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Abstract. Model-Driven Engineering (MDE) has been successfully used
in static program analysis. Frameworks like MoDisco inject the pro-
gram structure into a model, available for further processing by query
and transformation tools, e.g., for program understanding, reverse-
engineering, modernization. In this paper we present our first steps
towards extending MoDisco with capabilities for dynamic program anal-
ysis.

We build an injector for program execution traces, one of the basic
blocks of dynamic analysis. Our injector automatically instruments the
code, executes it and captures a model of the execution behavior of the
program, coupled with the model of the program structure. We use the
trace injection mechanism for model-driven impact analysis on test sets.
We identify some scalability issues that remain to be solved, provid-
ing a case study for future efforts in improving performance of model-
management tools.

Keywords: Model-Driven Engineering · Dynamic program analysis
Execution traces

1 Introduction

Many properties of a program have to be analyzed during its lifecycle, such
as correctness, robustness or safety. Those behaviors can be analyzed either
dynamically by executing the program, or statically, usually by examining the
source code. Several program analysis frameworks exist and are heavily used
by the engineering community. Code coverage frameworks are a very popular
example for dynamic analysis since they can significantly improve testing quality.
Dynamic information can be used to add more precision to static analysis [5,6].

The MoDisco framework [4] is designed to enable program analysis in Model-
Driven Engineering (MDE) by creating a model of the source code, and using
it for program understanding and modernization. The code model makes the
program structure easily accessible to external modeling tools for any kind of
processing, e.g. for static analysis. This uniform treatment of models and pro-
grams in the MDE technical space has proven to greatly help the understanding,
development and maintenance of complex software [3].
c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 3–13, 2018.
https://doi.org/10.1007/978-3-319-74730-9_1
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MDE tools analyzing source code through MoDisco do not usually execute
the original program. However, if MoDisco provided models of dynamic aspects
of the code, this would enable other useful analysis. For instance, a model of test
traces for a software under test (SUT) and its test suite could foster a better
understanding of the test suite, and of the impact that a statement modification
could have on the test cases executing it. Moreover, it could be used to get an
overview of the testing code coverage. Indeed, if the modification of a statement
has no impact on any test method, the statement is considered as uncovered.
Naturally this analysis model could provide a significant improvement to the
quality of the test sets [11].

In this paper we show a method to build a model of the program execution,
using both static and dynamic analysis. Thus, an initial structural model is stat-
ically built, containing the basic blocks of a program: packages, classes, methods
and statements. Thereafter, the code is instrumented in order to add execution
traces to the model during program execution. Consequently, each test method
is associated to the ordered sequence of statements it executes.

The remainder of this paper is organized as follows. Section 2 presents our
approach for model creation. Section 3 proposes an evaluation of the process on
a set of projects having different sizes. Related work is discussed in Sect. 4, and
Sect. 5 concludes this paper.

2 Approach

This section illustrates our approach for dynamically building a model of the pro-
gram execution. We propose an automatic process made of a sequence of four
steps. Figure 1 gives an overview of this process. On the left-hand side of Fig. 1,
the input is the source code of the considered system (e.g. a program under test
and its tests). First, a static model is generated thanks to a reverse engineer-
ing step (Sect. 2.1). Second, on the right-hand side of Fig. 1, the static model is
refactored into an analysis model by a model transformation (Sect. 2.2). Third,
on the left-hand side of Fig. 1, a source code instrumentation step (Sect. 2.3) pre-
pares the code before execution. Finally, the instrumented code is executed and
its instrumentation allows us to complete the analysis model into the dynamic
model of the source code (Sect. 2.4). This model is the output of the process.

The dynamic model should contain the structure of the source code, espe-
cially describing the targeted system (e.g. the system under test). Furthermore
it should reify which statements are executed when the system is run under the
action of a launcher (e.g. a set of tests). In addition, the order of the calls should
be stored to be used when analyzing the behavior of the system based on the
dynamic model.

In this work, we consider Java source code and we exemplify the approach by
the two classes in Fig. 2. The considered system is the class under test Factorial
(left of Fig. 2) associated to a JUnit test class TestFactorial (right of Fig. 2).
Those classes are the source code entry of the process in Fig. 1.
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Fig. 1. 4-step process generating an test impact analysis model from source code

package main;

public class Factorial {

public int fact(int n) {
if (n == 1) {

return 1;
}
return n * fact(n - 1);

}
}

package main;

import static org.junit.Assert.*;
import org.junit.Test;

public class TestFactorial {
@Test
public void checkFact() {

Factorial f= new Factorial();
assertEquals(1, f.fact(1));

}
}

Fig. 2. Factorial class, and its incomplete test suite.

2.1 Model Driven Reverse Engineering

The first step of our approach consists of generating the model of the code
structure using MoDisco1. MoDisco has a visitor-based system which navigates
through the full abstract syntax tree (AST), and then builds a model from it,
according to its Java meta-model [4]. We use a specific option of MoDisco, which
annotates each element of the output model with its location in the source code.
This information will be necessary for the dynamic analysis, as we show later.

Figure 3 shows a simplified version of the model generated by MoDisco from
the code in Fig. 2 (Static model in Fig. 1). Node elements contain the position,
and a reference to the statements. Since the full static model generated by
MoDisco is rather large, we extract the excerpt in Fig. 3, focusing on statement-
level information, in order to improve performance. For instance we filter out
information about expressions, binary files, or import declarations. Since in
this work we focus on the execution trace of the statements, only those ones
are needed, within their respective classes, methods, and packages containers.
Specifically this filtering is required to minimize the final model in-memory size

1 http://www.eclipse.org/MoDisco/.

http://www.eclipse.org/MoDisco/
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:Node

line: 12
startPos: 188
endPos: 214

:Node

line: 11
startPos: 154
endPos: 183

:Node

line: 6
startPos: 74
endPos: 106

:Node

line: 9
startPos: 110
endPos: 133

:Node

line: 7
startPos: 92
endPos: 101

: Method

name: fact

: Class

name: 
Factorial

: Class

name: 
TestFactorial

: Method

name: 
checkFact

: File

name: 
TestFactorial.

java

: Package

name: main

: Directory

name: main:Positions

:JavaModel

:Return
Statement

:Return
Statement:IfStatement

:Expression
Statement

:Variable
Declaration
Statement

:Root
: File

name:    
Factorial.java

Fig. 3. Excerpt of the static model generated by MoDisco from the code in Fig. 2

afterwards. The filtering is performed during the model transformation described
in the next section.

2.2 Model Transformation

The goal of this model transformation is to produce a simpler model to use,
containing only the data needed for the program analysis. Moreover, this model
must be able to associate methods to statements in order to highlight all the
methods which execute a specific statement. This link is created during the
execution, i.e. dynamically.

The input of this model transformation is the model statically generated by
MoDisco, while the target is a model conforming to a meta-model we introduce.
This meta-model needs to differentiate the test classes from the SUT classes
(targets), since the execution trace is only computed for the System Under Test.
This meta-model is illustrated in Fig. 4.

NamedElement

name: String

Model Package

package: EObject

<<Abstract>>
Class

class: EObject

Target Test

Method

method: EObject

Statement

statement: EObject
startPos: int
endPos: int*

* * * *

executedBy

*

Fig. 4. The impact analysis meta-model.



Injecting Execution Traces into a Model-Driven Framework 7

The model element corresponds to the root of the model. It contains packages,
which can contain either other packages or classes. Each class can have several
methods, which contain a list of statements. Finally, each statement owns a list
of references to methods, called executedBy. When the model is created by the
transformation, this list is empty, nonetheless the completion step described in
Fig. 1 consists into filling this list in order to get an execution trace. Since this
trace only concerns the SUT classes, the statements of the test suites are not
necessary in the analysis model. Thus, target and test classes are differentiated,
and only the SUT’s statements are kept.

To separate the target classes from the test classes, we assumed that test
classes either use the @Test annotations, or inherit the TestSuite class, from
the well known Java testing framework JUnit2. That information can easily be
accessed inside the static model. Though, several other conditions can be added
to the transformation, in order to differentiate the tests from other classes, using
the TestNG3 annotations for example.

The model transformation is made using ATL4, with the EMF Transforma-
tion Virtual Machine (EMFTVM). Indeed, besides including all the standard
ATL VM features, EMFTVM offers better model loading and saving, smaller
file results, and an overall performance improvement during the ATL transfor-
mation [12].

To focus a bit more about the transformation itself, 7 ATL rules are applying
a top-down approach on the static model, starting by transforming the packages,
classes, and going down to the statements. Apart from the namedElement, each
element of the meta-model corresponds to an ATL rule.

This transformation drastically reduces the size of the model manipulated in
the further sections. In fact this transformation is used to generate the analysis
model out of the JUnit4 source code static model. The size of one model is
lowered from 50 MB to 1 MB for instance, by keeping only the relevant objects
for future processing.

Once this model is built, we need to run the tests in order to produce the
dynamic analysis. Before, an instrumentation of the code is necessary, to be able
to observe and reify its behavior into the dynamic model during the last step
(Sect. 2.4).

2.3 Code Instrumentation

Code instrumentation is conducted by inserting additional statements in the
code, at specific places, so that when the SUT is executed, those new statements
are executed too [6].

Several instrumentation approaches exist:

– Source code instrumentation consists in adding code into the source file,
before compiling it.

2 http://junit.org/junit4/.
3 http://testng.org/.
4 https://eclipse.org/atl/.

http://junit.org/junit4/
http://testng.org/
https://eclipse.org/atl/
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– Binary instrumentation modifies or re-writes the compiled code.
– Bytecode instrumentation performs tracing within the compiled code.

During the development of our process, we considered those strategies, and
found that the source code instrumentation is the most accurate approach for
producing execution traces. Indeed, required information about the source can-
not be obtained when analyzing the binaries or the bytecode, especially the
source code position of the statements. Besides having the line number for each
statement like the other approaches, source code instrumentation can also pro-
vide column position numbers. This data will be used to match the executed
statements of the code with the analysis model’s statements. It is mandatory for
the next step (Sect. 2.4) to be able to add the behavior into the static model.

The instrumentation has been performed using the Spoon Framework [9].
This step is done first by iterating over the analysis model, in order to get
both Test and Target classes. When instrumenting Test classes, a setMethod()
statement is inserted at the beginning of each test method. Its parameters are
the test class name, and the method name. When instrumenting SUT classes,
a match() call is added before each statement. Its parameters are the SUT
class qualified name where it belongs, the method, and finally the source code
position of this statement. The source-code instrumentation generates the code
of the Fig. 5, which is compiled and loaded before the execution.

package main;
public class Factorial {

public int fact(int n) {
match("Factorial", "fact", 74, 106);
if (n == 1) {

match("main.Factorial", "fact", 92,
101);

return 1;
}
match("main.Factorial", "fact", 110,

133);
return n * (fact((n - 1)));

}
}

package main;
public class TestFactorial {

@Test
public void testFactorial() {

setMethod("main.TestFactorial",
"testFactorial");

Factorial f = new Factorial();
Assert.assertEquals(1, f.fact(1));

}
}

Fig. 5. Instrumented code of Factorial class, and its incomplete test suite.

2.4 Execution and Completion

The execution part consists of running the test cases. When the new instru-
mented statements are executed, the model statically built is completed with
dynamic information. Before the test execution, a singleton class is instantiated.
The method setMethod() sets the current test method being executed into the
singleton class.

The other method, match(), iterates over the analysis model to find the
SUT statement being executed, using its qualified class name, method name,
and finally the source code position of the statement. Finally, the executedBy
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list of the newfound statement is completed dynamically, by adding the single-
ton’s current test method. This model dynamically completed reifies the link
between statements and test methods, as showed in Fig. 6. Besides showing the
test methods that would be impacted when modifying a SUT statement, an
empty executedBy list shows an uncovered statement, which possibly implies an
incomplete test suite. Thus, this model answers to the problematic announced,
as it is dynamically created, and analyze the program’s behavior i.e. with impact
analysis.

:Test

name:TestFactorial

:Target

name:Factorial

:Method

name:testFact

:Method

name:fact

:Package

name:main

:Model

name:Model

:Statement

startPos: 74
endPos: 106

:Statement

startPos: 92 
endPos: 101

:Statement

startPos: 110
endPos: 133

executedBy

Fig. 6. The analysis model obtained after reifying the link between statements and
test methods.

However this model highly depends on the source code’s size. Indeed, each
statement in the SUT corresponds to one element in the analysis model, thereby
an important source code might lead to scalability issues. This scalability is
evaluated in the next section.

3 Evaluation

3.1 Execution Environment

In this section we evaluate the overall performances of our dynamic model gen-
eration framework, using the XMI persistence layer for our models.

This evaluation is conducted on a simple Java project containing the classes
introduced in the Sect. 2. We programmatically increase the size of this project
by duplicating the number of classes and test classes. This way, every test class
is testing a single target class. Using this setup, we can manage the size of the
output model, and observe the behavior of our prototype with either small and
big models.

The experiments are executed on a laptop running Windows 7 Professional
64 Bits, using an Intel Core i7-4600 (2.70 GHz) CPU and, a Samsung SSD 840
EVO 250 GB. The Java Virtual Machine version is JDK 1.8.0 121, and runs with
a maximum Java heap size of 2,048 MB.

This experimentation starts by running the program analysis on Java
Projects containing a few hundred classes, which can be considered as small
here. Subsequently, this number of classes is increased, up to thousands. We
measured the execution time for each step of our prototype, and reported it in
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the Fig. 7. As described in the previous parts, those steps are: Reverse Engineer-
ing (RE), Model Transformation (ATL), Source code Instrumentation (Instr),
Test Execution (Exec).

When the project under analysis reaches approximately 12,000 test classes,
the model created by MoDisco using reverse engineering is too big to be stored
in memory, thus preventing any other analysis on bigger projects.
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Fig. 7. Dynamic program analysis execution times using the XMI persistence layer.

3.2 Discussion

The curves from the left diagram in the Fig. 7 are showing the growth of exe-
cution times when the number of classes increases. The other diagram shows
the same data, but its representation gives a better understanding of each step’s
duration in the whole process and its total duration. This diagram shows that the
MoDisco static model generation, and the source code instrumentation are by far
the longest steps of the program analysis, up to 32% for the reverse engineering
step, and 50% for the instrumentation step, approximately.

This can be explained by the fact that both are parsing the whole source code.
Yet it is interesting to notice that the instrumentation tends to be longer than
the reverse engineering once the model contains more than 5,000 test classes.
The reason is the Spoon’s instrumentation’s complexity being more than linear.

Also, as written in the previous subsection, the MoDisco static model creation
will not be achieved when the program under analysis gets very big (approxi-
mately 12,000 test classes) due to a lack of memory and the well-known XMI
scalability problem.

Pagán et al. explained in their paper [8] that the XMI persistence layer scales
badly with large models, due to the fact that XMI files cannot be partially loaded.
Indeed the XMI resource needs to keep the complete object in the memory to
use it.
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This scalability problem can be partially resolved using a more scalable per-
sistence layer for the EMF Models, such as NeoEMF [2] or CDO5. Nonetheless,
MoDisco has its own meta-models, and uses EMF generated code. Using this
code with NeoEMF and CDO resources cannot currently improve the scalabil-
ity, since those layers need to generate their own code from an Ecore meta-model.
It is one of our future challenges.

4 Related Work

In order to reduce the maintenance costs of large applications, knowing the
impacts a code modification can have on other parts of the program can really
improve the developers life. Several approaches already exist within the impact
analysis domain.

PathImpact [7] is a dynamic impact analysis technique that does not require
any static analysis during its process. PathImpact instruments the binaries or
a program, and generates traces during its execution. This execution trace is
then used to create call graphs, which are analysed in order to study the impact
analysis. The impacts are identified at the method level, a coarser level than our
approach based on source code instrumentation.

Chianti [10] is a change impact analysis tool based on call graphs. Using two
different versions of the source code, Chianti creates a set of atomic changes,
and analyses their dependencies in order to determine the tests affected by code
changes. Basically, considering two atomic changes A1 and A2, if adding A1 in
the first version of the source code leads to a program syntactically invalid, then
it has a dependency to A2. For each tests, a call graph is generated (statically
or dynamically), and from those dependencies, operations affecting the tests
can be identified. This approach is really different from ours since it needs two
version of the source code. This impact analysis are more coarse-grained than
the approach presented in this paper, i.e. classes, methods and fields, but Chianti
supports more operations, such as insertion and deletion.

Imp [1] is a static impact analysis tool for the C++ language based on pro-
gram slicing [13]. Program slicing consists into computing a set of points, such as
statements, that can have an effect on other point of the program. To compute
the impact analysis, Imp only considers “forward” slicing, which computes a set
of statements that are affected by a previous point. This approach is fine-grained,
since the analysis can be done at the statement level. Nonetheless it suffers from
the disadvantages of the static approach, a loss of precision, in order to limit the
execution time when the program’s source code is being too big to analyse.

5 Conclusion and Future Works

In this paper we present our prototype for dynamic program analysis purposes,
using Model Driven Engineering. The multiple steps of the process dynamically

5 https://eclipse.org/cdo/.

https://eclipse.org/cdo/
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generate a model, highlighting the links between program’s statements and test
suites. Nevertheless, the experimentations led on this prototype showed that it
suffers from the XMI scalability issues induced by the MoDisco static analysis.

Our future work will focus on the scalability of our prototype, more specifi-
cally by integrating a more efficient persistence layer in term of scalability, such
as CDO or NeoEMF. Furthermore, the source code instrumentation remains a
very cumbersome technique, and evolving towards a more common solution, such
as “on the fly” byte-code instrumentation would be interesting, especially if the
granularity is maintained.

Acknowledgment. This work is supported by DIZOLO project - Aurora mobility
programme 2017.
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