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Abstract. We introduce loose graph simulations (LGS), a new notion
about labelled graphs which subsumes in an intuitive and natural way
subgraph isomorphism (SGI), regular language pattern matching (RLPM)
and graph simulation (GS). Being a unification of all these notions, LGS
allows us to express directly also problems which are “mixed” instances of
previous ones, and hence which would not fit easily in any of them. After
the definition and some examples, we show that the problem of finding
loose graph simulations is NP-complete, we provide formal translation
of SGI, RLPM, and GS into LGSs, and we give the representation of
a problem which extends both SGI and RLPM. Finally, we identify a
subclass of the LGS problem that is polynomial.

1 Introduction

Graph pattern matching is the problem of finding patterns satisfying a specific
property, inside a given graph. This problem arises naturally in many research
fields: for instance, in computer science it is used in automatic system verifica-
tion, network analysis and data mining [5,15,25,28]; in computational biology
it is applied to protein sequencing [24]; in cheminformatics it is used to study
molecular systems and predict their evolution [1,4]. As a consequence, many
definitions of patterns have been proposed; for instance, these patterns can be
specified by another graph, by a formal language, by a logical predicate, etc. This
situation has led to different notions of graph pattern matching, such as subgraph
isomorphism (SGI), regular language pattern matching (RLPM) and graph sim-
ulation (GS). Each of these notions has been studied in depth, yielding similar
but different theories, algorithms and tools.

A drawback of this situation is that it is difficult to deal with matching
problems which do not fit directly in any of these variants. In fact, often we need
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to search for patterns that can be expressed as compositions of several graph
pattern matching notions. An example is when we have to find a pattern which
has to satisfy multiple notions of graph pattern matching at once; due to the lack
of proper tools, these notions can only be checked one by one with a worsening
of the performances. Another example can be found in [9], where extensions
of RLPM and their application in network analysis and graph databases are
discussed. A mixed problem between SGI and RLPM is presented in [2].

This situation would benefit from a more general notion of graph pattern
matching, able to subsume naturally the more specific ones find in literature.
This general notion would be a common ground to study specific problems and
their relationships, as well as to develop common techniques for them. Moreover,
a more general pattern matching notion would pave the way for more general
algorithms, which would deal more efficiently with “mixed” problems.

To this end, in this paper we propose a new notion about labelled graphs,
called loose graph simulation (LGS, Sect. 2). The semantics of its pattern queries
allow us to check properties from different classical notions of pattern matching,
at once and without cumbersome encodings. LGS queries have a natural graphi-
cal representation that simplifies the understanding of their semantic; moreover,
they can be composed using a sound and complete algebra (Sect. 3). Various
notions of graph pattern matching can be naturally reduced to LGSs, as we will
formally prove in Sects. 4, 5 and 6; in particular, the encoding of subgraph iso-
morphism allows us to prove that computing LGSs is an NP-complete problem.
Moreover, “mixed” matching problems can be easily represented as LGS queries;
in fact, these problems can be obtained compositionally from simpler ones by
means of the query algebra, as we will show in Sect. 7 where we solve a simpli-
fied version of the problem in [2]. Lastly (Sect. 8), we study a polynomial-time
fragment of LGS that can still be used to compute various notions of graph
pattern matching. Final conclusions and directions for further work (such as a
distributed algorithm for computing LGSs) are in Sect. 9.

2 Hosts, Guests and Loose Graph Simulations

Loose graph simulations are a generalization of pattern matching for certain
labelled graphs. As often proposed in the literature, the structures that need to
be checked for properties are called hosts, whereas the structures that represent
said properties are called guests.

Definition 1. A host graph (herein also simply called graph) is a triple
(Σ,V,E) consisting of a finite set of symbols Σ (also called alphabet), a finite
set V of nodes and a set E ⊆ V × Σ × V of edges. For an edge e = (v, l, v′)
write s(e), σ(e), and t(e) for its source node v, label l, and target node v′,
respectively. For a vertex v write in(v) and out(v) for the sets {e | t(e) = v} and
{e | s(e) = v} of its incoming and outgoing edges.

Definition 2. A guest G = (Σ,V,E,M,U , E , C) is a (host) graph (Σ,V,E)
additionally equipped with:
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Fig. 1. The guest graphic notation (left) and an example (right).

– three sets M,U , E ⊆ V , called respectively must, unique and exclusive set.
– a choice function C : V → P(P(E)), s.t.

⋃ C(v) = out(v) for each v ∈ V .

Roughly speaking, a guest is graph whose:

– nodes are decorated with usage constraints telling whether they must appear
in the host, if their occurrence should be unique, and whether their occur-
rences can also be occurrences of other nodes or are exclusive;

– edges are grouped into possible “choices of sets of ongoing edges” for any
given source node to be considered by a simulation.

The semantics of the three sets M, U , E and the choice function C will be
presented formally in the definition of loose graph simulations (Definition 5).

Guests can be conveniently represented using the graphical notation shown
in Fig. 1 (a formal algebra is discussed in Sect. 3). A node belonging to the must,
unique or exclusive set is decorated with the symbols ∃, ! and

!
, respectively.

Choice sets are represented by arcs with dots placed on the intersection with
each edge that belongs to the given choice set. The empty choice set (∅ ∈ C(v))
is represented by the “corked edge” ( ).

Example 1. Figure 1 shows the graphical representation of a guest with two
nodes u and v. The must set is {u, v}, the unique and exclusive sets are both
empty, and the choice function takes u to {{(u, a, u), (u, b, v)}} and v to {∅}.

Before we formalise the notion of loose graph simulation, we need some auxiliary
definitions. The following one fix the notation for paths in a graph.

Definition 3. For M = (Σ,V,E), define PM as the set of all paths in M , i.e.⋃
n∈N

{(e0, . . . , en) ∈ En | ∀i ∈ {1, . . . , n} s(ei) = t(ei−1)}. Source (s : PM → V ),
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target (t : PM → V ), and label (σ : PM → Σ+) functions are extended accord-
ingly: s((e0, . . . , en)) � s(e0), t((e0, . . . , en)) � t(en), and σ((e0, . . . , en)) �
σ(e0) . . . σ(en). Lastly, for any v, v′ ∈ V , define PM (v, v′) as the set of all paths
from v to v′, formally PM (v, v′) � {ρ ∈ PM | s(ρ) = v ∧ t(ρ) = v′}.

Akin to graph simulations (Definition 11), LGSs are subgraphs of the product
of guest and host that are coherent with the additional data prescribing node
and edge usage.

Definition 4. Let M1 = (Σ1, V1, E1) and M2 = (Σ2, V2, E2) be two graphs.
The tensor product graph M1 × M2 is the graph (Σ1 ∩ Σ2, V1 × V2, E×) where
E× � {((u, u′), a, (v, v′)) | (u, a, v) ∈ E1 ∧ (u′, a, v′) ∈ E2}.

When clear from the context, we denote host graphs and their compo-
nents as H and as (ΣH , VH , EH) (and variations thereof). We adopt the
convention of denoting guests as G (and variations thereof) and writing
(ΣG, VG, EG,M,U , E , C) for the components of the guest G. We are now ready
to define the notion of loose graph simulation.

Definition 5. A loose graph simulation (LGS for short) of G in H is a subgraph
(ΣG ∩ ΣH , V G→H , EG→H) of G × H subject to the following conditions:

(LGS1) vertices of G in the must set occur in V G→H , i.e. for each u ∈ M there
exists u′ ∈ VH such that (u, u′) ∈ V G→H ;

(LGS2) vertices in the unique set are assigned to at most one vertex of H, i.e.
for each u ∈ U and all u′, v′ ∈ VH , if (u, u′) ∈ V G→H and (u, v′) ∈ V G→H

then u′ = v′;
(LGS3) vertices of H assigned to a vertex in the exclusive set cannot be assigned

to other vertices, i.e. for each u ∈ E, v ∈ VG and u′ ∈ VH , if (u, u′) ∈ V G→H

and (v, u′) ∈ V G→H then u = v;
(LGS4) for (u, u′) ∈ V G→H , there is a set in C(u) s.t. each of its elements

is related to an edge with source u′ and only such edges occur in EG→H .
Formally,

– for each (u, u′) ∈ V G→H there exists γ ∈ C(u) such that for all (u, a, v) ∈
γ it holds that ((u, u′), a, (v, v′)) ∈ EG→H for some v′ ∈ VH ;

– for each ((u, u′), a, (v, v′)) ∈ EG→H there exists γ ∈ C(u) s.t. (u, a, v) ∈ γ
and for each (u, b, w) ∈ γ it holds that ((u, u′), b, (w,w′)) ∈ EG→H for
some w′ ∈ VH .

(LGS5) the simulation preserves the connectivity w.r.t. nodes marked as must:
for each (u, u′) ∈ V G→H and v ∈ M if PG(u, v) 
= ∅ then there exists v′ ∈ VH

such that P(ΣG∩ΣH ,V G→H ,EG→H)((u, u′), (v, v′)) 
= ∅.
The domain of all LGSs for G and H is denoted as S

G→H .

As already mentioned at the end of Definition 2, the definition of LGS
attributes a semantics for the must, unique, exclusive sets and the choice func-
tion. Regarding the unique set, Condition LGS2 requires that every vertex of
the guest in this set to be mapped by at most one element of the host. Similarly,
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Fig. 2. An LGS (center) between a guest (left) and a host (right).

Condition LGS3 requires the vertices of the host paired in the LGS with a node
of the exclusive set to be only paired with that node. Condition LGS4 defines
the semantics of the choice function: given a pair of vertices (u, u′) ∈ V G→H ,
it requires to select at least one set from C(u). The edges of these selected sets
(and only these edges, as stated by the second part of the condition) must be
paired in the LGS to edges in H with source u′. This condition can be seen as a
generalization of the second condition of graph simulations (Definition 11) that
requires all outgoing edges from u to be in relation with outgoing edges of u′.

Condition LGS1 and LGS5 formalise the constraints attached to must nodes:
the first condition imposes that every vertex in this set must appear in the LGS,
while the second condition requires that, for each (u, u′) ∈ V G→H , each vertex
in the must set reachable in the guest from u is also reachable in the LGS, with
a path starting from (u, u′).

Example 2. Figure 2 shows a guest and its loose graph simulation over a host.
In this example M = {m} and U = E = ∅. Moreover, the choice function is
linear, i.e. for each vertex u, C(u) contains a set {e} for each edge in out(u) and
∅ whenever out(u) = ∅, formally C = λx.{{e} | e ∈ out(x)} ∪ {∅ | out(x) = ∅}.
LGSs of this guest represents paths (e0, e1, . . . , en) of arbitrary length in the host
such that ∀i < n σ(ei) = a and σ(en) = b. The guest is therefore similar to the
regular language a � b and a LGS identifies paths in the host labelled with words
in this language.

Proposition 1. Let G be a guest with choice function C defined as λx.{out(x)},
let H be a host and let S = (ΣG ∩ ΣH , V G→H , EG→H) be a subgraph of G × H.
If S satisfies Condition LGS4 then it also satisfies Condition LGS5.

Proof. Let C(v) = {out(v)} for all v ∈ VG. If (u, u′) ∈ V G→H then Condition
LGS4 requires that for all (u, a, v) ∈ out(u) there exists v′ such that (v, v′) ∈
V G→H and ((u, u′), a, (v, v′)) ∈ EG→H . Coinductively, since the same will hold
for every of those pair (v, v′), it follows that whenever there is a path in G from
u to a node m ∈ M in the must set, then there must be a path in S from (u, u′)
to a pair of vertices (m,w), where w ∈ VH . Hence, Condition LGS5 holds. �
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3 An Algebra for Guests

Guests are used to specify the patterns to look for inside a host; hence they
should be easy to construct and to understand. To this end, besides the graphical
notation described in Sect. 2, in this section we introduce an algebra for guests
which allows us to construct them in a compositional way.

Definition 6. A guest is empty whenever it has no vertexes. A guest with only
one vertex and no edges is a unary guest and is denoted a

pA � (∅, {p}, ∅, {p | ∃ ∈ A}, {p | ! ∈ A}, {p | ! ∈ A}, {p → {∅ | ∅ ∈ A}})

where p is the only vertex and A ⊆ {∃, !,
!
, ∅} state if p is respectively in M, U ,

E or if ∅ ∈ C(p). For α a name, P and Q unary guests, the arrow operator from
P to Q α is defined as

P
α−→ Q � ({α}, {p, q}, {(p, α, q)},MP ∪ MQ,UP ∪ UQ, EP ∪ EQ, C→)

C→ � λx.

⎧
⎪⎨

⎪⎩

cP ∪ {{(p, α, q)}} ∪ cQ if p = q ∧ x = p

cP ∪ {{(p, α, q)}} if p 
= q ∧ x = p

cQ if p 
= q ∧ x = q

A guest is called elementary whenever it is empty, unary, or the result of the
arrow operator.

For example, a node p with only a self loop labelled α can be expressed with
the term p

α−→ p. Besides the elementary guests, the algebra is completed by
introducing two binary operators used to combine guests.

Definition 7. Let G1 and G2 be two guests. Their addition is the guest:

G1 ⊕ G2 � (Σ1 ∪ Σ2, V1 ∪ V2, E1 ∪ E2,M1 ∪ M2,U1 ∪ U2, E1 ∪ E2, C⊕)

where the choice function C⊕ is defined as

C⊕ � λx.

⎧
⎪⎨

⎪⎩

C1(x) ∪ C2(x) if x ∈ V1 ∧ x ∈ V2

C1(x) if x ∈ V1

C2(x) if x ∈ V2

The multiplication of G1 and G2 is the guest:

G1 ⊗ G2 � (Σ1 ∪ Σ2, V1 ∪ V2, E1 ∪ E2,M1 ∪ M2,U1 ∪ U2, E1 ∪ E2, C⊗)

where the choice function C⊗ is defined as follows

C⊗ � λx.

⎧
⎪⎨

⎪⎩

{γ1 ∪ γ2 | γ1 ∈ C1(x) ∧ γ2 ∈ C2(x)} if x ∈ V1 ∧ x ∈ V2

C1(x) if x ∈ V1

C2(x) if x ∈ V2
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Notice how addition and multiplication operators differ only by the definition
of the choice function for vertices of both G1 and G2. In the case of addition,
the resulting choice function is the union of the two choice function C1 and C2,
whereas for the multiplication, given a vertex v ∈ V1 ∩ V2, every set of C⊗(v) is
the union of a set in C1(v) and one in C2(v).

Proposition 2. The operations ⊕ and ⊗ form an idempotent commutative
semiring structure over the set of all guests.

The algebra offers a clean and modular representation of guests. Modularity, in
particular, allows us to combine queries as illustrated in the second part of this
work. Furthermore, guests admit normal forms.

Definition 8. A term G in the algebra of guests is in normal form whenever
G =

⊕
i∈I

⊗
j∈Ji

Gi,j where each Gi,j is an elementary guest.

Example 3. Consider the guest ({a, b}, {p, q}, {(p, a, p), (p, b, q)}, {p, q}, ∅, ∅,
{p �→ {{(p, a, p), (p, b, q)}}, q �→ {∅}}) shown in Fig. 1 on the right. This guest is
represented by the term q{∃,∅} ⊕ (p{∃}

a−→ p ⊗ p
b−→ q) which is in normal form.

Every guest admits a normal form.

Proposition 3. For G = (Σ,V,E,M,U , E , C) a guest, its normal form is:

⊕

v∈V

v{∃|v∈M}∪{!|v∈U}∪{!|v∈E}∪{∅|∅∈C(v)} ⊕
⊕

v∈V
γ∈C(v)

(
⊗

e∈γ

(

s(e)
σ(e)−−−→ t(e)

))

For G = (Σ,V,E,M,U , E , C) a guest, we write G[p/q] for the guest obtained
renaming p ∈ V as q 
∈ V . In particular, the set of edges and choice function are:

E[p/q] =

⎧
⎨

⎩
(u, a, v)

∣
∣
∣
∣
∣
∣

(u′, a, v′) ∈ E
(u′ 
= p =⇒ u = u′) ∧ (u′ = p =⇒ u = q)
(v′ 
= p =⇒ v = v′) ∧ (v′ = p =⇒ v = q)

⎫
⎬

⎭

C[p/q] = λx.

{
{S[p/q] | S ∈ C(x)} if x 
= p ∧ x 
= q

{S[p/q] | S ∈ C(p)} if x = q

4 The LGS Problem is NP-complete

In this section we analyse the complexity of computing LGSs by studying their
emptiness problem. Without loss of generality, we will now consider only guests
and hosts with the same Σ. In the following, let G = (ΣG, VG, EG,M,U , E , C)
and H = (ΣH , VH , EH) be a guest and a host respectively.

Definition 9. The emptiness problem for LGSs between G and H consists in
checking whether S

G→H = ∅.
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Proposition 4. Computing LGSs, as well as their emptiness problem, is in NP.

Proof. Let S = (Σ,V G→H , EG→H) be a subgraph of G × H. We will now prove
that there exists a polynomial algorithm w.r.t. the size of G and H that checks
whether S satisfies all the conditions of Definition 5. The satisfiability checking
of Condition LGS1 is in O(M × V G→H) since it is sufficient for every vertex in
the must set M to check whether there is a vertex of the host paired with it. For
similar reasons, Conditions LGS2 and LGS3 can also be checked in polynomial
time. Moreover, to check Conditions LGS4 it is sufficient to check, for each
(u, v) ∈ V G→H , whether there is γ ∈ C(v) s.t. γ ⊆ π1 ◦ out((u, v)) and if for
all u′ ∈ π1 ◦ out((u, v)) there exists γ ∈ C(v) s.t. u′ ∈ γ ⊆ π1 ◦ out((u, v)).
This can be done by a naive algorithm in O(VH × EG × (VG × EH + C × E2

G)).
Lastly, checking whether S satisfies Condition LGS5 requires the evaluation of
the reachability relation of G and S and therefore can be computed in O(V 3

G×V 3
H)

using the Floyd-Warshall Algorithm [11]. Since every condition can be checked
in polynomial time we can conclude that the LGS problem is in NP. �

4.1 NP-Hardness: Subgraph Isomorphisms via LGSs

We will now show the NP-hardness of the emptiness problem for LGSs by reduc-
ing the emptiness problem for subgraph isomorphism to it. The subgraph iso-
morphism problem requires to check whether a subgraph of a graph (host) and
isomorphic to a second graph (query) exists. Application of this problem can be
found in network analysis [15], bioinformatics and chemoinformatics [1,4].

Definition 10. Let H = (Σ,VH , EH) and Q = (Σ,VQ, EQ) be two graphs called
host and query respectively. There exists a subgraph of H isomorphic to Q
whenever there exists a pair of injections φ : VQ ↪→ VH and η : EQ ↪→ EH

s.t. σ(e) = σ ◦ η(e), φ ◦ s(e) = s ◦ η(e), and φ ◦ t(e) = t ◦ η(e) for each e ∈ EQ.

The subgraph isomorphism problem, as well as the emptiness problem associated
to it, is shown to be NP-complete by Cook [6]. Its complexity and its importance
makes it one of the most studied problem and multiple algorithmic solutions
where derived for it [4,7,27]. We will now show that the emptiness problem for
subgraph isomorphism can be solved using LGSs.

Proposition 5. Let H = (Σ,VH , EH) and Q = (Σ,VQ, EQ) be a host and a
query for subgraph isomorphism respectively. Moreover, let

G =
⊕

v∈VQ

v{∃!!}∪{∅|out(v)=∅} ⊕
⎛

⎝
⊗

e∈EQ

(

s(e)
σ(e)−−−→ t(e)

)
⎞

⎠

Then, there exists a subgraph of H isomorphic to Q iff there exists a LGS of G
in H, i.e. S

G→H 
= ∅.
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Proof. From the definition of G, its must, unique and exclusive sets, as well as
its choice function, are M = U = E = VQ and C = λx.{out(x)} respectively.
Suppose φ : VQ ↪→ VH and η : EQ ↪→ EH be two injections as in Definition 10.
Then the graph S = (Σ,V G→H , EG→H) where V G→H � {(u, u′) | u′ = φ(u)}
and EG→H � {((u, u′), a, (v, v′)) | (u′, a, v′) = η((u, a, v))} form a LGS for G.
Indeed, it satisfy Conditions LGS1 to LGS3, since φ is an injection. Moreover,
since η : EQ ↪→ EH is also an injection and for each edge e ∈ EQ it holds that
σ(e) = σ ◦ η(e), φ ◦ s(e) = s ◦ η(e) and φ ◦ t(e) = t ◦ η(e), S must be such that
for each (u, u′) ∈ V G→H and for each (u, a, v) ∈ out(u) there exists v′ such that
(v, v′) ∈ V G→H and ((u, u′), a, (v, v′)) ∈ EG→H . It follows that S is a subgraph
of G × H and Condition LGS4 is satisfied, since C(u) = {out(u)}. Moreover the
satisfaction of Condition LGS5 follows from Proposition 1. S is therefore a LGS
of G in H. Conversely, suppose that there is a LGS S = (Σ,V G→H , EG→H). Let
φ s.t. φ(u) = u′ ⇐⇒ (u, u′) ∈ V G→H and η s.t. η((u, a, v)) = (u′, a, v′) ⇐⇒
((u, u′), a, (v, v′)) ∈ EG→H . Since M = U = E = VQ and S is a LGS, it holds
that φ is an injection defined on the domain VQ. Moreover η is also an injection,
since C = λx.{out(x)} and S satisfies Condition LGS4, and together with the
hypothesis that S is a subgraph of G × H it must also hold that for each edge
e ∈ EQ σ(e) = σ ◦ η(e), φ ◦ s(e) = s ◦ η(e) and φ ◦ t(e) = t ◦ η(e). There exists
therefore a subgraph of H isomorphic to Q. �

b

b

a

a

a ∃!!

∃!!∃!!

∃!!

b

b

a

a

a

Fig. 3. A possible query for subgraph isomorphism (on the left) and its translation to
a guest for LGSs (on the right).

Note how the translation from subgraph isomorphism’s queries to guest for
LGSs defined in Proposition 5 is structure-preserving. Indeed, an example of this
can be seen in Fig. 3. This property is important since it makes defining LGSs’
guests to solve the subgraph isomorphism problem as intuitive as the respective
queries for it. This is also the case for other notions commonly used in the graphs’
pattern matching community. Moreover, since the translated guest is as intuitive
as the original query, this property strengthens the idea of using guests and LGSs
to represent and compute hybrid queries w.r.t. these notions.

From Propositions 4 and 5 it follows that:

Theorem 1. The emptiness problem for LGSs is NP-complete.
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5 Graph Simulations Are Loose Graph Simulations

Graph simulations are particular relations between graphs that are extensively
applied in several fields [8,10]. The graph simulation problem requires to check
whether a portion of a graph (host) simulates another graph (query).

Definition 11. A graph simulation of Q = (Σ,VQ, EQ) (herein query) in H =
(Σ,VH , EH) (herein host) is a relation R ⊆ VQ × VH such that:

– for each node u ∈ VQ there exists a node v ∈ VH such that (u, v) ∈ R;
– for each pair (u, v) ∈ R and for each edge e ∈ out(u) there exists an edge

e′ ∈ out(v) such that σ(e) = σ(e′) and (t(e), t(e′)) ∈ R.

Graph simulation existence can be decided in polynomial time [3,13]. Their
emptiness problem can be reduced to the emptiness problem for loose ones.

Proposition 6. Let H = (Σ,VH , EH) and Q = (Σ,VQ, EQ) be a host and a
query for graph simulation respectively. Moreover, let

G =
⊕

v∈VQ

v{∃}∪{∅|out(v)=∅} ⊕
⊗

e∈EQ

s(e)
σ(e)−−−→ t(e)

Then, there is a graph simulation of Q in H iff S
G→H 
= ∅.

Proof. From definition of G, its must, unique, exclusive sets and its choice func-
tion are M = VQ, U = E = ∅ and C = λx.{out(x)} respectively. Let R be a
graph simulations. The graph S = (Σ,V G→H , EG→H) where V G→H = R and
EG→H = {((u, u′), a, (v, v′)) | (u, u′), (v, v′) ∈ R, (u, a, v) ∈ EQ, (u′, a, v′) ∈ EH}
is a loose graph simulations for G. U = E = ∅ makes Conditions LGS2 and LGS3
always true, whereas the first condition of Definition 11, that requires all vertices
of VQ to appear in the first projection of R, makes Conditions LGS1 satisfied.
The second condition of Definition 11 requires that, given a pair (u, v) ∈ R, every
edge of out(u) is associated with one edge of out(v) with the same label and with
targets paired in R. Condition LGS4 is therefore satisfied. Lastly, the satisfaction
of Condition LGS5 follows from Proposition 1. S is therefore a loose graph simu-
lation of G in H. Conversely, suppose there exists a LGS S = (Σ,V G→H , EG→H).
Then V G→H is a graph simulation. The definition of must set M = VQ ensures
that each vertex of VQ must appear in the first projection of V G→H : the first
condition of Definition 11 is satisfied. Moreover, the definition of the choice func-
tion C = λx.{out(x)} and Condition LGS4 implies that for each (u, u′) ∈ V G→H

and for all (u, a, v) ∈ out(u) there exists v′ such that ((u, u′), a, (v, v′)) ∈ EG→H

and, since S is a subgraph of G×H, (v, v′) ∈ V G→H . Thus, the second condition
of Definition 11 holds and V G→H is a graph simulation. �

Example 4. Figure 4 shows a query for graph simulations and the equivalent
guest for loose graph simulations. As already seen in Sect. 4.1, the translation
preserve the structure of the graph.
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a

b ∃ ∃

a

b

Fig. 4. A possible query for graph simulation (on the left) and its translation in a guest
for loose graph simulations (on the right).

6 Regular Languages Pattern Matching

Regular languages defines finite sequences of characters (called words or strings)
from a finite alphabet Σ [14]. Although widely used in text pattern matching,
they are also used in graph pattern matching [2,20]. In this section we will
restrict ourselves to ε-free regular languages, i.e. regular languages without the
empty word ε [29]. This restriction is quite common, since the empty word is
matched by any text or graph and therefore it does not represent a meaningful
pattern.

Definition 12. Let Σ be an alphabet. ∅ is a ε-free regular language. For each
a ∈ Σ, {a} is a ε-free regular language. If A and B are ε-free regular language,
so are A · B � {vw | v ∈ P ∧ w ∈ Q}, A | B � A ∪ B, and A+ �

⋃
n∈N

An+1.

In [29] it is shown that every regular language without the empty string ε can be
expressed with the operations defined for ε-free regular languages. We will now
introduce the pattern matching problem for non-empty ε-free regular languages.
In the following let H = (Σ,VH , EH) and L be respectively a host and a ε-free
regular language such that L 
= ∅.

Definition 13. The emptiness problem for regular language pattern matching
(RLPM) consist in checking if there is a path ρ ∈ PH such that σ(ρ) ∈ L.

To solve this problem using LGSs we will use the equivalence between regular
languages and non-deterministic finite automata [26].

Definition 14. An NFA is a tuple, N = (Σ,Q,Δ, q0, F ) consisting of an
alphabet Σ, a finite set of states Q, an initial state q0, a set of accepting
(or final) states F ⊆ Q and a transition function Δ : Q × Σ → P(Q). Let
w = a0, a1, . . . , an be a word in Σ∗. The NFA N accepts w if there is a sequence
of states r0, r1, . . . , rn+1 in Q such that r0 = q0, ri+1 ∈ Δ(ri, ai) for i = 0, . . . , n,
and rn+1 ∈ F . With L(N) we denote the set of words accepted by N , i.e. its
accepted language.

Remark 1. Any non-empty regular language without ε can be translated to a
non-deterministic finite automaton (NFA) with one initial state (say q′

0), one final
state (say f) and s.t. in(q′

0) = ∅ and out(f) = ∅. Indeed, for N = (Σ,Q,Δ, q0, F )
any NFA s.t. L(N) 
= ∅ and ε /∈ L(N) define N ′ = (Σ,Q ∪ {q′

0, f},Δ′, q′
0, {f})

where:
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– for all a ∈ Σ, Δ′(q′
0, a) � Δ(q0, a) and Δ′(f, a) = ∅;

– for all q ∈ Q and a ∈ Σ, Δ′(q, a) � Δ(q, a) ∪ {f | F ∩ Δ(q, a) 
= ∅}.

By construction L(N) = L(N ′), in(q′
0) = ∅, and out(f) = ∅.

Proposition 7. Let N = (Q,Σ,Δ, q0, {f}) be a NFA where the initial state q0
does not have any incoming transitions and the only final state f does not have
any outgoing ones. Let H = (Σ,VH , EH) be a host. Let

G = q0{∃} ⊕ f{∃,∅} ⊕
⊕

q∈Q, a∈Σ,q′∈Δ(q,a)

(
q

a−→ q′
)

Then, there exists a path ρ ∈ PH in H s.t. σ(ρ) is accepted by N iff there exists
a loose graph simulation of G in H, i.e. S

G→H 
= ∅.
Proof. It follows from definition of acceptance that if there is (e0, . . . , en) ∈ PH

such that σ(ρ) is accepted by N then, there is a sequence

(p0, s(e0))
σ(e0)−−−→ (p1, s(e1))

σ(e1)−−−→ . . .
σ(en−1)−−−−−→ (pn, s(en))

σ(en)−−−→ (pn+1, t(en))

such that p0 = q0 and pn+1 = f ; for all i ∈ {1, . . . , n} t(ei−1) = s(ei); for
all i ∈ {0, . . . , n} pi+1 ∈ Δ(pi). Regard the sequence as a graph, say S, then
S ∈ S

G→H since S is a subgraph of G × H and G is constructed from N by
preserving its transition relation Δ. Conditions LGS1 to LGS3 hold since p0 = q0,
pn = f and U = E = ∅. Conditions LGS4 holds since {(pi, σ(ei), pi+1)} ∈ C(pi)
for any i ∈ {0, . . . , n} by construction. Conditions LGS5 holds since projecting
the graph to its first component yields a path from q0 to f . Representing G
requires space polynomial in the size of N . Conversely, if there is S ∈ S

G→H then
LGS5 ensures that there is a path ρ = (e0, . . . , en) in it such that π1 ◦ s(ρ) = q0
and π1 ◦ t(ρ) = f . It follows from definition of E that the path ρ is coherent with
Δ, i.e. ∀i ∈ {0, . . . , n} π1 ◦ t(ei) ∈ Δ ◦ π1 ◦ s(ei). Thus, the sequence of labels
σ(π2(ρ)) in the second projection of ρ ((π2 ◦ s(e0), σ(e0), π2 ◦ t(e0)), . . . , (π2 ◦
s(en), σ(en), π2 ◦ t(en))), is such that σ(π2(ρ)) is accepted by N . �

Example 5. Figure 5 shows a NFA and a guest identifying the same language.
These two objects have the same structure (states/nodes and transition/edges).

start

a

ba

b ∃ ∃a

ba

b

Fig. 5. A query for regular languages represented as an NFA (left) and as a LGS guest
(on the right). The accepted language is (ab)+.
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7 Subgraph Isomorphism with Regular Path Expressions

Many approaches found in literature define hybrid notions of similarities, “merg-
ing” classical ones such as GS, SGI and RLPM [2,9]. These and similar merges
are naturally handled by the modular definition of LGS guests. As an example,
we discuss subgraph isomorphism with regular languages (RL-SGI) [2].

Definition 15. Let Σ be a finite alphabet. A graph decorated with regular lan-
guages (over Σ) is a tuple (Σ,V,E,L) consisting of a set V of nodes, a set
E ⊆ V × V of edges and a labelling function L : E → REΣ decorating each edge
with a non empty ε-free regular language over Σ.

Definition 16 (RL-SGI). Let H=(Σ,VH , EH) be a host and Q=(Σ,VQ,
EQ,L) a graph decorated with regular languages. We say that there is a regular-
language subgraph isomorphism of Q into H iff there is a pair of injections
φ : VQ ↪→ VH and η : EQ ↪→ PH s.t. for each e ∈ EQ φ ◦ s(e) = s ◦ η(e),
φ◦ t(e) = t◦η(e), and σ ◦η(e) ∈ L(e). Vertexes of paths in η(EQ) cannot appear
in φ(VQ) except for their source and target, i.e.: ∀(e0, . . . , en) ∈ η(EQ) ∀i ∈
{1, . . . , n} s(ei) 
∈ φ(VQ).

RL-SGI can be seen as a hybrid notion between subgraph isomorphism and
RLPM. We will now show how to solve this problem with loose graph simulations
by defining a proper translation from its queries to guests.

Proposition 8. Let Q = (Σ,VQ, EQ,L) be a query for RL-SGI. Let

G =
⊕

v∈VQ
v{∃!!} ⊕ ⊗

e∈EQ
Ge[qe/s(e)][fe/t(e)]

such that Ge is the translation of the automaton Ne = (Σ,Ve, δe, qe, {fe}) for
L(e), as per Proposition 7 and where qe and fe are merged if s(e) = t(e). For
each host H = (VH , EH) there exists a RL-SGI of Q into H iff S

G→H 
= ∅.
Proof. It follows from definition of G that: (i) VQ is a subset of the vertices
of VG and M = U = E = VQ; (ii) for any v ∈ VQ, any γ ∈ C(v), and any
e ∈ out(v) of Q, there is exactly one edge in γ that is induced by a transition in
Ne Similarly to the proof of Proposition 5, Conditions LGS1 to LGS3 together
with the first property ensure that each LGS over G corresponds to an injection
w.r.t VQ. It follows from the second property, Proposition 7, Conditions LGS4
and LGS5 that every LGS over G contains, for each e ∈ EQ a path whose labels,
starting and ending nodes lie in L(e) and VQ × VH , whereas all other vertices
are in (VG \ VQ) × VH . Then, S

G→H 
= ∅ iff there are RL-SGIs of Q into H. �

Example 6. Figures 6 and 7 show a query for RL-SGI and its translation as a
LGS guest. As illustrated by Proposition 8 and Fig. 7, translations are obtained
modularly: following Sects. 4.1 and 6, the first step is to represent nodes and
edges of a RL-SGI query in the guests for the SGI and RLPM queries, respec-
tively; the second is to compose them via the guest algebra.
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u

v w

bb

(a|b)c+

b

a+

v:∃!!
∃ ∃

w:∃!!

∃

u:∃!!
∃

∃

∃

∃

a

b

c

c

b

b
b

a

a

a a

Fig. 6. A RE-SGISO query (left) and simple guests required to encode it (right). Ver-
tices with the same name are highlighted by dashed edges between them.

v:∃!! w:∃!!

u:∃!!

a

b

c

c
b

b

b

a
a

a

a

Fig. 7. A guest obtained via multiplication and addition operator from the guest in
Fig. 6 (right) and equivalent to the RE-SGISO query in Fig. 6 (left).

8 A Polynomial Fragment of LGSs

RLPM and GS are two well-known problems for graph pattern matching and
they both admit polynomial time algorithms. Since the emptiness problem for
LGSs is NP-complete, we are interested in studying fragments of LGSs that are
solvable in polynomial time yet expressive enough to capture the RLPM and
GS problems. The class of simulation problems for guests whose unique and
exclusive sets are empty enjoys this property.
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Fix G = (ΣG, VG, EG,M,U , E , C) and H = (ΣH , VH , EH). If U and E are
empty then, LGSs for G and H are closes under unions hence the union

⋃
S

G→H

of all LGSs correspond to the greatest LGS. Observe that greatest LGSs may
not exist in the general case.

Proposition 9. Let G be a guest such that U = E = ∅. Then
⋃

S
G→H is a

LGS.

Figure 8 shows an algorithm for computing the greatest LGS provided that
U and E are empty. The algorithm runs in polynomial time and can be readily
adapted to compute the greatest LGSs included in a given subgraph of G × H.
It follows that the emptiness problem admits a polynomial procedure.

Fig. 8. Algorithm for computing the greatest loose graph simulation.

Theorem 2. Let H be a host and G be a guest such that U = E = ∅. Then, the
maximal LGS exists and is computed in polynomial time.

Proof. The algorithm in Fig. 8 starts by computing G × H and saving it
to (Σ,VS , ES) (Line 1). Afterwards, the do-while loop (Lines 2–11) proceeds
removing nodes and edges of (Σ,VS , ES) that do not satisfy Conditions LGS4
and LGS5. Lastly (Lines 12–15), Condition LGS1 is checked and, if satisfied,
(Σ,VS , ES) is returned, otherwise there is no greatest LGS and the algorithm
terminates returning false. The algorithm runs in polynomial time, since Condi-
tions LGS1, LGS4 and LGS5 can be checked in polynomial time (Proposition 4)
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and the loop will be performed at most |VS | + |ES | times. Conditions at Lines 6
and 8 check that edges and nodes satisfy Conditions LGS4 and LGS5. If any
of these does not hold, the temporary copy of (Σ,VS , ES), i.e. (Σ,VS′ , ES′),
is updated removing an edge or a vertex. Thus, VS 
= VS′ or ES 
= ES′ iff
(Σ,VS , ES) does not satisfy Conditions LGS4 and LGS5. After the do-while loop,
(Σ,VS , ES) is a (possibly empty) relation that satisfies Conditions LGS4 and
LGS5. Thus it remains only to check Condition LGS1 and this is done at Line 15:
if the check fails there is no greatest LGSs otherwise it is the graph (Σ,VS , ES)
returned by the algorithm. Assume otherwise that there is a LGS (Σ,VM , EM )
s.t. VS ⊂ VM or ES ⊂ EM . Then in (Σ,VM , EM ) there is a node or an edge
that satisfies LGS4 and LGS5 and is in G × H \ (Σ,VS , ES). Since it satisfies
LGS4 and LGS5 it cannot be removed by the loop hence it is in (Σ,VS , ES) — a
contradiction. �

9 Conclusions and Future Work

In this paper we have introduced loose graph simulations, which are relations
between graphs that can be used to check structural properties of labelled hosts.
LGSs’ guests can be represented using a simple graphical notation, but also
compositionally by means of an algebra which is sound and complete. We have
shown formally that computing LGSs is an NP-complete problem, where the NP-
hardness is obtained via a reduction of subgraph isomorphism to them. Moreover,
we have shown that many other classical notions of graph pattern matching are
naturally subsumed by LGSs. Therefore, LGSs offer a simple common ground
between multiple well-known notions of graph pattern matching supporting a
modular approach to these notions as well as to the development of common
techniques.

An algorithm for computing LGSs in a decentralised fashion and inspired to
the “distributed amalgamation” strategy is introduced in [16]. Roughly speak-
ing, the host graph is distributed over processes; each process uses its partial
view of the host to compute partial solutions to exchange with its peers. Dis-
tributed amalgamation guarantees each solution is eventually found by at least
one process.

The same strategy is at the core of distributed algorithms for solving prob-
lems such as bigraphical embeddings and the distributed execution of bigraphical
rewriting systems [17,19,22]. Bigraphs [12,21,23] have been proved to be quite
effective for modelling, designing and prototyping distributed systems, such as
multi-agent systems [18]. This similarity and the ability of LGS to subsume sev-
eral graph problems suggests to investigate graph rewriting systems where redex
occurrences are defined in terms of LGSs.

Another topic for further investigation is how to systematically minimise
guests or combine sets of guests into single instances, while preserving the seman-
tics of LGSs. Moreover, following what already done in Sect. 8, the complexity
of various fragments of LGSs still needs to be addressed, eg. defining a fragment
that is fixed-parameter tractable. Results in these directions would have a positive
practical impact on applications based on LGSs.
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