
From (Incomplete) TOSCA Specifications
to Running Applications, with Docker

Antonio Brogi, Davide Neri, Luca Rinaldi, and Jacopo Soldani(B)

Department of Computer Science, University of Pisa, Pisa, Italy
soldani@di.unipi.it

Abstract. Cloud applications typically consist of multiple interacting
components, each requiring a virtualised runtime environment providing
the needed software support (e.g., operating system, libraries). In this
paper, we show how TOSCA and Docker can be effectively exploited to
orchestrate multi-component applications, even if their (runtime) speci-
fication is incomplete. More precisely, we first propose a TOSCA-based
representation for multi-component applications, and we show how to
use it to specify only the components forming an application. We then
present a way to automatically complete TOSCA application specifi-
cations, by discovering Docker-based runtime environments that provide
the software support needed by the application components. We also dis-
cuss how the obtained specifications can be automatically orchestrated
by existing TOSCA engines.

1 Introduction

Cloud computing permits running on-demand distributed applications at a frac-
tion of the cost which was necessary just a few years ago [1]. This has revolu-
tionised the way applications are built in the IT industry, where monoliths are
giving way to distributed, component-based architectures. Modern cloud appli-
cations typically consist of multiple interacting components, which (compared
to monoliths) permit better capitalising the benefits of cloud computing [8].

At the same time, the need for orchestrating the management of multi-
component applications across heterogeneous cloud platforms has emerged [14].
The deployment, configuration, enactment and termination of the components
forming an application must be suitably orchestrated. This must be done by tak-
ing into account all the dependencies occurring among the components forming
an application, as well as the fact that each application component must run in
a virtualised environment providing the software support it needs [10].

Developers and operators are currently required to manually select and con-
figure an appropriate runtime environment for each application component, and
to explicitly describe how to orchestrate such components on top of the selected
environments [16]. Such process must then be manually repeated whenever a
developer wishes to modify the virtual environment actually used to run an
application component (e.g., because the latter has been updated and it now
needs additional software support).
c© Springer International Publishing AG 2018
A. Cerone and M. Roveri (Eds.): SEFM 2017 Workshops, LNCS 10729, pp. 491–506, 2018.
https://doi.org/10.1007/978-3-319-74781-1_33



492 A. Brogi et al.

The current support for developing cloud applications should be enhanced. In
particular, developers should be required to describe only the components form-
ing an application, the dependencies occurring among such components, and
the software support needed by each component [2]. Such description should
be fed to tools capable of automatically selecting and configuring an appropri-
ate runtime environment for each application component, and of automatically
orchestrating the application management on top of the selected runtime envi-
ronments. Such tools should also allow developers to automatically modify the
virtual environment running an application component whenever they wish.

In this paper, we present a solution geared towards providing such an
enhanced support. Our solution is based on TOSCA [18], the OASIS standard for
orchestrating cloud applications, and on Docker, the de-facto standard for cloud
container virtualisation [19]. The main contributions of this paper are indeed
the following:

– We propose a TOSCA-based representation for multi-component applica-
tions, which can be used to specify the components forming an application,
the dependencies among them, and the software support that each component
requires to effectively run.

– We present a tool that automatically completes TOSCA application speci-
fications, by discovering and including Docker-based runtime environments
providing the software support needed by the application components. The
tool also permits changing –when/if needed– the runtime environment used
to host a component.

The obtained application specifications can then be processed by orchestra-
tion engines supporting TOSCA and Docker (such as TosKer [4], for instance).
Such engines will automatically orchestrate the deployment and management of
the corresponding applications on top of the specified runtime environments.

The rest of the paper is organised as follows. Section 2 illustrates an example
further motivating the need for an enhanced support for orchestrating the man-
agement of cloud applications. Section 3 provides some background on TOSCA
and Docker. Section 4 shows how to specify application-specific components only,
with TOSCA. Section 5 then presents our tool to automatically determine appro-
priate Docker-based environments for hosting the components of an applica-
tion. Sections 6 and 7 discuss related work and draw some concluding remarks,
respectively.

2 Motivating Scenario

Consider the open-source web-based application Thinking1, which allows its
users to share their thoughts, so that all other users can read them. Thinking is
composed by three interconnected components (Fig. 1), namely (i) a MongoDB

1 The source code of Thinking is publicly available on GitHub at https://github.com/
di-unipi-socc/thinking.

https://github.com/di-unipi-socc/thinking
https://github.com/di-unipi-socc/thinking


From (Incomplete) TOSCA Specifications to Running Applications 493

Fig. 1. Running example: the application Thinking.

storing the collection of thoughts shared by end-users, (ii) a Java-based REST
API to remotely access the database of shared thoughts, and (iii) a web-based
GUI visualising all shared thoughts and allowing to insert new thoughts into the
database. As indicated in the documentation of the Thinking application:

(i) The MongoDB component can be obtained by directly instantiating a stan-
dalone Docker-based service, such as mongo2, for instance.

(ii) The API component must be hosted on a virtualised environment support-
ing maven (version 3), java (version 1.8) and git (any version). The API
must also be connected to the MongoDB.

(iii) The GUI component must be hosted on a virtualised environment support-
ing nodejs (version 6), npm (version 3) and git (any version). The GUI
also depends on the availability of the API to properly work (as it sends
GET/POST requests to the API to retrieve/add shared thoughts).

Docker containers work as virtualised environments for running application
components [19]. However, we have currently to manually look for the Docker
containers offering the software support needed by API and GUI (or to manually
extend existing containers to include such support). We have then to manually
package the API and GUI components within such Docker containers, and to
explicitly describe the orchestration of all the Docker containers in our applica-
tion. In other words, we have to identify, develop, configure and orchestrate all
components in Fig. 1, including those not specific to the Thinking application
(viz., the lighter nodes API RTE and GUI RTE).

Our effort would be much lower if we were provided with a support requiring
us to describe our application only, and automating all remaining tasks. More
precisely, we should only be required to specify the thicker nodes and dependen-
cies in Fig. 1. The support should then be able to automatically complete our
specification, and to exploit the obtained specification to automatically orches-
trate the deployment and management of the application Thinking. In this paper,
we show a TOSCA-based solution geared towards providing such a support.

2 https://hub.docker.com/ /mongo/.

https://hub.docker.com/_/mongo/


494 A. Brogi et al.

3 Background

3.1 TOSCA

TOSCA (Topology and Orchestration Specification for Cloud Applications [18])
is an OASIS standard whose main goals are to enable (i) the specification of
portable cloud applications and (ii) the automation of their deployment and
management. TOSCA provides a YAML-based and machine-readable modelling
language that permits describing cloud applications. Obtained specifications can
then be processed to automate the deployment and management of the specified
applications. We hereby report only those features of the TOSCA modelling
language that are used in this paper3.

Fig. 2. The TOSCA metamodel [18].

TOSCA permits specifying a cloud application as a service template, which
is in turn composed by a topology template, and by the types needed to build
such a topology template (Fig. 2). The topology template is essentially a typed
directed graph, which describes the topological structure of a multi-component
cloud application. Its nodes (called node templates) model the application com-
ponents, while its edges (called relationship templates) model the relations occur-
ring among such components.

Node templates and relationship templates are typed by means of node types
and relationship types, respectively. A node type defines the observable prop-
erties of a component, its possible requirements, the capabilities it may offer
to satisfy other components’ requirements, and the interfaces through which it
offers its management operations. Requirements and capabilities are also typed,
to permit specifying the properties characterising them. A relationship type
instead describes the observable properties of a relationship occurring between
two application components. As the TOSCA type system supports inheritance,
3 A more detailed, self-contained introduction to TOSCA can be found in [2,7].



From (Incomplete) TOSCA Specifications to Running Applications 495

a node/relationship type can be defined by extending another, thus permitting
the former to inherit the latter’s properties, requirements, capabilities, interfaces,
and operations (if any).

Node templates and relationship templates also specify the artifacts needed
to actually perform their deployment or to implement their management opera-
tions. As TOSCA allows artifacts to represent contents of any type (e.g., scripts,
executables, images, configuration files, etc.), the metadata needed to properly
access and process them is described by means of artifact types.

TOSCA applications are packaged and distributed in so-called CSARs (Cloud
Service ARchives). A CSAR is essentially a zip archive containing an applica-
tion specification along with the concrete artifacts realising the deployment and
management operations of its components.

3.2 Docker

Docker (https://docker.com) is a Linux-based platform for developing, shipping,
and running applications through container-based virtualisation. Container-
based virtualisation [22] exploits the kernel of the operating system of a host
to run multiple isolated user-space instances, called containers.

Each Docker container packages the applications to run, along with whatever
software support they need (e.g., libraries, binaries, etc.). Containers are built
by instantiating so-called Docker images, which can be seen as read-only tem-
plates providing all instructions needed for creating and configuring a container.
Existing Docker images are distributed through so-called Docker registries (e.g.,
Docker Hub—https://hub.docker.com), and new images can be built by extend-
ing existing ones.

Docker containers are volatile, and the data produced by a container is (by
default) lost when the container is stopped. This is why Docker introduces vol-
umes, which are specially-designated directories (within one or more containers)
whose purpose is to persist data, independently of the lifecycle of the containers
mounting them. Docker never automatically deletes volumes when a container is
removed, nor it removes volumes that are no longer referenced by any container.

Docker also allows containers to intercommunicate. It indeed permits creating
virtual networks, which span from bridge networks (for single hosts), to complex
overlay networks (for clusters of hosts)4.

4 Specifying Applications Only, with TOSCA

Multi-component applications typically integrate various and heterogeneous
components [10]. We hereby propose a TOSCA-based representation for such
components (Sect. 4.1). We also illustrate how it can be used to specify only
the components that are specific to an application, and to constrain the Docker
containers that can be used to actually host such components (Sect. 4.2).

4 A more detailed introduction to Docker can be found in [15,20].

https://docker.com
https://hub.docker.com


496 A. Brogi et al.

4.1 A TOSCA-Based Representation for Applications

We first define three different TOSCA node types5 to distinguish Docker con-
tainers, Docker volumes, and software components that can be used to build a
multi-component application (Fig. 3).

Fig. 3. TOSCA node types for multi-component, Docker-based applications, viz., tos-
ker.nodes.Container, tosker.nodes.Software, and tosker.nodes.Volume.

tosker.nodes.Container permits representing Docker containers, by indicat-
ing whether a container requires a connection (to another Docker container
or to an application component), whether it has a generic dependency on
another node in the topology, or whether it needs some persistent storage
(hence requiring to be attached to a Docker volume). tosker.nodes.Container
also permits indicating whether a container can host an application compo-
nent, whether it offers an endpoint where to connect to, or whether it offers a
generic feature (to satisfy a generic dependency requirement of another con-
tainer or application component). It also lists the operations to manage a
container (which correspond to the basic operations offered by Docker [15]).

To complete the description, tosker.nodes.Container provides placeholder
properties for specifying port mappings (ports) and the environment variables
(env variables) to be configured in a running instance of the corresponding
Docker container. It also provides two properties (supported sw and os di-
stribution) for indicating the software support provided by the corresponding
Docker container and the operating system distribution it runs.

5 The actual TOSCA definition of all node types discussed in this section is publicly
available on GitHub at https://github.com/di-unipi-socc/tosker-types.

https://github.com/di-unipi-socc/tosker-types


From (Incomplete) TOSCA Specifications to Running Applications 497

tosker.nodes.Volume permits specifying Docker volumes, and it defines a
capability attachment to indicate that a Docker volume can satisfy the stor-
age requirements of Docker containers. It also lists the operations to manage
a Docker volume (which corresponds to the basic operations offered by the
Docker platform [15]).

tosker.nodes.Software permits indicating the software components forming
a multi-component application. It permits specifying whether an application
component requires a connection (to a Docker container or to another appli-
cation component), whether it has a generic dependency on another node
in the topology, and that it has to be hosted on a Docker container or on
another component6. tosker.nodes.Software also permits indicating whether
an application component can host another application component, whether
it provides an endpoint where to connect to, or whether it offers some feature
(to satisfy a generic dependency requirement of a container/application com-
ponent). Finally, tosker.nodes.Software indicates the operations to manage
an application component (viz., create, configure, start, stop, delete).

The interconnections and interdependencies among the nodes forming a
multi-component application can then be indicated by exploiting the TOSCA
normative relationship types [18]. Namely, tosca.relationships.AttachesTo can be
used to attach a Docker volume to a Docker container, tosca.relationships.Con-
nectsTo can indicate interconnections between Docker containers and/or appli-
cation components, tosca.relationships.HostedOn can be used to indicate that an
application component is hosted on another component or on a Docker container,
and tosca.relationships.DependsOn can be used to indicate generic dependencies
between the nodes of a multi-component application.

4.2 Specifying Application-Specific Components Only

The TOSCA types introduced in the previous section can be used to specify the
topology of a multi-component application. We hereby illustrate, by means of
an example, how to specify in TOSCA only the fragment of a topology that is
specific to an application (by also constraining the Docker containers that can
be used to actually host the components in such fragment).

Example. Consider again the application Thinking in our motivating scenario
(Sect. 2). The components specific to Thinking (viz., MongoDB, API, and GUI)
can be specified in TOSCA as illustrated in Fig. 4:

– MongoDB is obtained by directly instantiating a Docker container mongo
(modelled as a node of type tosker.nodes.Container). The latter is attached
to a Docker volume where the shared thoughts will be persistently stored7.

6 The host requirement is mandatory for nodes of type tosker.nodes.Software, as we
assume that each application component must be installed in another component or
in a Docker container.

7 The documentation of mongo explicitly states that a mongo container must be
attached to a Docker volume to persistently store data.



498 A. Brogi et al.

Fig. 4. A specification of our running example in TOSCA (where nodes are typed with
tosker.nodes.Container, tosker.nodes.Volume, or tosker.nodes.Software, while relation-
ships are typed with TOSCA normative types [18]).

– API is a software component (viz., a node of type tosker.nodes.Software).
API requires to be connected to the back-end MongoDB, to remotely access
the database of shared thoughts.

– GUI is a software component (viz., a node of type tosker.nodes.Software).
GUI depends on the availability of API to properly work (as it sends HTTP
requests to the API to retrieve/add shared thoughts).

Please note that the requirements host of both API and GUI are left pend-
ing (viz., there is no node satisfying them). This is because the actual runtime
environment of API and GUI is not specific to the application Thinking, and it
should be automatically determined among the many possible (as we will discuss
in Sect. 5). The only effort required to the developer is to specify constraints on
the configuration of the Docker containers that can effectively host API and
GUI (e.g., which software support they have to provide, which operating system
distribution they must run, which port mappings they must expose, etc.). ��

TOSCA natively supports the possibility of expressing constraints on the
nodes that can satisfy requirements left pending [18], through the clause no-
de filter that can be indicated within a requirement. node filter permits
specifying the type of a node that can satisfy a requirement, and it permit
constraining the properties of such node.

We can hence exploit node filter to indicate that the software components
in an application must be hosted on Docker containers (viz., on nodes of type tos-
ker.nodes.Container). We can also indicate constraints on the software support
to be provided by such containers, on the operating system distribution they
must run, and on how to configure them (e.g., which port mappings they must
expose, or which environment variables they should define).



From (Incomplete) TOSCA Specifications to Running Applications 499

Example (cont.). Consider again the multi-component application Thinking,
modelled in TOSCA as in Fig. 4. The pending requirements host of API and
GUI must constrain the nodes that can actually satisfy them.

node_filter:
type: tosker.nodes.Container
properties:
- supported_sw:

- mvn: 3.x
- java: 1.8.x
- git: x

- ports:
- 8080: 8000

- os_distribution: ubuntu

node_filter:
type: tosker.nodes.Container
properties:

- supported_sw:
- node: 6.x
- npm: 3.x
- git: x

- ports:
- 3000: 8080

)b()a(

Fig. 5. Constraints on the Docker containers that can effectively run the software
components (a) API and (b) GUI (specified within their requirements host).

The requirement host of API can express the constraints on the Docker con-
tainers that can effectively host it with the node filter in Fig. 5(a). The latter
indicates that API needs to run on a Docker container, viz., a node of type tos-
ker.nodes.Container, which supports maven (version 3), java (version 1.8) and
git (any version). It also indicates a port mapping to be configured in the hosting
container and that such container must be based on a Ubuntu distribution8.

Analogously, the requirement host of GUI can constrain the Docker containers
for hosting it with the node filter in Fig. 5(b). The latter prescribes that GUI
must run on a Docker container supporting node (version 6), npm (version 3) and
git (any version). It also requires the hosting container to expose the indicated
port mapping. ��

8 Constraining the operating system distribution is particularly useful when the arti-
facts implementing the management operations of a software component require to
perform distribution-specific system calls (e.g., a .sh script performing a command
apt-get, which is supported only in Ubuntu-based distributions).



500 A. Brogi et al.

5 Completing TOSCA Specifications, with Docker

We hereby present TosKeriser, an open-source prototype tool9 that automati-
cally completes “incomplete” TOSCA application specifications (describing only
application-specific components, and indicating constraints on the Docker con-
tainers that can be used to host such components—as discussed in Sect. 4.2).

TosKeriser is a command-line tool, which works as illustrated in Fig. 6:

Fig. 6. How TosKeriser works.

1 TosKeriser inputs a (CSAR or YAML) file containing a TOSCA application
specification. It then parses the application topology, and it identifies the set
of software components whose requirement host has to be fulfilled (according
to the constraints indicated in the clause node filter of such requirement).

2 For each of such components, it invokes DockerFinder10 to identify a
Docker container providing the needed support (viz., satisfying the con-
straints concerning the supported sw and the os distribution).

3 The discovered containers are then included in the application topology. More
precisely, TosKeriser satisfies the pending requirements host by connecting
them to new nodes of type tosker.nodes.Container. Each of the newly intro-
duced nodes is configured to satisfy the constraints indicated by the software
components it hosts (e.g., if a software component is requiring some port
mappings, then the newly introduced container that hosts it will have the
property port set accordingly).

4 TosKeriser outputs the (CSAR or YAML) file containing the automatically
completed TOSCA application specification.

9 The Python sources of TosKeriser are publicly available on GitHub at https://
github.com/di-unipi-socc/toskeriser (under MIT license). TosKeriser is also avail-
able on PyPI, and it can be directly installed on Linux hosts by executing the
command pip install toskeriser.

10 DockerFinder [3] is a tool allowing to search for Docker containers based on mul-
tiple attributes, including the software distributions they support and the operating
system distribution they are based on.

https://github.com/di-unipi-socc/toskeriser
https://github.com/di-unipi-socc/toskeriser


From (Incomplete) TOSCA Specifications to Running Applications 501

5 The obtained file can then be passed to an orchestration engine supporting
TOSCA and Docker (e.g., TosKer [4]), which will automatically deploy and
manage the actual instances of the specified application.

TosKeriser can be actually run by executing the following command11:

$ toskerise FILE [COMPONENTS] [OPTIONS]

where FILE is the (YAML or CSAR) file containing the TOSCA application
specification to be completed. COMPONENTS is an optional list, which permits
restricting the completion process to a subset of the software components con-
tained in the input application specification (by default, the completion process
is applied to all software components). OPTIONS is instead a list of additional
options, which permit further customising the execution of TosKeriser. Among
all options that can be indicated, the following are the most interesting:

--constraints The option --constraints permits customising the discovery
of Docker images by indicating additional constraints (e.g., by allowing to
search for images whose size is lower of 200MB).

--policy This option allows to indicate which images of Docker containers to
privilege, among all those that can satisfy the requirement host of a software
component. The policy top rated (default) privileges images best rated by
Docker users, while policies size and most used privilege smallest images
and most pulled images, respectively.

--interactive (or -i) This option allows users the manually select the image
of the Docker container to be used for satisfying the host requirement of a
software component, from a list that contains only the best images (according
to the privileging policy—see --policy).

--force (or -f) The option --force instructs TosKeriser to search for a new
Docker container for each considered component (even if the requirement host
of such component is already satisfied).

Example. Consider again the application Thinking in our motivating scenario,
whose corresponding TOSCA representation is displayed in Fig. 4. The CSAR file
(thinking.csar) containing the TOSCA application specification of Thinking
is publicly available on GitHub12. Such file can be automatically completed by
executing the following command:

$ toskerise thinking.csar --policy size

The above will generate a new CSAR file (thinking.completed.csar). Such file
contains the TOSCA specification of Thinking, whose topology is completed by
including two new Docker containers, namely APIContainer and GUIContainer

11 The help of TosKeriser can be displayed by executing toskerise --help|-h, while
its actual version can be displayed by executing toskerise --version|-v.

12 https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/
thinking-app/thinking.csar.

https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/thinking.csar
https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/thinking.csar


502 A. Brogi et al.

Fig. 7. Application topology obtained by completing the partial topology of the
application Thinking (Fig. 4). Lighter nodes and relationships are those automatically
included by TosKeriser.

(Fig. 7, lighter nodes). Such nodes provide the software support and the port
mappings needed by API and GUI, respectively. We can then run such file with
TosKer [4] (or with another orchestration engine supporting both TOSCA and
Docker), which will be capable of automatically deploying and managing actual
instances of the specified application.

Please note that we run TosKeriser with the option --policy size. The
latter instructs TosKeriser to concretely implement APIContainer and GUI-
Container with the images of Docker containers having the smallest size (among
all images of containers providing the needed software support). Suppose now
that we wish to change the containers used to host GUI and API, e.g., because
we now wish to select the containers are most used by Docker users. We can run
again TosKeriser on the obtained specification, by setting the option -f to
force TosKeriser to change the actual implementation of the Docker containers
it previously created:

$ toskerise thinking.completed.csar -f --policy most_used

This will result in changing the actual implementation of APIContainer and
GUIContainer by selecting (among all images of Docker containers that can
provide the software support needed by API and GUI) those images that are
most used by Docker users. ��

6 Related Work

We presented a solution for automatically completing TOSCA specifications,
which is much in the spirit of [13]. The latter indeed inputs TOSCA specifications
containing only the components specific to an application, and it can automat-
ically determine their runtime environments. However, the approach presented



From (Incomplete) TOSCA Specifications to Running Applications 503

in [13] only checks type-compatibility between nodes and runtime environments,
while we also allow developers to impose additional constraints on the nodes that
can be used to host a component (e.g., by allowing to indicate that an appli-
cation component requires a certain software support on a certain operating
system distribution).

Other approaches worth mentioning are [5,6,21], as they also propose solu-
tions that can be used to automatically determine the runtime environment
needed by the components of TOSCA applications. They indeed allow to
abstractly specify desired nodes, and they can determine actual implementa-
tions for such nodes by matching and adapting existing TOSCA application
specifications. [5,6,21] however differ from our approach as they look for type-
compatible solutions, without constraining the actual values that can be assigned
to a property (hence not allowing to indicate the software support that must be
provided by a Docker container, for instance).

If we broaden our view beyond TOSCA, we can identify various other efforts
that have been recently oriented to try devising systematic approaches to adapt
multi-component applications to work with heterogeneous cloud platforms. For
instance, [9,12] propose two approaches to transform platform-agnostic source
code of applications into platform-specific applications. In contrast, our approach
does not require the availability of the source code of an application, and it
is hence applicable also to third-party components whose source code is not
available nor open.

[11] proposes a framework allowing developers to write the source code of
cloud applications as if they were “on-premise” applications. [11] is similar to
our approach, since, based on cloud deployment information (specified in a sep-
arate file), it automatically generates all artefacts needed to deploy and manage
an application on a cloud platform. [11] however differs from our approach, as
artefacts must be (re-)generated whenever an application is moved to a differ-
ent platform, and since the obtained artefacts must be manually orchestrated
on such platform. Our approach instead produces portable TOSCA application
specifications, which can be automatically orchestrated by engines supporting
both TOSCA and Docker (e.g., TosKer [4]).

In general, most existing approaches to the reuse of cloud services support a
from-scratch development of cloud-agnostic applications, and do not account for
the possibility of adapting existing (third-party) components. To the best of our
knowledge, ours is the first approach for adapting multi-component applications
to work with heterogeneous cloud platforms, by relying on TOSCA [18] and
Docker to achieve cloud interoperability, and by supporting an easy (re)use of
third-party components.

On the one hand, TOSCA is proved to allow automating the orchestration of
a multi-component application, thanks to the fact that deployment and manage-
ment plans can be directly inferred from the topology of an application [2,17].
On the other hand, Docker can standardise the virtual runtime environment of
application components to a Linux-based environment [19], hence allowing to
implement their deployment and management operations as artefacts supported
by such environment.



504 A. Brogi et al.

7 Conclusions

Cloud applications typically consist of multiple heterogeneous components,
whose deployment, configuration, enactment and termination must be suitably
orchestrated [10]. This is currently done manually, by requiring developers to
manually select and configure an appropriate runtime environment for each com-
ponent in an application, and to explicitly describe how to orchestrate such
components on top of the selected environments.

In this paper, we have presented a solution for enhancing the current sup-
port for orchestrating the management of cloud applications, based on TOSCA
and Docker. More precisely, we have proposed a TOSCA-based representation
for multi-component applications, which allows developers to describe only the
components forming an application, the dependencies among such components,
and the software support needed by each component. We have also presented a
tool (called TosKeriser), which can automatically complete the TOSCA spec-
ification of a multi-component application, by discovering and configuring the
Docker containers needed to host its components.

The obtained application specifications can then be processed by orches-
tration engines supporting TOSCA and Docker, like TosKer [4], which can
process specifications produced by TosKeriser, to automatically orchestrate
the deployment and management of the corresponding applications.

TosKeriser is integrated with DockerFinder [3], and it produces speci-
fications that can be effectively processed by TosKer [4]. TosKeriser, Doc-
kerFinder and TosKer are all open-source tools, and their ensemble provides
a first support for automating the orchestration of multi-component applica-
tions with TOSCA and Docker. We plan to further extend this ensemble, to
pave the way towards the development of a full-fledged, open-source support for
orchestrating multi-component applications with TOSCA and Docker.

In this perspective, an interesting direction for future work is to investigate
whether existing approaches for reusing fragments of TOSCA applications (e.g.,
ToscaMart [21]) can be included in TosKeriser. This would permit com-
pleting TOSCA specifications by hosting the components of an application not
only on single Docker containers, but also on software stacks already employed
in other existing solutions.

TosKeriser currently relies only on DockerFinder [3] to search for exist-
ing images of Docker containers. If there is no image providing the software
support and the operating system distribution needed by an application compo-
nent, TosKeriser cannot complete the corresponding TOSCA specification of
the application containing such component. This could be avoided by support-
ing the creation of ad-hoc images (configured from scratch, if necessary). The
development of a tool allowing to build ad-hoc images, as well as its integration
with TosKeriser, is in the scope of our immediate future work.



From (Incomplete) TOSCA Specifications to Running Applications 505

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014). https://doi.org/10.1007/978-1-4614-7535-4 22

3. Brogi, A., Neri, D., Soldani, J.: DockerFinder: multi-attribute search of Docker
images. In: 2017 IEEE International Conference on Cloud Engineering (IC2E), pp.
273–278. IEEE (2017)

4. Brogi, A., Rinaldi, L., Soldani, J.: TosKer: orchestrating applications with TOSCA
and Docker (2017, submitted for publication)

5. Brogi, A., Soldani, J.: Matching cloud services with TOSCA. In: Canal, C., Villari,
M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 218–232. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45364-9 18

6. Brogi, A., Soldani, J.: Finding available services in TOSCA-compliant clouds. Sci.
Comput. Program. 115, 177–198 (2016)

7. Brogi, A., Soldani, J., Wang, P.W.: TOSCA in a nutshell: promises and perspec-
tives. In: Villari, M., Zimmermann, W., Lau, K.-K. (eds.) ESOCC 2014. LNCS,
vol. 8745, pp. 171–186. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44879-3 13

8. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

9. Di Martino, B., Petcu, D., Cossu, R., Goncalves, P., Máhr, T., Loichate, M.: Build-
ing a mosaic of clouds. In: Guarracino, M.R., Vivien, F., Träff, J.L., Cannatoro,
M., Danelutto, M., Hast, A., Perla, F., Knüpfer, A., Di Martino, B., Alexander, M.
(eds.) Euro-Par 2010. LNCS, vol. 6586, pp. 571–578. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21878-1 70

10. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Comput-
ing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.
Springer, Vienna (2014). https://doi.org/10.1007/978-3-7091-1568-8

11. Guillén, J., Miranda, J., Murillo, J.M., Canal, C.: A service-oriented framework
for developing cross cloud migratable software. J. Syst. Softw. 86(9), 2294–2308
(2013)

12. Hamdaqa, M., Livogiannis, T., Tahvildari, L.: A reference model for developing
cloud applications. In: Leymann, F., Ivanov, I., van Sinderen, M., Shishkov, B.
(eds.) CLOSER 2011 - Proceedings of the 1st International Conference on Cloud
Computing and Services Science (2011)

13. Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F.: Automatic topology com-
pletion of TOSCA-based cloud applications. In: 44. Jahrestagung der Gesellschaft
für Informatik e.V. (GI), vol. 232, pp. 247–258. Lecture Notes in Informatics (LNI)
(2014)

14. Leymann, F.: Cloud computing. It—Information Technology, Methoden und inno-
vative Anwendungen der Informatik und Informationstechnik 53(4), 163–164
(2011)

15. Matthias, K., Kane, S.P.: Docker: Up and Running. O’Reilly Media, Sebastopol
(2015)

https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.1007/978-3-642-45364-9_18
https://doi.org/10.1007/978-3-662-44879-3_13
https://doi.org/10.1007/978-3-662-44879-3_13
https://doi.org/10.1007/978-3-642-21878-1_70
https://doi.org/10.1007/978-3-7091-1568-8


506 A. Brogi et al.

16. Newman, S.: Building Microservices. O’Reilly Media Inc., Sebastopol (2015)
17. OASIS: Topology and Orchestration Specification for Cloud Applications

(TOSCA) Primer (2013). http://docs.oasis-open.org/tosca/tosca-primer/v1.0/
tosca-primer-v1.0.pdf

18. OASIS: Topology and Orchestration Specification for Cloud Applications
(TOSCA) Simple Profile in YAML, Version 1.0 (2016). http://docs.oasis-open.
org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-
v1.0.pdf

19. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-
of-the-art review. IEEE Trans. Cloud Comput. (in press). https://doi.org/10.1109/
TCC.2017.2702586

20. Smith, R.: Docker Orchestration. Packt Publishing, Birmingham (2017)
21. Soldani, J., Binz, T., Breitenbücher, U., Leymann, F., Brogi, A.: ToscaMart: a

method for adapting and reusing cloud applications. J. Syst. Softw. 113, 395–406
(2016)

22. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based
operating system virtualization: a scalable, high-performance alternative to hyper-
visors. In: SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 275–287 (2007)

http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586

	From (Incomplete) TOSCA Specifications to Running Applications, with Docker
	1 Introduction
	2 Motivating Scenario
	3 Background
	3.1 TOSCA
	3.2 Docker

	4 Specifying Applications Only, with TOSCA
	4.1 A TOSCA-Based Representation for Applications
	4.2 Specifying Application-Specific Components Only

	5 Completing TOSCA Specifications, with Docker
	6 Related Work
	7 Conclusions
	References




