h given by (111), δ = 0.1, θ = 0.02, and Bn = 5,
ΔP = 10.5
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Fig. 20 Plot of σ (0) and h, when h is given by (103). Bn = 5, ΔP = 10.5

5.10 Model with Pressure Dependent Viscosity

In this section we extend our model to the case of a pressure-dependent viscosity.
Going back to dimensional variables equation (65) rewrites in this way

D = IID

2μ (P) IID + τo
S.



Viscoplastic Fluids: Mathematical Modeling and Applications 277

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 21 Plot of x-component of the velocity, h given by (103). Bn = 5, ΔP = 10.5
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Fig. 22 Plot of y-component of the velocity, h given by (103). Bn = 5, ΔP = 10.5
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The viscosity is expanded considering

μ(P) = μ
(

P(0) + εP(1) + ε2P(2) + . . . . . . .
)
,

so that, around ε = 0, we get μ = μ(0) + εμ(1) + ε2μ(2) + . . ., where

μ(0) = μ(P(0)), μ(1) = dμ

dP
(P(0)) P(1). (114)

Following the same procedure described in Sect. 5.5, the non-dimensional leading
order problem becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
(0)
1

∂x
+ ∂v

(0)
2

∂y
= 0,

−∂P(0)

∂x
+ ∂

∂y

(

μ(0)
(

P(0)
) ∂v

(0)
1

∂y

)

= 0,

−∂P(0)

∂y
= 0,

whose boundary conditions are still given by (86). We get

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v
(0)
1 = P(0)

x

μ(0)
(

P(0)
)
( y − h(0))( y − 2σ (0) + h(0))

6
,

v
(0)
2 = ∂

∂x

[
P(0)

x

μ(0)
(

P(0)
)
( y − h(0))2( y − 3σ (0) + 2h(0))

6

]

,

and

k(0)1 = − P(0)
x

μ(P(0))

(h(0) − σ (0))2

2
.

The interface σ (0) is still given by (92), while Eq. (97) modifies in this way

(
P(0)

x

μ(P(0))

)

x

+ 6
hx

'(0)

P(0)
x

μ(P(0))
= 0, (115)

where '(0) is given by (95).
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Example 6 In case μ (P) = eγP, and h ≡ 1, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
(0)
1 = [e−γPin − e−γPout]

γ

[
( y − σ (0))2

2
− (1 − σ (0))2

2

]

,

v
(0)
2 = 0,

σ (0) = Bn
ΔP

,

P = Pin − 1

γ
ln
[
1 + (

eγΔP − 1
)

x
]
.

(116)

We now consider h(0) = 1 + mf (x), with m small perturbation. We look for a
solution of (115) of the form

P(0) = Pin − 1

γ
ln
[
1 +

(
eγΔP − 1

)
x
]
+ mΠ, (117)

with Π = 0 on x = 0, 1. After inserting (117) into (115) and neglecting the m2, we
find

Π = − 6

γ

(
eγΔP − 1

)

1 + (eγΔP − 1
)

x

[

x
∫ 1

0
f (ξ)dξ −

∫ x

0
f (ξ)dξ

]

,

and

σ (0) = Bn
ΔP

− m

[

2f (x)− 2

γΔP

∫ 1

0

f (ξ)
(
eγΔP − 1

)

1 + (eγΔP − 1
)
ξ

dξ

]

.

6 Planar Squeeze

We consider the flow of an incompressible Bingham fluid placed between parallel
plates of length in a channel of length L. The gap between the plates occupied by
the fluid has amplitude 2h(t), as depicted in Fig. 23 (see also [19]). Because of
symmetry, we confine our analysis to the upper part of the layer, namely [0, h (t)].
The velocity field is v = u(x, y, t)i + v(x, y, t)j, where x, y are the longitudinal and
transversal coordinate respectively.

We assume that the region where IIS ≥ τo (yielded) and the region where IIS ≤
τo (unyielded) are separated by a sharp interface y = ±Y(x, t) representing the yield
surface. We also define the inner plug

Ωp = {(x, y) : x ∈ [0,L], y ∈ [−Y,Y]} .
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Fig. 23 A schematic
representation of the
squeezing channel

We may have Y(x, t) = 0 for some x ∈ (0,L) and for some t, so that Ωp becomes a
segment of zero measure. The rigid plug Ωp moves uniformly with velocity

⎧
⎨

⎩

u = up(t),

v = 0, (by symmetry).
(118)

Neglecting inertia and body forces, the governing equations in the viscous phase are

trD = 0,

and

− ∂P

∂x
+ ∂S11

∂x
+ ∂S12

∂y
= 0, (119)

− ∂P

∂y
+ ∂S12

∂x
+ ∂S22

∂y
= 0, (120)

The integral momentum balance for the domain Ωp is given by

∫

Ωp

∂

∂ t
(ρv) dV +

∫

∂Ωp

ρv (v · n) dS =
∫

∂Ωp

(Tn)dS, (121)
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where ρ is the material density. Neglecting the inertial terms, we get following
equation8

∫ L

0
[−YxT11 + T12]Y+ dx + PY0Y0 − PY1Y1 = 0. (122)

where PYo , PY1 represent the normal stresses on x = 0 and x = L. As usual we
impose

v|y=h · t = 0,
(

v|y=h − w
) · n = 0, (123)

where w · n is the wall normal velocity and t is the wall tangent vector. On Y we
write

�v� y=Y = 0, (124)

�Tn · t� y=Y = 0, �Tn · n� y=Y = 0, (125)

while at x = 0

⎧
⎨

⎩

u = 0,

S12 = 0,
(126)

6.1 Squeezing Between Parallel Plates

We assume h = h (t) and we set

H = max
t≥0

h(t).

We define the aspect ratio ε = H/L, assuming ε � 1. Then we rescale the problem
using the following non dimensional variables

x̃ = x

L
, ỹ = y

εL
, Ỹ = Y

εL
, h̃ = h

H
, t̃ = t

T
,

where T is the characteristic time scale, i.e. the “squeezing time”. We define the
characteristic transversal velocity as V = H/T, and the longitudinal velocity as
U = V/ε, so that u = u/U, v = v/V = v∗/(εU). Pressure is again rescaled

8The expression [−YxT11 + T12]Y+ represents the force exerted by the viscous region on the lateral
side of the inner rigid core.
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exploiting the Poiseuille formula Pc = (μLU)/H2 and we set P = P/Pc, Pout =
Pout/Pc, where Pout is the (given) pressure field applied at the channel outlet. We
suppose that Pout is constant in time and space. Next we introduce

S = S
(μU/H)

, D = D
(U/H)

, IID = IID

(U/H)
, IIS = IIS

(μU/H)
,

so that

S =
(

2 + Bn
IID

)

D,

where

Bn = τoH

μU

is again the Bingham number. The mechanical incompressibility constraint and
momentum balance become (neglect the tildas)

∂u

∂x
+ ∂v

∂y
= 0, (127)

− ∂P

∂x
+ ε

∂S11

∂x
+ ∂S12

∂y
= 0, (128)

− ∂P

∂y
+ ε2 ∂S12

∂x
+ ε

∂S22

∂y
= 0. (129)

Equation (122) can be rewritten as

∫ 1

0
[ PYx − εYxS11 + S12]Y+ dx + PY0Y0 − PoutY1 = 0, (130)

where Pout = PY1 . Boundary conditions (123) become

u|h = 0, v|h = ·
h, (131)

since the squeezing velocity is

·
h = ∂h

∂ t
< 0
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Jump conditions on Y become

�u�y=Y = �v�y=Y = 0, (132)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�P�

[

1 + ε2
(
∂Y

∂x

)2
]

y=Y

+
[

ε3S11

(
∂Y

∂x

)2

− 2ε2S12

(
∂Y

∂x

)

+ εS22

]

y=Y

= 0,

�S12�y=Y + ε

(
∂Y

∂x

)[

S22 − S11 − εS12
∂Y

∂x

]

y=Y
= 0,

(133)

while conditions (126) become

⎧
⎨

⎩

u = 0,

S12 = 0.
(134)

6.2 Problem at the Leading Order

As for the channel, we look for a solution expressed as power series of ε, assuming
Bi =O (1). We get

S(0)12 = u(0)y − Bn

since we are looking for a solution with u(0)y < 0 in the upper part of the channel.
Equations (127)–(129) reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(0)

∂x
+ ∂v(0)

∂y
= 0,

−∂P(0)

∂x
+ ∂

∂y

(
∂u(0)

∂y

)

= 0,

−∂P(0)

∂y
= 0,

(135)

with boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u(0)

∂y

∣
∣
∣
∣
∣
y=Y

= 0

u(0)(x, h, t) = 0

(136)
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For the sake of simplicity we suppress the superscript (0). Since P = P(x, t) we get

u = −Px
(h − y)( y − 2Y + h)

2
. (137)

Moreover exploiting mass conservation

·
h − v ( y, t) =

∫ h

y

∂

∂x

[

Px
(h − y′)( y′ − 2Y + h)

2

]

dy′ .

Evaluating u, v on Y and recalling conditions (132), we obtain

up(t) = −Px
( Y − h)2

2
, (138)

v|y=Y = ·
h + ∂

∂x

[

Px
( Y − h)3

3

]

− Yx

2
Px( Y − h)2 = 0. (139)

The plug equation (130) becomes

−
∫ 1

0
PxYdx = Bn. (140)

Recalling (134) we have uy = 0 in x = 0 implying Px|x=0 = 0. The solid region
must be detached from x = 0, since otherwise up ≡ 0, i.e. no rigid domain
motion. Accordingly there must be some s (t) ∈ [0, 1], not a priori known, such
that Y (x, t) ≡ 0, for 0 ≤ x ≤ s (t). Hence the spatial domain [0, 1] can be split in
two sub-domains (see Fig. 23):

• 0 ≤ x ≤ s (t), where Y ≡ 0;
• s (t) < x ≤ 1, where Y does not vanish.

Assuming that the longitudinal velocity is continuous across s (t), we have

up(t) = −Px (s, t)

2
(Y (s, t)
︸ ︷︷ ︸

0

− h)2 = −Px (s, t)

2
h2, (141)

where Px (s, t) is unknown at this stage. From (139) we get

−·
h + 2

3

∂

∂x

[
− Px

2
( Y − h)2

︸ ︷︷ ︸
up(t)

( Y − h)
]
− Yx

[

−Px

2
( Y − h)2

]

︸ ︷︷ ︸
up(t)

= 0,

that is

·
h + 1

3
up(t)Yx = 0, (142)
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In order to avoid physical inconsistencies, we set

Y (x, t) = max

{

0,−3ḣs(t)

up(t)

(
x

s (t)
− 1

)}

. (143)

The local instantaneous discharge is given by

Q (x, t) =
∫ Y

0
updy +

∫ h

Y
udy = upY − Px (x, t)

3
(h − Y)3 . (144)

Mass conservation then requires Q (x, t) = −·
hx, so that Q (s, t) = −·

hs so that

up(t) = −3

2

·
h

h
s, (145)

which is positive since
·
h < 0. As a consequence

Y (x, t) = max

{

0, 2h (t)

(
x

s (t)
− 1

)}

. (146)

Therefore the fluid squeezes out of the channel only if Y (1, t) < h (t), namely when
s (t) > 2/3. In x ∈ [0, s] we have Y = 0 and the pressure fulfills Eq. (139) with the
boundary condition Px (0, t) = 0

⎧
⎪⎪⎨

⎪⎪⎩

Pxx = 3

h3

·
h, 0 < x < s, t ≥ 0

Px (0, t) = 0 t ≥ 0.

Therefore

P (x, t) = 3
·
h

2h3 x2 + A (t) ,

with A (t) still unknown at this stage. Recalling that Y is linear in x we integrate
(138) between x and 1 getting

P (x, t) = Pout + 3

2

·
h
( s

h

)3
[

1

2 − 3s
− 1

2x − 3s

]

, s (t) < x ≤ 1. (147)

Then imposing the continuity of P across x = s we get

P (x, t) = 3
·
h

2h3

(
x2 − s2

)
+ Pout − 3

·
h

s2

h3

(
s − 1

2 − 3s

)

, 0 ≤ x ≤ s (t) . (148)
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Finally rewriting (140) as

1∫

s

PxYdx = −Bn,

we get

f (s) = s2
[

2 (1 − s)

3s − 2
+ ln

(
3s − 2

s

)]

= −2

3

Bnh2

·
h

. (149)

Hence, solving (149) we find s (t) and we are able to determine the pressure field
in the whole channel and the rigid domain as well. We observe that s(t) is not
a material point so that, in principle, s(t) can also be still (i.e. ṡ(t) = 0), while
the rigid plug is moving with velocity up(t). Figure 24 shows the behavior of the
function f (s) in the l.h.s. of (149) with s ∈ (2/3, 1). We easily realize that f (s) is
monotonically decreasing for 2/3 < s ≤ 1 and that its range is [0,+∞). So, given
any −(2Bnh2)/(3ḣ) > 0, there exists one and only one s fulfilling (149). The force
acting on the unit surface of upper plate is

P (t) =
∫ 1

0
P (x, t) dx = Pout +

·
hs3

2h3

5 − 3s

2 − 3s
− 3

·
hs3

4h3 ln

(
3s − 2

s

)

.

Exploiting (149) we get

P (t) − Pout = Bn
2

s

h
− ḣ

( s

h

)3 1

(3s − 2)
. (150)

Fig. 24 Behavior of f (s) for
2/3 < s ≤ 1
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Remark 8 When Bn → 0, the solution of (149) is simply s = 1, i.e. the solid region
does not exists at all (as physically expected for a Newtonian fluid). Furthermore
formula (150) reduces to

P (t) − Pout = − ḣ

h3 ,

corresponding to the Newtonian fluid planar squeezing, [17]. These results confirms
the physical consistency of our model.

6.3 Numerical Simulation

We perform here some numerical simulations to investigate the behavior of our
asymptotic solution at the leading order. To illustrate the dependence of the solution
on the Bingham number we consider the cases: Bn = 1 and Bn = 25. We plot the
yield surface Y, the pressure field P and the axial velocity u, assuming that the plates
have constant velocity so that

h(t) = 1 − t, ḣ(t) = −1. (151)

We consider t ∈ [0, 0.6], which guarantees that the plates do not come in touch in
the select time interval. We set hf = h(0.6), representing the half gap width at time
tf = 0.6 and sf = s(0.6) representing the onset of the rigid plug at time t = 0.6.
The yield surface Y and pressure field P are plotted for different times t belonging
to the selected time interval and for x ∈ [0, 1]. The axial velocity u is plotted at time
t = 0.6 (i.e. when h = hf ) for a finite number of x ∈ [sf , 1] and for y ranging in
[0, hf ].

In Figs. 25, 26 we have plotted the yield surface Y(x, t) and the upper plate y =
h(t) at different times in the time interval [0, tf ]. We have plotted the upper plate
only for x ∈ [s(t), 1] so that the evolution of the onset of the plug x = s(t) is visible.
We notice that the slope of the unyielded plug becomes smaller as s(t) increases,
as expected. In Figs. 27, 28 we have plotted the pressure field at different times
in the time interval [0, tf ] in the whole domain x ∈ [0, 1]. Also for this case the
position x = s(t) has been put in evidence. We notice that the pressure within the
gap increases as Bn increases.

In Figs. 29, 30 we have plot the axial velocity profile at time t = 0.6 for some
fixed x ∈ [sf , 1]. In particular velocity is plotted for x = 0.69, x = 0.73, x = 0.77,
x = 0.81, x = 0.85. As one can easily observe the velocity of the plug is the same
for each (x, y) belonging to the plug.

Finally in Figs. 31, 32 we have plotted the squeeze force given in (150) for
different values of the Bingham number, Bn. We have plotted (150) for the linear
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Fig. 25 Y for Bn = 1 and h given by (151)

squeezing (151) and for the exponential squeezing

h(t) = exp(−t), ḣ(t) = − exp(−t). (152)

We observe that the linear squeezing requires a grater squeezing force than the
exponential squeezing. This is physically consistent, since in the linear case the
plates move faster than in the exponential case.

6.4 Squeezing Between Surfaces

In this section we generalize the problem to the case in which the parallel plates
are surfaces y = ±h(x, t) that are approaching the channel centerline, as shown in
Fig. 33. In this case

H = max
x∈[0,L]

t>0

h(x, t),
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and we again assume H/L = ε � 1. The theory develops exactly as in Sect. 6.1,
so that (140) still holds. We split [0, 1] into [0, s] and [s, 1], so that continuity of u
across s (t) yields

up(t) = −Px (s, t)

2
h(s, t)2.

Recalling (139) we find

ht + 1

3
up(t)Yx + 2

3
up(t)hx = 0,

which generalizes (142). We thus get the following Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

Yx = 3

up

[

−ht − 2

3
uphx

]

,

Y(s, t) = 0,
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Fig. 27 P for Bn = 1 and h given by (151)

whose solution is

Y(x, t) = 3

up

[

−
∫ x

s
htdξ − 2

3
up(h(x, t) − h(s, t))

]

, (153)

where s is still unknown. Following (143) we set

Y(x, t) = max

{

0, − 3

up

∫ x

s
htdξ − 2(h(x, t) − h(s, t))

}

. (154)

The local discharge is

Q (x, t) =
∫ Y

0
updy

︸ ︷︷ ︸
upY

+
∫ h

Y

[

−Px
(h − y)( y − 2Y + h)

2

]

dy
︸ ︷︷ ︸

−Px (x, t)

3
(h−Y)3

,
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Fig. 28 P for Bn = 25 and h given by (151)

while mass conservation ht + Qx = 0 implies

Q(x, t) = −
∫ x

0
htdξ,

since Q(0, t) = 0. We find

Q(s, t) = −
∫ s

0
htdξ = −Px(s, t)h2(s, t)

2︸ ︷︷ ︸
up

2h(s, t)

3
,

implying

up(t) = −3

2

1

h(s, t)

∫ s

0
htdξ, (155)
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Fig. 29 u for Bn = 1 and h given by (151)

which is the generalization of (145). In conclusion, substituting (155) into (154), we
find

Y(x, t) = max

{

0, − 2h(x, t)+ 2h(s, t)

∫ x
0 htdξ
∫ s

0 htdξ

}

. (156)

In x ∈ [0, s] the pressure fulfils

⎧
⎪⎪⎨

⎪⎪⎩

−ht + ∂

∂x

[

Px
h3

3

]

= 0,
0 < x < s (t) ,
t ≥ 0,

Px (0, t) = 0, t ≥ 0,

(157)

so that

P(x, t) =
∫ x

0

[
3

h(x̃, t)3

∫ x̃

0
htdξ

]

dx̃ + A(t), (158)
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Fig. 30 u for Bn = 25 and h given by (151)

with A (t) to be determined. In x ∈ [s, 1] we have

Px(x, t) = − 2up(t)

(h − Y)2 ,

so that

Px = 3

h(s, t) [h(x, t) − Y(x, t)]2

∫ s

0
htdξ, (159)

with Y given by (156). We observe that (157) and (159) yield Px|s− = Px|s+ . Let
us now integrate (159) between x and 1 with the boundary condition P (1, t) = Pout.
We find

Pout − P (x, t) = 3

h(s, t)

∫ s

0
htdξ

[∫ 1

x

d x̃

(h(x̃, t) − Y(x̃, t))2

]

(160)

Imposing P|s− = P|s+ , from (158), (160) we find A(t), so that the pressure can
be written in terms of s throughout the whole domain. Substituting (156) and (159)
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Fig. 31 Squeeze force for linear h(t), (151)

into (140) we get

∫ 1

s

[

−2h(x̃, t) + 2h(s, t)

∫ x̃
0 htdξ
∫ s

0 htdξ

]

+
[

h(x̃, t) −
[

−2h(x̃, t) + 2h(s, t)

∫ x̃
0 htdξ
∫ s

0 htdξ

]

+

]2 dx̃ = − Bn
[

3

h(s, t)

∫ s
0 htdξ

] ,

(161)

which provides an integral equation for the unknown s(t). Equation (161) can be
solved once we know the explicit form of the function h(x, t).

When h(x, t) = f (x)g(t), with f · g > 0, then (161) can be rewritten as

(∫ s

0
fdξ

)2 ∫ 1

s

[
−f (x̃)

(∫ s
0 fdξ

) + f (s)
(∫ x̃

0 fdξ
)]

+ dx̃
[

f (x̃)

2

(∫ s
0 fdξ

)−
[
−f (x̃)

(∫ s
0 fdξ

) + f (s)
(∫ x̃

0 fdξ
)]

+

]2

= −2Bnf (s)g(t)2

3ġ(t)
. (162)
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Fig. 32 Squeeze force for exponential h(t), (152)

Example 7 Let us consider

h(x, t) = f (x)g (t) , with f (x) = e−βx, g(t) = e−αt,

where α, and β both positive. Exploiting (162) we find

4(1 − e−βs)2

β

∫ 1

s

(e−βs − e−βx)
[
e−βx(3 − e−βs)− 2e−βs

]2 dx =
(

2Bn
3α

)

e−βse−αt. (163)

or equivalently

(1 − e−βs)2

β2e−2βs

[

ln
|2 + e−β − 3eβ(s−1)|

|e−β − eβ(s−1)| + 2(eβ(s−1) − 1)

2 + e−β − 3eβ(s−1)

]

︸ ︷︷ ︸
G (s)

=
(

2Bn
3α

)

e−αt,

(164)
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Fig. 33 A schematic
representation of the
squeezing channel

which is an implicit equation for s(t). Notice that taking the limit β → 0 of the
l.h.s. of (164) we recover the l.h.s. of (149), as expected. We immediately realize
that (164) admits a unique solution s(t) ∈ (ŝ(β), 1], with

ŝ(β) = 1 + 1

β
ln

[
e−β + 2

3

]

,

for each value of (2Bn/3α) e−αt. In particular it is easy to show that

2

3
< ŝ(β) < 1, ∀β > 0,

so that s ∈ (2/3, 1) for all t > 0. Recalling (156) we get

Y(x, t) = 2e−αt
[

e−βs − e−βx

(1 − e−βs)

]

. (165)

Clearly Y > 0 for every x > s, and Y = 0 at x = s. Actually we can show that Y
and h never meets. Indeed, suppose that Y(x, t) < h(x, t), then

2

[
e−βs − e−βx

(1 − e−βs)

]

< e−βx,

or analogously

2eβx < 3eβs − 1. (166)
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Fig. 34 The advance of the front x = s(t) for Bn ranging between 0.1 and 100

Hence Y < h if and only if (166) holds true for each x ≥ s. Now recall that s ≥
ŝ(β) > 2/3, for every finite time t > 0 and β > 0. Therefore

2eβx ≤ max
x∈[s,1]

{2eβx} = 2eβ = 3eβ ŝ − 1 < 3eβs − 1,

which proves that (166) holds true. As a consequence we get

0 ≤ Y(x, t) < h(x, t), ∀ x ≥ s, t > 0.

We observe that Y → h, which in turn tends to 0, only in the limit t → ∞. In Fig. 34
we have plot the advancing front x = s(t) for different values of Bn ranging from
Bn = 0.1 to Bn = 100. The parameters used are α = 2 and β = 0.4.
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