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Abstract. Given the considerable ongoing research interest in collabo-
rative multidisciplinary modelling and co-simulation, it is worth consider-
ing the features of model-based techniques and tools that deliver benefits
to cyber-physical systems developers. The European project “Integrated
Tool Chain for Model-based Design of Cyber-Physical Systems” (INTO-
CPS) has developed a well-founded tool chain for CPS design, based on
the Functional Mock-up Interface standard, and supported by method-
ological guidance. The focus of the project has been on the delivery of a
sound foundation, an open chain of compatible and usable tools, and a
set of accessible guidelines that help users adapt the technology to their
development needs.

Keywords: Co-simulation · CPS engineering · Tool chain
Methodology · Foundations

1 Introduction

In Cyber-Physical Systems (CPSs), computing and physical processes interact
closely. Their effective design therefore requires methods and tools that bring
together the products of diverse engineering disciplines. Without such tools it
would be difficult to gain confidence in the system-level consequences of design
decisions made in any one domain, and it would be challenging to manage trade-
offs between them. How, then, can we support such multidisciplinary design with
semantically well-founded approaches in a cost-effective manner?

In the INTO-CPS project we start from the view that disciplines such as
software, mechatronic and control engineering have evolved notations and theo-
ries that are tailored to their needs, and that it is undesirable to suppress this
diversity by enforcing uniform general-purpose models [15,31] Our goal is to
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achieve a practical integration of diverse formalisms at the semantic level, and
to realise the benefits in integrated tool chains. In order to demonstrate that the
technology works industrially it has been applied in very different application
domains (e.g., [12,17,19,30,34,38]).

To the CPS engineer, the system of interest includes both computational
and physical elements, so the foundations, methods and tools of CPS engineer-
ing should incorporate both the Discrete-Event (DE) models of computational
processes, and the continuous-value and Continuous-Time (CT) formalisms of
physical dynamics engineering. Our approach is to support the development of
collaborative models (co-models) containing DE and CT elements expressed in
diverse notations, and to support their analysis by means of co-simulation based
on a reconciled operational semantics of the individual notations’ simulators [18].
This enables exploration of the design space and allows relatively straightforward
adoption in businesses already exposed to some of these tools and techniques.
The idea is to enable co-simulation of extensible groups of semantically diverse
models, and at the same time the semantic foundations are extended using Uni-
fying Theories of Programming (UTP) to permit analysis using advanced meta-
level tools that are primarily targeted towards academics and thus not considered
as a part of the industrial INTO-CPS tool chain.

Given the considerable interest in model-based CPS engineering, we believe
that it is useful to consider what the Unique Selling Points (USPs) are for
integrated tool chains. In this paper, we first provide an overview of what we
consider the main USPs of the INTO-CPS technology from the perspective of
industry use (Sect. 2). We then describe the open INTO-CPS tool chain (Sect. 3).
In order to realise the benefits of the tools it is important to develop guidance for
their use in collaborative modelling, and this is described in Sect. 4. We discuss
our approach to providing integrated semantic foundations needed to underpin
such co-modelling (Sect. 5) before looking forward (Sect. 6).

2 The Unique Selling Points

In our work on INTO-CPS, we have sought to deliver the following distinctive
features, relevant to the industrial use of co-modelling and co-simulation tech-
nology. We see the main USPs as:

1. Faster route to market for engineering CPSs: In a highly active CPS
marketplace, getting the right solution first time is essential. We believe that
the interoperability of tools in the INTO-CPS tool suite enables a more
agile close collaboration between stakeholders with diverse disciplinary back-
grounds.

2. Avoiding vendor lock-in by open tool chain: Some commercial solutions
provide at least a part of the functionality provided by the INTO-CPS tool
chain with a high level of interoperability. However, in particular for Small
and Medium-sized Enterprises (SMEs), there is a risk of being restricted in
the choice of specialist tools.
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3. Exploring large design spaces efficiently: CPS design involves making
design decisions in both the cyber and physical domains. Trade-off analysis
can be challenging. Co-simulation enables the systematic exploration of large
design spaces in the search for optimal solutions.

4. Limiting expensive physical tests: CPS development often relies on the
expensive production and evaluation of a series of physical prototypes. Co-
simulation enables users to focus on testing different models of CPS elements
in a virtual setting, gaining early assessment of CPS-level consequences of
design decisions.

5. Enabling traceability for all project artefacts: In both documenting
the coverage and quality of analysis and in managing the consequences of
design change, there is a need to support the maintenance of traceable links
between the many diverse artifacts produced during CPS development. We
have sought to provide a basis for delivering levels of design traceability.

Tools as described in Sect. 3 will not, on their own, deliver these features.
Methods guidance is needed to ensure that users get the greatest benefit from
integrating co-modelling in their own development contexts. Firm semantic foun-
dations are required in order to build confidence in the analyses that they deliver.
To these ends, we have worked on methodological and semantic integration, dis-
cussed in Sects. 4 and 5, respectively.

3 The INTO-CPS Tool Chain

We have developed an open integrated tool chain to allow n-ary co-simulation of
a wider range of model types. In order to facilitate this, we have developed an
extensible semantic foundation using UTP. Figure 1 gives a graphic overview of
the tool chain, which has been developed in the INTO-CPS project.

In the INTO-CPS tool chain, requirements and CPS architectures may be
expressed using SysML. We have defined a special CPS SysML profile that allows
cyber and physical system elements to be identified such that each of these ele-
ments corresponds to a constituent model [1,3]. From each element, we gener-
ate an interface following the Functional Mockup Interface (FMI) standard1. In
our approach the tools in which the constituent models are developed can then
import these interfaces and export conformant executable Functional Mockup
Units (FMUs) following version 2.0 of the FMI standard for co-simulation.

Heterogeneous system models can be built around the FMI interfaces, per-
mitting these heterogeneous multi-models to be co-simulated, and to allow
static analysis, including model checking (of appropriate abstractions). A Co-
simulation Orchestration Engine (COE) manages the co-simulation of multi-
models and is built by combining existing co-simulation solutions. The COE
has also been used with FMUs produced with other tools including Modelon2,

1 FMI essentially defines a standardised interface to be used in computer simulators
to develop complex CPSs.

2 http://www.modelon.com/.

http://www.modelon.com/
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Fig. 1. The INTO-CPS Tool Chain

Dymola3, 4diac4 and SimulationX5. In addition a special 3D FMU capability
has been enabled using the Unity game engine6. This also enables incorpora-
tion of 3D glasses such as Oculus Rift enabling a special experience with new
CPSs in a virtual setting, before the CPSs are implemented7. The COE permits
hardware-in-the-loop and software-in-the-loop analysis [19] and it is possible to
use it in a distributed fashion. Thus, interoperability in relation to simulation
of complex models of CPSs divided up in constituent models expressed using
different formalisms and different tools is ensured. This is an important part of
USP 1.

Results of multiple co-simulations can be collated, permitting systematic
Design Space Exploration (DSE), and allowing test automation based on test
cases generated from the SysML requirement diagrams [39]. The ability of both
carrying out exploratory experiments as well as systematic testing a combination
of constituent models leads to USP 3 since these features enable exploration
of very large candidate design spaces. In particular the ability of visualising
the results of co-simulations using the 3D FMU described above with the DSE
capability (described further in Sect. 4.3) leads to USP 4 limiting the number
of physical tests that needs to be carried out, which in particular is important
whenever these are expensive to carry out or difficult to monitor the results of.

CPS SysML profile has been demonstrated in Modelio8. FMI-conformant
constituent models have been produced in Overture from VDM-RT, and the

3 https://www.3ds.com/products-services/catia/products/dymola.
4 https://eclipse.org/4diac/.
5 https://www.simulationx.com/.
6 https://unity3d.com/.
7 https://www.oculus.com/rift/.
8 http://www.modelio.org/.

https://www.3ds.com/products-services/catia/products/dymola
https://eclipse.org/4diac/
https://www.simulationx.com/
https://unity3d.com/
https://www.oculus.com/rift/
http://www.modelio.org/
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Continuous-Time (CT) formalisms 20-sim and OpenModelica [23]9. A graphical
front-end for the entire INTO-CPS tool chain called the INTO-CPS Application
has been developed based on the cross-platform Electron technology [14]. This
is developed as a desktop application, but using web technologies to enable a
smoother transition to delivering this as an on-line web service should this be
desirable in the future.

Multidisciplinary co-modelling and co-simulation naturally generate many
design artifacts, including co-models, co-simulation inputs and outputs, require-
ments, code, etc. Such large design sets are expected to evolve as smart sys-
tems are developed by gradual integration of existing elements, and as elements
change. The interrelationships between them are vital for allowing validation
and third-party assurance. We have used the PROV10 model to record the tem-
poral relations between activities, entities and agents within a process (which
we term provenance), and traceability has been supplied based on the Open
Services for Lifecycle Collaboration (OSLC) standard11. In INTO-CPS, we have
regarded it as a priority to lay foundations for provenance and traceability sup-
port in the tool chain; all the baseline tools have been extended with such OSLC
support [32]. The openness resulting from the combination of FMI and OSLC
contributes significantly to USP 2, giving freedom to choose the tools that best
fit the purpose of each individual aspect of a CPS.

4 The INTO-CPS Methodology

Our work on methods aims to develop concrete guidelines, frameworks, and
patterns for co-modelling and co-simulation that can be adapted to existing
development processes, rather than defining a single workflow. Specifically, we
focus on model-based CPS requirements engineering, architectural modelling in
SysML, traceability and provenance, and DSE.

We support model-based systems engineering approaches because of their
potential to enable early detection of potential bottlenecks and defects before
commitment is made to physical prototypes (USPs 1 and 4). We advocate the
use of architectural models that define the major elements of a system, their
relationships and interactions. The bulk of our architectural modelling work uses
SysML, which allows us to describe both digital interfaces between components
in terms of the properties or functionality provided or required, and physical
interfaces in terms of physical flows (e.g. material) between components.

An architecture diagram is a symbolic representation of part of an archi-
tectural model. An architectural view is typically an architecture diagram that
includes specific system facets. An architectural framework is a set of architec-
tural views defined to support a task, role, or industry [26]. A SysML profile is
a collection of extensions to SysML that support a particular domain. We have
developed a SysML profile consisting of diagrams for defining cyber, physical
9 https://www.openmodelica.org/.

10 http://www.w3.org/TR/prov-overview/.
11 http://open-services.net/.

https://www.openmodelica.org/
http://www.w3.org/TR/prov-overview/
http://open-services.net/
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components, as well as components representing environment and visualisation
elements (the delivering graphical presentation of co-simulation outputs).

4.1 Requirements Engineering

CPSs share important characteristics with Systems-of-Systems (SoSs) [35].
Cyber and physical elements can be independently owned and managed, evolve
over time, and are distributed [40]. CPSs add the challenge of differing domain
contexts [47]. In developing model-based requirements engineering approaches
for CPSs, we have therefore extended a systematic approach to SoS requirements
engineering, the SoS Approach to Context-based Requirements Engineering (SoS-
ACRE) [27]. SoS-ACRE provides several views that encourage the systematic
consideration of requirement context, sources and stakeholders.

A survey of our industry collaborators showed that a wide range of tools were
used for requirements management and modelling, ranging from Microsoft Word
to IBM Rational DOORS. It was therefore important to develop an approach
that, while it could be supported by specialist notations like SysML, could also
be adopted using document-based tools. This is a key facet of providing an open
tool chain (USP 2). For example, SoS-ACRE can be adapted to these CPS needs
as follows:

Source Element View (SEV) which identifies the sources from which
requirements are derived. This could be represented as a SysML block defi-
nition diagram, an Excel table or a Word document, or by simply referring
to source documents using OSLC traces.

Requirement Description View (RDV) defines the requirements. This
could be a SysML requirements diagram, or in tabular form, or in DOORS.

Context Definition View (CDV) identifies interested stakeholders and
points of context, including customers, suppliers and system engineers them-
selves. These could be SysML block definition diagrams, Excel tables or Word
documents, and can be used to identify the CT/DE elements of a system.

Requirement Context View (RCV) defined for each constituent system
context identified in CDVs. A Context Interaction View (CIV) is then defined
to understand the overlap of contexts and any common/conflicted views on
requirements. In SoS-ACRE, RCVs and CIVs are both defined with SysML
use case diagrams. Excel could be used if unique identifiers are defined for
contexts and requirements as described earlier.

Given that we aim to support the integration of co-simulation into estab-
lished development processes, we realise the SoS-ACRE views using a range of
combinations of SysML with other tools. For example, a single SysML model
for both requirements engineering and architectural modelling will contain all
SoS-ACRE views (SEV, RDV, CDV, RCV and CIV), in addition to diagrams
defined using the INTO-CPS profile for the CPS composition and connections.
Modelling in this way enables trace links to be defined inside a single SysML
model, using <<trace>> relationships (e.g., Fig. 2). By contrast, one might com-
bine URIs for the source elements with an Excel document for the RDV, CDV,
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Line Follow Robot SysML Requirement and Architectural Model
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Robot
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 Engineer

Sensor 
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Actuator
manufacturer

<<trace>> <<trace>>

<<trace>>

Fig. 2. Single SysML model – model overview

RCV and CIV. As above, SysML can be used to define the architecture in a
single model. Trace links using OSLC may then be used to link source elements,
rows of Excel documents (with internal tracing using unique identifiers refer-
enced between sheets), and architectural elements of the SysML architectural
model. Figure 3 presents an example with URI, Excel and SysML models and
OSLC links between the artifacts.

4.2 Traceability and Provenance

USP 5 deals with the need to support engineers navigating the complexities of
CPS design sets. INTO-CPS considers two tool-supported methods for recording
design rationale. Traceability associates one model element (e.g. requirements,
design artifacts, activities, software code or hardware) to another. Requirements
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Fig. 3. URI, Excel and SysML – model overview

traceability “refers to the ability to describe and follow the life of a requirement,
in both a forwards and backwards direction” [24]. Provenance “is information
about entities, activities, and people involved in producing a piece of data or
thing, which can be used to form assessments about its quality, reliability or
trustworthiness” [33].
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4.3 Design Space Exploration

USP 3 is the ability to sweep over the design space to identify optimal combina-
tions of parameters with respect to evaluation criteria. A design parameter is a
property of a model that varies the behaviour described, but remains constant
during a simulation; a variable is a property that may change during a simulation.
Where two or more models represent different solutions to the same problem,
these are considered design alternatives. In INTO-CPS, design alternatives are
defined using either a range of parameter values or different multi-models.

Designing DSE experiments can be complex and depends closely on the multi-
model being analysed. Engineers need, therefore, to be able to model at an early
stage of design how the experiments relate to the model architecture, and where
possible trace from requirements to the analysis experiments. We have defined
a SysML profile for modelling DSE experiments in a consistent and traceable
way. The profile comprises five diagrams for defining parameters, objectives and
rankings. Based on a requirements analysis (e.g. an RDV coming out of the pro-
cesses described in Sect. 4.1), we identify objectives, and use the SysML profile
for DSE to define the parameters, objectives and ranking function, traced to the
requirements.

We use the INTO-CPS tool chain to simulate each design alternative. Whilst
exhaustively seaching the design space, evaluating and ranking each design is
acceptable on small-scale studies, it quickly becomes infeasible as the design
space grows. For example, varying n parameters with m alternative values pro-
duces a design space of mn alternatives. We have therefore implemented genetic
approaches [16].

5 The Underlying Unified Semantic Approach

Since CPSs are networks of computational devices interacting with the world
through their sensors and actuators, CPS models must combine discrete com-
putational models with continuous physical environmental models. CPS engi-
neering necessarily involves a wide range of modelling and programming
paradigms [13], including concurrency, real-time, mobility, continuous variables,
differential equations, object orientation, and diagrammatic languages. Practical
CPS engineering uses a variety of domain-specific and general-purpose languages,
such as Simulink, Modelica, SysML, Java, and C, and engineering trustworthy
CPS requires that semantic models for these languages are integrated in a con-
sistent way, which then enables reasoning about an entire CPS12.

In practice, semantic integration is often achieved using the FMI standard [6],
mentioned above, which describes a CPS using a network of FMUs to simulate
components and their solvers and simulators. Each FMU has observable dis-
crete and continuous variables that can be observed and modified, as well as
an interface to drive the simulation engine in various ways. In a co-simulation

12 For SysML we have only formalised the subset we need in a co-simulation setting
[1].
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a master algorithm manages stepping the individual FMUs forward, and dis-
tributing information in between time steps. In this way, FMI describes hetero-
geneous multi-models in different notations with different underlying semantics
integrated through a common operational interface13.

FMI provides a way of experimenting with the combined operational inter-
faces to heterogeneous models, and so it is useful for validation; but it does not
provide the basis for verifying CPS properties. To do that, we need to be able to
verify properties, both at the model level and at the multi-model level. One way
of doing this is to explore the links between the different semantics. To do this,
we use Hoare and He’s Unifying Theories of Programming (UTP) [10,25,48]
to describe different computing paradigms and their formal connections. We
treat the various semantic aspects of a heterogeneous multi-model as individual
theories that characterise a particular abstract modelling paradigm. Hoare and
Jifeng [25] show how the mathematics of the alphabetised relational calculus
can be used to construct a hierarchy of such theories, including an assertional
approach to hybrid imperative parallel programming and control of continu-
ous physical phenomena. Within this hierarchy, there are theories of real-time
programming [45], object-oriented programming [43], security and confidential-
ity [4], mobile processes [44], probabilistic modelling [7], and hybrid systems [20].
The FMI API itself has been given a UTP-based semantics [11,49] that can be
used as an interface to the semantic model of individual FMUs.

Our approach to practical CPS verification in the meta-tools is based on the
theorem prover for UTP built on Isabelle/HOL [36], which we call Isabelle/UTP
[21,22]. Isabelle is a powerful automated proof assistant that was used, for exam-
ple, in the seL4 microkernel verification project [29]. Isabelle include recent work
on formalising the integral and differential calculus, real analysis, and Ordinary
Differential Equations (ODEs) [28], work that we are applying to verification of
hybrid systems14.

Crucial to all of these developments is the ability to integrate external tools
into Isabelle that can provide decision procedures for specific classes of problems.
Isabelle is well suited to such integrations due to its architecture based on the
ML and Scala programming languages, both of which can be used to implement
plugins. Isabelle is sometimes referred to as the Eclipse of theorem provers [46].
The sledgehammer tool [5], for example, integrates a host of first-order auto-
mated theorem provers and SMT solvers, which often shoulder the burden of
proof effort. Sledgehammer has been used both at the theory engineering level,
for constructing an algebraic hierarchy of verification logics (Kleene algebras),
and also at the verification level, where it is used to discharge first-order proof
obligations [2]. For verification of hybrid systems, it is necessary to integrate
Isabelle with computer algebra systems like Mathematica, MATLAB, and Sage-
Math, to provide solutions to differential equations, an approach that has been
previously well used by the KeYmaera tool [41,42].

13 FMI-based co-simulation with a black-box approach does have limitations [8,9] and
we do not claim to repair those issues in any way in this work.

14 This library can be viewed at github.com/isabelle-utp/utp-main.

https://github.com/isabelle-utp/utp-main
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Our vision is the use of Isabelle and UTP to provide the basis for CPS
verification through formalisation of the fundamental building-block theories of
CPS multi-modelling, and the integration of tools that implement these theories
for coordinated verification.

6 Concluding Remarks

Integrated modelling such as that presented in this paper is essential to efficient
engineering of CPSs. We believe that openness of the tool chain using different
standards, the methodology supporting it and the underlying unified semantic
approach jointly enable stakeholders with different disciplinary backgrounds to
collaborate in the development of CPSs. This is by no means the only scientific
approach by which such systems can be developed, but we think that it is a
promising candidate that has future extension possibilities as well.

In the current version of the FMI standard there are a number of limitations.
This includes that it is not able to cope with the modelling of the network com-
munication in a natural manner and it is incapable of modelling dynamic recon-
figurations. Thus, in a future extension it would be ideal if it would be possible
to enable such capabilities for example to be able to appropriately model and
develop constituents with their own independent behaviour. This could mean
integration of machine learning capabilities as well as software agents includ-
ing potentially incorporation of human-in-the-loop. Initial work with humans
included have already started [37] but it is easy to imagine that it would be
advantageous to combine this further in the future with human centered design
ideas. We envisage great capabilities for the future that would bring additional
USPs to the table.
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CPS project funded by the European Commission’s Horizon 2020 programme under
grant agreement number 664047. We would like to thank all the participants of those
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