
Towards a UML Profile for Domain-Driven
Design of Microservice Architectures

Florian Rademacher1(B) , Sabine Sachweh1, and Albert Zündorf2

1 Institute for Digital Transformation of Application and Living Domains,
University of Applied Sciences and Arts Dortmund, Dortmund, Germany

{florian.rademacher,sabine.sachweh}@fh-dortmund.de
2 Department of Computer Science and Electrical Engineering,

Software Engineering Research Group, University of Kassel, Kassel, Germany
zuendorf@uni-kassel.de

Abstract. Domain-driven Design (DDD) is a model-driven approach to
software development that focuses on capturing the application domain,
its concepts and relationships in the form of domain models for architec-
ture design. Among others, DDD provides modeling means for decom-
posing a domain into Bounded Contexts and expressing the relationships
between them. With the recent emergence of Microservice Architecture
(MSA), DDD again gains broad attention because a Bounded Context
naturally maps to a Microservice, which enables the application of DDD
for MSA design.

However, DDD is not a formal modeling language. Instead, it leverages
informal UML class diagrams to express domain models, which prevents
model validation and transformation. In this paper we address this limi-
tation by providing an initial UML profile for Domain-driven MSA Mod-
eling. Together with a survey on the UML constructs used in DDD, the
profile denotes a foundation for validating domain models and deriving
Microservice code from them.

Keywords: Domain-Driven Design · Microservice architecture
UML profile

1 Introduction

Domain-driven Design (DDD) [3] is an approach to software development that
focuses on the application domain, its concepts and their relationships as primary
drivers for architecture design. Core principles of DDD comprise (i) capturing
relevant domain knowledge in domain models that might comprise structural
and behavioral aspects; (ii) collaborative modeling of domain experts and soft-
ware engineers; (iii) fostering experimental design by strictly aligning model and
implementation throughout the software development process as well as contin-
uous model refinement; (iv) fostering communication between domain experts
and software engineers by jointly defining an explicit ubiquitous language, which

c© Springer International Publishing AG 2018
A. Cerone and M. Roveri (Eds.): SEFM 2017 Workshops, LNCS 10729, pp. 230–245, 2018.
https://doi.org/10.1007/978-3-319-74781-1_17

http://orcid.org/0000-0003-0784-9245

Towards a UML Profile for Domain-Driven Design of MSA 231

consists of relevant domain-specific terms and is used in both, domain models
and implementation.

As a set of model-driven practices, techniques and principles for software
design, DDD has been defined by Evans in 2004 [3]. With Microservice Archi-
tecture (MSA) as an architectural style for distributed, service-based software
systems [9], that is gaining broad attention of both practitioners and scientists
as of 2014 [13], the relevance of DDD recently increases. This is due to DDD pro-
viding various modeling patterns and techniques for the identification of coher-
ent domain concepts and their encapsulation within conceptual boundaries that
might serve as foundation for MSA-based service decomposition [9].

Thereby, Evans proposes to express domain models that capture structural
domain knowledge in the form of UML class diagrams [3]. He therefore leverages
a subset of standard UML elements, which are partially enriched with DDD-
specific semantics to define DDD patterns. However, the pattern definitions lack
a formal, UML-based foundation and sometimes differ in their notations. While
the absence of a formal foundation leads to a high degree of freedom concern-
ing syntaxes and semantics of DDD-specific modeling elements [3], it prevents
structured model operations like validation [16] and transformation [8]. Hence,
further usage of domain models next to being integral parts of stakeholder com-
munication and domain documentation is hampered.

To overcome this limitation, we present an initial, twofold contribution
towards a formalization of DDD for Domain-driven MSA Modeling (DDMM).
First, we provide a survey regarding syntaxes, semantics and frequency of UML
elements applied in DDD for capturing domain models. This defines a basic set
of modeling constructs to consider when processing domain models for validation
or transformation purposes. Second, we define a UML profile for DDMM and
discuss its usage to model Microservices and derive interactions between them.

The remainder of the paper is organized as follows. Section 2 gives an overview
of DDD and how it is applied for MSA. Section 3 presents the findings of a liter-
ature survey regarding syntaxes, semantics and occurrences of UML constructs
in DDD domain models. In Sect. 4 we introduce the UML profile for DDMM.
Section 5 presents related work and Sect. 6 concludes the paper.

2 Domain-Driven Design

In this section we elaborate on DDD as an approach to abstracting a domain in
the form of structural domain models that describe structure and relationships
of domain concepts [3]. We also describe the Bounded Context pattern that is
commonly proposed for modeling services in MSA [9].

2.1 Structural Domain Models

In DDD, a domain model is a rigorously organized, selective abstraction of con-
ceptual knowledge about a domain or relevant parts of it [3]. Basically, the nota-
tion to express domain models is not bound to a certain modeling language. How-
ever, Evans proposes to use UML class diagrams to capture structural domain

232 F. Rademacher et al.

models, which leverage UML classes, attributes and methods to model domain
concepts, and UML associations, multiplicities and collection specifications to
express concept relationships. Figure 1 shows a preliminary structural domain
model for a cargo shipping system described in [3].

role

*
goal

Location
port code

Carrier
Movement
schedule ID

Delivery Specification
arrival t ime

Handling Event
completion time
type

Delivery History
Customer

name
customer ID

t o

f rom
destination

* 0..1

handled
*

 *
Cargo

tracking ID

Fig. 1. Preliminary structural domain model for a cargo shipping system [3]

Each class represents a domain object, which in DDD is synonymous with
“domain concept” [3]. The model contains the core domain objects and their
relationships. For example, it shows that a Cargo has a tracking ID and is
associated with a set of Customers, each distinguished by its role, e.g. “shipper”
or “receiver”. Assigned to a Cargo is a Delivery History that tracks cargo-
related Handling Events, which might involve at most one Carrier Movement
from a source to a target Location. Furthermore, a Cargo has a goal, i.e. a
Delivery Specification with a destination Location.

On the basis of certain UML class diagram elements, DDD introduces a
variety of patterns to enrich a structural domain model with further semantics
for Model-driven Design [3]. These patterns and their definition by means of the
UML 2.5 metamodel [12] are described in Table 1.

Figure 2 shows an excerpt of the cargo shipping model with refined associa-
tions and extended by a selection of DDD patterns [3].

role

*

«Repository»
Customer Repository

find by name(String)
find by Customer ID(String)

goal

«Repository»
Cargo Repository

find by Tracking ID(String)
find by Customer ID(String)

«Entity»
Location

port code

«Entity»
Carrier

Movement
schedule ID

«Value Object»
{aggregateRoot=Cargo}
Delivery Specification
arrival t ime

«Entity»
Handling Event
completion time
type

«Entity»
{aggregateRoot=Cargo}

Delivery History

«Entity»
Customer

name
customer ID

*

*

t o

f rom

 destination

*

0..1
*

handled
*«Aggregate Root,

Entity»
Cargo

tracking ID

Fig. 2. Excerpt of refined cargo shipping model with additional DDD patterns [3]

All domain objects are annotated with pattern-specific stereotypes to iden-
tify them as Entities, Value Objects, Aggregate roots or Repositories [3].
For example, the Entity Cargo is also a root for the Aggregates Delivery
Specification and Delivery History, which may only be accessed via the root
object. The Cargo Repository models the retrieval of Cargoes by tracking
ID and customer ID. While most domain objects are Entities, Delivery
Specification is a Value Object to communicate that two Cargoes might share

Towards a UML Profile for Domain-Driven Design of MSA 233

Table 1. DDD patterns and their UML 2.5 metamodel [12] equivalents. Note: “Anno-
tated” stands for any mechanism that allows to assign additional meaning to UML
modeling elements, e.g. stereotypes or comments.

Pattern UML metamodel
equivalent

Description

Aggregate Associated Classes with
annotated root Class

Cluster of associated Entities and
Value Objects. An Aggregate is
treated as a whole when being
accessed by referencing its root
Entity

Closure of
Operations

Annotated Operation A Closure’s return type is of the
same type as its arguments and
provides an interface without
additional domain object
dependencies

Entity Annotated Class An instance of the domain object is
distinguished from other instances
by its identity. Identity
determination is domain-specific

Module Annotated Package Encapsulation mechanism whose
primary goal is to reduce cognitive
overload in domain models by
partitioning cohesive sets of
domain objects

Repository Annotated Class with
outgoing Associations
to other Classes

Models access to persistent domain
object instances via operations
that perform instance selection
based on given criteria

Service Annotated Class
containing only
Operations

Services encapsulate processes or
transformations that are not in the
responsibility of Entities or Value
Objects

Side-effect-free
Function

Annotated Operation Expresses that a domain object’s
Operation does not have any side
effects on a system’s state

Specification Annotated Class
depending on specified
Class

Used to determine if a domain
object instance fulfills a
specification. Contains a set of
Boolean Operations to perform
specification checks

Value Object Annotated Class Typically immutable object
without domain-specific identity.
Might act as value container

234 F. Rademacher et al.

the same Delivery Specification, but with most likely differing Delivery
Histories. Otherwise the Cargoes would exhibit the same identity [3].

2.2 Domain-Driven Design for Microservice Architecture

In contrast to Service-oriented Architecture (SOA), MSA imposes explicit
requirements on service granularity [14]. Each Microservice should realize exactly
one capability of the software system that is clearly distinct from others. The goal
of business-related service decomposition in MSA is to cluster related domain
objects and functionalities in isolated functional Microservices.

For modeling functional Microservices and domain objects exchanged
between these, i.e. shared domain objects, DDD’s Bounded Context pattern is
predestined [9] and has become a common means for determining and expressing
MSA-based service granularity prior to service decomposition [2,4,5].

Next to Modules (cf. Table 1), Bounded Contexts are another encapsulation
mechanism of DDD. While Modules solely structure domain objects in different
namespaces, Bounded Contexts define scopes for enclosed domain objects, i.e.
boundaries for object validity and applicability [3].

The boundaries of a Bounded Context typically impact team, code and appli-
cation organization [3]. Only the team responsible for a context may change
its internal structure. It is further responsible for context implementation and
interface provisioning on the basis of shared domain object models. As these
responsibilities correspond to those of a Microservice [9], a Bounded Context pro-
vides the foundation for the domain-specific implementation of a Microservice.
Figure 3 shows a version of the cargo shipping model that has been decomposed
into Bounded Contexts depicted as UML packages.

role

*

t o
f rom

«use»

«Bounded Context»
Cargo

«Service»
Location Service

resolve by port code(String)

«Value Object»
LocationShared
port code

«Bounded Context»
Location

«Repository»
Customer Repository

find by name(String)
find by Customer ID(String)

«Value Object»
CustomerShared
customer ID

«Bounded Context»
Customer

goal

«Repository»
Cargo Repository

find by Tracking ID(String)
find by Customer ID(String)

«Entity»
Location

port code

«Entity»
Carrier

Movement
schedule ID

«Value Object»
{aggregateRoot=Cargo}
Delivery Specification
arrival t ime

«Entity»
Handling Event
completion time
type

«Entity»
{aggregateRoot=Cargo}

Delivery History

«Entity»
Customer

name
customer ID

*
«use»

«use»

*

 destination

* 0..1

*

handled
*

*

«Aggregate Root,
Entity»
Cargo

tracking ID

Fig. 3. Cargo shipping model decomposed into several Bounded Contexts

Relationships between the Bounded Contexts are expressed as shared Value
Objects, i.e. instances of CustomerShared and LocationShared act as con-
tainers for exchanging values between contexts (cf. Table 1). Each shared
object depends on the Entity it represents, i.e. Customer and Location. For
the retrieval of shared object instances, Cargo uses the existing Customer
Repository, while instances of LocationShared can be requested from the

Towards a UML Profile for Domain-Driven Design of MSA 235

Location context via the introduced Location Service (cf. Table 1). It dynam-
ically resolves the port code from a given argument, i.e. Locations are not
stored in a Repository.

3 Survey on UML Elements in Domain-Driven Design

In the following, we present an overview and characterization regarding syntaxes,
semantics and frequency of UML elements used by DDD to model structural
domain models. We identified the elements by surveying each of the 92 UML
class diagrams in [3] representing real-world structural domain models. Thereby,
we left out the 29 diagrams showing domain object interactions as they are (i)
modeled with various notations differing in the degree of formality, e.g. object
interaction, UML sequence and domain-specific diagrams; (ii) used to exemplify
interactions between few selected objects rather than in a comprehensive archi-
tectural design; (iii) not applicable for identifying functional Microservices and
their structural relationships (cf. Subsect. 2.2).

Together with the DDD patterns described in Sect. 2, the UML elements
identified in our survey define a basic set of modeling constructs to be considered
in UML-based DDMM, e.g. when validating domain models or deriving code.

Table 2 shows the results of our survey. It lists each UML element used in
the domain models in [3] and classifies them on the basis of six categories repre-
senting basic UML concepts, i.e. “Associations”, “Attributes”, “Classes”, “Con-
straints”, “Methods” and “Multiplicities”. We further state the occurrence count
per element, that is the number of domain models comprising it at least once,
as well as its representation with UML 2.5 metaclasses [12] to be considered in
UML-based DDMM. Due to space limitations, we do not present survey results
for modeling constructs used in DDD domain models that are not conform to
UML 2.5 and hence might not be validly expressed leveraging its metamodel,
e.g. abstract attributes or named extensions between classes. As only four out of
92 domain models (4.34%) comprise such elements, we view them as negligible.

Next, we describe category-specific characteristics of conform UML elements.

3.1 Classes

In structural domain models, DDD expresses domain objects as named Classes.
Hence, every domain model contains at least one Class, which makes this ele-
ment the predominant UML construct in DDD. Thereby, a Class might be mod-
eled as being abstract to specify Methods (cf. Subsect. 3.5) that have to be
realized by Sub-classes and enable polymorphism in domain model implementa-
tions. A special case of abstract classes are generalized Specifications (cf. Table 1)
where different instances of a domain object need to satisfy different specifica-
tions, e.g. an Invoice for which two Specifications DelinquentInvoiceSpec
and BigInvoiceSpec inheriting from a general InvoiceSpec are modeled, that
specify a date or a threshold amount, respectively [3].

A DDD Class corresponds to the UML metaclass Classifier. For abstract
Classes, Classifier.isAbstract is set to true.

236 F. Rademacher et al.

Table 2. Results of surveying the 92 UML class diagrams in [3] for UML elements used
in structural domain models. Table ordering is based on elements’ occurrence count.

Towards a UML Profile for Domain-Driven Design of MSA 237

3.2 Associations

The elements in this category are applied in 87 of the 92 domain models
(94.56%), which makes Associations the second most occurring UML construct in
DDD. Associations are used to specify relationships between exactly two domain
objects. A special form of Associations are Aggregations in the sense of UML
shared aggregations [12], whose semantics depend on application area or modeler.
Aggregations group together a set of assigned domain object instances.

Most Associations lack an explicit specification of navigability, which oth-
erwise is always unidirectional. An Association end may exhibit an “ordered”
collection specification and be qualifying to partition a set of assigned instances,
e.g. Customers by their role (cf. Fig. 1).

Next to Associations, the category comprises Inheritance relationships and
Dependencies. Both establish Associations between Classes and are applied cor-
responding to the UML specification of Generalization and Dependency.

3.3 Attributes

Attributes represent structural features of domain objects. For the majority of
Attributes, no type is specified, which increases the level of modeling flexibil-
ity but complicates domain model processing. For example, when generating
code from domain models, e.g. in an object-oriented language like Java, untyped
Attributes might be assigned a generic type like Java’s Object. However, this
prevents type-safety and relies on the semantics of an Attribute being sufficiently
communicated by its name. A facing issue is DDD possibly specifying unnamed
Attributes that only have a type. The meaning of an Attribute may then remain
unclear, especially when its type is not domain-specific, e.g. Double instead of
MoneyAmount [3].

Attributes may be modeled as derived or optional. Thereby, a derivation spec-
ification is missing and optional Attributes’ names are terminated by “(opt)”.

Attributes correspond to the UML metaclass Property. For derived
Attributes, Property.isDerived is set to true. Optional Attributes may
be specified by assigning a MultiplicityElement to the Property with a
lowerValue of 0 and an upperValue of 1 or *.

3.4 Multiplicities

All occurrences of Multiplicity specifications in domain models con-
form to UML. Typically, an Association or Attribute is provided with
Multiplicities. Multiplicity specifications correspond to UML’s metaclass
MultiplicityElement, whose properties lowerValue and upperValue refer-
ence instances of ValueSpecifications that represent an Integer and an
UnlimitedNatural, respectively.

238 F. Rademacher et al.

3.5 Methods

DDD leverages Methods to model the interfaces of domain objects’ behavioral
features. Thus, concrete behavior specifications are omitted and Methods are
only represented by their type signatures. Methods correspond to UML’s meta-
class Operation, possibly comprising a set of Parameters. Parameter names
and types are mutually optional, which is conform to UML but raises the same
issues as for unnamed and untyped Attributes (cf. Subsect. 3.3). Parameters are
modeled as incoming or returning, i.e. with direction set to in or return.

3.6 Constraints

We classify Constraints used by DDD depending on their degree of formality.
Informal Constraints are formulated in natural language and modeled as

names of Associations or Dependencies. In the latter case, the dependent domain
object always constrains the independent object, e.g. a Route Specification
depends on an Itinerary stating that it must satisfy the Specification (cf. [3]
and Table 1). This semantically makes the dependency bidirectional, because
logically Itinerary depends on Route Specification, which it otherwise could
not satisfy. This can be resolved in that the direction of the modeled Dependency
is reversed, i.e. the specified object depends on the Specification (cf. Sect. 4).

Semi-formal Constraints are stated in natural language mixed with formal
notations. Like Informal Constraints, they are modeled as names of Associations.

Formal Constraints leverage a formal notation for their constraint expression.
In DDD, they are modeled in the form of Class or Attribute Comments, or, in one
occurrence, as name of a Dependency in which a domain object depends on the
Association between two other domain objects to express that an Overbooking
Policy (the dependent object) ensures that the sum of Cargo sizes does not
exceed a Voyage’s capacity by more than 10% [3].

Alternatively, all Constraint types could be modeled as UML Constraints.
This would make their existence more explicit and allow to formally specify
the Constraint’s type. For example, to identify Informal and Semi-formal Con-
straints, an instance of OpaqueExpression with language set to “Natural lan-
guage” could be assigned to Constraint.specification. Formal Constraints
could analogously be expressed in the form of automatically evaluable expres-
sions, e.g. by leveraging the Object Constraint Language (OCL) [11].

4 A UML Profile for Domain-Driven Microservice
Architecture Design

This section presents an initial UML profile, which enables the expression of
structural domain models as UML class diagrams by providing stereotypes and
constraints for DDD patterns (cf. Sect. 2).

We decided to apply UML’s profile mechanism [12] as metamodeling tech-
nique [15] for DDMM because (i) in [3], when introducing DDD, Evans expresses

Towards a UML Profile for Domain-Driven Design of MSA 239

structural domain models as UML class diagrams because he perceived them
to be well understandable by domain experts; (ii) it provides an approach for
defining graphical modeling languages by extending UML’s mature metamodel
[17] and use complementary specifications, e.g. OCL [11] for profile-specific con-
straint specification (cf. Subsect. 4.2); (iii) UML is a common modeling language,
even for the design of Microservice architectures [1]; (iv) it enables the usage of
existing UML toolchains suitable for domain experts or software engineers for
DDMM.

A UML profile comprises extensions of UML metaclasses like Class or
Property in the form of stereotypes [12]. Instances of extended metaclasses
might then be semantically enriched with profile-specific stereotypes. A UML
profile might also define formal constraints that enable automatic validation of
profile-based models, e.g. to verify that stereotypes have been used as intended.

Figure 4 shows all stereotypes of our UML profile for DDMM. The relation-
ship between a stereotype and the metaclasses it extends is depicted as an arrow
with filled arrowhead pointing from stereotype to metaclass [12].

«Stereotype»
Module

«Stereotype»
AggregatePart

aggregateRoot : Class

«Stereotype»
AggregateRoot

«Stereotype»
BoundedContext

«Metaclass»
Package

«Stereotype»
Closure

«Stereotype»
SideEffectFree

«Stereotype»
ValidatesSpec

«Stereotype»
Spec

«Stereotype»
Repository

«Stereotype»
Enti ty

«Stereotype»
Service

«Stereotype»
DefinesIdenti ty

«Stereotype»
ValueObject

immutable : Boolean

«Metaclass»
Property

«Metaclass»
Operat ion

«Metaclass»
Class

Fig. 4. Stereotypes of the DDMM UML profile as extensions of UML metaclasses

The profile provides stereotypes for all DDD patterns presented in Sect. 2, i.e.
the ones listed in Table 1 as well as Bounded Contexts. It therefore extends the
UML metaclasses Class, Operation, Package and Property. In the following,
we discuss characteristics of the profile concerning differences between pattern
definitions in DDD and the profile, constraints, mapping between profile-based
models and MSA, and the profile’s implementation.

4.1 Differences Between Pattern Definitions in Domain-Driven
Design and UML Profile

While most of the profile’s stereotypes correspond to their textual definition in
[3], few of them were accompanied by additional stereotypes to formally enable
their DDD-conform application. For example, the DefinesIdentity stereotype
was added to specify which Attributes or Method of an Entity provide identity.

Moreover, the definition of an Aggregate involves the combined application
of the AggregateRoot and AggregatePart stereotypes. The latter is necessary
because in [3] the boundaries of an Aggregate are sketched informally by free-
hand drawings that enclose the Aggregate and its parts. When leveraging the
profile for DDMM, the root of an Aggregate is annotated with AggregateRoot.
Aggregate objects are then assigned to the root by means of the AggregatePart
stereotype and specifying the Aggregate’s root in the aggregateRoot property.

Another difference between its definition in DDD and in the profile exists
for the Specification pattern. First, due to a name conflict with the UML

240 F. Rademacher et al.

metamodel [12], the profile’s stereotype for Specifications is abbreviated as Spec.
Second, all predicate-like validation Methods of a Specification [3] need to exhibit
the stereotype ValidatesSpec.

4.2 Profile Constraints

To ensure consistency between profile application and DDD, we added con-
straints to the profile, i.e. restrictions that need to be satisfied by a profile-
based structural domain model to be considered valid. Table 3 describes them in
natural language.

Table 3. Stereotype constraints of the profile following DDD pattern definitions in [3]

Stereotype Constraints based on UML metamodel

AggregatePart C1: Only Entities and Value Objects may be Aggregate parts

C2: Assigned Aggregate root must have AggregateRoot

stereotype

C3: No incoming Associations from outside the Aggregate

C4: Must be in same Bounded Context as Aggregate root

AggregateRoot C5: Only Entities may be Aggregate roots

C6: Aggregate must contain at least one part

Entity C7: One Operation or at least one Property defines the identity

Repository C8: Class has no other stereotypes

C9: Class contains only Operations and at least one

C10: Outgoing Associations must point to Entities or Value
Objects

Service C11: Class has no other stereotypes

C12: Class contains only Operations and at least one

Spec C13: Class has no other stereotypes

C14: Class contains at least one validation Operation

C15: At least one domain object is specified

C16: Validation Operation has Parameter typed as specified
object

Closure C17: Must not be specification validation or identity Operation

C18: Return Parameter type must conform input Parameter type

DefinesIdentity C19: Must not be specification validation Operation

C20: May only be applied within Entities

SideEffectFree C21: Operation must have a return Parameter

ValidatesSpec C22: Must have Boolean-typed return Parameter

C23: May only be applied within Specifications

BoundedContext C24: Must not have Module stereotype

C25: Must not be nested, i.e. part of another Package

Towards a UML Profile for Domain-Driven Design of MSA 241

According to [12], all constraints have been formalized by expressing them
in OCL [11]. However, due to lack of space, we only present the OCL code
for constraints C4 and C25 in Listings 1 and 2. The OCL expressions for the
remaining constraints are part of the profile’s implementation (cf. Subsect. 4.4).

let partPackage = self.base Class.package in
let root = self.base Class

.extension AggregatePart.aggregateRoot in
partPackage <> null and
root <> null and
partPackage.extension BoundedContext <> null and
partPackage = root.package

Listing 1. OCL code to ensure Aggregate parts being in same context as root (C4)

let nestingPkg = self.base Package.nestingPackage in
let pkgStereotypes = nestingPkg.getAppliedStereotypes() in
nestingPkg = null or
pkgStereotypes−>isEmpty() and
nestingPkg.nestingPackage = null

Listing 2. OCL constraint preventing nested Bounded Contexts (C25)

4.3 Mapping of Profile-Based Structural Domain Models to
Microservice Architecture

In the following, we present initial ideas on how to map structural domain models
applying the profile to conceptual elements of MSA for DDMM. We thereby
focus on coherences between modeled Bounded Contexts and Microservices [2,
4,5] for the purpose of transforming profile-conform domain models into code.
While [3] describes the implementation of the DDD patterns listed in Table 1,
a possibly automatic derivation of Microservice code from structural domain
models remains an open question.

An important aspect of mapping a Bounded Context and its encapsulated
domain objects to a Microservice implementation is the determination of the
service interfaces on the basis of context relationships. For example, in Fig. 3 the
Customer Bounded Context shares a reduced form of its Customer Entity, which
is modeled as a shared Value Object named CustomerShared that depends on the
Customer Entity and is outside the context. As the shared object is referenced
from the Cargo context, a Microservice for the Customer context needs to provide
an interface that exposes Customers as instances of CustomerShared.

Moreover, in the domain model in Fig. 3, the signatures of interface operations
as well as service provider and requester may be identified on the basis of usage
dependencies between Bounded Contexts. For example, Carrier Movement from
the Cargo context uses the Location Service from the Location context, which
has access to a set of Location Entities, to retrieve shared model instances of
these. Thus, a service for the Location context needs to provide an interface to
a Cargo service that adapts the signature of the Location Service.

242 F. Rademacher et al.

While the described mappings of Bounded Context relationships to Microser-
vice interfaces are intuitive, several questions arise when taking the potential
informality of structural domain models in DDD into account. First, besides
Bounded Context relationships in the form of Associations between fragmented,
probably shared domain objects, none of the surveyed domain models comprises
constructs that specify technical characteristics of context interfaces for subse-
quent service implementation (cf. Sect. 3). Among these are the assignment of
protocols and message formats to prospective interface operations, as well as an
approach for stating the type of action performed by an operation, e.g. read or
update. Additionally, when modeling service calls as �use�-Dependencies in
which the supplier has more than one Operation that returns the same shared
model type, it cannot be unambiguously determined, which of the Operations
the client invokes for shared model instance retrieval, e.g. for the Cargo object
in Fig. 3 find by name or find by Customer ID from Customer Repository.

Another open question concerns the handling of Associations between
context-internal domain objects and shared models. For example, in Fig. 3
Carrier Movement is associated with LocationShared. However, as Carrier
Movement is an Entity and probably gets persisted when a Cargo Microser-
vice proceeds [3], an approach is needed for keeping LocationShared (and
hence Location) and Carrier Movement instances persistently associated. This
includes retrieval of shared model instances when Carrier Movement is rein-
stantiated, with considering that the Location might since have been deleted
by a Location service.

Furthermore, DDD lacks a construct for specifying how a domain object is
transformed into a shared model representation, e.g. in Fig. 3 CustomerShared
does not comprise the Customer’s name. As an initial approach, a code genera-
tor for the UML profile could yield stubs for operations that transform domain
object instances into their shared representations. However, then the consistency
between model and code needs to be ensured for future model refinements.

A last aspect stems from DDD being a modeling technique focused on
expressing core domain parts rather than achieving model completeness. In case
two shared models of the same domain object are modeled, it cannot be unam-
biguously determined which shared representation a derived service interface
returns when the retrieval operations of the underlying provider objects, e.g.
Repositories or Services, do not specify a return type.

4.4 Implementation

We have implemented an initial version of the UML profile that comprises all
stereotypes and constraints presented in Fig. 4 and Subsect. 4.2 on the basis
of Eclipse and the Papyrus modeling environment1. The current version can
be found on GitHub2. Figure 5 shows the Cargo context from Fig. 3 and its
relationship to LocationShared modeled with Papyrus and applying the profile.

1 https://www.eclipse.org/papyrus.
2 https://github.com/SeelabFhdo/ddmm-uml-profile.

https://www.eclipse.org/papyrus
https://github.com/SeelabFhdo/ddmm-uml-profile

Towards a UML Profile for Domain-Driven Design of MSA 243

Fig. 5. Excerpt of the Cargo context modeled with Eclipse Papyrus and the profile

5 Related Work

We discuss work related to employing UML class diagrams for DDD as well as
the design of service-based software systems leveraging UML profiles and DDD.

In [7], a DDD-based approach is presented that leverages meta-attributes
(MAs) as annotation mechanism for UML class diagrams representing structural
domain models with the goal to enable capturing domain-specific requirements.
MAs reflect domain-specific abstractions that may be directly mapped to code
by using built-in extension mechanisms of the programming language, e.g. Java
annotations. They are modeled as classes with attributes, whose values correlate
to property values of code annotations, and are associated with domain model
elements. This approach differs from the application of our UML profile. First,
MAs instead of stereotypes are used to annotate domain models. While this
is UML-conform, extending domain models with additional MA classes enlarges
their structure and may complicate understanding. This effect is mitigated when
using a UML profile as its application might be flexibly hidden from a UML dia-
gram [12]. Second, MAs do not enable constrained expression of DDD patterns
(cf. Table 1). Instead, MAs map to UML metaclasses like Classifier. Third, to
foster semantic understanding of domain experts, MAs partially capture infor-
mation being already part of the model, e.g. the name Property of a DAttr MA
specifies the name of a modeled domain object Attribute. Our approach assumes
that domain experts are already able to read basic UML class diagrams. Fourth,
existing UML tools may not semantically differentiate between MAs and domain
objects as both are UML classes without specific stereotypes. This hampers auto-
matic validation of annotated structural domain models.

SoaML [10] is a UML profile and metamodel from the OMG for model-driven
engineering of service-based systems. It defines modeling elements to describe,
e.g., services, interfaces and data exchange, and addresses SOA, which charac-
teristically differs from MSA [14]. However, SoaML provides an extensive set
of constructs for modeling service interfaces and interactions our profile might
draw on (cf. Subsect. 4.3). Thereby, it would be crucial to balance the techni-
cal needs of MSA architects and developers with the profile’s applicability for
domain experts, which is central to DDD but not one of SoaML’s primary goals.

In [6] the Romulus approach for the development of service-based software
systems is presented. It integrates a metaframework that enables the enrichment

244 F. Rademacher et al.

of Java-based domain models with annotations to provide services. Thereby,
the first step in Romulus is to identify domain objects that reside in differ-
ent Bounded Contexts. Like with the presented UML profile, domain models
are expressed as class diagrams and, conceptually, a Bounded Context may be
mapped to a service. However, no specific UML notation on how to express
DDD elements in domain models is presented. Instead, domain models are
implemented as semantically annotated plain Java objects. Thereby, annotations
do not express DDD concepts but complement a domain model with technical
aspects like view representation and validation. MSA is not explicitly covered.

6 Conclusion and Future Work

In this paper we introduced an initial UML profile that aims at enabling the mod-
eling of Microservice systems by leveraging Domain-driven Design [3]. Therefore,
we first presented DDD and its patterns, with Bounded Context being central
for modeling Microservice candidates (cf. Sect. 2). In Sect. 3, DDD was charac-
terized by means of a literature survey, which comprised each of the 92 structural
domain models in [3]. It identified syntaxes, semantics and occurrences of UML
class diagram constructs used to capture domain models. Together with the
DDD patterns, these UML elements define an initial set of modeling elements,
which need to be considered in UML-based DDMM, e.g. for model validation
or transformation purposes. In Sect. 4 we presented a UML profile for DDMM,
which integrates constrained stereotypes for all mentioned DDD patterns. We
also discussed initial thoughts on how to map profile-based domain models to
Microservices with considering the findings of our survey (cf. Subsect. 4.3).

In future works we plan to implement a code generator for producing MSA
code from profile-based domain models. We therefore focus on transforming
Bounded Contexts into services with regard to deriving service interfaces from
associations between domain objects of different contexts. With the code gener-
ator, we plan to evaluate the profile’s applicability for both software engineers
and domain experts, as well as the generators efficiency.

References

1. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microser-
vice architecture. In: Proceedings of the 9th International Conference on Service-
Oriented Computing and Applications (SOCA), pp. 44–51. IEEE (2016)

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

3. Evans, E.: Domain-Driven Design. Addison-Wesley, Boston (2004)
4. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-

atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 12

https://doi.org/10.1007/978-3-319-44482-6_12

Towards a UML Profile for Domain-Driven Design of MSA 245

5. Hassan, S., Ali, N., Bahsoon, R.: Microservice ambients: an architectural meta-
modelling approach for microservice granularity. In: Proceedings of the Interna-
tional Conference on Software Architecture (ICSA), pp. 1–10. IEEE (2017)

6. Iglesias, C.A., Fernández-Villamor, J.I., del Pozo, D., Garulli, L., Garćıa, B.: Com-
bining domain-driven design and mashups for service development. In: Iglesias,
C.A., Fernández-Villamor, J.I., del Pozo, D., Garulli, L., Garćıa, B. (eds.) Service
Engineering, pp. 171–200. Springer, Vienna (2011). https://doi.org/10.1007/978-
3-7091-0415-6 7

7. Le, D.M., Dang, D.H., Nguyen, V.H.: Domain-driven design using meta-attributes:
a DSL-based approach. In: 8th International Conference on Knowledge and Sys-
tems Engineering (KSE), pp. 67–72. IEEE (2016)

8. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes
Theor. Comput. Sci. 152, 125–142 (2006)

9. Newman, S.: Building Microservices. O’Reilly Media, Sebastopol (2015)
10. Object Management Group: Service oriented architecture modeling language

(SoaML) specification version 1.0.1 (formal/2012-05-10) (2012)
11. Object Management Group: Object constraint language (OCL) version 2.4

(formal/2014-02-03) (2014)
12. Object Management Group: OMG unified modeling language (OMG UML) version

2.5 (formal/2015-03-01) (2015)
13. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings

of the 6th International Conference on Cloud Computing and Services Science
(CLOSER), pp. 137–146 (2016)

14. Rademacher, F., Sachweh, S., Zündorf, A.: Differences between model-driven devel-
opment of service-oriented and microservice architecture. In: International Confer-
ence on Software Architecture Workshops (ICSAW), pp. 38–45 (2017)

15. Da Silva, A.R.: Model-driven engineering: a survey supported by the unified con-
ceptual model. Comput. Lang. Syst. Struct. 43, 139–155 (2015)

16. Seidewitz, E.: What models mean. IEEE Softw. 20(5), 26–32 (2003)
17. Selic, B.: A systematic approach to domain-specific language design using UML.

In: Proceedings of the 10th International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC), pp. 2–9. IEEE (2007)

https://doi.org/10.1007/978-3-7091-0415-6_7
https://doi.org/10.1007/978-3-7091-0415-6_7

	Towards a UML Profile for Domain-Driven Design of Microservice Architectures
	1 Introduction
	2 Domain-Driven Design
	2.1 Structural Domain Models
	2.2 Domain-Driven Design for Microservice Architecture

	3 Survey on UML Elements in Domain-Driven Design
	3.1 Classes
	3.2 Associations
	3.3 Attributes
	3.4 Multiplicities
	3.5 Methods
	3.6 Constraints

	4 A UML Profile for Domain-Driven Microservice Architecture Design
	4.1 Differences Between Pattern Definitions in Domain-Driven Design and UML Profile
	4.2 Profile Constraints
	4.3 Mapping of Profile-Based Structural Domain Models to Microservice Architecture
	4.4 Implementation

	5 Related Work
	6 Conclusion and Future Work
	References

