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Abstract. Increasingly, software acts as a “non-human modeler”
(NHM), managing a model according to high-level goals rather than
a predefined script. To foster adoption, we argue that we should treat
these NHMs as members of the development team. In our GrandMDE
talk, we discussed the importance of three areas: effective communica-
tion (self-explanation and problem-oriented configuration), selection, and
process integration. In this extended version of the talk, we will expand
on the self-explanation area, describing its background in more depth
and outlining a research roadmap based on a basic case study.

1 Introduction

There is increased interest in tools managing models by themselves according
to goals, rather than following a predefined script. A case study for the 2016
Transformation Tool Contest [8] on the class responsibility assignment problem
showed how traditional model-to-model languages had to be orchestrated with
higher-level components that guided rule applications (e.g. genetic algorithms,
simulated annealing, reachability graphs or greedy application of a heuristic).
Two solutions were based on reusable model optimisation frameworks (MOMoT,
MDEOptimiser). These tools were evaluating options in a model much like a
human would: these could be considered as “non-human modellers” (NHMs).

Self-adaptive systems based on the models@run.time approach are another
good example of tools that manage models on their own. The models@run.time
approach advocates using models to provide a formal description of how the
system should behave. In a self-adaptive system, there is a feedback loop that
guides the evolution of the model based on its current performance and the
environment. Some examples of self-adaptive models@run.time include smart
grid outage management [4] or ambient assisted living [9].

These NHMs are software entities which participate in a modeling team. As
team members, we need to be able to influence their behaviour and understand
why they took specific decisions within the models: this may be particularly
complex when talking to domain experts rather than MDE specialistics. The
NHMs also need to find their place in our processes and in the lifetime of the
system that is being developed: they could be used once early in development,
invoked once per development sprint, or brought in as another member of a
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(possibly live) collaborative modeling tool. These challenges point to several
interesting lines of research, which were raised at the GrandMDE workshop.

This extended version of the original proposal will focus on the discus-
sion developed during the GrandMDE workshop around the self-explanation
area, in which strong links with existing ideas from traceability and provenance
were identified. After introducing this expanded background, a motivational
case study will introduce a general roadmap for our envisioned approach. This
roadmap will be grounded around existing standards and industrial-strength
tools where possible.

2 Discussed Topics

Based on the previous discussion, these are some of the lines of work that
we considered relevant to integrating non-human modellers (NHMs) as team
members:

– Accessible configuration: existing tools have wildly different approaches to
fine tune their behaviour, and domain experts find it increasingly harder to
figure out which knobs to turn. It should be possible to abstract over specific
approaches and provide users with a problem-centered description of any
parameters, much as SPEM describes software processes abstractly.

– Self-explanation: the approaches currently available for this capability in self-
adaptive systems are ad hoc and costly to develop, making them very rare in
practice. There is no common approach for model optimisation either. This
line of work would start by allowing changes to a model to be annotated
with “why” a change was made: which reasoning process was followed, what
inputs were used, and which other alternatives were evaluated. This would be
followed up with producing accessible descriptions of this stored information.

– Selection: the community would benefit from building a coherent toolbox of
options for NHMs and guiding practitioners on how to pick the right one for
a particular problem, much like how the Weka tool brought together many
data mining approaches into a common framework1.

– Process integration: depending on the task, the NHM will need to be inte-
grated into the day-to-day work of the team. Beyond one-off uses, NHMs
could be part of a continuous integration loop (reacting to commits on a
model), or participate in a shared modelling environment (perhaps with the
ability to chat with users about observed issues).

Among these topics in our talk at the GrandMDE’17 workshop, self-
explanation attracted most of the questions afterwards: attendees requested a
concrete motivational example, and there were several discussions on how this
challenge tied to existing work in the areas of traceability and provenance. The
rest of this work will focus on answering those questions and setting out an initial
roadmap for advancing the state of the art in self-explanation of NHMs.

1 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 1. MAPE feedback loop using different runtime model types [19]

3 Background for Reusable Self-explanation

Adaptive software relies on feedback loops between sensors that bring informa-
tion from the environment, and effectors that change it. When it is model-based
(i.e. following a models@run.time approach), these sensors and effectors will be
exposed through runtime models. Giese et al. [10] defines runtime models as
models that:

– Are designed to be used during the runtime of a system,
– are encoded to enable its processing,
– are casually connected to the system (changes in the model propagate to the

system and/or the other way around).

Wätzoldt and Giese [19] presented a useful categorisation of runtime models
around the MAPE (Monitor, Analyze, Plan, and Execute) loop [13], shown in
Fig. 1. Within this loop, we can observe the following types of models within the
adaptation engine:

– Reflection models reflect concerns about the running system (system models)
and its context (context models).

– Evaluation models contain the specification of the system (requirement mod-
els) and any assumptions made (assumption models). These define the solu-
tion space of the system.

– Change models describe specific solutions for the space defined by the evalua-
tion models. Variability models explicitly describe the available options (much
like a feature model), while modification models only indicate what changes
would be made on the reflection model.
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– Causal connection models link the system to the reflection models. Monitoring
models indicate how the reflection models should be updated from the system
and the context, whereas execution models specify how to operate the system
based on the information in those reflection models.

In this case, typically the evaluation and causal connection models would be
produced by the developers of the adaptive system, and the reflection and change
models would be managed by the adaptation engine itself. Here, the adaptation
engine would be the NHM.

Self-explanation would therefore entail telling users why the adaptation
engine made a specific change in those reflection and change models. This change
could come from multiple reasons: changed requirements or assumptions in the
evaluation models, different solution alternatives in the change models, or new
data coming through the monitoring model. Alternatively, a user could simply
want to see a snapshot of the reflection models at a certain moment, and request
the reason why a specific value or entity was present.

Solving this problem requires combining ideas from multiple areas. So far,
we have identified three: traceability, model versioning and provenance. The
following sections will provide more background on each of these topics and how
they relate to self-explanation for these adaptation engines.

3.1 Traceability

Linking system requirements to its various design and implementation artifacts
has been a concern for a long time. Gotel and Finkelstein defined requirements
traceability back in 1994 [11] as “the ability to describe and follow the life of
a requirement, in both a forwards and backwards direction”. Much work has
been done since then in terms of defining guidelines for traceability, creating
and maintaining trace links, and querying those trace links after the fact [5].

It is hard to create and maintain traceability links between manually created
artefacts. However, the automation brought by MDE has made it possible to
generate links between models in most of the popular model-to-model trans-
formation languages (e.g. ATL [12] or ETL [15]). These traceability links are
typically quite simple, with references to the various ends of the link (source and
target elements) and the transformation rule that was applied, as mentioned by
Matragkas et al. [16].

On the one hand, self-adaptive systems are automated just like model-to-
model transformation engines, and therefore it should be possible to include
trace creation into their processes. On the other hand, self-adaptive systems
need to operate in an uncertain environment - their decisions usually require
more complex reasoning and are dependent on the specific context at the time.
Generic source-target links would be unable to capture this information: a more
advanced information model is required. It appears that a richer case-specific
traceability metamodel would be ideal for this situation, as recommended by
Paige et al. [18].
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3.2 Model Versioning

Whereas traceability is about following the life of a requirement or seeing where
a piece of code really come from, versioning is about keeping track of how a
specific artifact evolved over time. Version control systems (VCSs) have been a
staple of software engineering for a very long time, and current state-of-the-art
systems such as Git2 make it possible to have developers collaborate across the
globe.

Models also evolve over time, and it is possible to reuse a standard text-
based VCS for it. However, text-based VCSs do not provide explicit support for
comparing models across versions or merging versions developed in parallel by
different developers. This has motivated the creation of specific version control
systems for models: model repositories. EMFStore [14] and CDO3 are mature
examples. EMFStore is file-based and tracks modifications across versions of
a model, grouping them into change packages which can be annotated with
a commit message. CDO implements a pluggable storage solution (by default,
an embedded H2 relational database) and provides support for branching and
merging. Current efforts are focused on creating repositories that scale better
with the number of collaborators (e.g. with better model merging using design
space exploration [6]), or with the size of the models (e.g. Morsa [17]).

Self-explanation needs to keep track of the history of the various runtime
models, and could benefit from these model repository. However, current sys-
tems only keep unstructured descriptions (in plain text) of each revision that a
model goes through. It would be very hard to achieve self-explanation from these
commit messages: we would rather have commit models that are machine read-
able. These commit models would have to relate the old and the new versions
with external models, perhaps under their own versioning schemes. Support-
ing these cross-version relationships may require a good deal of research and
technical work as well.

3.3 Provenance

Buneman et al. defined data provenance (also known as “lineage” or “pedigree”)
as the description of the origins of a piece of data and the process by which it
arrived at a database [3]. This was further divided into the “why provenance”
(table rows from which a certain result row was produced) and the “where prove-
nance” (table cells from which a certain result cell was produced).

Since then, provenance has been slowly extended to cover more and more
types of information systems, and has taken special importance with the advent
of “big data”. Commercial vendors such as Pentaho now include data lineage
capabilities in their own Extract-Transform-Load tools4.

Various efforts have been made to standardise the exchange of provenance
information. In 2013, the Provenance Working Group of the World Wide Web
2 http://git-scm.com.
3 http://projects.eclipse.org/projects/modeling.emf.cdo.
4 https://help.pentaho.com/Documentation/6.0/0L0/0Y0/Data Lineage.

http://git-scm.com
http://projects.eclipse.org/projects/modeling.emf.cdo
https://help.pentaho.com/Documentation/6.0/0L0/0Y0/Data_Lineage
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Fig. 2. High-level overview of the PROV data model [1]

Consortium (W3C) produced the PROV family of documents, which “defines a
model, corresponding serializations and other supporting definitions to enable
the inter-operable interchange of provenance information in heterogeneous envi-
ronments such as the Web”. Provenance is further generalised to knowing the
origins of any digital object: provenance records indicate how entities were gen-
erated by activities undertaken by various agents [1]. This high level view of
the PROV data model is shown on Fig. 2. PROV includes further provisions for
specifying roles taken by agents and entities in an activity, and how activities
may follow plans across time.

This view of provenance can be seen as a richer, more detailed view of trace-
ability that not only requires following artefacts that are produced from one
another, but also tracking carefully what was done and by whom. In fact, the
PROV data model could be used as a starting point for the formal notation of
the machine-readable “commit messages” suggested in Sect. 3.2.

4 Example Scenario

After introducing the various topics related to self-explanation for NHMs, this
section will propose a concrete scenario where a reusable infrastructure for self-
explanation of models@run.time approaches would be useful. It is from the ser-
vice monitoring and management domain. Specifically, it is about the use of
self-adaptation for the management of clusters of Hawk servers.

4.1 Scenario Description

Hawk is a heterogeneous model indexing framework [2], originally developed as
part of the MONDO project. It monitors a set of locations containing collections
of file-based models, and mirrors them into graph databases for faster and more
efficient querying. Hawk can be deployed as an Eclipse plugin, a Java library, or
a standalone server. The server version of Hawk exposes its capabilities through
a web service API implemented through Apache Thrift. Prior studies have evalu-
ated how a single Hawk server can scale with an increasing number of clients [7],
with competitive or better results than other alternatives (CDO and Mogwai).

Despite these positive results, Hawk servers still have an important limita-
tion: at the moment, there is no support for aggregating multiple servers into
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a cluster with higher availability and higher scalability. Hawk can use the high-
availability configurations of some backends (e.g. the OrientDB multi-master
mode), but this will not improve the availability of the Hawk API itself, which
will still act as a single point of failure.

The only way to solve this is to have entire Hawk servers cooperate with
others: they should distribute their load evenly and monitor the availability of
their peers. Periodic re-indexing tasks should also be coordinated to ensure that
at least one server in the cluster will always remain available for querying, and
out-of-date servers should be forced to update before becoming available again.

Fig. 3. Case study: self-adaptive Hawk clusters

This results in a self-adaptive system like the one shown in Fig. 3, where the
adaptation layers wraps over the collection of Hawk servers (the “system”) and
the monitored model storage locations (the “context”):

– The “User” of the cluster manages two models: the description model of the
intended contents of the cluster (locations to be indexed, and servers to be
managed), and the non-functional service parameters model of the cluster
(desired tradeoff between availability and freshness).

– The “Monitor” step of the MAPE loop uses the description as a monitoring
model and queries the various servers and locations. The obtained information
is used to update the cluster status model, a reflection model where each
change is annotated with metadata (e.g. query timestamp, response time,
observed errors) and linked back to the element of the cluster description
model that caused it.

– The “Analyze” step takes the cluster status model and revises the cluster
inconsistencies model, removing previously observed inconsistencies that no
longer hold (linking them back to the evidence) and adding new inconsisten-
cies (again, linked to the evidence) where servers are outdated or unavailable.
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The cluster inconsistencies model would be a change model, as it reflects the
problem to be solved in the “Plan” step.

– The “Plan” step produces a set of cluster modification plan models with dif-
ferent alternatives to solve the inconsistencies. These alternatives are different
sequences of invocations of the Hawk management API. Their elements may
solve (partially or fully) certain inconsistencies, and each plan will need to be
scored according to the cluster service parameters. These could be considered
as execution models.

– Finally, the “Execute” step will run the highest scoring modification plan
and record the results of those invocations in a modification log model (yet
another reflection model). Each log entry needs to be justified from the orig-
inal elements of the selected modification plan.

4.2 Approach for Reusable Self-explanation

Each of these MAPE steps is acting as its own NHM, taking in the latest versions
of independently evolving models and combining them with external information
to drive the evolution of its own runtime models. Allowing users to develop
trust by gaining an understanding of the workings of the adaptation engine is
important for the wider adoption of Hawk clustering. It may seem that tracking
all these adaptations would require purpose-specific models and infrastructure,
but on closer examination, there are already many elements in the state of the
art that can be reused.

The PROV Data Model is a promising start for a reusable metamodel for
self-explanation of changes in runtime models (Sect. 3.3). However, there are
multiple ways in which PROV could be used:

1. PROV explains each element in each version of the runtime models. The
activities are the MAPE steps, the agent is the adaptation engine, and the
entities are the source pieces of evidence for the element. It is not exactly
clear how would the reasoning for a particular element being there would be
linked.

2. PROV explains each change applied to each version of the runtime models.
The activities are the changes themselves, the agent is the MAPE step, and
the entities are the source pieces of evidence for the element, as well as the
reasoning for that change (or group of changes). Our initial estimation is
that this approach would provide more fine-grained information for later self-
explanation.

Regardless of our selection, PROV lacks specific provisions for model manage-
ment activities, or pointing to certain model elements within a specific version
of a model. These would need to be defined and developed.

Tracking the history of the models themselves can already be done through
the model repositories mentioned in Sect. 3.2, but it is unclear how to store the
above PROV descriptions and link them back to the various revisions of the
models. The PROV descriptions could be kept as complementary models in the
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repository, or they could be kept as commit models which replace the usual
textual commit messages. Using complementary models could be easier to reuse
across model repositories, but some conventions would still be needed to link the
tracked model to the PROV information. Using commit models could be more
natural if the model repository already tracked model changes in its commits
(like EMFStore): links could be directly established to those elements. This is
another area that merits further research.

Finally, once the PROV records have been created and stored, the next part
would be presenting them in a manner that is approachable but still reusable
across applications. Conceptually, what we want is (i) being able to track the
state of the MAPE loop at a certain point of time, and more importantly (ii)
answering how a model element or value in it came to be. While (i) should be
readily available through sensible use of model versioning, we are not aware of
a reusable interface for querying the information in (ii). Conceptually, it would
be a more powerful version of the capability of most version control systems to
know when was a certain line of text touched, and by whom.

5 Research Roadmap

Summarising the discussion from the previous section, we can establish an initial
roadmap for the creation of a first prototype of the envisioned reusable self-
explanation framework for self-adaptive systems following the MAPE loop:

1. First of all, the creation of basic self-adaptive prototypes that achieve the
intended functionality except for the self-explanation capabilities.
Deriving the self-explanation framework from working software (bottom up)
should provide a more realistic implementation, and will give us more expe-
rience in the implementation of self-adaptive systems according to the mod-
els@run.time paradigm. Hawk will benefit earlier from the horizontal scala-
bility as well.

2. Next, the prototype would be extended with simulation capabilities for the
system and environment, in order to create new situations for testing adapt-
ability more quickly. This would make it possible to see exactly how the
system adapted to a predefined situation, and check if the self-explanation
capabilities meet our expectations.
Ideally, because of the models@run.time approach, this should be a matter
of mocking the answers from the system - the rest of the approach should
remain as is.

3. Being able to run the self-adaptive system in real and simulated environments,
the next part of the work would be comparing the two approaches to extending
PROV that were observed. Initially, it would be a matter of recording the
information in both ways (element-first or change-first) and comparing their
level of detail, and the relative ease of capture and querying.

4. This would be followed by the integration of the PROV records into the his-
tory of the runtime models, whether as side-by-side models or as the previ-
ously mentioned commit models. The comparison would also need to take into
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account practical details such as scalability over time and model complexity,
ease of use and reusability across different model repositories.

5. Finally, the visualisation of the PROV records could be treated in multiple
ways. The envisioned goal is for a side-by-side view of the selected model
element and its history, where the user may be able to pull additional PROV-
encoded information on demand, at least over a single iteration of the full
MAPE loop. The links identified between the models in Fig. 3 would enable
this, unless proven otherwise during the design of the PROV extensions.

6 Conclusion

This paper started from a general proposal for the thorough consideration of
goal- or requirement-based non-human entities managing models (the so-called
“non-human modellers”) as additional members of a modelling team that we
must talk to, understand, pick and integate into our processes. The “reusable
self-explanation” part took the most questions during the event, and for that
reason we expanded on some of the background behind these ideas and described
a scenario from the service monitoring domain in which it would be useful.

The discussion has touched upon the fact that most of the ingredients already
exist: traceability and provenance have been around for a long time, and model
versioning is a common practice in industrial MDE environments, with mature
purpose-specific software to do it. However, our understanding is that their spe-
cific combination for reusable self-explanation has yet to be achieved, and for
that purpose we have set out a bottom-up roadmap which starts with the devel-
opment of a testbed and continues with the extension, storage and reusable
visualisation of a dialect of the PROV specification.

References

1. PROV Model Primer. W3C Working Group Note, World Wide Web Consor-
tium, April 2013. https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/#
intuitive-overview-of-prov

2. Barmpis, K., Kolovos, D.: Hawk: towards a scalable model indexing architecture.
In: Proceedings of the Workshop on Scalability in Model Driven Engineering,
Budapest, Hungary. ACM (2013). http://dl.acm.org/citation.cfm?id=2487771

3. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: a characterization of data
provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
pp. 316–330. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-
X 20. http://dl.acm.org/citation.cfm?id=645504.656274

4. Burger, E., Mittelbach, V., Koziolek, A.: View-based and model-driven outage
management for the smart grid. In: Proceedings of the 11th International Workshop
on Models@run.time, Saint Malo, France, pp. 1–8. CEUR-WS.org, October 2016.
http://ceur-ws.org/Vol-1742/MRT16 paper 1.pdf

5. Cleland-Huang, J., Gotel, O.C.Z., Huffman Hayes, J., Mäder, P., Zisman, A.: Soft-
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