
Synthesizing Executable PLC Code for Robots
from Scenario-Based GR(1) Specifications

Daniel Gritzner(B) and Joel Greenyer

Fachgebiet Software Engineering, Leibniz Universität Hannover,
Welfengarten 1, 30167 Hannover, Germany

{daniel.gritzner,greenyer}@inf.uni-hannover.de

Abstract. Robots are found in most, if not all, modern production facil-
ities and they increasingly enter other domains, e.g., health care. Robots
participate in complex processes and often need to cooperate with other
robots to fulfill their goals. They must react to a variety of events, both
external, e.g., user inputs, and internal, i.e., actions of other components
or robots in the system. Designing such a system, in particular developing
the software for the robots contained in it, is a difficult and error-prone
task. We developed a formal scenario-based modeling method which sup-
ports engineers in this task. Using short, intuitive scenarios engineers can
express requirements, desired behavior, and assumptions made about the
system’s environment. These models can be created early in the design
process and enable simulation as well as an automated formal analy-
sis of the system and its components. Scenario-based models can drive
the execution at runtime or can be used to generate executable code,
e.g., programmable logic controller code. In this paper we describe how
to use our scenario-based approach to not only improve the quality of
a system through formal methods, but also how to reduce the manual
implementation effort by generating executable PLC code.
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1 Introduction

Robots are found in many domains, e.g., manufacturing, transportation, or
health care. Especially in manufacturing they are ubiquitous. Modern produc-
tion systems implement complex processes, often requiring the cooperation of
many robots to achieve their desired goals. Each robot may even be involved in
several concurrent processes, making the design of its behavior a difficult and
error-prone task. The robot has to react to a multitude of events, both external
events, e.g., sensor inputs, and internal events, i.e., actions of other robots in the
system. The inherent complexities of modern manufacturing processes make it
difficult to develop robot software which is free of defects, that is, which makes
the robot act or react properly under all possible circumstances. The specifi-
cation, from which an implementation is derived, may be inconsistent and the
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manual implementation thereof itself may introduce further defects. The task
of designing such systems becomes even more difficult when considering non-
functional requirements such as reducing the system’s energy consumption.

We developed a formal, yet still intuitive scenario-based specification app-
roach to support engineers with the difficult design of such systems. Our app-
roach uses short scenarios to model guarantees (goals, requirements, or desired
behavior) and assumptions made about the environment. Scenarios are sequences
of events, similar to how engineers describe requirements to each other, e.g.,
“When A and B happen, then component C1 must do D, followed by C2 doing
E.” These sequences are used to intuitively describe when events or actions may,
must, or must not occur [1,14]. The formal nature of scenario-based specifica-
tions allows applying powerful analysis techniques early in the design process.
Through simulation and controller synthesis, which, if successful, can prove that
the requirements defined in the specification are consistent, defects can be found
and fixed early during development. The same techniques used for simulation
can be used to directly execute a specification at runtime [15] and the techniques
used for controller synthesis can be used to automatically generate executable
code. This reduces manual implementation effort significantly, thus mitigating
some of the cost of writing a formal specification. With mature enough tool
support, an overall reduction in development costs could even be achieved.

The contribution of this paper is an approach for generating executable code
for Programmable Logic Controllers (PLCs) from aforementioned scenario-based
specifications. This enables engineers to use formal methods such as checking if
all requirements are consistent to ensure the correctness of the specification
and to generate code which is correct by construction. A PLC program must
handle two concerns: (1) it must correctly decide when to perform which atomic
action, e.g., when to move which robot arm to which location, and (2) it must
implement each atomic action, e.g., moving a specific robot arm to a specific
location. Our approach generates code handling the first concern, leaving only
the manual implementation of atomic actions to engineers. From the point of
view of Model Driven Architecture [20], a scenario-based specification would be
a Platform Independent Model of a system and the generated PLC code, after
an implementation of each atomic action has been added, would be a Platform
Specific Model of the same system. The latter can then be used directly as the
software for an actual physical version of the specified system.

The remainder of this paper is structured as follows. Section 2 introduces an
example used for explanation and discussion throughout the paper. Sections 3
and 4 introduce scenario-based modeling and controller synthesis. Section 5
builds on these foundations to describe how to generate PLC code from such
a controller. The paper finishes with related work and a conclusion in Sects. 6
and 7.

2 Example

To explain and discuss our approach we use a production system example, shown
in Fig. 1. It models a typical manufacturing process. Blank work items arrive via
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a feed belt, which has a sensor telling a controller about the arrival of new work
items. These blanks are then picked up by a robot arm and put into a press,
which will press the blanks into useful items. These pressed items are then picked
up by another robot arm which will put the items on a deposit belt which will
transport the items to their next destination.

Fig. 1. A production system consisting of two robot arms, each adjacent to a conveyor
belt, a press, and a software-based controller sending instructions to other components
as well as processing their sensor inputs.

The specification we use for this example models the following guarantees G
and assumptions A:

G1 When a new blank arrives, the feed arm must pick it up when possible.
G2 After picking up an item, the feed arm must move to the press, release the

item into the press (when the press is ready), and finally move back to the
feed belt.

G3 When an item is put into the press, the press must start pressing.
G4 When the press finishes, the deposit arm must pick the pressed item up

when possible.
G5 After picking up an item, the deposit arm must move to the deposit belt,

release the item onto the deposit belt, and finally move back to the press.
A1 The feed arm is able to pick up every blank before the next one arrives.
A2 After being instructed to press an item, the press will eventually finish.
A3 After a robot arm is instructed to move to a new location, it will eventually

arrive at the new location.
A4 After a robot arm is instructed to pick up an item, it will eventually pick

up that item.
A5 After a robot arm is instructed to release an item, it will eventually release

that item.

Guarantees G1–G5 define the system’s desired behavior and requirements
it must fulfill as described at the beginning of this chapter. They also include
additional conditions, e.g., “[...] the feed arm must pick it up when possible.” in
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G1. These conditions express additional structural conditions required to fulfill
certain goals. In the same example, G1, a new blank may arrive while the feed
arm is still delivering the previous blank or is still on its way back to the feed
belt. In these cases the feed arm must only be instructed to pick up the newly
arrived blank when it is back at the press.

The assumptions specify what the engineers assume is true about the environ-
ment the system will operate in. As an example, A1 specifies that the feed arm
is able to pick up arriving blanks more frequently than the frequency of arrival
of new blanks. This assumption implies that no queue of unprocessed blanks
forms at the feed belt. Assumptions A2–A5 specify that robot arms and the
press will eventually finish their tasks after being instructed to perform a certain
action. These assumptions are actually important to ensure that the specifica-
tion is realizable, since they basically specify that system is operating normally,
i.e., the components are working as intended. A correctly working system only
needs to fulfill its guarantees as long as all assumptions hold.

3 Scenario-Based Modeling

In this section we introduce our scenario-based modeling approach, which we use
to write formal specifications. It is based on a DSL we developed for modeling
scenarios, called the Scenario Modeling Language (SML) [16].

SML offers engineers an easy to use way to write formal, scenario-based spec-
ifications. It is a text-based variant of Life Sequence Charts [10,18], offering a
similar feature set with a few extensions. Listing 1 shows the specification of
our production system example. Comments next to each scenario indicate which
guarantee or assumption they represent. A scenario-based specification also con-
sist of a class model, called domain model, describing the different components of
the system and an instance thereof, an object model. The object model contains
a concrete instance for every physical component of the specified system.

A specification references a domain model (line 1) and has a name (line 2).
In our example the domain model contains classes such as RobotArm and Press.
These classes model each component type’s attributes and possible events it can
receive. Events can be either actions it should perform or sensor events it may be
notified of. Our production system example includes events such as a RobotArm
being told to pick up an item or the Controller being notified of the arrival of a
new blank. The specification defines which components are software-controllable
(line 4) with all other classes automatically being interpreted as uncontrollable,
also called environment-controllable. Non-spontaneous events (lines 5–13) are
events which cannot occur unless enabled, e.g., the event pressingFinished can-
not occur unless assumption A2 is active (lines 51–54) and is in a state in
which the second line is expected next. Other events, sent by uncontrollable
objects and being the initializing event of a scenario (e.g., blankArrived) can
occur spontaneously. This then triggers the creation of an instance of a scenario
called an active scenario. Active scenarios have one or more references to events
they expected next, called enabled events. When PressEventuallyFinishes (lines



Synthesizing Executable PLC Code for Robots 251

1 import ” . . / model/ p r oduc t i on c e l l . e core ”
2 spec i f icat ion Produ c t i o n c e l l S p e c i f i c a t i o n {
3 domain p roduc t i on c e l l
4 control lable { Cont ro l l e r }
5 non−spontaneous events {
6 Cont ro l l e r . pickedUpItem
7 Cont ro l l e r . arr ivedAt
8 Cont ro l l e r . r e l ea sed I t em
9 Cont ro l l e r . p r e s s i ngF in i shed

10 RobotArm . se tCar r i e s I t em
11 RobotArm . se tLocat ion
12 Press . setHasItem
13 }
14 collaboration FeedBeltBehavior {
15 stat ic role Cont ro l l e r c o n t r o l l e r
16 stat ic role ConveyorBelt f e edBe l t
17 stat ic role RobotArm feedArm
18 stat ic role Press pre s s
19
20 guarantee scenario BlankArrives { // G1
21 f e edBe l t −> c o n t r o l l e r . blankArrived ( )
22 wait [ feedArm . l o c a t i on == feedBe l t && ! feedArm . ca r r i e s I t em ]
23 urgent c o n t r o l l e r −> feedArm . pickUp ( )
24 }
25 guarantee scenario ArmDeliversItemToPress { // G2
26 feedArm −> c o n t r o l l e r . pickedUpItem ()
27 urgent c o n t r o l l e r −> feedArm .moveTo( pre s s )
28 feedArm −> c o n t r o l l e r . arr ivedAt ( pre s s )
29 wait [ ! p r e s s . hasItem ]
30 urgent c o n t r o l l e r −> feedArm . r e l e a s e I t em ()
31 feedArm −> c o n t r o l l e r . r e l ea sed I t em ()
32 urgent c o n t r o l l e r −> feedArm .moveTo( f e edBe l t )
33 }
34 . . . // new b l a n k s a r e p i c k e d up b e f o r e n e x t one a r r i v e s ( A1 )
35 }
36 collaboration PressBehavior {
37 stat ic role Cont ro l l e r c o n t r o l l e r
38 stat ic role RobotArm feedArm
39 stat ic role RobotArm depositArm
40 stat ic role Press pre s s
41
42 guarantee scenario Pre s sS ta r t sPr e s s i ng { // G3
43 feedArm −> c o n t r o l l e r . r e l ea sed I t em ()
44 urgent c o n t r o l l e r −> pre s s . s t a r tP r e s s i n g ( )
45 }
46 guarantee scenario PickUpPressedItem { // G4
47 pre s s −> c o n t r o l l e r . p r e s s i ngF in i shed ( )
48 wait [ depositArm . l o c a t i on == pre s s && ! depositArm . ca r r i e s I t em ]
49 urgent c o n t r o l l e r −> depositArm . pickUp ( )
50 }
51 assumption scenario Pres sEventua l l yF in i she s { // A2
52 c o n t r o l l e r −> pre s s . s t a r tP r e s s i n g ( )
53 s t r i c t eventually pre s s −> c o n t r o l l e r . p r e s s i ngF in i shed ( )
54 }
55 }
56 collaboration Depos itBeltBehavior {
57 . . . // d e p o s i t arm t r a n s p o r t s p r e s s e d i t e m s (G5 ) ; s i m i l a r t o G2
58 }
59 collaboration RobotArmBehavior {
60 dynamic role Cont ro l l e r c o n t r o l l e r
61 dynamic role RobotArm arm
62 dynamic role Location targe tLocat ion
63 stat ic role Press pre s s
64
65 assumption scenario ArmMovesToLocation { // A3
66 c o n t r o l l e r −> arm .moveTo(bind ta rge tLocat ion )
67 s t r i c t eventually arm −> c o n t r o l l e r . arr ivedAt ( ta rge tLocat ion )
68 s t r i c t committed arm −> arm . se tLocat ion ( ta rge tLocat ion )
69 }
70 . . . /∗ arm p i c k s up i t em (A4 ) and arm r e l e a s e s i t em (A5 ) ; b o t h s i m i l a r
71 t o A3 ∗/
72 }
73 }

Listing 1. Excerpt of a specification for our production system example; some scenarios
have been omitted for brevity
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51–54) is activated by a startPressing event, it will point to line 53, indicating
that this scenario waits for a pressingFinished event. When an event enabled in
an active scenario occurs, the reference to this enabled event advances to the
next event. When all references advance past the last event in a scenario, it
terminates.

Roles (e.g., lines 15–18) are used similarly to lifelines in sequence diagrams.
Static roles are bound when the system is initialized and dynamic roles are bound
when an active scenario is created. Binding a role means assigning an object from
the object model to this role. The abstraction through roles allows reusing the
same specification for different object models modeling different configurations
of the same type of system, e.g., production systems with varying numbers of
robots. In lines 60–69 the use of dynamic roles is shown. Any object of the
proper class from the object model can be bound to these roles. As an example,
when an object of class Controller sends the event moveTo to an object of class
RobotArm, an active instance of the scenario ArmMovesToLocation (lines 65–69)
is created. In this active scenario, the role controller is played by the object which
sent the initial event and the role arm is played by the object which received the
event. Dynamic roles can even be bound to parameters (line 66) or to an object
referenced by an object already bound to a role (not shown). Multiple copies of
the same scenario with different role bindings can be active concurrently.

Events use different keywords to enforce liveness and safety conditions.
Events flagged as committed, urgent, or eventually must not be enabled for-
ever. Committed and urgent events must occur immediately, allowing only other
committed or urgent events to occur beforehand. Committed events take prior-
ity over urgent events. An event which must occur eventually can occur at an
arbitrary time in the future, i.e., the system can choose to wait. Strict events
enforce a strict order. Events which occur out of order generally terminate a
scenario early by interrupting it. If line 22 in an active scenario is enabled and
blankArrived occurs (line 21; same active scenario), this active scenario is inter-
rupted. However, if at least one enabled event is strict, an interruption causes a
safety violation instead. Safety violations must never occur.

Additional keywords offer flow control. Wait is used to wait for a certain con-
dition to be satisfied before the next message is enabled. The keywords interrupt
and violation can be used to specify conditions, which are checked when the event
becomes enabled and may cause an interruption or a safety violation. If the condi-
tion is not satisfied, the next event is immediately enabled instead. Furthermore,
there are while (repeat an event sequence while a condition holds), alternative
(branching within a scenario), and parallel (concurrent event sequences). Col-
laborations are used to group scenarios together and do not have any semantic
implications beyond providing a scope for roles.

We implemented SML and algorithms for simulating and analyzing SML
specifications as a collection of Eclipse plug-ins called ScenarioTools. We
use the Eclipse Modeling Framework (EMF) [27] and leverages this to integrate
other powerful tools such as OCL [30] and Henshin [3]. This enables engineers
to enhance SML specification with tools they already are familiar with while
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still being able to use ScenarioTools’ simulation and analysis features, e.g.,
checking if a specification is realizable.

4 Controller Synthesis

In this section we give an overview of how controller synthesis works. We briefly
explain the play-out algorithm, which gives our specifications execution seman-
tics used for simulation, analysis, and controller synthesis, and how it induces a
state space. Furthermore, we briefly explain controller synthesis, that is, generat-
ing a strategy for the system to behave such that it fulfills a given specification.

4.1 Play-Out

The play-out algorithm [18,19] defines how scenarios can be interwoven into
valid event sequences. Basically, the algorithm waits for the environment to
choose an event, activates and progress scenarios accordingly, and then picks
a reaction which is valid according to all active scenarios. Environment events
can either be spontaneous events or enabled non-spontaneous events. They are
events sent by uncontrollable objects. When at least one system event with a
liveness condition, e.g., urgent, sent by a controllable object is enabled, play-
out will pick one of these events. It honors particular priorities such as picking
committed events first. In case all such events are flagged as eventually, the
algorithm may also choose to wait for further environment events. Events are
considered to be blocked if they would directly lead to a safety violation due to
the strictness of an enabled event. The play-out algorithm never picks blocked
events. A sequence of events sent by system objects enclosed by one environment
event on either end is called a super step.

For any given set of scenarios and a given object model the play-out algo-
rithm generally has multiple valid events to choose from at any point. It is
non-deterministic. This property induces a state space or graph as shown in
Fig. 2, an excerpt of the graph of our production system example (cf. Sects. 2
and 3). Each node represents a state, characterized by its active scenarios and
the attribute values of all objects. Every edge/transition represents an event.
While the edge labels in Fig. 2 seem to reference roles from the SML specifica-
tion, they actually reference objects from the object model. The events in such
a state graph are always concrete events sent from one object to another object
using concrete parameter values (if applicable).

Such a state space is actually a game graph. Each state is either controllable
by the system (= has only controllable outgoing transitions) or by the environ-
ment (= has only uncontrollable outgoing transitions). These two players play
against each other. The system tries to fulfill its guarantees infinitely often given
that the assumptions hold. More precisely, for every guarantee, it always tries to
reach states in which no liveness condition must be fulfilled and to reach them
via a sequence of events which do not cause a safety violation. The environment
aims for the opposite. It tries to fulfill all assumptions the same way the system



254 D. Gritzner and J. Greenyer

Fig. 2. Excerpt of a game graph induced by our example specification. Control-
lable/system events are represented by solid arrows. Uncontrollable events are rep-
resented by dashed arrows. Set-events, e.g., setLocation, have been omitted for brevity

fulfills the guarantees, but at the same time it tries to force the system to violate
at least one of the guarantees. This type of game is called a GR(1) game. We
impose an additional goal on the system, in particular we enforce the condition
that each super step must be finite to ensure that the system will eventually be
able to react to external events from the environment again.

4.2 Synthesis

Our controller synthesis is an implementation of Chatterjee’s attractor-based
General Reactivity of rank 1 (GR(1)) game solving algorithm [9]. A GR(1) con-
dition is based on assumptions and guarantees. Formally, as Linear Temporal
Logic [25] formula, it is

(∧
i

�♦ai

)
=⇒

⎛
⎝∧

j

�♦gi

⎞
⎠ (1)

with ai = “assumption i is satisfied” and gj = “guarantee j is satisfied”.
Informally, this formula is true iff at least one assumption can only be fulfilled
finitely often (i.e., goal states of this assumption are only visited a finite number
of times in any infinite execution of the system) or all guarantees can be fulfilled
infinitely often.

We map our specifications to a GR(1) condition by mapping active assump-
tion scenarios to assumptions ai and by mapping active guarantee scenarios to
guarantees gj . The goal states ai of an active assumption scenario Sc are all
those states in which Sc has no liveness condition to fulfill and has never been
violated (tracked via a Boolean flag). Guarantee scenarios are mapped analo-
gously. Additionally, we introduce an extra guarantee whose goal states are all
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environment controlled states to ensure that all super steps are finite for well-
separated specifications. In a well-separated specification [24], the system cannot
force the environment into a violation of the assumptions by any action it takes.
Well-separation is a desirable property of a good specification.

Chatterjee’s aforementioned game solving algorithm uses the assumptions’
and guarantees’ goal states to calculate attractors. Attractors of a condition are
all states from which a player can guarantee reaching a goal state of this condi-
tion. A system attractor of gj is a state from which the system can ensure to visit
a goal state of gj regardless of the environment’s behavior. Chatterjee’s algorithm
iteratively removes environment dominions from the game graph. Environment
dominions are subsets of the game graph in which the environment can fulfill
all assumptions but the system is unable to fulfill at least one of the guarantees.
Environment dominions are identified by finding states which are not system
attractors for at least one gj . Using the environment attractors of all ai, Chat-
terjee’s algorithm determines if the environment can fulfill all assumptions in
the subgraph defined by the non-attractor states of aforementioned gj . These
iterations are performed until the game graph cannot be reduced further.

The states retained after the algorithm finishes are called winning states.
They contain a strategy in which the system can guarantee to fulfill the GR(1)
condition defined by all assumptions and guarantees. If the initial state of the
game graph is a winning state, the specification is realizable, i.e., the requirements
and behavior defined by the scenarios are consistent. Using the same attractor
approach, we can extract a strategy (also: controller) from the winning states. A
strategy is similar to a game graph but contains exactly one outgoing transition
for each controllable state (Fig. 2 happens to be a strategy). It deterministically
specifies what the system must do for any valid environment. These strategies
serve as the basis for generating Structured Text to execute on a PLC.

5 Generating Executable Code

In this section we describe how to generate Structured Text from a synthesized
controller which is correct by construction. A synthesized controller contains
some events which are only necessary for defining and checking a GR(1) condition
but which serve no purpose in the generated PLC code. Thus, we explain a
pre-processing step of the controller to reduce it to events of interest for code
generation. After that, we describe how to generate executable PLC and finish
the section with a discussion of possible extensions to our approach.

5.1 Pre-processing the Controller

Figure 3 shows an excerpt of a synthesized controller including a setLocation
event which is required to be able to express conditions such as the wait condition
in line 48 of Listing 1. However, this event is not useful for code generation
and should be removed, as shown in Fig. 2. In general, expert knowledge of the
domain is necessary to identify events to remove and thus an engineer should be
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able to provide a list of such events. A tool can still provide helpful suggestions
for removal based on heuristics, though. We propose two heuristics, (1) events
sent by uncontrollable objects to other uncontrollable objects, and (2) set-events.
Either of these two heuristics would be sufficient to propose the proper list of
events to remove to the engineer in our example specification. When removing
events, transitions have to be updated, such as the outgoing transition of state
150 in Fig. 3 which must point directly to state 6 after the removal of 151, which
is no longer necessary after removing setLocation(*).

Fig. 3. Variant of Fig. 2 including a setLocation event previously omitted.

In Structured Text, components are controlled by setting the appropriate
input attributes of function blocks, e.g., a block representing a specific robot arm
of the system, and waiting for the output attributes to be set to values signaling
that the desired action has been performed. The paradigm is: a component is
instructed to do something (setting of input attributes) and it signals when it
is done (setting of output attributes). In our approach, we adopt this paradigm
by having the engineer define event pairs which correspond to “do X” and “X
is done”. Such a pair is shown in Fig. 2: moveTo(press) (transition from 5 to 6)
and arrivedAt(press) (transition from 6 to 381; also outgoing transition of 7).
These event pairs are characterized by a controllable object S (here: controller)
sending an event to an uncontrollable object E (here: feedArm), instructing E
to perform an action (here: moveTo(press)). Later, E signals back to S that it
is now done performing this action. Again, heuristics can be used to support
the engineer in defining these pairs. We observed that these pairs often occur in
adjacent lines in scenarios, e.g., lines 27–28 and 30–31 in Listing 1. These event
pairs are necessary in the next step, the actual code generation.

5.2 Generating Structured Text

We use the pre-processed controller and event pair definitions provided by the
engineer to generate Structured Text which is executable on PLCs. For simplic-
ity, we assume that there is exactly one controllable object in the system, e.g., the
controller shown in the center of Fig. 1. Our generated code consists of multiple
state machines. We translate the pre-processed controller to one state machine
representing the controllable object. We call this the primary state machine, as it
governs the whole process: it tells each component, via the other state machines,
when to perform which action. We furthermore generate one state machine for
each uncontrollable object which receives events, i.e., represent components hav-
ing to perform an action. These state machines, called secondary state machines,
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1 CASE controllerState OF // primary state machine

2 0:

3 // idle

4 1:

5 ... // omitted for brevity

6 5:

7 feedArmState := 1;

8 controllerState := 6;

9 6:

10 IF feedBelt_controller_blankArrived THEN

11 feedBelt_controller_blankArrived := FALSE;

12 controllerState := 7;

13 ELSIF feedArm_controller_arrivedAt_press THEN

14 feedArm_controller_arrivedAt_press := FALSE;

15 controllerState := 381;

16 END_IF

17 7:

18 ... // omitted for brevity

19 END_CASE

Listing 2. Generated PLC code (Structured Text) of the primary state machine

are much simpler. They consist of an idle state, which is their initial state, and
one additional state for each action that must be performed. Listings 2 and 3
show examples of the generated code.

Events sent by uncontrollable objects are mapped to Boolean variables, e.g.,
feedBelt controller blankArrived which corresponds to the sensor event triggered
by the arrival of a new blank item. These variables are used by the primary
state machine to decide when to switch to which state (lines 10–16 in Listing 2).
This state machine instructs the secondary state machines to perform actions as
called for by the synthesized controller, e.g., lines 7–8 correspond to the transition
from state 5 to 6 in Fig. 2. The previously defined event pairs are used to gener-
ate this code. Based on the knowledge that controller→feedArm.moveTo(press)
and feedArm→controller.arrivedAt(press) are a pair, line 7 can be generated to
instruct the feed arm’s state machine (Listing 3) to switch to the proper state
to perform this action. The same pair definition is used to generate line 9 in
the secondary state machine, in which the feed arm informs the controller via
a Boolean variable that is done performing the desired action. This separation
into primary and secondary state machines allows any arbitrary combination of
actions to be performed concurrently by different components.

Separating the generated state machines into different code files has proven to
be a good practice when regeneration of the PLC code is a concern. By keeping
state machines separate and the order of states in the secondary state machines
deterministic and consistent, only the (fully generated) primary state machine
has to be replaced after regenerating the PLC code. More elaborate changes
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1 CASE feedArmState OF // secondary state machine for feed

arm

2 0:

3 // idle

4 1:

5 // controller ->feedArm.moveTo(press)

6 feedArmFB.xMoveRelExecute := TRUE; // perform

example action

7 IF feedArmFB.xFunDone THEN // is example action

done?

8 feedArmFB.xMoveRelExecute := FALSE; // clean -

up after example action

9 feedArm_controller_arrivedAt_press := TRUE;

10 feedArmState := 0;

11 END_IF

12 2:

13 // controller ->feedArm.moveTo(feedBelt)

14 ... // omitted for brevity

15 END_CASE

Listing 3. Generated PLC code (Structured Text) of a secondary state machine

to the model, such as adding or removing actions components must perform,
require some manual migration effort when regenerating code.

The primary state machine is fully generated and does not need to be mod-
ified. The secondary state machines are however actually only stubs after gen-
eration. Listing 3 shows an example after an engineer manually added the code
in lines 6 and 8 and the condition in line 7. In general, after generating the
Structured Text from a synthesized controller, each state in the secondary state
machines contains some boiler plate code, in particular the if-statement with an
empty condition but a body that already sets the appropriate Boolean and state
variables (lines 9–10), and some comments telling the engineer which atomic
action should be performed in this state. These stubs can easily be extended by
an engineer by setting and checking the inputs and outputs of the appropriate
function block. The proper function block definitions, as well as any initializa-
tions, have to be added manually as they are platform-specific. Additionally,
code for checking sensor events which are not part of an event pair, e.g., when
to set feedBelt controller blankArrived to TRUE, has to be added manually.

When generating PLC code from Listing 1 and using rotations at varying
directions and speeds of a single axis (one for each component, i.e., both robot
arms and the press) to represent actions such as movement or picking up a work
item, 59 lines of code had to be written manually, 9 lines of code had to be
modified (conditions which check whether an action has been performed suc-
cessfully), and 1355 lines of code were generated automatically. While this is
not an exhaustive evaluation, these numbers already point towards a significant
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reduction in the required manual implementation effort. In particular, the com-
plex interleaving of concurrent actions and events is fully generated.

5.3 Extensions

We assumed that there is only one controllable object in the system. As an exten-
sion to support multiple controllable objects, i.e., multiple software controllers,
we are looking into algorithms to create multiple distributed controllers which
automatically synchronize with each other when necessary.

Event pairs are defined during pre-processing. This implies that only the suc-
cess case, i.e., the action can actually be performed, can be modeled. Instead,
defining a mapping from controllable events (instructions) to sets of uncontrol-
lable events (outcomes of the instructions) can easily rectify this. Different out-
comes for each action can be defined and the specification can include appropri-
ate reactions for each possible outcome.

By including checks of the Boolean variables of environment events, which are
not expected to occur in a given state of the primary state machine, violations
of the assumptions can be detected. These could be used to put the system into
an emergency state which performs a shut down procedure.

6 Related Work

There exists previous work on synthesizing controllers from LSC/SML-style sce-
narios [6,8,17,29], and other forms of scenarios [22,31]. Most of these approaches
produce finite state controllers or state machines as output, from which code can
be generated. Some consider code generation from such synthesized controllers
in particular for robotics/embedded applications [4,21].

The novelty of our synthesis procedure w.r.t. to the above is, first, that
it supports scenario-based specifications with a greater expressive power—
assume/guarantee specifications with multiple liveness objectives (GR(1)). Sec-
ond, we describe a scenario-based modeling and code generation methodology
that specifically targets the typical structure and nature of PLC software.

There is work on generating PLC code from state machines [26] or Petri
nets [12,28], and formal methods are used also for verifying PLC code [5,13].

Other work considers synthesis and code generation, some specifically for
robotics applications, based on temporal logic specifications such as LTL and
its GR(1) fragment [2,7,11,23]. In contrast to temporal logics based approaches,
LSCs/SML aim to provide a more intuitive language that is easier to use.

In previous own work, we considered the direct execution of SML specifica-
tions as scenarios@run.time [15]. Here, the scenarios are executed without the
prior synthesis of a finite-state controller. Such an approach has advantages and
disadvantages. For example, the prior synthesis does not only detect specifica-
tion flaws, but a synthesized controller can also contain the solution for resolving
issues related with under-specification. On the other hand, controller synthesis,
due to its computational complexity, may not be possible for larger specifica-
tions, in which case direct execution is a valuable option.
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7 Conclusion

In this paper we presented an approach for generating Structured Text exe-
cutable on PLCs commonly found in the industry. We generate this code from
scenario-based specifications written in an intuitive DSL we developed. Using
this DSL, called Scenario Modeling Language (SML), engineers can easily define
requirements, desired behavior, and environment assumptions of a system. These
are defined in the form of assumption and guarantee scenarios, which have to be
fulfilled infinitely often, i.e., SML specifications express GR(1) conditions, giving
engineers a powerful class of conditions to express their goals in. The generated
code, which is correct by construction, uses multiple state machines to separate
the decision “when to perform which atomic action” from the implementation
of each atomic action. After code generation, engineers only need to implement
the atomic actions, with their complex interleaving into an implementation of
the desired process having already been generated.
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