
Introduction of an OpenCL-Based Model
Transformation Engine

Tamás Fekete(B) and Gergely Mezei

Budapest University of Technology and Economics, Budapest, Hungary
{fekete,gmezei}@aut.bme.hu

Abstract. As model-driven engineering (MDE) became a popular soft-
ware development methodology, several tools are built to support work-
ing with MDE. Nowadays, the importance of performance is getting
higher as the size of the systems grow. New solutions are needed that can
take advantage of modern hardware components and architectures. One
step towards this goal is to use the unique processing power of GPUs in
model-driven environments. Our overall goal is to create a graph transfor-
mation framework that fits into the parallel execution environment pro-
vided by GPUs. Our approach is based on the OpenCL framework and it
is referred to as PaMMTE (Parallel Multiplatform Model-transformation
Engine). This paper presents an overview of our tool and the description
of the implementation. We believe that this new approach will be an
attractive way to accelerate MDE tools efficiently.

Keywords: MDE · GPU · Graph transformation
High-performance computation · Parallel computation · OpenCL

1 Introduction

Model-driven engineering (MDE) can simplify the software development pro-
cesses that caused the sudden spreading of its usage in various domains. MDE
works with models that are no longer created only for presentation purposes
but transformed, processed and often used directly or indirectly as the basis of
code generation. Hence, it is an important and challenging part of MDE to find
and apply suitable model transformation techniques. The graph rewriting-based
model transformation (or graph transformation for the sake of simplicity) is one
of the most popular among them [1]. Besides CPU, there are other hardware
components to accelerate the execution of these algorithms. The advantages of
platform independence are obvious here, since the hardware available to the users
is quite heterogeneous. In order to handle this, the OpenCL framework1 is used
in our approach. OpenCL is platform independent and can be used to handle the
most widely used hardware components uniformly (CPU, GPU, FPGA, DSP).
In this paper, we show that by using an OpenCL-based solution, a promising way

1 https://www.khronos.org/opencl.

c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 14–19, 2018.
https://doi.org/10.1007/978-3-319-74730-9_2

https://www.khronos.org/opencl


Introduction of an OpenCL-Based Model Transformation Engine 15

to accelerate model transformations efficiently can be found. Although OpenCL
is rarely used in MDE tools, we provide reasons why OpenCL is moving forward
in a promising direction. We also introduce the base architecture and model
transformation logic of our tool.

2 Related Work

Paper [2] studies the most widely used MDE tools: GREAT, IncQuery, Fujaba,
Groove, Henshin, MOLA, Viatra2 in order to understand them. Although the
performance is not the most important property, these tools manage model trans-
formations efficiently. For example, in [3] IncQuery uses the so-called incremental
evaluation of queries to accelerate. Moreover, there are tools (like GMTE2) that
use a C++ implementation to achieve better performance. However, none of the
existing tools can efficiently use the benefit of the parallel execution architec-
ture offered by the GPUs. OpenCL is a popular way to use the computation
power of GPUs, FPGAs and many other devices. The key aspect to achieve
high-performance computation is to apply appropriate scalability techniques.
Improving the scalability in different contexts is an actively researched area as
seen in [4]. Papers [5,6] showed that OpenCL can be efficiently used with graphs.
However, mapping graph algorithms from CPU version to OpenCL is a signif-
icant challenge. In [7], the k-Nearest Neighbor is implemented using the multi-
GPU OpenCL. We should mention at this point that the paper also provides
a CUDA-based implementation. CUDA is another major GPU programming
platform, however, it is strongly hardware-dependent while OpenCL is not. The
measurements in this paper show that the efficiency of the two platforms varies.
Taking everything into account, we choose to continue working with OpenCL
mainly because of its platform independence. Paper [8] shows the usage of the
OpenCL with some C++ and STL related features as part of the official Boost.

3 Parallel Multiplatform Model-Transformation Engine

In this section, we introduce our solution: the Parallel Multiplatform Model-
Transformation Engine (PaMMTE)3. PaMMTE is implemented in C++ 14 to
maximize performance. We should note that the approach is currently limited
to execute the graph transformation rules separately; no control flow support is
given. However, specifying a pivot node where the match should be started can
help matching.

3.1 The Representation of the Domain Model

At the beginning of the model transformation, the input domain model is read
and converted using a domain specific adapter. Using the adapter, we split the
2 http://homepages.laas.fr/khalil/GMTE/.
3 https://www.aut.bme.hu/Pages/Research/VMTS/PaMMTE.

http://homepages.laas.fr/khalil/GMTE/
https://www.aut.bme.hu/Pages/Research/VMTS/PaMMTE


16 T. Fekete and G. Mezei

input model into two sets of data. The first set is a graph representing the topol-
ogy of the original model, while the second set represents the attributes attached
to the model entities. During the transformation, these representations are used
and the changes are evaluated on the original domain model as the last step of
the transformation. Although we need to create an adapter for each domain, we
provide a template to simplify the task. In the topology graph, all elements are
represented by an elementID and a typeID. The elementID is a unique identifier
of the node generated by the adapter creating the graph representation. Type
information on domain elements is expressed by the typeID that contains the
unique identifier of the type (metaelement) of the given element. Both elemen-
tID and typeID are integer values in order to accelerate their use on the GPU.
In case of attributes, we create an array of data referring to the container entity
by using its elementID. From a technical point of view, we use a hash table to
build the graph and create the inner topology/attribute representation from the
input domain model. The main benefit of using a hash table is its ability to find
entities quickly (in O(1) time). Practically speaking, matching requires several
orders of magnitude more time than rewriting. Therefore, the costly operation
of modifying the hash table has no serious affect on performance. The graphs
are further processed by the host (the CPU) just before working with it on the
GPU. This transformation is not complex, however, it is advantageous in order
to simplify and accelerate the algorithms running on the GPU. The original
graph is mapped into two one-dimensional structures using the elementIDs of
the nodes: (i) The first structure contains the list of the neighbors one-by-one
from the first to the last node. (ii) The second structure contains the starting
positions of the neighbor list and is a helper structure to process the first. Using
these two arrays and the size of the second array, all graphs can be passed to
the OpenCL device. The structure of attributes is much simpler in that arrays
refer to their container entity by using elementIDs.

3.2 Steps of the Approach

Unlike most of the tools in our approach, the execution of graph transforma-
tion rules is divided into three major logical steps (Fig. 1): (i) pattern matching,
(ii) attribute processing and (iii) graph rewriting. The three logical steps are
connected to each other and are executed sequentially. (i) Pattern-matching is
responsible for searching for topological matches according to the user defined
rewriting rules. In this step, only the aforementioned topology graph is used.
(ii) Attribute processing works on the result of the first step and it filters the
matching candidates by evaluating attribute constraints on them, which are
evaluated separately and sequentially. If a certain constraint fails, the candi-
date is dropped. We have created several dedicated kernels for the most typical
constraint types (e.g., regular expressions in strings, simple numeric operations,
etc.). In addition to these dedicated kernels, we support using custom atypical
constraints, however, they must be specified in OpenCL. To simplify this task,
we are continuously working on extending the range of built-in constraints. At
this point, domain attributes are also needed; thus, attribute arrays are copied



Introduction of an OpenCL-Based Model Transformation Engine 17

Fig. 1. The main designing concept and the three logical steps

to the GPU. It is important that kernels working on attribute constraint evalua-
tion must receive only the necessary attribute data in the concatenated format.
Otherwise, the cost of transferring the data from the CPU to the GPU would
seriously degrade the performance of the approach. (iii) Rewriting applies the
modifications defined in the rewriting rules by modifying the data sets represent-
ing the domain model. To avoid inconsistencies caused by parallel execution, the
result is verified just before rewriting. After rewriting, we also have to decide
whether the graph transformation is finished, or another rewriting is required
(for “as long as possible” rules). Finally, if applying the rewriting rule is finished,
the input domain model is changed based on the data sets of the transformation
using the domain adapters. All three steps have input and output data, which
is not stored but rather is temporally used by steps. Each step obtains an input
data and then processes it and generates the output. The data is composed of
three parts: (i) the model (accessed via modelProcessing package), (ii) the trans-
formation rules (iii) and the temporal results. By rigidly separating the steps, a
highly modular and easily extendable design is achieved. The logical steps have
several kinds of responsibilities like supporting the scalability issues of the actual
step, and preparing and configuring of the core algorithms, which belong to the
Model-transformation Library Layer (Fig. 1). Library components can be easily
exchanged to vary the dynamic behavior of the engine by using template pro-
gramming. The common interface of the steps and the modularity also support
the testability.

3.3 Illustrating the Topological Match

In order to illustrate the truly parallel behavior of the engine (same running
time results are received in several case studies), the pattern matching logical



18 T. Fekete and G. Mezei

Fig. 2. Handling the buffers during pattern matching

step is detailed. The main concept is that we start a kernel from each potential
matching point. Initially we try to find the first entity in the pattern, then
the submatch is extended with the second entity, etc. Each kernel obtains a
submatch already found and returns with its possible completion. Thus, pattern
matching is applied in several steps. Four temporary buffers are used (Fig. 2)
during the process: (i) FH1 - first helper, (ii) FB1 - first result candidate, (iii)
SH2 - second helper, (iv) SB2 - second candidate. The kernel binary reads FH1
and FB1 and writes SH2 and SB2. The host applies two important steps before
calling the kernel. First, it cumulates the numbers in the first helper buffer to
provide information about the index of the candidates, then it swaps the first
and second buffers. The kernels always work from the first buffers and save their
result to the second: (i) The kernel copies the candidates from the first buffer
to the second buffer and also takes the new neighbor using the helper buffer
and the kernel worker thread ID. The number of threads started is equal to
the number of new candidates. Each new thread knows its base candidate and
copies the candidate from the first buffer to the second buffer. (ii) The thread
knows which neighbor is to be taken to the new empty position. (iii) The thread
validates whether the new candidate is matching. In the case of a mismatch, the
thread sets the number of possible new neighbors to zero. If the new candidate
is matching, the thread adds the number of potential new neighbors that must
be checked in the next loop. Finally, the new candidate buffer is created. We
have built our tool by following the principles of Test-driven development. Many
test cases were created and applied from the beginning. This method helped
us to find implementation issues and avoid degeneration of the code. Later on,
we have searched for a domain that can be used to apply transformations. The
Internet Movie Database4 (IMDb) was chosen. Because of its size, IMDb data
is perfectly suited for scalability measurements and for performance tests. We
applied several tests on the database in our earlier researches [9].

4 http://www.imdb.com/interfaces.

http://www.imdb.com/interfaces


Introduction of an OpenCL-Based Model Transformation Engine 19

4 Conclusion and Future Work

The continuous growth of modeled systems is driving the focus on high perfor-
mance model transformation solutions. We believe that using the remarkable
potency in computing power of GPUs provides a solution to this issue. We are
currently working on an OpenCL-based model transformation engine. In this
paper, we introduced our framework PaMMTE by showing the basics of our
approach and the most important parts of our engine, as well as illustrating the
mechanisms by elaborating the steps of the pattern matching in more detail.
Although our results are already promising, there are further acceleration and
optimization points to discover and apply. The tool supports only the application
of a single rewriting rule, not a complete sequence of rules. Our current research
involves implementing a control flow that allows defining the sequence of rules
and data transfer between them. The usage of further real-life case domains and
studies can bring new challenges to solve. In the meantime, the achieved results
can be used in MDE tools to accelerate their performance. Processing data, like
Ecore, is a task for the future and it will give us a chance to create practical
comparisons to other MDE tools.

References

1. Ehrig, H., Rozenberg, G., Kreowski, H.J.: Handbook of Graph Grammars and Com-
puting by Graph Transformation. World Scientific, Singapore (1999)

2. Jakumeit, E., Buchwald, S., Wagelaar, D., Dan, L., Hegedüs, A., Herrmannsdorfer,
M., Horn, T., Kalnina, E., Krause, C., Lano, K., Lepper, M.: A survey and compar-
ison of transformation tools based on the transformation tool contest. Sci. Comput.
Program. 1(85), 41–99 (2014)

3. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,
A.: Incremental evaluation of model queries over EMF models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 76–90.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 6

4. Strüber, D., Kehrer, T., Arendt, T., Pietsch, C., Reuling, D.: Scalability of model
transformations: position paper and benchmark set. In: Workshop on Scalable Model
Driven Engineering, pp. 21–30 (2016)

5. Yan, X., Shi, X., Wang, L., Yang, H.: An OpenCL micro-benchmark suite for GPUs
and CPUs. J. Supercomput. 69(2), 693–713 (2014)

6. Xu, Q., Jeon, H., Annavaram, M.: Graph processing on GPUs: where are the bot-
tlenecks? In: 2014 IEEE International Symposium on Workload Characterization
(IISWC), pp. 140–149. IEEE, 26 October 2014

7. Masek, J., Burget, R., Povoda, L., Dutta, M.K.: Multi-GPU implementation of
machine learning algorithm using CUDA and OpenCL. Int. J. Adv. Telecommun.
Electrotech. Sig. Syst. 5(2), 101–107 (2016)

8. Szuppe, J.: Boost. Compute: a parallel computing library for C++ based on
OpenCL. In: Proceedings of the 4th International Workshop on OpenCL, p. 15.
ACM, 19 April 2016

9. Fekete, T., Mezei, G.: Generic approach for pattern matching with OpenCL. In: Pro-
ceedings of the 24th High Performance Computing Symposium. Society for Com-
puter Simulation International, p. 15. ACM, April 2016

https://doi.org/10.1007/978-3-642-16145-2_6

	Introduction of an OpenCL-Based Model Transformation Engine
	1 Introduction
	2 Related Work
	3 Parallel Multiplatform Model-Transformation Engine
	3.1 The Representation of the Domain Model
	3.2 Steps of the Approach
	3.3 Illustrating the Topological Match

	4 Conclusion and Future Work
	References




