
Martina Seidl
Steffen Zschaler (Eds.)

 123

LN
CS

 1
07

48

STAF 2017 Collocated Workshops
Marburg, Germany, July 17–21, 2017
Revised Selected Papers

Software Technologies: 
Applications and Foundations



Lecture Notes in Computer Science 10748

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7408



Martina Seidl • Steffen Zschaler (Eds.)

Software Technologies:
Applications and Foundations
STAF 2017 Collocated Workshops
Marburg, Germany, July 17–21, 2017
Revised Selected Papers

123



Editors
Martina Seidl
Johannes Kepler University of Linz
Linz
Austria

Steffen Zschaler
Department of Informatics
King’s College London
London
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-74729-3 ISBN 978-3-319-74730-9 (eBook)
https://doi.org/10.1007/978-3-319-74730-9

Library of Congress Control Number: 2018930743

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-9062-6637


Preface

This volume contains revised selected technical papers presented at the six satellite
events collocated with Software Technologies: Applications and Foundations (STAF
2017), a federation of leading conferences on software technologies. The events took
place in Marburg, Germany, during July 17–21, 2017.

STAF 2017 brought together researchers and practitioners from both academia and
industry with an interest in all aspects of software technology. The satellite events
added to this by providing a collaborative environment in which to discuss emerging
areas in software engineering and, in particular, model-driven engineering (MDE). This
year STAF included a projects showcase, enabling research project teams to present a
coherent view of their results to the community. Also, for the first time, there was a
workshop on grand challenges in MDE research, which provided some interesting
insights into research directions of future relevance.

The events whose papers are included in this volume are:

– BigMDE 2017: 5th International Workshop on Scalable Model-Driven Engineering
– GCM 2017: 8th International Workshop on Graph Computation Models
– GRAND 2017: First International Workshop on Grand Challenges in Modeling
– MORSE 2017: 4th International Workshop on Model-Driven Robot Software

Engineering
– OCL 2017: 17th International Workshop in OCL and Textual Modeling
– STAF Projects Showcase 2017: Third event dedicated to international and national

project dissemination and cooperation

Additionally, a doctoral symposium was organized as part of STAF. The corre-
sponding proceedings have been published separately as CEUR Volume 1955.

Brief messages from the events listed above follow this preface. We are grateful to
EasyChair for the support with the paper submission and reviewing process for all
workshops and with the preparation of this volume. For each of the workshops at STAF
2017, we thank the organizers for the interesting topics and resulting talks. We also
thank the paper contributors to these workshops and those who attended them. We
would like to extend our thanks to the members of each workshop’s Program Com-
mittee. Finally, we would like to thank the organizers of STAF 2017 and, in particular,
the general chair, Gabriele Taentzer.

December 2017 Martina Seidl
Steffen Zschaler



STAF 2017 Organizer’s Message

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences may vary from year to year, but they all
focus on foundational and practical advances in software technology. The conferences
address all aspects of software technology, from object-oriented design, testing,
mathematical approaches to modeling and verification, transformation, model-driven
engineering, aspect-oriented techniques, and tools.

STAF 2017 took place in Marburg, Germany, during July 17–21, 2017, and hosted
the four conferences ECMFA 2017, ICGT 2017, ICMT 2017, and TAP 2017, the
transformation tool contest TTC 2017, six workshops, a doctoral symposium, and a
projects showcase event. STAF 2017 featured four internationally renowned keynote
speakers, and welcomed participants from around the world.

The STAF 2017 Organizing Committee thanks (a) all the participants for submitting
to and attending the event, (b) the Program Committees and Steering Committees of all
the individual conferences and satellite events for their hard work, (c) the keynote
speakers for their thoughtful, insightful, and inspiring talks, and
(d) Philipps-Universität, the city of Marburg, and all sponsors for their support.
A special thank you goes to Christoph Bockisch (local chair), Barbara Dinklage and
further members of the Department of Mathematics and Computer Science of
Philipps-Universität, for coping with all the foreseen and unforeseen work to prepare a
memorable event.

December 2017 Gabriele Taentzer



BigMDE 2017 Organizers’ Message

As model-driven engineering (MDE) is increasingly applied to larger and more com-
plex systems, the current generation of modeling and model management technologies
are being pushed to their limits in terms of capacity and efficiency. As such, additional
research and development is imperative in order to enable MDE to remain relevant to
industrial practice and to continue delivering its widely recognized productivity,
quality, and maintainability benefits.

The 5th BigMDE Workshop (http://www.big-mde.eu/) was co-located with the
Software Technologies: Applications and Foundations (STAF 2017) conference.
BigMDE 2017 provided a forum for developers and users of modeling and model
management languages and tools to present and discuss problems and solutions related
to scalability aspects of MDE, including:

– Working with large models
– Collaborative modeling (version control, collaborative editing)
– Transformation and validation of large models
– Model fragmentation and modularity mechanisms
– Efficient model persistence and retrieval
– Models and model transformations on the cloud
– Visualization techniques for large models
– High-performance MDE
– Identification of scalability and performance issues in MDE

Contributions from the community were essential for the success of BigMDE 2017.
In particular, we would like to acknowledge the hard work of all Program Committee
members for the timely delivery of reviews given the tight review schedule, and to
thank the authors for submitting and presenting their work at the workshop.

July 2017 Dimitris Kolovos
Davide Di Ruscio
Nicholas Matragkas

Jesús Sánchez Cuadrado
István Ráth

Massimo Tisi



BigMDE 2017 Program Committee

Konstantinos Barmpis University of York, UK
Marko Boger University of Konstanz, Germany
Goetz Botterweck LERO, Ireland
Marco Brambilla Politecnico di Milano, Italy
Loli Burgueño Universidad de Malaga, Spain
Rubby Casallas Universidad de los Andes, Colombia
Tony Clark University of Middlesex, UK
Marcos Didonet Del Fabro Universidade Federal du Parana, Brazil
Antonio Garcíıa-Domínguez Aston University, UK
Esther Guerra Universidad Autonoma de Madrid, Spain
Jesus J. Garcíıa Molina Universidad de Murcia, Spain
Alfonso Pierantonio University of L’Aquila, Italy
Markus Scheidgen Humboldt-Universität zu Berlin, Germany
Seyyed Shah University of Oxford, UK
Harald Störrle Technical University of Denmark, Denmark
Daniel Strüber Philipps-Universität Marburg, Germany
Gerson Sunyé University of Nantes, France
Dániel Varró Budapest University of Technology and Economics,

Hungary
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GCM 2017 Organizers’ Message

The 8th International Workshop on Graph Computation Models (GCM 2017) was held
in Marburg, Germany, on July 17, 2017.

Graphs are common mathematical structures which are visual and intuitive. They
constitute a natural and seamless way for system modeling in science, engineering and
beyond, including computer science, life sciences, business processes, etc. Graph
computation models constitute a class of very high level models where graphs are
first-class citizens. They generalize classic computation models based on strings or
trees, such as Chomsky grammars or term rewrite systems. Their mathematical foun-
dation, in addition to their visual nature, facilitates specification, validation, and
analysis of complex systems. A variety of computation models have been developed
using graphs and rule-based graph transformation. These models include features of
programming languages and systems, paradigms for software development, concurrent
calculi, local computations and distributed algorithms, and biological and chemical
computations.

The aim of GCM 2017 is to bring together researchers interested in all aspects of
computation models based on graphs and graph transformation techniques. The
workshop promotes the cross-fertilizing exchange of ideas and experiences among
researchers and students from the different communities interested in the foundations,
applications, and implementations of graph computation models and related areas.
Previous editions of the GCM series were held in Natal, Brazil (GCM 2006), in
Leicester, UK (GCM 2008), in Enschede, The Netherlands (GCM 2010), in Bremen,
Germany (GCM 2012), in York, UK (GCM 2014), in L’Aquila, Italy (GCM 2015), and
in Vienna, Austria (GCM 2016).

After a thorough review process, the Program Committee accepted five papers for
publication in the proceedings and three additional papers for presentation and inclu-
sion in the electronic pre-conference proceedings.

Several people contributed to the success of GCM 2017. I would like to thank the
organizers of STAF 2017, and in particular the general chair, Gabriele Taentzer, and
the workshop chairs, Martina Seidl and Steffen Zschaler. I would also like to express
my thanks to the Program Committee and to the additional reviewers (Fabio Gadducci,
Christian Sandmann, Timothy Atkinson, Berthold Hoffmann, Dennis Nolte, and
Christoph Peuser) for their valuable help. The EasyChair system greatly facilitated the
submission and program selection process.

I would furthermore like to thank all authors, speakers, and participants of the
workshop.

November 2017 Andrea Corradini



GCM 2017 Program Committee

Andrea Corradini (Chair) University of Pisa, Italia
Rachid Echahed Laboratoire d’Informatique de Grenoble, France
Stefan Gruner University of Pretoria, South Africa
Annegret Habel Universität Oldenburg, Germany
Dirk Janssens Universiteit Antwerpen, Belgium
Barbara König Universität Duisburg-Essen, Germany
Hans-Jörg Kreowski Universität Bremen, Germany
Mohamed Mosbah LaBRI, Université de Bordeaux, France
Detlef Plump University of York, UK
Leila Ribeiro Universidade Federal do Rio Grande do Sul, Brazil
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GRAND 2017 Organizers’ Message

The fields of modeling and model-driven engineering have made incredible contri-
butions to leverage abstraction and automation in almost every area of software and
systems development and analysis. In many domains, including automotive software
engineering, embedded systems, and business process engineering, models are key to
success in modern software engineering processes. However, this success has led to an
even higher demand for better processes, tools, theories, and general awareness about
modeling, its scope and application. Important questions have emerged about how our
field can and should respond to this changing landscape in terms of identifying the
main challenges in modeling and model-driven engineering. This includes not only the
challenges for today, but for the next 3, 5, and 10 years; these challenges need to be
cooperatively and collaboratively defined, to help produce a challenging research
agenda for the field. The goal of the GrandMDE Workshop was to come up with such a
list of grand challenges for model-driven engineering.

The workshop received 15 paper submissions from which 11 were selected for
presentation at the workshop. Owing to the nature of the workshop, all papers were
position papers, each one presenting a different challenge. Topics covered in the
workshop included: adoption of MDE, temporal modeling, executable models, artificial
intelligence for MDE, enterprise modeling and Industry 4.0, quality aspects, etc. Each
paper was reviewed by at least three Program Committee members.

The organizers would like to thank the authors and presenters of submitted papers,
the Program Committee members, and the audience for the contribution to the success
of the workshop.

November 2017 Jordi Cabot
Richard Paige

Alfonso Pierantonio



GRAND 2017 Program Committee

Bernhard Rumpe RWTH Aachen University, Germany
Manuel Wimmer Vienna University of Technology, Austria
Esther Guerra Universidad Autónoma de Madrid, Spain
Sahar Kokaly McMaster University, Canada
Rick Salay University of Toronto, Canada
Marco Brambilla Politecnico di Milano, Italy
Dimitris Kolovos University of York, UK
Antonio Vallecillo University of Malaga, Spain
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MORSE 2017 Organizers’ Message

The 4th edition of the international Workshop on Model-Driven Robot Software
Engineering (MORSE) was held at the International Conference on Software Tech-
nologies: Applications and Foundations (STAF). This year’s edition took place in
Marburg, Germany, on July 21, 2017 and focused on scenario-based development and
interaction modeling. Previous editions were located at STAF 2014 (York, UK), STAF
2015 (L’Aquila, Italy), and RoboCup 2016 (Leipzig, Germany).

With the rise of standardized robotic hardware platforms and software platforms
and the pace with which software ecosystems and app stores develop in application
markets, the following research topics become increasingly important in software
engineering for robotics: (1) model-driven development of robotic systems; (2) soft-
ware and app reuse for robotics; (3) end-user robot app development; (4) compliance to
legal and safety constraints; and (5) total cost of ownership.

Model-driven development facilitates designing and engineering complex systems
through automatization and concentrating on different levels of abstraction. Advances
in robotics research and the increasing complexity of robotic systems demand for both.
Model-driven development can help to improve the quality (e.g., re-usability, relia-
bility, maintainability) of the robotic systems. Hence, there is a need for a new para-
digm of model-driven software and system engineering for robots. Besides six
interesting paper presentations, the workshop program of MORSE 2017 was enriched
by a keynote talk given by Davide di Ruscio, University of L’Aquila: “The Role of
Models in Engineering the Software of Robotic Systems.”

The need and timeliness of this topic, as well as the excellent support of its Program
Committee, resulted in having a successful fourth edition of the MORSE workshop.

November 2017 Sebastian Götz
Christian Piechnick
Andreas Wortmann



MORSE 2017 Program Committee

Colin Atkinson University of Mannheim, Germany
Herman Bruyninckx KU Leuven, Belgium
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Kurt Geihs Universität Kassel, Germany
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Germany
Bernhard Jung TU Freiberg, Germany
Alexander Jungmann IAV GmbH, Germany
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Lorenzo Natale Instituto Italiano di Tecnologia, Italy
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Serge Stinckwich IRD, France
Cristina Vicente-Chicote Universidad de Extremadura, Spain
Heike Wehrheim University of Paderborn, Germany
Sebastian Wrede CoR-Lab, Bielefeld University, Germany
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OCL 2017 Organizers’ Message

The goal of the OCL 2017 workshop was to create a forum where researchers and
practitioners interested in building models using OCL or other kinds of textual lan-
guages could directly interact, report advances, share results, identify tools for language
development, and discuss appropriate standards. In particular, the workshop encour-
aged discussions for achieving synergy from different modeling language concepts and
modeling language use. The close interaction enabled researchers and practitioners to
identify common interests and options for potential cooperation.

The workshop received seven submissions from which five were selected as full
papers. Each paper was reviewed by at least three Program Committee members. The
workshop hosted an open session with Lightning Talks (5 min.) at the end of the day
where speakers were given the opportunity to talk about whatever they wanted, as long
as it was related to the topics of the workshop. Three presentations were given.

The organizers would like to thank the authors of submitted papers, the Program
Committee members, the workshop speakers, and the workshop audience for the
contribution to the success of the workshop.

November 2017 Robert Bill
Achim D. Brucker

Jordi Cabot
Martin Gogolla



OCL 2017 Program Committee
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Frederic Tuong University Paris-Sud, France
Edward Willink Willink Transformations Ltd., UK
Burkhart Wolff University of Paris-Sud, France
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Subreviewer
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Projects Showcase 2017 Organizers’ Message

The aim of the Projects Showcase event at STAF 2017 was to provide an opportunity
for researchers and practitioners involved in ongoing or completed research projects
related to foundations and applications of software technologies to share results,
experiences, ideas, on-going work, and knowledge that could lead to fruitful
inter-project collaboration.

The call for papers of the event solicited contributions disseminating the objectives
and results of national and international research projects, including outcomes of
specific deliverables, advances beyond the state of the art, overall innovation potential,
exploitation approach and (expected) impact, marketing value, barriers, and obstacles.

Six papers were accepted for presentation and publication in the proceedings of the
event, which reported on different types of national, international, and in-house
research and development projects. We would like to acknowledge the hard work of the
members of the Program Committee and the contribution of the authors of submitted
papers to the success of this event.

November 2017 Massimo Tisi
Thanos Zolotas



Projects Showcase 2017 Program Committee
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Antonio García-Domínguez Aston University, UK
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Nicos Malevris Athens University of Economics and Business, Greece
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István Ráth Budapest University of Technology

and Economics/IncQuery Labs, Hungary
Nicholas Matragkas University of Hull, UK
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Abstract. Model-Driven Engineering (MDE) has been successfully used
in static program analysis. Frameworks like MoDisco inject the pro-
gram structure into a model, available for further processing by query
and transformation tools, e.g., for program understanding, reverse-
engineering, modernization. In this paper we present our first steps
towards extending MoDisco with capabilities for dynamic program anal-
ysis.

We build an injector for program execution traces, one of the basic
blocks of dynamic analysis. Our injector automatically instruments the
code, executes it and captures a model of the execution behavior of the
program, coupled with the model of the program structure. We use the
trace injection mechanism for model-driven impact analysis on test sets.
We identify some scalability issues that remain to be solved, provid-
ing a case study for future efforts in improving performance of model-
management tools.

Keywords: Model-Driven Engineering · Dynamic program analysis
Execution traces

1 Introduction

Many properties of a program have to be analyzed during its lifecycle, such
as correctness, robustness or safety. Those behaviors can be analyzed either
dynamically by executing the program, or statically, usually by examining the
source code. Several program analysis frameworks exist and are heavily used
by the engineering community. Code coverage frameworks are a very popular
example for dynamic analysis since they can significantly improve testing quality.
Dynamic information can be used to add more precision to static analysis [5,6].

The MoDisco framework [4] is designed to enable program analysis in Model-
Driven Engineering (MDE) by creating a model of the source code, and using
it for program understanding and modernization. The code model makes the
program structure easily accessible to external modeling tools for any kind of
processing, e.g. for static analysis. This uniform treatment of models and pro-
grams in the MDE technical space has proven to greatly help the understanding,
development and maintenance of complex software [3].
c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 3–13, 2018.
https://doi.org/10.1007/978-3-319-74730-9_1



4 T. Béziers la Fosse et al.

MDE tools analyzing source code through MoDisco do not usually execute
the original program. However, if MoDisco provided models of dynamic aspects
of the code, this would enable other useful analysis. For instance, a model of test
traces for a software under test (SUT) and its test suite could foster a better
understanding of the test suite, and of the impact that a statement modification
could have on the test cases executing it. Moreover, it could be used to get an
overview of the testing code coverage. Indeed, if the modification of a statement
has no impact on any test method, the statement is considered as uncovered.
Naturally this analysis model could provide a significant improvement to the
quality of the test sets [11].

In this paper we show a method to build a model of the program execution,
using both static and dynamic analysis. Thus, an initial structural model is stat-
ically built, containing the basic blocks of a program: packages, classes, methods
and statements. Thereafter, the code is instrumented in order to add execution
traces to the model during program execution. Consequently, each test method
is associated to the ordered sequence of statements it executes.

The remainder of this paper is organized as follows. Section 2 presents our
approach for model creation. Section 3 proposes an evaluation of the process on
a set of projects having different sizes. Related work is discussed in Sect. 4, and
Sect. 5 concludes this paper.

2 Approach

This section illustrates our approach for dynamically building a model of the pro-
gram execution. We propose an automatic process made of a sequence of four
steps. Figure 1 gives an overview of this process. On the left-hand side of Fig. 1,
the input is the source code of the considered system (e.g. a program under test
and its tests). First, a static model is generated thanks to a reverse engineer-
ing step (Sect. 2.1). Second, on the right-hand side of Fig. 1, the static model is
refactored into an analysis model by a model transformation (Sect. 2.2). Third,
on the left-hand side of Fig. 1, a source code instrumentation step (Sect. 2.3) pre-
pares the code before execution. Finally, the instrumented code is executed and
its instrumentation allows us to complete the analysis model into the dynamic
model of the source code (Sect. 2.4). This model is the output of the process.

The dynamic model should contain the structure of the source code, espe-
cially describing the targeted system (e.g. the system under test). Furthermore
it should reify which statements are executed when the system is run under the
action of a launcher (e.g. a set of tests). In addition, the order of the calls should
be stored to be used when analyzing the behavior of the system based on the
dynamic model.

In this work, we consider Java source code and we exemplify the approach by
the two classes in Fig. 2. The considered system is the class under test Factorial
(left of Fig. 2) associated to a JUnit test class TestFactorial (right of Fig. 2).
Those classes are the source code entry of the process in Fig. 1.



Injecting Execution Traces into a Model-Driven Framework 5

                                    Code     Model
Static modelSource code

Instrumented code Analysis model

Impact analysis 
model

Source code 
instrumentation

Reverse 
Engineering

Model 
Transformation

Execution /
Completion

Fig. 1. 4-step process generating an test impact analysis model from source code

package main;

public class Factorial {

public int fact(int n) {
if (n == 1) {

return 1;
}
return n * fact(n - 1);

}
}

package main;

import static org.junit.Assert.*;
import org.junit.Test;

public class TestFactorial {
@Test
public void checkFact() {

Factorial f= new Factorial();
assertEquals(1, f.fact(1));

}
}

Fig. 2. Factorial class, and its incomplete test suite.

2.1 Model Driven Reverse Engineering

The first step of our approach consists of generating the model of the code
structure using MoDisco1. MoDisco has a visitor-based system which navigates
through the full abstract syntax tree (AST), and then builds a model from it,
according to its Java meta-model [4]. We use a specific option of MoDisco, which
annotates each element of the output model with its location in the source code.
This information will be necessary for the dynamic analysis, as we show later.

Figure 3 shows a simplified version of the model generated by MoDisco from
the code in Fig. 2 (Static model in Fig. 1). Node elements contain the position,
and a reference to the statements. Since the full static model generated by
MoDisco is rather large, we extract the excerpt in Fig. 3, focusing on statement-
level information, in order to improve performance. For instance we filter out
information about expressions, binary files, or import declarations. Since in
this work we focus on the execution trace of the statements, only those ones
are needed, within their respective classes, methods, and packages containers.
Specifically this filtering is required to minimize the final model in-memory size

1 http://www.eclipse.org/MoDisco/.

http://www.eclipse.org/MoDisco/
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:Node

line: 12
startPos: 188
endPos: 214

:Node

line: 11
startPos: 154
endPos: 183

:Node

line: 6
startPos: 74
endPos: 106

:Node

line: 9
startPos: 110
endPos: 133

:Node

line: 7
startPos: 92
endPos: 101

: Method

name: fact

: Class

name: 
Factorial

: Class

name: 
TestFactorial

: Method

name: 
checkFact

: File

name: 
TestFactorial.

java

: Package

name: main

: Directory

name: main:Positions

:JavaModel

:Return
Statement

:Return
Statement:IfStatement

:Expression
Statement

:Variable
Declaration
Statement

:Root
: File

name:    
Factorial.java

Fig. 3. Excerpt of the static model generated by MoDisco from the code in Fig. 2

afterwards. The filtering is performed during the model transformation described
in the next section.

2.2 Model Transformation

The goal of this model transformation is to produce a simpler model to use,
containing only the data needed for the program analysis. Moreover, this model
must be able to associate methods to statements in order to highlight all the
methods which execute a specific statement. This link is created during the
execution, i.e. dynamically.

The input of this model transformation is the model statically generated by
MoDisco, while the target is a model conforming to a meta-model we introduce.
This meta-model needs to differentiate the test classes from the SUT classes
(targets), since the execution trace is only computed for the System Under Test.
This meta-model is illustrated in Fig. 4.

NamedElement

name: String

Model Package

package: EObject

<<Abstract>>
Class

class: EObject

Target Test

Method

method: EObject

Statement

statement: EObject
startPos: int
endPos: int*

* * * *

executedBy

*

Fig. 4. The impact analysis meta-model.
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The model element corresponds to the root of the model. It contains packages,
which can contain either other packages or classes. Each class can have several
methods, which contain a list of statements. Finally, each statement owns a list
of references to methods, called executedBy. When the model is created by the
transformation, this list is empty, nonetheless the completion step described in
Fig. 1 consists into filling this list in order to get an execution trace. Since this
trace only concerns the SUT classes, the statements of the test suites are not
necessary in the analysis model. Thus, target and test classes are differentiated,
and only the SUT’s statements are kept.

To separate the target classes from the test classes, we assumed that test
classes either use the @Test annotations, or inherit the TestSuite class, from
the well known Java testing framework JUnit2. That information can easily be
accessed inside the static model. Though, several other conditions can be added
to the transformation, in order to differentiate the tests from other classes, using
the TestNG3 annotations for example.

The model transformation is made using ATL4, with the EMF Transforma-
tion Virtual Machine (EMFTVM). Indeed, besides including all the standard
ATL VM features, EMFTVM offers better model loading and saving, smaller
file results, and an overall performance improvement during the ATL transfor-
mation [12].

To focus a bit more about the transformation itself, 7 ATL rules are applying
a top-down approach on the static model, starting by transforming the packages,
classes, and going down to the statements. Apart from the namedElement, each
element of the meta-model corresponds to an ATL rule.

This transformation drastically reduces the size of the model manipulated in
the further sections. In fact this transformation is used to generate the analysis
model out of the JUnit4 source code static model. The size of one model is
lowered from 50 MB to 1 MB for instance, by keeping only the relevant objects
for future processing.

Once this model is built, we need to run the tests in order to produce the
dynamic analysis. Before, an instrumentation of the code is necessary, to be able
to observe and reify its behavior into the dynamic model during the last step
(Sect. 2.4).

2.3 Code Instrumentation

Code instrumentation is conducted by inserting additional statements in the
code, at specific places, so that when the SUT is executed, those new statements
are executed too [6].

Several instrumentation approaches exist:

– Source code instrumentation consists in adding code into the source file,
before compiling it.

2 http://junit.org/junit4/.
3 http://testng.org/.
4 https://eclipse.org/atl/.

http://junit.org/junit4/
http://testng.org/
https://eclipse.org/atl/
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– Binary instrumentation modifies or re-writes the compiled code.
– Bytecode instrumentation performs tracing within the compiled code.

During the development of our process, we considered those strategies, and
found that the source code instrumentation is the most accurate approach for
producing execution traces. Indeed, required information about the source can-
not be obtained when analyzing the binaries or the bytecode, especially the
source code position of the statements. Besides having the line number for each
statement like the other approaches, source code instrumentation can also pro-
vide column position numbers. This data will be used to match the executed
statements of the code with the analysis model’s statements. It is mandatory for
the next step (Sect. 2.4) to be able to add the behavior into the static model.

The instrumentation has been performed using the Spoon Framework [9].
This step is done first by iterating over the analysis model, in order to get
both Test and Target classes. When instrumenting Test classes, a setMethod()
statement is inserted at the beginning of each test method. Its parameters are
the test class name, and the method name. When instrumenting SUT classes,
a match() call is added before each statement. Its parameters are the SUT
class qualified name where it belongs, the method, and finally the source code
position of this statement. The source-code instrumentation generates the code
of the Fig. 5, which is compiled and loaded before the execution.

package main;
public class Factorial {

public int fact(int n) {
match("Factorial", "fact", 74, 106);
if (n == 1) {

match("main.Factorial", "fact", 92,
101);

return 1;
}
match("main.Factorial", "fact", 110,

133);
return n * (fact((n - 1)));

}
}

package main;
public class TestFactorial {

@Test
public void testFactorial() {

setMethod("main.TestFactorial",
"testFactorial");

Factorial f = new Factorial();
Assert.assertEquals(1, f.fact(1));

}
}

Fig. 5. Instrumented code of Factorial class, and its incomplete test suite.

2.4 Execution and Completion

The execution part consists of running the test cases. When the new instru-
mented statements are executed, the model statically built is completed with
dynamic information. Before the test execution, a singleton class is instantiated.
The method setMethod() sets the current test method being executed into the
singleton class.

The other method, match(), iterates over the analysis model to find the
SUT statement being executed, using its qualified class name, method name,
and finally the source code position of the statement. Finally, the executedBy
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list of the newfound statement is completed dynamically, by adding the single-
ton’s current test method. This model dynamically completed reifies the link
between statements and test methods, as showed in Fig. 6. Besides showing the
test methods that would be impacted when modifying a SUT statement, an
empty executedBy list shows an uncovered statement, which possibly implies an
incomplete test suite. Thus, this model answers to the problematic announced,
as it is dynamically created, and analyze the program’s behavior i.e. with impact
analysis.

:Test

name:TestFactorial

:Target

name:Factorial

:Method

name:testFact

:Method

name:fact

:Package

name:main

:Model

name:Model

:Statement

startPos: 74
endPos: 106

:Statement

startPos: 92 
endPos: 101

:Statement

startPos: 110
endPos: 133

executedBy

Fig. 6. The analysis model obtained after reifying the link between statements and
test methods.

However this model highly depends on the source code’s size. Indeed, each
statement in the SUT corresponds to one element in the analysis model, thereby
an important source code might lead to scalability issues. This scalability is
evaluated in the next section.

3 Evaluation

3.1 Execution Environment

In this section we evaluate the overall performances of our dynamic model gen-
eration framework, using the XMI persistence layer for our models.

This evaluation is conducted on a simple Java project containing the classes
introduced in the Sect. 2. We programmatically increase the size of this project
by duplicating the number of classes and test classes. This way, every test class
is testing a single target class. Using this setup, we can manage the size of the
output model, and observe the behavior of our prototype with either small and
big models.

The experiments are executed on a laptop running Windows 7 Professional
64 Bits, using an Intel Core i7-4600 (2.70 GHz) CPU and, a Samsung SSD 840
EVO 250 GB. The Java Virtual Machine version is JDK 1.8.0 121, and runs with
a maximum Java heap size of 2,048 MB.

This experimentation starts by running the program analysis on Java
Projects containing a few hundred classes, which can be considered as small
here. Subsequently, this number of classes is increased, up to thousands. We
measured the execution time for each step of our prototype, and reported it in
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the Fig. 7. As described in the previous parts, those steps are: Reverse Engineer-
ing (RE), Model Transformation (ATL), Source code Instrumentation (Instr),
Test Execution (Exec).

When the project under analysis reaches approximately 12,000 test classes,
the model created by MoDisco using reverse engineering is too big to be stored
in memory, thus preventing any other analysis on bigger projects.
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Exec
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Fig. 7. Dynamic program analysis execution times using the XMI persistence layer.

3.2 Discussion

The curves from the left diagram in the Fig. 7 are showing the growth of exe-
cution times when the number of classes increases. The other diagram shows
the same data, but its representation gives a better understanding of each step’s
duration in the whole process and its total duration. This diagram shows that the
MoDisco static model generation, and the source code instrumentation are by far
the longest steps of the program analysis, up to 32% for the reverse engineering
step, and 50% for the instrumentation step, approximately.

This can be explained by the fact that both are parsing the whole source code.
Yet it is interesting to notice that the instrumentation tends to be longer than
the reverse engineering once the model contains more than 5,000 test classes.
The reason is the Spoon’s instrumentation’s complexity being more than linear.

Also, as written in the previous subsection, the MoDisco static model creation
will not be achieved when the program under analysis gets very big (approxi-
mately 12,000 test classes) due to a lack of memory and the well-known XMI
scalability problem.

Pagán et al. explained in their paper [8] that the XMI persistence layer scales
badly with large models, due to the fact that XMI files cannot be partially loaded.
Indeed the XMI resource needs to keep the complete object in the memory to
use it.



Injecting Execution Traces into a Model-Driven Framework 11

This scalability problem can be partially resolved using a more scalable per-
sistence layer for the EMF Models, such as NeoEMF [2] or CDO5. Nonetheless,
MoDisco has its own meta-models, and uses EMF generated code. Using this
code with NeoEMF and CDO resources cannot currently improve the scalabil-
ity, since those layers need to generate their own code from an Ecore meta-model.
It is one of our future challenges.

4 Related Work

In order to reduce the maintenance costs of large applications, knowing the
impacts a code modification can have on other parts of the program can really
improve the developers life. Several approaches already exist within the impact
analysis domain.

PathImpact [7] is a dynamic impact analysis technique that does not require
any static analysis during its process. PathImpact instruments the binaries or
a program, and generates traces during its execution. This execution trace is
then used to create call graphs, which are analysed in order to study the impact
analysis. The impacts are identified at the method level, a coarser level than our
approach based on source code instrumentation.

Chianti [10] is a change impact analysis tool based on call graphs. Using two
different versions of the source code, Chianti creates a set of atomic changes,
and analyses their dependencies in order to determine the tests affected by code
changes. Basically, considering two atomic changes A1 and A2, if adding A1 in
the first version of the source code leads to a program syntactically invalid, then
it has a dependency to A2. For each tests, a call graph is generated (statically
or dynamically), and from those dependencies, operations affecting the tests
can be identified. This approach is really different from ours since it needs two
version of the source code. This impact analysis are more coarse-grained than
the approach presented in this paper, i.e. classes, methods and fields, but Chianti
supports more operations, such as insertion and deletion.

Imp [1] is a static impact analysis tool for the C++ language based on pro-
gram slicing [13]. Program slicing consists into computing a set of points, such as
statements, that can have an effect on other point of the program. To compute
the impact analysis, Imp only considers “forward” slicing, which computes a set
of statements that are affected by a previous point. This approach is fine-grained,
since the analysis can be done at the statement level. Nonetheless it suffers from
the disadvantages of the static approach, a loss of precision, in order to limit the
execution time when the program’s source code is being too big to analyse.

5 Conclusion and Future Works

In this paper we present our prototype for dynamic program analysis purposes,
using Model Driven Engineering. The multiple steps of the process dynamically

5 https://eclipse.org/cdo/.

https://eclipse.org/cdo/
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generate a model, highlighting the links between program’s statements and test
suites. Nevertheless, the experimentations led on this prototype showed that it
suffers from the XMI scalability issues induced by the MoDisco static analysis.

Our future work will focus on the scalability of our prototype, more specifi-
cally by integrating a more efficient persistence layer in term of scalability, such
as CDO or NeoEMF. Furthermore, the source code instrumentation remains a
very cumbersome technique, and evolving towards a more common solution, such
as “on the fly” byte-code instrumentation would be interesting, especially if the
granularity is maintained.

Acknowledgment. This work is supported by DIZOLO project - Aurora mobility
programme 2017.
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Abstract. As model-driven engineering (MDE) became a popular soft-
ware development methodology, several tools are built to support work-
ing with MDE. Nowadays, the importance of performance is getting
higher as the size of the systems grow. New solutions are needed that can
take advantage of modern hardware components and architectures. One
step towards this goal is to use the unique processing power of GPUs in
model-driven environments. Our overall goal is to create a graph transfor-
mation framework that fits into the parallel execution environment pro-
vided by GPUs. Our approach is based on the OpenCL framework and it
is referred to as PaMMTE (Parallel Multiplatform Model-transformation
Engine). This paper presents an overview of our tool and the description
of the implementation. We believe that this new approach will be an
attractive way to accelerate MDE tools efficiently.

Keywords: MDE · GPU · Graph transformation
High-performance computation · Parallel computation · OpenCL

1 Introduction

Model-driven engineering (MDE) can simplify the software development pro-
cesses that caused the sudden spreading of its usage in various domains. MDE
works with models that are no longer created only for presentation purposes
but transformed, processed and often used directly or indirectly as the basis of
code generation. Hence, it is an important and challenging part of MDE to find
and apply suitable model transformation techniques. The graph rewriting-based
model transformation (or graph transformation for the sake of simplicity) is one
of the most popular among them [1]. Besides CPU, there are other hardware
components to accelerate the execution of these algorithms. The advantages of
platform independence are obvious here, since the hardware available to the users
is quite heterogeneous. In order to handle this, the OpenCL framework1 is used
in our approach. OpenCL is platform independent and can be used to handle the
most widely used hardware components uniformly (CPU, GPU, FPGA, DSP).
In this paper, we show that by using an OpenCL-based solution, a promising way

1 https://www.khronos.org/opencl.
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M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 14–19, 2018.
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to accelerate model transformations efficiently can be found. Although OpenCL
is rarely used in MDE tools, we provide reasons why OpenCL is moving forward
in a promising direction. We also introduce the base architecture and model
transformation logic of our tool.

2 Related Work

Paper [2] studies the most widely used MDE tools: GREAT, IncQuery, Fujaba,
Groove, Henshin, MOLA, Viatra2 in order to understand them. Although the
performance is not the most important property, these tools manage model trans-
formations efficiently. For example, in [3] IncQuery uses the so-called incremental
evaluation of queries to accelerate. Moreover, there are tools (like GMTE2) that
use a C++ implementation to achieve better performance. However, none of the
existing tools can efficiently use the benefit of the parallel execution architec-
ture offered by the GPUs. OpenCL is a popular way to use the computation
power of GPUs, FPGAs and many other devices. The key aspect to achieve
high-performance computation is to apply appropriate scalability techniques.
Improving the scalability in different contexts is an actively researched area as
seen in [4]. Papers [5,6] showed that OpenCL can be efficiently used with graphs.
However, mapping graph algorithms from CPU version to OpenCL is a signif-
icant challenge. In [7], the k-Nearest Neighbor is implemented using the multi-
GPU OpenCL. We should mention at this point that the paper also provides
a CUDA-based implementation. CUDA is another major GPU programming
platform, however, it is strongly hardware-dependent while OpenCL is not. The
measurements in this paper show that the efficiency of the two platforms varies.
Taking everything into account, we choose to continue working with OpenCL
mainly because of its platform independence. Paper [8] shows the usage of the
OpenCL with some C++ and STL related features as part of the official Boost.

3 Parallel Multiplatform Model-Transformation Engine

In this section, we introduce our solution: the Parallel Multiplatform Model-
Transformation Engine (PaMMTE)3. PaMMTE is implemented in C++ 14 to
maximize performance. We should note that the approach is currently limited
to execute the graph transformation rules separately; no control flow support is
given. However, specifying a pivot node where the match should be started can
help matching.

3.1 The Representation of the Domain Model

At the beginning of the model transformation, the input domain model is read
and converted using a domain specific adapter. Using the adapter, we split the
2 http://homepages.laas.fr/khalil/GMTE/.
3 https://www.aut.bme.hu/Pages/Research/VMTS/PaMMTE.

http://homepages.laas.fr/khalil/GMTE/
https://www.aut.bme.hu/Pages/Research/VMTS/PaMMTE
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input model into two sets of data. The first set is a graph representing the topol-
ogy of the original model, while the second set represents the attributes attached
to the model entities. During the transformation, these representations are used
and the changes are evaluated on the original domain model as the last step of
the transformation. Although we need to create an adapter for each domain, we
provide a template to simplify the task. In the topology graph, all elements are
represented by an elementID and a typeID. The elementID is a unique identifier
of the node generated by the adapter creating the graph representation. Type
information on domain elements is expressed by the typeID that contains the
unique identifier of the type (metaelement) of the given element. Both elemen-
tID and typeID are integer values in order to accelerate their use on the GPU.
In case of attributes, we create an array of data referring to the container entity
by using its elementID. From a technical point of view, we use a hash table to
build the graph and create the inner topology/attribute representation from the
input domain model. The main benefit of using a hash table is its ability to find
entities quickly (in O(1) time). Practically speaking, matching requires several
orders of magnitude more time than rewriting. Therefore, the costly operation
of modifying the hash table has no serious affect on performance. The graphs
are further processed by the host (the CPU) just before working with it on the
GPU. This transformation is not complex, however, it is advantageous in order
to simplify and accelerate the algorithms running on the GPU. The original
graph is mapped into two one-dimensional structures using the elementIDs of
the nodes: (i) The first structure contains the list of the neighbors one-by-one
from the first to the last node. (ii) The second structure contains the starting
positions of the neighbor list and is a helper structure to process the first. Using
these two arrays and the size of the second array, all graphs can be passed to
the OpenCL device. The structure of attributes is much simpler in that arrays
refer to their container entity by using elementIDs.

3.2 Steps of the Approach

Unlike most of the tools in our approach, the execution of graph transforma-
tion rules is divided into three major logical steps (Fig. 1): (i) pattern matching,
(ii) attribute processing and (iii) graph rewriting. The three logical steps are
connected to each other and are executed sequentially. (i) Pattern-matching is
responsible for searching for topological matches according to the user defined
rewriting rules. In this step, only the aforementioned topology graph is used.
(ii) Attribute processing works on the result of the first step and it filters the
matching candidates by evaluating attribute constraints on them, which are
evaluated separately and sequentially. If a certain constraint fails, the candi-
date is dropped. We have created several dedicated kernels for the most typical
constraint types (e.g., regular expressions in strings, simple numeric operations,
etc.). In addition to these dedicated kernels, we support using custom atypical
constraints, however, they must be specified in OpenCL. To simplify this task,
we are continuously working on extending the range of built-in constraints. At
this point, domain attributes are also needed; thus, attribute arrays are copied
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Fig. 1. The main designing concept and the three logical steps

to the GPU. It is important that kernels working on attribute constraint evalua-
tion must receive only the necessary attribute data in the concatenated format.
Otherwise, the cost of transferring the data from the CPU to the GPU would
seriously degrade the performance of the approach. (iii) Rewriting applies the
modifications defined in the rewriting rules by modifying the data sets represent-
ing the domain model. To avoid inconsistencies caused by parallel execution, the
result is verified just before rewriting. After rewriting, we also have to decide
whether the graph transformation is finished, or another rewriting is required
(for “as long as possible” rules). Finally, if applying the rewriting rule is finished,
the input domain model is changed based on the data sets of the transformation
using the domain adapters. All three steps have input and output data, which
is not stored but rather is temporally used by steps. Each step obtains an input
data and then processes it and generates the output. The data is composed of
three parts: (i) the model (accessed via modelProcessing package), (ii) the trans-
formation rules (iii) and the temporal results. By rigidly separating the steps, a
highly modular and easily extendable design is achieved. The logical steps have
several kinds of responsibilities like supporting the scalability issues of the actual
step, and preparing and configuring of the core algorithms, which belong to the
Model-transformation Library Layer (Fig. 1). Library components can be easily
exchanged to vary the dynamic behavior of the engine by using template pro-
gramming. The common interface of the steps and the modularity also support
the testability.

3.3 Illustrating the Topological Match

In order to illustrate the truly parallel behavior of the engine (same running
time results are received in several case studies), the pattern matching logical
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Fig. 2. Handling the buffers during pattern matching

step is detailed. The main concept is that we start a kernel from each potential
matching point. Initially we try to find the first entity in the pattern, then
the submatch is extended with the second entity, etc. Each kernel obtains a
submatch already found and returns with its possible completion. Thus, pattern
matching is applied in several steps. Four temporary buffers are used (Fig. 2)
during the process: (i) FH1 - first helper, (ii) FB1 - first result candidate, (iii)
SH2 - second helper, (iv) SB2 - second candidate. The kernel binary reads FH1
and FB1 and writes SH2 and SB2. The host applies two important steps before
calling the kernel. First, it cumulates the numbers in the first helper buffer to
provide information about the index of the candidates, then it swaps the first
and second buffers. The kernels always work from the first buffers and save their
result to the second: (i) The kernel copies the candidates from the first buffer
to the second buffer and also takes the new neighbor using the helper buffer
and the kernel worker thread ID. The number of threads started is equal to
the number of new candidates. Each new thread knows its base candidate and
copies the candidate from the first buffer to the second buffer. (ii) The thread
knows which neighbor is to be taken to the new empty position. (iii) The thread
validates whether the new candidate is matching. In the case of a mismatch, the
thread sets the number of possible new neighbors to zero. If the new candidate
is matching, the thread adds the number of potential new neighbors that must
be checked in the next loop. Finally, the new candidate buffer is created. We
have built our tool by following the principles of Test-driven development. Many
test cases were created and applied from the beginning. This method helped
us to find implementation issues and avoid degeneration of the code. Later on,
we have searched for a domain that can be used to apply transformations. The
Internet Movie Database4 (IMDb) was chosen. Because of its size, IMDb data
is perfectly suited for scalability measurements and for performance tests. We
applied several tests on the database in our earlier researches [9].

4 http://www.imdb.com/interfaces.

http://www.imdb.com/interfaces
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4 Conclusion and Future Work

The continuous growth of modeled systems is driving the focus on high perfor-
mance model transformation solutions. We believe that using the remarkable
potency in computing power of GPUs provides a solution to this issue. We are
currently working on an OpenCL-based model transformation engine. In this
paper, we introduced our framework PaMMTE by showing the basics of our
approach and the most important parts of our engine, as well as illustrating the
mechanisms by elaborating the steps of the pattern matching in more detail.
Although our results are already promising, there are further acceleration and
optimization points to discover and apply. The tool supports only the application
of a single rewriting rule, not a complete sequence of rules. Our current research
involves implementing a control flow that allows defining the sequence of rules
and data transfer between them. The usage of further real-life case domains and
studies can bring new challenges to solve. In the meantime, the achieved results
can be used in MDE tools to accelerate their performance. Processing data, like
Ecore, is a task for the future and it will give us a chance to create practical
comparisons to other MDE tools.
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Abstract. Modelling and version control both play key roles in industrial-scale
software development, yet their integration has proved difficult. Significant
effort has been expended on improving file-based merging of modellers’ work,
but empirical research shows the results of that approach still leave much to be
desired in practice. Approaches based on multi-user modelling databases have
often foundered by locking too broadly, thus preventing work on different
elements in the same model, or by handling versioning themselves, leading to a
silo. This article presents an approach to combining multi-user modelling with
any external version control system, with no merging and no lock-outs.

Keywords: Multi-user � Modelling � Locking � Merge
Version control systems

1 Introduction

Around 15 years ago, model-driven development faced a crossroads. Where models
became primary assets in software development, should collaborative work on them
follow the multi-user repository approach of leading modelling tools, or the clone and
merge approach that had worked so well on the earlier primary assets, source code
files? In academic research, the balance swung towards XMI model files under source
code version control systems. In industrial use, both approaches have continued to this
day, with multi-user functionality in tools like MagicDraw, Enterprise Architect and
MetaEdit+1. Both approaches have been fruitful, yet combining them seamlessly to get
the best of both worlds has proved elusive, particularly for the increasingly important
case of distributed version control systems.

This article presents an approach to combining multi-user modelling in any lan-
guages with any external version control system, with no merging and no lock-outs.

2 Background and Related Research

The issue of collaboration and versioning is central to the scalability of model-driven
development teams, as noted in two key items in the roadmap laid out in BigMDE
2013 [1]: “support for collaboration” and “locking and conflict management”.

1 nomagic.com/products/magicdraw, sparxsystems.com/products/ea, metacase.com/mep.
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2.1 Two Ways to Collaborate

With multiple developers interacting on a large project, it is generally not feasible to
divide the system into isolated modules, one for each developer. We thus have to cope
with integrating the work of several simultaneous developers on a single module.

There are two different ways to approach the problem of multiple users. The first
way gives each user their own copy of the files to be edited and allows any changes,
with the first user to version getting a “free ride”, and others having to merge their
changes into that version after the fact. The second way allows users to work on the
same set of models, integrated continuously as they save, with locks to prevent
conflicting changes (Fig. 1).

Although it is common in the research literature to refer to these two approaches as
“optimistic locking” and “pessimistic locking”, these are not particularly accurate
terms. In the former there is actually no locking, and in the latter there is no pessimism:
a lock is taken only when necessary or requested, not as a worst-case precaution. We
will thus refer to them here as “clone and merge” and “share and lock”, describing what
actually happens.

2.2 Research on the “Clone and Merge” Approach

The vast majority of research has concentrated on the problem that VCS algorithms for
merge are designed for simple text files, and applying them to the more highly
structured and interlinked data in model files leads to results that vary between
inconvenient and unacceptable. Out of 470 articles in the University of Siegen’s
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Fig. 1. Two ways to collaborate: clone vs. share
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excellent Bibliography on Comparison and Versioning of Software Models2, almost all
focus on this approach. In Europe, the MODELWARE (2005–2006) and MOD-
ELPLEX (2006–2009) projects, each costing around 20 million Euros, included sig-
nificant effort on this topic. With that scale of research and effort, it seems fair to
assume that theory and implementation are already close to the best that is possible on
this path, and indeed we make no effort here to offer incremental improvements to
them. There is a good overview of the issues in [2] and the current state in [3].

Recent empirical evaluations of user experiences with the “clone and merge”
approach show significant problems remain: “Exchanging information among tools
using XMI creates many problems due to the format misalignment in the various
tools”, “all companies try to avoid merging as much as they can”, differencing “is
error-prone and tedious” [4]. Experiences with a major vendor’s UML tool revealed
“difficulties in merging… became impossible”, leading to “trying not to branch” [5].

2.3 Research on the “Share and Lock” Approach

Ohst and Kelter found that improving locking in ADAMS to use a finer granularity
reduced the need to branch and merge from 30% of cases to zero [6].

Gómez et al. have tried to bring a locking approach to EMF with HBase [7], but the
lack of explicit transaction support meant ACID properties were lost above the level of
single changes: unacceptable for modelling, where a coherent unit of work requires
several changes.

Odyssey-VCS 2 is a version control system tailored to fine-grained UML model
elements [8]. It moved away from explicit branching to auto-branching, provided better
information of a single user’s changes and intentions, and allowed locking at a fine
granularity. However, locks must be taken explicitly, and if unused must be freed
explicitly too.

Systemite’s SystemWeaver offers explicit versioning within a database, although
their data is more focused on components than graphical models, and they offer no
external VCS integration. They criticise file-based approaches, citing three studies
showing that 14–30% of engineers’ time is spent on finding the correct data and
version [9].

3 Current State of the Art

In this section, we examine a state of the art example of each approach.

3.1 Clone and Merge: EMF Compare + EGit

The file-based approach is easy to explain: model files are treated like source code files,
so all the normal operations of Git or similar are available – but also required. The main
benefit of EMF Compare [10] is to offer diff and merge algorithms better-suited to

2 http://pi.informatik.uni-siegen.de/CVSM/.
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EMF XMI models, and to display results in a partially graphical format. The simplest
EMF Compare + EGit integration seen to date is in an EclipseSource video3 by Philip
Langer. Even there, versioning with a single simple conflict requires a sequence of 11
user operations: “branch + checkout, save, add + commit, checkout, pull, merge,
resolve conflicts, save, add, commit, push”. Even without a conflict, the sequence is
“branch + checkout, save, add + commit, checkout, pull, merge + commit, push”:
seven manual operations which the user has to remember and find within the various
menus of Eclipse. (Watching the video is recommended to understand the current state
of the art, and compare the improvements offered in this paper.)

Is this complexity essential, or could another way show it to be accidental com-
plexity, introduced by applying tools and methods designed originally for simple text
files to the rather different world of models? Indeed, could the more structured nature of
models actually help us avoid the need for this complexity? There are certainly sub-
stantial gains to be found: empirical research finds that modellers spend over one hour a
day on interacting with version control systems [11].

3.2 Share and Lock: MetaEdit+

The second way has its origins in the richer structures of databases. In today’s multi-user
modelling tools, the second way is seen in MetaEdit+ [12] or the collaboration mode of
the commercial version of Obeo Designer4. The basics of the approach are similar
between the tools, but here we will discuss the approach taken in MetaEdit+, as it will
also serve as a starting point for our later discussions.

Figure 2 shows the architecture of the MetaEdit+ multi-user version [13], which we
describe in this section as it was from release in 1996 to before the work in this paper.
The heart of the multi-user environment is the Object Repository, a database running
on a central server. All information in MetaEdit+ is stored in the Object Repository,

MetaEdit+ 
Client

MetaEdit+ 
Client

MetaEdit+ 
Client

MetaEdit+

Server

Object 
Repository

Fig. 2. MetaEdit+ multi-user architecture

3 https://youtu.be/NSCfYAukYgk.
4 https://www.obeodesigner.com/.
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including modelling languages, diagrams, objects, properties, and even font selections.
Clients access the repository over the network via the lightweight MetaEdit+ Server;
the user interface and execution of all modelling operations is in the clients.

The Object Repository itself is designed to be mostly invisible to users. Objects are
loaded as needed and cached by clients when read, and thus are only read once per
session over the network: performance after that initial read is identical to normal
objects. Because of the JIT loading of objects, and no need to parse XML, performance
of opening a model compares favourably with XML-based tools, particularly for large
models [14]. This corresponds to the “Efficient model storage” and “Model indexing”
items of the scalability roadmap [1]. Objects are also automatically flushed from the
cache if models become larger than the configured desired memory usage, allowing
seamless work and global queries on massive models (a similar approach has been used
later by Daniel et al. on Neo4EMF [15]).

An extra layer of consistency is familiar from ACID rules for database transactions:
during a transaction, users see a consistent view of the repository as it was at the start of
their transaction. This gives the ease of Google Docs multi-user editing, without the
distraction of others’ half-finished changes happening before your eyes – a problem that
users of other tools have described as feeling “like shooting at a moving target” [16].

Fine granularity locks ensure no conflicts, while letting users work closely together
in parallel. Making a change automatically takes a minimal lock, down to the level of
granularity of a single property, preventing conflicts without preventing users working
closely together. When a user has finished making a coherent set of changes, he can
commit and his changes are then automatically available to other clients, with no need
for manual integration.

Whereas the “clone” approach to collaboration gives rise to versions as a welcome
side-effect, the “share” approach does not itself create versions. Although VCS func-
tionality is not needed here to enable collaboration, we still need versioning in order to
be able to record what we have shipped. To save the state of the repository to a version
control system, all the users first had to log out and the server process had to be
stopped: an unwelcome interruption and a harsh return to the file-based world.

Similarly, whereas the “clone” approach must calculate differences, and by con-
vention requests the developer to enter a human-readable description of the changes,
the “share” approach does not do this. We still need to see what has changed as an aid
to documentation, bug hunting and impact analysis, so extra functionality is needed to
help developers capture that information.

4 Comparison Functionality in a Modelling Tool

We want a way to bring together the best of both approaches above. We will start from
MetaEdit+ as described above, and show in this section how we have now added
comparison functionality directly in the modelling tool, avoiding the complication of
reconstituting it by comparing lower-level XMI files. The section after this covers the
other novel addition of this paper, integration with external version control systems.
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4.1 View Changes as a Tree

The Changes & Versions Tool shows what changes users have made, helping them
document the version history of their models. A Version is made by a user on demand,
and consists of the one or more transactions by that user since his previous Version.
The history is shown as a tree with Versions at the top level, containing that user’s
Transactions, containing Graphs and Objects that changed in that transaction.

By default the tree shows only the current Working Version of the current user, but
‘Show all versions’ broadens this to previous versions and all users. Users can choose
‘Ignore representations’, so simple graphical rearrangements of diagram elements do
not clutter the display.

Colour and symbols are used to highlight specific types of change: green for new,
red for deleted, black for changed, and grey for elements that are not themselves
changed, but which are parents for changed elements (Fig. 3).

4.2 Graphical Comparison to Highlight Changes

For a selected graph version in the Changes tree, ‘Open’ will open the current diagram
and highlight the elements changed in that version (Fig. 3). For many cases, this
highlighting gives a quick, intuitive, graphical overview of what has changed, shown in
the context of the current state of the model. For the full details, e.g. of sub-objects not
directly represented in a diagram, users can use the tree or textual Compare.

4.3 Textual Comparison with Model Links

From the Changes tree, users can choose ‘Compare’ to compare the selected Version,
Transaction or Graph with its predecessor. This will open a text comparison of the

Fig. 3. Changes & Versions Tool with tree view, graphical view and text view (Color figure
online)
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selected state with its previous state (Fig. 3). The text elements have Live Code
hyperlinks, so double-clicking a link will open that element in its current context in the
model. The text lists the graph, its objects and relationships, together with all their
details and links to any subgraphs. This approach is intended as a good compromise
between coverage and readability. It is produced by a normal MERL generator, and so
can be customized where necessary: domain-specific diff.

When comparing a Version, the comparison is to the previous Version, hence
multiple graphs across multiple transactions. Rather than show each graph many times,
each time with just the changes made in a single transaction, the changes for each graph
will be combined and shown from the initial state to the final state. Only if other users
have committed transactions interleaved with this user’s, those changes will be filtered
out of this user’s view by splitting at that point into more than one textual comparison.
Each change is thus shown once, in the Version of the user who made it, and can thus
be documented once, without the confusion of interleaved changes made by others
being highlighted too.

5 Version Control System Integration

We add integration with external Version Control Systems using MetaEdit+’s API
command-line operations and MERL (the MetaEdit+ Reporting Language for writing
generators and scripts). The VCS operations are invoked from the Changes & Versions
Tool, and use generators to call the necessary commands. Full implementations with
generators for Git and TortoiseSVN integration are included for Windows, and users
can build on these to add support for other VCSs or platforms. For instance, the
TortoiseSVN implementation for versioning consists of one line for “svn update” and
another for TortoiseSVN’s commit command, plus some batch file housekeeping.

5.1 What to Version and How

A user can make changes and commit in one or more transactions, and when ready to
version, can press ‘Save Version’ in the Changes & Versions Tool. The VCS inte-
gration puts the current state into the VCS working directory, and makes a VCS version
from there.

The VCS working directory is kept separate from the MetaEdit+ directory, because
VCSs cannot work sensibly with a live set of database files. MetaEdit+ copies the
repository into a versionedDB subdirectory of the VCS working directory. (The
repository’s binary files’ history compresses twice as well with standard Git or SVN
deltas than if 7-Zipped first.) MetaEdit+ also writes the current textual snapshots of
each graph, and in a metamodel subdirectory textual snapshots of the metamodels
and generators. These textual files add about 10% to the initial size, but as only small
parts change in subsequent versions, the ongoing increase is significantly less. The
improvement in the ability to compare versions within the VCS itself is well worth it.

The standard way of using command-line VCSs – manually change a file, and in a
separate command manually tell the VCS that the file has changed – is not necessary in
a situation where a tool can guarantee that what is in the working directory is the exact
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state of the next version. Only a few VCS commands are thus needed, and MetaEdit+
will handle calling them. The commands are specified in a few MERL generators called
by the various phases of the Save Version action. The bulk of the generators are for any
VCS, with any variations isolated into generators with a suffix for the VCS name – e.g.
_vcsCheckIn_git() checks in the current working directory contents, adding and
committing them locally, and syncing and pushing them to a remote Git repository
shared by all users of this MetaEdit+ repository.

Having the commands in MERL generators allows users to add integration for new
VCSs, and to tweak existing integration if necessary. For instance, the default inte-
gration follows most customers’ wishes in not including source code generated from
the models, but if a particular customer wanted that, adding it for all VCSs would be a
single line in the generic _vcsCheckIn() generator. Another customer might
choose to generate source code into a separate VCS repository.

We want this new version to succeed the latest version in the VCS (regardless of
who made that), and not the previous version made by this user. We thus perform an
update or reset operation on the local VCS working directory before versioning, to
bring the local VCS’s view up to date. Since the MetaEdit+ multi-user server has
already integrated the work of multiple users, the state of the repository seen by this
user is exactly what we want in the next version, and we can simply write it to the
working directory as detailed above. Before writing we empty the working directory,
allowing us to avoid old files being left when graphs etc. have been deleted. There are
thus no merges or conflicts, and we can simply commit the state of the working
directory as the next version in the VCS. Repository, local and remote VCS stay in
sync.

In this way, versioning in a multi-user environment is as easy as with a single user
(see video5). The multi-user repository already makes sure we have all the other users’
changes, and there is no need for the user to manually fetch others’ changes, deal with
diff, merge and conflicts, or think about any of these details when versioning: one click
is enough to publish as the next version in a single, consistent trunk. This compares
favourably with the 7–11 operations and choices the user needs to make correctly in the
best Eclipse implementations (Sect. 3.1 above).

6 Conclusions

Over the last 15 years, much effort has been expended on improving collaboration and
versioning with models. Two starting points were on offer: “clone and merge” with
file-based models under a VCS, and “share and lock” with multi-user modelling tools.
The vast majority of research effort has concentrated on the “clone and merge” branch,
and the results obtained can be considered to approach the local maximum of func-
tionality and local minimum of complexity on that branch. This paper presents work on
the less-investigated “share and lock” branch, starting with a multi-user modelling tool
and adding comprehensive model comparison functionality and integration with any

5 https://youtu.be/nvGQlt8dqjI.

Collaborative Modelling with Version Control 27

https://youtu.be/nvGQlt8dqjI


VCS. The results seem promising in offering similar functionality to the best examples
on the “clone and merge” branch, but at a significantly lower level of complexity to the
user. The number of explicit manual user operations needed to version is an order of
magnitude lower than with EMF Compare and EGit, helping modellers to stay focused
on their primary task: modelling.

In today’s world of near-ubiquitous internet access, the requirement of a network
connection to a multi-user repository is not a large one. For the rare cases where that is
not possible, future work will look at adding the 3- or 4-way merges from tools like
EMF Compare or CDO6, allowing offline work to be more easily integrated.
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Abstract. Program analyses are an important tool to check if a system
fulfills its specification. A typical implementation strategy for program
analyses is to use an imperative, general-purpose language like Java; and
access the program to be analyzed through libraries for manipulating
intermediate code, such as ASM for Java bytecode. We show that this
hampers composability, interoperability and reuse of analysis implemen-
tations.

We propose a complete Ecore-metamodel for Java bytecode as a com-
mon basis for program analysis implementations, as well as an Eclipse
plug-in to create bytecode metamodel instances from Java bytecode and
vice versa. Code analyses can be defined as model transformations in a
declarative, domain-specific language. As a consequence, the implemen-
tations of program analyses become more composable and more modular
in general. We demonstrate the effectiveness of this approach with a case
study.

Keywords: Java bytecode · Metamodel · Model transformation
Model-driven software engineering · Program analyses · Composition

1 Introduction

Program analyses are developed for, e.g., checking correctness, performance
or real-time requirements. In general, such analyses either determine statically
accessible properties, or they modify the code such that information is collected
at execution time. Thus, analyses are either static or dynamic, or hybrid analyses
combining both [14,18,19]. Much of the research in program analysis targets the
Java language; more precisely, it should be said that the bytecode format of the
Java Virtual Machine is targeted, as analyses usually inspect and instrument this
intermediate representation rather than the source code. This has several advan-
tages; for example, many different source languages compile to the Java byte-
code format, thus, multiple languages can be supported at once. Furthermore,
typically, the bytecode is available for the whole program, including third-party
c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 30–40, 2018.
https://doi.org/10.1007/978-3-319-74730-9_4
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libraries. A typical implementation strategy for bytecode-level program analyses
is to use an imperative, general-purpose language like Java, and to access the
program to be analyzed through libraries that offer an API for inspecting or
instrumenting intermediate code, such as BCEL or ASM [5,9,11,15,22].

New analyses often conceptually extend or combine existing ones by optimiz-
ing the information collection or collecting additional information. Considering
that many of these analyses involve similar concepts and work on the same
intermediate representation, being able to extend and compose existing analy-
sis implementations would save time and effort, and improve interoperability
and maintenance. Though Java (and other general-purpose languages) offers
language-level modularity mechanisms, such as class libraries and inheritance,
they are not sufficient to implement program analyses in a composable fashion.
To compose two or more analyses (or parts thereof), the only possibility is to
apply one analysis to the output of the previous one. However, since an analy-
sis in general alters the bytecode, the subsequent ones do not see the original
code, which may invalidate their results. In this paper, we promote model-based
definitions of program analyses as a more flexible mechanism [6].

The contribution of this paper, therefore, is a complete Ecore-metamodel
for Java bytecode, which can be used as a common basis for arbitrary program
analyses. Instances of our metamodel can be created from compiled Java code in
the class file format, and vice versa. Code analyses can now be defined as model
transformations, in one of the well-researched domain-specific languages avail-
able for this purpose. Furthermore, analysis results can be represented directly
as extensions of the bytecode model of the analyzed program, making them eas-
ily accessible to subsequent manipulation and to other tools. We claim that, as
a consequence, the implementation of a program analysis becomes more compos-
able and modular [21]. We have implemented an Eclipse plug-in, called JBCPP
for the bytecode-to-model and model-to-bytecode transformations.1

We demonstrate the effectiveness of this approach with a motivating example
comparing the composability of two program analyses in the traditional (using
a general-purpose programming language) and in our implementation approach
(using a model transformation language utilizing our metamodel).

2 Motivation

While there are metamodels available for high-level programming languages (e.g.,
JaMoPP [17], MoDisco [7] and domain-specific languages developed with tools
like xText [13] or EMFText [16]), we are not aware of any program analyses
developed in a model-driven way using these source-level metamodels. There
are several reasons why program analyses are typically implemented based on
bytecode rather than source code:

– The bytecode is always available for the whole program, also for the third-
party components and libraries that are not available in source code.

1 The plug-in and the metamodel are available on the JBCPP homepage: https://
bitbucket.org/bmyildiz/java-bytecode-metamodel-repository.

https://bitbucket.org/bmyildiz/java-bytecode-metamodel-repository
https://bitbucket.org/bmyildiz/java-bytecode-metamodel-repository
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– Many implicit features in the source code are resolved and represented explic-
itly in bytecode. Some examples are simple type names, which can only be
fully qualified by interpreting import statements, or the implicit default con-
structors.

– Java bytecode is the compilation target for various languages. Therefore,
implementing an analysis for Java bytecode generally makes it applicable
to programs written in these different source languages.

– A single statement in the source language is typically represented by multiple
finer-grained bytecode instructions, which makes Java bytecode more flexible.
For example, control flow is not limited to properly nested blocks. Therefore
code instrumentations often are easier to be defined at the bytecode level.

– Besides, at least for Java programs, almost no information from the source
level gets lost when compiling to bytecode. A notable exception are scopes
confined to blocks in the source code, e.g., for a for loop, the sections initial-
ization, condition, increment and body are not explicitly represented but can
typically be recognized by simple and local analyses [23].

2.1 Motivating Example

We will express our problem statement by employing two explanatory program
analyses. The first analysis is to count how often each method call in the program
is executed. To do so, this analysis instruments each invocation instruction in
the bytecode by inserting a call to the method InvocationCount.increase(). To
identify the instruction whose executions are counted, the analysis numbers all
invocation instructions in a method and generates an identifier based on the
fully qualified method name, that contains the invocation instruction and the
instruction’s number. This identifier is passed to the increase() method as an
argument. After the program execution, the results are written to a file. We call
this analysis invocation count.

The second analysis measures the time that elapses for each method invo-
cation. This analysis prepends each method invocation with code to store the
result of System.currentTimeMillis() in a local variable. Then, it appends code
to calculate the difference of the current time and the stored start time and to
pass the result to the method Time.increase(). This method receives a unique
identifier of the invocation instruction, which is computed in the same way as
for the invocation count analysis. The method Time.increase() stores the accu-
mulated elapsed time per invocation instruction, which again is dumped at the
termination of the execution. We call this analysis time in short.

Neither analysis instruments invocations that occur in its respective
increase() method or invocations of methods from the system class library, i.e.,
classes in a subpackage of java, to avoid endless recursions.

2.2 Implementing Program Analyses with a Bytecode Toolkit

Several toolkits for reading and manipulating Java bytecode are available
[3,8,10]. These toolkits basically support two styles for implementing program
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analyses: First, the bytecode is transformed to an object-oriented representation
and analyses subsequently process this representation, possibly altering it; this
facilitates random access to elements in the bytecode. Second, the bytecode is
traversed in one pass during which a visitor, implementing the analysis, reacts to
encountering relevant elements; in this style the bytecode is naturally traversed
sequentially. If a such-implemented analysis employs code instrumentation, each
encountered element is, by default, copied to the output, unless the analysis
decides to suppress or modify a visited element or insert something at its loca-
tion.

Both styles have the following points in common: (1) By default, there is no
way to combine multiple analyses other than to perform them sequentially; and
(2) it is not possible identify which elements in the resulting bytecode stem from
the original input or are inserted by an analysis.

In our examples, we employ the ASM bytecode toolkit and make use of the
visitor style since this is currently the most common implementation approach
for program analyses based on Java bytecode.

Listing 1.1 shows the visitor methods handling the encounter of a method
invocation of invocation count. What is not shown in the listing is that the visitor
does not descend into the methods InvocationCount.increase() but copies them
verbatim, such that the method invocation instructions within this methods are
not visited. The visitor method of time is implemented analogously.

1 @Override
2 public void visitMethodInsn(int opcode, String owner, String name, String desc, boolean

itf) {
3 if (! owner.startsWith("java/")) {
4 String id = getInstructionID();
5 super.visitLdcInsn(id);
6 super.visitMethodInsn(Opcodes.INVOKESTATIC, "ic_analysis/InvocationCount",

"increase", "(Ljava/lang/String;)V", false);
7 }
8 super.visitMethodInsn(opcode, owner, name, desc, itf);
9 }

Listing 1.1. Instrumenting method invocations for the invoction count analysis with
the ASM toolkit.

As the listing shows, the instrumentation code is inserted into the output
by calling the respective super.visitXXX() methods. This is the case for original
instructions occurring in the input (e.g., line 8 in Listing 1.1) as well as the
additional code. The invocations to getInstructionID() (e.g., line 4 in Listing 1.1)
return the unique identifier of the method call instruction, as described in the
previous subsection.

2.3 Composing the Toolkit-Based Analyses

The two described analyses measure the total execution time of each method
call as well as an execution count for each method call. Thus, composing both
analyses would allow to compute the average execution time for each method
call.
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The typical approach of combining two analyses implemented in an approach
such as outlined above is to apply them sequentially. This is, analysis 1 is applied
to the original bytecode yielding intermediate bytecode as result. Second, anal-
ysis 2 is applied to this intermediate code yielding the final bytecode.

In the case of our example, both analysis instrument all method invocations:
This causes the intermediate code produced by the first instrumentation to con-
tain additional method invocations, which are then unintentionally instrumented
by the second analysis. As a result, depending on the application order of the
two instrumentations, either method invocations are counted or timed, which
were not part of the original program.

Furthermore, the identifier computed for each method call (getInstructionID)
is based on the position of the instruction in the bytecode, which changes because
of the instrumentations. Therefore, the identifiers of both analyses do not match.
Only the identifiers of the first analysis can be mapped to the original bytecode.

One might think that analyses implemented in the outlined approach could
also be composed by inheritance. However, this does not solve the problem,
as the visitor method (visitMethodInsn), which is implemented to react to the
encounter of a method call, is also called to insert additional method calls.

2.4 Problem Statement

The current state of the art bytecode manipulation toolkits follow approaches
that do not support composition of independently developed program analyses.
While it could be possible to employ specific patterns for extensibility and com-
posability when implementing a program analysis, we are not aware of such
approaches, let alone bytecode manipulation toolkits supporting this.

For this reason, we suggest a new approach, implementing program analyses
in a model-driven way. Model transformation approaches from the model-driven
engineering (MDE) world have a strong focus of declarative definitions, compos-
ability and extensibility, which is why we think that the ability to implement
program analyses as model transformations is a significant added value.

3 Java Bytecode Metamodel

To facilitate implementing program analyses in a model-driven way, we have
developed a metamodel (using the Ecore format provided by the Eclipse Model-
ing Framework (EMF) [1]) of Java bytecode, called JBCMM 2. Bytecode models,
instances of the metamodel, act as a basis for analyses. Furthermore, the meta-
model can be extended to meet various concerns such as the representation of
analysis results. In our metamodel, all relevant elements are uniquely identifiable.
For example, classes have a unique name (made up of the package name plus the
simple class name), and the name and descriptor of a method is unique within

2 Published on the JBCPP homepage: https://bitbucket.org/bmyildiz/java-bytecode-
metamodel-repository.

https://bitbucket.org/bmyildiz/java-bytecode-metamodel-repository
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a class. In addition to the names used in the bytecode specification, additional
elements like instructions have names in our metamodel to make them identifi-
able. These names have to be unique within their scope, e.g. the fully qualified
identifier of an instruction is composed of the instruction name, the containing
method’s name and descriptor and the declaring class’s name.

Therefore, information generated by an analysis can be uniquely associated
with model elements by using these fully qualified identifiers, staying valid inde-
pendently of which modifications are applied to the model. Java bytecode (thus
also our metamodel) accommodates for storing a mapping between bytecode and
the source line from which it was compiled. Therefore, it is also possible to trace
each object in a JBCMM model to the corresponding source line.

3.1 Structure of Java Bytecode Metamodel

The metamodel mainly follows the organization of Java class files as defined
in the Java Virtual Machine specification [2]. In general, each kind of entity
from the class file format (like method declarations, attributes or instructions) is
represented as one Ecore class in the metamodel. Lexical nesting (e.g., a method
is nested inside its declaring class) is represented as a containment relationship in
the metamodel (in terms of the previous example: a method is contained in the
class that declares it). To simplify implementation of analyses, all containment
relationships are navigable bidirectionally.

The most relevant elements of the metamodel are shown in graphical form in
Fig. 1 and described below. Entities not relevant for our case studies (e.g., fields)
are omitted here, but are treated analogously.

Fig. 1. A view from the bytecode metamodel

Project, the root of the Ecore model, contains all classes and refers to the
designated main class. Clazz represents a class or an interface, storing type hier-
archy information, type-level declarations such as annotations or modifiers, and
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all the members declared inside the class. Method stores method-level declara-
tions and (for non-abstract methods) contains the method’s instructions and a
reference to the first instruction.

Instruction is an abstract entity that build the root of a hierarchy of
bytecode instruction entities, containing the properties shared all instruction
types. Also, an instruction contains zero or more ControlFlowEdges. The sub-
classes of Instruction form a hierarchy organized according to shared seman-
tics and, thus, also shared structure of instructions. For example, all instruc-
tions for invoking methods are represented as the subtype MethodInstruction,
which is further extended by types for the specific kinds of invocation such as
InvokestaticInstruction.

The control flow information, which is implicitly available in the class file
through the ordering of instructions or targets of jump instructions, is explicitly
stored as a property of an instruction and is presented in our metamodel via a
hierarchy of ControlFlowEdges between instructions. Concrete types of edges
are unconditional, different types of conditional or exceptional control flow edges.

3.2 JBCPP Plug-in

To conveniently create instances of our Java bytecode metamodel from existing
code, we have developed an Eclipse plug-in, called Java Bytecode++ (JBCPP).

In [24] we have evaluated the performance of JBCPP when processing
projects at different scales. The largest model derived from a Java program
with over 1,000 classes consisted of over 750,000 objects. The generation of the
model took almost 90min. This shows that our approach is feasible at least for,
e.g., nightly analysis runs, but performance improvements are needed.

1 pattern InstrumentInvocationCountIncrease
2 thisMethodInstruction:InOutJBCModel!MethodInstruction {
3 match: thisMethodInstruction.isPatternApplicable()
4

5 do {
6 var newLcdInstruction = thisMethodInstruction.getNewLcdStringInstruction(

thisMethodInstruction.uuid );
7 var newInvokeStaticInstruction =

thisMethodInstruction.getNewInvokeStaticInstruction();
8 var parameterList = new OrderedSet();
9 parameterList.add("Ljava/lang/String;");

10 newInvokeStaticInstruction.methodReference = getMethodReference( "increase",
"Lic_analysis/InvocationCount;", "V" , parameterList);

11 createNewUnconditionalEdge(newLcdInstruction, newInvokeStaticInstruction);
12 insertBefore (newInvokeStaticInstruction, thisMethodInstruction);
13 }
14 }

Listing 1.2. Implementation of the invocation count analysis as a model
transformation.

We have used the Epsilon Pattern Language (EPL) to implement these trans-
formations, which is one of the domain-specific languages for model management
tasks provided by the Epsilon language family [20].
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In EPL, the transformation actions are defined in terms of patterns, which
in the first place filter by the type of model objects to which they are applica-
ble. Second, the match part can filter based on the properties and attributes of
the selected model object. When both the type-based and the property-based
filtering selects a model object, the transformation specified in the do part is
executed.

For our example, the pattern is defined on MethodInstruction instances,
represented by thisMethodInstruction. The guard in line 4 checks if
thisMethodInstruction is not a call to a method of classes in the system library
and that the call does not appear inside the analysis’ increase() method. After
the matching, the do part starts. From line 6 to line 10, the two bytecode instruc-
tions that will be inserted are generated. In line 11, these bytecode instruc-
tions are connected with a control flow edge. Finally, in line 12, the newly cre-
ated instructions are inserted before thisMethodInstruction via the insertBefore
operation. This operation redirects any incoming edges of thisMethodInstruction
to the first instruction of instrumentation, and creates a new control flow edge
between the last instruction of instrumentation and thisMethodInstruction.

Patterns implemented independently in different EPL modules can be easily
composed: A new transformation can be implemented that imports both the
module for the invocation count and the module for the time analysis. Then, both
modules will be applied to the same input model at once, yielding one output
model that has the extra (instrumented) instructions added by both analyses
for all method call instructions present in the input model – and only for these
instructions. Since both analyses use the unique identifiers of call-instruction
objects in the input model, the data produced by both analyses can be easily
mapped back to the original method calls.

4 Related Work

There are not many attempts in the field of metamodeling of bytecode. Eichberg
et al. [12] provide an XML Schema-based metamodel of bytecode supporting
multiple instruction set architectures, such as Java bytecode. They report the
benefits of using an explicit metamodel: ease of changing and extending a meta-
model in case of new requirements, and facilitating the development of generic
analyses with the help of a well-defined data structure. A similar approach, how-
ever working at the level of source code is MoDisco [7]. Their approach is to
derive a language-independent model from source code, which then acts as store
for analysis results. Like the work of Eichberg et al., they do not facilitate code
instrumentation using the model.

Heidenreich et al. [17] propose an Ecore metamodel for the Java source code
language, including a parser to create instances of this metamodel from Java
code and Eclipse plug-ins to create Java source code from the instances of this
metamodel. We can use JaMoPP to investigate our claim that implementing
(hybrid) analyses as transformations of a bytecode metamodel is more suitable
than using a source code metamodel.
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5 Conclusion

In this paper, we have presented our complete Java bytecode metamodel and
the JBCPP plug-in to be used for the bytecode-to-model and model-to-bytecode
transformations. The metamodel allows code analyses to be written as model
transformations in well-studied domain-specific languages. In this way, program
analyses become more composable and the results of these analyses can be associ-
ated with the entities in bytecode via unique identifiers, which have been demon-
strated with the motivating example.

The scalability of this approach has not yet been evaluated systematically,
but we have made an initial assessment. For four realistically sized programs we
derived byteceode models, transformed them and converted them back to byte-
code (also cf. [24]). The relevant sizes and times are shown in Table below. The
data already shows that our approach is feasible even of realistic programs. We
expect significant performance gains through better engineering of the derivation
and bytecode generation. By incrementalizing our approach we believe that the
performance can reach a sufficient level for use in practice.

Model size Duration [seconds]
Classes Methods Instr. Flow edges Total Deriv. Trans. To bc Total

LiveGraph 131 350 11, 795 11, 740 24, 016 18 51 35 104

Groove Gen. 930 5, 392 99, 738 98, 634 204, 694 1, 414 86 364 1, 864

Groove Sim. 1, 482 9, 232 203, 030 203, 071 416, 815 1, 480 300 977 2, 757

Weka 1, 041 8, 322 367, 774 374, 854 751, 991 764 803 2, 402 3, 969

As future work, we will re-implement several published static and dynamic
analyses in our approach and compare them to their original implementations.
One result of this exercise will be the provision of a library of reusable and
composable fine-grained building blocks of program analyses.

In our previous work, we have proposed a framework to derive timed-
automata models for model checking purposes from instances of an earlier version
of the bytecode metamodel [24]. The framework transforms the bytecode models
to extended models in order to handle recursion and to enrich them with loop
and timing information. All these steps are implemented via model transforma-
tions. At the end of the process, the framework produces timed-automata models
compatible with the uppaal [4] model checker. We will update this framework
to the most recent version of our Java bytecode metamodel.
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Abstract. We define a graph rewriting system that is easily under-
standable by humans, but rich enough to allow very general queries to
molecule databases. It is based on the substitution of a single node in a
node- and edge-labeled graph by an arbitrary graph, explicitly assigning
new endpoints to the edges incident to the replaced node. For these graph
rewriting systems, we are interested in the subgraph-matching problem.
We show that the problem is NP-complete, even on graphs that are stars.
As a positive result, we give an algorithm which is polynomial if both
rules and query graph have bounded degree and bounded cut size. We
demonstrate that molecular graphs of practically relevant molecules in
drug discovery conform with this property. The algorithm is not a fixed-
parameter algorithm. Indeed, we show that the problem is W[1]-hard on
trees with the degree as the parameter.

1 Introduction

Small molecules are of crucial importance in molecular biology. They serve vari-
ous functions, e.g., as inhibitors or activators of proteins, as carriers of informa-
tion, or energetic storage. Consequently, small molecules are a focus of numerous
research fields (e.g., [2–4]). A prominent example is drug design, where small
molecules are used to inhibit or activate proteins to achieve a desired biological
function, or to prevent undesirable ones. Often, certain substructures of these
small molecules are crucial for different aspects of their biological role: for exam-
ple, a given molecular substructure might be favorable for an interaction with
a given target, while another substructure may be responsible for toxic activity.
Working with molecular substructures is hence an important task in computa-
tional chemistry, biology, and pharmacy. In fact, substructure representation is
a core component of most applications in computational chemistry, including
structure drawing, database search, and virtual screening [5].

Traditionally, substructures are modeled in chemical description languages
such as Daylight’s SMARTS1. These languages tend to be very complex and
require significant training efforts before they can be routinely used. Further-
more, these languages are very restricted in their ability to describe patterns of
typologies of the underlying graphs. This is relevant e.g. for searching certain
1 http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html.
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cyclic peptides. To make matters worse, parsing and matching such patterns
against databases of molecules is NP-complete. Furthermore, these description
languages often suffer from the lack of a formal definition of their semantics.

To circumvent these problems, we propose a simple graph rewriting system
(or graph transformation) to describe substructures; experience shows that it is
more intuitive to use methods to describe graphs directly compared to a string
based description. Even graph rewriting systems of very simple form allow a high
expressive power which almost reaches that of SMARTS and allow specifica-
tion of some interesting substructures beyond the expressive power of SMARTS.
Although the related search problem remains NP-complete, it becomes polyno-
mial if each minimal cut of the query graph has bounded size, which we empiri-
cally find to be true for most molecules contained in the standard databases.

Using graph grammars instead of established molecular description languages
not only allows a more intuitive representation of graph topology, but also
enables queries that cannot be realized within the framework of, e.g., SMARTS
and would typically have to be formulated as an additional external filter. One
such example of practical relevance is the search for cyclic peptides. Many
important drugs have such a structure, since they tend to resist digestion quite
effectively.

Molecular function is rooted in molecular interactions. Such interactions typ-
ically do not require contributions from all atoms of the molecule, but rather
involve specific groups of atoms. Hence, molecules that share certain molecular
subgraphs can be expected to share some of their interactions, and hence, some
of their function. We find that functional groups can be intuitively described by
devising graph grammars that produce the molecular subgraphs belonging to
this kind of group. Hence, matching such a graph grammar against a molecular
database allows to query for instances that contain certain chemical groups and
thus potentially show a desired chemical function.

A graph rewriting system is used to define a language of graphs, similarly to
well-known string grammars. Therefore, graph rewriting systems are also known
as ‘graph grammars’. A graph rewriting system consists of a set of rules defining
how a graph can be transformed into another. The corresponding language is
the set of all graphs that can be constructed from the rules starting with a
graph consisting of a single node of a specific label. There are several known
definitions of the transformation rules, such as node replacement, hyperedge
replacement, and single- and double-pushout. We will relate our definition to
those latter ones. Our definition is particularly simple and intuitive, as the graphs
we are interested in are of bounded degree (atoms in molecules can form only a
finite and typically very small number of covalent bonds) and thus we typically
have rewriting systems of bounded degree. This allows a model where the rules
explicitly reroute all edges that lose an endpoint due to the removal of a node of
the graph. More precisely, we assume that the graphs are node- and edge-labeled
multigraphs without self-loops. A rule replaces a single node with a specific label
and specific labels of the incident edges by a subgraph. The edges originally
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incident to the removed node are given new endpoints in the new subgraph. The
labels of these edges may not be changed.

The paper is structured as follows. In the following sections, we give the
formal definitions and review some related work. Before we state our algorithm
for graphs with bounded size of minimal cuts in Sect. 5, we show how the rules
of our graph grammar can be transformed in some easier form. In Sect. 6, we
show that the problem is NP-complete even on stars. If we use the degree as
parameter, the problem is W[1]-hard even on trees, as shown in Sect. 7. For
graphs of degree 5, the problem is NP-complete, even if they have bounded
pathwidth. The proof of this result is not given in this extended abstract. Finally,
we give some experimental justification for the assumption that the graphs have
bounded size of minimal cuts in Sect. 8 and conclude in Sect. 9.

2 Definitions and Summary of the Results

We now turn to the formal definitions. Let LV and LE be a set of node- and
edge-labels. A node- and edge-labeled multi-graph over (LV ,LE) is a tuple G =
(V,E,N,LV , LE), where V and E are finite disjoint sets, N : E → V (2) is
assigning each edge its two endpoints, LV : V → LV is assigning each node a
label and LE : E → LE assigns each edge a label. Notice that V (2) denotes
the subsets of cardinality 2 of V . In the following, we always mean a node- and
edge-labeled multi-graph when we talk about a graph.

For a graph G = (V G, EG, NG, LG
V , LG

E) and U,U ′ ⊆ V G with U ∩ U ′ = ∅, let
δG(U) = {e ∈ EG | ∅ �= U ∩ N(e) �= N(e)}, δG(U,U ′) = {e ∈ EG | U ∩ N(e) �=
∅ and U ′ ∩ N(e) �= ∅} and let G[U ] be the induced subgraph of U . If the graph
is clear from the context, we write δ(U) instead of δG(U) and furthermore, we
write δ(v) for δ({v}). Let Δ(G) be the maximal degree of a node of G. A cut
(U, V \ U) is a partition of the nodes of a graph into two disjoint subsets, often
referred to as the cut U . A cut U is minimal if there is no cut U ′ such that δ(U ′)
is a proper subset of δ(U). It is well known that in a connected graph, a cut U
is minimal if G[U ] and G[V \ U ] are connected.

A graph rewriting system in our definition is a tuple (S, P ), where S ∈ LV is
a label and P is a finite set of replacement rules of the form (L,L1, . . . , Ld) →
(G,n1, . . . , nd), where L ∈ LV , L1, . . . , Ld ∈ LE , G is a graph and n1, . . . , nd

are nodes of G. We call d the degree of the rule and G the replacement graph.
For a graph rewriting system (S, P ), let Δ(S, P ) be the maximal degree of any
rule in P . Such a rule allows replacement of a node with label L whose inci-
dent edges have labels L1, . . . , Ld by the graph G. The edges incident to the
removed node are assigned new endpoints n1, . . . , nd in this order. More for-
mally, given a graph H = (V H , EH , NH , LH

V , LH
E ), a rule (L,L1, . . . , Ld) →

((V G, EG, NG, LG
V , LG

E), n1, . . . , nd) can be applied to a node v ∈ V H , if there
is a bijection m : {1, . . . , d} → δH(v) such that LE(m(i)) = Li for 1 ≤ i ≤ d
and LH

V (v) = L. If we apply this rule using m at v, the resulting graph is
H ′ = (V H′

, EH′
, NH′

, LH′
V , LH′

E ) with
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– V H′
= V H \ {v} ∪ V G, where the nodes of V G are assumed to be disjoint

from the nodes V H (if they are not, we first make an isomorphic copy of G),
– EH′

= EH \ {m(1), . . . ,m(d)} ∪ EG ∪ {e1, . . . , ed}, where e1, . . . , ed are new
edges,

– NH′
is defined by NH′

(e) = NH(e), if e ∈ EH′ ∩ EH , NH′
(e) = NG(e) if

e ∈ EG and NH′
(ei) = {ni} ∪ (NH(m(i)) \ {v}) for 1 ≤ i ≤ d,

– LH′
V is defined by LH′

V (v) = LH
V (v) for v ∈ V H′ ∩ V H and LH′

V (v) = LG
V (v)

for v ∈ G
– LH′

E is defined by LH′
E (e) = LH

E (e) for e ∈ EH′ ∩ EH , LH′
E (e) = LG

E(e) for
e ∈ EG, LH′

E (ei) = LH
E (m(i)) for 1 ≤ i ≤ d.

In the definition, we do not distinguish terminal and non-terminal node-labels.
Nevertheless, in our examples there are node-labels that do not appear in the
query graph and only those node-labels appear on the left hand side of the
replacement rules. Hence these labels are in principal the non-terminals and
drawn in boxes in the examples and all other labels are the terminals and drawn
in circles. We refer to Fig. 1 for a pictorial description. In the following, we
will sometimes additionally require that the graph G in a replacement rule is
connected.

S

L

N C C

R O

cLnL

L
nL cL

C C

O R

N L
nL cL

nL

L
nL cL

C C

O R

N
nL cL

Fig. 1. A grammar for cyclic peptides: The starting label is S. The left-hand side shows
the rule in which the starting symbol can be replaced by an initial graph, where the
label L stands for an arbitrary chain of amino acids and R for a single amino acid side
chain residue. With the upper rule, one can expand the chain by one further amino
acid. After application of the lower rule, the chain can not be extended further. The
edge labels are used to ensure that an N -node is always connected to a C-node and not
to another N -node. An edge has label nL if it is between an N -node and an L-node on
its creation and has label cL if it is between a C-node and an L-node. Whether there
are rules that transform R into one of the amino acids or that transform R to a single
node depends on whether it is necessary to describe that we have a peptide or not.

Let G(S, P ) be the set of all graphs that can be obtained by iteratively
applying rules starting from the graph consisting of a single node with label S
and no edges. Given a graph G called a query graph and a graph rewriting system
(S, P ), we are interested in the existence of a subgraph of G contained in G(S, P ).
Note that this query differs from the question typically addressed in the literature
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on graph rewriting systems, where one is typically interested in whether G is
contained in G(S, P ). Another related question would be the existence of an
induced subgraph of G in G(S, P ). Our algorithm can be generalized to these
questions easily.

We further note that we will use the edge-labels only to restrict the appli-
cability of the rules to have a richer expressive power, while our input graphs
typically have node-labels only. If we are given a graph G without edge-labels,
we are interested whether there exists a labeling of the edges, such that the
resulting graph has a subgraph contained in G(S, P ). Our algorithm can easily
be extended to this question.

Finally, it is important to note that the complexity of graph rewriting algo-
rithms is usually investigated under the assumption that the graph rewriting
system is fixed (and hence a polynomial algorithm can exponentially depend on
the description size of the system), whereas we assume that the graph rewriting
system is part of the input.

Notice that if the degree of a replacement graph of a rule is larger than the
maximum of Δ(S, P ) and Δ(G) for a query graph G, the corresponding rule can
not be used to derive a subgraph of G, as a node of the replacement graph with
degree larger than this maximum can neither be a node of the query graph nor
replaced by any rule of the rewriting system. Hence, we will assume in the fol-
lowing that the degree of any replacement graph is at most max(Δ(S, P ),Δ(G))
if we apply our algorithm for query graph G.

We will show that the problem is NP-complete, even if the pattern graph
(and hence all graphs in the rules) is a star. Let ζ(G) be the maximal size of
a minimal cut of G. In other words, ζ(G) is the maximal cardinality of a cut
U ⊆ V such that G[U ] and G[V \U ] are connected. For a graph rewriting system
(S, P ) let ζ(S, P ) be the maximum value ζ(G) for a replacement graph G. We
give a polynomial time algorithm solving the subgraph matching problem for a
graph G and a graph rewriting system (S, P ) for the special case where Δ(G),
ζ(G), Δ(S, P ) and ζ(S, P ) are bounded. Notice that ζ(T ) = 1 for every tree
T (and hence for every star). We sketch a proof for the fact that the problem
is NP-complete even for graphs with bounded degree and bounded treewidth.
Hence this well known parameter to describe the complexity of a graph cannot
be used for our problem.

Our algorithm is not a fixed-parameter algorithm in the degree and the max-
imal size of a minimal cut. We show the problem is W[1]-hard even on trees
with the degree as the parameter and hence, there is no such algorithm unless
W[1] = FPT.

Notice that the algorithm of Lautemann [7] gives an algorithm for the graph
matching problem if the degree of the input graph is bounded without the need
to additionally bound another parameter. We show that the subgraph matching
problem is NP-hard in this case and hence, it is unlikely that the algorithm can
be generalized without increasing the running time. Nevertheless, our algorithm
can be considered as a generalization of the algorithm of Lautemann.



48 E. Althaus et al.

Figure 2 gives a summary of our results.

general graphs

bounded size of
minimal cuts

NPC6

XP 5

W [1]7

bounded degree

trees

bounded pathwidth NPC−

Fig. 2. Overview of our results for the subgraph matching problem. The algorithm
which is polynomial-time if the size of the parameters are bounded (XP-algorithm), can
clearly also be applied on more specialized classes, whereas the hardness results (NP-
completeness (NPC) and W[1]-hardness (W[1])) generalize to larger graph classes. The
superscript numbers in the results indicate the section of the proof; the hardness-proof
for graphs with fixed degree and pathwidth is not given in this extended abstract. All
hardness results except Sect. 6 also hold for a fixed set of rules, whereas the algorithm
can be used if the rules are part of the input. For the graph matching problem, the
algorithm of Lautemann [7] is an XP-algorithm for all bounded degree graphs and the
respecting NP-hardness proof does not carry over. The other two hardness proofs also
hold for the graph matching problem.

3 Related Work

There are many chemical description languages that are currently in use, such
as the Sybyl Line Notation (SLN) [1] and the SMILES Arbitrary Target Spec-
ification (SMARTS), all of which describe molecular structures in the form of
strings. Using graph rewriting systems to describe structures is more direct and
hence more intuitive.

Graph rewriting systems have been studied since the 1960s. Three main
approaches to formalize the basic idea to successively replace graphs by other
graphs to define classes of graphs have been proposed. We relate our definition
to the most important other definitions of graph rewriting systems, i.e. alge-
braic methods (single- and double-pushout-method), node-replacement gram-
mars and hyperedge replacement grammars. The following definitions are some-
times abbreviated where the full details are not needed for this work. We refer
to [9] for details.

In the double-pushout method, a rule of a graph rewriting system is described
by two graphs L = (V L, EL, NL, LL

V , LL
E) and R = (V R, ER, NR, LR

V , LR
E) with

a common set of nodes K (formally, we need a mapping of the nodes K to the
nodes V L and V R respectively). To apply a rule, we look for an isomorphic
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copy of L in G. We remove L[V L \ K] and all edges in δL(K). Then we insert
R[V R \K] and add the edges in δR(K) to the original nodes of K. Our rules can
be interpreted as a restricted double-pushout method, in which L is a star, K are
all nodes except the center of the star, and R is a connected graph. Furthermore
each node of K has the same number of edges with the same labels in L and
R. The double-pushout method has a higher expressive power than our type of
graph grammar.

In a node replacement grammar, a single node u with a given label in a graph
G is replaced by a graph D, as in our rule. The difference is how the embedding
into the former neighborhood is done. Whereas in our case, the edges are explic-
itly assigned new endpoints, the embedding in node replacement grammars is
done purely by the node labels. More specifically, a set of tuples of node-labels
(μ, δ) is given and edges added between each node of label μ in G without u and
each node of label δ in D.

The definition which is in some sense closest to ours are hyperedge replace-
ment grammars. A hypergraph is a graph where N is not necessarily a set of
cardinality two, but of arbitrary cardinality. A rule of a hyperedge replacement
grammar specifies a label of a hyperedge e which is to be replaced by a hyper-
graph whose nodes are a superset of the nodes N(e) incident to e. Notice that
due to the fact that we remove an edge (and no nodes), the embedding is quite
simple.

For a hypergraph H, its dual hypergraph is the graph which has a node
for each hyperedge of H and a hyperedge for each node of H whose incident
nodes are those corresponding to the hyperedges of H incident to the node. Our
rules can be viewed as hyperedge replacements in the dual hypergraph with the
additional condition that the degree of each node is exactly two (i.e. that the
dual of the hypergraph is a graph).

Notice that we can consider our algorithm as an extension of the membership
algorithm of Lautemann [7] to the subgraph matching problem. We will not
elaborate on this due to space limitation.

4 Normal Form of the Rules

In order to simplify the description of the algorithm, we will assume next replace-
ment graph consists of exactly two nodes (and an arbitrary number of edges
between them). If all replacement graphs have this property, we call the rules
in normal form. In the following, we show that general replacement rules as
defined above can always be reduced to a set of rules in normal form. The maxi-
mal degree of a rule with replacement graph G increases at most by ζ(G) ·Δ(G).
As discussed before, we can bound Δ(G) by the maximum of the degrees of the
rules and the query graph.

First, we argue that we do not need rules in which the new graph has exactly
one node. Such rules can only change the label of the node. We can remove such
rules exactly as in the case of context-free (string) grammars when constructing
the Chomsky normal form.
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Let (L,L1, . . . , Ld) → ((V,E,N,LV , LE), n1, . . . , nd) be a rule in general
form with V = {v1, . . . , vn}, n ≥ 3 and E = {e1, . . . , em}. We assume that
the edges are ordered such that there is 1 ≤ i ≤ d with n1, . . . , ni = v1 and
ni+1, . . . , nd �= v1. If we only consider rules with connected graphs, we assume
that the nodes are numbered by descending depth-first-search (DFS) comple-
tion numbers and let {v1, . . . , vn} be the nodes in this order. This ensures that
G[{v2, . . . , vn}] is connected. We show how we can replace this rule by one rule in
normal form and one rule where the replacement graph has n−1 nodes. Iterating
this replacement, we can ensure that all rules have the normal form.

The idea is that the first rule generated the node v1 and a node with a new
label � which will be replaced by the remainder of the graph later. The number of
edges between v1 and � corresponds to the number of edges of the graph between
v1 and the remainder of the graph, i.e. |δ(v1)|. In order to ensure that all edges
get the correct endpoints, we introduce new edge-labels of all these edges.

More formally, we introduce a new node-label � and new edge-labels
�e1 , . . . , �en

. In the first rule, the graph of the rule consists of the node v1 with
its label and a new node with label �. This node � will later be replaced by the
graph G[{v2, . . . , vn}]. For each edge in e ∈ δE(v1), we create an edge between
the two nodes with label �e. The new endpoint for the edges e1, . . . , ei is v1 and
for the edges ei+1, . . . , ed it is the node with label �.

The second rule will replace a node with label � whose incident edges have
labels (Li+1, . . . , Ld, (�e)e∈δG(v1)) by the graph G[{v2, . . . , vn}]. The new end-
points of the edges with labels Li+1, . . . , Ld are those of the original rule and the
endpoints of the edges with labels �e for e ∈ δG(v1) are the endpoints different
from v1 in G. See Fig. 3 for a pictorial description.

As the second rule will be the only rule for the node label �, we can only
apply the two rules in common and hence exactly replace the original rule.

We now argue that we can bound the degree of all rules created by the sum
of the original degree of the rule and Δ(G) · ζ(G) for G being the replacement
graph. We distinguish between the contribution of the edges defining the original

L
nL cL
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nL cL
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nL cL
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nL cL
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cLnL
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Fig. 3. The rule on the left-hand side is replaced by the two rules on the right-hand
side. In the first rule, only the node with label O is created and a node with label � is
added as a placeholder for the remaining graph. The edge between these two nodes gets
label e in order to ensure that it gets the correct endpoint in the end. In the second
rule, the node with label � is replaced by the remaining graph and the edges with labels
nL, cL and e get the correct endpoints.
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degree and the additional edges due to the replacement. The original edges were
partitioned into the two created rules and hence their number can not increase
in any rule. For the additional edges, we argue as follows: any constructed rule
either creates a node of G or a subgraph G[{vi, . . . , vn}]. In the first case, the
number of additional edges is bounded by the degree of the nodes. In the second
case, the nodes {vi, . . . , vn} are the nodes of a subtree of the DFS-tree that is
cut at vi, as we numbered the nodes according to descending DFS completion
numbers and vi is the root of the tree. We have to bound the number of edges
of G with exactly one endpoint in vi, . . . , vn. Consider now the DFS-tree as an
undirected tree rooted at vi. The nodes of each subtree of vi that is not contained
in vi+1, . . . , vn form a minimal cut and contribute at most ζ(G) to the degree of
the rule. Hence the degree of the rule is bounded by Δ(G) · ζ(G).

5 An Algorithm for the Subgraph Matching

We start with an exponential-time algorithm that simply enumerates backward
substitutions in all possible ways until either the starting label is found or no
further backward substitutions are possible. We store all subgraphs used to gen-
erate a label in a table in order to avoid multiple enumerations of the same
structures. Afterwards, we characterize the graphs on which the algorithm runs
in polynomial time. We assume that the rules are in normal form in the following.

If G can be obtained from the graph H by a single application of a rule,
we say that H is a possible predecessor of G. Notice that if the rules and the
input graph have bounded degree, given a graph G, we can simply enumerate all
possible predecessors in polynomial time by iterating over all rules and trying
to apply them backward on all pairs of nodes.

5.1 An Exponential Algorithm

Let (S, P ) be a graph rewriting system and G = (V,E,N,LV , LE) be a query
graph. For L ∈ LV and L1, . . . , Ld ∈ LE , let G(L,L1, . . . , Ld) be the star with
d edges with labels L1, . . . , Ld, whose center has label L (the labels of the other
nodes are not specified).

Our exponential algorithm stores the following dynamic programming table:

DP (L,U, e1, . . . , ed) ∈ {true, false},

where L is a node label, U is a subset of the nodes, d is the degree of a rule
replacing node-label L, and e1, . . . , ed are edges of the graph with one endpoint
in U , which is true, if it is possible to obtain a subgraph of G[U ] unioned with
the edges e1, . . . , ed from G(L,LE(e1), . . . , LE(ed)). Notice we have derived from
G(L,LE(e1), . . . , LE(ed)) and not from a subgraph of it. Furthermore, the labels
of the endpoints of e1, . . . , ed that are not in U do not matter for this derivation.
A subgraph of G is in G(S, P ), if there is a table entry DP (S,U, e1, . . . , ed) set
to true for the starting symbol S and arbitrary U and e1, . . . , ed.
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As our problem asks whether there is a subgraph of G in G(S, P ), we only
have to consider minimal subsets U , i.e. if DP (L,U, e1, . . . , ed) is true, then
DP (L,U ′, e1, . . . , ed) should be true for each U ′ ⊇ U . We will not set these to
true, as every entry of the table that can be set to true after some steps from
DP (L,U ′, e1, . . . , ed) can also be set to true from DP (L,U, e1, . . . , ed).

In the beginning, we set DP (LV (v), {v}, e1, . . . , ei) = true for all nodes v,
1 ≤ i ≤ |δ(v)|, and e1, . . . , ei being a subset of cardinality i of the edges incident
to v. All other values are set to false. Notice that, intuitively, we select the
subgraph (V ′, E′) by deriving true for the table entry with node set V ′ and the
empty set of edges from the entries of DP for the node set {v} and the edge set
δ(v) ∩ E′ for all v ∈ V ′.

Then we iterate over all pairs of entries (L1, U1, e11, . . . , e
1
d1) and

(L2, U2, e21, . . . , e
2
d2) labeled true with U1 ∩ U2 = ∅ and try to mark fur-

ther entries with true by computing all possible predecessors when we apply
an arbitrary rule (L,L1, . . . , Ld) → (H,n1, . . . , nd) with V H = {u1, u2} and
H = ({u1, u2}, EH) of our grammar. Let Ē = {e11, . . . e

1
d1} ∩ {e21, . . . , e

2
d2} and

Ei = {ei
1, . . . , e

i
di} \ Ē. We can label (L,U1 ∪ U2, e1, . . . , ed) to true using such

a rule, if

– the two nodes of H have labels L1 and L2, respectively. Let ui be the node
with label Li (i = 1, 2),

– there is a one-to-one correspondence m : Ē → EH of the edges in Ē and the
edges of H respecting such that LE(e) = LEH (m(e)) for all edges e ∈ Ē,

– there is a one-to-one correspondence m′ : E1 ∪ E2 → {1, . . . , d} between the
edges E1 ∪ E2 and the indices 1, . . . , d such that for an edge e of Ei, its label
is Lm′(e) and nm′(e) = ui,

Notice that if all rules have bounded degree d, the running time of the algo-
rithm is polynomial in the size of the table, which is |LV | · 2|V | · |E|d.

5.2 Reducing the Number of Considered Subsets

In the following, we only consider rules whose graphs are connected graphs. In
this case, the sets U always induce connected subsets of the graph.

Let (L,U, e1, . . . , ed) be an entry with value true in the dynamic programming
table DP . Remove the edges δ(U) \ {e1, . . . , ed} from G. If this graph has more
than one connected component, we will not be able to apply a rule which contains
nodes from different components. Hence, we can add all nodes not reachable
from the component containing U to U . In the following, we restrict to entries
DP (L,U, e1, . . . , ed) such that U can not be enlarged in this manner.

If the input graph G is a tree, for each subset {e1, . . . , ed} of edges there
is at most one set U of nodes to be considered, namely the maximal subtree
containing e1, . . . , ed as edges leading to leaves, if such a tree exists (with the
exception that we have two possible sets, if the set of edges has cardinality 1).
Hence our algorithm runs in polynomial time on trees if the degrees of the rules
are bounded. In the next section, we show that the problem is NP-complete if
the rules and the query graph can have arbitrary degree.



Graph Rewriting Based Search for Molecular Structures 53

More generally, we can characterize a set of nodes U by the edges of its cut
δ(U) (again, each set of edges can characterize two sets of nodes - the two sides
of the cut). As we are only interested in subsets that can not be enlarged,we can
characterize subset U uniquely by the edges {e1, . . . , ed} plus the edges on δ(U)
that are reachable in G[V \U ] from one of the endpoints of {e1, . . . , ed} that are
not in U , where we only need to report one edge for parallel edges.

We now argue that we only have a polynomial number of subsets U to be
considered if Δ(G) · ζ(G) becomes bounded by constants by showing that at
most ζ(G) · Δ(G) edges are needed to describe the cut. Assume that we need
more than ζ(G) · Δ(G) edges to describe the set U . This means that for at least
one edge ei, we have more than ζ(G) edges with different endpoints in V \ U
that are reachable from the endpoint u of ei not in U in the graph G[V \ U ].
Take the set U ′ of nodes reachable from u in G[V \ U ] as one set and U as the
other set. Both are connected sets and we have δ(U,U ′) > ζ(G), a contradiction.

6 NP-completeness for Rules of Unbounded Degree
on Stars

In this section, we show that the graph and subgraph matching problem becomes
NP-complete if we do not bound the degree of the rules and the query graph,
even if the input graphs are stars. A star is a tree with only one internal node,
called the center of the star.

The proof uses a reduction of 1in3SAT to our problem. Recall that in the
1in3SAT problem, we are given a formula φ = c1∧· · ·∧cm in conjunctive normal
form such that each clause ci consists of three literals, i.e. ci = li1 ∨ li2 ∨ li3 over a
set {x1, . . . , xn} of variables, i.e lij = xk or lij = ¬xk. We are interested whether
there is a truth-assignment of the variables such that exactly one literal is true
for each clause. This problem was proven to be NP-complete by Schaefer [10]
and is already listed by Garey and Johnson [6] as NP-complete problem LO4.

Let φ = c1 ∧ · · · ∧ cm with ci = li1 ∨ li2 ∨ li3 be a formula over the vari-
ables {x1, . . . , xn}. The set of node-labels will be {c1, . . . , cm} ∪ {lij | 0 ≤ i ≤
n and 0 ≤ j ≤ m} and all edges will have the same label le. The query graph is
the m-star whose center has label lnm and the other nodes have labels c1, . . . , cm.
The starting label is l00 (see Fig. 5 for an example of the construction). The intu-
ition is that the label l00 can be replaced by two rules, one corresponding to
setting x1 to true, the other to setting x1 to false. Applying the rule correspond-
ing to setting x1 = true will add the neighbors ci to the center for all clauses
having literal x1. We will change the label of the center to the label l1j , where j
is used to count the number of edges incident to the center, i.e. the number of
clauses that are satisfied by the truth-assignment in the first step. Such a label
can be replaced by the rule corresponding to setting x1 to a truth value. Hence
the upper index of the label of the center indicates which variables already have
a truth-value. The lower index is used to count the number of edges we already
added to the star, i.e. if there are j clauses having literal xi, the new label of
the center is l1j . If we derive the lnm, we created a star with m incident edges.
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This graph matches the query graph if each label ci was created exactly once
and hence, for each clause exactly one literal was true.

Formally, we define the rules as follows. Let Ci
t be the indices of all clauses

with literal xi and Ci
f the indices of all clauses with literal ¬xi. For each 0 ≤ i < n

and each 0 ≤ j ≤ m, we have the following two rules:

– (lij , le, . . . , le
︸ ︷︷ ︸

j-times

) → (G, c, . . . , c
︸ ︷︷ ︸

j-times

), where G is the graph with center c having label

li+1
j+|Ci

t | and |Ci
t | further nodes, one with label ck for each k ∈ Ci

t . We call this

rule ri,t
j .

– (lij , le, . . . , le
︸ ︷︷ ︸

j-times

) → (G, c, . . . , c
︸ ︷︷ ︸

j-times

), where G is the graph with center c having label

li+1
j+|Ci

f | and |Ci
f | further nodes, one with label ck for each k ∈ Ci

f . We call this

rule ri,f
j .

The construction can clearly be performed in polynomial time. We now argue
that the 1in3SAT-problem has a solution if and only if there is a subgraph of
the input star that can be constructed by the graph rewriting system.

We first show that if the 1in3SAT problem has a solution then our problem
has one. For this, let π : {x1, . . . , xn} → {true, false} be an assignment such
that each clause has exactly one literal that is satisfied. In the following, we
will identify true with t and false with f . Starting with l00, we use the rules
r
0,π(x1)
0 , r

1,π(x2)

|Ci
π(x1)|

, . . . , r
n−1,π(xn)
∑n−1

i=1 |Ci
π(xi))

| and get the input star at the end.

On the other hand, assume that a subgraph of the star can be constructed
from l00 using the rules. Notice that from the construction, it is clear that we

Fig. 4. The construction for the 2-SAT formula c1 ∧ c2 ∧ c3 with c1 ≡ ¬x1 ∨ x2,
c2 ≡ x1 ∨ x2 and c3 ≡ x1 ∨ ¬x2. The query graph is depicted on the left, the rules
on the right hand side. With the rule corresponding to setting x1 to true, we can add
nodes with label c2 and c3 to the star and similarly for the other truth assignments.
In this example it is not possible to select rules corresponding to the truth-value of x1

and x2 and constructing the star with labels c1, c2, and c3 for the leaves and l23 for the
center.
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always have a star whose center has a label lij and only this node (and its incident
edges) can be replaced. Hence, we will use exactly n rules, one for each variable,
and can interpret the rules as a truth-assignment. Furthermore, the lower index
of the label of the center will always be equal to the number of edges of the star.
As the final label has to be lnm, we will have constructed the complete input star
at the end (and not just a subgraph of it) and the truth-assignment is such that
each clause has exactly one literal that is satisfied.

Notice that we use the lower indices of the labels lij to count the number of
nodes that are created to eventually ensure that the complete star is constructed.
Hence, this construction can be used for the subgraph matching problem as well
as for the graph matching problem. For the graph matching problem, the lower
indices can be dropped (Fig. 4).

7 W[1]-Hardness in the Degree for Trees

In this section, we show that the graph matching problem is W[1]-hard in the
degree even for trees. This is a strong hint that we will not find a FPT algorithm
in the degree even for trees. We show this by a reduction from the longest
common subsequence problem, which is shown to be W[1]-hard in the number
of sequences, even for fixed sized alphabets, in [8].

Recall that in the longest common subsequence problem, we are given d
sequences s1, . . . , sd over an alphabet Σ and a number k. The question is whether
there is a sequence s of length k which is a subsequence of each of the d strings
s1, . . . , sd.

We have labels {c, t, h, e} ∪ Σ. We construct a tree and rules as follows. The
tree consists of a center node with label c, from which d paths evolve with labels
corresponding to the strings, terminated by a node with label e and a further
path of k nodes of label h followed by one of label t. See Fig. 5 for a sketch of
the construction.

We have rules that, when considered in a backward direction, allow to shrink-
ing of a node with a label from Σ into the center and rules which shrink a star of
d nodes of the same label from Σ and a node with label h to the center. Finally,
we have the terminating rule which shrinks the center with d nodes of label e
and a node of label t to the starting symbol.

We now argue that the query graph can be constructed if there is a common
substring of length k. We do it again by showing how the query graph can be
reduced to the starting label by backward substitutions. Starting form the query
graph, we shrink all nodes into the center that are not part of the common sub-
string of length k until the first remaining node of each string is of the common
substring (in arbitrary order). Then we shrink the d nodes corresponding to the
first letter of the common substring and one node of label h to the center. We
continue this way until all nodes of the strings but the last ones are shrunken
into the center. Finally, we can use the rule that creates the starting label from
this graph.

Finally, we argue that there is a common substring of length k if a (sub)graph
of the query graph can be constructed. Here, we use the forward direction when



56 E. Althaus et al.

C

s21s11 sd1 h

s12

s1|s1|

e

s22

s2|s2|

e

sd2

sd|sd|

e

h

h

t

· · ·

· · ·

· · ·

· · ·
k
−

n
od

es

c

c C

c

A

c

h A

c

A A

s

t e

c

e e

Fig. 5. The sketch of the input graph on the left and the rules on the right. The rules
have to be created for all A ∈ Σ. The rule at the top left replaces an arbitrary string
by an arbitrary symbol. The rule at the bottom left extends an arbitrary string by
an arbitrary symbol. The rule at the top right extends all strings by the same symbol
and the counter for the number of matching symbols increases by one. The rule at the
bottom right generates the starting configuration.

arguing. We can only start with the rule that creates the star with d labels e
and one label t for the leaves and label c for the center. By the construction, it
is only possible to emerge new nodes from the node with label c and there will
be only one such node. Hence, we can only match the query graph and not a
subgraph of it and we have to create exactly the given strings, either by adding
a single letter to a string or by adding the same letter to all strings and one node
of label h. Notice that we have to add the node with label h always to the part
terminated by t, as otherwise we will not be able to construct (a subgraph of)
the query graph. During the creation of the strings, we have to create k nodes
of label h and hence, the corresponding substrings build a common substring of
length k.

Notice that the rules only depend on d and the alphabet Σ, i.e. the hardness
result holds even for a fixed graph grammar. Furthermore, we do not need edge-
labels in the normal form of the rules by giving each string a unique copy of the
alphabet.

The construction can be used to show the hardness of the graph matching
problem and the subgraph matching problem.

8 Estimating the Size of the DP-Table in a Large
Database

We showed in Sect. 5.2 that the running time becomes polynomial for a class
of graphs with bounded ζ-value. More precisely, we can estimate the size of the
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dynamic programming table for a graph G = (V,E) as |LV | · |E|Δ(G)·ζ(G). We
calculated this value over all purchasable structures in the Zinc-database2 and
report on the statistics in this section. The database contains about 22 million
structures and is often scanned through in computational drug discovery. For the
vast majority of structures, the parameter value is at most 6, but can become as
large as 22. In Table 1, we give the histogram of the distribution of this value.

Table 1. Histogram of ζ(G) over the all purchasable structures G in the Zinc-Database.

Furthermore, we report on the number of subsets U of the nodes such that
G[U ] and G[V \ U ] are connected. If s is this number, the size of the dynamic
programming table can also be bounded by |LV |sΔ(G) and hence, if it is polyno-
mially bounded in the input size and the maximum degree is bounded as well,
we obtain a polynomial algorithm, too. For most of the instances, this value is
between 16 and 2048, only about 2� have a larger value, and only 209 instances
have a value exceeding 100000. Two instances have more than 2 million compo-
nents. See Fig. 6 for a plot of the data. Notice that it is a worst-case estimation
and in practice the dynamic programming table will be much smaller.

Fig. 6. The graph shows the percentage (y-axis) of the structures G for which the
number of subsets U of nodes such that G[U ] and G[V \ U ] are connected is below the
value on the x-axis. For more than 2� of the structures the value lies between 16 and
2048.

The results clearly indicate that these numbers are generally small in this
database and hence, we are confident that an implementation of this algorithm
will be very efficient.
2 http://zinc.docking.org/.

http://zinc.docking.org/
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On the other hand, there are known structures, such as fullerenes, where
the ζ-value becomes very large and hence, the algorithm proposed will not be
efficient. These structures typically are difficult as well for other query languages
such as SMARTS, which often rely on precomputation of properties such as the
smallest set of smallest rings [11] (known as the minimum cycle basis in computer
science).

In the future, we will evaluate these values over the database pubchem3

consisting of more than 120 million structures.

9 Conclusion

In this work, we present an algorithm for graph rewriting-based molecular struc-
ture search that is polynomial if the degree of the rules of the graph rewriting
system and the cut size between each pair of connected components are bounded.
We further showed empirically that this assumption is reasonable.

Our algorithm is a generalization of the graph-matching algorithm of Laute-
mann for hyperedge replacement grammars. It only works on hypergraphs whose
duals are graphs, i.e. every node in the hypergraph has exactly two incident edges
at any time during the derivation. We will investigate whether it is possible to
extend our algorithm to general hypergraphs.

The algorithm is not a fixed-parameter algorithm and we showed that the
problem is W[1]-hard even on trees. Nevertheless, it is possible that there is an
algorithm that is exponential in the degree, but polynomial in the maximal size
of a minimal cut or a related graph parameter. We will investigate this further
in future work.

Furthermore, we will implement our algorithm. In order to become efficient
enough to scan databases, suitable algorithm-engineering techniques have to be
developed and applied.
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Abstract. Over recent years, optimisation and evolutionary search have
seen substantial interest in the MDE research community. Many of these
techniques require the specification of an optimisation problem to include
a set of model transformations for deriving new solution candidates
from existing ones. For some problems—for example, planning problems,
where the domain only allows specific actions to be taken—this is an
appropriate form of problem specification. However, for many optimisa-
tion problems there is no such domain constraint. In these cases providing
the transformation rules over-specifies the problem. The choice of rules
has a substantial impact on the efficiency of the search, and may even
cause the search to get stuck in local optima.

In this paper, we propose a new approach to specifying optimisation
problems in an MDE context without the need to explicitly specify evolu-
tion rules. Instead, we demonstrate how these rules can be automatically
generated from a problem description that consists of a meta-model for
problems and candidate solutions, a list of meta-classes, instances of
which describe potential solutions, a set of additional multiplicity con-
straints to be satisfied by candidate solutions, and a number of objective
functions. We show that rules generated in this way lead to optimisation
runs that are at least as efficient as those using hand-written rules.

1 Introduction

There has been a good deal of interest in optimisation of models in recent years
[1–8]. These approaches aim to provide support for search-based software engi-
neering [9] in an MDE context. Many of these approaches focus on using evolu-
tionary techniques for finding models that optimise some objective function(s)—
for example an OCL query or a simulation-based evaluation. To guide the explo-
ration of the search space, a user has to provide a set of model transformations,
which can create new candidate solution models from existing ones. Overall, the
optimisation problem is thus specified by providing (1) a meta-model, instances
of which are candidate solutions, (2) a set of objective functions, (3) additional
constraints to be satisfied by valid solutions, and (4) a set of transformations to
evolve models.

In some cases, these transformations are an inherent part of the optimisation
problem. For example, when using evolutionary search to find an optimal refac-
toring of model transformations [10], or when finding optimal reconfigurations
c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 60–75, 2018.
https://doi.org/10.1007/978-3-319-74730-9_6
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of a cloud data centre [11], it is important to ensure that any solutions have
been derived from the starting point only through the application of rules from
a pre-defined set. In the latter case, we may even have an objective function
based on the number of transformation steps that have been applied. However,
in many other scenarios specifying the transformation rules as part of the optimi-
sation problem is less natural and leads to over-specification. For example, the
well-known class–responsibility assignment (CRA) problem, which was also a
problem case at the 2016 Transformation Tool Contest (TTC) [12], simply looks
for an optimal allocation of features to classes. How the search algorithm arrives
at this allocation is not a natural part of the problem. In fact, when solving this
problem in an evolutionary manner, there are different sets of evolution rules
that might potentially be applied, and different sets of rules will lead to results
of different optimality. Requiring users to specify the rules with the problem,
then, forces them to over-specify and risks missing the best solutions.

In this paper, we show how optimisation problems over models can be spec-
ified without the need to specify a set of evolution transformations as well. We
show how a set of rules can be automatically generated from a meta-model, objec-
tive functions, and a set of additional constraints. The rule generation algorithm
presented in this paper uses an extended variant of the SERGe (SiDiff Edit Rule
Generator) algorithm presented in [13]. We demonstrate, using the CRA case
study, that we are able to generate rules that enable efficient optimisation runs
leading to good results.

The remainder of this paper is structured as follows: Sect. 2 gives a brief
description of related work in model optimisation. Then, in Sect. 3, we describe
the case study used throughout the paper, followed by Sect. 4, where we present
our solution. In Sect. 5, we present an evaluation, including a comparison to the
VIATRA-DSE solution to the TTC ’16 CRA case [14]. Finally, in Sect. 6, we
discuss lessons learned and highlight future research.

2 Related Work

We have introduced MDEOptimiser (MDEO) previously in [2,15]. MDEO per-
forms model-based optimisation by running evolutionary optimisation with can-
didate solutions represented by model instances of a given meta-model. Evolution
steps are obtained by applying endogenous model transformations using Henshin
transformation rules [16]. Since our submission to TTC 2016, the tool has been
improved, the evaluation in Sect. 5 is be based on the most recent version of the
tool. A description of the improvements is included in Sect. 4.

In [5] the authors introduce the MOMoT (Marrying Optimisation and Model
Transformations) tool. The tool is built in the context of Eclipse Modelling
Framework (EMF)1 and it uses Henshin transformation rules to generate opti-
misation solutions. The tool uses the MOEA framework2 for the implementation
of the search algorithms. Alongside the MOEA framework algorithms, MOMoT
1 https://eclipse.org/modeling/emf/.
2 http://moeaframework.org/.

https://eclipse.org/modeling/emf/
http://moeaframework.org/
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also supports single-objective and local search optimisation algorithms. It defines
a custom DSL for problem descriptions, consisting of a meta-model, a set of Hen-
shin transformation rules, a set of objectives and constraints specified either as
Java or OCL implementations and the search algorithm to be used. The output
produced consists of a set of analysis artifacts, the resulting models, found objec-
tive values and a chain of rule applications used to obtain the solution models.
The MOMoT framework is very similar to MDEO, the main difference being
that MDEO runs the optimisation directly on models rather than on sequences
of rule applications from which models can be generated.

VIATRA-DSE [1] is another tool performing optimisation on models. It uses
the VIATRA2 [17] model transformation framework which is built on the EMF.
In order to run model optimisation, the tool requires as input an initial model, a
set of transformation rules, a set of constraints and a set of objectives. For search
space exploration the tool supports several algorithms such as Hill Climbing and
Non-dominated Sorting Genetic Algorithm (NSGA-II) [18]. This tool, similarly
to MOMoT requires the user to specify the transformation rules as part of the
optimisation problem specification.

In [4], the authors propose another model optimisation tool. Crepe Complète
is an extension of Crepe [19], which allows multi-objective optimisation of mod-
els. It has been developed as an improvement of the Crepe tool which only
supported single objective optimisation. Crepe Complète is built on top of
the Epsilon Object Language (EOL) and can run multi-objective optimisa-
tion on models. Crepe Complète can run optimisation on any problem that
can be encoded in a meta-model. The tool supports generic search operators
and a generic encoding of models using integer vectors. However, optimisation
performance can quickly become sub-optimal as the encoding is non-locality-
preserving [20].

There remains a clear gap for approaches that run evolutionary search over
models but do not require manual definition of evolution rules as part of the
problem specification. In this paper, we propose a first such approach.

3 Running Example

Throughout this paper, we will use a running example to help explain and evalu-
ate our approach. For this, we are reusing the well-studied Class–Responsibility
Assignment (CRA) problem, in the form introduced as a challenge case at the
2016 Transformation Tool Contest [12].3 The goal in this problem is to find an
optimal set of classes and class–feature allocations that minimise coupling and
maximise coherence.

More specifically, a CRA problem is an instance of the CRA meta-model in
Fig. 1, without any instances of Class. A valid solution is an instance of the same

3 This problem case also required all classes to have unique names. Given that this
can be achieved by a simple post-processing step [15], we ignore the requirement for
this paper.
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Fig. 1. Problem meta-model for the CRA problem

meta-model with a number of Class instances and all Feature instances allo-
cated to a class via association isEncapsulatedBy. Note that this means that for
solutions we have a stricter multiplicity constraint than for problem descriptions;
in particular, the lower bound multiplicity of isEncapsulatedBy is 1 rather than
0. Features can be either Attributes or Methods. Different kinds of dependen-
cies can be represented between features of different kinds. The goal is to allocate
Features to (newly created) Classes to minimise dependencies between classes
(coupling) and maximise dependencies within classes (coherence). This is spec-
ified as a single objective combining the coupling and coherence objectives into
a single so-called CRA measure. Details of the definition of this measure can be
found in the TTC case [12]. The case study description includes five input mod-
els which can be used to evaluate the proposed case solutions [12]. A summary
of these input models, which vary in size and complexity, has been included in
Table 1. In Sect. 5 we are discussing the results of our approach using each of
these models as input.

Table 1. Summary of input models

A B C D E

Attributes 5 10 20 40 80

Methods 4 8 15 40 80

Data Dep. 8 15 50 150 300

Functional Dep. 6 15 50 150 300

This is a common way in which search
problems are phrased: an initial model
(instance of the problem meta-model) is
given to describe a specific search prob-
lem. Typically, the elements provided in this
model are not meant to be changed as a
result of the search. Some elements of the
meta-model are not (or only partly) instan-
tiated: these will be used to represent potential solutions. Because the problem
meta-model, thus, needs to be a valid meta-model for both problem specifica-
tions and candidate solutions, some of its multiplicity constraints (namely those
at the boundary between the elements responsible for problem descriptions and
those responsible for solution descriptions) may need to be strengthened for
valid solutions. This is similar to more traditional ways of specifying optimi-
sation problems, where constraints are a standard part of a problem specifica-
tion. In model-based optimisation, we can say that the problem meta-model is
refined by the solution meta-model by providing stronger multiplicity bounds
in some places. Thus, every candidate solution will also be a valid instance of
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the problem meta-model, while a problem specification will typically not yet be
a valid instance of the solution meta-model. The task of the search algorithm,
then, is to continuously modify the given problem specification until it satisfies
all the additional multiplicity constraints of the solution meta-model and, then,
to find an optimal solution model.

4 Searching Optimal Models with Generated Rules

We have implemented our approach using our MDEO tool [2,15]. The tool is an
Eclipse plugin allowing the user to specify model optimisation in the EMF con-
text through a DSL. It uses Henshin-encoded endogenous model transformation
rules as search mutation operators, to explore the search space. The optimisation
algorithms are implemented using the MOEA framework. In earlier versions of
the tool, the user was required to manually create the Henshin transformation
rules and then specify them in the DSL configuration. In this paper we are using
the SERGe [13] meta-tool to automatically generate the initial consistency pre-
serving edit rules (CPERs). For each of the generated rules we then make a copy
to which we apply a set of refinements to better guide the evolutionary process
by ensuring that edit operations encoded in the rules can be applied to models
conforming to both the problem and the solution meta-models.

The rest of this section is structured as follows: In Sect. 4.1 we describe how
the optimisation problem for rule generation is specified in our DSL, then in
Sect. 4.2 we describe our rule generation algorithm. Section 4.3 describes how we
configured our tool to run the experiments for the CRA case.

4.1 Specifying the Optimisation Problem

The problem description required by our DSL consists of the following elements:

1. A problem meta-model. Specific search problems are given as instances of this
meta-model. In the CRA case this is the meta-model shown in Fig. 1;

2. Objective functions. These can be provided as Java implementation or as OCL
queries and return a numerical value for a given model. In the context of the
CRA case, we have only one objective, namely the CRA value which we are
seeking to maximise during the search;

3. A meta-model subgraph. Only a subset of the elements from the problem
meta-model represent solution information. Instances of these elements can
be modified during the search, everything else should be kept constant as it
represents problem context only. The multiplicity refinements provided next
can only apply to elements in this sub-graph of the problem meta-model;

4. Additional multiplicity constraints. These constraints, which we also call mul-
tiplicity refinements are constraints that form the solution meta-model, a
subset of the problem meta-model. These refinements must be satisfied by
all valid solution candidates. In the CRA case, as described in Sect. 3, the
requirement is that there are no features which are not encapsulated in a
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class, so a refinement is to restrict the multiplicity of the isEncapsulatedBy
edge from [0. . . 1] to [1. . . 1]. These multiplicity constraints must refine those
in the original problem meta-model;

5. Constraint functions. These represent the additional multiplicity constraints
in a form that can be used by a search algorithm (i.e., a function that must
be zero for valid candidate solutions). In principle, these could be generated
from the additional multiplicity constraints, but our prototype currently does
not support this;

6. An optimisation algorithm. This specifies the algorithm provider4, along with
the search algorithm to use and the necessary evolutions and population con-
figuration. In this paper we are only using the NSGA-II algorithm with mul-
tiple configurations for the evolutions and populations variables. It is beyond
the scope of this paper to present a comprehensive comparison between mul-
tiple algorithms.

An example of the CRA problem specification using the MDEO DSL can
be seen in Fig. 2. The configuration keywords in the DSL are intuitive. The
basepath element is required, can only be used once and it defines the Eclipse
resource set working path, then the meta-model element is also required, can
be only one and it’s used for specifying this optimisation problem meta-model.
The next element is the objective, which is required and can be used multiple
times. This is used to specify the optimisation objectives which can be loaded
from Java files or specified as OCL queries. The next keyword is constraint,
it’s optional and it defines the constraints to be used in the optimisation pro-
cess. Then the rule generation node keywords allow the user to specify the
nodes for which Henshin transformation rules are going to be generated. Finally
the optimisation keyword is used to configure the search algorithm and its
parameters.

Fig. 2. MDEO CRA problem specification with automatic rule generation

4.2 Generating the Rules

In this section, we discuss how we generate the evolution transformation rules
from the information provided above.

4 As registered in the underlying instance of the MOEA Framework.
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Previous work on automatic generation of transformation rules from meta-
model information has been reported in [13]. SERGe is a meta-tool which gen-
erates a complete set of complete and consistency-preserving edit operations
(CPEOs) for a given meta-model. The tool has been developed in the EMF
context and the generated transformation rules are encoded in Henshin. The
algorithm implemented in SERGe is designed to ensure that for any rules it
generates, any change between two models is always consistency preserving with
regards to the meta-model. The SERGe tool, by default, provides an extensive
set of configuration options. A complete description of the rule generation process
supported is described in [21]. However for the purpose of proving our approach
with the CRA case we have restricted the generation of rules to only a subset of
all the possible operations. A complete list of the SERGe rules generated for our
case can be seen in Table 2. To generate the rules, SERGe performs the following
steps:

1. Create node. For each non-root type A with mandatory neighbours and no
children, SERGe will generate a create node rule. The rule also connects
the node A to its mandatory children, if any are present in the metamodel,
by creating a containment edge. The node is connected to its mandatory
neighbours B by creating edges of type a. If edge a has an opposite edge of
type b then this will also be created. If there is an upper bound multiplicity
in the meta-model for edge b, then a Negative Application Condition (NAC)
will be generated to ensure that the multiplicity is respected when connecting
nodes of type B to nodes of type A;

2. Delete node. The node delete rules are created as inverses of the Create rules,
by swapping the left and right-hand side of the Henshin rule graph. The
generated rule will delete the node A and all its mandatory children. The node
is also disconnected from its mandatory neighbours. If multiplicity constraints
are present, then a Positive Application Condition (PAC) will be generated to
ensure that node A can be deleted safely without invalidating the meta-model
lower bound multiplicities between the deleted node and its neighbours;

3. Add node edge. The add edge rule is generated for each reference a or opposing
reference b of a node A. If the reference is not a containment and if the lower
bound multiplicity is not equal to the upper bound multiplicity then, a rule
is generated to add an edge a between type A and the type at the opposing
end B. If edge a has an opposite edge of type b then this will also be created.
If there is an upper bound multiplicity in the meta-model for edge b, then a
NAC will also be generated to ensure that the multiplicity is respected when
connecting nodes of type B to nodes of type A;

4. Remove node edge. Similar to the delete node rule the remove node edge
rule is generated by swapping the left-hand side with the right-hand side of
the add edge rule. In the case of remove edge rules, NAC applications are
not required, but if multiplicity constraints are present, then a PAC will be
generated to ensure that the edge can be deleted safely without invalidating
the model;
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5. Change node edge. This rule type is a simplified version of the combined appli-
cation chain of a Remove node edge and Create node edge rules, performing
the individual steps of each of these rules in a single application. This rule is
generated by SERGe when ran with a meta-model that has a fixed multiplic-
ity between two nodes. The generated rule is the same as the Refined Remove
Edge Rule in Table 2.

When using the transformation rules generated by SERGe for the problem
meta-model, the optimisation process has a tendency to get stuck in local optima.
This is because the SERGe rules are generated so that the produced models
are consistent w.r.t to the problem meta-model only. The solution meta-model
is a subset of the problem meta-model, as a result of the refined multiplicity
constraints applied to the problem meta-model. It is still possible for solution
meta-model instances to be discovered using the rules generated by SERGe for
the problem meta-model, however when using these rules to transform instances
of the solution meta-model, the validity of the resulting model instances cannot
be ensured. The validity depends on which part of the problem meta-model the
transformation output model conforms to, the valid solution meta-model subset
which satisfies the problem constraints or the rest of the problem meta-model
which includes all possible solutions, both valid and invalid w.r.t. the problem
constraints. During the optimisation process, if a valid solution becomes invalid
because of a constraint invalidation, it automatically becomes infeasible and it
is dominated by other valid solutions [18,22]. This happens even if a subsequent
transformation on the same solution would make it dominant. A solution is
dominant if it is feasible with regards to its constraints and it is at least as good
for all objective values as the other solutions and better for at least one objective
value [22].

Performing a CRA case optimisation run using these transformation rules
generated for the problem meta-model and using a constraint that invalidates
solutions with unassigned Features, is not sufficient to obtain the best pos-
sible results. The evolution gets stuck in local optima after all the Features
are assigned to a Class and the model becomes consistent w.r.t the solu-
tion meta-model. Then, the only way to move a Feature from a Class to
another Class, is to remove the isEncapsulatedBy edge from a Class using rule
REMOVE Class (encapsulates) TGT Feature and then add it again for another
Class using rule ADD Class (encapsulates) TGT Feature. While this is done,
the specified constraint is invalidated, creating a solution which has one unas-
signed Feature. This constraint violation causes the solution to become infea-
sible and it becomes dominated by the other solutions which do not have a
good CRA value to that point, but are feasible because they don’t invalidate
the constraint to have no unassigned Features. As a result, the new candidate
is removed from the population and never explored further. We could try to fix
this by encoding constraints as objectives instead. However, while this would
allow the search to escape local optima, by not having any solutions considered
invalid, it would not guarantee all resulting search solutions to be valid.
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Table 2. Generated SERGe and refined rules

SERGe Create Rule Refined Create Rule

SERGe Delete Rule Refined Delete Rule

SERGe Remove Edge Rule Refined Remove Edge Rule

SERGe Add Edge Rule

No refinements necessary for this rule.

Generally, the problem here is that we are running SERGe with the problem
meta-model and that the solution meta-model introduces additional multiplicity
constraints. These are not taken into account by the rules generated. Running
SERGe with the solution meta-model does offer a solution to the problem: for
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the case of a [1. . . 1] multiplicity constraint (as between Feature and Class
in the CRA case), with the right configuration settings, SERGe can generate a
change edge rule. In addition to this rule, two other rules are generated: add
an unassigned Feature to an existing Class and create a Class and assign an
unassigned Feature to it. The problem with these rules however, is that the
search space cannot be fully explored once all Features have been assigned
to a Class. After this happens, the only possible operation is to apply the
change Feature rule to the search models and move Features between classes,
but the transformations cannot perform any create and delete Class solution
model changes. This limitation of rule applications on valid solutions leads to
an incomplete search space exploration.

What we need, is an algorithm that generates transformation rules that are
applicable to an instance model of the problem meta-model, allowing all types
of transformations for the nodes we are interested in, but that ensure that any
model edit operations will not introduce additional invalidations of the solution
meta-model constraints. The generated rules must be able to perform the same
edit operations on models conforming with both the problem meta-model and
the solution meta-model. We ensure this by post-processing the rules produced
by SERGe for the problem meta-model.

We have adapted the SERGe meta-tool by applying a set of refinements to
the generated rules to ensure that the search process does not get stuck in local
optima due to constraint invalidation. Our refinements, are additions to copies
of generated SERGe rules, to ensure that when an instance of the solution meta-
model is found, the search process can still evolve it by applying CPEOs to it,
without breaking the constraints defined in the solution meta-model.

In our approach, we have implemented refinements aimed at solving the CRA
case, therefore the list presented in this paper is not exhaustive and we aim to
implement the remaining refinements in future work.

The overall rule-refinement process is the following:

1. For all nodes with given multiplicity-constraint refinements, check the validity
of the refinements. In this step we ensure that the given refinement constraints
are valid w.r.t. the problem meta-model, by ensuring that they specify a
solution meta-model which is a subset of the problem meta-model;

2. Generate a new meta-model including only the upper-bound refinements. This
meta-model is then used in the following step to generate the SERGe rules.
Note that SERGe already handles upper-bound refinements the way we need
them. Lower-bound refinements require post-processing of rules;

3. Run the SERGe meta-tool with the new meta-model and generate rules for the
nodes specified in the problem specification. In this step, we run the SERGe
algorithm with the meta-model having the specified upper-bound refinements
set. This generates the rules as seen in the SERGe rules column in Table 2;

4. Create a copy of each of the generated rules and apply the following refine-
ments to them, each refinement resulting in a new rule. For each of the refine-
ments described in the following list, a before and after comparison can be
found in Table 2:
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(a) If the rule is creating a new node type A and there is a lower bound refine-
ment of an edge a or b at either side, then find another existing node of
type A and for each created edge between the new node and the exist-
ing mandatory neighbours, add a delete edge between the existing node
type A and the existing mandatory neighbours B. These refinements allow
the rule to create a new node when there are no mandatory neighbours
available to be assigned, by taking one from an existing node of the same
type;

(b) If the rule is deleting a node type A and there is a lower-bound refine-
ment of an edge a or b at either side of them, then find another existing
node A and for each deleted edge between the deleted node A and the
existing mandatory neighbours, add a create edge between the existing
node A and the existing mandatory neighbours. The rule changes added
by these refinements allow a node to be deleted and not leave mandatory
neighbours dangling, by moving them to other existing nodes of the same
type as the deleted node;

(c) If the rule is deleting an edge a between node type A and node type B
and there is a lower bound refinement at either side of A or B then find
another node of type A and create the deleted edge between B and the
found node type A. This refinement results in a Change edge rule, which
SERGe can also generate if configured to do so and the edge has a fixed
multiplicity;

5. Remove duplicate rules by using the SERGe duplicate checker.

4.3 Running the Optimisation

Once the rule refinements are generated, MDEO groups the rules generated for
the meta-model with the upper bound refinements and the new refined rules and
runs the optimisation process with the complete set of generated rules. To run
the optimisation for the CRA case we have implemented our proof of concept
as a new feature of the MDEO tool. For this experiment we have created a
standalone launcher for the tool to allow us to run the optimisation without
having to run the tool as an Eclipse plugin for each of the configurations.

5 Evaluation

Our aim is to automatically generate evolvers from a metamodel so that we can
then run MDEO to perform evolutionary optimisation on models without having
to design the rules manually. We describe the ideal solution meta-model and
which sections should be transformed and then the tool automatically generates
the necessary transformation rules so that models can be evolved to become valid
solution candidates. We have evaluated our solution starting from the following
research question: Can we generate evolvers that perform optimisation as well
as or better than the ones defined manually?
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Table 3. Summary of MDEO TTC ’16 input models results

A B C D E

MDEO M I

Best CRA 3.0 2.999 2.015 N/A N/A

Mean CRA 1.978 1.954 1.232 N/A N/A

Mean time 0min 0 s 505ms 0min 1 s 083ms 0min 2 s 705ms 0min 8 s 946ms 0min 18 s 906ms

MDEO M II

Best CRA 3.0 3.104 2.910 5.531 3.098

Mean CRA 1.950 1.911 1.972 4.103 0.816

Mean time 0min 2 s 464ms 0min 5 s 337ms 0min 12 s 293ms 0min 54 s 193ms 3min 7 s 864ms

MDEO R I

Best CRA 3.0 3.166 1.858 N/A N/A

Mean CRA 2.627 2.114 0.327 N/A N/A

Mean time 0min 1 s 188ms 0min 1 s 892ms 0min 3 s 816ms 0min 9 s 760ms 0min 18 s 234ms

MDEO R II

Best CRA 3.0 4.083 3.177 5.794 2.618

Mean CRA 2.478 2.424 2.033 3.703 −0.035

Mean time 0min 5 s 650ms 0min 10 s 290ms 0min 18 s 358ms 1min 05 s 752ms 3min 13 s 674ms

MDEO S I

Best CRA 1.75 0.791 −0.930 −2.646 N/A

Mean CRA 0.654 −0.629 −4.207 −8.293 N/A

Mean time 0min 0 s 566ms 0min 1 s 117ms 0min 2 s 390ms 0min 6 s 767ms 0min 13 s 723ms

MDEO S II

Best CRA 2.333 0.983 −0.601 −3.785 −4.855

Mean CRA 0.783 −0.523 −4.732 −7.647 −11.555

Mean time 0min 2 s 745ms 0min 5 s 491ms 0min 13 s 331ms 0min 44 s 963ms 2min 21 s 917ms

MDEO C I

Best CRA 3.0 2.833 2.017 N/A N/A

Mean CRA 1.936 1.964 0.908 N/A N/A

Mean time 0min 0 s 958ms 0min 1 s 448ms 0min 3 s 290ms 0min 9 s 385ms 0min 18 s 256ms

MDEO C II

Best CRA 3.0 3.104 3.634 6.436 3.011

Mean CRA 2.072 2.050 2.454 4.770 0.401

Mean time 0min 3 s 560ms 0min 7 s 480ms 0min 19 s 614ms 1min 12 s 672ms 3min 57 s 076ms

In this section we compare the results obtained with the latest version
of MDEO running with manual user defined evolvers, the SERGe generated
evolvers for both the problem and the solution meta-models and the automati-
cally generated evolvers with our refinements. By doing this comparison we show
that the automatically generated rules are just as good as the user defined rules.
We also compare our CRA case results with VIATRA-DSE results from TTC
’16 [14]. Our configuration can produce solutions with empty classes in some
instances. Although models with empty classes are not valid instances of the
CRA metamodel, we ignore this requirement as part of this evaluation because
it can be resolved with a post-processing step to remove empty classes from the
solutions.

Experiment Setup. We ran our experiments for the CRA case using three
Henshin transformation rules (evolvers) configurations:
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MDEO Manual (MDEO M). Using the user defined evolvers, specified by
us and previously used in the TTC 2016 Submission [15];

MDEO Refined (MDEO R). Using the evolvers automatically generated by
the SERGe generated rules improvements described in this paper;

MDEO SERGe (MDEO S). Using the evolvers generated by SERGe with-
out any of our refinements; and

MDEO SERGe Solution Metamodel (MDEO C). Using the evolvers
generated by SERGe from the solution meta-model without any of our
refinements.

For each evolver configuration we ran 30 experiments using the NSGA-II
algorithm and the following parameters: I 100 evolutions and population size of
40; and II 500 evolutions and population size of 40. We have chosen the values for
configuration I to have a comparison configuration with the solution proposed
by VIATRA-DSE [14] for TTC 2016. The authors presented the results of 30
experiments running with a population of 40 and 100 evolutions.

The source code of the experiment together with the discovered solutions
for all experiments can be found on GitHub5. All the experiments have been
executed in headless mode on an AWS EC2 c4.large spot instances running
Amazon Linux 4.4.2331.54.amzn1. x86 64 and Java 1.8.0 121 openjdk.

Results. In all configurations, computation time is partly given by the number
of evolvers that have to be applied to a model in order to find mutation matches.
Fewer evolvers require less computations to identify potential matches. This
execution time difference can be observed between the MDEO R configurations
which has seven evolvers and the other configurations which have three (MDEO
C) and four evolvers (MDEO M, MDEO S), respectively. The NSGA-II algorithm
used for our experiments requires more computation time when there are less
convergent dominant solutions than the expected population size and it has to
spend more time on sorting though crowded solutions.

In Table 3 we can see that all configurations have been able to find the same
maximum CRA value for input model A, except for MDEO S. By inspecting
the generated solutions and the average CRA value we can observe that MDEO
R has found the highest overall values for model A, followed by MDEO C. The
execution time is smaller for MDEO C than for MDEO R in both configurations.
For input model B we can see that the best results are also obtained by MDEO
R in both configurations. MDEO R also found the most good solutions overall,
having the highest mean CRA value.

MDEO C found the best CRA value for input model C. Because the generated
solutions are crowded and not diverse, the MDEO C II configuration takes more
time than MDEO R and MDEO M to find the results, despite having only three
evolvers compared to MDEO R which has seven.

For models D and E we note that configuration I does not actually find a
solution. This is likely because not all features can be allocated to classes during

5 https://github.com/mde-optimiser/gcm-2017-experiments.

https://github.com/mde-optimiser/gcm-2017-experiments
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the first 100 evolutions. For configuration II we can find valid solutions. For
model D, MDEO R finds a better CRA than MDEO M but worse than MDEO
C. For model E, we suspect that MDEO R needs even more evolutions to produce
good CRA values due to the large number of evolvers. However, by comparing
the average CRA we can observe that MDEO M found the best overall solutions
and is closely followed by MDEO C and MDEO R.

For all the input models evaluated, the MDEO S configuration may be getting
stuck in local optima, because there are no rules to allow it to move a feature
without invalidating a solution consistent with the solution meta-model. The
best solutions it can find are given by the ones where all the features are assigned
to classes the first time, when the solution becomes valid, during the evolution
process. After this step, the solutions cannot generate better candidates through
the mutations allowed by the generated evolvers for this configuration.

Table 4. Summary of VIATRA-DSE TTC ’16 input models results

A B C D E

Best CRA 3 4 3.002 5.08 8.0811

Mean CRA 3 3.75 19992 2.8531 5.0188

Mean time 0min 4 s 729ms 0min 13 s 891ms 0min 17 s 707ms 1min 19 s 136ms 9min 14 s 769ms

Comparing the MDEO R results with the VIATRA-DSE results for the CRA
case included in Table 4, we can see that for configuration I, MDEO R found
an equal CRA value for model A, but a worse mean CRA. For configuration I,
MDEO R found worse CRA values for all other input models. For configuration
II, MDEO R found again an equal CRA for model A and a better CRA value
for all other models except E. The mean CRA values are worse for models A, B,
and E and better for C and D. However it is worth noting that for configuration
II, MDEO R ran for 500 evolutions compared to VIATRA-DSE which only
ran for 100 evolutions. Also, the conditions under which the experiments for
both solutions have been performed are very different, therefore a performance
comparison of the two solutions is not possible.

Because we seek to apply optimisation directly on models through endoge-
nous transformations, 100 evolutions is not enough to fully explore solutions
which have close to or more than 100 features that have to be assigned. This can
be observed in the results obtained by the MDEO R, which has seven evolvers
compared to MDEO C which has only three or MDEO M which has four. How-
ever, given enough evolutions, the MDEO C and MDEO M are at a disadvantage
when compared to MDEO R on the quality and diversity of explored solutions,
because once all features are assigned to a class, no new classes can be created.
This can lead to a limitation in search space exploration. This behaviour can
be observed by analysing the mean CRA values of the smaller models (A-B) for
configurations I and II.

In summary, we can say that the rule generation approach proposed in this
paper produces rules that are comparable to manually written evolution rules.
We can see that the obtained results for MDEO R are close to MDEO M or in
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some cases, better. The main drawback for the refined rules configuration is that
the number of evolvers is larger than the ones manually defined, this ending up
as requiring a longer time and more evolutions to find good solutions.

We have only experimented with the CRA case so far. We are aware that
the presented approach may not be valid for other cases in its current form, but
we are encouraged by the results obtained and we are planning to extend it to
support other cases in future work.

6 Conclusions and Outlook

In this paper we have shown an approach to specifying optimisation problems in
an MDE context without the need to explicitly specify evolution rules. We have
shown an algorithm to generate the evolution rules from a problem specification
consisting of a meta-model, a set of additional multiplicity constraints, a set of
objectives and a list of meta-classes.

We have been encouraged by the results. At this point, we do not yet have
a proof of the correctness of our refinements (e.g., to show that they do indeed
never create invalid candidate solutions). In future work, we plan to create such
a proof and to extend our tool so it can be used for additional types of con-
straints beyond multiplicity constraints. Another improvement we are interested
in adding to MDEOptimiser is support for a hyperheuristic algorithm to deter-
mine the best set of rule applications during an optimisation (e.g., using different
rule sets during start up and during later stages of the search or by assigning
weights to rules to prioritise their execution based on the results they find), so
that we improve design space exploration in our optimisation process [23].
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Horváth, Á.: Multi-objective optimization in rule-based design space exploration.
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Abstract. Predictive shift-reduce (PSR) parsing for a subclass of hyper-
edge replacement graph grammars has recently been devised by Frank
Drewes and the authors. This paper describes in detail how efficient PSR
parsers are generated with the Grappa parser generator implemented by
Mark Minas. Measurements confirm that the generated parsers run in
linear time.
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1 Introduction

Since the processing of diagram languages with computers becomes more and
more common, the question whether a diagram adheres to the rules of such a
language gets more and more important. If the rules of a language go beyond
validity wrt. a metamodel, the notion of grammars gains relevance. Here, graph
grammars are a natural candidate, in particular if they are context-free, like those
defined by hyperedge replacement (HR) [10]. Unfortunately, general HR parsers,
like the adaptation of the Cocke-Younger-Kasami (CYK) parser to graphs [13],
do not scale to graphs of the size used in modern applications, e.g., in model
transformation. So it is worthwhile to identify subclasses of HR grammars that
have efficient parsers. After devising predictive top down parsing (PTD) [4],
Frank Drewes and the authors have recently proposed predictive shift-reduce
parsing (PSR) [6], its bottom-up counterpart, which lifts SLR(1) string parsing
to graphs. Now Mark Minas has completed his implementation of Grappa, a
generator for PTD and PSR parsers.1

In order to keep the paper self-contained, we start with a brief account of
HR grammars in Sect. 2, introduce PSR parsing in Sect. 3, and sketch conflict
analysis in Sect. 4. (More details can be found in [6].) Then we describe the
implementation of efficient PSR parsers generated by Grappa in Sect. 5. Evalu-
ation of their efficiency in Sect. 6, also in comparison to PTD and CYK parsers,
1 Grappa is available at www.unibw.de/inf2/grappa.
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confirm that they run in linear time. Finally we point out some future work, in
Sect. 7.

2 Hyperedge Replacement Grammars

We use the wellknown relation between graphs and logic [1] to define graphs and
hyperedge replacement grammars in a form suited to define parsing.

Definition 1 (Graph). Let Σ be a vocabulary of symbols that comes with an
arity function arity : Σ → N, and let X be an infinite set of variables. We assume
that Σ is the disjoint union of nonterminals N and terminals T .

A literal e = �(x1, . . . , xk) consists of a symbol � ∈ Σ and k = arity(�)
variables x1, . . . , xk from X. A graph is a sequence G = e1 . . . en of literals.
With Σ(G) and X(G) we denote the symbols and variables occurring in G,
respectively.

X(G) represents the nodes of G, and a literal e = �(x1, . . . , xk) represents a
hyperedge (edge, for short) that carries the label � and is attached to the nodes
x1, . . . , xk. If necessary, isolated nodes can be represented by a literal ν(x), where
ν is a ficticious node symbol with arity(ν) = 1. Multiple occurrences of literals
represent parallel edges.

Definition 2 (HR Grammar). A pair r = (L,R) of graphs is a hyperedge
replacement rule (rule for short) if its left-hand side L consists of a single non-
terminal literal and if its right-hand side R satisfies X(L) ⊆ X(R); we usually
denote a rule as r = L → R.

An injective function � : X → X is a renaming ; G� denotes the graph
obtained by replacing all variables in G according to �.

Consider a graph G and a rule r as above. A renaming μ : X → X matches r
to the ith literal of G if Lμ = ei for some 1 � i � n and X(G)∩X(Rμ) ⊆ X(Lμ).
A match μ of r rewrites G to the graph H = e1 . . . ei−1R

μei+1 . . . en. This is
denoted as G ⇒r,μ H, or just as G ⇒r H. We write G ⇒R H if G ⇒r H
for some rule r taken from a finite set R of rules, and denote the reflexive and
transitive closure of this relation by ⇒∗

R, as usual.
A hyperedge replacement grammar Γ = (Σ,T,R, Z) (HR grammar for short)

consists of a finite set R of rules over Σ, and of a start graph Z = S() with S ∈ N
and X(Z) = ∅. Γ generates the language L(Γ ) = {G | Z ⇒∗

R G,Σ(G) ⊆ T}.

Example 1 (Nested Triangles). Consider nonterminals S and � and the termi-
nal �. We use �x1...xk as a shorthand for literals �(x1, . . . , xk). (Here ε denotes
the empty variable sequence.) Then the rules

Sε → �xyz �xyz → �xuv �uyw �vwz �uwv �xyz → �xyz

(which are numbered 1, 2, and 3) generate a nested triangle:

Sε ⇒
1

�123 ⇒
2

�145 �426 �563 �465 ⇒
2

�145 �426 �563 �478 �769 �895 �798

⇒
3

�145 �426 �563 �478 �769 �895 �798

In Fig. 1, the graphs of this derivation are drawn as diagrams.
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Fig. 1. Diagrams of a derivation of a nested triangles. Circles represent nodes, boxes
and triangles represent edges of triangle graphs, which are connected to their attached
nodes by lines; these lines are ordered clockwise around the edge, starting at the sharper
corner of the triangle.

3 Predictive Shift-Reduce Parsing for HR Grammars

A parser attempts to construct a derivation for a given input according to some
grammar. In our case, graphs shall be parsed according to an HR grammar. A
bottom-up parser constructs the derivation by an operation called reduction:
the right-hand side of a rule is matched in the input graph, and replaced by its
left-hand side. A bottom-up parser for the nested triangles in Example 1 may
reduce every triangle �abc according to rule 3. However, only a single reduction,
of the “central” triangle, will lead to a successful chain of reductions reaching the
start graph Sε. Cocke-Younger-Kasami parsers use this idea (after transforming
grammars into Chomsky normal form). Even if this works for small graphs with
up to hundred edges [13], it does not scale to bigger graphs. See our evaluation
in Sect. 6 below.

PSR parsers borrow an idea of context-free bottom-up string parsers: they
consume edges of a graph in exactly the order in which they would be constructed
by a derivation. An operation, called shift, puts terminal edges onto a stack, to
be considered for reduction later. A PSR parser will reduce rule 3 only once,
after all other edges have been shifted; further reductions of rule 2, and finally
of rule 1, may then lead to a successful parse.

A predictive bottom-up shift-reduce parser uses a characteristic finite
automaton (CFA) to control its actions. We describe its construction at hand
of the running example. The states of the CFA are defined as sets of items,
which are rules where a dot indicates how far the right-hand side has been
shifted onto the stack. Consider the item �xyz → �xuv �uyw �vwz � �uwv of rule 2:
Here the parser has shifted all terminals, but not the nonterminal. This item
will constitute a kernel item of some state of the CFA, say q3. All variables
x, y, z, u, v, w of the rule are known in this situation. So we consider them as
parameters of the state, and denote it as q3(x, y, z, u, v, w). Before the missing
�uwv can be shifted, the parser must recursively parse rule 2 or 3. So the items
�uwv → � �urs �rwt �stv �rts and �uwv → � �uwv are added to q3 as closure items.
The dots at the start of these items indicate that nothing of these rules has been
shifted in this state. We have to rename variables in order to avoid name clashes
with the kernel item.
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Like every CFA state, q3 has transitions under every symbol appearing after
the dot in some of its items. A transition under �urs leads from q3 to a state
with the kernel item �uwv → �urs � �rwt �stv �rts. No closure items arise in this
state since the dot is in front of a terminal. This state would be denoted as
q′
1(u,w, v, r, s), but if there is already a state q1(x, y, z, u, v) that is equal to q′

1

up to variable names, we redirect the transition to this state and write a “call”
q1(u,w, v, r, s) on the transition to specify how parameters should be passed
along. Another transition, under �uwv, leads to a state with kernel item �uwv →
�uwv � , say q5(u,w, v). This transition matches a terminal where all nodes are
known; so it differs from that under �urs that has to match two nodes r and s to
hitherto unconsumed nodes. Finally, a transition under �uwv leads from q3 to a
state, say q4(x, y, z, u, v, w) with the kernel item �xyz → �xuv �uyw �vwz �uwv � .

A special case arises in the start state q0. In order to work without back-
tracking, some nodes of the start rule must be uniquely determined in the input
graph before parsing starts. In our example, all nodes x, y, z match the unique
nodes a, b, c that are attached to just one edge, with their first, second, and third
attachment, respectively. If the input graph does not have exactly three nodes
like that, it cannot be a nested triangle, and parsing fails immediately. Otherwise
the start state is called with q0(a, b, c). Unique start nodes can be determined
by a procedure devised in [5, Sect. 4], which computes the possible incidences of
all nodes created by a grammar.

Fig. 2. The characteristic finite automaton for nested triangles
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Example 2 (A CFA for Nested Triangles). In Fig. 2 we show the transition dia-
gram of the CFA of Example 1. The states q1, q3, q4, q5 are as discussed above.

A PSR parser pushes concrete states and transitions of its CFA onto a stack
while it performs transitions. In the states and transitions stored on the stack,
variables in the abstract states and transitions of the CFA are replaced by the
concrete nodes matching them in the input graph.

The topmost stack entry, a state, determines the next action of the parser.
This may be a shift under a terminal literal, or a reduction of some rule. (Tran-
sitions under nonterminal literals are handled as final part of a reduction.) The
actions for some topmost state q are as follows:

Shift: If q calls for a terminal transition under some literal �(x1, . . . , xk), lookup
the concrete nodes of q matching some of these variables, and match the literal
with an edge e = �(v1, . . . , vk) in the host graph. Push e onto the stack,
remove it from the input, and push the target state, replacing variables with
the concrete nodes determined by q and e.

Reduce: If q calls for a reduction of some rule r, pop all literals of the right-
hand side of r from the stack, with their corresponding states. The state that
is on top has a transition under the left-hand side of r; push the left-hand
side and its target state, replacing the variables with the nodes determined
by the popped states. If the rule r is the start rule, and the input graph is
empty, accept the input as a graph of the language.

Note that the parser has to choose the next action in states that allow for
different shifts and/or reductions; in our example, q0 and q3 allow two shifts, see
Fig. 2. The parser predicts the next step by inspecting the unconsumed edges.
We will discuss in the next section how the conditions to be used for inspection
are computed. In the example, the shifts of �xyz in state q0 and of �uwv in
state q3 have to be chosen if and only if the graph contains unconsumed �-edges
visiting the corresponding nodes.

Even if a particular shift transition has been chosen, a PSR parser may still
have to choose between different edges matching the literal. (Such a situation
does not occur in our example, but with the trees in [6, Sect. 4]). In such a case,
the PSR parser generator has to make sure that the free edge choice property
holds, i.e., that any of the matching edges can be chosen without changing the
result of the parser.

Example 3 (A PSR Parse for Nested Triangles). A parse of the graph derived
in Example 1 is shown in Fig. 3. We write the parameters of states as exponents,
just as for literals.

4 Conflict Analysis

A CFA can be constructed for every HR grammar; the general procedure works
essentially as described above. In this paper, we focus on the implementation of
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Fig. 3. A PSR parse for the triangle derived in Example 1

parsers for HR grammars that are PSR-parsable. Criteria for an HR grammar to
be PSR-parsable have been discussed in [6]. In particular, such a grammar must
be conflict-free. In the following, we roughly recall this concept since it is needed
for the implementation of efficient PSR parsers, which is described in Sect. 5.

A graph parser must choose the next edge to be consumed from a set of
appropriate unconsumed edges. We define a conflict as a situation where an
unconsumed edge is appropriate for one action, but could be consumed also if
another action was chosen. Obviously, the parser can always predict the correct
action if the grammar is free of conflicts.

We now discuss how to identify host edges that are appropriate for the action
caused by an item. For this purpose, let us first define items in PSR parsing more
formally: An item I = 〈L → R̄ �R | P 〉 consists of a rule L → R̄R ∈ R with a dot
indicating a position in the right-hand side, and of the set P of parameters, i.e.,
those nodes in the item which do already have matching nodes in the host graph.
These host nodes are not yet known when we construct the CFA and the PSR
parser, but we can interpret parameters as abstract host nodes. A “real” host
node assigned to a parameter during parsing is mapped to the corresponding
abstract node. All other host nodes are mapped to a special abstract node −.
Edges of the host graph are mapped to abstract edges being attached to abstract
nodes, i.e., P ∪ {−}, and each abstract edge can be represented by an abstract
(edge) literal in the usual way. Note that the number of different abstract literals
is finite because P ∪ {−} is finite.

Consider any valid host graph G in L(Γ ), generated by the derivation S =
G1 ⇒ · · · ⇒ Gn = G. We then select any mapping of nodes in G to abstract
nodes P ∪ {−} such that no node in P is the image of two different host nodes.
Edge literals are mapped to the corresponding abstract literals. The resulting
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sequence of literals can then be viewed as a derivation in a context-free string
grammar Γ (P ) that can be effectively constructed from Γ in the same way as
described in [5, Sect. 4]; details are omitted here because of space restrictions.
Γ (P ) has the nice property that we can use this context-free string grammar
instead of Γ to inspect conflicts. This is shown in the following.

Consider an item I = 〈L → R̄ �R | P 〉. Each edge literal e = l(n1, . . . , nk)
has the corresponding abstract literal abstrP (e) = l(m1, . . . ,mk) where mi = ni

if ni ∈ P , and mi = − otherwise, for 1 � i � k. Let us now determine all host
edges, represented by their abstract literals, which can be consumed next if the
action caused by this item is selected. The host edge consumed next must have
the abstract literal FirstP (R) := abstrP (e) if I is a shift item, i.e., R starts
with a terminal literal e. If I, however, causes a reduction, i.e., R = ε, we can
make use of Γ (P ). Any host edge consumed next must correspond to an abstract
literal that is a follower of the abstract literal of L in Γ (P ). We refer to [6] for
a discussion of the general case. Here, we discuss the concept at hand of our
running example.

As an example, consider state q3(x, y, z, u, v, w) in Fig. 2 with its items Ii =
〈Li → R̄i � Ri | Pi〉, i = 1, 2, 3, with P1 = {x, y, z, u, v, w} and P2 = P3 =
{u, v, w}. For the second item, one can compute

FirstP2(R2) = abstrP2(�urs) = �u−−,

i.e., the shifted edge in this step (called shift step 1 in the following) must be a
triangle edge being attached to the host node assigned to u with its first arm,
and nodes that have not yet been consumed by the parser with its other arms.

For the third item, one can compute

FirstP3(R3) = abstrP3(�uwv) = �uwv,

i.e., the shifted edge in this step (called shift step 2 in the following) must be a
� edge being attached to host nodes that are assigned to u, w, and v, respectively.

The parser needs a criterion for deciding the correct step when it has reached
q3(x, y, z, u, v, w). It is clear that shift step 1 must be taken when the host graph
contains an unconsumed edge matching �u−−, but not �uwv, and shift step 2
if it contains an unconsumed edge matching �uwv, but not �u−−. However, the
parser would be unable to decide the next step if the host graph contained
two unconsumed edges matching �u−− and �uwv, respectively. Conflict analysis
makes sure that this situation, called shift-shift conflict, cannot occur here. This
is outlined in the following.

Let us assume that this conflicting situation occurs, i.e., �uwv may follow
later when shift step 1 is taken, or �u−− may follow later when shift step 2 is
taken. Conflict analysis, therefore, must compute from Γ (P ) the (finite) set of all
abstract edges that may follow when either shift step is taken. Let us denote this
set as Follow∗

P (Ii), i = 2, 3. Its computation is straightforward and well-known
from string grammars. In our example

Follow∗
P2

(I2) = {�u−−,�−w−,�−−v,�−−−}
Follow∗

P3
(I3) = {�uwv}
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Of course, FirstPi
(Ri) ∈ Follow∗

Pi
(Ii) for i = 2, 3. As one can see, �u−− /∈

Follow∗
P3

(I3) and �uwv /∈ Follow∗
P2

(I2), i.e., such a shift-shift conflict cannot
occur, and the parser can decide in state q3 which step shall be taken, by checking
whether there exists a yet unconsumed edge matching �u−− or �uwv.

Similar arguments apply when the parser has to decide between a shift and
a reduce step and between two reduce steps, potentially causing shift-reduce or
reduce-reduce conflicts as discussed in [6]. But these situations do not occur in
the CFA of our running example.

5 Efficient Implementation of PSR Parsers

We shall now describe how PSR parsers can be implemented efficiently so that
their runtime is linear in the size of the input graph. We shall first describe the
implementation at hand of our running example, and then the general procedure.

In the following, we assume that nodes and edges are represented by separate
data structures. Each edge keeps track of its label and all attached nodes. We will
discuss later what information must be stored at node objects to make parsing
efficient.

The implementation of the parser outlined in Sect. 3 is rather straight-
forward: The parsing stack described in Sect. 3 holds (terminal) host edges as
well as nonterminal edges produced by reduce steps, and CFA states with their
parameters bound to host nodes that have already been consumed by the parser.
In Example 3, we have represented such a state qi(x1, . . . , xk) together with its
binding match μ : {x1, . . . , xk} → X(G) by q

μ(x1)...μ(xk)
i . In the implementation,

we represent each state just by its number i, and its binding by an array params
of host nodes such that params[j] = μ(xj) for each j = 1, . . . , k. And, instead
of just a single stack, we shall use three stacks: a stateStack of state numbers,
a paramStack of node arrays representing binding matches, and an edgeStack
of (terminal) host edges and nonterminal edges produced by reduce steps. The
elements stored in stateStack and in paramStack correspond to each other; each
corresponding pair represents a state q

μ(x1)...μ(xk)
i with a binding match μ. The

parser is then implemented as the procedure parse shown in Fig. 4. The start
nodes, which have been determined before parsing begins (see Sect. 3), repre-
sented by an array startNodes, are passed as a parameter. The parser initializes
its stacks with the start state, which we assume to have number 0, together with
the binding match defined by the start nodes. The actual parsing actions are
implemented in procedures actioni, one for each CFA state qi(x1, . . . , xk). It is
their task to operate on the stacks and to terminate the seemingly infinite loop.

Figure 5 shows the action-procedure for the accept state q6(x, y, z) of the
nested triangle CFA (Fig. 2); the parser terminates with success iff all nodes
and edges of the host graph have been consumed when this state is reached.
The action procedures for states q3(x, y, z, u, v, w) and q5(u,w, v) are shown in
Fig. 6. Procedure action3 must check which of the two shift transitions leaving
q3 must be taken. The third transition leaving q3, labeled with nonterminal edge
�uwv, is implemented in procedure goto3 and described later. Procedure action3
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Fig. 4. The parsing procedure Fig. 5. Action for state q6

Fig. 6. Some procedures implementing the PSR parser for nested triangles.

first tries to find a yet unconsumed edge of the host graph that corresponds to
�urs, where u is a parameter node, i.e., bound to a host node that is stored
at position 4 of the current parameter array, whereas r and s must correspond
to host nodes that have not yet been consumed. Such a host edge is looked
for in lines 6–7. Grammar analysis shows that a host graph in the language of
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nested triangles cannot contain more than one edge like that. (We will discuss
later how the parser generator can do so.) The parser, therefore, looks whether
it finds any such edge and, if successful, stores it in e. The parser takes the
corresponding shift transition to q1(u,w, v, r, s) if such an edge exists and if its
other two connected nodes have not been consumed before (line 8). The shift step
marks the identified edge e and nodes β and γ as consumed and computes the
parameter array of the next state q1(u,w, v, r, s). (Details on the corresponding
data structures are discussed later.) The host nodes corresponding to u, w, and v
are already known from the current parameter array, but r and s (at positions 4
and 5 of the array) are the nodes β and γ visited by edge e. The procedure then
returns, and the parsing loop can continue with the next iteration.

Procedure action3 checks the other shift transition if the test in line 8 fails.
Lines 19–28 are similar to lines 8–17. Note that the parser need not look for
another edge than the one found in lines 6–7 once such an edge has been found.
Finally, the parser must stop with an error if the test in line 19 also fails, because
a valid host graph must contain an edge satisfying one of the two conditions.

Procedure action5 shows the implementation of the reduce step to be taken
in state q5(u,w, v). Lines 54–55 create the nonterminal edge corresponding to
�uwv produced by the reduce step (see Fig. 2). Lines 56–57 pop the elements
corresponding to the right-hand side of the rule from the stacks, i.e., the CFA
returns to state qi (line 58) where a transition labeled with the newly created
edge e must be taken (line 59). Such a goto-procedure for state q3(x, y, z, u, v, w)
is shown in lines 31–48. Lines 37–38 check whether the parameter edge matches
the one defining the transition. This is actually not necessary here where we
have just a single transition with a nonterminal edge; but in general, there may
be several leaving transitions with different nonterminal edges, and the goto-
procedure must select the correct one. Lines 40–44 move the parser into the
next state q4(x, y, z, u, v, w).

The other action and goto procedures are similar to the presented ones. Let
us now consider the general case. Each state of a CFA provides a set of operations
which can be shift, reduce, accept, or goto operations. Shift and goto operations
correspond to transitions to other states; shift transitions are labeled by termi-
nal edge literals and goto transitions by nonterminal edge literals. The latter
are easily implemented by goto procedures similar to goto3 in Fig. 6. Each goto
procedure must check a fixed number of different cases, which can be performed
in constant time. The action procedures are responsible for choosing among the
shift, reduce, and accept operations provided by the corresponding states. For
each of these operations, the parser generator must identify a condition that
controls when the parser shall select its operation to be executed next. In the
example, procedure action3 selects the shift over �wrs iff the condition in line 8
is satisfied, and a shift over �uwv if the condition in line 8 is not satisfied, but
the one in line 19. Moreover, the parser must be able to efficiently check these
conditions, i.e., in constant time.

The conditions can be easily derived from the conflict analysis described
in the previous section. Conflict analysis determines, for each item of a state, a
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finite characterization of terminal edges of the host graph that must be consumed
next (for shift steps) or that may be consumed in later steps (for reduce steps).
There are no conflicts if an HR grammar is PSR, i.e., the parser can use these
conditions to always correctly select the next operation.

Now, how do these conditions look like? Each one is an abstract literal char-
acterizing (yet unconsumed) terminal edges of the host graph determining their
label and some of their nodes, whereas the other attached nodes are yet uncon-
sumed. A näıve procedure for searching for such an edge would be to iterate over
all unconsumed edges and to select an edge that has attached nodes as speci-
fied. This would take linear time instead of the required constant time; proper
preprocessing of the host graph prior to parsing is necessary. The parser genera-
tor knows about all abstract literals that are used in any condition. The idea is
to preprocess the host graph so that each abstract literal corresponds to a data
structure of all unconsumed edges that match the abstract literal, and to update
the corresponding data structures whenever an edge is consumed. The parser,
when searching for an unconsumed edge matching an abstract literal, then just
has to look into the corresponding data structure. Hash tables are an appropriate
data structure for this purpose. For each abstract literal a = l(m1, . . . ,mk), we
assign a hash table to label l. Prior to parsing, each edge e matching this literal
is added to this hash table. More specifically, all nodes attached to e and being
determined by the abstract literal define a tuple Keya(e) of nodes. Keya(e) is
mapped to a list in the hash table; this list contains e and (when the complete
graph has been preprocessed) all edges that have the same key Keya(e). Search-
ing for an edge being attached to some predefined nodes specified by an abstract
literal then consists of just computing the corresponding key and looking up the
mapped list in the appropriate hash table.

The time for looking up this list is constant on average2 because the hash
table is fixed after preprocessing; only the contents of the list are modified when
edges are consumed. This can be done in constant time, too, when lists are
implemented by doubly linked lists and each edge keeps track of the list nodes
of all lists in which the edge is stored. Because the number of abstract literals
is fixed for a grammar, all these data structures (hash table, lists, and keeping
track of list nodes) require linear space in the size of the host graph if each hash
table size is chosen proportional to the number of all edges. Moreover, setting
up these data structures requires, on average, linear time in the size of the host
graph.

However, looking up unconsumed edges matching certain host nodes specified
by an abstract literal can be simplified in many cases (for instance in our run-
ning example of nested triangles) so that hash tables become obsolete in many
cases, or altogether: Grammar analysis may reveal, for a state qm(x1, . . . , xk)
of the CFA, a terminal edge label l ∈ T , a parameter node xi and an “arm”

2 As a worst case, a single lookup can take linear time in the number of hash table
entries when the hash function produces too many collisions. However, the parser has
to look up all edges. The overall lookup time, therefore, tends towards the average
case.
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j, 1 � j � arity(l), that a host graph cannot have more than one unconsumed
edge with label l and being attached to μ(xi) with its j-th arm when the parser
has reached qμ

m. If an abstract literal used for edge lookup refers to such a node,
called determining node in the following, one can use just this node as a key
in the hash table. However, this makes the hash table unnecessary: Instead of
mapping a node to a list of attached edges, one can simply keep this list in the
node data structure. Such a list is just a plain association list which must be
maintained when consuming edges.

Grammar analysis can identify determining nodes by using the same tech-
niques as for conflict analysis, which computes sets of abstract edges that may fol-
low during parsing. If this computation shows that a parameter node is attached
to a shift edge, but to no other edge with the same label and using the same arm
later in the derivation process, one can conclude that such a parameter node is
determining for the corresponding edge label and arm. Amazingly, experiments
with many PSR grammars have shown that almost all of them can be processed
without any hash table.

Finally note that PSR parsers not only process syntactically correct graphs
in linear time, but also erroneous graphs. This is so because each step of the
parser still takes constant time (at least on average), and the maximum number
of steps linearly depends on the graph size.

6 Evaluation of Generated PSR Parsers

In order to demonstrate that PSR parsing is linear in the size of the host graph,
we have conducted some experiments with some example HR grammars. For
each grammar, we generated a PSR as well as a PTD parser using Grappa, and
also a CYK parser using DiaGen.3 We then measured parsing time for input
graphs of different size for each of these parsers. The results can be found at
www.unibw.de/inf2/grappa; here, we present the results for our running example
of nested triangles and also for Nassi-Shneiderman diagrams as well as “blowball
graphs”.

Each triangle graph consists, for some positive integer n, of 3n nodes and
3n − 2 edges. Figure 7a shows the runtime of the PSR and PTD parsers when
processing triangle graphs with varying value n. Runtime has been measured
on a MacBook Pro 2013, 2,7 GHz Intel Core i7, Java 1.8.0, and is shown in
milliseconds on the y-axis while n is shown on the x-axis. Note the apparent
linear behavior of the PSR parser and the, slightly slower, PTD parser. Figure 7b
shows the corresponding diagram for the CYK parser. Note that the runtime of
the CYK parser is not linear in the size of the triangle graph. Note also that
PTD parsing and, in particular, PSR parsing is, by several orders of magnitude,
faster than CYK parsing. For instance, the CYK parser needs 700 ms to parse a
triangle graph with n = 1000 whereas the PTD parser needs just 0.97 ms, and
the PSR parser just 0.44 ms.

3 Homepage: www.unibw.de/inf2/DiaGen.

https://www.unibw.de/inf2/grappa/
https://www.unibw.de/inf2/DiaGen/
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Fig. 7. Runtime (in milliseconds) of the PSR as well as the PTD parser (a) and the
CYK parser (b) for nested triangles. Note that the scales in (a) and (b) differ.

Fig. 8. Nassi-Shneiderman diagrams Di, i = 1, 2, 3, . . ..

We also conducted experiments with the more complicated language of Nassi-
Shneiderman diagrams, which represent structured programs with conditional
statements and while loops [12]. Figure 8 shows such diagrams. Each diagram
can be modelled by a graph where statement, condition, and while blocks are
represented by edges of type stmt, cond, and while, respectively. Diagram D1

in Fig. 8, for instance, is represented by a graph condabcdstmtcefgstmtedgh. The
language of all Nassi-Shneiderman graphs is defined by an HR grammar with
the following rules:

Sε → NSDxyuv

NSDxyuv → NSDxyrs Stmtrsuv | Stmtxyuv

Stmtxyuv → stmtxyuv | condxyrs NSDrmun NSDmsnv | whilexyrsut NSDrstv

We use the shorthand notation L → R1 | R2 to represent rules L → R1 and
L → R2 with the same left-hand side.

Runtime of the different parsers has been measured for Nassi-Shneiderman
graphs Dn with varying values n. Figure 8 recursively defines these graphs Di

for i = 1, 2, 3, . . . and also shows D3 as an example. Each diagram Di consists
of 2 + 6i nodes and 3i edges.

Figure 9a shows the runtime of the PSR and the PTD parser for graphs Dn

with n being shown on the x-axis and the runtime in milliseconds on the y-axis.
Figure 9b shows the corresponding diagram for the CYK parser. The PSR parser
and the CYK parser have been generated from the HR grammar presented above.
For generating the PTD parser, a slightly modified grammar withmerging rules [4]
had to be used because the presented grammar is not PTD.
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Fig. 9. Runtime (in milliseconds) of the PSR as well as the PTD parser (a) and the
CYK parser (b) for Nassi-Shneiderman graphs built as shown in Fig. 8. Note that the
scales in (a) and (b) differ.

Note that the runtime of the PSR parser and the slower PTD parser is linear
in the size of the input graph whereas the runtime of the CYK parser is not
linear. Note again that the scales in the diagrams shown in Fig. 9a and b differ
and that PTD parsing and, in particular, PSR parsing is, by several orders of
magnitude, faster than CYK parsing. For instance, the CYK parser needs 1.2 s
to parse D1000 whereas the PTD parser needs just 12ms, and the PSR parser
just 1.0 ms.

The PSR parsers for triangle and Nassi-Shneiderman graphs make use of
determining nodes and, therefore, do not require hash tables to obtain linear
parsing time. In order to demonstrate the speed-up produced by hash tables,
we constructed an HR grammar (see Fig. 10), called blowball grammar because
of the shapes of its graphs. Its PSR parser must perform some edge look-ups
without determining nodes. Grappa has been used to generate two versions of a
PSR parser: Version PSR (hash) uses hash tables to speed up these edge look-
ups, whereas version PSR (no hash) iterates over lists of candidates instead.
Moreover, a PTD and a CYK parser have been generated. For the experiments,
we considered blowball graphs Bn, n � 1, like B10 shown in Fig. 11: Bn consists
of n pair edges (represented by arrows in Fig. 11), one in the center and the
rest forming stars where the number of edges in each star is as close to the
number of stars as possible. Runtime of the different parsers has been measured
for these graphs Bn with varying values n. Figure 12a shows the results of the
two PSR parsers. The PSR (no hash) parser has quadratic parsing time and is
much slower than the PSR (hash) parser with linear parsing time. For instance,
PSR (no hash) needs 360 ms to parse B10000, whereas PSR (hash) needs just
10ms. Parsing time of the PTD parser is similar to the PSR (no hash) parser
and is not shown here. Figure 12b shows the results of the CYK parser, which is
again by several orders of magnitude slower than the other parsers. For instance,
the CYK parser needs 1.6 s to parse B16 whereas the PTD parser needs just 9μs,
and the PSR parsers (both versions) just 5μs.
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Fig. 10. Blowball graph grammar. Fig. 11. Blowball graph B10.

Fig. 12. Runtime (in milliseconds) of the PSR parser (a) with hash tables (faster) and
without hash tables (slower) and the CYK parser (b) for blowball graphs Bn. Note
that the scales in (a) and (b) differ.

7 Conclusions

We have described the implementation of efficient predictive shift-reduce parsers
for HR grammars. Such PSR parsers are too complicated to be implemented by
hand. The Grappa parser generator has been implemented to assist users in
two ways: The generator first checks PSR-parsability of an HR grammar, and it
generates a PSR parser only if the grammar is PSR-parsable. Measurements for
the generated parsers confirm that they run in linear time, as postulated in [6].
In that paper, we have established some relationship between HR grammars
generating string graphs: PSR parsing turned out to be a true extension of
De Remer’s SLR(1) parsing. Unfortunately, Theorem 1 in that paper, stating
that PTD string graph grammars are PSR, is wrong. We are about to devise a
restricted version of PTD so that this theorem holds. This does not affect the
results of this paper.

Earlier, now abandoned work on predictive graph parsers [9,11] has been
based on fairly restricted subclasses of node replacement grammars [8] and on
edge precedence relations.
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Like PTD parsing, PSR parsing can be lifted to contextual HR grammars
[2,3], a class of graph grammars that is more relevant for the practical definition
of graph languages. This remains as part of future work. Moreover, it might be
worthwhile to extend PSR to the more powerful Earley-style parsers that use a
more general kind of control automaton, and pursue several goals in parallel [7].
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Abstract. We present a method for statically verifying confluence
(functional behaviour) of terminating sets of rules in the graph program-
ming language GP 2, which is undecidable in general. In contrast to
other work about attributed graph transformation, we do not impose
syntactic restrictions on the rules except for left-linearity. Our checking
method relies on constructing the symbolic critical pairs of a rule set
using an E-unification algorithm and subsequently checking whether all
pairs are strongly joinable with symbolic derivations. The correctness of
this method is a consequence of the main technical result of this paper,
viz. that a set of left-linear attributed rules is locally confluent if all sym-
bolic critical pairs are strongly joinable, and our previous results on the
completeness and finiteness of the set of symbolic critical pairs. We also
show that for checking strong joinability, it is not necessary to compute
all graphs derivable from a critical pair. Instead, it suffices to focus on
the pair’s persistent reducts. In a case study, we use our method to verify
the confluence of a graph program that calculates shortest distances.

1 Introduction

A common programming pattern in the graph programming language GP 2 [18]
is to apply a set of attributed graph transformation rules as long as possible. To
execute a set of rules {r1, . . . , rn} for as long as possible on a host graph, in each
iteration an applicable rule is selected and applied. As rule selection and rule
matching are non-deterministic, different graphs may result from such an itera-
tion. Thus, if the programmer wants the loop to implement a function, a static
analysis that establishes or refutes functional behaviour would be desirable.

GP 2 is based on the double-pushout approach to graph transformation with
relabelling [6]. Programs can perform computations on labels by using rules
labelled with expressions (also known as attributed rules). GP 2’s label algebra
consists of integers, character strings, and heterogeneous lists of integers and
strings. Rule application can be seen as a two-stage process where rules are
first instantiated, by replacing variables with values and evaluating the resulting
expressions, and then applied as usual. Hence rules are actually rule schemata.

Conventional confluence analysis in the double-pushout approach to graph
transformation is based on critical pairs, which represent conflicts in minimal
context [4,17]. A conflict between two rule applications arises, roughly speaking,
when one of the steps cannot be applied to the result of the other. In the presence
c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 92–108, 2018.
https://doi.org/10.1007/978-3-319-74730-9_8
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of termination, one can check if all critical pairs are strongly joinable, and thus
establish that the set of transformation rules is confluent.

In our previous paper [12], we developed the notion of symbolic critical pairs
for GP 2 rule schemata which are minimal conflicting derivations, labelled with
expressions. The set of such pairs is finite and complete, in the sense that they
represent all possible conflicts that may arise during computation. Furthermore,
we gave an algorithm for constructing the set of symbolic critical pairs induced
by a set of schemata, which uses our E-unification algorithm of [9]. The approach
does not place severe restrictions on labels appearing in rules, as the attributed
setting of [3]. What remains to be shown is how to use such critical pairs in the
context of confluence analysis.

In this paper, we present our method for statically verifying confluence of
terminating sets of GP 2 rules. We introduce a notion of symbolic rewriting that
allows us to rewrite the graphs of critical pairs, and show how it is used for
confluence analysis. The correctness of our analysis is a consequence of the main
technical result of this paper, namely that a set of left-linear attributed rules is
locally confluent if all symbolic critical pairs are strongly joinable. We also show
that for checking strong joinability, it is not necessary to compute all graphs
derivable from a critical pair but it suffices to focus on the pair’s persistent
reducts. In a case study, we use our method to verify the confluence of a graph
program that calculates shortest distances.

We assume the reader to be familiar with basic notions of the double-pushout
approach to graph transformation (see [3]). The long version of this paper [11]
contains the technical proofs together with the full shortest distances case study.

2 Graphs and Graph Programs

In this section, we present the approach of GP 2 [1,18], a domain-specific lan-
guage for rule-based graph manipulation. The principal programming units of
GP 2 are rule schemata 〈L ← K → R〉 labelled with expressions that operate on
host graphs (or input graphs) labelled with concrete values. The language also
allows to combine schemata into programs. The definition of GP 2’s latest ver-
sion, together with a formal operational semantics, can be found in [1]. We start
by recalling the basic notions of partially labelled graphs and their morphisms.

Labelled Graphs. A (partially) labelled graph G consists of finite sets VG and EG

of nodes and edges (graph items for short), source and target functions for edges
sG, tG : EG → VG, and a partial node/edge labelling function lG : VG + EG → L
over a (possibly infinite) label set L. Given an item x, lG(x) = ⊥ expresses that
lG(x) is undefined. The graph G is totally labelled if lG is a total function. The
classes of partially and totally labelled graphs over L are denoted as G⊥(L) and
G(L).

A premorphism g : G → H consists of two functions gV : VG → VH and
gE : EG → EH that preserve sources and targets, and is a graph morphism if it
preserves labels of graph items, that is lH

(
g(x)

)
= lG(x) for all x ∈ Dom(lG).



94 I. Hristakiev and D. Plump

A morphism g preserves undefinedness if it maps unlabelled items of G to unla-
belled items in H. A morphism g is an inclusion if g(x) = x for all items x in
G. Note that inclusions need not preserve undefinedness. A morphism g is injec-
tive (surjective) if gV and gE are injective (surjective), and is an isomorphism
(denoted by ∼=) if it is injective, surjective and preserves undefinedness. The class
of injective label preserving morphisms is denoted as M for short, and the class
of injective label and undefinedness preserving morphisms is denoted as N .

Partially labelled graphs and label-preserving morphisms constitute a cate-
gory [6,7]. Composition of morphisms is defined componentwise. In this category
not all pushouts exist, and not all pushouts along M-morphisms are natural1.

GP 2 Labels. The types int and string represent integers and character strings.
The type atom is the union of int and string, and list represents lists of atoms.
Given lists l1 and l2, we write l1 : l2 for the concatenation of l1 and l2 (not to be
confused with the list-cons operator in Haskell). Atoms are lists of length one.
The empty list is denoted by empty. Variables may appear in labels in rules and
are typed over the above categories. Labels in rule schemata are built up from
constant values, variables, and operators - the standard arithmetic operators for
integer expressions (including the unary minus), string/list concatenation for
string/list expressions, indegree and outdegree operators for nodes. In pictures
of graphs, graph items that are shown without a label are implicitly labelled with
the empty list, while unlabelled items in interfaces are labelled with ⊥ to avoid
confusion.

Additionally, a label may contain an optional mark which is represented
graphically as a colour. For example, the grey node of the rule schema init in
Fig. 3 has the label (x : 0, grey).

Rule Schemata and Direct Derivations. In order to compute with labels, it is
necessary that graph items can be relabelled during computation. The double-
pushout approach with partially labelled interface graphs is used as a formal
basis [6]. This approach is also the foundation of GP 2.

To apply a rule schema to a graph, the schema is first instantiated by eval-
uating its labels according to some assignment α. An assignment α maps each
variable occurring in a given schema to a value in GP 2’s label algebra. Its unique
extension α∗ evaluates the schema’s label expressions according to α. For short,
we denote GP 2’s label algebra as A. Its corresponding term algebra over the
same signature is denoted as T (X), and its terms are used as graph labels in rule
schemata. Here X is the set of variables occurring in schemata. A substitution σ
maps variables to terms. To avoid an inflation of symbols, we sometimes equate
A or T (X) with the union of its carrier sets.

A GP 2 rule schema r = 〈L ← K → R〉 consists of two inclusions K → L
and K → R such that L and R are graphs in G(T (X)) and K is a graph in
G⊥(T (X)). Consider a graph G in G⊥(T (X)) and an assignment α : X → A.
The instance Gα is the graph in G⊥(A) obtained from G by replacing each label

1 A pushout is natural if it is also a pullback.
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Lα Kα Rα

L K R

G D H

g

c

NPO NPO

Fig. 1. A direct derivation

l with α∗(l). The instance of a rule schema r = 〈L ← K → R〉 is the rule
rα = 〈Lα ← Kα → Rα〉.

A direct derivation via rule schema r and assignment α between host graphs
G,H ∈ G(A) consists of two natural pushouts as in Fig. 1. We denote such a
derivation by G

r,g,α
=⇒ H. Later we will allow for rules to be applied to graphs

in G(T (X)). In [6] it is shown that in case the interface graph K has unla-
belled items, their images in the intermediate graph D are also unlabelled. By
[6, Theorem 1], given a rule r and a graph G together with an injective match
g : L → G satisfying the dangling condition (no node in g(L) − g(K) is inci-
dent to an edge in G − g(L)), there exists a unique double natural pushout
as in Fig. 1. The track morphism allows to “follow items through derivations”:
trackG⇒H : G → H is the partial premorphism defined by track(x) = if x ∈
D then c(x) else undefined where c is the inclusion D → H, and trackG⇒∗H of
an arbitrary-length derivation is the composition of partial premorphisms. Note
track may not preserve labels due to relabelling.

For an example rule schema and graph program, see the start of Sect. 5.
When a rule schema is graphically declared as done in Fig. 3, the interface is
represented by the node numbers in L and R. Nodes without numbers in L are
to be deleted and nodes without numbers in R are to be created. All variables
in R have to occur in L so that for a given match of L in a host graph, applying
the rule schema produces a graph that is unique up to isomorphism.

Program Constructs. The language GP 2 offers several operators for combining
programs - the postfix operator ‘!’ iterates a program as long as possible; sequen-
tial composition ‘P; Q’; a rule set {r1, . . . , rn} tries to non-deterministically apply
any of the schemata (failing if none are applicable); if C then P else Q allows
for conditional branching (C,P,Q are arbitrary programs) meaning that if the
program C succeeds on a copy of the input graph then P is executed on the
original, if C fails then Q is executed on the original input graph.

Confluence. A set of rule schemata R is confluent if for all graphs G,H1,H2 with
derivations H1 ⇐∗

R G ⇒∗
R H2 there is a graph M with H1 ⇒∗

R M ⇐∗
R H2. R is

locally confluent if this property holds for direct derivations H1 ⇐R G ⇒R H2.
Finally, R is terminating if there is no infinite sequence G0 ⇒R G1 ⇒R . . . of
direct derivations.
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Assumptions. Our previous results on critical pairs [12] involve several restric-
tions. Firstly, the proper treatment of GP 2 conditional rule schemata requires
extra results about shifting of conditions along morphisms and rules, which we
do not treat here formally. We give an intuition of how to deal with conditions
on labels in our shortest distances case study in Sect. 5. Secondly, we assume rule
schemata to be left-linear, meaning no list variables are shared between items
in schemata. This ensures that overlapping graphs with expressions results in a
finite set of critical pairs. Thirdly, we allow interfaces in rules to contain edges
and labels, which is a deviation from the GP 2 convention of unlabelled node-only
interfaces. This reduces the number of potential conflicts.

3 Symbolic Critical Pairs

Confluence [17] is a property of a rewrite system that ensures that any pair of
derivations on the same host graph can be joined again thus leading to the same
result, and is an important property for many kinds of graph transformation
systems. A confluent computation is globally deterministic despite local non-
determinism. The main technique for confluence analysis is based on the study
of critical pairs which are conflicts in minimal context.

In our previous paper [12], we defined critical pairs for GP 2 that are labelled
with expressions rather than from a concrete data domain. Each symbolic critical
pair represents a possibly infinite set of conflicting host graph derivations. Hence,
it is possible to foresee each conflict by computing all critical pairs statically.
What is special about our critical pairs is that they show the conflict in the
most abstract way. Informally, a pair of derivations T1

r1,m1,σ⇐= S
r2,m2,σ
=⇒ T2 between

graphs labelled with expressions is a symbolic critical pair if it is in conflict and
minimal. Two direct derivations are independent if neither derivation deletes or
relabels any common item, and in conflict if otherwise. Independent derivations
have the Church-Rosser property as shown in [10] for the case of rule schemata.

Minimality of a pair of derivations means the pair of matches (m1,m2) is
jointly surjective – the graph S can be considered as a suitable overlap of Lσ

1

and Lσ
2 . Formally, overlapping graphs L1 and L2 via premorphisms m1 : L1 →

S,m2 : L2 → S induces a system of unification problems:

EQ(L1
m1→ S

m2← L2) = {lL1(a) ?= lL2(b) | (a, b) ∈ L1 × L2 with m1(a) = m2(b)}
The substitution σ above is taken from the complete set of unifiers of the above
system computed by our unification algorithm of [9], and is used to instantiate
the schemata to a critical pair.

Definition 1 (Symbolic Critical Pair [12]). A symbolic critical pair is a pair
of direct derivations T1

r1,m1,σ⇐= S
r2,m2,σ
=⇒ T2 on graphs labelled with expressions

such that:

(1) σ is a substitution from a complete set of unifiers of (EQ(L1
m1−−→ S

m2←−− L2))
where L1 and L2 are the left-hand graphs of r1 and r2, m1 and m2 are
premorphisms, and
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(2) the pair of derivations is in conflict, and
(3) S = m1(Lσ

1 ) ∪ m2(Lσ
2 ), meaning S is minimal, and

(4) rσ
1 = rσ

2 implies m1 �= m2. �
We assume that the variables occurring in different rule schemata are distinct,
which can always be achieved by variable renaming. The derivations have to be
via left-linear rule schemata in order for our unification algorithm to work on
the systems of unification problems EQ. For example critical pairs, see Sect. 5.

Properties of Symbolic Critical Pairs. Below we present the properties of critical
pairs as proven in [12]. Symbolic critical pairs are complete, meaning that each
pair of conflicting direct derivations is an instance of a symbolic critical pair.
Additionally, the set of symbolic critical pairs is finite.

Theorem 1 (Completeness and Finiteness of Critical Pairs [12]). For
each pair of conflicting rule schema applications H1

r1,m1,α⇐= G
r2,m2,α
=⇒ H2 between

left-linear schemata r1 and r2 there exists a symbolic critical pair T1
r1⇐ S

r2⇒ T2

with the (extension) diagrams (1) and (2) between H1 ⇐ G ⇒ H2 and an
instance of T1 ⇐ S ⇒ T2. Moreover, the set of symbolic critical pairs induced by
r1 and r2 is finite.

PQ1 Q2⇐= =⇒

GH1 H2⇐= =⇒
(1) (2)

ST1 T2⇐= =⇒

4 Symbolic Rewriting and Joinability

Symbolic critical pairs consist of graphs labelled with expressions. This is nec-
essary for making the set of critical pairs finite as GP 2’s infinite label algebra
induces an infinite set of conflicts at the instance (host) level. How to rewrite
such graphs is what we focus on next as the current GP 2 framework only defines
rewriting of host graphs.

In this section we propose symbolic rewriting of GP 2 graphs to overcome
the above limitation. This allows for the representation of multiple host graph
direct derivations. The overall aim is to use symbolic rewriting for establishing
the (strong) joinability of critical pairs.

4.1 Symbolic Rewriting

Informally, symbolic rewriting introduces a relation on rule graphs (�) where
matching is done by treating variables as typed symbols/constants. What is
special in our setting is that rules cannot introduce new variables. Furthermore,
since application conditions cannot usually be checked for satisfiability as values
for variables are not known at analysis time, they are only recorded as assump-
tions to be resolved later. This type of rewriting is very similar to symbolic graph
transformation, e.g. as in [16].
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Isomorphism and Label Equivalence. Since we now consider graphs in G(T (X))
involving GP 2 label expressions, we relax the definition of isomorphism pre-
sented in Sect. 2 by replacing label equality with equivalence. Furthermore, since
graph isomorphism is central to the discussion of joinability of critical pairs, we
define how isomorphism relates to a critical pair’s set of persistent nodes.

Two graphs G,H ∈ G(T (X)) are E-isomorphic (denoted by G ∼=E H) if there
exists a bijective premorphism i : G → H such that lH(i(x)) ≈E lG(x) for all
items of G. Here ≈E is the equivalence relation on GP2 expressions given by all
the equations valid in GP 2’s label algebra of integer arithmetic and list/string
concatenation.

For an example of why a more general notion of isomorphism is needed, con-
sider the schemata r1: m:n m+n⇒ and r2: m:n n+m⇒ which both match
a node labelled with a list of two integers (m and n) but relabel the node to
(syntactically) different expressions. The derivations m:n m+nn+m ⇒r2⇐r1 rep-
resent a symbolic critical pair (conflict due to relabelling). The resulting graphs
are normal forms, and isomorphic only if one considers the commutativity of
addition.

Lσ Kσ Rσ

L K R

S O T

g NPO NPO

Fig. 2. Symbolic direct derivation.

Symbolic Derivation. The essence of symbolic rewriting is to allow rule schemata
to be applied to graphs labelled with expressions, i.e. graphs in G(T (X)). In the
terminology of Sect. 2, assignments become substitutions σ : X → T (X). We call
such a derivation symbolic. For example, the critical pairs in Fig. 4 involve such
symbolic derivations. Operationally, constructing symbolic derivations involves
obtaining a substitution σ for the variables of L given a premorphism L → S,
and then constructing a direct derivation with relabelling as in Sect. 2.

Definition 2 (Symbolic direct derivation). A symbolic direct derivation via
rule schema r, substitution σ between graphs S, T ∈ G(T (X)) consists of two
natural pushouts via match g : Lσ → S as in Fig. 2.

We denote symbolic derivations by S
r,g,σ

� T . Note that variables occurring in S
cannot be modified. This kind of rewriting is incomplete in that not all host
graph derivations can be represented by symbolic derivations.
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Symbolic derivations allow for the representation of multiple host graph
direct derivations, and can be seen as transformations of specifications. The
proposition below states that the application of symbolic rule schema coincides,
in some sense, with respect to the host graph derivations it represents. For its
proof see [11].

Lemma 1 (Soundness of symbolic rewriting). For each symbolic deriva-

tion S
r,g,σ

� T and each host graph G = Sλ and assignment λ, there exists a direct
derivation G

r,g,α⇒ H where H = Tλ and α = λ ◦ σ.

4.2 Joinability

Confluence analysis is based on the joinability of critical pairs. Informally, a
symbolic critical pair T1 � S � T2 is joinable if there exist symbolic derivations
from T1 and T2 to a common graph. However, it is known that joinability of all
critical pairs is not sufficient to prove local confluence [17]. Instead, one needs
to consider a slightly stronger notion called strong joinability that requires a set
of persistent nodes in a critical pair to be preserved by the joining derivations.
The set of persistent items of a critical pair consists of all nodes in S that are
preserved by both steps, and are defined in terms of the pullback N of the
intermediate graphs O1 and O2 of the critical pair2.

Definition 3 (Strong joinability). A symbolic critical pair T1 � S � T2 is
strongly joinable if we have the following:

1. joinability: there exist symbolic derivations T1 �∗ X1
∼=E X2 �∗ T2 where

i : X1 → X2 is an E-isomorphism.
2. strictness: let N be the pullback object of O1 → S ← O2 (1). Then there exist

morphisms N → O3 and N → O4 such that the squares (2), (3) and (4)
commute:

N

O1 O2

O3 O4

S

T1 T2

X1 X2

i

(1)

(3)

(4)

(2)

The strictness condition can be restated in terms of the track morphisms of
the joining derivations, as in [17]: the track morphisms trackS�T1�∗X1 and
trackS�T1�∗X2 are defined and commute on the persistent items of the critical
pair, i.e. i(trackS�T1�∗X1(x)) = trackS�T2�∗X2(x) for each x ∈ N . See the
first author’s thesis for a proof of equivalence [8]. The graphs O3 and O4 in the
above definition are the derived spans of the joining derivations as the joining
derivations are of arbitrary length, e.g. see [3,11].

2 For the construction of pullbacks over partially labelled graphs see [7, Sect. 4].
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Lemma 2 (Joinability preservation). If a symbolic critical pair T1 � S �
T2 is strongly joinable, then each of its instances according to some assignment
λ (Tλ

1 ⇐ Sλ ⇒ Tλ
2 ) is also strongly joinable.

Here we consider the critical pair instances to be critical pairs over the rule
instances in their own right. For proof(s), see [11].

5 Case Study: Shortest Distances

The shortest distances problem is about calculating the paths between a given
node (the source node) and all other nodes in a graph such that the sum of
the edge weights on each path is minimized. The Bellman–Ford algorithm [2] is
an algorithm that solves that problem. It is based on relaxation in which the
current distance to a node is gradually replaced by more accurate values until
eventually reaching the optimal solution. An assumption made is that there is
no negative cycle (a cycle whose edge weights sum to a negative value) that is
reachable from the source, in which case there is no shortest path.

Main = init; {add, reduce}!
init(x : list)

1

x ⇒
1

x:0

add(x, y : list; m, n : int)

x:m y

1 2

n ⇒ x:m y:m+n

1 2

n

reduce(x, y : list; m, n, p : int)

x:m y:p

1 2

n ⇒ x:m y:m+n

1 2

n

where m+ n < p

Fig. 3. Shortest distances program

GP 2 Implementation. A GP 2 program that implements the above algorithm is
shown in Fig. 3. Distances from the source node are recorded by appending the
distance value to each node’s label. Nodes marks are used: the source node is red,
visited nodes are gray, and unvisited nodes are unmarked. Given an input graph
G with a unique source node and no negative cycle, the program initializes the
distance of the source node to 0. The add rule explores the unvisited neighbours
of any visited nodes, assigns them a tentative distance and marks them as visited
to avoid non-termination. The reduce rule finds occurrences of visited nodes
whose current distance is higher than alternative distances, i.e. only when the
application condition (m + n < p) is satisfied by the schema instantiation. The
program terminates when neither add or reduce rules can be further applied.
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x:m 1 x : m2

y3
n n

S1

x:m 1 x : m2

y:m+n3
n n

T1

x:m 1 x : m2

y:m +n3
n n

T2

add add
SD1

x:m1

y2

n n

S2

x:m1

y:m+n2

n n

T3

x:m1

y:m+n2

n n

T4

add add
SD2

x:m

1

y:p

2

y

3

n n

S3

where m+ n < p

x:m

1

y:m+n

2

y

3

n n

T5

x:m

1

y:p

2

y :p+n

3

n n

T6

reduce add
SD3

Fig. 4. Shortest distances critical pairs involving add.

x:m1

y:p2

n n

S6

where m+ n < p and p+ n < m

x:m1

y:m+n2

n n

T11

x:p+n1

y:p2

n n

T12

reduce reduce
SD6

Fig. 5. A reduce critical pair requiring a semantic joinability argument.

However, since rule application is non-deterministic, different graphs may
result from a program execution. The above algorithm is correct only if the
loop {add,reduce}! is confluent. In the absence of a full program verification,
a programmer may want to check that this loop indeed returns unique results.

Critical Pairs. There are 7 critical pairs in total for the above program: two
between add with itself (SD1/2), one between add and reduce (SD3), and four
between reduce with itself (SD4-7). Figure 4 gives the first three critical pairs,
whereas the reduce critical pairs are very similar to those and are omitted for
space reasons. The only interesting reduce critical pair involves a 2-cycle where
either node gets its distance updated by reduce and is given in Fig. 5. All of
the conflicts are due to relabelling of a common node. Note that due to the
semantics of GP 2 marks (marked cannot match unmarked), other conflicts are
not possible. Variables have been renamed where necessary. The persistent items
of all critical pairs are the graph items of S since the rules do not delete any
graph items, and the common node of each critical pair that gets relabelled (e.g.
node 3 in SD1) does not have a label in the pullback graph N of Definition 3.

The critical pairs SD1/2 are between the rule addwith itself where an unvisited
node can get initialized with different distance values, either from 2 neighbouring
nodes or from the same node but different (parallel) edges. In SD3 the distance
of a node in a path is used in different ways: either to initialize the distance of a
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neighbouring node (via add), or to have its own distance updated (via reduce).
Note that the application condition is recorded as part of the critical pair. The
critical pairs SD4/5 represent a conflict of reduce with itself where a node may
get different updated distance values depending on which path is chosen, similar
to SD1/2. SD6 involves a 2-cycle where either node gets its distance updated by
reduce. SD7 involves a sequence of three nodes, similar to SD3.

Joinability Analysis. Due to space limitations, here we only give a top-level
explanation of why each of the critical pairs are strongly joinable. See [11] for
the full details. The result of the analysis is that all critical pairs are strongly
joinable except the 2-cycle critical pair SD6 whose label condition is unsatisfiable
assuming non-negative cycles and the semantic argument that both schemata do
not modify edge labels. (Without using this information, the critical pair is not
joinable.) Hence the loop {add, reduce}! is confluent.

(a) Label equivalence example for SD1. (b) Implication checking for SD3.

Fig. 6. Z3 code for label equivalence analysis of shortest distances.

An interesting practical aspect of joinability is that it involves, in most cases,
checking label equivalences for validity. (We check for validity rather than sat-
isfiability since we need that all instances of a strongly joinable critical pair
to be strongly joinable rather than at least one.) For this purpose, we use the
SMT solver Z3 [15]. It provides support for (linear) integer arithmetic, arrays,
bit vectors, quantifiers, implications, etc.

For the critical pair SD1, the result graphs T1 and T2 are isomorphic only
if the label equivalence m + n = m′ + n′ is valid, which it is not (encoded
as a forall expression in Fig. 6a where variables have been renamed). The
analysis proceeds by applying reduce to both T1 and T2, and the semantics of
the reduce condition (containing comparison of integer expressions) guarantees
a strong isomorphism between the results. Note that reduce is necessary for
the joining derivations, meaning the rule add is not confluent on its own. The
analysis of SD2 proceeds in a similar way as SD1 with the same conclusion.
For SD3, one needs to check implications between conditions to ensure strong
joinability between a pair of derivable graphs. An implication that shows up
during the analysis is shown in Fig. 6b which Z3 reports to be valid. Therefore
the critical pair is strongly joinable. The analysis for the critical pairs SD4/5 is
the same as for SD1/2.

The critical pair SD6 is different than the rest - its label condition is satisfiable
only when the sum of the edge labels is negative (n + n′ < 0), which is not
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possible under the assumption of no negative cycles and the observation that
no rules modify edge labels. Without this semantic information, it is possible
to instantiate the critical pair to a concrete graph with non-isomorphic normal
forms, and thus obtain an example of non-confluence.

6 Local Confluence

In this section we present the Local Confluence Theorem which establishes the
local confluence of R if all symbolic critical pairs are strongly joinable. It was first
shown in [17] for the (hyper)graph case and later extended to (weak) adhesive
categories in [5]. We also discuss our method for confluence checking based on
symbolic critical pairs.

Theorem 2 (Local Confluence Theorem). A set R of left-linear rule
schemata is locally confluent if all of its symbolic critical pairs are strongly join-
able.

The full proof closely follows the Local Confluence Theorem proof of [3, Theo-
rem 6.28], which requires several properties of M and N established in [7]. Due
to space limitations, here we give only an outline containing the important steps.

Proof Outline. For a given pair of direct derivations H1
r1,m1,α⇐ G

r2,m2,α⇒ H2, we
have to show the existence of derivations H1 ⇒∗

R X ′′
1

∼= X ′′
2 ⇐∗

R H2 as the
outer part of Fig. 7a. If the given pair is independent, this follows from the
Church-Rosser Theorem for rule schemata [10]. If the given pair is in conflict,

Theorem 1 implies the existence of a symbolic critical pair T1

r1,m′
1,σ

� S
r2,m′

2,σ

� T2

P

S

G

T1 T2Q1 Q2H1 H2

e

X1 X2
∼=E

* *

Xλ
1 Xλ

2
∼=

* *

X1 X2

* *

∼=

(a)

⊥B b P

⊥ ⊥C b a G

ePO

(b)

Fig. 7. Local Confluence Diagram (a) and Initial pushout in G⊥ (b).
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with extension diagrams as in the upper half of Fig. 7a involving an instance of
the critical pair, and the extension morphism e : P → G ∈ N . By assumption,
this critical pair is strongly joinable. By Lemma2, the critical pair instance
Q1 ⇐ P ⇒ Q2 is also strongly joinable, leading to derivations P ⇒ Q1 ⇒∗

Xλ
1

∼= Xλ
2 ⇐∗ Q2 ⇐ P where λ is the instantiation of the symbolic critical pair.

The next step is to show that the joining derivations P ⇒ Q1 ⇒∗ Xλ
1

∼=
Xλ

2 ⇐∗ Q2 ⇐ P can be extended via the morphism e : P → G ∈ N . This
involves constructing the initial pushout of e and showing that the joining deriva-
tions preserve its boundary graph. Here the commutativity of the squares (2)
and (3) in Definition 3 is used, together with the properties of pullbacks and
initial pushouts. The final step involves showing that X ′′

1
∼= X ′′

2 . This is due
to the commutativity of (4) in Definition 3 and that pushouts are unique up to
isomorphism. �

Remark. The full proof of the theorem requires the construction of the bound-
ary/context graph of e : P → G ∈ N . This is always possible in our setting -
use the same definition as in the unlabelled case (e.g. see [3, Example 6.2]) and
omit labels as done in Fig. 7b. Other necessary results include the Embedding
and Extension Theorems, which are easily obtained by inspecting the proofs in
[5] which already considers categories with a special set of vertical morphisms.

Confluence Analysis. Next we give our decision procedure for confluence based
on symbolic critical pairs. In the following, we consider only terminating sets
of rules R since a non-terminating rule set may be locally confluent but not
confluent. We begin by discussing persistent reducts.

1 2 3

S

1 2 3

T1

1 2 3

T2

1 2 3

A

1 2 3

B

1 2 3

C

1 2 3

D

r1⇐ r1⇒

r 3⇐
r
2⇒ r 3⇐

r
2⇒

1 2 3
⇒

1 2 3
r1 :

1 2
⇒

1 2
r2 :

1 2
⇒

1 2
r3 :

1 2
⇒ ∅r4 :

Fig. 8. Joinability analysis with persistent reducts.

In the context of a critical pair T1 �R S �R T2 with a set of persistent
items N , a graph X derivable from T1 or T2 is a persistent reduct if the only
rules applicable to X would delete the image of a common persistent item, i.e.
an item in trackS�Ti�∗X(N). Such graphs are useful when searching for joining
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derivations – one need not consider graphs derivable from such reducts because
strong joinability requires the existence of all persistent items, expressed as the
following proposition. For its proof see [11].

Proposition 1. If a critical pair T1 �R S �R T2 is strongly joinable, then
there exists a pair of E-isomorphic graphs X1 and X2 such that Xi is a persistent
reduct derivable from Ti, i = 1, 2. Moreover, the isomorphism commutes on the
persistent items of the critical pair in the sense of Definition 3.

However, it is not enough to nondeterministically compute a pair of reducts
and then compare them for strong joinability. Instead, one needs to consider
all reducts. Consider the terminating set of rules in Fig. 8. This system is non-
confluent because of the derivations A ⇐∗ S ⇒∗ D

r4⇒ , which are two non-
isomorphic normal forms. However, a confluence checker needs to search for
strong joinability of critical pairs first. A strongly joinable critical pair T1 �R
S �R T2 is given. All the nodes of S are persistent nodes, and there are no
persistent edges. The graphs T1 and T2 have multiple persistent reducts - T1

reduces to A and B while T2 reduces to C and D. The isomorphism A ∼= C
demonstrates strong joinability, B ∼= D but violates the strictness condition,
A � D and B � C, thus a confluence checker needs to compare all persistent
reducts for isomorphism.

Confluence Algorithm. Given a set of symbolic critical pairs and a terminating
rewrite relation R, Algorithm 1 checks whether all symbolic critical pairs are
strongly joinable (Definition 3) by computing persistent reducts and then check-
ing for isomorphisms (that are compatible with the joining derivations according
to Definition 3). If that is the case, then the symbolic critical pair is strongly
joinable. It is sufficient to consider persistent reducts due to Proposition 1. If all
critical pairs are found to be strongly joinable, the algorithm reports R to be
confluent. Otherwise, it reports “unknown”.

Isomorphism checking is an integral part of joinability analysis. Since at the
host graph level every label is taken from the concrete GP 2 label algebra without
variables, checking for isomorphism (∼=) is decidable. However, when analysing
graphs at the symbolic level, the problem of E-isomorphism (∼=E) involves decid-
ing validity of equations in Peano arithmetic. To the best of our knowledge, the
problem is open for pure equations (no negation). Nevertheless, decidable frag-
ments exist such as Presburger Arithmetic, whose decision procedures can be
used during the analysis of the shortest distances case study (shown in [11]).

Note that the confluence algorithm does not determine non-confluence. This
is due to the limitations of symbolic rewriting: not every host graph deriva-
tion can be represented by a symbolic derivation. However, in certain cases
it is possible to use a combination of unification and satisfiability checking to
determine that two non-isomorphic persistent reducts represent non-isomorphic
normal forms at the host graph level. In these cases the algorithm could report
non-confluence, which is a topic of ongoing work.
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Input : A terminating set of left-linear rules R with a set of critical pairs CP

1 foreach cp = (T1 �R S �R T2) in CP do
2 for i = 1, 2 do
3 construct all derivations Ti �∗

R Xi where Xi is a persistent reduct
4 {let PRi be the set of all persistent reducts Xi}
5 end
6 foreach pair of graphs (A,B) in PR1 × PR2 do
7 if there exists a strong isomorphism A → B then
8 mark cp as strongly joinable
9 end

10 end

11 end
12 if all critical pairs in CP are strongly joinable then
13 return “confluent”
14 else
15 return “unknown”
16 end

Algorithm 1. Confluence Analysis Algorithm
Related Work. It is important to stress the differences with the symbolic app-
roach of [14] which also defines symbolic critical pairs. That paper is in the
context of symbolic graph transformation [16] where whole classes of attributed
graphs are transformed via symbolic rules (rules equipped with first-order logi-
cal formulas). Symbolic critical pairs represent conflicts between such symbolic
rules. However, no construction algorithm is given for these critical pairs. In fact,
that paper treats attribute algebras as parametric, and thus a general construc-
tion algorithm is an undecidable problem. Joinability and local confluence are
not considered. Symbolic rewriting is used to check critical pairs for strong con-
fluence (joinability with 1/0-length derivations), which serves as an inspiration
for validity checking in our case study.

The differences with critical pairs in the attributed setting of [3] are similar
to the above. In this setting, graph attributes are represented via special data
nodes and linked to ordinary graph items via attribution edges, giving rise to
infinite graphs. The critical pair construction however is restricted to rules whose
attributes are variables or variable-free. The algorithmic aspects of confluence
analysis are not considered.

7 Conclusion

We have presented a method for statically verifying confluence (functional
behaviour) of terminating sets of GP 2 rules, based on constructing the symbolic
critical pairs of a rule set and checking that all pairs are strongly joinable with
symbolic derivations. The correctness of this method is a consequence of the
main technical result, namely that a set of left-linear attributed rules is locally
confluent if all symbolic critical pairs are strongly joinable. We have also shown
it is sufficient to focus on the persistent reducts when checking strong joinability.
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In a case study, we used our method to verify the confluence of a graph program
that calculates shortest distances.

An interesting topic of future work is the extension of confluence analysis to
handle GP 2 program constructs other than looping, e.g. conditional branching.
Other topics are the practical aspects of joinability analysis, namely develop-
ing decision procedures for label equivalence (e.g. see [13]), and the theoretical
treatment of conditional rule schemata.
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Abstract. We introduce loose graph simulations (LGS), a new notion
about labelled graphs which subsumes in an intuitive and natural way
subgraph isomorphism (SGI), regular language pattern matching (RLPM)
and graph simulation (GS). Being a unification of all these notions, LGS
allows us to express directly also problems which are “mixed” instances of
previous ones, and hence which would not fit easily in any of them. After
the definition and some examples, we show that the problem of finding
loose graph simulations is NP-complete, we provide formal translation
of SGI, RLPM, and GS into LGSs, and we give the representation of
a problem which extends both SGI and RLPM. Finally, we identify a
subclass of the LGS problem that is polynomial.

1 Introduction

Graph pattern matching is the problem of finding patterns satisfying a specific
property, inside a given graph. This problem arises naturally in many research
fields: for instance, in computer science it is used in automatic system verifica-
tion, network analysis and data mining [5,15,25,28]; in computational biology
it is applied to protein sequencing [24]; in cheminformatics it is used to study
molecular systems and predict their evolution [1,4]. As a consequence, many
definitions of patterns have been proposed; for instance, these patterns can be
specified by another graph, by a formal language, by a logical predicate, etc. This
situation has led to different notions of graph pattern matching, such as subgraph
isomorphism (SGI), regular language pattern matching (RLPM) and graph sim-
ulation (GS). Each of these notions has been studied in depth, yielding similar
but different theories, algorithms and tools.

A drawback of this situation is that it is difficult to deal with matching
problems which do not fit directly in any of these variants. In fact, often we need

M. Miculan—Partially supported by PRID 2017 ENCASE of the University of
Udine.
M. Peressotti—Partially supported by the Open Data Framework project at the
University of Southern Denmark, and by the Independent Research Fund Denmark,
Natural Sciences, grant no. DFF-7014-00041.

c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 109–126, 2018.
https://doi.org/10.1007/978-3-319-74730-9_9



110 A. Mansutti et al.

to search for patterns that can be expressed as compositions of several graph
pattern matching notions. An example is when we have to find a pattern which
has to satisfy multiple notions of graph pattern matching at once; due to the lack
of proper tools, these notions can only be checked one by one with a worsening
of the performances. Another example can be found in [9], where extensions
of RLPM and their application in network analysis and graph databases are
discussed. A mixed problem between SGI and RLPM is presented in [2].

This situation would benefit from a more general notion of graph pattern
matching, able to subsume naturally the more specific ones find in literature.
This general notion would be a common ground to study specific problems and
their relationships, as well as to develop common techniques for them. Moreover,
a more general pattern matching notion would pave the way for more general
algorithms, which would deal more efficiently with “mixed” problems.

To this end, in this paper we propose a new notion about labelled graphs,
called loose graph simulation (LGS, Sect. 2). The semantics of its pattern queries
allow us to check properties from different classical notions of pattern matching,
at once and without cumbersome encodings. LGS queries have a natural graphi-
cal representation that simplifies the understanding of their semantic; moreover,
they can be composed using a sound and complete algebra (Sect. 3). Various
notions of graph pattern matching can be naturally reduced to LGSs, as we will
formally prove in Sects. 4, 5 and 6; in particular, the encoding of subgraph iso-
morphism allows us to prove that computing LGSs is an NP-complete problem.
Moreover, “mixed” matching problems can be easily represented as LGS queries;
in fact, these problems can be obtained compositionally from simpler ones by
means of the query algebra, as we will show in Sect. 7 where we solve a simpli-
fied version of the problem in [2]. Lastly (Sect. 8), we study a polynomial-time
fragment of LGS that can still be used to compute various notions of graph
pattern matching. Final conclusions and directions for further work (such as a
distributed algorithm for computing LGSs) are in Sect. 9.

2 Hosts, Guests and Loose Graph Simulations

Loose graph simulations are a generalization of pattern matching for certain
labelled graphs. As often proposed in the literature, the structures that need to
be checked for properties are called hosts, whereas the structures that represent
said properties are called guests.

Definition 1. A host graph (herein also simply called graph) is a triple
(Σ,V,E) consisting of a finite set of symbols Σ (also called alphabet), a finite
set V of nodes and a set E ⊆ V × Σ × V of edges. For an edge e = (v, l, v′)
write s(e), σ(e), and t(e) for its source node v, label l, and target node v′,
respectively. For a vertex v write in(v) and out(v) for the sets {e | t(e) = v} and
{e | s(e) = v} of its incoming and outgoing edges.

Definition 2. A guest G = (Σ,V,E,M,U , E , C) is a (host) graph (Σ,V,E)
additionally equipped with:
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v:∃

v ∈ M

v:!

v ∈ U

v:
!

v ∈ E

v

∅ ∈ C(v)

v

. . .

e1
e2

en

{e1, . . . , en} ∈ C(v)

u:∃

v:∃

a

b

Fig. 1. The guest graphic notation (left) and an example (right).

– three sets M,U , E ⊆ V , called respectively must, unique and exclusive set.
– a choice function C : V → P(P(E)), s.t.

⋃ C(v) = out(v) for each v ∈ V .

Roughly speaking, a guest is graph whose:

– nodes are decorated with usage constraints telling whether they must appear
in the host, if their occurrence should be unique, and whether their occur-
rences can also be occurrences of other nodes or are exclusive;

– edges are grouped into possible “choices of sets of ongoing edges” for any
given source node to be considered by a simulation.

The semantics of the three sets M, U , E and the choice function C will be
presented formally in the definition of loose graph simulations (Definition 5).

Guests can be conveniently represented using the graphical notation shown
in Fig. 1 (a formal algebra is discussed in Sect. 3). A node belonging to the must,
unique or exclusive set is decorated with the symbols ∃, ! and

!
, respectively.

Choice sets are represented by arcs with dots placed on the intersection with
each edge that belongs to the given choice set. The empty choice set (∅ ∈ C(v))
is represented by the “corked edge” ( ).

Example 1. Figure 1 shows the graphical representation of a guest with two
nodes u and v. The must set is {u, v}, the unique and exclusive sets are both
empty, and the choice function takes u to {{(u, a, u), (u, b, v)}} and v to {∅}.

Before we formalise the notion of loose graph simulation, we need some auxiliary
definitions. The following one fix the notation for paths in a graph.

Definition 3. For M = (Σ,V,E), define PM as the set of all paths in M , i.e.⋃
n∈N

{(e0, . . . , en) ∈ En | ∀i ∈ {1, . . . , n} s(ei) = t(ei−1)}. Source (s : PM → V ),
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target (t : PM → V ), and label (σ : PM → Σ+) functions are extended accord-
ingly: s((e0, . . . , en)) � s(e0), t((e0, . . . , en)) � t(en), and σ((e0, . . . , en)) �
σ(e0) . . . σ(en). Lastly, for any v, v′ ∈ V , define PM (v, v′) as the set of all paths
from v to v′, formally PM (v, v′) � {ρ ∈ PM | s(ρ) = v ∧ t(ρ) = v′}.

Akin to graph simulations (Definition 11), LGSs are subgraphs of the product
of guest and host that are coherent with the additional data prescribing node
and edge usage.

Definition 4. Let M1 = (Σ1, V1, E1) and M2 = (Σ2, V2, E2) be two graphs.
The tensor product graph M1 × M2 is the graph (Σ1 ∩ Σ2, V1 × V2, E×) where
E× � {((u, u′), a, (v, v′)) | (u, a, v) ∈ E1 ∧ (u′, a, v′) ∈ E2}.

When clear from the context, we denote host graphs and their compo-
nents as H and as (ΣH , VH , EH) (and variations thereof). We adopt the
convention of denoting guests as G (and variations thereof) and writing
(ΣG, VG, EG,M,U , E , C) for the components of the guest G. We are now ready
to define the notion of loose graph simulation.

Definition 5. A loose graph simulation (LGS for short) of G in H is a subgraph
(ΣG ∩ ΣH , V G→H , EG→H) of G × H subject to the following conditions:

(LGS1) vertices of G in the must set occur in V G→H , i.e. for each u ∈ M there
exists u′ ∈ VH such that (u, u′) ∈ V G→H ;

(LGS2) vertices in the unique set are assigned to at most one vertex of H, i.e.
for each u ∈ U and all u′, v′ ∈ VH , if (u, u′) ∈ V G→H and (u, v′) ∈ V G→H

then u′ = v′;
(LGS3) vertices of H assigned to a vertex in the exclusive set cannot be assigned

to other vertices, i.e. for each u ∈ E, v ∈ VG and u′ ∈ VH , if (u, u′) ∈ V G→H

and (v, u′) ∈ V G→H then u = v;
(LGS4) for (u, u′) ∈ V G→H , there is a set in C(u) s.t. each of its elements

is related to an edge with source u′ and only such edges occur in EG→H .
Formally,

– for each (u, u′) ∈ V G→H there exists γ ∈ C(u) such that for all (u, a, v) ∈
γ it holds that ((u, u′), a, (v, v′)) ∈ EG→H for some v′ ∈ VH ;

– for each ((u, u′), a, (v, v′)) ∈ EG→H there exists γ ∈ C(u) s.t. (u, a, v) ∈ γ
and for each (u, b, w) ∈ γ it holds that ((u, u′), b, (w,w′)) ∈ EG→H for
some w′ ∈ VH .

(LGS5) the simulation preserves the connectivity w.r.t. nodes marked as must:
for each (u, u′) ∈ V G→H and v ∈ M if PG(u, v) 
= ∅ then there exists v′ ∈ VH

such that P(ΣG∩ΣH ,V G→H ,EG→H)((u, u′), (v, v′)) 
= ∅.
The domain of all LGSs for G and H is denoted as S

G→H .

As already mentioned at the end of Definition 2, the definition of LGS
attributes a semantics for the must, unique, exclusive sets and the choice func-
tion. Regarding the unique set, Condition LGS2 requires that every vertex of
the guest in this set to be mapped by at most one element of the host. Similarly,
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a
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Fig. 2. An LGS (center) between a guest (left) and a host (right).

Condition LGS3 requires the vertices of the host paired in the LGS with a node
of the exclusive set to be only paired with that node. Condition LGS4 defines
the semantics of the choice function: given a pair of vertices (u, u′) ∈ V G→H ,
it requires to select at least one set from C(u). The edges of these selected sets
(and only these edges, as stated by the second part of the condition) must be
paired in the LGS to edges in H with source u′. This condition can be seen as a
generalization of the second condition of graph simulations (Definition 11) that
requires all outgoing edges from u to be in relation with outgoing edges of u′.

Condition LGS1 and LGS5 formalise the constraints attached to must nodes:
the first condition imposes that every vertex in this set must appear in the LGS,
while the second condition requires that, for each (u, u′) ∈ V G→H , each vertex
in the must set reachable in the guest from u is also reachable in the LGS, with
a path starting from (u, u′).

Example 2. Figure 2 shows a guest and its loose graph simulation over a host.
In this example M = {m} and U = E = ∅. Moreover, the choice function is
linear, i.e. for each vertex u, C(u) contains a set {e} for each edge in out(u) and
∅ whenever out(u) = ∅, formally C = λx.{{e} | e ∈ out(x)} ∪ {∅ | out(x) = ∅}.
LGSs of this guest represents paths (e0, e1, . . . , en) of arbitrary length in the host
such that ∀i < n σ(ei) = a and σ(en) = b. The guest is therefore similar to the
regular language a � b and a LGS identifies paths in the host labelled with words
in this language.

Proposition 1. Let G be a guest with choice function C defined as λx.{out(x)},
let H be a host and let S = (ΣG ∩ ΣH , V G→H , EG→H) be a subgraph of G × H.
If S satisfies Condition LGS4 then it also satisfies Condition LGS5.

Proof. Let C(v) = {out(v)} for all v ∈ VG. If (u, u′) ∈ V G→H then Condition
LGS4 requires that for all (u, a, v) ∈ out(u) there exists v′ such that (v, v′) ∈
V G→H and ((u, u′), a, (v, v′)) ∈ EG→H . Coinductively, since the same will hold
for every of those pair (v, v′), it follows that whenever there is a path in G from
u to a node m ∈ M in the must set, then there must be a path in S from (u, u′)
to a pair of vertices (m,w), where w ∈ VH . Hence, Condition LGS5 holds. �
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3 An Algebra for Guests

Guests are used to specify the patterns to look for inside a host; hence they
should be easy to construct and to understand. To this end, besides the graphical
notation described in Sect. 2, in this section we introduce an algebra for guests
which allows us to construct them in a compositional way.

Definition 6. A guest is empty whenever it has no vertexes. A guest with only
one vertex and no edges is a unary guest and is denoted a

pA � (∅, {p}, ∅, {p | ∃ ∈ A}, {p | ! ∈ A}, {p | ! ∈ A}, {p → {∅ | ∅ ∈ A}})

where p is the only vertex and A ⊆ {∃, !,
!
, ∅} state if p is respectively in M, U ,

E or if ∅ ∈ C(p). For α a name, P and Q unary guests, the arrow operator from
P to Q α is defined as

P
α−→ Q � ({α}, {p, q}, {(p, α, q)},MP ∪ MQ,UP ∪ UQ, EP ∪ EQ, C→)

C→ � λx.

⎧
⎪⎨

⎪⎩

cP ∪ {{(p, α, q)}} ∪ cQ if p = q ∧ x = p

cP ∪ {{(p, α, q)}} if p 
= q ∧ x = p

cQ if p 
= q ∧ x = q

A guest is called elementary whenever it is empty, unary, or the result of the
arrow operator.

For example, a node p with only a self loop labelled α can be expressed with
the term p

α−→ p. Besides the elementary guests, the algebra is completed by
introducing two binary operators used to combine guests.

Definition 7. Let G1 and G2 be two guests. Their addition is the guest:

G1 ⊕ G2 � (Σ1 ∪ Σ2, V1 ∪ V2, E1 ∪ E2,M1 ∪ M2,U1 ∪ U2, E1 ∪ E2, C⊕)

where the choice function C⊕ is defined as

C⊕ � λx.

⎧
⎪⎨

⎪⎩

C1(x) ∪ C2(x) if x ∈ V1 ∧ x ∈ V2

C1(x) if x ∈ V1

C2(x) if x ∈ V2

The multiplication of G1 and G2 is the guest:

G1 ⊗ G2 � (Σ1 ∪ Σ2, V1 ∪ V2, E1 ∪ E2,M1 ∪ M2,U1 ∪ U2, E1 ∪ E2, C⊗)

where the choice function C⊗ is defined as follows

C⊗ � λx.

⎧
⎪⎨

⎪⎩

{γ1 ∪ γ2 | γ1 ∈ C1(x) ∧ γ2 ∈ C2(x)} if x ∈ V1 ∧ x ∈ V2

C1(x) if x ∈ V1

C2(x) if x ∈ V2
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Notice how addition and multiplication operators differ only by the definition
of the choice function for vertices of both G1 and G2. In the case of addition,
the resulting choice function is the union of the two choice function C1 and C2,
whereas for the multiplication, given a vertex v ∈ V1 ∩ V2, every set of C⊗(v) is
the union of a set in C1(v) and one in C2(v).

Proposition 2. The operations ⊕ and ⊗ form an idempotent commutative
semiring structure over the set of all guests.

The algebra offers a clean and modular representation of guests. Modularity, in
particular, allows us to combine queries as illustrated in the second part of this
work. Furthermore, guests admit normal forms.

Definition 8. A term G in the algebra of guests is in normal form whenever
G =

⊕
i∈I

⊗
j∈Ji

Gi,j where each Gi,j is an elementary guest.

Example 3. Consider the guest ({a, b}, {p, q}, {(p, a, p), (p, b, q)}, {p, q}, ∅, ∅,
{p �→ {{(p, a, p), (p, b, q)}}, q �→ {∅}}) shown in Fig. 1 on the right. This guest is
represented by the term q{∃,∅} ⊕ (p{∃}

a−→ p ⊗ p
b−→ q) which is in normal form.

Every guest admits a normal form.

Proposition 3. For G = (Σ,V,E,M,U , E , C) a guest, its normal form is:

⊕

v∈V

v{∃|v∈M}∪{!|v∈U}∪{!|v∈E}∪{∅|∅∈C(v)} ⊕
⊕

v∈V
γ∈C(v)

(
⊗

e∈γ

(

s(e)
σ(e)−−−→ t(e)

))

For G = (Σ,V,E,M,U , E , C) a guest, we write G[p/q] for the guest obtained
renaming p ∈ V as q 
∈ V . In particular, the set of edges and choice function are:

E[p/q] =

⎧
⎨

⎩
(u, a, v)

∣
∣
∣
∣
∣
∣

(u′, a, v′) ∈ E
(u′ 
= p =⇒ u = u′) ∧ (u′ = p =⇒ u = q)
(v′ 
= p =⇒ v = v′) ∧ (v′ = p =⇒ v = q)

⎫
⎬

⎭

C[p/q] = λx.

{
{S[p/q] | S ∈ C(x)} if x 
= p ∧ x 
= q

{S[p/q] | S ∈ C(p)} if x = q

4 The LGS Problem is NP-complete

In this section we analyse the complexity of computing LGSs by studying their
emptiness problem. Without loss of generality, we will now consider only guests
and hosts with the same Σ. In the following, let G = (ΣG, VG, EG,M,U , E , C)
and H = (ΣH , VH , EH) be a guest and a host respectively.

Definition 9. The emptiness problem for LGSs between G and H consists in
checking whether S

G→H = ∅.
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Proposition 4. Computing LGSs, as well as their emptiness problem, is in NP.

Proof. Let S = (Σ,V G→H , EG→H) be a subgraph of G × H. We will now prove
that there exists a polynomial algorithm w.r.t. the size of G and H that checks
whether S satisfies all the conditions of Definition 5. The satisfiability checking
of Condition LGS1 is in O(M × V G→H) since it is sufficient for every vertex in
the must set M to check whether there is a vertex of the host paired with it. For
similar reasons, Conditions LGS2 and LGS3 can also be checked in polynomial
time. Moreover, to check Conditions LGS4 it is sufficient to check, for each
(u, v) ∈ V G→H , whether there is γ ∈ C(v) s.t. γ ⊆ π1 ◦ out((u, v)) and if for
all u′ ∈ π1 ◦ out((u, v)) there exists γ ∈ C(v) s.t. u′ ∈ γ ⊆ π1 ◦ out((u, v)).
This can be done by a naive algorithm in O(VH × EG × (VG × EH + C × E2

G)).
Lastly, checking whether S satisfies Condition LGS5 requires the evaluation of
the reachability relation of G and S and therefore can be computed in O(V 3

G×V 3
H)

using the Floyd-Warshall Algorithm [11]. Since every condition can be checked
in polynomial time we can conclude that the LGS problem is in NP. �

4.1 NP-Hardness: Subgraph Isomorphisms via LGSs

We will now show the NP-hardness of the emptiness problem for LGSs by reduc-
ing the emptiness problem for subgraph isomorphism to it. The subgraph iso-
morphism problem requires to check whether a subgraph of a graph (host) and
isomorphic to a second graph (query) exists. Application of this problem can be
found in network analysis [15], bioinformatics and chemoinformatics [1,4].

Definition 10. Let H = (Σ,VH , EH) and Q = (Σ,VQ, EQ) be two graphs called
host and query respectively. There exists a subgraph of H isomorphic to Q
whenever there exists a pair of injections φ : VQ ↪→ VH and η : EQ ↪→ EH

s.t. σ(e) = σ ◦ η(e), φ ◦ s(e) = s ◦ η(e), and φ ◦ t(e) = t ◦ η(e) for each e ∈ EQ.

The subgraph isomorphism problem, as well as the emptiness problem associated
to it, is shown to be NP-complete by Cook [6]. Its complexity and its importance
makes it one of the most studied problem and multiple algorithmic solutions
where derived for it [4,7,27]. We will now show that the emptiness problem for
subgraph isomorphism can be solved using LGSs.

Proposition 5. Let H = (Σ,VH , EH) and Q = (Σ,VQ, EQ) be a host and a
query for subgraph isomorphism respectively. Moreover, let

G =
⊕

v∈VQ

v{∃!!}∪{∅|out(v)=∅} ⊕
⎛

⎝
⊗

e∈EQ

(

s(e)
σ(e)−−−→ t(e)

)
⎞

⎠

Then, there exists a subgraph of H isomorphic to Q iff there exists a LGS of G
in H, i.e. S

G→H 
= ∅.
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Proof. From the definition of G, its must, unique and exclusive sets, as well as
its choice function, are M = U = E = VQ and C = λx.{out(x)} respectively.
Suppose φ : VQ ↪→ VH and η : EQ ↪→ EH be two injections as in Definition 10.
Then the graph S = (Σ,V G→H , EG→H) where V G→H � {(u, u′) | u′ = φ(u)}
and EG→H � {((u, u′), a, (v, v′)) | (u′, a, v′) = η((u, a, v))} form a LGS for G.
Indeed, it satisfy Conditions LGS1 to LGS3, since φ is an injection. Moreover,
since η : EQ ↪→ EH is also an injection and for each edge e ∈ EQ it holds that
σ(e) = σ ◦ η(e), φ ◦ s(e) = s ◦ η(e) and φ ◦ t(e) = t ◦ η(e), S must be such that
for each (u, u′) ∈ V G→H and for each (u, a, v) ∈ out(u) there exists v′ such that
(v, v′) ∈ V G→H and ((u, u′), a, (v, v′)) ∈ EG→H . It follows that S is a subgraph
of G × H and Condition LGS4 is satisfied, since C(u) = {out(u)}. Moreover the
satisfaction of Condition LGS5 follows from Proposition 1. S is therefore a LGS
of G in H. Conversely, suppose that there is a LGS S = (Σ,V G→H , EG→H). Let
φ s.t. φ(u) = u′ ⇐⇒ (u, u′) ∈ V G→H and η s.t. η((u, a, v)) = (u′, a, v′) ⇐⇒
((u, u′), a, (v, v′)) ∈ EG→H . Since M = U = E = VQ and S is a LGS, it holds
that φ is an injection defined on the domain VQ. Moreover η is also an injection,
since C = λx.{out(x)} and S satisfies Condition LGS4, and together with the
hypothesis that S is a subgraph of G × H it must also hold that for each edge
e ∈ EQ σ(e) = σ ◦ η(e), φ ◦ s(e) = s ◦ η(e) and φ ◦ t(e) = t ◦ η(e). There exists
therefore a subgraph of H isomorphic to Q. �

b

b

a

a

a ∃!!

∃!!∃!!

∃!!

b

b

a

a

a

Fig. 3. A possible query for subgraph isomorphism (on the left) and its translation to
a guest for LGSs (on the right).

Note how the translation from subgraph isomorphism’s queries to guest for
LGSs defined in Proposition 5 is structure-preserving. Indeed, an example of this
can be seen in Fig. 3. This property is important since it makes defining LGSs’
guests to solve the subgraph isomorphism problem as intuitive as the respective
queries for it. This is also the case for other notions commonly used in the graphs’
pattern matching community. Moreover, since the translated guest is as intuitive
as the original query, this property strengthens the idea of using guests and LGSs
to represent and compute hybrid queries w.r.t. these notions.

From Propositions 4 and 5 it follows that:

Theorem 1. The emptiness problem for LGSs is NP-complete.
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5 Graph Simulations Are Loose Graph Simulations

Graph simulations are particular relations between graphs that are extensively
applied in several fields [8,10]. The graph simulation problem requires to check
whether a portion of a graph (host) simulates another graph (query).

Definition 11. A graph simulation of Q = (Σ,VQ, EQ) (herein query) in H =
(Σ,VH , EH) (herein host) is a relation R ⊆ VQ × VH such that:

– for each node u ∈ VQ there exists a node v ∈ VH such that (u, v) ∈ R;
– for each pair (u, v) ∈ R and for each edge e ∈ out(u) there exists an edge

e′ ∈ out(v) such that σ(e) = σ(e′) and (t(e), t(e′)) ∈ R.

Graph simulation existence can be decided in polynomial time [3,13]. Their
emptiness problem can be reduced to the emptiness problem for loose ones.

Proposition 6. Let H = (Σ,VH , EH) and Q = (Σ,VQ, EQ) be a host and a
query for graph simulation respectively. Moreover, let

G =
⊕

v∈VQ

v{∃}∪{∅|out(v)=∅} ⊕
⊗

e∈EQ

s(e)
σ(e)−−−→ t(e)

Then, there is a graph simulation of Q in H iff S
G→H 
= ∅.

Proof. From definition of G, its must, unique, exclusive sets and its choice func-
tion are M = VQ, U = E = ∅ and C = λx.{out(x)} respectively. Let R be a
graph simulations. The graph S = (Σ,V G→H , EG→H) where V G→H = R and
EG→H = {((u, u′), a, (v, v′)) | (u, u′), (v, v′) ∈ R, (u, a, v) ∈ EQ, (u′, a, v′) ∈ EH}
is a loose graph simulations for G. U = E = ∅ makes Conditions LGS2 and LGS3
always true, whereas the first condition of Definition 11, that requires all vertices
of VQ to appear in the first projection of R, makes Conditions LGS1 satisfied.
The second condition of Definition 11 requires that, given a pair (u, v) ∈ R, every
edge of out(u) is associated with one edge of out(v) with the same label and with
targets paired in R. Condition LGS4 is therefore satisfied. Lastly, the satisfaction
of Condition LGS5 follows from Proposition 1. S is therefore a loose graph simu-
lation of G in H. Conversely, suppose there exists a LGS S = (Σ,V G→H , EG→H).
Then V G→H is a graph simulation. The definition of must set M = VQ ensures
that each vertex of VQ must appear in the first projection of V G→H : the first
condition of Definition 11 is satisfied. Moreover, the definition of the choice func-
tion C = λx.{out(x)} and Condition LGS4 implies that for each (u, u′) ∈ V G→H

and for all (u, a, v) ∈ out(u) there exists v′ such that ((u, u′), a, (v, v′)) ∈ EG→H

and, since S is a subgraph of G×H, (v, v′) ∈ V G→H . Thus, the second condition
of Definition 11 holds and V G→H is a graph simulation. �

Example 4. Figure 4 shows a query for graph simulations and the equivalent
guest for loose graph simulations. As already seen in Sect. 4.1, the translation
preserve the structure of the graph.
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a

b ∃ ∃

a

b

Fig. 4. A possible query for graph simulation (on the left) and its translation in a guest
for loose graph simulations (on the right).

6 Regular Languages Pattern Matching

Regular languages defines finite sequences of characters (called words or strings)
from a finite alphabet Σ [14]. Although widely used in text pattern matching,
they are also used in graph pattern matching [2,20]. In this section we will
restrict ourselves to ε-free regular languages, i.e. regular languages without the
empty word ε [29]. This restriction is quite common, since the empty word is
matched by any text or graph and therefore it does not represent a meaningful
pattern.

Definition 12. Let Σ be an alphabet. ∅ is a ε-free regular language. For each
a ∈ Σ, {a} is a ε-free regular language. If A and B are ε-free regular language,
so are A · B � {vw | v ∈ P ∧ w ∈ Q}, A | B � A ∪ B, and A+ �

⋃
n∈N

An+1.

In [29] it is shown that every regular language without the empty string ε can be
expressed with the operations defined for ε-free regular languages. We will now
introduce the pattern matching problem for non-empty ε-free regular languages.
In the following let H = (Σ,VH , EH) and L be respectively a host and a ε-free
regular language such that L 
= ∅.

Definition 13. The emptiness problem for regular language pattern matching
(RLPM) consist in checking if there is a path ρ ∈ PH such that σ(ρ) ∈ L.

To solve this problem using LGSs we will use the equivalence between regular
languages and non-deterministic finite automata [26].

Definition 14. An NFA is a tuple, N = (Σ,Q,Δ, q0, F ) consisting of an
alphabet Σ, a finite set of states Q, an initial state q0, a set of accepting
(or final) states F ⊆ Q and a transition function Δ : Q × Σ → P(Q). Let
w = a0, a1, . . . , an be a word in Σ∗. The NFA N accepts w if there is a sequence
of states r0, r1, . . . , rn+1 in Q such that r0 = q0, ri+1 ∈ Δ(ri, ai) for i = 0, . . . , n,
and rn+1 ∈ F . With L(N) we denote the set of words accepted by N , i.e. its
accepted language.

Remark 1. Any non-empty regular language without ε can be translated to a
non-deterministic finite automaton (NFA) with one initial state (say q′

0), one final
state (say f) and s.t. in(q′

0) = ∅ and out(f) = ∅. Indeed, for N = (Σ,Q,Δ, q0, F )
any NFA s.t. L(N) 
= ∅ and ε /∈ L(N) define N ′ = (Σ,Q ∪ {q′

0, f},Δ′, q′
0, {f})

where:
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– for all a ∈ Σ, Δ′(q′
0, a) � Δ(q0, a) and Δ′(f, a) = ∅;

– for all q ∈ Q and a ∈ Σ, Δ′(q, a) � Δ(q, a) ∪ {f | F ∩ Δ(q, a) 
= ∅}.

By construction L(N) = L(N ′), in(q′
0) = ∅, and out(f) = ∅.

Proposition 7. Let N = (Q,Σ,Δ, q0, {f}) be a NFA where the initial state q0
does not have any incoming transitions and the only final state f does not have
any outgoing ones. Let H = (Σ,VH , EH) be a host. Let

G = q0{∃} ⊕ f{∃,∅} ⊕
⊕

q∈Q, a∈Σ,q′∈Δ(q,a)

(
q

a−→ q′
)

Then, there exists a path ρ ∈ PH in H s.t. σ(ρ) is accepted by N iff there exists
a loose graph simulation of G in H, i.e. S

G→H 
= ∅.
Proof. It follows from definition of acceptance that if there is (e0, . . . , en) ∈ PH

such that σ(ρ) is accepted by N then, there is a sequence

(p0, s(e0))
σ(e0)−−−→ (p1, s(e1))

σ(e1)−−−→ . . .
σ(en−1)−−−−−→ (pn, s(en))

σ(en)−−−→ (pn+1, t(en))

such that p0 = q0 and pn+1 = f ; for all i ∈ {1, . . . , n} t(ei−1) = s(ei); for
all i ∈ {0, . . . , n} pi+1 ∈ Δ(pi). Regard the sequence as a graph, say S, then
S ∈ S

G→H since S is a subgraph of G × H and G is constructed from N by
preserving its transition relation Δ. Conditions LGS1 to LGS3 hold since p0 = q0,
pn = f and U = E = ∅. Conditions LGS4 holds since {(pi, σ(ei), pi+1)} ∈ C(pi)
for any i ∈ {0, . . . , n} by construction. Conditions LGS5 holds since projecting
the graph to its first component yields a path from q0 to f . Representing G
requires space polynomial in the size of N . Conversely, if there is S ∈ S

G→H then
LGS5 ensures that there is a path ρ = (e0, . . . , en) in it such that π1 ◦ s(ρ) = q0
and π1 ◦ t(ρ) = f . It follows from definition of E that the path ρ is coherent with
Δ, i.e. ∀i ∈ {0, . . . , n} π1 ◦ t(ei) ∈ Δ ◦ π1 ◦ s(ei). Thus, the sequence of labels
σ(π2(ρ)) in the second projection of ρ ((π2 ◦ s(e0), σ(e0), π2 ◦ t(e0)), . . . , (π2 ◦
s(en), σ(en), π2 ◦ t(en))), is such that σ(π2(ρ)) is accepted by N . �

Example 5. Figure 5 shows a NFA and a guest identifying the same language.
These two objects have the same structure (states/nodes and transition/edges).

start

a

ba

b ∃ ∃a

ba

b

Fig. 5. A query for regular languages represented as an NFA (left) and as a LGS guest
(on the right). The accepted language is (ab)+.
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7 Subgraph Isomorphism with Regular Path Expressions

Many approaches found in literature define hybrid notions of similarities, “merg-
ing” classical ones such as GS, SGI and RLPM [2,9]. These and similar merges
are naturally handled by the modular definition of LGS guests. As an example,
we discuss subgraph isomorphism with regular languages (RL-SGI) [2].

Definition 15. Let Σ be a finite alphabet. A graph decorated with regular lan-
guages (over Σ) is a tuple (Σ,V,E,L) consisting of a set V of nodes, a set
E ⊆ V × V of edges and a labelling function L : E → REΣ decorating each edge
with a non empty ε-free regular language over Σ.

Definition 16 (RL-SGI). Let H=(Σ,VH , EH) be a host and Q=(Σ,VQ,
EQ,L) a graph decorated with regular languages. We say that there is a regular-
language subgraph isomorphism of Q into H iff there is a pair of injections
φ : VQ ↪→ VH and η : EQ ↪→ PH s.t. for each e ∈ EQ φ ◦ s(e) = s ◦ η(e),
φ◦ t(e) = t◦η(e), and σ ◦η(e) ∈ L(e). Vertexes of paths in η(EQ) cannot appear
in φ(VQ) except for their source and target, i.e.: ∀(e0, . . . , en) ∈ η(EQ) ∀i ∈
{1, . . . , n} s(ei) 
∈ φ(VQ).

RL-SGI can be seen as a hybrid notion between subgraph isomorphism and
RLPM. We will now show how to solve this problem with loose graph simulations
by defining a proper translation from its queries to guests.

Proposition 8. Let Q = (Σ,VQ, EQ,L) be a query for RL-SGI. Let

G =
⊕

v∈VQ
v{∃!!} ⊕ ⊗

e∈EQ
Ge[qe/s(e)][fe/t(e)]

such that Ge is the translation of the automaton Ne = (Σ,Ve, δe, qe, {fe}) for
L(e), as per Proposition 7 and where qe and fe are merged if s(e) = t(e). For
each host H = (VH , EH) there exists a RL-SGI of Q into H iff S

G→H 
= ∅.
Proof. It follows from definition of G that: (i) VQ is a subset of the vertices
of VG and M = U = E = VQ; (ii) for any v ∈ VQ, any γ ∈ C(v), and any
e ∈ out(v) of Q, there is exactly one edge in γ that is induced by a transition in
Ne Similarly to the proof of Proposition 5, Conditions LGS1 to LGS3 together
with the first property ensure that each LGS over G corresponds to an injection
w.r.t VQ. It follows from the second property, Proposition 7, Conditions LGS4
and LGS5 that every LGS over G contains, for each e ∈ EQ a path whose labels,
starting and ending nodes lie in L(e) and VQ × VH , whereas all other vertices
are in (VG \ VQ) × VH . Then, S

G→H 
= ∅ iff there are RL-SGIs of Q into H. �

Example 6. Figures 6 and 7 show a query for RL-SGI and its translation as a
LGS guest. As illustrated by Proposition 8 and Fig. 7, translations are obtained
modularly: following Sects. 4.1 and 6, the first step is to represent nodes and
edges of a RL-SGI query in the guests for the SGI and RLPM queries, respec-
tively; the second is to compose them via the guest algebra.
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b
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Fig. 6. A RE-SGISO query (left) and simple guests required to encode it (right). Ver-
tices with the same name are highlighted by dashed edges between them.

v:∃!! w:∃!!

u:∃!!
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b

c

c
b

b

b

a
a

a

a

Fig. 7. A guest obtained via multiplication and addition operator from the guest in
Fig. 6 (right) and equivalent to the RE-SGISO query in Fig. 6 (left).

8 A Polynomial Fragment of LGSs

RLPM and GS are two well-known problems for graph pattern matching and
they both admit polynomial time algorithms. Since the emptiness problem for
LGSs is NP-complete, we are interested in studying fragments of LGSs that are
solvable in polynomial time yet expressive enough to capture the RLPM and
GS problems. The class of simulation problems for guests whose unique and
exclusive sets are empty enjoys this property.
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Fix G = (ΣG, VG, EG,M,U , E , C) and H = (ΣH , VH , EH). If U and E are
empty then, LGSs for G and H are closes under unions hence the union

⋃
S

G→H

of all LGSs correspond to the greatest LGS. Observe that greatest LGSs may
not exist in the general case.

Proposition 9. Let G be a guest such that U = E = ∅. Then
⋃

S
G→H is a

LGS.

Figure 8 shows an algorithm for computing the greatest LGS provided that
U and E are empty. The algorithm runs in polynomial time and can be readily
adapted to compute the greatest LGSs included in a given subgraph of G × H.
It follows that the emptiness problem admits a polynomial procedure.

Fig. 8. Algorithm for computing the greatest loose graph simulation.

Theorem 2. Let H be a host and G be a guest such that U = E = ∅. Then, the
maximal LGS exists and is computed in polynomial time.

Proof. The algorithm in Fig. 8 starts by computing G × H and saving it
to (Σ,VS , ES) (Line 1). Afterwards, the do-while loop (Lines 2–11) proceeds
removing nodes and edges of (Σ,VS , ES) that do not satisfy Conditions LGS4
and LGS5. Lastly (Lines 12–15), Condition LGS1 is checked and, if satisfied,
(Σ,VS , ES) is returned, otherwise there is no greatest LGS and the algorithm
terminates returning false. The algorithm runs in polynomial time, since Condi-
tions LGS1, LGS4 and LGS5 can be checked in polynomial time (Proposition 4)
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and the loop will be performed at most |VS | + |ES | times. Conditions at Lines 6
and 8 check that edges and nodes satisfy Conditions LGS4 and LGS5. If any
of these does not hold, the temporary copy of (Σ,VS , ES), i.e. (Σ,VS′ , ES′),
is updated removing an edge or a vertex. Thus, VS 
= VS′ or ES 
= ES′ iff
(Σ,VS , ES) does not satisfy Conditions LGS4 and LGS5. After the do-while loop,
(Σ,VS , ES) is a (possibly empty) relation that satisfies Conditions LGS4 and
LGS5. Thus it remains only to check Condition LGS1 and this is done at Line 15:
if the check fails there is no greatest LGSs otherwise it is the graph (Σ,VS , ES)
returned by the algorithm. Assume otherwise that there is a LGS (Σ,VM , EM )
s.t. VS ⊂ VM or ES ⊂ EM . Then in (Σ,VM , EM ) there is a node or an edge
that satisfies LGS4 and LGS5 and is in G × H \ (Σ,VS , ES). Since it satisfies
LGS4 and LGS5 it cannot be removed by the loop hence it is in (Σ,VS , ES) — a
contradiction. �

9 Conclusions and Future Work

In this paper we have introduced loose graph simulations, which are relations
between graphs that can be used to check structural properties of labelled hosts.
LGSs’ guests can be represented using a simple graphical notation, but also
compositionally by means of an algebra which is sound and complete. We have
shown formally that computing LGSs is an NP-complete problem, where the NP-
hardness is obtained via a reduction of subgraph isomorphism to them. Moreover,
we have shown that many other classical notions of graph pattern matching are
naturally subsumed by LGSs. Therefore, LGSs offer a simple common ground
between multiple well-known notions of graph pattern matching supporting a
modular approach to these notions as well as to the development of common
techniques.

An algorithm for computing LGSs in a decentralised fashion and inspired to
the “distributed amalgamation” strategy is introduced in [16]. Roughly speak-
ing, the host graph is distributed over processes; each process uses its partial
view of the host to compute partial solutions to exchange with its peers. Dis-
tributed amalgamation guarantees each solution is eventually found by at least
one process.

The same strategy is at the core of distributed algorithms for solving prob-
lems such as bigraphical embeddings and the distributed execution of bigraphical
rewriting systems [17,19,22]. Bigraphs [12,21,23] have been proved to be quite
effective for modelling, designing and prototyping distributed systems, such as
multi-agent systems [18]. This similarity and the ability of LGS to subsume sev-
eral graph problems suggests to investigate graph rewriting systems where redex
occurrences are defined in terms of LGSs.

Another topic for further investigation is how to systematically minimise
guests or combine sets of guests into single instances, while preserving the seman-
tics of LGSs. Moreover, following what already done in Sect. 8, the complexity
of various fragments of LGSs still needs to be addressed, eg. defining a fragment
that is fixed-parameter tractable. Results in these directions would have a positive
practical impact on applications based on LGSs.
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Abstract. With increased adoption of Model-Driven Engineering, the
number of related artefacts in use, such as models, metamodels and trans-
formations, greatly increases. To confirm this, we present quantitative
evidence from both academia — in terms of repositories and datasets —
and industry — in terms of large domain-specific language ecosystems.
To be able to tackle this dimension of scalability in MDE, we propose
to treat the artefacts as data, and apply various techniques — ranging
from information retrieval to machine learning — to analyse and manage
those artefacts in a holistic, scalable and efficient way.

Keywords: Model-Driven Engineering · Scalability
Model analytics · Data mining · Machine learning

1 Introduction

Model-Driven Engineering (MDE) promotes the use of models, metamodels and
model transformations as first-class citizens to tackle the complexity of software
systems. As MDE is applied to larger problems, the complexity, size and vari-
ety of those artefacts increase. With respect to model size and complexity, for
instance, the aspect of scalability has been pointed out by Kolovos et al. [18].
Regarding this aspect, a good amount of research has been done for handling a
small number of (possibly very big and complex) models, e.g. in terms of com-
parison, merging, splitting, persistence or transformation. However, scalability
with respect to model variety and multiplicity (i.e. dealing with a large number
of possibly heterogeneous models) has so far remained mostly under the radar.

In this paper, we advocate this aspect of scalability as a potentially big chal-
lenge for broader MDE adoption. We highlight evidence and concerns which
cross-cut the dichotomies of industry vs. academia and of open source vs. com-
mercial software. We thus show that scalability proves to be an issue overall.
Furthermore, we mention several related domains and disciplines as inspiration
for tackling scalability, with pointers to some related work. Yet we note the
c© Springer International Publishing AG 2018
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inherent differences of MDE artefacts (models in particular), compared to com-
mon types of data such as natural language text and source code. This might
render it difficult to directly apply techniques from other domains to MDE.

2 The Expanding Universe of MDE

The aforementioned scalability issue emerges partly due to some recent develop-
ments in the MDE community. Firstly, there have been efforts to initiate public
repositories to store and manage large numbers of models and related artefacts
[5,23]. Further efforts include mining public repositories for MDE-related items
from GitHub, e.g. Eclipse-based MDE technologies [17] and UML models [14]
(the Lindholmen dataset). In the latter, the number of UML models can go up
to more than 90k. The sheer number of models inevitably calls for techniques
for searching, preprocessing (e.g. filtering), analysing and visualising the data in
a holistic and efficient manner.

Mini Study: Ecore Metamodels in GitHub. Kolovos et al. present a study
on the use of MDE technologies in GitHub [17]. Among a rich set of empiri-
cal results, they report the number of search results for Ecore metamodels in
GitHub (as of early 2015) to be ∼15k, and show a rapidly increasing trend in
the number of commits on MDE-related files. We were triggered by the fact that
the same exercise of searching Ecore files, with the query reported in the paper
(https://github.com/search?q=EClass+extension:ecore&type=Code) yields (as
of September 2017) more than 67k results; a fourfold increase. Here we demon-
strate a mini case study on the Ecore metamodel files in GitHub over time. We
slightly relaxed the query by replacing the search term EClass with ecore, and
mined all the files together with the relevant commits on them. Figure 1 depicts
a strong upward trend for (a) the number of commits per year on Ecore files,
and (b) the number of newly created Ecore files per year. The sharp increase in
2017 can be partly attributed to recently emerging metamodel repositories and
datasets on GitHub; nevertheless as the end effect there are increasingly more
Ecore metamodels in GitHub.

MDE in the Industry. Even within a single industry or organisation, a similar
situation emerges with increased adoption of MDE. We have been collaborating
with high tech companies in the Netherlands. One of those companies maintains
a set of MDE-based domain-specific language (DSL) ecosystems. Just a single
one of those ecosystems currently contains dozens of metamodels, thousands
of models and tens of thousands LOC of transformations. With the complete
revision history, the total number of artefacts goes up to tens of thousands.
Another company, which applies MDE in six different projects, reports a similar
collection of thousands of artefacts based on various technologies (e.g. different
transformation languages). Similar stories in terms of scale hold for our other
industrial partners, with growing heterogeneous sets of artefacts involving mul-
tiple domains. Note that for systems with implicit or explicit (e.g. as a Software
Product Line) variability, variants can be considered another amplifying factor
besides versions for the total number of MDE artefacts to manage.

https://github.com/search?q=EClass+extension:ecore&type=Code
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Fig. 1. GitHub results on Ecore metamodels.

Along with conventional forward engineering approaches, we observe an
increasing trend in our partners with legacy software: automated migration into
model-driven/-based engineering using process mining and model learning. All
the presented facts let us confirm the statement by Brambilla et al. [8] and
Whittle et al. [24] that MDE adoption in (at least some parts of) the industry
grows quite rapidly, and we conclude that tackling scalability will be increasingly
important in the future.

3 Treating MDE Artefacts as Data

Based on the observations above, we advocate a perspective where MDE arte-
facts are treated holistically as data, processed and analysed with various scal-
able and efficient techniques, possibly inspired by related domains. Tackling large
volumes of artefacts has been commonplace in other domains, such as text min-
ing for natural language text [15], and repository mining for source code [16].
While we might not be able to apply those techniques as-is on MDE-related
artefacts, the general workflow remains as a rough guideline with several steps
of data collection, cleaning, integration and transformation, feature engineering
and selection, modelling (e.g. as statistical models, neural networks), and finally
deployment, exploration and visualisation.

To exemplify the different nature of MDE data and hence the different
requirements on its analysis, take the problem of clone detection. Clone detec-
tion on source code is already several steps away from text mining, as code clone
detection usually involves steps such as a language-specific parsing of the code
into abstract syntax trees (AST), normalisation of identifiers, and structural
transformations [21]. Model clone detection, on the other hand, possess further
challenges. To cite Deissenboeck et al., “Algorithms from code clone detection
are only of minor interest for model clone detection, as they usually work on
either a linear text or token stream or on the tree structured AST of the code,
which both are not transferable to general directed graphs.” [11]. Furthermore,
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Störrle points out inherent differences of models compared to code, including
CASE tool integration and tool-specific representations, internal identifiers and
different layouts with no semantic implications, abstract vs. (possibly multiple)
concrete syntaxes, etc. [22]. The case of clone detection reinforces our argument
that techniques from related domains such as data mining and repository mining
might not be directly translatable to the MDE domain.

4 Relevant Domains for Model Analytics

Despite the different nature of models as exemplified above, we can get inspired
by the techniques from other disciplines and try to adapt them for the problems
in MDE. As a preliminary overview, in this section we list and discuss several
such domains. While there is related MDE research on some of the items on the
list, we believe a conscious and integrated mindset would mitigate the challenges
for scalable MDE.

Descriptive Statistics. Several MDE researchers have already performed empir-
ical studies on MDE artefacts with a statistical mindset. For instance, Kolovos
et al. assesses the use of Eclipse technologies in GitHub, giving related trend
analyses [17]. Mengerink et al. present an automated analysis framework on
version control systems with similar capabilities [19]. Di Rocco et al. perform
a correlation analysis on metrics for various MDE artefacts [12]. Descriptive
statistics could in the most general sense be exploited to gain insights over large
numbers of MDE arfefacts in terms of general characteristics, patterns, outliers,
statistical distributions, dependence, etc.

Information Retrieval. Techniques from information retrieval (IR) can facilitate
indexing, searching and retrieving of models, and thus their management and
reuse. The adoption of IR techniques on source code dates back to the early
2000s, and within the MDE community there has been some recent effort in this
direction (e.g. by Bislimovska et al. [7]). Further IR-based techniques can be
found in [2,4] involving repository management and model searching scenarios.

Natural Language Processing. Accurate Natural Language Processing (NLP) is
needed to handle realistic models with noisy text content, compound words,
and synonymy/polysemy. In our experience, it is very problematic to blindly
use NLP tools on models, e.g. just WordNet synonym checking without proper
part-of-speech tagging and word sense disambiguation. More research is needed
to find the right chain of NLP tools applicable for models (in contrast to source
code and documentation), and reporting accuracies and disagreements between
tools (along the lines of the recent report in [20] for repository mining). Note
that NLP offers further advanced tools, such as language modelling, which are
still to be investigated for MDE.
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Data Mining. Following the perspective of approaching MDE artefacts as data,
we need scalable techniques to extract relevant units of information from models
(features in data mining jargon), and to discover patterns including domain
clusters, outliers/noise and clones. Several example applications can be found in
[1,2,4]. To to analyse, explore and eventually make sense of the large datasets in
MDE (e.g. the Lindholmen dataset), we can investigate what can be borrowed
from comparable approaches in data mining for structured (graph) data.

Machine Learning. The increasing availability of large amounts of MDE data
can be exploited, via machine learning, to automatically infer certain qualities
and functions. There has been a thrust of research in this direction for source
code (e.g. for fault prediction [10]), and it would be noteworthy to investigate
the emerging needs of the MDE communities and feasibility of such learning
techniques for MDE. The approach in [3] for learning model transformations by
examples is one of the few pieces of such work in MDE.

Visualization. We propose visualization and visual analytics techniques to
inspect a whole dataset of artefacts (e.g. cluster visualizations in [4], in con-
trast with visualizing a single big model in [18]) using various features such as
metrics and cross-artefact relationships. The goals could range from exploring
a repository to analysing an MDE ecosystem holistically and even studying the
(co-)evolution of MDE artefacts.

Distributed/Parallel Computing. With the growing amount of data to be pro-
cessed, employing distributed and parallel algorithms in MDE is very relevant.
There are conceptually related approaches in MDE worthwhile investigating, e.g.
distributed model transformations for very large models [6,9] or model-driven
data analytics [13]. Yet we wish to draw attention here to performing computa-
tionally heavy data mining or machine learning tasks for large MDE datasets in
an efficient way.

We propose this non-exhaustive list as a preliminary exploitation guideline to
help tackling scalability in MDE. Although the aforementioned domains them-
selves are quite mature on their own, it should be investigated to what extent
results and approaches can be transferred into the MDE technical space.

5 Conclusion

We observe a rapid increase in the size of the MDE universe, both in open
source and industry, which leads to scalability issues yet to be addressed by
the community. To overcome this new and relatively overlooked challenge, we
propose a holistic research perspective with several components, ranging from
information retrieval to machine learning. We believe that approaches towards
this direction already matter, but will increasingly be more important for the
successful widespread use of MDE.

Acknowledgments. This work is supported by the 4TU.NIRICT Research Commu-
nity Funding on Model Management and Analytics in the Netherlands.
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2. Babur, Ö., Cleophas, L., van den Brand, M.: Hierarchical clustering of metamodels
for comparative analysis and visualization. In: 2016 Proceedings of the 12th Euro-
pean Conference on Modelling Foundations and Applications, pp. 2–18 (2016)

3. Baki, I., Sahraoui, H.A.: Multi-step learning and adaptive search for learning com-
plex model transformations from examples. ACM Trans. Softw. Eng. Methodol.
25(3), 20:1–20:37 (2016). https://doi.org/10.1145/2904904

4. Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Automated
clustering of metamodel repositories. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J.
(eds.) CAiSE 2016. LNCS, vol. 9694, pp. 342–358. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39696-5 21

5. Basciani, F., Di Rocco, J., Di Ruscio, D., Di Salle, A., Iovino, L., Pierantonio,
A.: MDEForge: an extensible web-based modeling platform. In: Proceedings of the
2nd International Workshop on Model-Driven Engineering on and for the Cloud
Co-located with the 17th International Conference on Model Driven Engineering
Languages and Systems, CloudMDE@MoDELS 2014, Valencia, Spain, 30 Septem-
ber 2014, pp. 66–75 (2014). http://ceur-ws.org/Vol-1242/paper10.pdf
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Abstract. Current model repositories often rely on existing versioning
systems or standard database technologies. These approaches are suffi-
cient for hosting different versions of models. However, the time dimen-
sion is often not explicitly represented and accessible. A more explicit
presentation of time is needed in several use cases going beyond the clas-
sical system design phase support of models such as in simulation and
runtime environments.

In this paper, we discuss the need for introducing temporal model
repositories and their prospective benefits. In particular, we outline sev-
eral challenges which immediately arise when moving towards temporal
model repositories, which are: storage, consistency, access, manipulation,
and visualization of temporal models.

1 Introduction

Model repositories are a crucial infrastructure for applying model-driven engi-
neering (MDE) in practical settings [10]. Current and past research works con-
cerning model repositories comprise mainly two areas: (i) concurrent modeling
using a central repository to coordinate the editing of models [2], and (ii) scal-
ability in storing and retrieving models [18].

In this challenge paper, we are demonstrating why temporal model reposito-
ries are needed to cope with emerging use cases in the general field of MDE which
require models to be evolutionary artifacts leading to the new notion of “liquid
models” [19]. Furthermore, such repositories are highly needed in application
fields where models have to be used throughout the complete system life-cycle
such as in production systems engineering [26].

1.1 Why Temporal Model Repositories are Needed

Previous research has been focusing on storing models in model repositories
such as SVN and Git using XMI serializations [3] as well as in database tech-
nologies such as relational databases, graph databases, or tuple stores [5]. Tra-
ditionally, each model version of an evolving model is stored as self-contained
model instance. These differently stored model versions allow to reason about
c© Springer International Publishing AG 2018
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evolution concerns. However, the temporal aspect is not explicitly targeted on
the model element level. In order to reason about questions considering specific
model elements, the different versions have first to be aligned and compared
before one can actually reason about temporal aspects such as model element
changes. Moreover, storing full model states for each version is not efficient. Just
consider changing one value between two model versions. This would result in
mostly two identical models which have to be stored. This clearly shows that
historical model information is currently not well supported by existing model
repositories.

1.2 Existing Work on Temporal Artifacts

There are several approaches which consider the explicit support of a temporal
dimension. In particular, there is work on temporal databases, model version-
ing and behavioral model verification. Initial work has been done in the area
of temporal relational databases [25]. This work has been continued in the area
of temporal data warehouses [15]. Additionally, these works have resulted in
the explicit support of temporal SQL in many existing relational database sys-
tems. In the field of programming languages work exists on temporal objects1.
There, the goal is to store the historical states of an object in addition to the
current state. Finally, there exists interesting work in the area of CAD engineer-
ing tools and accompanying datastores. Especially, multi-version object-oriented
databases allow for revisions to model evolution in time and variants to model
parallel ways of development [12,23].

Model behavior verification is a typical use case for temporal artifacts. To
verify the behavior of MDE artifacts, model checking is one of the most used
techniques. Reasons for that might include that the state space used in model
checking, which includes states and transitions, can be easily interpreted as
including different model versions as states and model changes as transitions.
This closely resembles a revision graph used in model versioning systems.

Firstly, there are verification languages that extend existing languages like
OCL by classical model checking languages such as CTL* or the µ-calculus
(e.g., [21]). Secondly, dedicated languages using patterns have been introduced
to reduce the mental load to specify temporal properties, e.g., [9,16] for OCL.
Beside employing new constraint language extensions for verification, the consis-
tency between two or more behavioral UML models might be checked (e.g., [24])
as well. Simple safety properties may be formulated by reusing existing model
query formalisms. Model checking implementations typically are either state-
based (e.g., [17]) or translate the model checking problem to another formalism
(e.g., [14]). The behavior itself may be defined by graph transformations, behav-
ioral diagrams or plain pre-conditions and post-conditions. Another research line
is the development of domain-specific property languages which allow to reason
about temporal properties of systems [20].

1 https://martinfowler.com/eaaDev/timeNarrative.html.

https://martinfowler.com/eaaDev/timeNarrative.html
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1.3 Structure of this Paper

First, we present a motivating example in the context of systems engineering
which requires temporal information about an evolving system. Then, we present
several challenges which arise by switching from single-version models to multi-
version models for representing evolutions of a model. Finally, we conclude the
paper by discussing next steps.

2 Motivating Example

Consider a system engineering example based on a simple block modeling lan-
guage to model machines and sensors (cf. Fig. 1a). A sensor can be attached to
any machine and this may change over time as measurements have to be col-
lected for each machine in certain periods of time. Of course, the model may
just reflect the current state (Sensor 1 is connected to Machine 3 in Ti). How-
ever, we have context dependent information such as measurement errors and
down times of the sensor which depend on the particular machine the sensor
is located (Sensor 1 was connected to Machine 2 in Ti−1 and to Machine 1 in
Ti−2). In order to support this scenario, we do not only need the two traditional
dimensions (i) representing machines and sensors as blocks and (ii) their feature
values, but add time as third dimension to store feature value history.

Machine 3

Machine 4

Sensor 1

Machine 1

Machine 2

Ti-2

(a)

Ti-2

Ti-1

Ti

M1

M2

M3

12

23

(b) (c)

Ti-1

Ti

Time

Block

Name ConnectedTo ValueID

Feature

0001 Sensor_1
M2

M3

M1

0002 Machine_1 S1
null

…

…
…

…

Fig. 1. Dealing with temporal models: (a) concrete example, (b) traditional repository
view, (c) temporal repository view

Figure 1b shows the current state-of-the-art of storing evolving models in
model repositories. Since, we cannot represent different versions of a model
within one model, all the model versions have to be stored separately. Figure 1c
shows a more condensed representation by introducing an explicit time dimen-
sion which allows to represent several versions of a model by providing different
values with time stamps. Please note that it is feasible to construct Fig. 1c from
the information provided by Fig. 1b. The benefit of having the representation
provided by Fig. 1c is the direct representation of and the access to temporal
information, which will be demonstrated in the following section.
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3 Temporal Model Repositories Challenges

In this section, we outline the main challenges encountered by moving towards
temporal model repositories demonstrated by different use cases. In particular,
these challenges encompass (i) model storage, (ii) model consistency, (iii) model
access, (iv) model manipulation, and (v) model visualization. While these topics
might impose challenges for large single models as well, they drastically increase
when incorporating time.

3.1 Model Storage

Figure 2 illustrates different levels of granularity for model storage. We use
this figure to outline potential strategies to cope with models evolving in time
by certain examples. Many model simulations as well as models@runtime [7]
approaches store each snapshot separately leading to high memory requirements
and potentially suboptimal performance. Thus, use cases like conducting change
analysis on large models cannot be performed. However, they provide simple and
fast access to each snapshot. For example, without further meta-information,
which might need to be calculated, it is not possible to even detect that the
value of the sensor decreased and the machine m1 was deleted (see Fig. 2a).

Fig. 2. Model storage granularity levels

Metamodeling frameworks such as the Eclipse Modeling Framework (EMF)
would allow to store each model element in a separate file. By this, match-
ing processes are simplified and object deletions are immediately detected. For
example, deleting m1 results in a deletion of the corresponding file m1.xmi (see
Fig. 2b). However, such an approach results in a potentially unwanted scattering
of the model in many files and thus, model model loading times are increasing.
Approaches based on storing models in single or multiple xmi files are also not
able to describe the continuous change of models. By reducing the granularity of
time-dependency from model level to model element level, or even feature level,
the required memory may be reduced, especially when performing many small
changes on models.
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Machine

Sensor

con
0..1

getCon()
setCon(M)
getCon(T)
setCon(T,M)

T setCon(m1: M) {
  _con.add(m1);
  con = m1;
}

Machine

Sensor

<<temporal>>
con
0..1

getCon()
setCon(M)

_con

Fig. 3. Metamodel augmentation by temporal property pattern

Figure 2c shows how feature-level-granularity helps describing time-
dependant models. Instead of having multiple files, a time-dependant model may
consist of just one file where each element and feature value has a certain times-
pan. Therefore, small model edits are just small model extensions. Also, feature
values may be described as time-dependent functions in discrete or continuous
time. Continuous functions may be derived from approximations or interpola-
tions of a certain set of discrete time measurements values or a known temporal
behavior. However, no matter whether models are stored in XMI or temporal
databases, means are needed to reduce the overhead of the storage strategies
discussed above (Fig. 2) when accessing a single model. For object-oriented lan-
guages, there is the temporal property pattern2 which might be useful for models
too.

Figure 3 shows how a metamodel may be enriched to support temporal fea-
tures by providing additional getter and setter methods to access historical infor-
mation. These methods contain a time parameter which allow us to (i) access
historic, potentially interpolated, values, and (ii) set values at a specific historic
point in time. Values might be stored in a sorted map with time as index. If
a value set is then the most recent one, the current value accessible in con is
updated too (see Fig. 3). Additionally, we assume that setting a value with the
conventional set method sets the current value. In this respect, a promising app-
roach to introduce temporal storage capabilities to models has been presented in
[11]. This approach leads to an interesting research question in how this approach
may be lifted to the metamodel level.

3.2 Model Consistency

Time also requires new types of model constraints. We have to differentiate
between general semantic constraints which are equal for all models and new
kinds of model-specific temporal constraints. The general constraints typically
arise from syntactic errors in conventional models (e.g., having a reference to a
deleted model element) which become semantic errors in time-aware models. The
constraints shown in Table 1 are model-specific. The simplest kind of expressions

2 https://martinfowler.com/eaaDev/TemporalProperty.html.

https://martinfowler.com/eaaDev/TemporalProperty.html
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Table 1. Various types of temporal constraints with examples

Exp. type Property Constraint in extended OCL

Logical Ids never change id = id@init

Statistical The relative standard
deviation of the power
consumption never exceeds
1%

let p = power@always in

p->stdDev() <

p->avg()*0.01

Valid changes Whenever a machine name
changes, the machine is
physically transferred to a
different factory at the same
time

name@next->contains(name)

= factory@next->

contains(factory)

Valid traces When a machine fails, it will
be either working in at most
three days or not at all

Always Globally not

working implies

((Finally[3] working) or

(Globally not working))

are logical expressions resulting from method pre- and postconditions. In the
case that models are only changed by calling operations, the constraint that Ids
never change (see Table 1, Logical) could be expressed by requiring that ids of
every object remain unchanged after the operation call. In production systems
engineering, one might be interested in potential error sources. For example,
power spikes might reduce the lifespan of a machine and thus one could be
interested in constraints which ensure some quality properties of a virtual factory
(see Table 1, Statistical). In this context, one might be interested that employees
don’t do unreasonable things like changing machine names without cause (see
Table 1, Valid changes). Or, that repair contracts which guarantee that a machine
works again after at most three days should be fulfilled (see Table 1, Valid traces).

3.3 Model Access

Textual query languages, like OCL, are often used to aggregate model informa-
tion, whereas graph pattern based query languages are typically used to search
for specific content. There is a number of languages to (i) retrieve statistical
information and (ii) verify the behavior of models [6,20]. However, it is still
an open question how these languages may be integrated with current model
repositories for querying temporal models. Figure 4a shows a potential temporal
query pattern to detect unusually high sensor measurement values. In this case,
a sensor which should exist in timepoint T1 has values for at least five points
in time while being connected to the machine m1 which are higher than ever
observed by this sensor before. Figure 4b shows a potential answer to this query,
where the time point T1 was matched to 3. No specific timepoint for m1 in
the pattern was given, so 7 was chosen by the engine for the result object om1.
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The main difference to conventional model query outcomes is that the resulting
model includes time meta-information for each element.

The query execution efficiency is paramount for temporal models as the mod-
els do not only grow in size, but also in the number of versions. In particu-
lar, incremental evaluation seems beneficial as model changes occur which often
affect small parts of the model. Also, for model analysis and simulation, inter-
mediate models might be interesting only regarding to certain queries. Thus,
means for automatically storing model fragments relevant for the evaluation of
a time-based query have to be developed.

((s1.con)@[s1.value > x or
T1 <= time()]) -> asSet()

-> size() = 1
s1: Sensor [T1, T1<current-5]

value[T1] = x

«forbid»
s1: Sensor [T3>T1]
value = y, y<x

m1: Machine

con [T1]

TimeOCL

Pattern: Retrieve a sensor, measuring increasing values for 5
time units, higher than ever observed by the sensor before

«forbid»
con [T3]

(a) Query

os1: Sensor @3
value@3 = 21

om1: Machine @7

con @3

Result of matching
the pattern

(b) Result

Fig. 4. Time-based model pattern and answer

3.4 Model Manipulation

Models may be manipulated with model transformations and/or a model API.
Model queries can be extended to model transformations by adding actions. Fur-
thermore, they may need an additional parameter for the current time. Figure 5
shows an example of a transformation which connects a sensor to a machine.
This machine must never have been connected to a sensor that currently exists.
Since all transformations are applied to change the current model, actions do not
necessarily need to have a time parameter. A time-conscious model API should
be close to the original model API, but also allow to easily travel in time for an
object. Several semantic issues have to be resolved, e.g., the meaning of adding
any object in T2 to a feature value of an object in T1. This could be interpreted
in many ways, e.g., (i) doing nothing if timestamps are different, (ii) connecting
the object only in T1, or (iii) connecting the object in the whole period between
T1 and T2. Time-based model transformations could be highly useful for sim-
ulation purposes [22] and may lead to benefits of representing execution traces
[8] in a very condensed form.

3.5 Model Visualization

For some use cases, models will have to incorporate their history in their concrete
syntax, e.g., links may be displayed stronger if they were active for most of the
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s2: Sensor [current]

Transformation: Connect to already known sensor

s1: Sensor [Tp]
«require»

m1: Machine [Tp < current]
«require»

con [Tp]

m1: Machine [current]

«create»
con

«forbid»
con

«forbid»

Fig. 5. History-driven model transformation

m1: Machine
id = "m1"
power = 252±1

m2: Machine m3: Machine

s1: Sensor
value = 98.3±0.5con

Value 
aggregations

Link aggregations:
Lower thickness for  
links less often used

m1
W255

250

s1
W100

95

1
0

m3m2 1
0

Fig. 6. Time-oriented model visualisation: (a) abstract syntax and (b) concrete syntax

time, values may be replaced by statistical information, and so on. Figure 6
shows a possible realization of such a syntax. Simple object diagram extensions
as depicted might combine the familiarity of object diagrams with the display
of additional information. However, displaying the complete history of a model
in a single diagram puts some pressure on layouting methods. For example, in
order to encompass more objects which might not always be rendered depending
on the selected timespan. For some languages additional annotations, profiles, or
extensions may help. There is a variety of data visualization techniques available,
which may be used to visualize the development of single features, small model
parts, or the whole model [1]. Such visualization methods may also be useful
to augment concrete graphical syntaxes of models as shown in the right part of
Fig. 6. In particular, temporal model query languages should provide a potential
source for model visualization.

3.6 Further Challenges

Not only models have a dynamic nature, also metamodels may change over time
(e.g., see multi-level modeling [4]). Furthermore, there may exist more than
“just” one successor for a model version, which requires support for branching.
Having temporal model repositories at hand, the extension to deductive temporal
model repositories would be beneficial to learn from model evolution. Last but
not least, there exists no unique model of time. Due to the different dynamics of
components, the distinction between different (coexisting) “notions of time” is
required [13]. Consider the two following distinctions of time for a single device
(e.g., a sensor): (i) “time” implicitly defined as sequence of logs resulting from
the device’s operation (i.e., external time) and (ii) “time” defined and measured
by the device’s clock, whose measure of time may be recorded like other program
variables (i.e., internal time) [13].
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4 Conclusions

In this paper, many interesting research challenges are posed in the young
research area of temporal models and temporal model repositories. We have
identified the following steps where work is needed to meet the demanding for
a common terminology and an exact formulation of the research goals in this
area. This also requires to work bottom-up to better understand the concrete
requirements in use cases relying on temporal information as well as top-down
by studying the literature provided by other research communities in related
fields such as databases and programming languages. We are looking forward to
investigate these open issues together with the MDE research community.

Acknowledgments. This work has been funded by the Austrian Federal Ministry of
Science, Research and Economy (BMWFW) and the National Foundation for Research,
Technology and Development (CDG).
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24. Schäfer, T., Knapp, A., Merz, S.: Model checking UML state machines and collab-
orations. Electr. Notes Theor. Comput. Sci. 55(3), 357–369 (2001)

25. Tansel, A.U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., Snodgrass, R. (eds.):
Temporal Databases: Theory, Design, and Implementation (1993)

26. Vogel-Heuser, B., Fay, A., Schaefer, I., Tichy, M.: Evolution of software in auto-
mated production systems: challenges and research directions. JSS 110, 54–84
(2015)

https://doi.org/10.1007/978-3-540-45221-8_5
https://doi.org/10.1007/978-3-642-36089-3_6
https://doi.org/10.1007/11691617_19
https://doi.org/10.1007/978-3-319-11245-9_1
https://doi.org/10.1007/978-3-319-11245-9_1
https://doi.org/10.1007/978-3-540-72952-5_4
https://doi.org/10.1007/978-3-540-72952-5_4
https://doi.org/10.1007/978-3-642-01648-6_7
https://doi.org/10.1007/978-3-642-01648-6_7
https://doi.org/10.1007/BFb0034665


On the Need for Artifact Models
in Model-Driven Systems Engineering Projects

Arvid Butting, Timo Greifenberg(B), Bernhard Rumpe,
and Andreas Wortmann

Software Engineering, RWTH Aachen University, Aachen, Germany
greifenberg@se-rwth.de

http://www.se-rwth.de

Abstract. Model-driven development has shown to facilitate systems
engineering. It employs automated transformation of heterogeneous mod-
els into source code artifacts for software products, their testing, and
deployment. To this effect, model-driven processes comprise several
activities, including parsing, model checking, generating, compiling, test-
ing, and packaging. During this, a multitude of artifacts of different kinds
are involved that are related to each other in various ways. The com-
plexity and number of these relations aggravates development, main-
tenance, and evolution of model-driven systems engineering (MDSE).
For future MDSE challenges, such as the development of collaborative
cyber-physical systems for automated driving or Industry 4.0, the under-
standing of these relations must scale with the participating domains,
stakeholders, and modeling techniques. We motivate the need for under-
standing these relations between artifacts of MDSE processes, sketch a
vision of formalizing these using artifact models, and present challenges
towards it.

1 Motivation

The complexity of future interconnected cyber-physical systems, such as the
smart future, fleets of automated cars, or smart grids poses grand challenges to
software engineering. These challenges partly arise from the number of domains,
stakeholders, and modeling techniques required to successfully deploy such sys-
tems. Model-driven engineering has shown to alleviate this, but introduces the
challenge of managing the multitude of different artifacts, such as configura-
tion, models, templates, transformations, and their relations as contributed by
the experts of different domains. Considering, for instance, software engineering
for the factory of the future [10], successful deployment of a virtual factory [9]
requires integration of modeling techniques to describe the factory’s geome-
try, production processes and their optimization, software architecture, produc-
tion systems with their interaction, manufacturing knowledge, and, ultimately,
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general-purpose programming language artifacts. The artifacts contributed by
the respective domain experts are required in different stages of the development
process and exhibit various forms of relations, such as design temporal depen-
dencies, run-time dependencies, or creational dependencies (e.g., a model and
the code generated from it).

Moreover, how artifacts interrelate not only depends on their nature, but
also on the context they are used in and the tools they are used with. For
instance, software architecture models may be used for communication and doc-
umentation, model checking, transformation into source code, or simulation of
the system part under development. In these contexts, the relations required to
understand and process such an artifact may change: whereas the pure archi-
tecture model might be sufficient for communicating its structural properties,
transformation into source code relates it to transformation artifacts and to the
artifacts produced by this transformation.

This paper extends previous work [5] in greater detail for a better understand-
ing on how explicating these artifacts and their relations facilitates traceability
of artifacts, change impact analysis [1], and interoperability of software tools
all of which are crucial to successful model-driven engineering of the future’s
systems of systems.

2 Modeling Artifact Relations

Typical MDSE projects require a multitude of different artifacts addressing the
different domains’ concerns (cf. Fig. 1). Managing the complexity of these arti-
facts requires understanding their relations, which entails understanding the
relations between their languages as well as between the development tools pro-
ducing and processing artifacts. We envision a MDSE future in which these
relations are made explicit and machine-processable using modeling techniques.
To this end, we desire reifying this information as first-level modeling concern
in form of an explicit artifact model defined by the lead architect of the overall
MDSE project. Such a model precisely specifies the kinds of artifacts, tools, lan-
guages, and relations present in the MDSE project an thus enables representing
the MDSE project in a structured way.

Such an artifact model should be capable to describe all different situations
in terms of present artifacts and relations that could arise during its lifetime.
The current situation of the project can be inspected by automatically extract-
ing artifact data from the project according to the artifact models’ entities and
relations. This data corresponds to the artifact model ontologically, i.e., repre-
sents an instance of it at a specific point in time. Analysts or specific software
tools can employ this data to produce an overview of the current state, reporting
issues, and identifying optimization potentials. Ultimately, this aims at enabling
a more efficient development process.

To this end, the artifact model comprises, among others, the organization of
artifacts in the file system, the configuration of the tool chain, the trace of the
last tool chain execution as well as static knowledge relations between artifacts
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Fig. 1. An artifact model structures the different kinds of artifacts within MDSE
projects. Corresponding artifact data enables analyses of the project state by analysts
and software tools.

leading to an architectural view including input models, artifacts forming specific
tools or the target product, artifacts managed by the tools, output artifacts, and
handcrafted artifacts.

This model depends on the technologies and tools used to develop the target
product. Hence, it must be tailored specifically to each MDSE project. Globally,
parts of such a model could be reused from similar projects (which might be
achieved employing language engineering and composition methods on the arti-
fact modeling language). For instance, model parts describing the interfaces of
tools could be reusable as well as the types of specific artifacts and their relations
might be applicable to multiple projects. Nevertheless, we assume each project
will require manual artifact modeling to adjust existing structures. Ultimately,
creating such an artifact model would

– ease communication, specification, and documentation of artifact, tool, and
language dependencies,

– enable automated dependency analysis between artifacts and tools,
– support change impact analysis in terms of artifact tool, or language changes,
– support checking compliance of tools and proposing artifact, tool, and relation

adaptations to ’glue’ tool chains,
– facilitate an integrated view on the usage of tools in concrete scenarios,
– enable data-driven decision making, and
– enable computation of metrics and project reports to reveal optimization

potentials within the tool chain and the overall MDSE process.
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Fig. 2. Overview of explicit and implicit relationships between elements in an MDSE
process, where associations colored black are explicitly specified and dashed, blue asso-
ciations are implicitly defined within the underlying languages of the respective artifact,
or derived by taking into account creational dependencies across different stages of a
process. (Color figure online)

3 Example

Consider a company developing a software system using MDSE methodology in
a multi-stage process. A common challenge in MDSE processes is to trace the
impact of changes within an artifact to related artifacts across multiple stages in
the process, and to detect implicit dependencies of different artifacts. An excerpt
of artifacts used in an exemplary process in context of a single employed tool is
depicted in Fig. 2. First, the company specifies requirements (cf. RQ0, . . . , RQ3
in Fig. 2) that the functionality of the developed software should satisfy. In the
next phase, models that reflect the specified requirements are implemented by
modeling experts of the company. Each requirement defines assumptions that
are satisfied by one or more modeling artifacts. The modeling artifacts conform
to different modeling languages such as, e.g., class diagrams, an architecture
description language, and a finite state machine language as depicted in Fig. 2.

The connections between requirements and the modeling artifacts are defined
manually. Then, the ARC2JavaGenerator tool is employed to transform the given
heterogeneous models into Java code. A common difficulty, especially in large
software projects, is to understand the exact mapping between each input and
output artifact(s) of a tool execution. This mapping is usually encapsulated
within the tool. Further, modeling languages typically allow several different
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kinds of relationships between models and understanding these requires knowl-
edge about the languages.

With an explicit artifact model as envisioned, the relationships between mod-
els and generated Java classes can be derived. Extracting derived information,
from various sources, such as, e.g., import statements in models, as well as the
relationships between generated artifacts and the input models, greatly supports
developers in analyzing dependencies in MDSE projects. For instance, the rela-
tions derived in Fig. 2 (denoted by dashed, blue arrows) could facilitate tracing
and impact analysis as follows:

(1) To evaluate, which generated artifacts are needed to satisfy a specific
requirements, this information can be derived taking into account the rela-
tions between models and requirements, and the relations between a model
and the generated artifacts.

(2) To evaluate, which test case verify which of the requirements, the method in
(1) can be used and, in addition, the relations between test and generated
code must be regarded.

(3) To evaluate whether there exist unused model files, which lead to unneces-
sary complexity for the MDSE project. Those models can be identified by
the mapping between input and output artifacts. If there is no mapping for
an input artifact, this artifact is a candidate for removal.

(4) To evaluate whether there exist unused source code files. In our example, the
generated Java class B is unused, as there is no derived association to this
class from the Java class C generated from the architecture model, which
is the excerpt under investigation here. Identifying unused files that do not
need to be tested, packaged, or deployed leads to a more efficient MDSE
process.

(5) To evaluate whether the transformation satisfies all requirements, the
method in (1) can be used to determine all satisfied requirements. In the
example, the class diagram containing the classes X and Y are not referenced
from the architecture model, but the class diagram satisfies RQ0 and has no
relation to parts of the generated code. This may indicate erroneous models.

(6) To estimate costs for modifications, tracing can calculate, which artifacts
are affected by the modification of a certain artifact. The granularity of the
distinct types of relations investigated in an artifact model influences the
quality of such a change impact analysis.

4 State of the Art

There are various approaches to support model-driven systems engineering. Pop-
ular system engineering tools, such as PTC Integrity Modeler1, Syndeia2, or
Cameo Systems Modeler3 support modeling with SysML [8] and, hence, are able

1 https://www.ptc.com/en/model-based-systems-engineering/integrity-modeler.
2 http://intercax.com/products/syndeia/.
3 https://www.nomagic.com/products/cameo-systems-modeler.

https://www.ptc.com/en/model-based-systems-engineering/integrity-modeler
http://intercax.com/products/syndeia/
https://www.nomagic.com/products/cameo-systems-modeler
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to manage different kinds of development artifacts in the same tool. One impor-
tant feature of those tools is tracing between the managed artifacts. Nevertheless,
these tools cannot be used out of the box for our intended purpose: (1) SysML
is a general purpose modeling language, i.e., it can be used to describe a large
variety of systems. However, as domain-specific modeling advocates tailoring the
modeling techniques to the participating domains, using general-purpose mod-
eling languages usually leads to a coarse interpretation of diagrams with respect
to the domains. This lack of precision, prevents leveraging the potential of fully
automated, integrated model processing. Consequently, additional formalization
is need to ensure that the semantics of modeled artifacts and relations between
them is unambiguous. This, however, is either not supported by such tools at
all or very limited (cf. stereotypes). (2) As we are especially interested in the
coherences of MDSE processes, there is a need to inspect the artifacts, relations,
and processes of MDSE tools themselves. Considering, for instance, highly cus-
tomizable code generators, it rarely is fully understood which of the artifacts are
in use in the context of a given project at a specific time. Especially when parts
of MDSE tools are automatically generated themselves, tracing of the overall
build process in terms of its artifacts becomes more challenging. This challenge
can also not be solved by the mentioned tools, as they usually do not take the
development tools into account in such a way, but focus on the development
artifacts instead. In MDSE, proper model management is crucial when working
with large collections of models. In [3] the notion of megamodels was introduced,
which still subject to ongoing research [12,13]. Under the assumption that every-
thing is model [2] one could argue that the artifact models proposed in this work
are megamodels too. As we require formal encoding of models and their rela-
tions, there is a difference between megamodels and the proposed artifact models
from our viewpoint. The elements of megamodels represent models and the links
represent relationships between models [12]. The proposed artifact models focus
on the model-driven build process including a whitebox view of the model-driven
development tools. For instance, model elements of artifact models can also rep-
resent tools, artifacts the tools consists of, generated or handcrafted code files
of the target system or configuration files. Links are then relationships between
any of those elements. Nevertheless, there are commonalities with megamodels
as models and their relationships can also become an important part in artifact
models and the corresponding project data.

5 Challenges of Artifact Modeling

There are few approaches towards such an artifact model. The author of [4]
focus on the integration of tools and the specification of tool chains and trans-
formations between artifacts. Thus, artifacts managed within different tools are
related to each other. The authors of [11] focus on an artifact-oriented way to
describe a model-based requirements engineering process. Both approaches con-
sider the requirement and design phases of MDSE projects only, but do not take
code generation phases or implementation phases into account. Also, the tools
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themselves are not considered in the presented models. The authors of [6], con-
tributed the idea of providing project data to analysts and software tools, but
do not combine this idea with an explicit artifact model. Hence, there are still
open challenges, which have to be overcome towards efficient and sophisticated
artifact modeling.

Methodology. The definition of a methodology on how to create artifact models
tailored to the needs of a particular MDSE project. This includes:

– defining the scope of the MDSE project where artifact modeling can help
taming the complexity,

– the development and selection of suitable modeling languages, tools and
guidelines,

– the creation of model libraries providing reusable concepts common for system
engineering projects, and

– development of reusable algorithms based on artifact models providing valu-
able analysis for common problems of system engineering projects.

Tools. Defining mechanisms, tools, and infrastructure supporting extraction and
understanding of artifact data, including

– visualization capabilities, such as those proposed in [7],
– a methodology for integrating the different automated analysis tools to a

given infrastructure,
– common interfaces for accessing artifact data, and the
– handling large amounts of artifact data efficiently.

Integration. Overcome modeling challenges, such as

– providing ways of defining and ensuring compliance between related software
tools, such as editors, generators, or transformations, and

– integrating process data and historical data into such an artifact model to
enable comprehending the state and changes of artifacts and their relations
over time.

6 Conclusion

Model-driven development facilitates systems engineering. However, to this end
it introduces new challenges, out of which taming the complexity of participating
artifacts and their relations is a very important one. We argue that investigating
and reifying these using an artifact model and corresponding tooling is cru-
cial to the successful deployment of future systems of systems. The ultimate
goal would be, that architects can model their project, including the tools, the
MDSE process and the target system’s architecture with all relevant relations
with minimal effort. The corresponding data should be extracted automatically
and enable overviewing of the project’s current state. This enables making data-
driven decisions regarding tool landscape, processes, and architectures such that
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the future MDSE projects can be run successfully. In this paper we presented
a small example clarifying the problem. Nevertheless, in complex scenarios with
multi-level generation processes and where models of different engineering disci-
pline are related to describe the target product, the benefit of our approach will
unfold to full extend. To guide this, particular challenges of artifact modeling
future research should investigate were highlighted.
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Abstract. The limited adoption of Model-Driven Software Engineering
(MDSE) is due to a variety of social and technical factors, which can be
summarized in one: its (real or perceived) benefits do not outweigh its
costs. In this vision paper we argue that the cognification of MDSE has
the potential to reverse this situation. Cognification is the application of
knowledge (inferred from large volumes of information, artificial intelli-
gence or collective intelligence) to boost the performance and impact of a
process. We discuss the opportunities and challenges of cognifying MDSE
tasks and we describe some potential scenarios where cognification can
bring quantifiable and perceivable advantages. And conversely, we also
discuss how MDSE techniques themselves can help in the improvement of
AI, Machine learning, bot generation and other cognification techniques.

Keywords: Model · Machine learning · Bot · Model-driven · AI

1 Introduction

It is hard to imagine anything that would “change everything” as much as cheap,
powerful, ubiquitous intelligence and exploitation of knowledge. Even a very
tiny amount of useful intelligence embedded into an existing process boosts its
effectiveness to a whole other level [18]. This process is known as cognification.

Cognification can be defined as the application of knowledge to boost the
performance and impact of a process. It does not restrict itself to what we
typically refer to as artificial intelligence, with Deep Learning as its latest and
hottest technique. Cognification includes as well the combination of past and
current human intelligence (i.e. all current humans online and the actions they
do). Under this definition, collective intelligence and crowdsourcing [30] are valid
cognification tools. Cognification does not imply either the existence of a super
AI but the availability of highly specialized intelligences that can be plugged in
depending on the needs of the problem to be solved.

c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 154–160, 2018.
https://doi.org/10.1007/978-3-319-74730-9_13
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Several initiatives aim to cognify specific tasks in Software Engineering, for
instance, using machine learning (ML) for requirements prioritization [26], for
estimating the development effort of a software system [31] or the productivity
of individual practitioners [22] or to predict defect-prone software components
[27]. This trend is also happening at the tool level, e.g., the recent Kite IDE1

claims to “augment your coding environment with all the web’s programming
knowledge”. MDSE should join this ongoing trend.

Moreover, we know the limited adoption of MDSE is due to a variety of social
and technical factors [14] but we can summarize them all in one: its benefits do
not outweigh its costs. We believe cognification could drastically improve the
benefits and reduce the costs of adopting MDSE.

In this paper we discuss the opportunities that cognification can bring to the
MDSE field, in terms of possible tools, process steps, and usage scenarios and
their empowerment through cognification. We also discuss how MDSE itself can
be applied to AI and knowledge–aware technology development, and we conclude
with some challenges and risks that this roadmap may encompass.

2 Opportunities in the Cognification of MDSE

All MDSE tasks and tools are good candidates to be cognified, since they typ-
ically involve plenty of knowledge–intensive activities. Here, we comment on a
few examples where the performance or quality of experience can be especially
boosted thanks to cognification.

2.1 Modeling Bots

Cognification can enable modeling bots playing the role of virtual modeling
assistant. Based on previous models on the same domain available online or on
a comparison between your current model and general ontologies, the bot could
suggest missing properties on the model, recommend best practices or warn that
some model aspects differ from the way they are typically modeled.

Preliminary work in this direction considers recommendations during the
construction of a model to reduce the effort made by designers. [29] proposes a
recommender that suggests which model element should be the target of a newly
created reference. Similarly, [21] studies the notion of an “auto-complete” that
is able to infer the intended pattern that is being designed.

In some contexts, models are created by domain experts by using a Domain-
Specific Language (DSL). This creation process includes manual activities like
auto-completing a partial model or introducing small fixes to ensure it satisfies
the integrity constraints of the domain. Proactive modeling [24] aims to automate
these manual activities. Bots could even interact with domain experts in a more
friendly environment (e.g. social networks, [25] would be a first attempt for
modeling in twitter) to facilitate the knowledge acquisition process.

1 https://kite.com/.

https://kite.com/
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2.2 Model Inferencers

A model inferencer is able to deduce a common schema behind a set of
unstructured data (logs, tweets, forum messages,...). This model would be a use-
ful “lense” to interpret the data. A good example of a model inferences is JSON
Discoverer [17]. Given a (set of) JSON documents, it analyzes the JSON data
and generates for you a class diagram showing graphically the implicit JSON
schema of your documents plus an object diagram representing their data.

In a related context, process mining [1] aims to achieve a similar goal with
respect to procedural information describing a process, action or activity.

2.3 Smart Code Generators

A cognified code generator would be able to learn the style and best prac-
tices of a particular organization and mimic them in the code it outputs. By
learning from good code samples, the generator would be able to imitate the
company’s best practices and style and maximize its chances to be accepted as
a new “developer” for the company.

This line of thought is close to existing works on example-based generation of
modeling artefacts. For instance, [19], where a search-based approach is used to
derive model-to-model transformations from sample input and output models.

2.4 Real-Time Model Reviewers

Machine learning has already been used in the context of verification and val-
idation to tune verification algorithms by selecting the best choice for heuris-
tics [12,15]. However, here the aim would be constructing a real-time model
reviewer able to give continuous feedback on the quality of the model from the
point of view of consistency and correctness.

Such tool would resort to different verification and validation (V&V) tech-
niques, using information about previous analysis to predict the complexity of
the analysis [16] and select the most suitable method to verify a particular model.
This problem is known in the A.I. field as the algorithm selection problem [20].

In addition to selecting the most adequate tool, previous experiences can be
useful by highlighting the most frequent faults or the constructs that are most
likely to produce problems. This type of information can be used to guide the
search process, e.g. which kind of properties should be checked for a particular
model. Some preliminary works addressed the use of semantic reasoning for
validation and property checking for models: for instance [9], propose a simple
tool able to address issues that cannot be identified by traditional type checking
tools.

Another approach to model quality would be to evolve or adapt models rather
than detect and correct faults. For instance, the notion of liquid models [23],
which considers that design-time models should not be immutable artifacts, but
that they should evolve to take into account potential deviations occurring at
run-time. Cognification could be used as a means to study and explore candidate
models during this evolution process.
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2.5 Advanced Self-morphing and Collaborative Modeling Tools

Automatic learning approaches can also be used within self-morphing model-
ing tool, able to adapt its interface, functions, behaviour (and even the expres-
siveness of the language offered) to the expertise of the tool user and to the
context of the modeling problem addressed. This challenge is related to the
problem of plastic user interfaces, i.e. interfaces able to keep its usability under
changing uses and circumstances (responsive websites can be regarded as a lim-
ited example of a plastic UI). While there has been some work on using MDE to
generate plastic UIs [28], building a plastic MDE IDE remains an open challenge.

The tool should not just adapt to different user profiles but also effectively
support the collaboration of those users. Indeed, cognification also comprises
exploitation of human and collective intelligence. As an example, we could lever-
age crowdsourcing techniques [6] to devise the best domain-specific modeling
language to be used by the tool in order to optimize the communication process
between modeling experts and domain experts. This has been so far applied
to the problem of agreeing on the concrete syntax notation of domain-specific
languages, as described in [4].

2.6 Semantic Reasoning Platforms, Explainability and Storification

At the purpose of making models as self-explanatory as possible, semantics-based
techniques can be applied to the concepts in the model to enable automatic
explanation of models. This would require a semantic reasoning platform
able to map modeled concepts to existing ontologies and provide definitions
(similar to Kindle WordWise2), references, relations to relevant concepts, services
and contextual information; and conversely also generate new knowledge through
inference.

This would also enable automatic generation of thesaurus, data dictionaries,
and even explanatory text out of models. Integrating MDE with resources such
as ontologies, semantic processors, NLP tools, rule–based inference engines, and
alike will be crucial in this setting.

2.7 Scalable Model and Data Fusion Engine

Big data architectures and data streaming platform enable the construction of
data fusion engines that are able to perform semantic integration and impact
analysis of design-time models with runtime data such as software usage logs,
user profiles and so on. A typical use case is the integration of Web applica-
tion logs, which are widespread in Web servers, with user interaction models of
Web applications. An example is the work [2,3] which integrates with a scalable
approach the real-time big data stream coming from large–scale Web sites with
IFML models [7]. This close interaction between design and runtime models is
also the focus of the MegaMart2 EU project3.
2 https://www.amazon.com/gp/feature.html?ie=UTF8&docId=1002989731.
3 https://megamart2-ecsel.eu/.

https://www.amazon.com/gp/feature.html?ie=UTF8&docId=1002989731
https://megamart2-ecsel.eu/
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3 Model-Driven Engineering of AI and Knowledge-Aware
Software

Besides the advantages that cognification can bring to MDSE, the reverse is also
true: MDSE techniques can be used to improve knowledge-aware technologies.
As in any other domain, the use of models (and its abstraction power) can help
simplify, interoperate and unify a fragmented technological space, as it is the case
right now in AI, with plenty of competing and partially overlapping libraries and
components for all kinds of knowledge processing tasks.

So far, this line of work remains largely unexplored. A few exceptions are [13],
aiming to integrate machine learning results in domain modeling, [10], aligning
MDE and ontologies, and works oriented to model-driven development of seman-
tic Web based applications [8] and semantic web services [5].

4 Conclusions and Challenges

As we described in this paper, a lot of possible scenarios and tools in MDSE
can benefit from the application of cognification techniques in broad sense. Even
if only a few of them become a reality in the short-term, they have the poten-
tial to drastically change the way MDSE is used and perceived in the software
community.

Nevertheless, some risks need to be addressed. The main challenge is that
most of the above scenarios imply the availability of lots of training data in
order to get high-quality learning results. In MDSE, this means a curated catalog
of good and bad models, meta-models, transformations, code, and so on [11].
While some model repositories are available (e.g. REMODD4 or MDEForge5)
the number and diversity of the modeling artefacts they contain is still limited.
Improving this situation is a strong requirement towards the cognification of
MDE.
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Abstract. Increasingly, software acts as a “non-human modeler”
(NHM), managing a model according to high-level goals rather than
a predefined script. To foster adoption, we argue that we should treat
these NHMs as members of the development team. In our GrandMDE
talk, we discussed the importance of three areas: effective communica-
tion (self-explanation and problem-oriented configuration), selection, and
process integration. In this extended version of the talk, we will expand
on the self-explanation area, describing its background in more depth
and outlining a research roadmap based on a basic case study.

1 Introduction

There is increased interest in tools managing models by themselves according
to goals, rather than following a predefined script. A case study for the 2016
Transformation Tool Contest [8] on the class responsibility assignment problem
showed how traditional model-to-model languages had to be orchestrated with
higher-level components that guided rule applications (e.g. genetic algorithms,
simulated annealing, reachability graphs or greedy application of a heuristic).
Two solutions were based on reusable model optimisation frameworks (MOMoT,
MDEOptimiser). These tools were evaluating options in a model much like a
human would: these could be considered as “non-human modellers” (NHMs).

Self-adaptive systems based on the models@run.time approach are another
good example of tools that manage models on their own. The models@run.time
approach advocates using models to provide a formal description of how the
system should behave. In a self-adaptive system, there is a feedback loop that
guides the evolution of the model based on its current performance and the
environment. Some examples of self-adaptive models@run.time include smart
grid outage management [4] or ambient assisted living [9].

These NHMs are software entities which participate in a modeling team. As
team members, we need to be able to influence their behaviour and understand
why they took specific decisions within the models: this may be particularly
complex when talking to domain experts rather than MDE specialistics. The
NHMs also need to find their place in our processes and in the lifetime of the
system that is being developed: they could be used once early in development,
invoked once per development sprint, or brought in as another member of a
c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 161–171, 2018.
https://doi.org/10.1007/978-3-319-74730-9_14
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(possibly live) collaborative modeling tool. These challenges point to several
interesting lines of research, which were raised at the GrandMDE workshop.

This extended version of the original proposal will focus on the discus-
sion developed during the GrandMDE workshop around the self-explanation
area, in which strong links with existing ideas from traceability and provenance
were identified. After introducing this expanded background, a motivational
case study will introduce a general roadmap for our envisioned approach. This
roadmap will be grounded around existing standards and industrial-strength
tools where possible.

2 Discussed Topics

Based on the previous discussion, these are some of the lines of work that
we considered relevant to integrating non-human modellers (NHMs) as team
members:

– Accessible configuration: existing tools have wildly different approaches to
fine tune their behaviour, and domain experts find it increasingly harder to
figure out which knobs to turn. It should be possible to abstract over specific
approaches and provide users with a problem-centered description of any
parameters, much as SPEM describes software processes abstractly.

– Self-explanation: the approaches currently available for this capability in self-
adaptive systems are ad hoc and costly to develop, making them very rare in
practice. There is no common approach for model optimisation either. This
line of work would start by allowing changes to a model to be annotated
with “why” a change was made: which reasoning process was followed, what
inputs were used, and which other alternatives were evaluated. This would be
followed up with producing accessible descriptions of this stored information.

– Selection: the community would benefit from building a coherent toolbox of
options for NHMs and guiding practitioners on how to pick the right one for
a particular problem, much like how the Weka tool brought together many
data mining approaches into a common framework1.

– Process integration: depending on the task, the NHM will need to be inte-
grated into the day-to-day work of the team. Beyond one-off uses, NHMs
could be part of a continuous integration loop (reacting to commits on a
model), or participate in a shared modelling environment (perhaps with the
ability to chat with users about observed issues).

Among these topics in our talk at the GrandMDE’17 workshop, self-
explanation attracted most of the questions afterwards: attendees requested a
concrete motivational example, and there were several discussions on how this
challenge tied to existing work in the areas of traceability and provenance. The
rest of this work will focus on answering those questions and setting out an initial
roadmap for advancing the state of the art in self-explanation of NHMs.

1 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 1. MAPE feedback loop using different runtime model types [19]

3 Background for Reusable Self-explanation

Adaptive software relies on feedback loops between sensors that bring informa-
tion from the environment, and effectors that change it. When it is model-based
(i.e. following a models@run.time approach), these sensors and effectors will be
exposed through runtime models. Giese et al. [10] defines runtime models as
models that:

– Are designed to be used during the runtime of a system,
– are encoded to enable its processing,
– are casually connected to the system (changes in the model propagate to the

system and/or the other way around).

Wätzoldt and Giese [19] presented a useful categorisation of runtime models
around the MAPE (Monitor, Analyze, Plan, and Execute) loop [13], shown in
Fig. 1. Within this loop, we can observe the following types of models within the
adaptation engine:

– Reflection models reflect concerns about the running system (system models)
and its context (context models).

– Evaluation models contain the specification of the system (requirement mod-
els) and any assumptions made (assumption models). These define the solu-
tion space of the system.

– Change models describe specific solutions for the space defined by the evalua-
tion models. Variability models explicitly describe the available options (much
like a feature model), while modification models only indicate what changes
would be made on the reflection model.
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– Causal connection models link the system to the reflection models. Monitoring
models indicate how the reflection models should be updated from the system
and the context, whereas execution models specify how to operate the system
based on the information in those reflection models.

In this case, typically the evaluation and causal connection models would be
produced by the developers of the adaptive system, and the reflection and change
models would be managed by the adaptation engine itself. Here, the adaptation
engine would be the NHM.

Self-explanation would therefore entail telling users why the adaptation
engine made a specific change in those reflection and change models. This change
could come from multiple reasons: changed requirements or assumptions in the
evaluation models, different solution alternatives in the change models, or new
data coming through the monitoring model. Alternatively, a user could simply
want to see a snapshot of the reflection models at a certain moment, and request
the reason why a specific value or entity was present.

Solving this problem requires combining ideas from multiple areas. So far,
we have identified three: traceability, model versioning and provenance. The
following sections will provide more background on each of these topics and how
they relate to self-explanation for these adaptation engines.

3.1 Traceability

Linking system requirements to its various design and implementation artifacts
has been a concern for a long time. Gotel and Finkelstein defined requirements
traceability back in 1994 [11] as “the ability to describe and follow the life of
a requirement, in both a forwards and backwards direction”. Much work has
been done since then in terms of defining guidelines for traceability, creating
and maintaining trace links, and querying those trace links after the fact [5].

It is hard to create and maintain traceability links between manually created
artefacts. However, the automation brought by MDE has made it possible to
generate links between models in most of the popular model-to-model trans-
formation languages (e.g. ATL [12] or ETL [15]). These traceability links are
typically quite simple, with references to the various ends of the link (source and
target elements) and the transformation rule that was applied, as mentioned by
Matragkas et al. [16].

On the one hand, self-adaptive systems are automated just like model-to-
model transformation engines, and therefore it should be possible to include
trace creation into their processes. On the other hand, self-adaptive systems
need to operate in an uncertain environment - their decisions usually require
more complex reasoning and are dependent on the specific context at the time.
Generic source-target links would be unable to capture this information: a more
advanced information model is required. It appears that a richer case-specific
traceability metamodel would be ideal for this situation, as recommended by
Paige et al. [18].
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3.2 Model Versioning

Whereas traceability is about following the life of a requirement or seeing where
a piece of code really come from, versioning is about keeping track of how a
specific artifact evolved over time. Version control systems (VCSs) have been a
staple of software engineering for a very long time, and current state-of-the-art
systems such as Git2 make it possible to have developers collaborate across the
globe.

Models also evolve over time, and it is possible to reuse a standard text-
based VCS for it. However, text-based VCSs do not provide explicit support for
comparing models across versions or merging versions developed in parallel by
different developers. This has motivated the creation of specific version control
systems for models: model repositories. EMFStore [14] and CDO3 are mature
examples. EMFStore is file-based and tracks modifications across versions of
a model, grouping them into change packages which can be annotated with
a commit message. CDO implements a pluggable storage solution (by default,
an embedded H2 relational database) and provides support for branching and
merging. Current efforts are focused on creating repositories that scale better
with the number of collaborators (e.g. with better model merging using design
space exploration [6]), or with the size of the models (e.g. Morsa [17]).

Self-explanation needs to keep track of the history of the various runtime
models, and could benefit from these model repository. However, current sys-
tems only keep unstructured descriptions (in plain text) of each revision that a
model goes through. It would be very hard to achieve self-explanation from these
commit messages: we would rather have commit models that are machine read-
able. These commit models would have to relate the old and the new versions
with external models, perhaps under their own versioning schemes. Support-
ing these cross-version relationships may require a good deal of research and
technical work as well.

3.3 Provenance

Buneman et al. defined data provenance (also known as “lineage” or “pedigree”)
as the description of the origins of a piece of data and the process by which it
arrived at a database [3]. This was further divided into the “why provenance”
(table rows from which a certain result row was produced) and the “where prove-
nance” (table cells from which a certain result cell was produced).

Since then, provenance has been slowly extended to cover more and more
types of information systems, and has taken special importance with the advent
of “big data”. Commercial vendors such as Pentaho now include data lineage
capabilities in their own Extract-Transform-Load tools4.

Various efforts have been made to standardise the exchange of provenance
information. In 2013, the Provenance Working Group of the World Wide Web
2 http://git-scm.com.
3 http://projects.eclipse.org/projects/modeling.emf.cdo.
4 https://help.pentaho.com/Documentation/6.0/0L0/0Y0/Data Lineage.

http://git-scm.com
http://projects.eclipse.org/projects/modeling.emf.cdo
https://help.pentaho.com/Documentation/6.0/0L0/0Y0/Data_Lineage
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Fig. 2. High-level overview of the PROV data model [1]

Consortium (W3C) produced the PROV family of documents, which “defines a
model, corresponding serializations and other supporting definitions to enable
the inter-operable interchange of provenance information in heterogeneous envi-
ronments such as the Web”. Provenance is further generalised to knowing the
origins of any digital object: provenance records indicate how entities were gen-
erated by activities undertaken by various agents [1]. This high level view of
the PROV data model is shown on Fig. 2. PROV includes further provisions for
specifying roles taken by agents and entities in an activity, and how activities
may follow plans across time.

This view of provenance can be seen as a richer, more detailed view of trace-
ability that not only requires following artefacts that are produced from one
another, but also tracking carefully what was done and by whom. In fact, the
PROV data model could be used as a starting point for the formal notation of
the machine-readable “commit messages” suggested in Sect. 3.2.

4 Example Scenario

After introducing the various topics related to self-explanation for NHMs, this
section will propose a concrete scenario where a reusable infrastructure for self-
explanation of models@run.time approaches would be useful. It is from the ser-
vice monitoring and management domain. Specifically, it is about the use of
self-adaptation for the management of clusters of Hawk servers.

4.1 Scenario Description

Hawk is a heterogeneous model indexing framework [2], originally developed as
part of the MONDO project. It monitors a set of locations containing collections
of file-based models, and mirrors them into graph databases for faster and more
efficient querying. Hawk can be deployed as an Eclipse plugin, a Java library, or
a standalone server. The server version of Hawk exposes its capabilities through
a web service API implemented through Apache Thrift. Prior studies have evalu-
ated how a single Hawk server can scale with an increasing number of clients [7],
with competitive or better results than other alternatives (CDO and Mogwai).

Despite these positive results, Hawk servers still have an important limita-
tion: at the moment, there is no support for aggregating multiple servers into
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a cluster with higher availability and higher scalability. Hawk can use the high-
availability configurations of some backends (e.g. the OrientDB multi-master
mode), but this will not improve the availability of the Hawk API itself, which
will still act as a single point of failure.

The only way to solve this is to have entire Hawk servers cooperate with
others: they should distribute their load evenly and monitor the availability of
their peers. Periodic re-indexing tasks should also be coordinated to ensure that
at least one server in the cluster will always remain available for querying, and
out-of-date servers should be forced to update before becoming available again.

Fig. 3. Case study: self-adaptive Hawk clusters

This results in a self-adaptive system like the one shown in Fig. 3, where the
adaptation layers wraps over the collection of Hawk servers (the “system”) and
the monitored model storage locations (the “context”):

– The “User” of the cluster manages two models: the description model of the
intended contents of the cluster (locations to be indexed, and servers to be
managed), and the non-functional service parameters model of the cluster
(desired tradeoff between availability and freshness).

– The “Monitor” step of the MAPE loop uses the description as a monitoring
model and queries the various servers and locations. The obtained information
is used to update the cluster status model, a reflection model where each
change is annotated with metadata (e.g. query timestamp, response time,
observed errors) and linked back to the element of the cluster description
model that caused it.

– The “Analyze” step takes the cluster status model and revises the cluster
inconsistencies model, removing previously observed inconsistencies that no
longer hold (linking them back to the evidence) and adding new inconsisten-
cies (again, linked to the evidence) where servers are outdated or unavailable.



168 A. Garcia-Dominguez and N. Bencomo

The cluster inconsistencies model would be a change model, as it reflects the
problem to be solved in the “Plan” step.

– The “Plan” step produces a set of cluster modification plan models with dif-
ferent alternatives to solve the inconsistencies. These alternatives are different
sequences of invocations of the Hawk management API. Their elements may
solve (partially or fully) certain inconsistencies, and each plan will need to be
scored according to the cluster service parameters. These could be considered
as execution models.

– Finally, the “Execute” step will run the highest scoring modification plan
and record the results of those invocations in a modification log model (yet
another reflection model). Each log entry needs to be justified from the orig-
inal elements of the selected modification plan.

4.2 Approach for Reusable Self-explanation

Each of these MAPE steps is acting as its own NHM, taking in the latest versions
of independently evolving models and combining them with external information
to drive the evolution of its own runtime models. Allowing users to develop
trust by gaining an understanding of the workings of the adaptation engine is
important for the wider adoption of Hawk clustering. It may seem that tracking
all these adaptations would require purpose-specific models and infrastructure,
but on closer examination, there are already many elements in the state of the
art that can be reused.

The PROV Data Model is a promising start for a reusable metamodel for
self-explanation of changes in runtime models (Sect. 3.3). However, there are
multiple ways in which PROV could be used:

1. PROV explains each element in each version of the runtime models. The
activities are the MAPE steps, the agent is the adaptation engine, and the
entities are the source pieces of evidence for the element. It is not exactly
clear how would the reasoning for a particular element being there would be
linked.

2. PROV explains each change applied to each version of the runtime models.
The activities are the changes themselves, the agent is the MAPE step, and
the entities are the source pieces of evidence for the element, as well as the
reasoning for that change (or group of changes). Our initial estimation is
that this approach would provide more fine-grained information for later self-
explanation.

Regardless of our selection, PROV lacks specific provisions for model manage-
ment activities, or pointing to certain model elements within a specific version
of a model. These would need to be defined and developed.

Tracking the history of the models themselves can already be done through
the model repositories mentioned in Sect. 3.2, but it is unclear how to store the
above PROV descriptions and link them back to the various revisions of the
models. The PROV descriptions could be kept as complementary models in the
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repository, or they could be kept as commit models which replace the usual
textual commit messages. Using complementary models could be easier to reuse
across model repositories, but some conventions would still be needed to link the
tracked model to the PROV information. Using commit models could be more
natural if the model repository already tracked model changes in its commits
(like EMFStore): links could be directly established to those elements. This is
another area that merits further research.

Finally, once the PROV records have been created and stored, the next part
would be presenting them in a manner that is approachable but still reusable
across applications. Conceptually, what we want is (i) being able to track the
state of the MAPE loop at a certain point of time, and more importantly (ii)
answering how a model element or value in it came to be. While (i) should be
readily available through sensible use of model versioning, we are not aware of
a reusable interface for querying the information in (ii). Conceptually, it would
be a more powerful version of the capability of most version control systems to
know when was a certain line of text touched, and by whom.

5 Research Roadmap

Summarising the discussion from the previous section, we can establish an initial
roadmap for the creation of a first prototype of the envisioned reusable self-
explanation framework for self-adaptive systems following the MAPE loop:

1. First of all, the creation of basic self-adaptive prototypes that achieve the
intended functionality except for the self-explanation capabilities.
Deriving the self-explanation framework from working software (bottom up)
should provide a more realistic implementation, and will give us more expe-
rience in the implementation of self-adaptive systems according to the mod-
els@run.time paradigm. Hawk will benefit earlier from the horizontal scala-
bility as well.

2. Next, the prototype would be extended with simulation capabilities for the
system and environment, in order to create new situations for testing adapt-
ability more quickly. This would make it possible to see exactly how the
system adapted to a predefined situation, and check if the self-explanation
capabilities meet our expectations.
Ideally, because of the models@run.time approach, this should be a matter
of mocking the answers from the system - the rest of the approach should
remain as is.

3. Being able to run the self-adaptive system in real and simulated environments,
the next part of the work would be comparing the two approaches to extending
PROV that were observed. Initially, it would be a matter of recording the
information in both ways (element-first or change-first) and comparing their
level of detail, and the relative ease of capture and querying.

4. This would be followed by the integration of the PROV records into the his-
tory of the runtime models, whether as side-by-side models or as the previ-
ously mentioned commit models. The comparison would also need to take into



170 A. Garcia-Dominguez and N. Bencomo

account practical details such as scalability over time and model complexity,
ease of use and reusability across different model repositories.

5. Finally, the visualisation of the PROV records could be treated in multiple
ways. The envisioned goal is for a side-by-side view of the selected model
element and its history, where the user may be able to pull additional PROV-
encoded information on demand, at least over a single iteration of the full
MAPE loop. The links identified between the models in Fig. 3 would enable
this, unless proven otherwise during the design of the PROV extensions.

6 Conclusion

This paper started from a general proposal for the thorough consideration of
goal- or requirement-based non-human entities managing models (the so-called
“non-human modellers”) as additional members of a modelling team that we
must talk to, understand, pick and integate into our processes. The “reusable
self-explanation” part took the most questions during the event, and for that
reason we expanded on some of the background behind these ideas and described
a scenario from the service monitoring domain in which it would be useful.

The discussion has touched upon the fact that most of the ingredients already
exist: traceability and provenance have been around for a long time, and model
versioning is a common practice in industrial MDE environments, with mature
purpose-specific software to do it. However, our understanding is that their spe-
cific combination for reusable self-explanation has yet to be achieved, and for
that purpose we have set out a bottom-up roadmap which starts with the devel-
opment of a testbed and continues with the extension, storage and reusable
visualisation of a dialect of the PROV specification.
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Abstract. This contribution describes a number of challenges in the
context of Model-Driven Development for systems and software. The
context of the work are formal descriptions in terms of UML and OCL.
One focus point is on making such formal models more approachable to
standard developers.

1 Introduction

Model-driven development (MDD) is regarded today as a promising approach to
system and software design, based on the idea that expressive, abstract models
and not concrete code is in the focus of the deployment process. The terms
‘narrow’ and ‘broad challenges’ refer to our view that for bringing the MDD
vision into practice, short term and long term goals have to be considered.

As shown in Fig. 1, in our view on the development process we distinguish
between development artifacts (in the left lane) and property artifacts for qual-
ity assurance (in the right lane). Our work concentrates on formal UML and
OCL models and offers on the basis of the design tool USE [5,7] various quality
assurance approaches based on testing [11], validation [6] and verification [8] for
structural and behavioral [3,10] aspects.

2 Challenges for Model and Transformation Properties

Inspired by [1] this contribution is designed to formulate some ideas for possi-
ble research in Model-Driven Development (MDD). Figure 1 shows our view for
structuring and arranging challenges in MDD. The left lane sketches a (tradi-
tional) waterfall process (with feedback) using core development artifacts (e.g.,
models, code): Starting from a high-level, descriptive model various model trans-
formations lead to an efficiently realized program of the initial model. The right
lane emphasizes the role of property artifacts (e.g., validation scenarios, proofs,
tests) that quality check the core development artifacts. The middle lane puts
emphasis on involving human developers stressing the need for human-oriented
techniques in the development process.

As there are several kinds of models (e.g., descriptive or prescriptive ones),
different properties will be of interest. For example: (a) global properties valid
in the complete model or local properties for model parts must be separated;
(b) invariants and contracts have to be checked against implementations.
c© Springer International Publishing AG 2018
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Fig. 1. Context for MDD challenges.

This implies finding and fixing appropriate techniques in the development
process. For example: (a) global invariants have to be transformed into local
contracts; (b) conceptual modeling features (as e.g., associations) must be
turned into programming language like features (e.g., class fields); (c) platform-
independent features must be specialized into platform-dependent features;
(d) large models must be split into manageable small model slices; (e) gener-
ally, descriptive high-level features must be transformed into efficient low-level
features.

We suggest the handling of models and model transformations with light-
weight model finders and model provers. Different proving machineries have been
suggested and are already employed for checking model qualities, e.g., relational
logic, rewriting, description logics, logic programming, SAT, or SMT. These dif-
ferent approaches have all their own advantages, allow to inspect different model
qualities and can coexist in the MDD world. A general strategy for the formula-
tion of properties (of models and transformations) in an approach-independent
way is however still missing. For example, we have previously developed rather
particular model-to-model transformations in order to map (a) behavioral prop-
erties to efficient structural properties (filmstripping) [12], (b) multi-level mod-
els into two-level models [4], (c) complex model features into simpler ones (e.g.,
transformation of composition and aggregation into class diagrams with con-
straints) [13], or (d) linear temporal logic into UML and OCL for validation and
verification purposes [10].
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A continuously high priority in the field of model finders is to increase the
performance in order to keep up with the ever increasing comlexity of systems
and their models. New techniques for the validation and verification of (par-
tial) models are still coming up regularly [2,16]. However, none of the existing
approaches to date has a full coverage of the modeling elements and it is difficult
to find – or choose – the right verification engine. A major part of the problem is
the lack of benchmarks for these verification engines to compare feature sets and
performance of existing tools. Without common criteria that can be compared
it is difficult to judge the effectiveness of the approaches in comparison to each
other. Such benchmark needs to be flexible enough to account for tools that
can only handle specific validations or only support a restricted set of modeling
elements.

Further challenges are located at the more detailed levels. They include the
handling of (a) arithmetic or non-classical logics, (b) more data collections like
tuples, (c) advanced behavioral features like state machines.

Finally, there exists no tool that can handle most types of modeling
paradigms to be considered suitable for everyday use in most situations. The
solution to multiple modeling problems is often scattered among multiple
approaches with different tools. There exists no integration between these tools
and the paradigms have to be covered individually, meaning that every paradigm
has to be solved with a completely different approach with ever changing details,
i.e. required artifacts and their usage.

3 Challenges for the Development Process

Formal techniques as the ones advocated by us are usually machine-oriented,
not human-oriented descriptions. We see a need to make formal techniques more
approachable to everyday developers and to allow for a development style that
mixes formal and informal techniques.

Taking Bran Selic’s slogan “Objects before classes” seriously, we want to
offer the option to start modeling with objects and to create classes based on
objects. Object diagrams are less abstract than class diagrams, they represent
a specific moment of time in a system. When the whole system is not known
during the start of the development process, it might be easier to model such a
specific moment. A class is an abstract concept, objects are more familiar, they
can represent a real entity and are easier to grasp. When the goal is to model a
whole system, a single object diagram will probably not be enough. But it can
be used as a starting point to make educated guesses and transform it into a
first version of a class diagram. Similarly, developing formal behavioral models
from behavioral scenarios remains a challenging task.

To explore the possibilities of starting modeling with objects, we developed a
plugin for the design tool USE. As shown in Fig. 2, it is possible to create objects
without corresponding classes and links without corresponding associations, an
approach that shows many similarities to partial models [15]. Most parts can
be missing, to allow for more freedom in creating the object diagram. In the
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Fig. 2. Transformation example: object diagram to class diagram (Color figure online)

given input example, some role names are missing. The second diagram then
shows the result of the transformation from objects to classes. Looking at the
MasterThesis association, the links in the object diagram are merged and a
completely labeled association is the result. The Course association however,
results in a conflict, because different role names are used for the same end in the
source diagram. Now that it is highlighted in the output diagram, it can be fixed
in the input diagram as a next step in the iterative modeling process. Another
conflict is shown in the age attribute of the Teacher class. The plugin detects
different types of the attribute, which again gets highlighted. The highlighting
is done using an informal notation, utilizing color and symbols. With the help
of the color, the problems can be easily found, even in bigger diagrams. The
symbols then highlight the specific problem. In this case, the exclamation mark
highlights a conflict and the question mark highlights missing information.

This prototypical version of the plugin can already be used to get acceptable
results. However, it is planned to expand the functionality. The multiplicities
for example are currently given directly based on the exemplary object diagram,
which is of course wrong most of the time. Instead, it is planned to make the
iterative creation process more interactive and allow the user to directly input
the wanted multiplicities. User input should be stored for all further iterations
and only be replaced by new user input. Another future task includes the order
of attributes in the classes. A concept has to be developed, how the order of the
object-attributes can somehow be preserved, even though different objects might
have different orders. Another limitation of the current version is the handling of
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attribute types. Right now, only four different types are allowed, this needs to be
expanded. Also up to further discussion is the conflict between the specific types
Real and Integer, like in Fig. 2. It might be better to merge the types instead.
Further ideas for extensions include the implementation of generalization, higher
order associations, composition and aggregation.

Apart from considering structural aspects in taking object diagrams as the
basis for the design of class diagrams, the same principle ‘from concrete to univer-
sal descriptions’ can be considered for behavioral aspects. Instance-level sequence
diagrams and object diagram sequences can be taken as the starting point for
behavioral descriptions like pre- and postconditions, protocol state machines or
operation implementations, as this has been done to a certain extent already
in [9,14].

4 Conclusion

This contribution has shortly discussed some narrow and broad challenges for
model-driven development. Our focus is and will be on formal system descrip-
tions, however we believe that much work has to be done in order to make the
many existing methods and tools approachable to software and system develop-
ers who do not have expertise on formal approaches.
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Abstract. Domain-specific modelling has moved the focus of model content
from the implementation domain to the problem domain. However, much
research still sees most modellers as programmers – a tacit assumption that is
exemplified by the use of IDEs as modelling environments. Model-Driven
Engineering research should instead be reaching out to make itself presentable
to subject matter experts – as language creators, users, and research subjects.
Every leap in developer numbers has been triggered by a new format, and we
need another such leap now. Domain-specific modelling is ideally placed to step
up and enable the creation of applications by people of all backgrounds.

Keywords: Domain-specific modeling � Productivity
Programmer demographics

1 Introduction

Domain-specific modelling has moved the focus of model content from the imple-
mentation domain to the problem domain [1]. However, much Model-Driven Engi-
neering (MDE) research still sees most modellers as programmers – a tacit assumption
that is exemplified by the use of IDEs as modelling environments, diagrams bearing a
striking resemblance to UML, and structures straitjacketed into the hierarchical tree of
XML. The false assumption seems to be “because I must build the language workbench
in a programming IDE, experts must create their languages in that IDE, and modellers
must model in that IDE”. MDE research is stuck in a programmer mindset and in IDEs
with roots in the last millennium, when it should be reaching out to make itself
presentable to subject matter experts, both as language creators and users.

This paper looks at the development of our industry over its whole history, con-
sidering the broad factors that are at play in its evolution. The problem of the focus on
programmers is shown to be the lack of an infinitely expandable supply of program-
mers, and the inevitable effects on average programmer productivity caused by the
natural ‘best first’ allocation of programmers from the high end of the ability scale.

2 Developments in Developer Demographics

Every leap in developer numbers has been triggered by a new format, either in lan-
guages (machine code to assembly language to third-generation languages (3GLs)) or
devices (mainframes to PCs to mobile). ‘Language leaps’ came from research making
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software development easier, so that more people are able to successfully create
applications. ‘Device leaps’ are different: rather than increasing the supply and
decreasing the cost, they increased the demand. Language leaps have increased
developer numbers much more than devices leaps: an order of magnitude with the
move to assembly or to 3GLs, as opposed to a ‘mere’ doubling alongside the PC
revolution in the early 1980s, when the number of computers grew by a factor of over
25 (Fig. 1).

Interestingly, the increase in the number of developers in the language leaps seems
to mirror the increase in productivity of a given average developer, e.g. roughly five
times faster with 3GLs compared to assembly language. Since the early 3GLs, there has
not been an appreciable leap in productivity, so it seems fair to assume that we have
made only incremental progress in making software development accessible to people
for whom it was previously too hard. Learning and working in JavaScript is not much
easier than learning and working in COBOL. Contrast that with how much easier either
is than working directly in machine code.

At the start of the 1980s, there were 313,000 programmers in the USA; a decade
later, one million. (The US percentage of world programmers shrunk only modestly,
from 77% to 62%, so this figure is useful globally too.) Let us assume a normal
distribution for programming skill in the population: any other plausible distribution
gives essentially the same results. For the sake of familiarity, and in the lack of better
data, let us take the same mean of 100 and standard deviation of 15 as in IQ tests.
Similarly, for simplicity let us take the US population to be constant at 240 million
(only a few percent different at either end of that period). As programming was by no
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Fig. 1. Growth in numbers of programmers and computers globally
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means a new profession in 1980, let us further assume that the programmers then were
the top people in terms of innate programming skill, and that the rest of the million
added during that decade were the next best, rather than distributed more widely. Many
assumptions, but we are not seeking an exact answer, just a general picture: What does
the innate skill of programmers look like over time?

The programmers in 1970 ranged from percentile 99.933 to 100, so the median
programmer was at percentile 99.966. By 1980, new programmers were being added at
percentile 99.870. In 1990, the number of programmers in the US passed one million,
so percentile 99.73. By 2000, the number of programmers in the US passed 3 million,
so new programmers then were being added at percentile 98.75. On the IQ scale1, these
percentiles would correspond to scores of 151, 145, 142 and 134. For a programmer
working since 1970, there has been a significant drop in the expectation of a team-
mate’s innate ability back then compared to a new programmer in 2000.

In fact, innate programming skill is made up of more than IQ. IQ tests, being a
series of small problems, do little to measure ability to cope with complexity. That
skill, increasingly important for today’s programmers, is thus a somewhat independent
variable, plausibly also on a normal distribution. Another attribute useful for pro-
gramming is being able to put up with low-level detail (whether of problems, languages
or tools). Some smart people like that, others hate it; again, it seems an independent
variable. A fourth skill is being able to communicate with and work with people – a
skill which seems almost to correlate inversely with the previous one, and which the
stereotype of a programmer is generally seen as lacking. With some positive correlation
and some negative correlation on these skills, we can perhaps take them as four
independent normal distributions. What does innate programming skill look like, if it is
the product of four normally distributed independent variables? Each additional normal
variable sharpens the peak of the distribution, further increasing the drop in scores for
each percentile change at the top tail of the distribution (Fig. 2).

For any given programmer, there is significant variability in development velocity,
depending on the difficulty of the task. In particular, near the limit of the programmer’s
ability, velocity drops sharply, becoming zero at the limit. As the innate ability of new
programmers has dropped, the proportion of tasks which those programmers can
achieve progress with has dropped. When considered as part of a team, an individual’s
productivity contribution becomes negative around the limit of his ability.

In 2004, the number of programmers in the US peaked at 4 million, shrinking by
10% over the next decade before starting to grow again slowly, but still remaining
below 4 million. Outsourcing had an effect, as did the broader economy, but both of
those have now largely been overturned. As the level of programming skill available
outside the current ranks of programmers decreased, with no easing of the complexity
of tasks or improvements in the languages used, there came a point where a corollary to
Brooks’ Law [3] was reached: Adding new programmers to an industry would have a
negative effect on production.

This cessation in growth of the number of programmers in the US has lasted over a
decade. At the same time the US population has grown over 10%, and the demand for

1 https://www.iqcomparisonsite.com/iqtable.aspx.
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applications has grown significantly with the rise of the web, the smart phone and other
devices. Part of the demand has been met by programmers from overseas. However,
these have largely been meeting the needs of a US market rather than their own home
markets, and as their home markets grow, and wages even out across the world, this
temporary relief will inevitably dry up. When we hit our corollary to Brooks’ Law
globally, what can step in to save us?

3 Libraries, Frameworks and Languages

Components, libraries and frameworks are sometimes touted as offering a decisive
advantage. A pre-existing component or library may save a company’s time, but if
there is enough need to make working without a library inefficient, and no such library
yet exists, a company will simply assign a developer to write the library (explicitly or
implicitly). Writing the application code that uses it will of course be largely the same,
regardless of whether it was created in-house or available from elsewhere: one may be
better-targeted, whereas the other may be more mature. A library thus offers a pro-
ductivity gain to a company, but does not generally change the task of the programmers
who use it, or their productivity on that task.

A framework can be described as ‘a library with attitude’: it does more than offer
functions, letting you ‘fill in the blanks’ of its ready-built behaviour, and bounding and
guiding you on the content of those blanks. With respect to the problem domain task
and the architecture, a framework thus makes things easier for the software developer,
increasing productivity. But for the majority of frameworks, the content entered ‘in the
blanks’ is still largely 3GL code. If you are not up to the task of writing 3GL code, you

Fig. 2. Product of two (red) and three (blue) normally distributed variables [2] (Color figure
online)
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cannot successfully create an application even with the framework. A framework alone
will not make application creation available to a larger audience.

A domain-specific language, on the other hand, helps both in increasing produc-
tivity and in reducing the demands on the developer. The ‘blanks’ are filled in with
domain concepts, not code. By abstracting away from the implementation technology,
a DSL also often makes it possible to generate the same application for different
formats: web server and client, desktop app, and mobile app.

A graphical or projectional DSL in particular generally constrains you to only be
able to create legal models, as opposed to the illegal source code you could write while
trying to use a framework. Among programmers there are clearly a disproportionate
number who prefer text over graphics, compared to the population at large; conversely,
a graphical DSL is thus often a better choice when reaching out to current
non-programmers.

4 Related Research

Over such a broad period of history, the amount of related research is huge. We will
limit ourselves to either end of the period, to see what – if anything – has changed, and
whether there are new directions on the rise.

In 1954, when most development was still in machine code and moving to
assembly language, MIT hosted a session called “Future Development of Coding –

Universal Code” [4] on the use of flow diagrams in coding. 16% of participants had “a
higher level individual set up a flow diagram and persons at a lower level do the coding
of each block”. Grace Hopper “remarked that flow diagrams offer a potent means of
communication since they are not tied to the computer.” C. W. Adams “suggested that
if the specifications are sufficiently rigid, the machine itself could handle the coding”:
automatically generating full code from flow diagrams. G. E Reynold’s group built
diagrams with “magnetized blocks that are easy to erase and to assemble.”

Model-Driven Engineering has achieved its best successes when based on
Domain-Specific Modelling, rather than UML or text-based “models” [5]. A number of
tools exist, with the most successful being distinct from programming IDE or
abstracting away from it. Representational formats have coalesced around graphical
diagrams, which have changed little over the last 60 years. A growing trend changes
those ‘box and line’ diagrams, at least for beginners, to blocks that connect by inter-
locking [6, 9]. Modelling is also starting to become feasible on mobile platforms [7].

5 Conclusion

Good domain-specific modelling languages in non-IDE tooling have consistently
shown productivity improvements of a factor of 5–10 [5]. Given the earlier link
between productivity increase and increase in the number of people who can suc-
cessfully develop software, there would seem to be a good possibility that a DSM
approach could make application creation possible for an order of magnitude more
people. Our own experience with MetaEdit+ [8] tends to confirm this: we have clients
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where none of the modellers are programmers, clients where all are, and clients where
there is a mix. The future could well reach the ideal of a balanced mix of good
programmers and smart subject matter experts, all collaborating directly in the same set
of models. MDE is ideally placed to step up and make possible the creation of
applications of all formats, by people of all backgrounds.

Since the 1990s, much modelling research has focused on creating tools and lan-
guages, but with declining returns in terms of novelty, incremental benefit over current
industrial use, and adoption. For tools, researchers need to throw off their “not invented
here” attitudes, and reach out to investigate real industrial use of non-IDE based
commercial domain-specific modelling tools, both language workbenches and fixed
tools like Simulink and LabVIEW. For languages, rarely does a researcher have the
domain knowledge and experience to create a good DSM language for a company.
Rather, they should concentrate on being a catalyst, enabling a company to create its
own language, studying that process, and incrementally improving it as they learn over
several cases. In this area, more research is definitely needed and will be fruitful.
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Abstract. Model driven engineering community has made considerable pro-
gress in the last decade and a half as regards developing software systems with
enhanced productivity, quality and platform independence. However, in the
increasingly dynamic world, enterprises are facing a different kind of challenge
where the focus shifts from how to build to what to build. This paper proposes a
shift in focus of model driven engineering community to meet these challenges.
We outline an approach and a research agenda to realize the same.
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1 Introduction

Software systems are becoming ever pervasive. Systems are no longer islands and
resemble more and more an ecosystem or system of systems. At the same time, they are
subjected to a variety of change drivers such as globalization, regulatory changes, new
business models, technology churn etc. Enterprises need to respond to these change
drivers by suitably adapting business strategy, organisation structure, operating pro-
cesses and business systems. Moreover, to stay competitive, these adaptations need to
happen with minimal disruption, least cost, and shortest possible time. Considering the
size and complexity of modern enterprise, this is time-, cost- and intellectually-
intensive endeavour [1].

Since mid-90’s, Model Driven Engineering (MDE) community has been working
on this challenge but with software system development as its primary focus. Modeling
languages such as UML, BPMN have been designed to model different concerns of a
software system. Transformation mechanisms for automatically generating code from
these models have also been developed. These advances have led to enhanced devel-
opment productivity, quality and ease of keeping pace with technology advance [2].
Thus, it can be said that focus of MDE community has been on how to develop a
system right.

Enterprise is typically viewed in terms of three planes namely Strategy, Process and
System. The strategy plane defines the high level business goals and devises business
strategies to achieve them. The process plane defines operational processes and
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organisational structure to realize the business strategies. The systems plane supports
execution of operational processes in as automated a manner as possible. As the
enterprise operates in an increasingly dynamic environment, response to a change in
the environment might require a change in any of these planes. Introduction of such a
change can have ripple effects requiring changes at multiple places within as well as
across planes. As a result, implementing a change is time-, cost- and effort-intensive
activity [3]. On the other hand, the time window available for response is getting
increasingly shorter. As a result, the cost of delayed and/or erroneous response can be
prohibitive. Moreover, typically, decisions once taken up for implementation are
prohibitively expensive to undo. Therefore, it should not come as a surprise that most
of enterprise transformation initiatives hardly ever reach completion1.

Thus, there is a clear need for an infrastructure to support decision making pro-
cesses that provide a-priori certainty on the outcomes of decisions. This involves, at a
minimum, the mechanisms to capture the necessary and sufficient information pertinent
to the decisions in a formal manner. It should also provide for machinery to perform
qualitative and/or quantitative analysis of the outcomes of decisions where the decision
space is characterized by partial information and inherent uncertainty. The machinery
should be capable of dealing with uncertainty and incomplete information. It should
leverage domain knowledge to navigate the design space in an informed manner to help
arrive at right systems. The machinery should also enable a mapping from system
design space to system implementation space to ensure the systems are built right. It
should also provide for a learning machinery to derive insights from the past to help
arrive at and build right systems. This infrastructure should also be available at run
time so as to support dynamic adaptation. Thus, the focus of MDE community should
extend from building systems right to building the right systems.

Though this approach has wide applicability, we discuss it in enterprise context.
Section 2 provides an overview of the proposed approach. Section 3 provides an
outline of research agenda for realizing the approach. Section 4 outlines a few
exemplars illustrating use cases for the proposed line of attack. Section 5 provides a
summary.

2 Overview of Proposed Approach

Future enterprises are systems of systems with complex interactions operating in a
dynamic environment. Given the structural and behavioral complexity, detailed
understanding is possible only in localized contexts. At the same time, events occurring
in one context influence the outcomes in other contexts. Lack of complete information
coupled with inherent uncertainty make holistic analysis of systems intractable. As a
result, decisions pertaining to system design and implementation are unlikely to be
globally optimal. Non-availability of complete information and inherent uncertainty
make traditional optimization approaches impractical. Therefore, simulation-based
approach is the only recourse available for arriving at a “good enough” solution by

1 http://www.valueteam.biz/why-72-percent-of-all-business-transformation-projects-fail.
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navigating the design space [4]. However, considering the open nature of the problem
space an exhaustive navigation of the design space is infeasible. Thus, intelligent
navigation of design space guided by domain knowledge and learning from past
experience is called for. Figure 1 provides a pictorial description of a possible line of
attack that hinges on: (i) a layered view of enterprise, (ii) model-based machinery to
help arrive at right systems, (iii) model-based machinery to help implement the system
right, and (iv) a mechanism to map the two sets of models and a means to derive one
from the other.

The line of attack calls for availability of different kinds of models and modeling
formalisms for prescriptive and predictive analyses. Much of the information to con-
struct these models is available in enterprise but in a fragmented and heterogeneous
form. This calls for a machinery to extract the relevant information from these frag-
mented sources and process it in the right context to discover/construct/integrate the
right models. The right analysis machinery is required to play out what-if and if-what
scenarios using these models. The results of analysis need to be interpreted and insights
extracted to be fed back into the models. This is typically human-in-the-loop activity.
The analysis and synthesis burden on human experts can be significantly reduced by
having machinery that can extract patterns and knowledge from the data. Having
arrived at the right system models, they need to be realized through right system
implementations. Model based software development approaches can be used for this
purpose [5–7]. There is a need for a bi-directional mapping between system models and
implementation models. Such a mapping will enable derivation of implementation
models from system models and will also help feed back the insights extracted from
data produced by implemented systems into the system models. Thus, the proposed

Fig. 1. Model based machinery to support future enterprises
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modeling machinery not only helps at design time but also at run time facilitating a
continuous adaptation loop. Arriving at this bidirectional mapping is an open
challenge.

The models required to help arrive at the right systems need to address the why,
what, how aspects and the mappings between them from the perspectives of the rel-
evant stakeholders (i.e. who) [8]. The Why model specifies business goals and rela-
tionships between goals such as decomposition, dependency, subsumption, conflict etc.
The What model specifies high level business strategies and associated trade-offs, and
the Key Performance Indicators (KPI) in terms of which goal achievement can be
ascertained. The How model specifies detailed operational processes and workflows
involving the organisational structure and resources (i.e. Who model). Underpinning
these four models there is a domain model (ontology) that serves as semantic reference.
These models need to be simulatable independently as well as together so as to support
what-if and if-what scenario playing. Thus, simulation machinery constitutes the
necessary part for supporting design space navigation [9]. However, exhaustive navi-
gation is not scalable. Therefore, we need mechanisms that help draw upon domain
knowledge and past data to guide the navigation in the right direction [10]. It should be
possible to capture the learnings from past navigations in the form of reusable
knowledge.

The models required for helping implement the decision are already available in the
current MDE infrastructure2,3,4. It is possible to capture software system requirements
formally so as to refine those further to a form from which efficient implementation can
be generated.

In order to ensure consistent realization of system, we need to ensure traceability of
three kinds: (i) across the models used for implementing the system, (ii) across the
models used for arriving at the right system, and (iii) across the decision-space and
implementation-space models.

Implementation-space is well-understood in the sense the structures to be used,
their semantics, and their relationships can be readily discerned for a problem. MOF
enables creation of purposive modeling languages and mappings between them, and a
number of proven modeling and model transformation languages are already available.
This machinery suffices to address all modeling needs of implementation-space.

On the other hand, decision-space is not so well understood. While there do exist
some models with formal semantics [11], much of the available machinery comprises
of informal high level notations lacking in formal semantics. Therefore, it is difficult to
define the mappings between decision-space models. These deficiencies pose problems
in designing the system right. For instance, it is not possible to carry out what-if and
if-what analysis to determine the outcomes of the decisions. As decision spaces are
related, the associated models need to be analysed in an integrated manner which is not
possible for want of well-defined mappings. Thus, existing decision-space modeling
machinery is inadequate to support design-space exploration in an effective and

2 http://www.omg.org/spec/UML/.
3 http://www.omg.org/spec/MOF/.
4 http://www.omg.org/spec/QVT/.
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efficient manner. It is not even sufficient to support traceability between the various
decision-space models.

Due to the informal nature of decision-space models, it is difficult to maintain
traceability between decision-space and implementation-space models. As a result,
change impact analysis across the two spaces is not possible.

3 Research Agenda

We outline research required to come up with an integrated infrastructure that supports
decision making processes to design right systems and implement them the right way.
Specifically, the following investigations need to be carried out:

– In enterprise decision-space, there is a need to come up with formal models
addressing all the relevant aspects that bear on decision making. For instance, it
should be possible to specify goals and relationships such as [de]composition,
dependency, conflicts etc. between them. A goal should be specifiable in terms of
measurable quantities which in turn should be traceable to the system parameters as
shown in Fig. 2. The Goal-Measure-Lever graphs need to be specified for each
stakeholder and integrated together into a consistent whole. The decision-making
endeavour can be viewed as “tweak a lever – observe the measures – check the
goal” loop. Considering the size and complexity of modern enterprises, these graphs
would typically be huge in size making manual construction and analysis quite
impractical.

– The Goal-Measure-Lever graph of Fig. 2 should be specifiable using a simulatable
language thus automating “tweak a lever – observe the measures – check the goal”
loop. It should cater to what-if and if-what scenario playing. This machinery forms
the primitive building blocks for navigating the design space.

Fig. 2. Complex dynamic decision making
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– Exhaustive navigation of decision space can be prohibitively expensive. How can
domain knowledge and past decision traces be exploited to help navigate the design
space in a more efficient manner?

– To mimic real-world phenomena where the behaviour of one entity influences the
behaviour of others, the different models constituting system specification need to
be co-simulated. Since the underlying formalisms of these models could be quite
different, supporting co-simulation is a challenge.

– Constructing decision-space models is time-, effort- and intellectually-intensive
endeavour. Information to construct these models exists in multiple heterogeneous
resources such as enterprise data, reports, literature etc. How to make use of this
information to construct the desired models in as automated a manner as possible?

– How to capture the learnings from the usage of this decision-space machinery e.g.
rules, cases, heuristics, predictive models etc. to enable reuse in future design cases?

– Typically, enterprises evolve in a siloed manner leading to information fragmen-
tation over heterogeneous data sources. There is a need to provide enterprise wide
unified view of this information through mappings over information models of these
data sources. How to discover these mappings?

– How to make the modeling and model processing machinery easy-to-use for
domain people? What kind of Domain Specific Languages (DSL) are required?
How do these DSLs map to the underlying formal models?

– What is the right methodology to tie together the end-to-end modeling and model
processing machinery spanning design and implementation spaces in a seamless
manner?

– How can the proposed modeling machinery be integrated with runtime system so as
to support dynamic adaptation as well?

– What is a prototypical problem space in enterprise where the proposed approach can
be effectively illustrated?

The above research agenda calls for a multi-disciplinary effort spanning modeling
language engineering, knowledge engineering, natural language processing, machine
learning, software engineering, and management sciences. We have done initial
explorations of some of the research space with promising leads emerging [9, 10].

4 Exemplars

We discuss a few use-cases for the approach outlined in this paper. Each of them
illustrates a partial realization of a part of the vision outlined in this paper.

4.1 Digital Manufacturing

Manufacturing is expected to be more and more customer centric to the extent the
product gets manufactured as per the specifications provided by customers. As a result,
manufacturing supply chains need to be more dynamic wherein the production,
scheduling and inventory control processes need to be significantly more responsive.
For instance, the mobile handset industry has seen several disruptions in the last decade
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– from feature phones to touchscreens to smartphones capable of high quality video
experience. The ability to rapidly adapt to changing market demands was essential for
survival5. A digital manufacturing organisation would model the production processes,
supply chains, the market, the competition etc. and use these models individually and
together to play out scenarios of interest so as to devise suitable interventions. This
helps the digital manufacturing organisation to be more responsive with a degree of
control on certainty of outcomes [12, 13].

4.2 Integrated Computational Materials Engineering (ICME)

ICME is a new paradigm for designing materials and manufacturing processes in an
integrated manner [14]. It uses modeling and simulation to explore the design space
[15, 16]. The approach also draws heavily on domain knowledge and machine learning
to guide design space exploration as shown in Fig. 3. This has been validated for
problems such as gear design, advanced high strength steel design etc. [17].

4.3 Model Driven Organisation (MDO)

MDO is a new paradigm for modeling all relevant aspects of an enterprise so as to
support run-the-enterprise as well as change-the-enterprise processes [18]. It brings the
ideas of Model Reference Adaptive Control to enterprise modeling [19] as shown in
Fig. 4. It enables modeling of enterprise as a socio-technical system wherein the Why,

Fig. 3. ICME platform

5 https://www.wired.com/2012/04/5-reasons-why-nokia-lost-its-handset-sales-lead-and-got-
downgraded-to-junk/.
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What, How and Who aspects get specified in a manner that is amenable to what-if and
if-what scenario playing [9]. It provides means for storing history i.e. execution traces
that can be mined for monitoring and sense-making [20] so that domain expert can take
meaningful adaptation decisions [21]. This approach has been validated on
industry-critical problems in laboratory setting [22].

5 Summary

The emerging digital forces of mobility, big data, social media, cloud computing and
robotics are resulting in increasing pervasiveness of computing. Coupled with chal-
lenges emanating from increasing dynamism due to the connected world, enterprises
are faced with a whole new set of challenges. This changing reality puts a new set of
demands on software systems. The erstwhile paradigm of using software systems
essentially to obtain mechanical advantage through automation of operational pro-
cesses is no longer adequate. A new paradigm seems called for to meet these chal-
lenges. We have argued for a shift in focus of MDE community from building systems
right to building right systems. We sketched a possible line of attack towards evolving
such a new paradigm. We outlined a research agenda to support the proposed line of
attack. We presented a set of teaser exemplars of enterprise systems of future that can
be realized using the proposed line of attack.
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Abstract. Executable domain-specific modeling languages (xDSMLs)
have the potential of bringing major benefits to the development of com-
plex software-intensive systems as they provide abstractions of complex
system behaviors and allow for early analyses of that behavior. How-
ever, in order to be useful, xDSMLs have to be equipped with model
analysis tools supporting domain engineers in comprehending, explor-
ing, and analyzing modeled behaviors. Hand-crafting such tools in an
ad hoc manner imposes significant efforts and costs on the development
process and is, hence, mostly done for broadly adopted xDSML only.
Executable metamodeling approaches seek to overcome this limitation
by providing formalisms to define the execution semantics of xDSMLs in
a systematic way building the basis for automatically generating model
analysis tools. While significant advances towards achieving this vision
have been achieved in recent years, there are still many challenges to
be solved for generating out-of-the-box analysis support for xDSMLs. In
this paper we revisit the tool generation challenge introduced by Bryant
et al. [3] seven years ago reflecting on recent achievements and identifying
open challenges.

1 Introduction

Model driven engineering (MDE) aims at reducing the accidental complexity
associated with the development of complex software-intensive systems result-
ing from the large gap between concepts used by domain experts to express their
problems and concepts provided by general-purpose programming languages to
implement solutions. MDE addresses this problem through domain-specific mod-
eling languages (DSML) enabling domain experts to overcome the gap between
problem space and solution space through suitable abstractions and transforma-
tions [17].

Although there are many examples of the successful use of DSMLs to improve
development productivity and quality [7,17], it has been also recognized that the
development of DSMLs is itself a challenging task. This resulted in the emergence
of the software language engineering (SLE) discipline defined as the application
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of systematic, disciplined, and measurable approaches to the development, use,
deployment, and maintenance of software languages [8].

SLE brought forward potential solutions for the development of DSMLs and
supporting infrastructures that allow their effective use and deployment. Notable
achievements in this area include the establishment and broad adoption of meta-
modeling techniques for formalizing the abstract syntax of DSMLs [9], which lead
to the development of generic and generative approaches providing model edit-
ing and static analysis facilities for DSMLs out-of-the-box once their metamodels
are defined.

Executable DSMLs (xDSMLs) play an important role in the development
of complex software-intensive systems as they support domain engineers in the
specification of complex system behaviors and provide the basis for the perfor-
mance of early analyses of such complex behaviors. The SLE community work-
ing on xDSMLs has made significant advances in the formalization of execution
semantics yielding various approaches summarized in this paper under the term
executable metamodeling [5]. But still, formalizing the execution semantics of
xDSMLs is an inherently complex task requiring significant engineering effort.
The prospective benefit of taking this effort consists in the automated genera-
tion of powerful execution infrastructures and analysis tools leading to reduced
development costs for xDSMLs and increased quality of systems developed with
xDSMLs.

Even though automating the development of execution infrastructures and
analysis tools for xDSMLs has been the main driver behind research on exe-
cutable metamodeling [3], it is today still a largely open research challenge.
Much research is to be done for enabling the automated generation of different
types of execution-based model analysis tools for xDSMLs taking into account
the trade-off that has to be made between automation and customization towards
the targeted xDSML.

In this paper, we revisit the tool generation challenge of xDSMLs brought
forward by Bryant et al. [3] seven years ago critically reflecting on recent achieve-
ments towards addressing this challenge and pointing out open challenges.

The remainder of this paper is structured as follows. In Sect. 2 we formu-
late our vision on automating the development of xDSML tooling. Thereafter,
in Sect. 3, we discuss open challenges towards achieving this vision. Finally, in
Sect. 4 we conclude the paper with a summary.

2 The Vision of Automated Tool Development

In the current state of practice, model analysis tools for xDSMLs are still hand-
crafted in an ad hoc manner leading to significant development costs. As a result,
advanced model analysis tools are mostly only available for broadly adopted
xDSML, such as UML [14] and Simulink [11].

As pointed out by Bryant et al. [3] in 2010, executable metamodeling has
the potential to remedy this deficiency since formalizations of the execution
semantics of xDSMLs establish the basis for automating the development of
execution-based model analysis tools:
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Fig. 1. Vision for automating the development of model execution tools

“However, many of these tools [model-based tools (e.g., editors, inter-
preters, debuggers, and simulators)] have a common semantic foundation
centered around an underlying modeling language, which would make it
possible to automate their development if the modeling language specifica-
tion were formalized.” [3, p. 225]

Similarly as metamodeling languages laid the ground for automating the
development of a variety tools that build upon the abstract syntax of a DSML,
executable metamodeling approaches lay the ground for automating the devel-
opment of powerful model execution infrastructures and execution-based model
analysis tools. While this potential is the main driver of research on executable
metamodeling, current approaches do not yet yield out-of-the-box analysis sup-
port for xDSMLs that is customized for the respective xDSML and ready-for-use
by domain engineers. This significantly limits the value of executable metamod-
eling and xDSMLs in general.

Our vision for automating the development of execution-based modeling tools
for xDSMLs is as follows:

Vision: Provide diverse execution-based analysis tools for xDSMLs out-
of-the-box based on single formalizations of their execution semantics.

This vision is graphically illustrated in Fig. 1. Based on a single formaliza-
tion of the execution semantics of an xDSML, various execution-based tools are
obtained for the xDSML out-of-the-box that are ready-to-use by domain engi-
neers. Such tools comprise, for instance, model interpreters, model debuggers,
model test engines, and model verifiers. They rely on the single formalization of
the execution semantics of the respective xDSMLs and can be used to analyze
behavioral aspects of the modeled system.

3 Open Challenges Towards Tool Generation

The most significant advances towards the automated generation of analysis
tools for xDSMLs have been achieved for the automated development of xDSML
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debuggers. Existing approaches [1,2,4,10,15,16,19,20] provide generic xDSML
debuggers that utilize the execution semantics of xDSMLs for debugging models
conforming to the respective xDSML. However, the possibilities to customize
the generic debuggers to a specific xDSML are still quite limited and in most
cases very specific to the employed executable metamodeling approach requiring
adaptations of the execution semantics of the xDSML.

Furthermore, existing approaches that seek to automate the development of
analysis tools for xDSMLs focus on providing support for one particular analysis
technique only. Also, besides model debugging, hardly any other analysis tech-
nique has been investigated with respect to automating the development of tool
support. Only few approaches exist that propose first solutions for automating
the development of non-functional properties analysis tools [6], formal analy-
sis tools [13,18], and model testing tools [12]. In this regard, the ProMoBox
framework proposed by Meyers et al. [12,13] has to be explicitly highlighted as
it proposes a solution for obtaining both model checkers and testing tools for
xDSMLs.

To overcome the limitations of existing approaches and achieve the outlined
vision of automating the development of model execution tools, several key chal-
lenges have to be addressed, which are discussed in more detail in the following.

(1) Identification and Formalization of Common Executability Concerns: The
common foundations for performing execution-based model analyses are to be
able to interact with an execution (e.g., provide input data to the model execu-
tion), represent an execution (e.g., represent changes in the execution state of a
model), and reason about an execution (e.g., to reason about the correctness of
a model’s execution state evolution). To establish these foundations, it is neces-
sary to make these concerns explicit in the definitions of xDSMLs, i.e., explicate
them in an xDSML’s execution semantics. However, in current executable meta-
modeling approaches, such information is mostly given only implicitly, deeply
entangled in the definition of the execution semantics hindering its utilization
for execution-based model analysis. For instance, while current approaches allow
to explicitly define the initial input and final output of model executions, they do
not allow to explicitly define possible interaction points with the model during
execution, such as signals that can be sent to an event-driven model. System-
atic engineering methods are required that support the explicit definition of
interaction points and runtime information of executable models relevant for
execution-based model analysis.

(2) Identification and Formalization of Analysis-Specific Executability Concerns:
Besides foundational executability concerns common to execution-based model
analysis, different kinds of analysis require information about additional analysis-
specific executability concerns. For instance, to perform concurrency-aware anal-
yses, the possible concurrency in the execution of models conforming to an
xDSML has to be explicitly defined. xDSML engineering misses a systematic and
comprehensive development methodology that supports language engineers in
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identifying executability concerns relevant for a particular xDSML, and design-
ing and implementing them in a modular and integrated way.

(3) Automation of the Development of xDSML Analysis Tools: Having all exe-
cutability concerns of an xDSML readily implemented is of course only half of the
way. The challenge of processing the defined executability concerns and provid-
ing different kinds of analysis tools well integrated with each other still remains.
Integrating the provided analysis tools with each other is of major importance to
reliably improve the quality of systems through the application of xDSMLs. For
instance, it has to be investigated how model testing tools can be automatically
integrated with model debuggers, such that faults detected with test cases can
be efficiently localized.

(4) Tool Customization: The last challenge that we want to highlight is the need
for customizing the generated tools for the respective xDSML. Customization
towards the target xDSML and user is of uttermost importance to ensure the
usefulness and effectiveness of the tools and is, hence, crucial for the realiza-
tion of benefits from the application of xDSML. This customization has to be
achieved on the interface between the derived tools and domain engineers, e.g.,
through languages provided to the domain engineers for defining analysis goals
and interacting with the analysis tool. Significant advances for tool customization
have been made for model debuggers (cf., for instance, [4]) but it is left open to
investigate necessary and feasible customizations of other execution-based model
analysis tools.

4 Conclusion

The value that is added by xDSMLs to the development of complex software-
intensive systems is the capability to analyze behavioral properties of the sys-
tems early in the development process. To realize this value, xDSMLs have to
be equipped with appropriate model analysis tools. Building such model analy-
sis tools for xDSMLs manually and from scratch imposes significant engineering
efforts and associated costs on the development process. Executable metamodel-
ing seeks to overcome this deficiency by fostering the formalization of execution
semantics of xDSMLs usable to automatically generate model execution infras-
tructures and model analysis tools. In this paper, we have discussed several
key challenges that need to be addressed for fully achieving this vision of tool
generation for xDSMLs.
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Abstract. We present a general view on theoretical aspects of model
synchronization and consistency management, and discuss technical chal-
lenges in making it sound, and cultural challenges in bringing it to prac-
tice.

1 Introduction: Why Product Lines

Fig. 1. A simple design space

Software tool users would not welcome
surprises in their tool’s behaviour, e.g.,
in how the tool synchronizes the user’s
model with other interrelated models.
To avoid surprises, the user should
understand (a) what she really wants
to do with her models, (b) what the
tool can do, and (c) whether (b)
matches (a). If the task is to place a
screw into the wall, then examples of
ideal matches are shown in Fig. 1(a), while Fig. 1(b) illustrates a possible mis-
match. For mechanical tasks and tools, matching can be established by visual
inspection, facilitated, perhaps, with a manual also referring to visual evidence.
Unfortunately, software artifacts live in the conceptual rather than physical
world and cannot be seen physically, and the story shown in Fig. 1(b) appears
in software engineering practice more often than desired. For example, QVT’s
early non-success could be seen as an instance of the case (cf. [35]). For model
management (mmt), the invisibility problem is intensified by the complexity and
diversity of conceptual constructs and their interconnections used in the mmt
tools because of the diversity of models and operations these tools should sup-
port. Navigating the design space becomes similar to navigating across unknown
territory densely populated by invisible creatures connected by invisible links,
so that seemingly harmless structural gaps actually hide deep chasms whose
darkness obscures structural monsters.

The description above is, of course, an exaggeration (perhaps, not too strong)
as the tool builders do have some “optical instruments” to observe the space—
they can use operational descriptions to explain what the tool can do step by
c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 200–216, 2018.
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step. Unfortunately, however, the optics of the operational semantics is too
strong, and implementation details flooding the picture may essentially dis-
tort it. What we actually need is declarative semantics clearly presenting the
basic features of the scenario at hand, and abstracting away all the rest. Such
declarative semantics are, in fact, mathematical models, and besides “conceptual
lenses” making the concepts visible, they normally bring one more benefit. Math-
ematical optics often allow us to see commonalities between seemingly different
things, and discover essential differences between seemingly similar things (as
evidenced by the history of mathematics and its application), thus packing the
diversity into a firm manageable structural framework like feature models pack
the diversity of products into an integral product line.1 This aspect of math-
ematical modelling is exactly what is needed for building good maps of mmt
design spaces, especially for synchronization encompassing an extreme diversity
of different scenarios and their variations.

Indeed, in the early 2010s, Benjamin Pierce and his collaborators in the
Harmony project on file synchronization introduced a simple algebraic model
called a lens [17] (pun on our mathematical lenses above is unintended). Later,
Pierce et al. published a series of papers uniformly titled “X lenses for Y” with
(X=Resourceful, Y=String data) in [4], (Relational, Updatable Views) [5], (Quo-
tient, ∅)[18], (Matching, Alignment and View Update) [3], (Symmetric, ∅)[21],
(Edit, ∅) [22], where the empty string symbol ∅ could be understood as “good
for anything in synchronization”. (QVT’s analysis done by Stevens in [35] can
also be classified in these terms as Lenses for Model Transformations.) All lenses
above are state-based: model alignment necessary for synchronization is assumed
to be reliably done by the synchronizer itself, which is a reasonable assumption
for string data, but it does not always work for object alignment in the EMF
world. To comply with the latter, a new family of lenses – delta lenses – was built
by Diskin et al., which extended the lens line even more [12,13]. Even earlier,
Johnson and Rosebrugh modelled updates by arrows in the respective categories
of database/view states [25] and developed a theory of universal view updata-
bility [26] within a framework that later, in the lens parlance, they termed as
categorical lenses [28,29].

As lenses are mathematical models, they lend themselves to classification
and the respective structuring of the model synchronization design space. This
premise was directly realized in [11] for a special synchronization case – bidirec-
tional model transformation or bx. A general bx was modelled by an organized
delta lens (od-lens), which is a delta lens with an additional structure called
org-symmetry. The design space encompassed 44 different types of bx-scenarios
(= types of od-lenses) over 10 types of the underlying computational framework
(= types of delta lenses). That is, a tool implementing the specified family of
delta lenses and capable of ensuring a simple org-symmetry discipline, would
be able to handle 44 specified synchronization scenarios, each one with clearly

1 For example, category theory seen as a discipline of mathematical modelling of math-
ematics itself, was very successful in packing the diversity of mathematical structures
and operations over them into a product line of categories and categorical constructs.
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specified input, output, and properties so that the situation shown in Fig. 1(b)
can be avoided. Thus, although Pierce et al. coined the term lens based on quite
technical reasons (arrows showing the two inverse operations in their diagrams,
together form something recalling the lens shape), the lens algebraic framework
did play the role of mathematical optics discussed above.

In the present paper, we discuss such a sort of activity for a bigger land-
scape of synchronization encompassing more than two models with the possibil-
ity of concurrent updates, and also the possibility (actually, the necessity!) of
living with non-determinism and uncertainty in consistency restoration – each of
these extensions dramatically changes the entire case of model synchronization
and consistency management, both qualitatively (more dimensions/facets of the
problem) and quantitatively (more types of scenarios). The taxonomy will go far
beyond 44 cases, which brings us to the problem of indexing and navigating the
space: linear indexing like in Fig. 1(a) works well for several types of screwdrivers,
but is hardly functional for 44++ types. We will need to organize the space of
mathematical models into a product line specified by a corresponding feature
model—an idea that demonstrated its great effectiveness for software product
lines and beyond, including facilitating communication between the stakehold-
ers, planning, and management. This approach should be applicable to other
mmt-operations, and we arrive at the title of the paper.

Our plan for the paper is as follows. In Sect. 2, we briefly revise several reasons
for why abstract models providing declarative semantics of mmt-operations can
be practically useful. Section 3 outlines a family of such model for bx, discusses
their limitations for practical model synchronization scenarios and formulates
four technical challenges. Finally, if even all technical challenges are successfully
addressed, to ensure their practical implementation and usability, some method-
ological and cultural gaps are to be bridged – these are really Grand Challenges
discussed in the last section.

2 Background: Why Abstract Models and Declarative
Semantics

We discuss three interrelated reasons – one per subsection.

2.1 “And Suddenly the Tool Doesn’t Do Something Expected, and
It Is a Nightmare for Them”

In a broad empirical study [23,24,39], now widely acknowledged and cited, Whit-
tle et al. pointed to a number of factors that prevent wide MDE adoption in
industry. As was further shown in [11, Sects. 2.3, 6.4], about a half of these
factors amounts to different forms of (direct and indirect) miscommunication
between the tool builders and the tool users such as (quoting the issues iden-
tified in the study) “Appropriating tools for purposes they were not designed
for”, “Over-ambition: Asking too much of tools”, and “Engineers’ (mis)trust of
tools”. As the authors of the study summarized these findings, “. . .We do not
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have a fine-grained way of knowing which MDE tools are appropriate for which
jobs.” However, perhaps a better way to convey the message is to cite immedi-
ately an MDE-practitioner interviewed in the study [39] – see the title of this
subsection. This seems to be a precise identification of a core problem, whose
most probable cause is that the tool builders do not have a suitable language for
explaining What the tool is expected to do.

To explain What, we need a declarative specification framework for mmt
operations, which is to be abstract enough to free specifications from unnecessary
implementation details, yet be concrete enough to have essential properties of
mmt tasks explicit in the specification.

2.2 Modelling Culture and Teaching It

One of the conclusions of Whittle’s et al. studies is that although tools could
definitely be better, tools alone would not solve the problem: organizational and
cultural aspects are also very important. Specifically, it is common to blame engi-
neers for improper use of MDE tools and, wider, MDE ideas, and subsequently
suggest their intensive training in tool application and proper MDE thinking.
However, we would also emphasize the presence of cultural deficiencies on the
opposite side of tool builders, who tend to create tools in an ad hoc manner
based on weak (if any) semantic foundations. Reducing these deficiencies (say,
“semantic training” for tool builders, and acquiring working habits of building
tools based on clear specifications) would be also important for industrial MDE
adoption. Moreover, tools based on ad hoc semantic foundations would hardly
facilitate proper MDE thinking on the user side, while intelligent and mathe-
matically supported tooling would itself promote the right MDE attitude into
the user community. Both sides need teaching and training, and a clear, well-
structured and well-organized theory is a cornerstone of effective teaching of
software technologies.

2.3 Completeness of Classifications/Design Spaces

A proper and sufficiently complete classification of the design space is crucially
important for normal vs. radical engineering as discussed by Vincenti [38]. Nor-
mal design considers a new product as a variant of a well understood class of
products, and applies known and accepted design patterns rather than inventing
them from scratch. A proper classification of the problem at hand is the very
first, and maybe the most important, step. If the problem is properly identi-
fied, the engineer can use her design cookbooks and follow the known recipes
and patterns with a high probability of successful design. Software engineering,
despite all its important distinctions from mechanical and electrical engineering,
is still a branch of engineering, and hence Vincenti’s findings are applicable to
it as well (see [32] for a more detailed discussion).
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3 Model Synchronization and Its Challenges

A typical MDE environment consists of several clusters of heterogeneous inter-
related models, which we will call multimodels. Normally, all models in a multi-
model should be mutually consistent and represent different but coherent views
of the system. If one or several models in a multimodel change, other models
should be changed accordingly to restore consistency. In other words, changes
should be propagated to other models so that the new state of the multimodel
is consistent again. Clearly, consistency maintenance is of paramount impor-
tance for MDE technologies, but a theoretical analysis of even simple scenarios
is difficult and a sound practical implementation is challenging [14,36,37].

An important special case of consistency maintenance is when the multi-
model consists of two models connected by a transformation, for example, a
UML model (which is itself a multimodel, but we consider it as an integrated
whole) and the Java code it generates, or an Object-Relational Mapping trans-
lating class diagrams to relational tables. An abstract mathematical model of the
binary case was developed under the name of organized delta lenses (od-lenses
in short), and below we will sketch basic ideas. We will begin with a primer on
(symmetric) delta lenses, and then define od-lenses. After that, we will discuss
several challenges of building mathematical models for consistency management
beyond the current form of od-lenses.

3.1 A Sketch of (Symmetric) Delta Lenses

This section is mainly based on papers [8,9,11], but the material is struc-
tured differently and includes new elements. Specifically, we identify a new com-
mon schema for different variants of the basic algebraic laws regulating lenses’
behaviour (Putput and Invertibility), in which they have strong, weak, and medi-
ated versions. Some parts of this schema are justified by examples considered in
[9,11], while others are mainly guesses to be checked against practical examples
and an accurate formalization.

Operations. Suppose we have two model spaces, A and B, e.g., in the exam-
ples above, A encompasses some class of UML models, and B a class of Java
programs generated from them, or A is a class of UML class diagrams and B
is a class of relational schemas. A pair (A,B) of interrelated models normally
comes with a traceability mapping so that our typical situation to consider is a
triple (A, r,B) with A a model from A, B a model from B, and r some specifi-
cation of correspondences between them, which we will denote by a bidirectional
arrow (the top one in Fig. 2) and call a corr. There may be many different corrs
between the same A and B, but not all of them satisfy some a priori given notion
of consistency.
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If model A has changed, which is specified by a vertical update arrow u
(we will also say delta) in the upper square in Fig. 2, then consistency can be
destroyed (imagine an inconsistent corr between models A′ and B ) and should
be restored by an appropriate change v on the B-side so that the new corr is
consistent. Algebraically, we have an operation that takes a consistent corr r
and an update u as its input (in Fig. 2, these are shown with framed nodes and
solid arrows), and produces an update v and a new consistent corr r′ at the
output (non-framed node and dashed arrows). We call this operation forward
update propagation and denote it by fPpg. Similarly, there is an operation bPpg
of backward update propagation (the lower square in Fig. 2). Importantly, when
we propagate update u to the B-side, changes in model B should be minimal
in some sense (see [6] for a discussion of this non-trivial issue). Specifically, if
models B have private (non-shared) data, it is natural to require these data to
be preserved in B′. For example, consider a UML tool that generates code stubs
from class diagrams. When a parameter is added to a method signature, code
must be regenerated in such a way that the signature is updated, but the method
body is preserved. That is, while code’s public parts (method signatures, class
names, etc.) are updated to reflect changes in the UML model, code’s private
data—the method bodies—are kept untouched.

Fig. 2. Lens operations

Note that, similarly to corr arrows, an update
arrow u : A → A′ is not just a pair (A,A′) but a
specification of correspondences between states A
and A′, or an edit log/sequence that changes A to
A′. The formalism does not prescribe what updates
are, but its important underlying assumption is that
normally there may be different updates from state
A to state A′.

We require updates to be composable: for any
u : A → A′ and u′ : A′ → A′′, there a unique com-
posed update u′′ : A → A′′ denoted by u;u′. More-
over, for any state A, we require the existence of
a special idle update idA : A → A that does noth-
ing and, hence, u−; idA = u− for any update u−

into A, and idA;u+ = u+ for any u+ from A. These
requirement make model space A a category whose objects/nodes are models,
morphisms/arrows are updates/deltas, and identity arrows are idle updates. We
will write |A| for the class of all models in A, and AΔ or ΔA for the class of
all deltas, i.e., all arrows in A. Space B is also a category with objects |B| and
arrows BΔ or ΔB.

The propagation operations should satisfy three groups of algebraic laws
described below, and then we say that the tuple � = (A,B, fPpg, bPpg) is a
(well-behaved symmetric) delta lens or just a lens, and write � : A � B.
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Algebraic Laws 1: Stability and Privacy. The first group of laws concerns
idle updates. A simple but important requirement is that any idle update on
either side is propagated into a respective idle update on the other side with
r′ = r. In other words, the system does nothing by itself, and this law is often
called Stability. However, there may be non-idle updates propagatable into idle
updates on the other side. For example, some changes in code are not anyhow
reflected in the UML model used to generate the code, and changing the layout
of a UML diagram does not affect the code. Such updates are called private –
indeed, the other side does not see them, and non-private updates are called
public. Thus, the set of all updates on either side is partitioned into private and
public, ΔA = Δprv

A ∪ Δpub
A , and ΔB = Δprv

B ∪ Δpub
B , and Stability says that idle

updates are always private.

Fig. 3. Mediated Putput for fPpg

Algebraic Laws 2: PutPut. The
second group of laws (called Putput
in the lens jargon) considers compat-
ibility of (horizontal) update propaga-
tion with (vertical) update composi-
tion. It is the most controversial part
of the lens story: such compatibility
is very desirable mathematically (as
a necessary “lubricant” for categori-
cal machineries), but rarely holds in
practice in the following strong sense.
Given a corr r : A ↔ B and two con-
secutive updates on the A-side, u :
A → A′, u′ : A′ → A′′ (see Fig. 3), we
can build two updates on the B-side:
one is the composition of two propa-
gations, v′′ = v; v′ with v = fPpg(r, u),
v′ = fPpg(r′, u′), and the other is the propagation of the composition, vjump =
fPpg(r, u;u′). The strong Putput states that v′′ = vjump, which is a standard
categorical condition of functoriality, and it does hold in practice when updates
u and u′ do not conflict, i.e., if u′ does not affect elements affected by u, e.g.,
if both u and u′ are insertions, or both are deletions (the monotonic Putput of
Johnson and Rosebrugh [27] ). For the symmetric situation, strong Putput is
also valid if updates conflict, but privately, so that it is not seen on the other
side. Specifically, it is the case when at least one of the updates u, u′ is private.
But beyond these special cases, strong Putput rarely holds in practice (which
was emphasized by several authors [4,12,35], where demonstrating examples can
be found). Thus, to make our model applicable to practice, we can only require
for delta lenses restricted strong Putput, i.e., Putput only holding for several
specified types of updates.

However, even when strong Putput is violated, the difference between v′′ =
v; v′ and vjump should normally be private and not visible on the other side. We
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Fig. 4. Mediated invertibility/round-tripping (forward-backward, fb)

thus come to the weak Putput law: bPpg(r, v′′) = bPpg(r, vjump). Weak Putput
has good chances of holding in practical cases, but is not very useful as it does
not say much about how v′′ and vjump are interrelated. A better idea would be
to specify the privacy of the interaction between the two updates by stating the
existence of a unique private update δ•

ff(r, u, u′) or just δ•
ff : B′′ → B′′

jump such
that v′′; δ•

ff = vjump (and the symbol ⇒ in Fig. 3 can be interpreted as denoting
commutativity of the triangle; below we will refine this interpretation). We will
call the update δ•

ff mediating, and the law above mediated Putput. Note that
mediated Putput together with restricted strong Putput, imply (unrestricted)
weak Putput as the mediating delta is private.

Mediated Putput is a good compromise between too restrictive strong Putput
and too general weak Putput. Unfortunately, in a wide class of practically inter-
esting cases, mediated Putput also fails as commutativity v′′; δ•

ff = vjump does not
hold (see [9] for examples). We will return to this issue below in Sect. 3.3 (C).

Strong, weak and mediated Putput laws for the backward propagation bPpg
are obvious mirror reflections of the fPpg versions.

Algebraic Laws 3: Invertibility. Invertibility (or round-tripping) laws reg-
ulate how operations fPpg and bPpg interact. The diagram in Fig. 4 specifies
a simple scenario, in which an update u on the left side is propagated to the
right, and then propagated back with the result denoted by ufb. Similarly to
Putput, there are three types of fb-invertibility. Strong invertibility states that
ufb = u, but it rarely holds in practice [13]. Weak invertibility states that
fPpg(r, ufb) = fPpg(r, u), i.e., the difference between ufb and u is not visible on
the other side. Like weak Putput, weak invertibility is much less restrictive for
practical cases, but is not very useful as it does not say how ufb and u are related.
The issue seems to be mitigated with mediated invertibility, which requires for
any pair r, u as shown in Fig. 4, a uniquely determined private update δ•

fb(r, u) or
just δ•

fb such that ufb; δ•
fb = u (and double-arrow ⇒ again refers to commutativity

of the triangle). Together with restricted strong Putput, it implies weak invert-
ibility as the mediating delta is private. Unfortunately, the loss of information
during propagation breaks this nice schema again: even mediated invertibility
fails in a wide class of practically interesting cases (examples can be built along
the lines of those in [9] for Putput). We will return to the problem in Sect. 3.3
(C). The backward-forward (bf) round-tripping law is the mirror image of the
fb-law.
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Asymmetric Lenses. An important class of lenses is formed by the so called
(info-)asymmetric lenses. Given a lens � : A � B, we say that space A is less
informative (or more abstract) than B w.r.t. � if all A-models do not have private
data, and hence the only private updates on the A-side are identities. Then we
call the lens asymmetric and write A ≤� B. These conditions are typical for
the case when A-models are (abstract) views of B-models, and so asymmetric
lenses model updatable views. The absence of private data on the A-side allows
us to simplify operation bPpg (see Fig. 2(b)): it becomes an ordinary functor
between model categories and is typically denoted by get : A ← B (read get the
view)—indeed, the original state of the A-model (view) is not needed anymore
as views do not have private data (see [8] for details). In contrast, the forward
propagation fPpg from the A-side to the B-side does need the original state of
the B-model as shown in Fig. 2(a), but for the asymmetric lenses, this operation
is typically denoted by put (read put the view update back). We believe that
short energetic names get and put for the operations, and the respective names
PutGet, GetPut, and PutPut for the laws (all coined by Pierce2), did make an
essential contribution to the popularity of the lens framework.

If the B-side also does not have private data w.r.t lens �, we write A ≈� B
and call the lens (info-)bijective, while strictly asymmetric case is denoted by
A<� B. Thus, there are three disjoint types of lenses depending on whether
exactly one, two, or neither side has private data, and writing A ≤� B means
that either A <� B or A ≈� B. When both sides have private data, the lens is
called (info-) symmetric and we write A ><� B.

3.2 Organizational Symmetry and Organized Delta Lenses

In some synchronization scenarios, all updates on either side are propagated
to the other, e.g., in the roundtripped UML-Java code generation, changes are
freely propagated from the model to code and back. Then we say that the two
sides of synchronization are organizationally equivalent or org-symmetric. In a
less symmetric situation, the synchronization policy may only allow some code
updates (e.g., changes in method signatures) to be propagated to the UML
model, whereas other code updates that violate consistency will be discarded.
We may term this as org-semi-symmetry. And in (strictly) org-asymmetric cases,
one side entirely dominates the other and updates from the latter are not prop-
agatable at all. For example, the synchronization policy can prohibit any pub-
lic updates in the code (but allow private code updates like comments, or, say,
method bodies if the tool only generates code stubs). Model compilation presents
an extreme case, when no code updates are allowed at all.

2 As per personal communication with Nate Foster.
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To model the above, we define the notion of an organized lens, od-lens.3 It is a
triple (�, P,Q) with � : A � B a lens, P ⊂ Δpub

A a subset of public updates called
propagatable A-updates and Q ⊂ Δpub

B a subset of propagatable B-updates. In
fact, the pair (P,Q) is nothing but what we called above a synchronization policy.

Importantly, sets P and Q constituting a policy are determined organization-
ally rather than technologically, in the sense that propagation operations can be
defined for non-propagatable deltas. For example, when code is generated from
a UML model by a forward operation fPpg, the backward operation bPpg is
defined for all code deltas, and is important for checking correctness of code
generated from the model w.r.t. its conformance to the model as prescribed by
the invertibility law. However, only some (or none) of code deltas are allowed to
be propagated back to the model.

There are three special cases for the set P of propagatable updates: P = ∅,
P = Δpub

A and P � Δpub
A , and similarly for Q. Different combinations of these

factors define several types of organizational (a)symmetry. As shown in [11,
Sect. 5.2], there are 14 species of od-lenses, i.e., 14 types of bx-scenarios, all
obtained by different combination of info- and org-symmetries. Actually the
number of scenarios covered by the taxonomy in [11] is even more, 44 as men-
tioned in the introduction, because yet another dimension of synchronization
was considered: whether after a change on one side, the model on the other side
is regenerated from scratch (batch-update) or incrementally. We again have dif-
ferent symmetries for this dimension depending on whether both, one, or neither
direction of update propagation is incremental.

3.3 Four Technical Challenges

Our final goal with developing a mathematical framework for model synchro-
nization is to make the tool-user vs. the tool-builder communication effective. In
this section, we discuss four issues that we think are important for this task.

(A) Multi-directionality and Concurrency. Multidirectionality refers to
synchronization of several models via multidirectional update propagation so
that when one or several models change and the global consistency is violated,
changes should be propagated to other models to restore consistency. Formally,
we have a family of model spaces (Ai, i ∈ I) with a finite indexing set I of
cardinality n = |I|, which are somehow inter-related by a set R of n-ry corre-
spondence specifications, i.e., for any r ∈ R, its boundary models ∂i(r)∈|Ai| are
defined.

3 The notion of an organized lens was introduced in [11], although the very name
od-lens is new.
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For any J ⊆ I, we have an update propagating oper-
ation ppgJ that takes a multiary consistent corr r with
boundaries Ai = ∂i(r), i ∈ I, and updates (uj : Aj →
A′

j , j ∈ J), and returns two families of updates: (i) prop-
agated updates, (u′

i : Ai → A′′
i , i ∈ I\J), and (ii) reflected

updates, (u′
j : A′

j → A′′
j , j ∈ J), together with a new con-

sistent corr r′′ such that ∂i(r′′) = A′′
i , i ∈ I. The inset

figure illustrates this for I = {1..4} and J = {1, 2}, the
input elements for the operation are shaded, the output
ones are blank.

We have concurrency (managing parallel updates)
when cardinality |J | ≥ 2, which makes sense even for the
binary multimodel with n = 2, but it is the multiary case
n > 2 when excluding concurrency looks unrealistic (the
more so the bigger n is). For the binary case, concurrency means J = I, and
there are two variants of the story. One is when two parallel updates do not
conflict, and hence can be merged as described in [33]. The other variant is much
more difficult to manage: if two updates overlap and conflict (e.g., one update
changes an attribute of a class deleted by the other update), then consistency
restoration needs a conflict resolution strategy and a partial rolling back of one
or both updates. It is still an open problem even for the binary case (see [33]
for discussion). For the multiary situation, the two cases above correspond to
J = I and obviously show more complexity. Moreover, for the multiary situation
we also have the possibility of |J | ≥ 2 but J � I, which further branches into
consistency restoration with no rolling back (all reflected updates being idle,
i.e., u′

1 = idA′
1
, u′

2 = idA′
2

for the inset figure), and with partial rolling back
(at least one of u′

1,2 is not idle). The former of these two scenarios is much
simpler but even it shows much more possibilities for consistency restoration
than in the binary case: e.g., for the inset figure, we can look for u′

3 assuming
u′
4 = idA4 , or swap their roles, or consider both u′

3,4 to be non-trivial. Similarly,
there are different choices for conflict resolution and partial rolling back strate-
gies. Overall, the multitude of synchronization types for the multiary situation is
much bigger than for the binary case, and its accurate mathematical modelling
and the respective classification of possible scenarios, and arranging them into
a navigable and manageable structure (a product line), are challenging.

(B) Uncertainty. The loss of information and its recovery are inherent in, resp.,
view computation and view update propagation, and make the latter inherently
non-deterministic and uncertain. As a rule, consistency can be restored in many
different ways and thus update propagation operations are, in general, multi-
valued. Update propagation policies can narrow the multitude of solutions, but
normally do not eliminate it entirely. To manage the problem, Eramo et al. pro-
posed to specify the multitude by a suitable variability model, and give the user
an option to choose a preferred solution [16]. A practical disadvantage of this
approach is that the synchronizer has to wait until the user decides; moreover,
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at the time of taking the decision, the user may not have all the necessary
information and would prefer to postpone the decision for some time later. A
better approach would be to encode the multitude of solutions as one uncer-
tain/incomplete model (whose multitude of completions would be exactly the
multitude of possible consistency restoration solutions) and proceed with other
model management procedures. In other words, model management operations
should be extended to work smoothly with uncertain/incomplete models. Includ-
ing uncertain models into the realm of model management heavily complicates
the mathematics as the first attempt to manage it in [10] shows (cf. also an
attempt in this direction but in another context in [34]). The database com-
munity is currently dealing with a version of this problem in the context of
querying data with Nulls, in fact, computing view A = get(B) for a database B
with uncertain data, which is qualified as a challenging problem [31]. The MDE
context is even more complicated as not only attribute values in a model can be
uncertain, but existence of objects and links can be optional too.

(C) Laxity. The laws of compositionality (Putput) and invertibility of update
propagation are fundamental for model synchronization, but their understand-
ing and management in the current theory are disappointing. As in both vertical
composition of updates and horizontal model transformation, information is typ-
ically lost, strong Putput and strong Invertibility only hold for special updates
and special corrs. The weak forms of these laws hold in general, but are not very
interesting and useful: they say that two arrows should be equivalent in some
sense, but do not actually relate them. The mediated form of the laws seems
to be a good compromise, but unfortunately also often fails because the key
commutativity requirement for the triangles in Figs. 3 and 4 fails in many prac-
tically interesting cases [9]. To fix the problem, we need to equip the mediating
delta between models δ•

ff (see Fig. 3) with a mediating delta between updates,
δΔ
ff : v; v′; δ•

ff ⇒ vjump, i.e., 2-arrow/2-delta (note the double arrow near B′′ in
Fig. 3), which specifies the difference between updates. Similarly, to fix mediated
invertibility, we require the uniquely determined 2-delta δΔ

fb : ufb; δ•
ff ⇒ u shown

in Fig. 4. The mirror images of these constructs are required for the backward
Putput and bf-invertibility.

2-deltas between updates actually have a clear physical meaning. If we think
of updates as sets of links, then 2-deltas amount to subset relations between
these sets; if we think of updates as edit logs, i.e., sequences of elementary
edit operations, then 2-deltas amount to sub-sequence relations between logs.
Speaking categorically, adding 2-arrows to the formalism means that we consider
model spaces A, B to be 2-categories. Adding this new piece of structure to the
construct of model space implies the respective changes in the other elements
of the structure: update composition, update propagation, the notion of privacy
(we need private 2-deltas which are propagated to 2-identities, and important
for proving equality between updates), etc. That is, we need to rebuild the
entire delta lens framework on the premises of 2-category theory. In the latter,
“equality” of two arrows up to a mediating 2-arrow is generally called lax: we



212 Z. Diskin et al.

relax strong commutativity in the mediated form of the basic laws and replace it
by lax commutativity as explained above. Laxity thus appears as an appropriate
mathematical approach to deal with lost information and uncertainty inherent in
model synchronization. Lax mediated laws as outlined above should be a proper
trade-off between practical satisfiability and manageable mathematical patterns.

(D) Variability (mega) management. Even a relatively simple two-model
synchronization without concurrency and uncertainty amounts to 44 different
types of synchronization scenarios [11]. Extending the framework to meet the
three challenges above would greatly expand the multitude and diversity of math-
ematical models we need to manage. Besides purely mathematical aspects, this
management should include ways of observing the design space and navigat-
ing through it for understanding, communicating and organizing collaborative
research and development. Dealing with these issues in an ad hoc way would
hardly be effective, and something more technological is needed.

One side of the issue is about how to build this structure of structures,
and it is a typically categorical story: we need to specify morphisms between
structures of a certain type and organize them into a category, then organize
the multitude of categories into a “mega” category and so on. The approach is
clear but its realization for a deep chain of categories of categories of . . . could
be challenging. In addition to abstract declarative models we discussed so far,
the area needs models bridging the gap between declarative and operational
semantics and finally implementation (we will return to this in the Conclusion).

The other side of the story is about the usability of the megastructure as
outlined above, and it is natural to borrow the ideas of feature modelling and
variability management developed in the area of software product lines. Indeed,
feature models provide a convenient way of navigating through a big design
space and hence facilitate communication between the customer (the tool user
in our context) and the vendor (the tool builder); they also help to organize the
production and management, which is also a concern in our setting. Integrating
the abstract and seemingly cryptic categorical, and the concrete and seemingly
transparent product line sides of the story is not obvious, but seems to be a
reasonable way to go. Specifically, interpreting metamodels as feature models
can be an important step in this direction.

4 Conclusion: Grand Challenges

The story we are telling in the paper is actually not new. Many years ago,
people like Dijkstra noticed that considering the space of all programs leads to
anarchy, which kills engineering, or perhaps does not allow it to be born. They
proposed restricting the class of programs to be considered so that a restricted
space would allow its appropriate structuring, and then effective engineering
methods based on mathematics could be developed. This idea turned out to be
very successful, but there is an important distinction between their and our sit-
uations. Mathematics used for structuring and engineering program spaces was
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based on ordinary logic and algebra, and was familiar to an average program-
mer of that time (often a physicist or a mathematician). Hence, bridging the
inevitable distance between high-flying methodologists and earth-bound practi-
tioners was a manageable problem, and it was well managed indeed. In contrast,
mathematics for mmt is inherently graph-based and diagrammatic, i.e., in fact,
categorical and hence quite unfamiliar to an average software developer of our
time. Moreover, the categorical motto of thinking formally with diagrams, i.e.,
both diagrammatically and precisely, contradicts to the typical mathematical
background of a modern software developer or a computer scientist, for whom
precise reasoning and diagrammatic reasoning are mutually exclusive options.

Two manifestations of this general phenomenon are important in our context.
One is about a culture of building and using metamodels in MDE. As exercising
precise reasoning based on ordinary mathematics on the scale of artifacts to be
managed in modern MDE would be unmanageable, precision is sacrificed for
manageability—a long tradition in software engineering [19] freshly instantiated
in MDE with an abundance of metamodels not only missing important con-
straints, but with pieces of structure that are distorted or missing altogether.
The discrepancy between an explicitly declared metamodel and the instances
manipulated by the tool can be significant, which means that a lot of semantic
information is hidden (actually buried) in the low level code rather than being
explicated in models and metamodels. On the other hand, many people deal-
ing with synchronization and lenses have a functional programming background
and several academic proof-of-concept tools were created. Moreover, state-based
lenses became very popular in the Haskel community after Edward Kmett wrote
a library of lenses in Haskel and successfully used them in business applica-
tions4. However, precision is of utmost importance for the FP community, which
thus tends to sacrifice deltas and switch to non-diagrammatic state-based lenses
5—the deficiencies of this approach are discussed in [12,13].

Much smoother is interaction between delta lenses and rule-based languages,
which appear to be a common way of thinking about model management oper-
ations, and, when talking about bx, approaches based on TGG turned out to be
especially appropriate [1,20]. However, TGG are designed for the binary synchro-
nization case, and it may be challenging to extend them for the multiary situation
(but see a promising attempt in [30]). It may also be difficult to bridge the gap
in mathematical modelling attitudes: abstract algebra (inherently declarative)
on the one side and operational rule-based engineering on the other.

Thus, the barriers between the mathematical framework for synchronization
based on explicit deltas and its practical implementation within the modern cod-
ing frameworks are of a cultural nature and hence not easy to overcome. Indeed,
an effective solution to cultural problems is usually found on evolutionary, rather
than revolutionary, paths with significant investment of time and efforts. An
important step in this direction would be in keeping close interaction between

4 https://github.com/ekmett/lens.
5 Even though FP proponents are familiar with monads and other categorical con-

structs employed in FP.

https://github.com/ekmett/lens
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potential tool builders and future tool users right from the beginning. Model
management scenarios should jointly be discussed by all participating stakehold-
ers, including a mathematical expert able to exercise a cultural bx: transforming
mmt notions into mathematical constructs, and support the backward transfor-
mation with simple examples and easy-to-follow diagrams.6 The decisions about
the scope of the tool and its underlying operational framework (algebraic, rule-
based, or other) should be guided by these joint discussions rather than solely
by the tool builder. Then, perhaps, in some future time not so far away, the
statement in the title of Sect. 2.1 will no longer dominate the MDE practice!
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Abstract. Robotic software development frameworks lack a possibil-
ity to present, validate and generate qualitative complex human robot
interactions and robot developers are mostly left with unclear informal
project specifications. The development of a human-robot interaction is
a complex task and involves different experts, for example, the need for
human-robot interaction (HRI) specialists, who know about the psycho-
logical impact of the robot’s movements during the interaction in order
to design the best possible user experience. In this paper, we present
a new project that aims to provide exactly this. Focusing on the inter-
action flow and movements of a robot for human-robot interactions we
aim to provide a set of modelling languages for human-robot interac-
tion which serves as a common, more formal, discussion point between
the different stakeholders. This is a new project and the main topics of
this publication are the scenario description, the analysis of the differ-
ent stakeholders, our experience as robot application developers for our
partner, as well as the future work we plan to achieve.

Keywords: Robot · Interaction · HRI · Human-robot interaction
MDSD · Software engineering

1 Introduction

Mobile robots are expected to provide all kinds of services for humans in var-
ious application scenarios and a dramatic increase of such service robot solu-
tions is foreseen for the near future. However, in many of those scenarios the
robots must be able to socially interact with people to respond appropriately to
human behaviours and language, to learn and to collaborate with humans on
human terms, as well as to act safely in the vicinity of humans. Social robotics
aims to achieve this through development of social and communicative skills for
physical robots and has become a very active research area in recent years [1,2].
While many research results exist in single specific areas that contribute to social
robotics and while novel mobile robotic platforms offer considerable functionali-
ties for the realisation of social robots at a comparatively low price, the efficient
programming of social robots for a target application is still a very challenging

c© Springer International Publishing AG 2018
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problem. Most often the interdisciplinary integration of the different functionali-
ties such as speech processing, gesture detection, computer vision etc. is solved in
an ad-hoc manner for very specific problems, where knowledge and assumptions
about the robot’s software remain implicit. Additionally, human users show a
wide range of possible behaviours creating a high level of interaction uncertainty.
Furthermore, social robots often have to be programmed together with domain
experts for specific scenarios, these experts are most of the time not robotic
experts. A promising approach for the programming of mobile robots in gen-
eral is model-driven software development. Model-driven approaches are among
the most prominent research topics in software engineering and hence several
attempts of domain-specific modelling and languages are recently also proposed
in robotics. However, many of these approaches do not support the aforemen-
tioned special aspects of social robots [3]. The goal of the project together with
our partner is to deploy the Pepper robot in a museum environment where it will
teach the visitor in an interactive and interesting way about Luxembourg city
history. For the moment, we are working on this application using standard mod-
elling tools and languages known from already established software engineering
processes. Unfortunately, we quickly realised that they are not really suitable
for the design of human robot interactions. The programming of a story telling
robot, with all its movement possibilities is a challenging task, even more if the
programmer is not in possession of a clear specification. In our lab, the respon-
sible persons for the programming of our Pepper and NAO robots are mostly
computer science students with no background in HRI or dialog creation. These
are highly complex fields with their own experts. In our case, we consult social
science researchers specialised in new technologies for this task. We believe that
they have the necessary social experience to become HRI experts. These peo-
ple however, do not necessarily possess the needed programming skills which
makes the whole development process quite long and slow. For every assessment
of the robot a meeting is held and the reactions of the robot are discussed and
orally agreed upon. This solves the problem of the user friendly design of human-
robot interaction, but does not solve the problem that the developer has, namely
imprecise specifications of the application. Therefore, we argue that there is a
real need for a set of domain-specific languages (DSL) which target the area of
human-robot interaction.

In Sect. 2, we describe our project in detail, starting with the robot and its
task inside the museum. In Sect. 3, we describe the problems encountered while
developing robot applications. Here we also describe the different stakeholders
that we consider important for the successful development of sophisticated social
robot applications. In Sect. 4, we define the goals that we plan to achieve during
the project’s evolution. We shortly describe how we plan to tackle the aforemen-
tioned problems and conclude in the last section.

2 Project Description

In the project that we initiated together with our partner, the City of
Luxembourg, the goal is to use a robot to provide an interactive learning
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experience to the visitors of the City History Museum. In a first step, the robot
will be programmed to provide the visitors with detailed information about the
museum’s 360◦ panorama of an important place in the city centre. For this pur-
pose we acquired the Pepper robot produced by Softbank Robotics1. We decided
to use this robot, because Pepper is a human-shaped robot providing many dif-
ferent interaction possibilities and is among the most prominent commercial
robots available for a use-case like ours. We believe that a robot is the right tool
for this purpose and in fact, several works analyse the social impact of physical
embodiment on social presence of social robots in contrast to a virtual agent
solution [4,5].

In a first step we want to focus on a dialogue language based on state-
based, frame-based and plan based techniques [7–9]. It is important to consider
these 3 techniques, because they offer different levels of restrictions and com-
plexity, which would allow the programming of a story telling robot as well as
applications which allow for greater degrees of user initiative like, for example,
an collaborative robots in industry. In a later step, we combine these interac-
tion management methodologies with relevant movement animations inspired by
robot control languages like, for example, DANCE [10]. These languages will be
implemented inside a tool-chain for robot interaction design that we will pro-
vide. Our research will focus on the model-driven software engineering solutions
for human-robot interactions, taking into account dialog management as well as
robot control.

To develop our toolbox we work together with domain experts from the begin-
ning. For the human-robot interaction we closely work together with researchers
from the social science field, situated also at the University of Luxembourg. In
future they are supposed to model, using our DSLs, the interactions that will
later be programmed by the robot-developer or interpreted directly by the robot.
We plan to develop multiple DSLs especially crafted for the dialogue between a
robot and a human.

This work will support the design of interactions combining speech and
related robot movement behaviours in a way that domain experts can easily
understand, implement, or, in the case of the robot developer, transform to
robot code. Our past experiences made it clear that designing a human-robot
interaction is a difficult task which needs serious input from social experts. Fur-
thermore, we found it very difficult to model and evaluate/discuss human-robot
interactions before development due to the lack of suitable languages for this
domain.

3 Problem Description & Stakeholders

Current development is done by defining what the robot will say and afterwards
the robot’s movements are implemented. These movements are selected by the
robot developer ad-hoc. One of these behaviours, for example, could be the
blinking of the robots eyes before expecting an answer from the user [6]. This
1 https://www.ald.softbankrobotics.com/en/cool-robots/pepper.

https://www.ald.softbankrobotics.com/en/cool-robots/pepper
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basic eye blinking implementation was done by the robot developer without any
formal specification and was then changed during meetings together with the
social science researcher, who did not necessarily understand why such small
programming tasks took such a great amount of time. This process can result
in frustration and disappointment on both sides. In the optimal case, instead of
focusing on the fine tuning of the robot’s interaction, the developer could focus
on more complex coding tasks. The fine tuning of the interaction should be left
to the social science expert, who understands the complex impact that dialog,
motion and emotions have in a human-robot interaction. The aforementioned
problems are caused by both the knowledge and expectation gap of the different
actors as well as the lack of DSLs which allow domain experts to model such
complex multimodal robot dialogues. Such DSLs are important because not only
would they speed up the programming process for the robot developer, but they
could also allow the testing of robot behaviours in a simulator. Therefore, well
designed tools and a well defined development process can, for example, be used
by the robot developer to support his programming work. These DSLs will be
developed in such a way that they raise the abstraction to such a level that
they can be reused in project meetings as a common discussion point which
is understood by all involved actors. Considering our scenario, we analyse the
different stakeholders to be:

Client: We see the director of the museum as our client. She participates in the
requirement elicitation at the beginning of the project. The produced interaction
model will be evaluated, thereby we directly involve the museum director in
the project and avoid miss-communication between employee and management
level, which might happen because some employees’ interests might differ from
the museum’s.

Museum Employee (Historian): The employee responsible for this project
is our main contact person. For the moment, this person is in charge of defining,
together with our team, the objectives of the project. This is not a very effec-
tive way as the employee’s goals might be different to the museum director’s.
Furthermore, often it is the case that this person, as well as the director, is a
complete non-technical person which only knows robots from Sci-Fi movies and
has ideas which are completely surrealistic. Among his participation during the
requirement elicitation, the employee’s main output should be the delivery of
historical data.

Social Science Expert: Having knowledge about computer’s, they do not nec-
essarily have a robotic background so we need to explain the general capabilities
of a robot and especially its interaction capabilities. This robot specification will
be the same as for the other actors with the main difference that this person
needs to look at a lower level of abstraction. He needs, for example, to know
what lights on the robot can be controlled and what their constraints are.

Robot Developer: Robot developers have experience in the programming of
complex robot applications and are usually not experts in social science or HRI.
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She is in charge of the requirement elicitation and manages the different stake-
holders. During the implementation phase the developer should be supported
by a clear specification of the robot’s interaction model developed by the HRI
expert. The whole development process should be iterative, based on the inter-
action models not by trial and error coding (Fig. 1).

Fig. 1. Expected Inputs and Outputs of the different stakeholders of the project. The
arrows represent Output, Input and Input/Output

4 Future Work

In our future work we develop a set of DSLs which allow the modelling of complex
human-robot interactions on a higher level of abstraction. In the HRI field, user
testing is important and there is a real need for a toolbox which enables fast
modelling, development and testing of interactions for different kinds of robots.
This toolbox can be used to rapidly develop different versions of a dialog and
analyse user feedback to, for example, different dialog motions. Therefore, the
final goal of our research is to propose a toolbox that allows HRI experts to
design, implement and test complex human-robot interactions.

To achieve this, first we present a dialogue language based on state-based,
frame-based and plan based techniques [7–9]. These 3 dialog management tech-
niques offer different levels of restrictions and complexity, which allows the pro-
gramming of any kind of human-robot dialog.

In a the next step, we combine these interaction management methodolo-
gies with relevant movement animations inspired by the robot control languages
DANCE [10]. The challenge here is to synchronise dialogue and motion without
raising the complexity of the modelling process.

The resulting models should also be usable in simulation environment which
allows HRI experts to analyse and fine-tune robot interactions without the direct
need of a physical robot, which is time consuming and not always at hand.
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5 Conclusion

In this work, we described our project and analysed the different stakeholders.
We talked about our experience as robot application developers and highlighted
the necessity of a set of DSLs which combine dialog and motion in robotics.
Furthermore we gave an outlook on our future works in this field, which we will
be starting with the robot dialog language. To our knowledge this domain is not
wildly explored and we want to say at this place that any comments or wishes
from HRI experts are very welcome.

Acknowledgment. Supported by the Fonds National de la Recherche, Luxembourg
(Project ID:11609420)
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Abstract. In scenario-based models of reactive systems complex spec-
ifications are divided into artifacts corresponding to separate aspects of
overall system behavior, as they may appear, e.g., in a robot’s require-
ments document or user specifications. The advantages of scenario-based
development include intuitiveness and clarity, the ability to execute or
simulate specifications of early prototypes and of final systems, and the
ability to verify the specification for early detection of conflicts, omis-
sions, and errors. In this position paper we discuss two issues that emerge
when applying scenario-based development in complex cases: (a) simple
scenarios become unwieldy when subjected to a growing number of con-
ditions, exceptions and refinements, and (b) it is hard to understand
and maintain a large ‘flat’ specification, consisting of an unorganized
list of independently-specified scenarios, simple as they may individually
be. We address these issues by basing certain facets of scenario design
on context, an increasingly popular foundational consideration in soft-
ware engineering. We first show how one can incorporate context into
the graphical language of live sequence charts (LSC) using existing LSC
idioms. We then outline two other possibilities: (i) enriching the LSC
language, or (ii) embedding LSCs within hierarchical state machines,
namely, statecharts. We believe that this research can contribute to the
broader goals of developing complex and powerful reactive systems in
intuitive and robust ways.

1 Introduction

In scenario-based programming (SBP) one develops software and systems such
that distinct aspects of overall system behavior, both desired and forbidden,
are implemented in separate behavioral modules, termed scenarios. For exam-
ple, individual paragraphs of a requirement document or of a user manual for
a robotic system, are likely to be implemented as separate scenarios. The app-
roach was first introduced by Damm, Harel and Marelly in [4,9] with the graph-
ical language of live sequence charts (LSC). It was subsequently generalized
and implemented in procedural languages such as Java, C++ and JavaScript
[10]. Strengthened with suitable tools, SBP (a.k.a. behavioral programming) was
shown to have a broad range of advantages, including intuitiveness, clarity and
c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 225–231, 2018.
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succinctness of specifications, the ability to directly execute or simulate specifi-
cations of early prototypes and of final systems, and the ability to verify such
specifications in order to facilitate early detection of conflicts, omissions, and
errors (see, e.g., [6–8] and references therein). The research and development
of SBP has regularly tried to tackle emerging new challenges that appear (at
least at first) to be particular to SBP. An example for such research question
is whether the SBp call for independent specification of scenarios increases the
risk of specification conflicts. The answer turns out to be that not only do such
conflicts often exist already in the originally-stated requirements, but also that
the abstractions provided by SBP, and the verification tools that were developed
in fact contribute to the early discovery and resolution of such conflicts.

As research of SBP matures and renders the approach suitable for more
complex tasks, two new issues arise. The first is that scenarios that start out as
simple rules become complex and unwieldy when subjected to a growing number
of conditions, exceptions and refinements, coming from all stakeholders, as well
as from standards and regulations, as is commonly expected in real-world appli-
cations. Consider for example a (futuristic) home-assistant robot which needs to
automatically detect and clean up dropped or spilled food. Though the required
sensors and actuators are quite sophisticated, the behavioral rules themselves
seem simple: “When food is dropped, clean it up.”. However, many exceptions
can then emerge: “but not late at night” (due to vacuum-cleaner noise), or “but
not when anyone is asleep or is on the phone in the same room.”, or “ but not
when the dirt canister is full.”, etc. Without careful design, such many-to-many
relationships between environment conditions and actions can turn a simple
specification into a ‘spaghetti’ of exceptions, refinements and alternative paths.

The second issue is that even if individual scenarios are simple, a large speci-
fication may become hard to understand and maintain. SBP’s powerful scenario
composition is not visible in the individual scenarios, and there is no direct way
to capture the organization that may exist in the engineer’s mind. For example,
in a use case similar to the DARPA-challenge, a robot that has to drive a car
designed for humans, walk over a pile of rubble, climb a ladder and close a valve
has to deal with many scenarios. The scenarios’ dependencies may be handled
correctly at run time, but, during development, it may be difficult for engineers
to allocate development tasks, demonstrate partial prototypes, and plan sys-
tematic testing. In fact, the intuitiveness of requirement documents and user
manuals stems not only from the natural language of individual sentences but
from the document organization, which allows both omission of what is under-
stood from the context, and out-of-context cross-referencing (as is done, e.g., in
appendices).

Clearly, solutions to these two issues would align well with the concept of
context and context awareness, which have been addressed extensively in soft-
ware engineering. In this paper, following a brief introduction to scenario-based
programming and a discussion of general view on context awareness, we pro-
pose solutions to these two issues, which rely on existing LSC constructs and
do not require new language idioms or run-time infrastructure. The result is an



Towards Integration of Context-Based and Scenario-Based Development 227

approach that further enables the creation of specifications that are intuitive,
expressive and powerful, and, most importantly, are executable by a computer.
We then proceed to briefly discuss separate research activities and new language
constructs aimed at even greater simplification of adding context awareness to
scenario-based programming.

2 Scenario-Based Programming with Live Sequence
Charts

The LSC language extends Message Sequence Charts with rich syntax and
semantics that enable intuitive event-based abstraction of behavior to serve both
as formal specifications and as the running code in the compositional execution
(termed play-out) of the final system. The PlayGo tool provides an interac-
tive development and simulation environment, and a stand-alone LSC run-time
infrastructure. Similar syntax and semantics were adopted in UML sequence
diagrams (SD). Each LSC chart (see example in Fig. 1 depicts a scenario of
system behavior. Behavior is represented as event arrows between vertical lines
representing objects, with time flowing from top to bottom. Blue and red distin-
guish events that may happen from those that must happen, and solid arrows
represent requests to execute/trigger events while dashed arrows depict events
that should be merely waited for, i.e., monitored. Other notations specify for-
bidden events, if-then-else conditions, loops, and more. The play-out algorithm
runs all scenarios in parallel, in a fully synchronized, lockstep manner. Follow-
ing an environment event, all affected scenarios advance; their declarations of
what events must, may, or must not be triggered are consolidated, and an event
is selected according to a prescribed strategy (random, priority, or based on
look-ahead). All scenarios are notified of this selection and the affected ones
proceed accordingly. When all system reactions are complete, the next external,
environment-generated event can be dealt with.

3 Context-Based Specifications

There are many approaches to context-oriented programming and to endowing
procedural programs with context awareness (see, e.g., [1,3,11,12]. We will
not delve into the relevant definitions here, nor will we discuss how context-
related approaches differ from dealing with environment conditions in standard
programming. Instead, we hope that readers will find that our proposals for
how to subject intuitive executable specifications to complex conditions fit a
variety of needs and design patterns that can qualify as being context based.
Nevertheless, to properly set readers’ expectations, below are additional context-
related examples of the kind we would like to handle: e.g., whether a client or
server in a distributed application is initiating an interaction (in sending mode)
or listening out for notifications (in receiving mode); how presence of a human, or
collaboration with one, affects an industrial robot’s operation; how the location
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(in orbit or on the ground) affects an autonomous satellite’s handling of events;
how battery- charge level of a mobile phone affects its autonomous features; or,
how an autonomous car’s speed is to be affected when the road is narrow and/or
curved and/or poorly lit.

A contextual condition is not necessarily external and uncontrollable: a robot
encountering poor lighting conditions might be able to turn on additional lights
and change the context. We also ignore here the fact that particular contextual
information (“battery is low”), may also be part of a very particular condition
(“battery is now 7% full”);

Context-based designs also allow one to incrementally constrain the system.
E.g., if the design (and testing) of a home-assistant robot assumed only typical
indoor lighting, and a last-minute pre-shipping concern questions its functioning
in a dark room or in a sunlit porch, a makeshift solution can be to physically
limit the entire robot behavior to indoor lighting conditions, and when these
are not present to pause all activities. Similarly, when verification or extensive
testing are to be carried out, the size of the state space or the extent of test-
coverage goals can be reduced using context awareness, to enforce simplifying
assumptions throughout.

4 Context-Based Design in Native LSC

First, a key methodological point we propose is that contexts should play a
primary role in initial analysis. Hence, entities that may otherwise be modeled
as properties or as inter-object behavior (e.g., the facts that someone is asleep
in the house, or that two robots are collaborating) may need to be modeled as
objects in their own right.

Second, for context-based design in native LSCs (abbr. CBLSC), we propose
that instead of refining scenarios as one would refine ordinary programs, i.e., by
adding context conditions locally prior to triggering the actions that depend on
them, the activation (namely, the very relevance) of entire scenarios should be
subjected to the presence of desired contexts, as follows (see also Fig. 1):

Dynamic objects. In LSC, objects of all types can be created and destroyed
dynamically. This can be done from any scenario by executing an appropriate
event.

Binding expressions. The binding of a lifeline to an object instance can be
subjected to a binding expression that specifies the instance(s) to be bound (if
more than one, the scenario is replicated).

Dynamic binding. By default a scenario is not active. When a monitored event
that appears as the first one in a scenario, is triggered by the environment or by
the system, the scenario is activated and a new live copy thereof participates in
play-out until its termination. Lifelines are then bound dynamically as specified.
But, if there is a lifeline that cannot be bound, as no object satisfies its binding
expression, the live copy terminates.
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Fig. 1. Creating some context objects for a home-assistant robot (left) and subjecting
a noisy home-cleaning scenario to one such context (right). (Color figure online)

Context objects. It is common to infer a current context by checking the
values of object properties, like babyIsAsleep==true or batteryPercent<10.
The relevant objects usually persist despite changes in these values. By contrast,
in CBLSC, whether a context holds or not could depend on whether or not an
object like babyIsAsleep or batteryLow is instantiated.

Scenario-driven creation of context objects. The examination of possibly
complex conditions and events that determine whether a context holds is done in
one or more dedicated scenarios. Composite contexts can be similarly created by
monitoring conjunctions, disjunctions and other relationships of other contexts.

Subjecting scenarios to context objects. Scenarios specify context depen-
dencies by having lifelines for relevant context objects (even if no events occur in
these lifelines). When contexts apply to only a small part of a scenario, one can
split the scenario into its parts, or replicate, or use condition constructs instead.

Context-termination handling. Graceful context termination is still the
developer’s task, e.g., terminate the affected scenario immediately; activate sce-
narios to handle the new situation (including completing in-flight activities as
in exception handling); or use events to notify active scenarios that they need
to terminate ASAP.

Summary. With the above constructs, each scenario can concisely specify both
the required behavior and the contexts in which the specified reactivity applies.

5 Towards Intuitive Organization of Context-Based
Specifications

To streamline the management of large flat collections of independently-specified
scenarios, we propose to add the following to specification management in LSC
tools:
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Textual scenario views. Optionally hide the graphical chart view, and show
select details thereof, such as name, text comments, affected objects, relevant
contexts, key events, or a textual description of the scenario’s flow (now available
automatically).

Navigable specifications. Navigate specifications according to function, con-
text, structure and dependencies. This can be done by adding indexing, queries
and filters, sorted lists, trees and rectangle-containment views, dependency
graphs, etc.

Feature-model-like design of context awareness. We propose to design
context/scenario relationships to resemble feature models [2] and software prod-
uct lines, aligning contexts with key user requirements, system functions, or
target environments.

Multi-hierarchies of contexts. We believe that humans find it easier to under-
stand and manage contexts that are hierarchical, with sub-division of properties
such as time (r.g., day vs. night and then specific hour) or location (e.g., city,
street, building, room). As orthogonal hierarchies intersect, they can still be nav-
igated and understood using the above idioms. Intuitive visual representations,
such as multi-hierarchies, include a forest of tree hierarchies. Intersections can be
shown with directed edges between trees while keeping the entire graph acyclic,
or by connecting context nodes from different trees to a common set of scenarios.

Summary. Once scenarios are both subjected to and organized by contexts,
several potential advantages emerge as compared with implementing contexts
as in-line conditions (clearly, empirical quantification and assessment remain
as future work): (a) When a scenario is subjected to context objects such as
No One Is Asleep or DayTime, it is clear that it is applicable when the context
conditions do hold. With statements like if NoOneIsAsleep or if TimeOfDay
>= 22 and TimeOfDay <= 07, even rich classical search commands cannot read-
ily inform of both the properties checked, their desired values, and the actions
that are taken or skipped. (b) With contexts, one can readily check against the
requirements which scenarios are applicable in which contexts without examin-
ing implementation code. (c) When in-line conditions are replaced with contexts,
each scenario can be better understood as doing just one or very few tasks.

6 Research on New Language Idioms

We are pursuing two additional lines of work related to context orientation.
One is adding specific syntax and semantics to LSC for creating and destroying
context objects, subjecting scenarios to contexts, and other features related to
context based design (see a report in www.b-prog.org/morse17s).

Another direction is based on embedding LSC within the intuitive hierarchi-
cal structure of statecharts [5], which allows both state containment and orthog-
onality, which in turn align well with contexts. Contexts will be associated with
statechart states, and LSC scenarios that are associated with a context state
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will participate in play-out only when the system transitions into that state.
This will be complementary to our work on incorporating statecharts within an
LSC scenario (see a report in www.b-prog.org/morse17s). Another advantage
of statecharts is that their concurrency feature, namely, the ability to condition
a transition on whether other orthogonal parts of the system are in a certain
state, is an excellent basis for implementing multi-hierarchies.

Another relevant question is whether a scenario should have access to context
objects in which it is invoked, with all their details, causes, and other dependen-
cies.

We believe that contexts are a central concept in system analysis, and
have shown how context-based design can be incorporated into executable,
scenario-based specifications, using existing LSC idioms. We have also outlined
approaches for making the entire specification easier to understand via navi-
gational features, new language idioms, and integration with statecharts. We
hope that our work will contribute to the search for languages that can produce
intuitive models that are also powerful, executable programs.
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Abstract. One of the problems that the design and development of
robotic applications currently have is the lack of unified formal modeling
notations and tools that can address the many different aspects of these
kinds of applications. This paper presents a small example of a chain
of robotized arms that move parts in a production line, modeled using
a combination of UML and OCL. We show the possibilities that these
high-level notations provide to describe the structure and behaviour of
the system, to model some novel aspects such as measurement uncer-
tainty and tolerance of physical elements, and to perform several kinds
of analyses.

1 Introduction

Robotic applications are difficult to design, develop and check because of the
inherent properties of these kinds of systems and their multi-faceted characteris-
tics. For example, they are composed of heterogeneous parts difficult to model at
the same level of abstraction, and to describe with a single notation. Besides, the
heterogeneity of the available hardware platforms for robots and the lack of hard-
ware and software standardization severely hampers cross-product development.
Having to deal with physical components also implies the need to incorporate
some particular properties such as continuous flows, mechanical forces, toler-
ance and accuracy. Finally, their different nature from software systems hinders
in theory their specification with traditional software modeling notations and
tools.

This paper presents a small example of a chain of robotized arms that move
parts in a production line, modelled using a combination of UML and OCL. We
show how these high-level and platform-independent notations permit model-
ing the system in a formal manner, taking into account novel aspects such as
tolerance and measurement uncertainty, and allow performing several interest-
ing analyses on the system, such as visualization of the system in operation,
simulation of its behaviour, and validation of several properties of interest to
the designer. We claim the importance of having a unified language (e.g., UML
and OCL) for describing the functionality of the different parts within a robotic
system in order to understand and analyse the system and its different parts,
c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 232–246, 2018.
https://doi.org/10.1007/978-3-319-74730-9_22
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at least for the central functionalities. In this respect, our approach is different
from the various domain-specific languages/proposals for robotic applications
that combine specialized languages, since we want to explore the possibilities
that UML and OCL offer to model robotic systems.

The rest of the paper is structured as follows. The next Sect. 2 describes
the example and shows interesting properties using the USE modeling environ-
ment [6,7]. Section 3 discusses related work. The paper ends with a conclusion
and future work.

2 A UML and OCL Model for a Production Line
with Robotized Arms

This section will first discuss structural system elements before we turn to the
behavioral aspects. After that various visual property analysis options and formal
test aspects of our approach are debated. All codes and some additional material
about the example can be found at https://goo.gl/DdLivi.

Structural Elements. To illustrate our approach suppose a system composed
of producers and consumers, as shown in Fig. 1. Producer machines generate
Items, which once finished are placed in Trays. When informed that there is an
element ready in a tray, a Consumer takes the generated item from that tray,
performs some further work units on it, and stores it in a second tray (the
storageTray). Assuming we are in a robotized environment, each tray has
a RobotArm in charge of physically moving the items around. When asked
to perform a put operation, the tray asks the arm to go where the item is,
grasp it, move it to the position of the tray, and drop it there. Similarly, a
get(c:Coordinate) operation on a tray makes the arm grasp the item from
the tray, move it to the position that the caller has indicated (therefore the
parameter of this operation), and drop it there. Consumers and producers keep
a counter with the items they have handled, and trays have a limit on their
capacity (attribute cap).

An important characteristic of any system that deals with physical objects is
the associated measurement uncertainty, due to tolerance of the mechanical parts
and the lack of precision of the arm movements. In order to deal with this kind
of uncertainty, we make use of an extension of OCL and UML type Real, called
UReal [17] that permits expressing values of physical quantities as pairs (x, u)
where x represent the value and u the associated uncertainty, following the Inter-
national Guide to the Expression of Uncertainty in Measurement (GUM) [9].
The corresponding operations on this type take also into consideration the prop-
agation of uncertainty when uncertain values are added, multiplied, or other
arithmetical operations are performed [10,17]. This is why all coordinates are
expressed by UReal numbers.

Each robot arm in this system also has an associated tolerance that repre-
sents the deviation that the arm may introduce when performing a movement.
Besides, when the arm is asked to grasp an item, we check whether the position

https://goo.gl/DdLivi
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Fig. 1. Class and object diagram for robot arm example.

of the arm coincides with the position of the item. In case it does not (due to
accumulated uncertainty or excessive tolerance), the arm needs to be calibrated
and this is stored in an attribute that keeps track of how many calibrations
each arm has already needed. Note that every calibration introduces a delay in
the system and may have associated costs, and this is why it is important to
know how often they occur. Finally, the derived attribute /xy is used to facilitate
(an approximation of) the visual representation of the objects’ coordinates in
the real world and the UML diagrams.

Behavioral Elements. The behavior of the system can be expressed in UML
and OCL by different means. First, pre and postconditions can be specified on
the operations, as shown here for grasp() and drop() operations of a RobotArm.
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grasp ( i : Item )
pre notWithItem : graspedItem . oclIsUndefined ( )
post withItem : graspedItem=i
post calibrationsCount : not self . position@pre . coincide ( i . position )

implies calibrations = calibrations@pre + 1
post reposition : self . position . coincide ( i . position )

drop ( )
post notWithItem : graspedItem . oclIsUndefined ( )

State machines can also be specified on objects. For example, the following
listing shows the specification of the state machine of a Tray.
psm PutGet
states

init : initial
Empty [ self . items−>size ( ) =0]
Normal [0< self . items−>size ( ) and self . items−>size ( )<self . cap ]
Full [ self . items−>size ( )=self . cap ]

transitions
init −> Empty { create }
Empty −> Normal { [ self . cap>1] put ( ) }
Normal −> Normal { [ self . items−>size ( )<cap −1] put ( ) }
Normal −> Full { [ self . cap>1 and self . items−>size ( )=cap −1] put ( ) }
Empty −> Full { [ self . cap=1] put ( ) }
Full −> Empty { [ self . cap=1] get ( ) }
Full −> Normal { [ self . cap>1] get ( ) }
Normal −> Normal { [ self . cap>1 and self . items−>size ( ) >1] get ( ) }
Normal −> Empty { [ self . items−>size ( ) =1] get ( ) }

end

On top of that, USE also permits to specify the behavior of operations using
a simple executable language called SOIL [4]. For instance, the behavior of
Tray::put() and RobotArm::moveTo() operations can be specified as follows.
put ( p : Item )

begin
insert ( self , p ) into IsIn ;
self . arm . moveTo ( p . position ) ;
self . arm . grasp ( p ) ;
self . arm . moveTo ( self . position ) ;
self . arm . drop ( ) ;

end
pre notFull : self . items−>size ( )<cap
pre armNotWithItemAtPre : arm . graspedItem=null
post ElementAdded : self . items=self . items@pre−>append ( p )
post armNotWithItemAtPost : arm . graspedItem=null

moveTo ( c : Coordinate )
begin

declare aux : Coordinate ;
aux := new Coordinate ;
aux . x := c . x . add ( self . tolerance ) ;
aux . y := c . y . add ( self . tolerance ) ;
self . position := aux ;
i f self . graspedItem−>size ( ) > 0 then

self . graspedItem . position := self . position ;
end

end

Expressing and Proving Properties. Once we have the specifications, there
are different kinds of analyses that we can perform on the system that show
some of the potential advantages of developing model-driven robot descriptions
with UML and OCL, such as:
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Fig. 2. Sequence diagram displaying the behavior of the system.

• visualization of complex structures and processes
• execution and simulation of scenarios (operation call sequences)

– different scenarios with different structural properties e.g. trays with dif-
ferent capacities

– variations of a single scenario with equivalence checking by analysing
different operation call orders

• checking structural properties within states by OCL queries
– e.g. calculating the number of currently produced items
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• checking behavioral properties
– e.g. testing the executability of an operation by testing its preconditions

• checking for weakening or strengthening model properties (invariants, con-
tracts, guards) by executing a scenario with modified constraints

• proving general properties within the finite search space with the USE model
validator [7]

– structural consistency, i.e. all classes are instantiable
– behavioral consistency, i.e. all operations can be executed
– checking for deadlocks, e.g. construction of deadlock scenarios due to

inadequate tray capacities.

For example, based on the specifications above we are able to simulate the
system, by creating an initial model of the system and invoking the start()
operation to the producer. Then, if we have created a system with one producer
and one consumer, and the producer just generates one item, the behavior of the
system is recreated as shown using the UML sequence diagram in Fig. 2. The
sequence diagram shows lifelines for objects and called messages. The evolution
of a Tray object can also be traced by checking the statechart states that are
placed on the lifelines. The behavior can also be displayed as a communication
diagram (Fig. 3). As one detail, we emphasize that the RobotArm1 with the sec-
ond moveTo call moves to Coordinate2 (displayed in the shown object diagram).
Coordinate2 is close to the TrayTPosition but not the exact TrayTPosition.
This is possible in our approach that allows for uncertain real values.

Fig. 3. Communication diagram.

Similarly, for every step we obtain the state machines of the Tray objects,
which can be shown as depicted in Fig. 4.
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Fig. 4. State machine for tray objects.

Finally, the last object diagram in Fig. 6 shows the resulting system state
after the system has gone through an iteration. We can see the final positions
of the item and the arms. We can also see how the high tolerance that we have
indicated for the two robot arms has caused two calibrations.

Figures 5 and 6 pictorially show a filmstrip of the behavior of the system as
a sequence of snapshots after every robot arm operation. One can trace in the
figures the movements of the Item, the RobotArm1 and the RobotArm2. These
two figures show two different aspects: a time dimension (through the sequence
of diagrams) and a space dimension (within the single object diagrams). The
physical placement of the objects is captured by their position in the diagrams:
some objects have a fixed position (e.g. the producer, consumer and trays) while
others ‘move’ from object diagram to object diagram as in the real process, e.g.
the Item1 and the two robot arms. Uncertainty is captured through UReal values.
Aggregation associations are used to visualize ‘ownership’ between objects (e.g.
a robot arm has an item, or an item is placed on a tray).

Another interesting representation of the system behavior is shown in Fig. 7.
It depicts a communication diagram showing the operation calls involving an
Item object. We have also included the associations in which the Item engages
during the execution of the system (IsIn, Grasp) as a result of the operations.
This diagram is very useful to check the order in which operations are called,
and their effects. One can trace that the item Item1 is first created, then put in
the first tray, and finally put in the second tray.
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Fig. 5. Object diagram sequence displaying the behavior of the system (Part 1).

Validation and Verification Through Testing. Finally, we want to high-
light the importance of running structural tests on the metamodels. One of them
concerns their instantiability and their ability to faithfully represent the appli-
cation domain. For example, we decided to ask the USE model validator [7] to
generate a producer-consumer-tray constellation using the system metamodel.



240 M. Gogolla and A. Vallecillo

Fig. 6. Object diagram sequence displaying the behavior of the system (Part 2).

The resulting object diagram is shown in Fig. 8, together with the model val-
idator configuration that we employed (e.g., optional minimum and mandatory
maximum number of instances per class; analogous specifications for associa-
tions and datatypes). Interestingly, the produced system is wrong! For example,
the producer and consumer are disconnected, sharing no tray between them.
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Fig. 7. Communication diagram showing operation calls involving an Item object.

This motivates the need to develop additional, currently missing invariants (on
the structural system constellation level) and demonstrates the potential useful-
ness of this approach for validating this kind of properties which are normally
overlooked for being considered obvious.

Figure 9 shows another generated test case indicating missing constraints.
This time an additionally loaded invariant guarantees a proper Producer-
Consumer-Tray constellation. However, erroneously robotarm2 can grasp an
item from the storage tray, and robotarm1 can grasp an item from the pro-
ducer output tray. Furthermore, the test case reveals that constraints on the
coordinates of machines and trays are missing. The underlying model validator
configuration basically looks like the one presented in Fig. 8.

Another analysis option in our approach with regard to behavioral aspects
is, that the developer can check in a system state for the applicability of an
operation, for example for the operation Tray::get(c:Coordinate). One can
check whether the preconditions of an operation when applied on a particular
object together with appropriate parameters are satisfied. One can also construct
a respective set of tuples with possible objects to apply the operation to and
corresponding parameters.

The OCL query below retrieves from the last object diagram in Fig. 6 the
possible operation calls by returning tuples with a tray TRAY whose item set
is not empty and whose robot arm is not grasping an item (as required in the
preconditions of the operation get) together with the coordinate COOR of the tray:
the result is constructed in such a way that the preconditions of the operation
call TRAY.get(COOR) would be satisfied for all elements of the returned tuple
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Fig. 8. Generated test case for Producer-Consumer-Tray configuration.

set, a singleton in this case. Concerning the object diagram in Fig. 9, the query
would show that the operation get is not applicable there.

get ( c : Coordinate ) : Item
pre notEmpty : self . items−>size ( )>0
pre armNotWithItem : self . arm . graspedItem=null

Tray . allInstances−>
select ( self | self . items−>size ( )>0)−>

select ( self | self . arm . graspedItem=null )−>
collect ( t | Tuple { TRAY : t , COOR : t . position })−>asSet ( )

Set{ Tuple { TRAY=S , COOR=storageTrayPosition }} :
Set ( Tuple ( TRAY : Tray , COOR : Coordinate ) )
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Fig. 9. Test case showing missing constraints for IsIn and Grasp associations.

3 Related Work

There are different kinds of works that use MDE techniques for modeling robotic
applications, depending on their purpose. One set of works focuses on the auto-
matic generation of components, control logic and other artefacts for the imple-
mentation of robotic systems [5,19,20]. Other works focus on transformations
between models of different analysis tools that serve as bridges between the sep-
arate semantic domains [8,11]. And there are those works that propose models
for describing at a high-level and in a platform- and technology-agnostic man-
ner the algorithms and choreography that robotic systems composed of several
cooperating agents have to perform to achieve their goals [16,22].

Our paper is more closely related to those works that focus on the specifi-
cation of the robotic systems themselves. Here the discussion happens between
those that propose the use of separate (related) views of the system, using inde-
pendent domain-specific languages, and those that try to use general purpose
modeling languages. One of the major problems with the former approach is
the combination of the languages, both horizontally (i.e., at the same level of
abstraction—see, e.g. [23]) and vertically (one example of this kind of verti-
cal combination for robotic systems is [2], that uses deep metamodeling [21]
to combine system descriptions at different levels). Among the latter, the most
widely known ones use high-level component-based architectures with the func-
tional decomposition of the robotic systems, using block-diagrams and/or UML
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components. Examples include SafeRobots [18], RobotML1, SmartSoft2, BCM3,
V3CMM [1] and HyperFlex [3]. Our approach sits at a higher level of abstrac-
tion, when not even the architecture of the system needs to be considered, just
its basic functionality, and hence many of the details can be abstracted away for
later consideration.

We have explored in this paper the option of using a widely used general-
purpose modeling language, such as UML, augmented with OCL for the speci-
fication of integrity constraints, and pre- and postconditions of operations. On
top of them we have used some extensions and tools: (a) to be able to exe-
cute the specifications we have used SOIL [4]; (b) the USE model validator has
been employed to generate instances of the model; finally, we have shown how
the UML/OCL type system can be easily extended to account for some spe-
cific features—namely measurement uncertainty, by defining type UReal as an
extension of type Real. We wanted to follow this path to study its feasibility
and expressive power, departing from other approaches that enrich UML with
Profiles (such as MARTE [15] or SysML [13]) and make use of action languages
like Alf [12] for executing fUML [14] specifications.

A comparison with the pros and cons of our approach with regard to those
others is part of our future work, now that we have seen that we are able to get a
relevant set of meaningful and workable specifications of these kinds of systems.

4 Conclusions and Future Work

In this paper we have illustrated the possibilities that UML and OCL offer to
model robotic systems at a high-level of abstraction but still providing some key
benefits to the system designer. In particular, we are able to describe in a formal
manner its structure and behaviour; to incorporate some physical characteris-
tics such as measurement uncertainty; to validate of some of the structural and
behavioural properties of the system, and to perform simulation.

There are several lines of work that we plan to address next. First, we want to
explore the limitations of our approach due to the type of notations employed.
For example, both UML and OCL can handle discrete quantities but are not
naturally devised to deal with continuous variables. Some of them are difficult
to overcome, but others could have relatively easy solutions. For example, we
want to add randomness and other types of uncertainty into our OCL models—
e.g., the fact that up to 5% of the generated parts can be defective. We also want
to be able to conduct performance analyses about the production time of the
system, using e.g. model attributes that specify the time each machine needs to
process a part—adding probability distributions to the description of the types
of the attributes.

Finally, given that our models just represent early prototypes of the system
to study the feasibility of the solution, we want to connect our models to the
1 http://robotml.github.io/.
2 http://smart-robotics.sourceforge.net/.
3 http://www.best-of-robotics.org/bride/bcm.html.

http://robotml.github.io/
http://smart-robotics.sourceforge.net/
http://www.best-of-robotics.org/bride/bcm.html
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different analysis and simulation tools currently used in industry, each one able to
conduct more fine-grained and precise validations, but of a more heterogeneous
nature. In this way, we expect our high-level models to play a pivotal and unifying
role that permit connecting the modeling and simulation tools needed for the
complete design and validation of these systems.
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Abstract. Robots are found in most, if not all, modern production facil-
ities and they increasingly enter other domains, e.g., health care. Robots
participate in complex processes and often need to cooperate with other
robots to fulfill their goals. They must react to a variety of events, both
external, e.g., user inputs, and internal, i.e., actions of other components
or robots in the system. Designing such a system, in particular developing
the software for the robots contained in it, is a difficult and error-prone
task. We developed a formal scenario-based modeling method which sup-
ports engineers in this task. Using short, intuitive scenarios engineers can
express requirements, desired behavior, and assumptions made about the
system’s environment. These models can be created early in the design
process and enable simulation as well as an automated formal analy-
sis of the system and its components. Scenario-based models can drive
the execution at runtime or can be used to generate executable code,
e.g., programmable logic controller code. In this paper we describe how
to use our scenario-based approach to not only improve the quality of
a system through formal methods, but also how to reduce the manual
implementation effort by generating executable PLC code.

Keywords: Code generation · Robot · Scenario · GR(1) specification

1 Introduction

Robots are found in many domains, e.g., manufacturing, transportation, or
health care. Especially in manufacturing they are ubiquitous. Modern produc-
tion systems implement complex processes, often requiring the cooperation of
many robots to achieve their desired goals. Each robot may even be involved in
several concurrent processes, making the design of its behavior a difficult and
error-prone task. The robot has to react to a multitude of events, both external
events, e.g., sensor inputs, and internal events, i.e., actions of other robots in the
system. The inherent complexities of modern manufacturing processes make it
difficult to develop robot software which is free of defects, that is, which makes
the robot act or react properly under all possible circumstances. The specifi-
cation, from which an implementation is derived, may be inconsistent and the
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manual implementation thereof itself may introduce further defects. The task
of designing such systems becomes even more difficult when considering non-
functional requirements such as reducing the system’s energy consumption.

We developed a formal, yet still intuitive scenario-based specification app-
roach to support engineers with the difficult design of such systems. Our app-
roach uses short scenarios to model guarantees (goals, requirements, or desired
behavior) and assumptions made about the environment. Scenarios are sequences
of events, similar to how engineers describe requirements to each other, e.g.,
“When A and B happen, then component C1 must do D, followed by C2 doing
E.” These sequences are used to intuitively describe when events or actions may,
must, or must not occur [1,14]. The formal nature of scenario-based specifica-
tions allows applying powerful analysis techniques early in the design process.
Through simulation and controller synthesis, which, if successful, can prove that
the requirements defined in the specification are consistent, defects can be found
and fixed early during development. The same techniques used for simulation
can be used to directly execute a specification at runtime [15] and the techniques
used for controller synthesis can be used to automatically generate executable
code. This reduces manual implementation effort significantly, thus mitigating
some of the cost of writing a formal specification. With mature enough tool
support, an overall reduction in development costs could even be achieved.

The contribution of this paper is an approach for generating executable code
for Programmable Logic Controllers (PLCs) from aforementioned scenario-based
specifications. This enables engineers to use formal methods such as checking if
all requirements are consistent to ensure the correctness of the specification
and to generate code which is correct by construction. A PLC program must
handle two concerns: (1) it must correctly decide when to perform which atomic
action, e.g., when to move which robot arm to which location, and (2) it must
implement each atomic action, e.g., moving a specific robot arm to a specific
location. Our approach generates code handling the first concern, leaving only
the manual implementation of atomic actions to engineers. From the point of
view of Model Driven Architecture [20], a scenario-based specification would be
a Platform Independent Model of a system and the generated PLC code, after
an implementation of each atomic action has been added, would be a Platform
Specific Model of the same system. The latter can then be used directly as the
software for an actual physical version of the specified system.

The remainder of this paper is structured as follows. Section 2 introduces an
example used for explanation and discussion throughout the paper. Sections 3
and 4 introduce scenario-based modeling and controller synthesis. Section 5
builds on these foundations to describe how to generate PLC code from such
a controller. The paper finishes with related work and a conclusion in Sects. 6
and 7.

2 Example

To explain and discuss our approach we use a production system example, shown
in Fig. 1. It models a typical manufacturing process. Blank work items arrive via
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a feed belt, which has a sensor telling a controller about the arrival of new work
items. These blanks are then picked up by a robot arm and put into a press,
which will press the blanks into useful items. These pressed items are then picked
up by another robot arm which will put the items on a deposit belt which will
transport the items to their next destination.

Fig. 1. A production system consisting of two robot arms, each adjacent to a conveyor
belt, a press, and a software-based controller sending instructions to other components
as well as processing their sensor inputs.

The specification we use for this example models the following guarantees G
and assumptions A:

G1 When a new blank arrives, the feed arm must pick it up when possible.
G2 After picking up an item, the feed arm must move to the press, release the

item into the press (when the press is ready), and finally move back to the
feed belt.

G3 When an item is put into the press, the press must start pressing.
G4 When the press finishes, the deposit arm must pick the pressed item up

when possible.
G5 After picking up an item, the deposit arm must move to the deposit belt,

release the item onto the deposit belt, and finally move back to the press.
A1 The feed arm is able to pick up every blank before the next one arrives.
A2 After being instructed to press an item, the press will eventually finish.
A3 After a robot arm is instructed to move to a new location, it will eventually

arrive at the new location.
A4 After a robot arm is instructed to pick up an item, it will eventually pick

up that item.
A5 After a robot arm is instructed to release an item, it will eventually release

that item.

Guarantees G1–G5 define the system’s desired behavior and requirements
it must fulfill as described at the beginning of this chapter. They also include
additional conditions, e.g., “[...] the feed arm must pick it up when possible.” in
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G1. These conditions express additional structural conditions required to fulfill
certain goals. In the same example, G1, a new blank may arrive while the feed
arm is still delivering the previous blank or is still on its way back to the feed
belt. In these cases the feed arm must only be instructed to pick up the newly
arrived blank when it is back at the press.

The assumptions specify what the engineers assume is true about the environ-
ment the system will operate in. As an example, A1 specifies that the feed arm
is able to pick up arriving blanks more frequently than the frequency of arrival
of new blanks. This assumption implies that no queue of unprocessed blanks
forms at the feed belt. Assumptions A2–A5 specify that robot arms and the
press will eventually finish their tasks after being instructed to perform a certain
action. These assumptions are actually important to ensure that the specifica-
tion is realizable, since they basically specify that system is operating normally,
i.e., the components are working as intended. A correctly working system only
needs to fulfill its guarantees as long as all assumptions hold.

3 Scenario-Based Modeling

In this section we introduce our scenario-based modeling approach, which we use
to write formal specifications. It is based on a DSL we developed for modeling
scenarios, called the Scenario Modeling Language (SML) [16].

SML offers engineers an easy to use way to write formal, scenario-based spec-
ifications. It is a text-based variant of Life Sequence Charts [10,18], offering a
similar feature set with a few extensions. Listing 1 shows the specification of
our production system example. Comments next to each scenario indicate which
guarantee or assumption they represent. A scenario-based specification also con-
sist of a class model, called domain model, describing the different components of
the system and an instance thereof, an object model. The object model contains
a concrete instance for every physical component of the specified system.

A specification references a domain model (line 1) and has a name (line 2).
In our example the domain model contains classes such as RobotArm and Press.
These classes model each component type’s attributes and possible events it can
receive. Events can be either actions it should perform or sensor events it may be
notified of. Our production system example includes events such as a RobotArm
being told to pick up an item or the Controller being notified of the arrival of a
new blank. The specification defines which components are software-controllable
(line 4) with all other classes automatically being interpreted as uncontrollable,
also called environment-controllable. Non-spontaneous events (lines 5–13) are
events which cannot occur unless enabled, e.g., the event pressingFinished can-
not occur unless assumption A2 is active (lines 51–54) and is in a state in
which the second line is expected next. Other events, sent by uncontrollable
objects and being the initializing event of a scenario (e.g., blankArrived) can
occur spontaneously. This then triggers the creation of an instance of a scenario
called an active scenario. Active scenarios have one or more references to events
they expected next, called enabled events. When PressEventuallyFinishes (lines
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1 import ” . . / model/ p r oduc t i on c e l l . e core ”
2 spec i f icat ion Produ c t i o n c e l l S p e c i f i c a t i o n {
3 domain p roduc t i on c e l l
4 control lable { Cont ro l l e r }
5 non−spontaneous events {
6 Cont ro l l e r . pickedUpItem
7 Cont ro l l e r . arr ivedAt
8 Cont ro l l e r . r e l ea sed I t em
9 Cont ro l l e r . p r e s s i ngF in i shed

10 RobotArm . se tCar r i e s I t em
11 RobotArm . se tLocat ion
12 Press . setHasItem
13 }
14 collaboration FeedBeltBehavior {
15 stat ic role Cont ro l l e r c o n t r o l l e r
16 stat ic role ConveyorBelt f e edBe l t
17 stat ic role RobotArm feedArm
18 stat ic role Press pre s s
19
20 guarantee scenario BlankArrives { // G1
21 f e edBe l t −> c o n t r o l l e r . blankArrived ( )
22 wait [ feedArm . l o c a t i on == feedBe l t && ! feedArm . ca r r i e s I t em ]
23 urgent c o n t r o l l e r −> feedArm . pickUp ( )
24 }
25 guarantee scenario ArmDeliversItemToPress { // G2
26 feedArm −> c o n t r o l l e r . pickedUpItem ()
27 urgent c o n t r o l l e r −> feedArm .moveTo( pre s s )
28 feedArm −> c o n t r o l l e r . arr ivedAt ( pre s s )
29 wait [ ! p r e s s . hasItem ]
30 urgent c o n t r o l l e r −> feedArm . r e l e a s e I t em ()
31 feedArm −> c o n t r o l l e r . r e l ea sed I t em ()
32 urgent c o n t r o l l e r −> feedArm .moveTo( f e edBe l t )
33 }
34 . . . // new b l a n k s a r e p i c k e d up b e f o r e n e x t one a r r i v e s ( A1 )
35 }
36 collaboration PressBehavior {
37 stat ic role Cont ro l l e r c o n t r o l l e r
38 stat ic role RobotArm feedArm
39 stat ic role RobotArm depositArm
40 stat ic role Press pre s s
41
42 guarantee scenario Pre s sS ta r t sPr e s s i ng { // G3
43 feedArm −> c o n t r o l l e r . r e l ea sed I t em ()
44 urgent c o n t r o l l e r −> pre s s . s t a r tP r e s s i n g ( )
45 }
46 guarantee scenario PickUpPressedItem { // G4
47 pre s s −> c o n t r o l l e r . p r e s s i ngF in i shed ( )
48 wait [ depositArm . l o c a t i on == pre s s && ! depositArm . ca r r i e s I t em ]
49 urgent c o n t r o l l e r −> depositArm . pickUp ( )
50 }
51 assumption scenario Pres sEventua l l yF in i she s { // A2
52 c o n t r o l l e r −> pre s s . s t a r tP r e s s i n g ( )
53 s t r i c t eventually pre s s −> c o n t r o l l e r . p r e s s i ngF in i shed ( )
54 }
55 }
56 collaboration Depos itBeltBehavior {
57 . . . // d e p o s i t arm t r a n s p o r t s p r e s s e d i t e m s (G5 ) ; s i m i l a r t o G2
58 }
59 collaboration RobotArmBehavior {
60 dynamic role Cont ro l l e r c o n t r o l l e r
61 dynamic role RobotArm arm
62 dynamic role Location targe tLocat ion
63 stat ic role Press pre s s
64
65 assumption scenario ArmMovesToLocation { // A3
66 c o n t r o l l e r −> arm .moveTo(bind ta rge tLocat ion )
67 s t r i c t eventually arm −> c o n t r o l l e r . arr ivedAt ( ta rge tLocat ion )
68 s t r i c t committed arm −> arm . se tLocat ion ( ta rge tLocat ion )
69 }
70 . . . /∗ arm p i c k s up i t em (A4 ) and arm r e l e a s e s i t em (A5 ) ; b o t h s i m i l a r
71 t o A3 ∗/
72 }
73 }

Listing 1. Excerpt of a specification for our production system example; some scenarios
have been omitted for brevity



252 D. Gritzner and J. Greenyer

51–54) is activated by a startPressing event, it will point to line 53, indicating
that this scenario waits for a pressingFinished event. When an event enabled in
an active scenario occurs, the reference to this enabled event advances to the
next event. When all references advance past the last event in a scenario, it
terminates.

Roles (e.g., lines 15–18) are used similarly to lifelines in sequence diagrams.
Static roles are bound when the system is initialized and dynamic roles are bound
when an active scenario is created. Binding a role means assigning an object from
the object model to this role. The abstraction through roles allows reusing the
same specification for different object models modeling different configurations
of the same type of system, e.g., production systems with varying numbers of
robots. In lines 60–69 the use of dynamic roles is shown. Any object of the
proper class from the object model can be bound to these roles. As an example,
when an object of class Controller sends the event moveTo to an object of class
RobotArm, an active instance of the scenario ArmMovesToLocation (lines 65–69)
is created. In this active scenario, the role controller is played by the object which
sent the initial event and the role arm is played by the object which received the
event. Dynamic roles can even be bound to parameters (line 66) or to an object
referenced by an object already bound to a role (not shown). Multiple copies of
the same scenario with different role bindings can be active concurrently.

Events use different keywords to enforce liveness and safety conditions.
Events flagged as committed, urgent, or eventually must not be enabled for-
ever. Committed and urgent events must occur immediately, allowing only other
committed or urgent events to occur beforehand. Committed events take prior-
ity over urgent events. An event which must occur eventually can occur at an
arbitrary time in the future, i.e., the system can choose to wait. Strict events
enforce a strict order. Events which occur out of order generally terminate a
scenario early by interrupting it. If line 22 in an active scenario is enabled and
blankArrived occurs (line 21; same active scenario), this active scenario is inter-
rupted. However, if at least one enabled event is strict, an interruption causes a
safety violation instead. Safety violations must never occur.

Additional keywords offer flow control. Wait is used to wait for a certain con-
dition to be satisfied before the next message is enabled. The keywords interrupt
and violation can be used to specify conditions, which are checked when the event
becomes enabled and may cause an interruption or a safety violation. If the condi-
tion is not satisfied, the next event is immediately enabled instead. Furthermore,
there are while (repeat an event sequence while a condition holds), alternative
(branching within a scenario), and parallel (concurrent event sequences). Col-
laborations are used to group scenarios together and do not have any semantic
implications beyond providing a scope for roles.

We implemented SML and algorithms for simulating and analyzing SML
specifications as a collection of Eclipse plug-ins called ScenarioTools. We
use the Eclipse Modeling Framework (EMF) [27] and leverages this to integrate
other powerful tools such as OCL [30] and Henshin [3]. This enables engineers
to enhance SML specification with tools they already are familiar with while
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still being able to use ScenarioTools’ simulation and analysis features, e.g.,
checking if a specification is realizable.

4 Controller Synthesis

In this section we give an overview of how controller synthesis works. We briefly
explain the play-out algorithm, which gives our specifications execution seman-
tics used for simulation, analysis, and controller synthesis, and how it induces a
state space. Furthermore, we briefly explain controller synthesis, that is, generat-
ing a strategy for the system to behave such that it fulfills a given specification.

4.1 Play-Out

The play-out algorithm [18,19] defines how scenarios can be interwoven into
valid event sequences. Basically, the algorithm waits for the environment to
choose an event, activates and progress scenarios accordingly, and then picks
a reaction which is valid according to all active scenarios. Environment events
can either be spontaneous events or enabled non-spontaneous events. They are
events sent by uncontrollable objects. When at least one system event with a
liveness condition, e.g., urgent, sent by a controllable object is enabled, play-
out will pick one of these events. It honors particular priorities such as picking
committed events first. In case all such events are flagged as eventually, the
algorithm may also choose to wait for further environment events. Events are
considered to be blocked if they would directly lead to a safety violation due to
the strictness of an enabled event. The play-out algorithm never picks blocked
events. A sequence of events sent by system objects enclosed by one environment
event on either end is called a super step.

For any given set of scenarios and a given object model the play-out algo-
rithm generally has multiple valid events to choose from at any point. It is
non-deterministic. This property induces a state space or graph as shown in
Fig. 2, an excerpt of the graph of our production system example (cf. Sects. 2
and 3). Each node represents a state, characterized by its active scenarios and
the attribute values of all objects. Every edge/transition represents an event.
While the edge labels in Fig. 2 seem to reference roles from the SML specifica-
tion, they actually reference objects from the object model. The events in such
a state graph are always concrete events sent from one object to another object
using concrete parameter values (if applicable).

Such a state space is actually a game graph. Each state is either controllable
by the system (= has only controllable outgoing transitions) or by the environ-
ment (= has only uncontrollable outgoing transitions). These two players play
against each other. The system tries to fulfill its guarantees infinitely often given
that the assumptions hold. More precisely, for every guarantee, it always tries to
reach states in which no liveness condition must be fulfilled and to reach them
via a sequence of events which do not cause a safety violation. The environment
aims for the opposite. It tries to fulfill all assumptions the same way the system
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Fig. 2. Excerpt of a game graph induced by our example specification. Control-
lable/system events are represented by solid arrows. Uncontrollable events are rep-
resented by dashed arrows. Set-events, e.g., setLocation, have been omitted for brevity

fulfills the guarantees, but at the same time it tries to force the system to violate
at least one of the guarantees. This type of game is called a GR(1) game. We
impose an additional goal on the system, in particular we enforce the condition
that each super step must be finite to ensure that the system will eventually be
able to react to external events from the environment again.

4.2 Synthesis

Our controller synthesis is an implementation of Chatterjee’s attractor-based
General Reactivity of rank 1 (GR(1)) game solving algorithm [9]. A GR(1) con-
dition is based on assumptions and guarantees. Formally, as Linear Temporal
Logic [25] formula, it is
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with ai = “assumption i is satisfied” and gj = “guarantee j is satisfied”.
Informally, this formula is true iff at least one assumption can only be fulfilled
finitely often (i.e., goal states of this assumption are only visited a finite number
of times in any infinite execution of the system) or all guarantees can be fulfilled
infinitely often.

We map our specifications to a GR(1) condition by mapping active assump-
tion scenarios to assumptions ai and by mapping active guarantee scenarios to
guarantees gj . The goal states ai of an active assumption scenario Sc are all
those states in which Sc has no liveness condition to fulfill and has never been
violated (tracked via a Boolean flag). Guarantee scenarios are mapped analo-
gously. Additionally, we introduce an extra guarantee whose goal states are all
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environment controlled states to ensure that all super steps are finite for well-
separated specifications. In a well-separated specification [24], the system cannot
force the environment into a violation of the assumptions by any action it takes.
Well-separation is a desirable property of a good specification.

Chatterjee’s aforementioned game solving algorithm uses the assumptions’
and guarantees’ goal states to calculate attractors. Attractors of a condition are
all states from which a player can guarantee reaching a goal state of this condi-
tion. A system attractor of gj is a state from which the system can ensure to visit
a goal state of gj regardless of the environment’s behavior. Chatterjee’s algorithm
iteratively removes environment dominions from the game graph. Environment
dominions are subsets of the game graph in which the environment can fulfill
all assumptions but the system is unable to fulfill at least one of the guarantees.
Environment dominions are identified by finding states which are not system
attractors for at least one gj . Using the environment attractors of all ai, Chat-
terjee’s algorithm determines if the environment can fulfill all assumptions in
the subgraph defined by the non-attractor states of aforementioned gj . These
iterations are performed until the game graph cannot be reduced further.

The states retained after the algorithm finishes are called winning states.
They contain a strategy in which the system can guarantee to fulfill the GR(1)
condition defined by all assumptions and guarantees. If the initial state of the
game graph is a winning state, the specification is realizable, i.e., the requirements
and behavior defined by the scenarios are consistent. Using the same attractor
approach, we can extract a strategy (also: controller) from the winning states. A
strategy is similar to a game graph but contains exactly one outgoing transition
for each controllable state (Fig. 2 happens to be a strategy). It deterministically
specifies what the system must do for any valid environment. These strategies
serve as the basis for generating Structured Text to execute on a PLC.

5 Generating Executable Code

In this section we describe how to generate Structured Text from a synthesized
controller which is correct by construction. A synthesized controller contains
some events which are only necessary for defining and checking a GR(1) condition
but which serve no purpose in the generated PLC code. Thus, we explain a
pre-processing step of the controller to reduce it to events of interest for code
generation. After that, we describe how to generate executable PLC and finish
the section with a discussion of possible extensions to our approach.

5.1 Pre-processing the Controller

Figure 3 shows an excerpt of a synthesized controller including a setLocation
event which is required to be able to express conditions such as the wait condition
in line 48 of Listing 1. However, this event is not useful for code generation
and should be removed, as shown in Fig. 2. In general, expert knowledge of the
domain is necessary to identify events to remove and thus an engineer should be
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able to provide a list of such events. A tool can still provide helpful suggestions
for removal based on heuristics, though. We propose two heuristics, (1) events
sent by uncontrollable objects to other uncontrollable objects, and (2) set-events.
Either of these two heuristics would be sufficient to propose the proper list of
events to remove to the engineer in our example specification. When removing
events, transitions have to be updated, such as the outgoing transition of state
150 in Fig. 3 which must point directly to state 6 after the removal of 151, which
is no longer necessary after removing setLocation(*).

Fig. 3. Variant of Fig. 2 including a setLocation event previously omitted.

In Structured Text, components are controlled by setting the appropriate
input attributes of function blocks, e.g., a block representing a specific robot arm
of the system, and waiting for the output attributes to be set to values signaling
that the desired action has been performed. The paradigm is: a component is
instructed to do something (setting of input attributes) and it signals when it
is done (setting of output attributes). In our approach, we adopt this paradigm
by having the engineer define event pairs which correspond to “do X” and “X
is done”. Such a pair is shown in Fig. 2: moveTo(press) (transition from 5 to 6)
and arrivedAt(press) (transition from 6 to 381; also outgoing transition of 7).
These event pairs are characterized by a controllable object S (here: controller)
sending an event to an uncontrollable object E (here: feedArm), instructing E
to perform an action (here: moveTo(press)). Later, E signals back to S that it
is now done performing this action. Again, heuristics can be used to support
the engineer in defining these pairs. We observed that these pairs often occur in
adjacent lines in scenarios, e.g., lines 27–28 and 30–31 in Listing 1. These event
pairs are necessary in the next step, the actual code generation.

5.2 Generating Structured Text

We use the pre-processed controller and event pair definitions provided by the
engineer to generate Structured Text which is executable on PLCs. For simplic-
ity, we assume that there is exactly one controllable object in the system, e.g., the
controller shown in the center of Fig. 1. Our generated code consists of multiple
state machines. We translate the pre-processed controller to one state machine
representing the controllable object. We call this the primary state machine, as it
governs the whole process: it tells each component, via the other state machines,
when to perform which action. We furthermore generate one state machine for
each uncontrollable object which receives events, i.e., represent components hav-
ing to perform an action. These state machines, called secondary state machines,
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1 CASE controllerState OF // primary state machine

2 0:

3 // idle

4 1:

5 ... // omitted for brevity

6 5:

7 feedArmState := 1;

8 controllerState := 6;

9 6:

10 IF feedBelt_controller_blankArrived THEN

11 feedBelt_controller_blankArrived := FALSE;

12 controllerState := 7;

13 ELSIF feedArm_controller_arrivedAt_press THEN

14 feedArm_controller_arrivedAt_press := FALSE;

15 controllerState := 381;

16 END_IF

17 7:

18 ... // omitted for brevity

19 END_CASE

Listing 2. Generated PLC code (Structured Text) of the primary state machine

are much simpler. They consist of an idle state, which is their initial state, and
one additional state for each action that must be performed. Listings 2 and 3
show examples of the generated code.

Events sent by uncontrollable objects are mapped to Boolean variables, e.g.,
feedBelt controller blankArrived which corresponds to the sensor event triggered
by the arrival of a new blank item. These variables are used by the primary
state machine to decide when to switch to which state (lines 10–16 in Listing 2).
This state machine instructs the secondary state machines to perform actions as
called for by the synthesized controller, e.g., lines 7–8 correspond to the transition
from state 5 to 6 in Fig. 2. The previously defined event pairs are used to gener-
ate this code. Based on the knowledge that controller→feedArm.moveTo(press)
and feedArm→controller.arrivedAt(press) are a pair, line 7 can be generated to
instruct the feed arm’s state machine (Listing 3) to switch to the proper state
to perform this action. The same pair definition is used to generate line 9 in
the secondary state machine, in which the feed arm informs the controller via
a Boolean variable that is done performing the desired action. This separation
into primary and secondary state machines allows any arbitrary combination of
actions to be performed concurrently by different components.

Separating the generated state machines into different code files has proven to
be a good practice when regeneration of the PLC code is a concern. By keeping
state machines separate and the order of states in the secondary state machines
deterministic and consistent, only the (fully generated) primary state machine
has to be replaced after regenerating the PLC code. More elaborate changes
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1 CASE feedArmState OF // secondary state machine for feed

arm

2 0:

3 // idle

4 1:

5 // controller ->feedArm.moveTo(press)

6 feedArmFB.xMoveRelExecute := TRUE; // perform

example action

7 IF feedArmFB.xFunDone THEN // is example action

done?

8 feedArmFB.xMoveRelExecute := FALSE; // clean -

up after example action

9 feedArm_controller_arrivedAt_press := TRUE;

10 feedArmState := 0;

11 END_IF

12 2:

13 // controller ->feedArm.moveTo(feedBelt)

14 ... // omitted for brevity

15 END_CASE

Listing 3. Generated PLC code (Structured Text) of a secondary state machine

to the model, such as adding or removing actions components must perform,
require some manual migration effort when regenerating code.

The primary state machine is fully generated and does not need to be mod-
ified. The secondary state machines are however actually only stubs after gen-
eration. Listing 3 shows an example after an engineer manually added the code
in lines 6 and 8 and the condition in line 7. In general, after generating the
Structured Text from a synthesized controller, each state in the secondary state
machines contains some boiler plate code, in particular the if-statement with an
empty condition but a body that already sets the appropriate Boolean and state
variables (lines 9–10), and some comments telling the engineer which atomic
action should be performed in this state. These stubs can easily be extended by
an engineer by setting and checking the inputs and outputs of the appropriate
function block. The proper function block definitions, as well as any initializa-
tions, have to be added manually as they are platform-specific. Additionally,
code for checking sensor events which are not part of an event pair, e.g., when
to set feedBelt controller blankArrived to TRUE, has to be added manually.

When generating PLC code from Listing 1 and using rotations at varying
directions and speeds of a single axis (one for each component, i.e., both robot
arms and the press) to represent actions such as movement or picking up a work
item, 59 lines of code had to be written manually, 9 lines of code had to be
modified (conditions which check whether an action has been performed suc-
cessfully), and 1355 lines of code were generated automatically. While this is
not an exhaustive evaluation, these numbers already point towards a significant
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reduction in the required manual implementation effort. In particular, the com-
plex interleaving of concurrent actions and events is fully generated.

5.3 Extensions

We assumed that there is only one controllable object in the system. As an exten-
sion to support multiple controllable objects, i.e., multiple software controllers,
we are looking into algorithms to create multiple distributed controllers which
automatically synchronize with each other when necessary.

Event pairs are defined during pre-processing. This implies that only the suc-
cess case, i.e., the action can actually be performed, can be modeled. Instead,
defining a mapping from controllable events (instructions) to sets of uncontrol-
lable events (outcomes of the instructions) can easily rectify this. Different out-
comes for each action can be defined and the specification can include appropri-
ate reactions for each possible outcome.

By including checks of the Boolean variables of environment events, which are
not expected to occur in a given state of the primary state machine, violations
of the assumptions can be detected. These could be used to put the system into
an emergency state which performs a shut down procedure.

6 Related Work

There exists previous work on synthesizing controllers from LSC/SML-style sce-
narios [6,8,17,29], and other forms of scenarios [22,31]. Most of these approaches
produce finite state controllers or state machines as output, from which code can
be generated. Some consider code generation from such synthesized controllers
in particular for robotics/embedded applications [4,21].

The novelty of our synthesis procedure w.r.t. to the above is, first, that
it supports scenario-based specifications with a greater expressive power—
assume/guarantee specifications with multiple liveness objectives (GR(1)). Sec-
ond, we describe a scenario-based modeling and code generation methodology
that specifically targets the typical structure and nature of PLC software.

There is work on generating PLC code from state machines [26] or Petri
nets [12,28], and formal methods are used also for verifying PLC code [5,13].

Other work considers synthesis and code generation, some specifically for
robotics applications, based on temporal logic specifications such as LTL and
its GR(1) fragment [2,7,11,23]. In contrast to temporal logics based approaches,
LSCs/SML aim to provide a more intuitive language that is easier to use.

In previous own work, we considered the direct execution of SML specifica-
tions as scenarios@run.time [15]. Here, the scenarios are executed without the
prior synthesis of a finite-state controller. Such an approach has advantages and
disadvantages. For example, the prior synthesis does not only detect specifica-
tion flaws, but a synthesized controller can also contain the solution for resolving
issues related with under-specification. On the other hand, controller synthesis,
due to its computational complexity, may not be possible for larger specifica-
tions, in which case direct execution is a valuable option.
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7 Conclusion

In this paper we presented an approach for generating Structured Text exe-
cutable on PLCs commonly found in the industry. We generate this code from
scenario-based specifications written in an intuitive DSL we developed. Using
this DSL, called Scenario Modeling Language (SML), engineers can easily define
requirements, desired behavior, and environment assumptions of a system. These
are defined in the form of assumption and guarantee scenarios, which have to be
fulfilled infinitely often, i.e., SML specifications express GR(1) conditions, giving
engineers a powerful class of conditions to express their goals in. The generated
code, which is correct by construction, uses multiple state machines to separate
the decision “when to perform which atomic action” from the implementation
of each atomic action. After code generation, engineers only need to implement
the atomic actions, with their complex interleaving into an implementation of
the desired process having already been generated.
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Meyer, M., Pohlmann, U., Priesterjahn, C., Tichy, M.: The MechatronicUML
design method - process and language for platform-independent modeling (2014)

5. Biallas, S., Brauer, J., Kowalewski, S.: Arcade.PLC: a verification platform for pro-
grammable logic controllers. In: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 338–341, September 2012

6. Bontemps, Y., Heymans, P.: From live sequence charts to state machines and back:
a guided tour. IEEE Trans. Softw. Eng. 31(12), 999–1014 (2005)

7. Braberman, V., D’Ippolito, N., Piterman, N., Sykes, D., Uchitel, S.: Controller
synthesis: from modelling to enactment. In: Proceedings of the 2013 International
Conference on Software Engineering, ICSE 2013, Piscataway, NJ, USA, pp. 1347–
1350. IEEE Press (2013)
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Abstract. Solutions for efficient querying of long-term human-robot
interaction data require in-depth knowledge of the involved domains
and represents a very difficult and error prone task due to the inherent
(system) complexity. Developers require detailed knowledge with respect
to the different underlying data schemata, semantic mappings, and,
most importantly, the query language used by the storage system (e.g.
SPARQL, SQL, or general-purpose language interfaces/APIs). While for
instance database developers are familiar with technical aspects of query
languages, application developers of interactive scenarios typically lack
the specific knowledge to efficiently work with complex database man-
agement systems. Addressing this gap, in this paper we describe a model-
driven software development based approach to create a long-term stor-
age system to be employed in the domain of embodied interaction in
smart environments (EISE). To support this, we created multiple domain
specific languages using Jetbrains MPS to model the high level EISE
domain, to represent the employed graph query language Cypher and to
perform necessary model-to-model transformations. As main result, we
present the EISE Query-Designer, a fully integrated workbench to facil-
itate data storage and retrieval by supporting and guiding developers in
the query design process and allowing direct query execution without the
need to have prior in-depth knowledge of the domain at hand. In this
paper we report in detail on the study design, execution, first knowledge
gained from our experiments, and lastly the lessons learned from the
development process up to this point.

1 Introduction

Smart home technology is gaining more and more popularity and becomes
increasingly widespread. The most prominent implementations target support
for private households and are available in various complexities from a full sys-
tem, such as a KNX 1 system or an Apple Home Kit2, to rather simple personal
1 https://www.knx.org.
2 https://www.apple.com/ios/home/.
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assistants, such as Alexa3 or the Amazon Dash Button. Beyond the deployment of
smart home technology in private homes, one can observe an increased adoption
in elderly care settings. Work in this area often further additionally incorporates
personal robots to support humans in their daily living and provide an embodied
interaction for them [1,2]. Our laboratory setup, the Cognitive Service Robotics
Apartment (CSRA), provides such an embodied interactive smart environment
(c.f. Fig. 1) [3]. It is a fully equipped apartment that is extended with various
sensors (e.g. depth sensors, cameras, capacitive floor, light/temperature sensors)
and actuators (e.g. screens, colourable lights, audio). Besides two virtual agents
which allow users to interact verbally, there is a bi-manual mobile robot named
Floka operating autonomously within the apartment that allows embodied inter-
action.

Fig. 1. An example picture from within the CSRA from the living room showing an
interaction with Floka in the apartment.

The Cognitive Service Robotics Apartment is used to develop new smart
home technology systems as well as to study human-machine interaction in the
context of smart environments [4]. One central aspect of the CSRA project is
concerned with interaction relevant data/knowledge storage, retrieval and trans-
fer between agents and/or robots. Additionally to the robot eco-system, this
environment consists of multiple devices that provide data as well as software
packages performing more complex perception including person tracking, and
situation recognition. These and other components employ different and often
multiple protocols, such as KNX, RSB, ROS, or REST.

In this context, application developers are responsible to create interactive
scenarios and therefore require access to current and previous sensor, actua-
tor, and aggregated/derived data and knowledge available. For example, when
designing a greeting scenario, the application developer can incorporate knowl-
edge of previous interactions. Possible questions would be ‘Have I seen this person
before?’, ‘What is this person’s name?’, ‘What were topics of our last conversa-
tion?’, or ‘Does this person know where to find drinks in the apartment?’.

3 https://developer.amazon.com/alexa.

https://developer.amazon.com/alexa
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Given the aforementioned number of sensors and actuators employed, there
is hence a large amount of data comprising of various modalities available
which needs to be stored in a fashion so that data can be readily queried by
application developers within interactive scenarios. Providing such storage and
retrieval functionality over a longer-term while supporting easy access is a chal-
lenging endeavour. The developers creating applications in this domain need to
have detailed knowledge with respect to the different underlying data schemata,
semantic mappings, etc. In addition, extensive knowledge about the query lan-
guage used by the storage system is a requirement and depends on the cho-
sen storage solution. While database developers are familiar with the required
details, application developers typically lack the specific knowledge to efficiently
work with complex database management systems.

Generally, there are a number of advantages in applying model-driven soft-
ware development (MDSD) techniques in robotics. The advantages include
the ability to generate code automatically, analysis/checking while program-
ming/writing statements in the provided language as well as platform indepen-
dence [5]. A core advantage for the application in the EISE domain is the fact
that developers receive feedback on the queries they are writing at design time
rather than after execution. We thus decided to follow a model-driven approach
to create a querying environment to be employed in the domain of embodied
interaction in smart environments with the primary goal to support and ease the
task of querying the data. As a basis for the approach, we previously presented
an ontology for modeling human machine interaction in smart environments [6].
Using this declarative specification of the EISE domain as a starting point, we
derived multiple external domain specific languages (DSLs). Generally, there
are clear benefits of DSL applications, such as increased productivity, quality,
validation and verification, and lastly productive tooling [5]. In our application
domain, the latter can especially provide developers with helpful functionality
such as static analysis, code completion, visualisations, or debugging at design
time.

In particular, our model-driven approach provides generated artifacts (e.g.
a specific IDE and access APIs) to support the query design and execution
for application developers. One central tool in this context is the EISE Query-
Designer, a full IDE that allows developers to design and execute queries against
the database setup within the fully integrated CSRA environment. This tool is
the result of a composition of multiple individual models designed independently
following a model-driven software development approach. While such tools have a
number of advantages for developers (e.g. reduction of complexity, static analysis,
etc.), there is still a need for proper evaluation of the usefulness and usability for
developers. In this paper we hence focus to report on our approach for evaluating
and quantifying the advantage of this specific IDE.

The remainder of this paper is structured as follows. In Sect. 2 we briefly
describe the created and reused languages and solutions as well as their compo-
sition that allows to produce a standalone IDE. In Sect. 3 we present a detailed
description of the study design and implementation we plan to use to evaluate
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our work and present preliminary results from a small pilot study in Sect. 4.
Section 5 then discusses the results and lessons learned during the development
process. Lastly, after giving a short overview about related work in Sect. 6, we
end with a brief conclusion in Sect. 7.

2 Language Modeling

In the following we briefly describe the modeling approach and present the result-
ing implementations. We chose Jetbrains MPS - one of the most feature rich
integrated DSL development platforms - over other tools (e.g. Eclipse Xtext4)
to implement our work due to reasons put forth by Voelter [7,8]. The gen-
eral design of languages is supported well within MPS, as it provides an inte-
grated support for the development of structure, syntax, type systems, IDEs,
and model-to-model transformations. The differentiation of languages, solutions
(more specifically: runtime solutions and build solutions), and their interoper-
ability allow for complex but yet flexible and easily extensible constructs. Within
MPS a language allows the language designer to abstract form the domain at
hand by modeling important concepts and their properties, while the final users
can use so-called solutions to implement their user model. Further, MPS directly
supports the generation of standalone IDEs and specific workbenches tailored
to individual specific requirements. Another very important feature is the pos-
sibility to easily have multiple projections of our language(s) allowing us to
design different views for various roles in the development cycle. For example, a
database developer will have to make changes to the lowest levels of the model-
ing using read-write queries while an application developer only needs to execute
simple read-only queries without write access to the database. This difference
can be addressed by providing multiple projections within the same artifact or
alternatively by generating different role-specific artifacts based on the individ-
ual needs. We make explicit use of language extension and language embedding
(meant as a special case of language reuse) to model the domain in our frame-
work (c.f. Fig. 2) [5]. From an architectural perspective, we hence separate the
framework into three languages: (1) The RelationalDomainDescription (RDD)
language, (2) the Cypher language, and (3) the CypherRDD language. We chose
this level of abstraction as we intend to expand and add in further functionality
to allow for example annotation and grounding for data types, time (intervals),
as well as database back-ends.

Relational Domain Description (RDD)
The Relational Domain Description language supports the representation of
an application domain as a graph by providing nodes and edges alongside
their properties and according data types. The main reason to implement this
meta language is the fact that we perceive the application domain descrip-
tion as a dynamic and changing process. When using a MPS language to
model this sub-domain, domain experts would have to perform changes in

4 http://eclipse.org/xtext.

http://eclipse.org/xtext
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Fig. 2. Architectural overview of the individual MPS languages, solutions and their
connections required to generate the artifacts for our user study. Central languages are
Cypher, RelationalDomainDescription (RDD), and the composing CypherRDD.

this rather strict and complex environment. Defining this meta language
allows us to model the application domain as a solution which can easily be
modified while being easy to understand and requiring less detailed knowl-
edge about language design using MPS. We used this language to realise the
EISE solution which models the embodied interaction in smart environments
domain.

Cypher
We decided to represent interaction relevant data as a graph and chose Neo4j5

as our database back end. One important feature is Neo4j’s query language
Cypher, which is currently trying to gain further adoption with the open-
Cypher initiative6 [9]. This language provides a good interface for non domain
experts to abstract and formulate their queries. The Cypher language hence
provides the Cypher graph query language as a MPS language. It adds all
required concepts to provide the functionality to compose and execute queries

5 http://neo4j.com.
6 http://www.opencypher.org.

http://neo4j.com
http://www.opencypher.org


268 N. Köster et al.

against a database. In order to realise this it uses a runtime solution that
provides the official Java bindings of Cypher within MPS. Further, this lan-
guage also allows to embed Cypher constructs within Java programs. An
initial language was already available as an open source project7, which we
adopted and extended where necessary.

CypherRDD
Describing the application domain as a solution of the RDD language requires
us to create a composing language that allows to combine any RDD solution
with the Cypher language. To provide this functionality, the CypherRDD
language has a dependency to the Cypher language and embeds RDD con-
cepts within it. The language itself is very simple and is mainly concerned
with providing the correct scoping for individual concepts of each of the
extended languages. As a result, a build solution can combine this language
with any corresponding application domain description defined as a RDD
solution to provide a custom IDE. For our study we hence created the EISE
Query-Designer that uses the CypherRDD language and embeds the EISE
solution concepts (as depicted in Fig. 2). Users can create their own solutions
containing the designed queries with the help of this IDE. The projection pre-
sented to the user is based on a combination of the Cypher abstract syntax
in which only the concepts of the used RDD solution are valid entries. This
IDE provides the user with domain specific support and auto completion
during the query design process. Further, quick-fixes for the query design
are provided for common and mundane tasks. The created query can then
be executed directly within the IDE via the provided Java integration and
the results are presented to the user.

3 Workbench Evaluation

The evaluation of DSLs and IDEs represents a challenge as assessment of their
advantages requires to analyse various properties. Especially due to their com-
plexity, the evaluation of a full integrated workbench is not as straightforward
and may requires long-term observation of target users. Case studies which draw
lessons learned are an option for evaluation - especially when the benefit is obvi-
ous and the user base is large [10]. A good alternative is to follow an iterative
testing approach and focus on clearly defined metrics (such as lines of code or
perceived usability).

To properly evaluate our approach, we therefore decided to conduct a full
user study with potential application developers in an early phase of the devel-
opment to be able to feedback the results into the development. We let the target
audience use the EISE Query-Designer to solve several tasks and compare their
performance against a group which uses a baseline default environment (i.e. the
default Neo4j web interface). Our primary supporting hypothesis (H1) for this
study is that programmers formulate queries of various complexities easier and

7 https://github.com/rduga/Neo4jCypher.

https://github.com/rduga/Neo4jCypher
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quicker when using the extended Cypher Query language embedded in a specific
IDE compared to the normal condition. Secondary (H2), we expect programmers
who use the provided tool to exhibit an improved learning curve when solving
similar tasks during the study (even though they have to familiarise themselves
with the tool first).

3.1 Study Design

We employ a between-group design with the following two distinct conditions
(c.f. Fig. 3):

(A) Normal condition: Participants have no IDE support. Instead they use
the default web interface provided by Neo4j which will allow them to write
plain text Cypher queries to solve the four sets. The comprehension tasks
present queries to the participants using the default syntax highlighting in
the web interface (c.f. Fig. 4(a))

(B) Extended condition: Participants will use the EISE Query-Designer and
benefit from the IDE support. The IDE provides a custom projection of
the Cypher language and incorporates the EISE domain knowledge. Com-
prehension tasks are presented directly within the IDE and therefore use
the custom projection. In the study setup, query results are displayed as a
tabular listing - further representations such as a graph are planned (c.f.
Fig. 4(b)).

Fig. 3. We chose a between-group study design setup with two conditions: (A) users
use the default Neo4j interface, and (B) users use the EISE Query-Designer. Both
conditions have to create and execute the same queries (Set 1–Set 1*). Before and
afterwards, users have to describe the meaning of queries presented to them in the
comprehension task (Comprehension 1 and 2).

3.2 Tasks

First, the “Cypher Cheat Sheet” provides the participants with basic knowledge
about the Cypher query language and its constructs relevant to compose the
queries. This is the same across conditions. Second, a “Tool Sheet” is provided
describing the basic usage of the tools used in the according condition (web
interface or IDE) together with basic examples, shortcuts, language reference
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(a) Screenshot of the Neo4j web interface which allows to write and execute
the queries. Results can be inspected as a graph or table.

(b) Screenshot of the EISE Query-Designer which allows to write and
execute the queries. Results can be inspected as a table at the bottom.

Fig. 4. Screenshot of the tooling used by each condition.
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and explanations. Third and last, the “EISE Domain Sheet” contains a graph
describing the overall schema of the prepared dataset and is identical across the
conditions. It represents a simple visualisation of the EISE solution described in
Sect. 2. Given this material, participants have to solve a total of 6 sets of tasks
that are divided into two types: comprehension and work tasks. In the following
we briefly explain each of the tasks in more detail.

Comprehension Tasks
Comprehension tasks present the participants with example queries in their
environment of their condition to investigate their level of understanding of
existing queries. The goal is to investigate the ability to read and interpret
existing queries without prior domain knowledge of the underlying graph
structure. Each set is presented before and after the work tasks (c.f. Fig. 2,
Comprehension 1 and 2) to investigate our second hypothesis (H2).

Work Tasks
Work tasks are presented to the participants in natural language text and
describe a question to be answered by a query (c.f. Fig. 5 for an example). The
participants have to write a Cypher query based on this provided question.
Each question is annotated with a time to give an estimate on the expected
required effort. Based on pre-study tests we also provide textual hints as an
additional support to elaborate on the query and avoid misunderstandings.
Further, the expected result is also listed so that participants can easily spot
correct and incorrect queries. In total, there are four sets of work tasks:
Set 1 (3 questions), Set 2 (2 questions), Set 3 (2 questions), and Set 1* (3
questions). The difficulty rises from Set 1 to 3 and each set introduces new
concepts of the Cypher language which the participants have to use to write
successful queries. The last work task (Set 1*) is a modified Set 1 question
group with the goal to quantify the expected user learning effects. There
is also a Set 0 (omitted in the graphical representation) which is used to
present the task-questionnaire procedure to the participants and to foreclose
eventual execution errors. For each condition in this study, we use the same
pre-populated EISE dataset which we gathered within the CSRA laboratory
setup. This allows us to formulate a gold standard for each question against
which results of the participants can be compared.

3.3 Participant Preconditions

With study participants having to actually use the query language and the
according tools for each condition, they have to fulfill certain (rather demand-
ing) criteria. We require participants to have a certain basic knowledge concern-
ing databases and database access (e.g. SQL, SPARQL, etc.). However, they
are not required to have strong programming skills as both conditions do not
require to write any surrounding source code and allow direct query execution.
Their understanding and knowledge about the tools (Neo4j and MPS), query
language (Cypher) and overall domain (the EISE domain) for the experiment
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Set 2 (S2)
Query 2 (S2Q2) [5 minutes]

How many conversations are in the database in which persons and
agents were active together?

Hint: 1. Refers to the amount of conversations to which persons had an
involved_in relationship and at the same time agents also have
an involved_in relationship to.

2. Use multiple relationships within a MATCH clause (alternatively
it is also possible to use multiple MATCH clauses).

Expected result: 243

Fig. 5. Exemplary work task as presented to the study participants.

should however be on a similar level and not differ significantly to allow us to
draw conclusions for a representative group. We ensure this by adding according
items to our questionnaires asking the participants about their knowledge about
the involved elements.

3.4 Questionnaire

To assess the usability of our approach from a quantitative point of view, we
asked users to fill in several questionnaires on a separate computer [11]. Between
each set of tasks, participants have to answer the 6 item Task Load Index (TLX)
to measure their cognitive load during each set [12]. Besides measuring the TLX
metric, this also allows us to gather durations for each set of tasks indepen-
dently from the condition. Once finished, the last questionnaire asks the user to
fill in the System Usability Scale (SUS) as well as the User Experience Ques-
tionnaire (UEQ) in order to assess the tool usability [11,13]. Further properties
are recorded on the executing computer allowing us to investigate metrics such
as time per task set, key strokes, correct and incorrect queries, etc. We also
recorded the experiment using screen capture techniques in order to allow for
further qualitative analysis of the experimental data. The targeted sample size
is 15 to 20 participants per condition.

3.5 Expectations

With this given study setup we have certain expectations towards each group’s
performance. As participants in the extended condition (B) will use the IDE
to compose queries, we expect them to perform better compared to the normal
condition (A). We expect a higher accuracy and lower error rates due to syn-
tax and error checking that is provided by the IDE. A related hypothesis we
postulate is that the overall duration for each task and the keystrokes required
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will be higher for the normal condition as the users receive fewer feedback and
support when writing the queries. With the separation in multiple sets we expect
participants of condition (B) to learn how to create queries faster - even though
they will have to familiarise themselves with a more complex tool. We expect
this familiarisation step to be a constant that will impact the initial sets but
otherwise will not be present in later more difficult tasks.

Table 1. Average perceived usability of pilot study.

Metric Condition (A) Condition (B)

SUS Score 75 63.33

UEQ

Attractiveness 1.111 0.944

Perspicuity 1.417 1.083

Efficiency 0.917 0.833

Dependability 1.500 0

Stimulation 0.833 0.917

Novelty -0.083 0.667

4 Pilot Study Results

In a pilot study we applied the study design to a total of six participants (three
per condition). Preliminary results of the user SUS and UEQ questionnaires are
listed in Table 1. It shows that the SUS score for condition (B) ranks within
an average level while condition (A) is slightly above average [14]. Further, we
observed that for all UEQ questionnaire based usability metrics the web inter-
face (condition (A)) scores slightly higher with stimulation and novelty being
the exceptions. The pilot study results regarding the actual time the partic-
ipants required per task set is depicted in Fig. 6. It shows that the baseline
condition (A) allowed participants to finish easier tasks (Set 1, Set 2, and Set
1*) faster when compared to condition (B). However, the set with more difficult
tasks (Set 3) demanded more time investment from participants in condition
(A). An analogous result is observable for the cognitive load which participants
experiences during each set (c.f. Fig. 7).

5 Discussion and Lessons Learned

Though the preliminary study had only few participants, its results shows recog-
nisable trends. In the first two sets the participants in the baseline condition
(condition A) were faster and experienced less cognitive load. We think this
is due to the steep learning curve projectional editors (i.e. the EISE Query-
Designer) have. Participants did not use any comparable projectional editing
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Fig. 6. Average time it took participants to finish each set of tasks.

software before and had to familiarise themselves with the concept of direct
abstract syntax tree manipulation. Compared to this the baseline participants
could directly begin their work with common source editing. Once participants
of condition (B) overcome this initial difficulty, one observes that the approach
starts to show advantages as users are able to perform more complex tasks (i.e.
Set 3) in less time, while they experience less cognitive load when compared to
the base line condition. Further, for all conditions a learning effect seems to be
present: In both conditions the participants finished Set 1 (a permuted Set 1)
faster than the initial Set 1 itself. The significance of this effect will have to be
proven once an adequate sample size is collected.

Qualitatively we realised that presenting participants with an unknown
domain, tools and DSLs requires well written introduction material. This leads
to on average 20 min that are necessary to fully read the provided material. As
a result we had to reduce the amount of tasks per set and removed the compre-
hension tasks completely to stay within planned 1 h maximum duration.

The development of the tool and all corresponding individual languages and
solutions left us with several lessons learned. Language design is a difficult task
- especially with a small team size. This leaves us with a recommendation for
good prioritisation of sub tasks in the development life cycle. Feedback from
target IDE users is very valuable and their acceptance is influenced by multi-
ple factors of the tool. The provided editor/projection is an important element
in this context as it is the first entry point for users. It will impact user per-
formance and acceptance when simple functionalities (e.g. auto completion of
simple data types) do not work as expected. These rather marginal properties
can overshadow the valuable actual modeling of the domain the tool provides.
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Fig. 7. Average cognitive load participants perceived per task set.

Another issue we encountered is concerned with the reuse of existing lan-
guages. As mentioned by Voelter, the so-called DSL Hell should be avoided
and reuse should be preferred over developing own languages [5]. Having this in
mind, we reused an existing MPS Cypher language and could thus reduce our
workload significantly. However, a reused language introduce have its own prob-
lems, including faulty/unfinished design decisions, requirements/dependencies
on legacy languages or software, abandonment, and others. To avoid mitigating
workarounds in the surrounding new languages, the only option is to improve
the reused language itself and feedback the improvements. Lastly, along goes the
need for language versioning, which is a key discipline to be employed from the
start in the language engineering process as it will otherwise hinder the devel-
opment. With a recent update Jetbrains even addresses this issue and provides
build-in support in MPS.

6 Related Work

Other than Cypher, there exist other extensive approaches to compose queries
against graph databases, most notably Gremlin, SPARQL or GraphQL [15–
17]. Gremlin is a functional and data-flow oriented graph traversal language of
Apache TinkerPop. In contrast to the sub-graph pattern matching of Cypher,
Germlin handles the graph traversals as sequences of steps which individually
execute atomic steps on the available data stream. SPARQL on the other hand is
a declarative query language crated by the W3C to perform queries on Resource
Description Framework (RDF) graphs. Similarly to Cypher, SPARQL provides
capabilities to query graph patterns, whereby queries comprise of a projection
(SELECT) to specify the variables to project to as well as a body consisting of
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so-called basic graph patterns that constitute filtering conditions. In addition,
SPARQL supports conjunction and disjunction (UNION) as well as filtering,
aggregation, counting, etc. After investigating a number of NoSQL databases
and corresponding query languages for suitability to our goals, we selected Neo4j
as a suitable graph database with Cypher being the directly supported option
to query the data [18,19]. The similarity of the querying language to SQL makes
the language accessible and easy to learn for developers in the domain of human
robot interaction. We have implemented domain specific languages that allow to
model, generate and execute queries in the Cypher language. A transfer to other
query languages (such as Gremlin or SPARQL) simply requires one to create an
according MPS language as well as the necessary model-to-model transforma-
tions. With reasonable effort, all created Cypher based queries can be transferred
other languages and/or executed on other database backends.

While usability is a well-researched and standardised field in software engi-
neering, the benefits of specific IDEs or workbenches are often difficult to be
evaluated. Improvement claims can be supported either formally, automatically,
heuristically, or empirically. Bari et al. therefore proposed an evaluation process
for the usability of DSLs that is applied during the development life cycle via
various metrics, including questionnaires targeting the subjective measures such
as cognitive load or perceived usability [20]. Further, others propose an inte-
grated iterative testing approach that focuses on clearly defined metrics [21–23].
The core idea is to let evaluation span the entire DSL life cycle by assessing
motivation, carrying our qualitative interviews, validating the DSL design, and
quantifying benefits. According to Wegeler et al. a mix of quantitative and quali-
tative criteria is required as simple metrics cannot cover all advantages and risks
[21]. However, each measure is important and should impact the DSL develop-
ment process.

In practice, evaluation of DSLs is typically carried out with the involvement
of domain experts. For example, Kärnä et al. used and evaluated their developed
solution in the context of product development [24]. They let six users familiar
with their target domain develop an application using their tool and compared
the outcomes w.r.t. the three factors of developer productivity, product quality
and the general usability of the tooling. An alternative is to carry out an exten-
sive case study analysis involving a large user base. This is a valid evaluation
approach especially when the presented tool already has a big user base that
makes extensive use of the provided functionalities. Voelter et al. recently pro-
vided an excellent example case study providing great insight into the mbeddr
platform [10]. This extensive review evaluates the language engineering process
using Jetbrains MPS as a language workbench and provides valuable lessons
learned. From their point of view, designing a language that handles complex
domains and is yet modular and scalable is feasible using MPS.

Finally, on a meta level, benchmarks for language workbenches themselves are
being researched. In this context, the annual Language Workbench Challenge was
instantiated in 2011 to provide an opportunity to quantitatively and qualitatively
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compare approaches [8]. They compared 10 workbenches and provide a great
overview presenting the state of the art options for language developers.

7 Conclusion and Outlook

In this paper, we present our current work to support query design and execu-
tion for application developers in the domain of embodied interaction in smart
environments. Following a model-driven approach, we developed multiple MPS
languages and solutions with the goal to support developers that need access and
query interaction data in smart environments. We make explicit use of a mul-
titude of features provided by MPS, most notably the generation of a domain
specific IDE to be used by application developers. While the evaluation of IDEs
and DSLs is a challenging endeavour, we presented study design that we have
implemented to gather first qualitative observations and quantitative data on
performance of developers using a small population sample as proof-of-concept
of the design. Our preliminary results are promising, indicating that participants
require less time and perceive lower cognitive load when designing more complex
queries with the provided IDE. However, continued further research is required
to verify the initial results with a larger group. For example, not all described
architectural decisions could be implemented as planned due to time and resource
constraints. As a result some functionalities have been implemented in different
languages contrary to the original plan. Further, all languages require fine tun-
ing, especially the entry points for users (i.e. the language editors/projections).
Additionally, the planned extension points (such as data type mapping) have to
be integrated into the architecture. Finally, we plan to further include the com-
plete approach in the CSRA project and hence create stronger dependencies.
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24. Kärnä, J., Tolvanen, J.P., Kelly, S.: Evaluating the use of domain-specific modeling
in practice. In: Proceedings of the 9th OOPSLA Workshop on Domain-Specific
Modeling (2009)



A Simulation Framework to Analyze Knowledge
Exchange Strategies in Distributed

Self-adaptive Systems

Christopher Werner(B), Sebastian Götz, and Uwe Aßmann
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Abstract. Distributed self-adaptive systems are on the verge of becom-
ing an essential part of personal life. They consist of connected subsys-
tems, which work together to serve a higher goal. The highly distributed
and self-organizing nature of the resulting system poses the need for run-
time management. Here, a particular problem of interest is to determine
an optimal approach for knowledge exchange between the constituent
systems. In the context of multi-agent systems, a lot of theoretical work
investigating this problem has been conducted over the past decades,
showing that different approaches are optimal in different situations.
Thus, to actually build such systems, the insights from existing theo-
retical approaches need to be validated against concrete situations. For
this purpose, we present a simulation platform to test different knowledge
exchange strategies in a test scenario. We used the open source context
simulator Siafu as a basis for our simulation. The described platform
enables the user to easily specify new types of constituent systems and
their communication mechanisms. Moreover, the platform offers several
integrated metrics, which are easily extensible. We evaluate the applica-
bility of the platform using three different collaboration scenarios.

Keywords: Distributed self-adaptive systems · Simulation
Multi-agent systems · Role-oriented programming

1 Introduction

Mobile devices, with the ability to sense and adapt themselves to a changing envi-
ronment, are getting omnipresent in our society. Among them are smart watches,
fitness trackers, (cleaning) robots, and wearables. To fully utilize these devices,
they need to be integrated, which leads to complex systems, where different sub-
systems have to communicate with one another and establish different kinds of
collaborations on the fly. For example, in a future (smart) office with two or more
cleaning robots, where some are specialized on dry cleaning and others on wet
cleaning, there is a need for coordination among them. The highly distributed
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nature of such systems demands runtime management of each individual sub-
system and optimization of the system as a whole to assure user-specified higher
goals.

Self-adaptive systems are a promising approach for the development of such
robotic systems utilizing self-organization and self-optimization techniques [14].
More precisely, robotic systems are usually characterized as distributed self-
adaptive systems (D-SAS). Consequently, each subsystem is autonomous and
makes decisions based on its own knowledge. However, each subsystem has to
take the invariants of the system as a whole and its environment into account.
To ensure that actions of one subsystem do not negatively impact another sub-
system, a coordination mechanism is required. To realize this coordination, a
spectrum of approaches can be used. At one extreme, a single, centralized sys-
tem can be used to collect the knowledge from all subsystems and to influence
them. At the other extreme, all systems directly exchange their knowledge in a
peer-to-peer manner and, thereby are enabled to reason on the effects of their
decisions on other subsystems. An approach for systems with vast amounts of
subsystems is a hierarchic coordination, where the children of a node are coor-
dinated by their parent node [8].

In either case, the central research question, we addressed in our previous
work [8], is: which knowledge distribution strategy is the best for the current
collaboration in a D-SAS.

The answer to this question heavily depends on (a) the environment, (b) the
characteristics of constituting self-adaptive systems, and (c) the goals imposed
on the system as a whole. Among these parameters, the trade-off to negotiate can
be characterized as follows. The less information individual subsystems exchange
with each other, the less are the implied costs, but the higher is the probability
of them to make decisions having a negative effect on other subsystems. To
practically decide which knowledge exchange strategy is the best, a more detailed
specification of the costs, which are usually domain-specific, is required. For
the case study, presented in this paper, we used the following properties as
cost/quality:

– Q1 Performance. The performance of the system will decrease if there is
unnecessary knowledge exchange. This means more network communication
and more computational work for the system.

– Q2 Real-Time. Systems can have time restrictions (deadlines), which are
not to be missed.

– Q3 Energy Consumption. The more information is exchanged, the more
energy is spent on it, but the capacity of the participating subsystems is often
restricted.

– Q4 Memory Consumption. Small devices are often limited in terms of
their memory. Thus, gathering all available information on a single device
can be impossible.

– Q5 Privacy & Risk. If the system comprises devices from different own-
ers, policies to prevent unauthorized information exchange are required. The
communication and collaboration constraints create security in the overall
system.
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The goal of this paper is to enable system developers to identify the optimal
strategy before deploying it and researchers to investigate novel algorithms and
approaches for knowledge exchange in D-SAS. The research questions addressed
in this paper are:

– RQ1: How can the quality of a knowledge exchange strategy in a D-SAS be
analyzed?

– RQ2: How should different knowledge exchange strategy in a D-SAS be com-
pared with one another?

Therefore, this paper presents a reusable simulation framework called SAKE,
which allows for testing different strategies in concrete scenarios. The framework
is easily extensible w.r.t. new system types, knowledge exchange strategies and
cost/quality characterizations (i.e., measurements). The simulation framework
uses the open source context simulator Siafu [11] as a basis and is available
on GitHub1. As evaluation, we show three experiments conducted using the
simulation framework, where different knowledge exchange strategies for a fleet
of specialized cleaning agents are investigated on different maps.

The remainder of this paper is structured as follows. The next section pro-
vides an in-depth discussion on the concepts provided by the simulation frame-
work, its extensibility, and its measurements. The three case studies we con-
ducted are presented in Sect. 3. We demarcate our approach from related work
in Sect. 4. Finally, in Sect. 5, we conclude the paper and discuss possible lines of
future work.

2 A Simulation Infrastructure for Knowledge Exchange
Strategies

In this section, we introduce Siafu which is used as time simulation framework
and front-end for SAKE. Furthermore, we provide an overview of our proposed
simulation framework in terms of its key concepts, its measurements, and its
extensibility.

2.1 Siafu Simulator

The open source context simulator Siafu [11] acts as user interface and con-
troller for each SAKE simulation. Siafu is implemented in Java and works on
two dimensional maps and models agents and places which are located in the
map. The concept of Siafu is modeled with a central World and Agents in it.
The World is one object, that has a list of Agents, Places, and Overlays. The
Agents and Places have a Position to specify the location in the map, whereas
the Overlays hold information about the context of the world, e.g., temperature,
sun intensity, and dirt level. For the start configuration, Siafu reads data from
images with the same size. The input data is transferred over an interface to an
1 http://github.com/sgoetz-tud/sake.

http://github.com/sgoetz-tud/sake
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external simulation. This interface represents the connection between Siafu and
SAKE or possibly any other simulation.

The key advantages of Siafu for us are the open Java source code, the fast
start up time, and the good documentation and examples, but Siafu besides has
some disadvantages. It is not possible to start more than one simulation at the
same time only the opportunity exists to start the entire tool more than one
time. In addition, the last commit in the GitHub repository was two years ago
which means it is not under development anymore. As well, Siafu uses Eclipse
SWT as user interface environment which supports Linux and Microsoft but
only Mac Os cocao as operating systems.

For our evaluation, it was important to run multiple simulations in parallel,
which mean that each simulation runs in one thread. Therefore, we extend Siafu
with a simulation configuration file as input to create as much simulations in
parallel as configured.

2.2 Concepts

The central concept of the SAKE framework is depicted in Fig. 1. All system
constituents have a physical and a virtual part. The physical part comprises an
ensemble of hardware-components (e.g., computers or engines). The virtual part
of the system comprises its roles, goals, and behaviors. Each agent plays different
roles aiming to reach specified goals using available behaviors, which, in turn,
are determined by the present hardware-components.

Hardware-Components

Computer Vacuum Wifi Engine

Goals

Behavior

Agent

reachable

uses

instance of

have
physical

reach Roles play

Fig. 1. Concept of the agent representation
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Fig. 2. Package class diagram of the simulator

Figure 2 depicts an overview of the framework as UML class diagram. At the
top level, the framework is comprised of four packages: SiafuSimulator, Agent-
Factory, AgentCore, and GoalBehaviorHardware.

The SiafuSimulator package shows the reused and specialized classes of the
Siafu simulator to focus on evaluating knowledge exchange strategies in SAKE.
We reuse the World class with the world model of Siafu, i.e., it contains the
common global environment of all system constituents and is the same for all
SiafuAgents. We specialize the Agent and BaseAgentModel classes, where the
second comprises a method to create the former and specifies how the simulation
proceeds iteration-wise.

The AgentFactory package is represented by three classes: AgentModel, A-
gentFactory, and SiafuAgent. The first is a specialization of Siafu’s Base-



Simulation Framework to Analyze Knowledge Exchange Strategies 285

AgentModel and realizes the creation of agents using the factory method design
patter [7, pp. 107].

Next, the AgentCore package applies the role-object pattern [1] to enable a
dynamic management of agent goals and related behaviors. The pattern com-
prises the abstract Agent class and the two classes AgentCore and AgentRole,
where the first one contains the implementations of management methods to add
and remove roles, whereas the second one only delegates to the former. Besides
such management methods, the Agent class defines a property newInformation
to indicate, whether the agent has collected information since its last exchange.
The AgentCore class specifies, e.g., a property name, localModel, and shutdown
and contains the only accumulator component of an agent.

The Simulator works with location data relying on maps and computes dis-
tance values between all agents. The AgentCore package describes the main
structure and the collaborations of all agents, where each agent plays different
roles, e.g., MasterRole or FollowerRole. These two roles and thereof specialized
roles create a hierarchical collaboration structure between the agents (agents can
be master and follower at the same time).

The GoalBehaviorHardware package is the last one and contains the modeled
Goals, Behaviours, and HardwareComponents. The different goals are added to
the roles of each agent, if it has appropriated hardware-components. In every
time step, the action method of each goal is executed once. This method runs all
behaviors of the goal once. When the postcondition is met, the goal is achieved
and deleted. The composite pattern makes it possible to create a hierarchi-
cal structure of goals for each role. For the representation of a loading unit, it
must be possible to have goals, which will never be achieved, but also are not
hindering the system as a whole to finish. Therefore, we distinguish between
OptionalGoals and MandatoryGoals. With this structure, we create elements
which are relevant for the end of a scenario and elements which are only relevant
for the continuous execution of the agent. The structure with some example goals
is illustrated in Fig. 2 and further described in [17]. This technical introduction
shows the extension points of the framework to use it in different scenarios.

2.3 Measurements

For every running example, we collect four different measurements to evaluate
each strategy: time, data-exchange, memory consumption, and energy. The time
is measured on the one hand as the computing time for each agent. On the other
hand, the simulator saves the number of time steps an agent performs to reach
a specific goal. Energy consumption is measured for each hardware-component
an agent consists of. Each component has different energy states which rep-
resents working states. In Fig. 3, two exemplary energy states are depicted.
Another example is shown in [6], where a bigger energy state model was used
w.r.t. the accumulator state representing the probability of working success of
the hardware-component. In our example, we only use the on and off state to
represent a working component. Notably, besides energy states, the transitions
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between states are also annotated with their respective energy demand. This
strategy can represent every hardware-component in the simulator.

OffOff OnOn

Turn on

Turn off

Out

Work

Fig. 3. Energy states for hardware-components

For the data-exchange measurement, the whole communication is monitored
for an abstraction of the network load. To create a representative view of the
data-exchange, the number of exchanged elements and the data-stream itself are
stored in an optimal, save format. The memory consumption is monitored at the
end of each simulation for every agent. This concept works under the assumption
that each agent has its maximal local knowledge at the end of a simulation and
did not delete anything during a simulation, as this would invalidate the results.

The measurements can be used to identify the cost quality properties as
defined in Sect. 1. The Performance (Q1) is connected with the execution time
and data-exchange measurements. Furthermore, the Real-Time (Q2) arises
from the number of time steps measured for each complete simulation. The
Energy Consumption (Q3) and Memory Consumption (Q4) result from
their corresponding energy and memory consumption measurements. The Pri-
vacy & Risk (Q5) property is not measurable by the SAKE simulator, but the
more data an agent exchanges the more of his privacy is sacrificed. In the eval-
uation section, we only show the results of the measurement values and not the
connected quality properties, because the weighting between two measurement
values to create one quality property is different in every use case.

2.4 Extensibility

To enable reuse, it must be possible to easily extend the simulator and test dif-
ferent novel exchange strategies. Our framework provides different modification
and connection points for new strategies. The first point is the factory pack-
age, which creates every agent with its own hardware-components and roles.
In the AgentCore package, new agent roles can be implemented to specify dif-
ferent collaboration structures, goals, and responsibilities for the agents. The
goals, behaviors, and hardware-components are modified like the agent roles, so
it is possible to add new functions and components. The energy states contain
currently only the EnergyOn and EnergyOff states and are modeled with the
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State-pattern. The State-pattern offers an extension point to create new states
like idle, busy, or standby.

Each agent saves in every time step the measurement values of the simulation
and adds them to an evaluation file. For that, the evaluation function is called
every time step and can be modified to measure more values. After the complete
simulation run, the simulator creates a JSON string for each evaluation object
and saves them in more than on document. These documents can be used to
load the value-lists in a new software-tool and to create diagrams or tables for
analysis.

3 Evaluation

We illustrate the results of the SAKE simulation based on an office cleaning
running example with cleaning robots. Three different strategies are used to test
and get comparable values for the evaluation. The easiest way is a complete
collaboration between each agent. This means that, if an agent meets another
agent, he will give him his complete local model of the world. The introduction of
a master agent creates a hierarchical collaboration structure between the agents.
Furthermore, it makes global work decisions and handles the communication.

The environment of the test scenario includes different parameters, e.g., size
and nature to represent different environmental contexts. Not only the environ-
ment also dependencies between agent types influence the results of each test
case. To get representative results between single simulation runs, we run each
one five times and use the average values for the depicted diagrams. These five
runs are necessary, because the agents decide randomly for one destination in
the set of nearest new destinations.

3.1 Running Example

The running example is an office cleaning scenario for one floor. To not interfere
with office work the cleaning of office spaces has to take place outside working
hours. This implies one important requirement for cleaning robots that are used
in this scenario, which is to satisfy deadlines in various different working spaces.
The easiest way is to use one agent, however he might not finish in time. In this
case, it is important that different agents share their work and communicate
with each other about the areas they already cleaned. For this reason, we create
three different strategies:

– C1: Complete Collaboration. Each agent exchanges his complete local
information model with a closely located agent, but with a time delay to
avoid data-exchange in small cycle time.

– C2: Communication with Master. A master coordinates and handles the
communication with near agents. The master is located at the loading unit
and exchanges the local knowledge when the agents are loading. Every agent
computes his drive destinations based on its own information. This approach
reduces the locally needed memory and minimizes the knowledge exchange.
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– C3: Communication and Coordination with Master. The master
always communicates with all agents and tells them what to do. The work-
ing agents need a communication infrastructure to stay connected with the
master. However, they need less memory, because they do not store any infor-
mation locally.

(a) Computer Science Faculty TU Dresden (b) Labyrinth from Siafu [11]

Fig. 4. SAKE evaluation maps

In Fig. 4, we show two of three different maps on which we tested the three-
strategies. The black cross in each map represents the loading unit and with it
the location of the master agent. Figure 4a represents a floor of the computer
science faculty of the TU Dresden. It gives the best real world example with
small rooms and big corridors. Henceforth, we only show the results from this
map. Figure 4b represents a labyrinth which is predefined in Siafu [11]. This is
the biggest map we use with a lot of dead ends and narrow ways. At last, we
also used a quadratic hall map, which is not depicted in Fig. 4. The results of
the other maps and agent types are shown in [17]. In the maps, each white pixel
is a point for cleaning and the black pixels show the walls of the map.

To create dependencies between agents, we deployed two different types.
Before, e.g., a vacuum agent can clean the world it needs a map of the area.
This implies a hierarchical structure of agents. A master agent communicates
with exploration agents about the world and exchanges his knowledge with the
vacuum agents. The phases of the cleaning process are (a) create the map with
explore agents, and (b) clean the area with vacuum agents. This step dependen-
cies mean that every agent needs parts of the information from an agent one step
before to start with its work. This structure creates waiting periods for agents
from a higher level in the hierarchy and influences the deadline property.

Thus, we first increase the number of explore agents from one to ten and then
add vacuum agents and increase them from one to ten, too. This creates a usable
dataset for analysis. In the real world, it makes sense to use other numbers of
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agents, but for showing them in the diagrams of Figs. 5 and 6 we decide to use
this numbers and dependencies.

3.2 Time Measurement

In this subsection, the time measurement results from the faculty map and the
three strategies are presented. In Fig. 5, the average number of time steps are
shown. The number of agents and the type of each new agent are explained
in the previous subsection. A time step is one iteration run in the simulator,
where every agent activates each run method in its goals once as mentioned in
Subsect. 2.2. The deviations in the diagram stems from the average values of five
runs. Each agent randomly searches the next nearest destination to work. This
background strategy fulfills the goals on divergent ways. In Fig. 5 one time step
can be seen as one second or millisecond in real time. From the tenth to the
eleventh agent a big step arises because of the incoming agent dependency.
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Fig. 5. Average number of time steps from the faculty map

As we can see, C3 is the optimal strategy, because the master always collects
all knowledge and makes optimal decisions with its complete knowledge base.
C3 makes it possible to remove the big step by adding of new agents. Their is no
visible difference between the values 7 and 17. In C1 and C2, there is always such
a step, which cannot be removed with adding more agents (e.g., between value
6 and 16 or 7 and 17). The master as communication interface at the loading
unit (C2) always creates such a step for new types of agents. In the strategy
C2+ from the diagram, the master defines the first destination after loading to
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spread around all agents, i.e., avoid duplication of cleaning work. This strategy
minimizes the step compared to C2, but cannot remove it completely. As a result,
after five agents of a type the time savings will get very low in all configurations.
In addition, C2+ gets better and C1 worse in bigger maps than in smaller ones,
which is a result from comparing all time diagrams from all maps. The earlier
one agent gets information from other ones, the better the decisions of the agent
will be.

1,E+5

1,E+6

1,E+7

1,E+8

1,E+9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#exchanged 
elements

#agents

C1 C2 C2 minimal C3

Fig. 6. Complete knowledge exchange values from the faculty map

3.3 Knowledge Exchange

In this part, a short overview on the knowledge exchange results is given. In
Fig. 6, the results of test runs are shown for the faculty map. The y-axis shows
the number of exchanged elements between all agents in logarithmic scale. The
minimum y-Axis value is one hundred thousand to highlight interesting parts of
the diagram. In this diagram an exchanged element represents either an integer,
string, float, or double value, because all primitive data elements are counted
as one element. This approach only takes care of the real exchanged knowledge
without any optimization on input and output communication strategies. C1 has
the most exchanged elements with exponential rising, because the agents make
a total exchange every time they meet. The un-optimized C2 has more than ten
times less data-exchange elements than C1 and the optimized variant (C2 mini-
mal) has more than twenty times less data-exchange elements depending on the
number of agents. The optimized option uses internal timestamps and states to
reduce the redundant exchanged elements, but this optimization raises the mem-
ory consumption on all agents. C3 has the least knowledge exchange, because
the master gets directly the new information from each agent and only has to
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send new destinations. The global decisions from the master minimize redun-
dant work and redundant exchanged elements. With more agents, C3 has the
best results w.r.t. the overall knowledge exchange and it is the only configuration
with a minimal step in the diagram because of the new incoming agent type.

3.4 Results

The evaluation results show different dependencies between input parameters
and the final outcome. For example, the number of agents and the choice of a
strategy change the results in different ways. If the number of agents rises, the
overall time decreases, but nevertheless the energy consumption rises, too. This
means that the influence of reducing time with more agents is smaller than the
energy consumption per time step. The diagrams with the energy consumption
results are presented in [17].

The three maps with their different characteristics have influence on the
number of meetings, because large open spaces increase the probability of meet-
ings. In a labyrinth with narrow ways an agent rarely meets others and cannot
exchange his knowledge. In bigger maps the strategy, where the master spreads
the agents, is faster because the probability of same working areas decreases.

The evaluation results of the different strategies show, that a master reduces
the amount of exchanged data between all agents and creates, e.g., an interface
for human interaction. In all test cases, we found, that a complete controlling
master returns the best result in a perfect world. However, the requirements for
C3 are far away from reality. It is likely, that this configuration will produce
different results in a real-world case study because of location and hardware
failures. Strategies with a master show, that the more control options the master
has, the faster the run is, but the more configurations to test. A master is also
a bottle neck in the infrastructure, which could be replaced with more masters
or with new combinations of different strategies.

4 Related Work

The problem of a good simulation framework is that there must be a lot of
possibilities to modify the simulator and simulation for new test cases and to
collect as much information as possible. There are many simulators for differ-
ent specific scenarios. For example the SUMO [2] simulator simulate traffic in
an urban area. SUMO is used to test traffic light control algorithms to get the
most efficient light control system for a city. Therefore, it respects traffic tips,
which are controlled with characteristic parameters. Simularly, UdelModels [10]
is a simulation framework for urban networks. It takes realistic propagation into
account and provides a user interface to create cities. The OMNeT++ [16] sim-
ulation sweet includes different tools and simulates network protocols in varying
areas.

In Sect. 2.1, we introduce the open source context simulator Siafu [11], but
there are other simular simulators, for example, JAS [15]. JAS is implemented
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in JAVA and gets his functional scope from well tested standard libraries and
third party libraries. It represents agents in components and provides a variety
of standard collections of components and rules to create simulations. Thus, it
appears to be discontinuous, because JAS did not present any new version since
2006.

In the area of knowledge exchange, different protocols are introduced from
standardization communities. For example, the FIPA [13] produces software
specifications for multi-agent systems (MAS) like communication protocols to
maximize the compatibility of MAS. JADE [3] for example is a platform for
peer-to-peer agent based applications. It describes a middleware, which uses the
FIPA specifications for the communication interface between agents. Thereby, it
provides a graphic userinterface and facilitates the troubleshooting and deploy-
ment phase of the system. The platform is implemented in JAVA and can be
used to realize different kinds of agent architectures. In the background, JADE
uses containers for the representation of an agent. The contrary part of JADE is
JACK [9], a commercial tool which implements the FIPA communication pro-
tocols in Java. JACK is developed from the Agent Oriented Software Pty, Ltd.
(AOS) and is a progression of the Procedural Reasoning System (PRS), and the
Distributed Multi-Agent Reasoning System (dMARS). Like JADE, it helps to
create MAS. Every agent works in JACK in accordance with the BDI (Belief,
Desire and Intentions) principle, such that every agent is described with his
goals, knowledge, social skills, and acts in reaction on the environmental input.

For the SAKE simulation, we evaluate the running example with knowledge
exchange strategies based on real data objects. The specific exchange strategies
are introduced by Götz et al. [8], describing three different strategies. They con-
tain the total-complete strategy where all agents collaborate with each other and
exchange their complete knowledge. Then, the partial-complete strategy where
each sub-agent exchanges his complete knowledge with his direct collaborators,
and the third strategy partial-subset where the agents only exchange parts of
their own knowledge with their direct collaborators. This strategies are the tem-
plates for our strategies and implementation.

Knowledge exchange is important in all kinds of MAS and is often used in
different ways. For example, DEECo [5], SeSaMe [4], and DECIDE [6] are frame-
works to create MAS. DEECo is an ensemble-based component system where
an ensemble represents dynamic bindings of a set of components and thus deter-
mines their composition and interaction. The ensemble component describes the
collaborations and data connections. Nevertheless, if the ensemble component
only mentions small parts as exchanged data, DEECo proactively shares all his
information and picks only the important parts out at the end. SeSaMe coordi-
nates distributed components in various self-organizing inter-composed groups
based on the types of roles they can play. Thus, it facilitates a direct interaction
between the supervisors and followers. DECIDE splits the control-loops to many
nodes of a distributed self-adaptive system. This generates more flexibility and
mitigates failures in the master node. The goal of DECIDE is to check the sys-
tem at runtime and guarantee the quality requirements of critical self-adaptive
systems.
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In this work, we mention the privacy and risk quality properties of a MAS,
but do not consider them. In [12], Palomares et al. introduce a framework for
risk-aware planning and decision making. In detail, they require a known map
from the world with destinations, a number of identical agents, and probabilities
for connections between platforms. Therefore, they create the best strategy to
reach the global goal of the configuration. In SAKE each agent never break
down. Consequently, we do not need such risk-aware planning algorithms at
the moment. The advantages of SAKE comparing to other frameworks are the
extension points of agent properties, application scenarios, and measurement of
evaluation parameters. It is possible to create a completely new scenario or only
test and create new exchange strategies.

5 Conclusion and Future Work

In this paper, we presented a simulator for different kinds of multi-agent sys-
tems and tested it in one test scenario with three collaboration configurations
on three different maps. For the simulator, it was important to change differ-
ent start parameters to create a wide range of test cases and environments. To
analyze the tested strategies, we introduced some easily changeable and extend-
able predefined measurements. The evaluation results shown basic correlations
between the input parameters, the nature of the environment, and the measure-
ment results. Therefore, the SAKE simulation framework is suited for testing
the systems behavior before the first real-world run and finding the best system
configuration.

As future work, we plan to implement more knowledge exchange strategies
and check the results for strategies in the real world. For a real-world imple-
mentation and testing, it is important to have changeable environments, which
is not yet implemented and realized. In office scenarios, this point arises with
new temporary obstacles. In the real world, agents can fall down or crash so
the system must change the strategy on the fly. For this, the SAKE simulation
should be combined with a probability model. Furthermore, an open question is
the automatic selection of the best strategy based on quality properties.
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Abstract. This paper reports on the panel session of the 17th Workshop
in OCL and Textual Modeling, As in previous years, the panel session
featured several lightning talks for presenting recent developments and
open questions in the area of OCL and textual modeling. During this
session, the OCL community discussed, stimulated through short pre-
sentations by OCL experts, proposals for improving OCL to increase the
attractiveness of textual modeling.

This paper contains a summary of the workshop from the workshop
organisers as well as summaries of two lightning talks provided by their
presenters.

Keywords: OCL · Textual modeling

1 Introduction

Textual modeling in general and OCL in particular are well established. This
year does not only mark the 17th edition of the OCL workshop, it also marks
the twentieth anniversary of the first publication of the OCL standard by the
OMG [3]. Nevertheless, textual modeling in general and OCL in particular is an
active field of research.

The workshop received seven submissions from which five were selected as full
papers. Each paper was reviewed by at least three PC members. The workshop
hosted an open session with “Lightning Talks (5 min)” at the end of the day
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where speakers were given the opportunity to talk about whatever they wanted,
as long as it was related to the topics of the workshop. Three presentations
were given. The topics discussed at the workshop covered topics such as the
translation of OCL to programming and specification languages, proposals for
improving textual modeling languages and their tool support, as well as the
development of an OCL benchmark.

The lighting talks at the panel session of the workshop provided a platform
for the textual modeling community to discuss and present tools, ideas, and
proposals to support textual modeling as well as to shape the future of textual
modeling. The following sections, each of them contributed by one expert of the
field, discuss the different tools and ideas that were discussed during the panel
session.1

2 Sometimes Postconditions Do Not Suffice
Martin Gogolla and Antonio Vallecillo

2.1 Non-determinateness and Randomness in OCL

Recently there have been proposals for incorporating the option to express ran-
domness in OCL [2,4]. In many modeling and simulation environments, the use
of random numbers and probability distributions are used to combine definite
knowledge with an uncertain view on the result or the population of a test case.
Thus, there is an interest to express such requirements in UML and OCL.

OCL already has operations that possess a flavor of randomness, like the
operation any(). One could also consider a new collection operation random()
that randomly chooses an element from the argument collection. Our under-
standing of such operations is that they cannot be characterized only by ‘tradi-
tional’ postconditions. In particular special attention has to be given in order to
express the difference between any() and random(): A ‘traditional’ postcondi-
tion would characterize ‘one’ call to the respective operation (for example, with

); but these two operations must be character-
ized by ‘many’ operation calls and a comparison between their actual and their
expected results. We show with a small example how such a ‘non-traditional’
postcondition in form of an invariant could look like.

2.2 Formulating Randomness Quality Criteria as an Invariant

Consider the class diagram in Fig. 1 that is intended to model a dice. Every time
the operation random6() is called it should return a random number between 1
and 6. Our expectation for the operation any() would be that it can also return
any number between 1 and 6, but that different calls to any() always yield the
same result. In contrast, different calls to random() should show different results.
1 There is no summary for the lightning talk of Dimitris Kolovos, entitled “Managing

MATLAB Simulink models with Epsilon,” as the author considered the results to
be in an too early stage to be summarized in a written report.
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The attributes in the class Dice (see Listing 1.1) give a simple measure for
the quality of the generated random numbers. Basically the attributes say that
the number of tests for random6() that have to be performed is numChecks
and that, for example, the difference between (a) the amount of operation calls
yielding 2 and (b) the amount of operation calls yielding 5 is at most deltaMax.
These requirements are formulated as an OCL formula in terms of an invariant
of the class Dice. The requirement should not be formulated as a random6()
postcondition because this would lead to a situation where a recursive call to
the operation would occur in the postcondition. Much better criteria for the
random distribution could be formulated in OCL as well. The purpose of the
shown invariant is only to demonstrate that many calls to an operation may be
necessary in order to express desired properties.

Fig. 1. Class diagram for Dice example.

3 Commutative Short Circuit Operators
Edward D. Willink

OCL’s 4-level logic has been a source of much unhappiness and while various
solutions have been suggested, none have met with enthusiasm. We look at where
the unhappiness comes from and thereby suggest a new solution.

The OCL designers defined an underlying model in which all expressions have
types. Consequently the mathematical concept of truth was reified by a Boolean
type with associated Boolean library operations. The designers chose to avoid
exceptions. This in combination with UML conformance required a null value
for the missing value of properties with optional multiplicity, and an invalid
value for everything bad that might be evaluated.

Unfortunately null and invalid pollute the simplicity of truths and so the
Amsterdam Manifesto [1] elaborates Boolean operators with short-circuit like
functionality for problems such as:

a <> null and a.doSomething ()
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class Dice
attributes

numChecks:Integer
deltaMax:Integer

operations
random6 (): Integer=Set{1..6}-> random()
post returns_1_6: Set{1..6}-> includes(result)

constraints
inv manyRandom6CallsResultInNearlyEquallyDistributedValues:

-- call random6 () many times
-- store resulting amounts in Sequence{A1 ,A2 ,A3 ,A4 ,A5 ,A6}
-- check differences between A1..A6
let amts=Set {1.. numChecks}->iterate(i:Integer;

amts:Sequence(Integer )= Sequence {0,0,0,0,0,0} |
let r=random6 () in
Sequence{

if r=1 then amts ->at (1)+1 else amts ->at(1) endif ,
if r=2 then amts ->at (2)+1 else amts ->at(2) endif ,
if r=3 then amts ->at (3)+1 else amts ->at(3) endif ,
if r=4 then amts ->at (4)+1 else amts ->at(4) endif ,
if r=5 then amts ->at (5)+1 else amts ->at(5) endif ,
if r=6 then amts ->at (6)+1 else amts ->at(6) endif}) in

Sequence {1..5}-> iterate(i; diffs:Sequence(Integer )= Sequence {} |
Sequence{i+1..6}-> iterate(j; diffs2:Sequence(Integer )=diffs |

diffs2 ->including ((amts ->at(i)-amts ->at(j)).abs())))->
forAll(d | d<= deltaMax)

end

Listing 1.1. Specification of the Dice example.

However the operators remain commutative and so it is suggested that all
terms are evaluated in parallel until the result is knowable. A Karnaugh Map
defines the mapping from the true (T), false (F), null (ε) and invalid (⊥)
values of Left and Right inputs to the and output.

Left Right and requires ‘and2’

T T T T T

T F F F F

T ⊥, ε ⊥ ⊥ ⊥
F - F

F T, F F F

F ⊥, ε F ⊥
⊥, ε - ⊥
⊥, ε T, F, ⊥, ε ⊥ ⊥

Parallel execution is an implementation nightmare and the intermediate
invalid results can be inefficient. If we eliminate commutative short circuits,
we find that invalid results are exceptional rather than normal.

a <> null requires a.doSomething ()
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A new requires operator imposes a left argument first evaluation order
for and. This avoids the spurious invalid results from the right argument and
clearly indicates the intent to handle non-truths. The and operator can then be
used for truths only. Once static analysis verifies that neither left nor right input
of an and operator can be null or invalid, an implementation may implement
a regular ‘and2’ operation that returns invalid for any null or invalid input.

A new obviates operator is also needed to regularize or short circuiting.

4 Conclusion

The lively discussions both during the lighting talks as well as for each paper
that was presented showed again that the OCL community is a very active
community. Moreover, it showed that OCL, even though it is a mature language
that is widely used, has still areas in which the language can be improved. We
all will look forward to upcoming version of the OCL standard and next year’s
edition of the OCL workshop.

Acknowledgments. We would like to thank all participants of this years OCL work-
shop for their active contributions to the discussions at the workshop. These lively
discussions are a significant contribution to the success of the OCL workshop series.
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Abstract. Active operations enable bidirectional incremental evalua-
tion of OCL-like expressions on collections: changing the source (resp.
the result) of an expression causes corresponding updates in the result
(resp. the source). The current evaluation approach of active operations
is based on the observer pattern. Previous work showed how they can
be used for model transformation, and that they can scale to processing
large models while maintaining collection ordering. However, observa-
tion makes the directed acyclic propagation graph implicit, and imposes
a depth-first traversal. This sometimes results in unwanted transitory
states, which uselessly increase the amount of computations required for
propagating some changes.

To address this issue, we propose in this paper to make the propa-
gation graph explicit. This enables separation of the propagation graph
from traversal strategies (e.g., breadth-first instead of depth-first). We
show how this approach gets rid of unwanted transitory states, and dis-
cuss some of its other advantages like enabling more efficient graph visu-
alization and analysis, as well as more compact propagation graph repre-
sentations. Additionally, incremental algorithms of active operations do
not need to be changed, but can actually be better encapsulated, which
decreases maintenance cost of the incremental framework.

Keywords: Incremental evaluation · Active operations
Propagation strategies

1 Introduction

Incremental evaluation of model queries or transformations has many applica-
tions. One of its advantages is that it reduces the amount of computation required
to obtain a new result after only a few changes occurred on source models. In the
traditional model-driven development context, it can be used to speed up the
development process. After a developer has updated a design model, incremen-
tal evaluation makes queries (e.g., to check invariants), or transformations (e.g.,
to generate concrete models from abstract ones) faster. In a models at runtime

c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 302–316, 2018.
https://doi.org/10.1007/978-3-319-74730-9_27
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context [1], incrementality speed up is potentially even more desirable to make
user-facing systems more responsive.

Another advantage of incremental transformation execution is that it updates
target models in-place rather than producing whole new models. If the target
model is loaded in a model editor, which binds shapes on a canvas to its model
elements, incrementality enables updating the target model’s visual representa-
tion automatically upon source model changes. This property may also be useful
in a models at runtime context where a concrete target model may be updated
without reloading it from scratch.

Active operations [2] have been defined to provide a basis on which incre-
mental model query and transformation tools can be built. They also provide
bidirectional change propagation when possible. For instance, in the case of
both source and target models loaded in model editors, bidirectionality enables
making changes on the target model, and see those changes propagated to the
source model. Active operations work by wrapping every mutable value inside of
an observable box, and by providing operations that compute initial values (i.e.,
perform evaluations), and can then propagate changes. Each operation knows
how to change its result boxes when its source boxes change, and vice versa where
applicable. Complex expressions are represented by composing these operations,
which results in an implicit directed propagation graph that connects source
boxes to target boxes via active operations and intermediate boxes. Further-
more, this graph is acyclic because a result cannot be used to compute itself.
Because its purpose is to propagate changes, which are data, it is a kind of
dataflow graph.

Active operations have notably been shown to be applicable to incremental
OCL evaluation [3], and to bidirectional model transformation [4]. The Active
Operations Framework (AOF) is their current implementation, and it has been
shown to scale to large models [5].

However, the implementation approach on which AOF is currently based
presents some issues. The whole framework is based on the Observer pattern.
This approach works by making all intermediate values observable, and making
all operations observe their sources, and their results. As a consequence, traversal
of the propagation graph follows a depth-first strategy. The main issue is that
n-ary operations (i.e., operations with n inputs, such as binary operations with
2 inputs) may be notified several times for a single source change if several of
their inputs are directly or indirectly (i.e., via other operations) connected to
the same source. This results in unwanted transitory states, which are sometimes
inconsistent. It is possible to prevent these inconsistencies from propagating to
the target model, but (consistent) transitory states are still observable by a user
of the target model. Moreover, all these transitory states must still be processed
by all downstream operations (i.e., operations that depend on the results of the
misbehaving n-ary operation), which leads to performance degradation.

In this paper, we propose a new approach in which the propagation graph
is made explicit. Propagation algorithms are no longer implemented on nodes
of the propagation graph, which notably enables decoupling operation-specific
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propagation algorithm from the overall propagation graph traversal strategy.
Making the graph explicit enables the implementation of different traversal
strategies without impacting the way operation-specific algorithms are imple-
mented. Different strategies typically trade slower initial evaluation time for
faster propagation times, or vice versa. It notably enables traversal strategies
that do not have the issues identified in the observation-based approach.

Section 2 presents the observer-based approach used in the current implemen-
tation of active operations, and details change propagation issues by illustrating
them on a motivating example. Section 3 introduces the notion of explicit prop-
agation graph, and how it can be used to address the identified issues, with
illustration on the motivating example. Some related works are presented in
Sect. 4. Finally, Sect. 5 gives some concluding remarks.

2 Observer-Based Propagation

2.1 Overview

Observer-based propagation is the original approach for the incremental evalu-
ation of active operations. Its mechanism is illustrated on Fig. 1.

Fig. 1. Diagrams representing implementation of box observation

Firstly, Fig. 1a is a simplified class diagram representing how operation
Collect is reified as a class with one source Box, and one result Box. Each Box
has observers, which it notifies when it changes. For instance, when an element
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is added to (resp. removed from) a Box, this Box calls method added(E)1 (resp.
removed(E)) on each of its observers. Every operation, like Collect, implements
specific Observers like SourceObserver, and ResultObserver here. These spe-
cific observers react by applying appropriate propagation algorithms when they
are notified. Many operations are unary : they have a single source Box, but in
general operations may be n-ary and have several source or result boxes.

Secondly, Fig. 1b represents the instantiation of the classes shown on Fig. 1a
to represent expression b = a->collect(λ). There are two instances of the
Box class called a and b, which are connected by an instance called c of class
Collect. Box a is observed by a SourceObserver belonging to c, and box b is
observed by a ResultObserver belonging to c as well. For instance, when the
SourceObserver of c is notified of addition of element e to a, it correspondingly
adds lambda.apply(e) to b. We call this forward propagation. Conversely, for
reverse propagation of changes on the result into changes on the source, when the
ResultObserver of c is notified of addition of element e to b, it correspondingly
adds reverseLambda.apply(e) to a. For simplification purposes, the remainder
of this paper will only consider forward propagation, but what we present also
applies to reverse propagation.

Applying active operations to models is just a matter of specifying what the
boxes are. Modeling frameworks like EMF offer mechanisms to observe changes
to the properties of model elements. Therefore, we wrap every model element
property by an observable Box. For the time being, we suppose that there are no
concurrent changes on a model: only one box is modified at a time, and changes
happen sequentially. We call this the no-concurrency hypothesis. This is how
EMF works by default.

Chaining multiple operations results in a directed acyclic graph structure
where source boxes are roots. With the non-concurrency hypothesis, only one
root box may change at a single time. Every box may be consumed by an oper-
ation, and every non-source box is produced by exactly one operation. We call
this structure a propagation graph because changes are propagated along this
graph. It is implicit because there is no global representation of it: boxes only
know of their immediate observers, and operations only know of their source and
result boxes.

2.2 Motivating Example with Propagation Issues

Observation-based propagation as presented above is based on the well-known
Observer design pattern, and is relatively simple to understand and to imple-
ment. However, it has some problems handling non-unary operations when their
input depend from the same root box.

1 Changes on ordered collections such as Sequence and OrderedSet are handled by
Observer methods not shown here. Those methods additionally take the index at
which the change occurs. Moreover, other kinds of changes like replacing, or moving
are also supported.
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An example of a binary operation is zip2, which takes two ordered collections
(e.g., OCL’s Sequence or OrderedSet) as input: its source collection, and an
other collection passed as an argument. From these two collections, zip produces
a single collection of pairs consisting of one element (that we will call left) from
its first source collection, and one element (that we will call right) from its
argument collection. It traverses both collections in order, and therefore pairs
elements having the same index. The resulting collection is as long as the shortest
of the two input collections. If one of the input collections is longer, its tail is
ignored. The signature of its Sequence-based version is as follows (with implicit
type parameters L and R):

context Sequence(L) def: zip(b : Sequence(R)) :
Sequence(Tuple(left:L,right:R))

zip can be used in the following way:

let a = Sequence {1, 2, 3, 4} in
a->collect(e | e * 2)->zip(a->collect(e | e * 3))

which results in the following value:

Sequence {Tuple {left = 2, right = 3}, Tuple {left = 4, right = 6},
Tuple {left = 6, right = 9}, Tuple {left = 8, right = 12}}

In later examples, we will rather use the Haskell notation because OCL tuples
are very verbose3:

[(2, 3), (4, 6), (6, 9), (8, 12)]

Furthermore, in order to better visualize propagation, we simplify the expres-
sion by giving symbolic names to the lambdas given as argument to collect:
a->collect(λ1)->zip(a->collect(λ2))
and we give names to every intermediate value:

def: f(a) =
let b = a->collect(λ1) in
let c = a->collect(λ2) in
let d = b->zip(c) in
d

Figure 2 gives several representations of the corresponding implicit propa-
gation graph at various steps of the propagation of a single change. Boxes are
represented as rectangles, and operations are represented as ellipses. An arrow
from a box to an operation denotes that this box is a source of that operation.
2 This operation is well-known from functional programming, but is notably not

present in OCL. We use it as an example because it enables illustrating alignment
issues. Moreover, it can be leveraged to implement some operations from the OCL
standard library instead of implementing each of them separately.

3 OCL tuples are actually more similar to Haskell records than to its tuples.
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Fig. 2. Depth-first propagation with zip

Similarly, an arrow from an operation to a box denotes that box is a result of this
operation. These arrows may be considered as abstractions of Observers, which
makes this representation more compact than the one from Fig. 1b. Because the
list of observers of a box is ordered, we further need to specify that left-most
observers are notified first. For instance, box a will first notify collect(λ1),
and then collect(λ2) Propagation happens in a sequence of steps, which Fig. 2
shows as multiple copies of the propagation graph with the current active step
(box or operation) highlighted (i.e., filled with gray).

Let us consider that initialization has already been performed, and that boxes
a, b, c, and d already have the following values:

a = [1, 2, 3, 4] b = [2, 4, 6, 8]
c = [3, 6, 9, 12] d = [(2, 3), (4, 6), (6, 9), (8, 12)]
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Let us further consider the following change on box a: removal of 3. We are now
in step 1 shown on Fig. 2a, and the boxes have the following values:

a = [1, 2, 4] b = [2, 4, 6, 8]
c = [3, 6, 9, 12] d = [(2, 3), (4, 6), (6, 9), (8, 12)]

These values are inconsistent with respect to the expression that relates them,
which is normal during change propagation. The whole point of incremental
evaluation is to make them consistent again. The source observer of the first
collect is notified (step 2, Fig. 2b), and it modifies box b (step 3, Fig. 2c) such
that the boxes now have values:

a = [1, 2, 4] b = [2, 4, 8]
c = [3, 6, 9, 12] d = [(2, 3), (4, 6), (6, 9), (8, 12)]

Then the left observer of zip is notified by box b (step 4, Fig. 2d), and it modifies
box d (step 5, Fig. 2e):

a = [1, 2, 4] b = [2, 4, 8]
c = [3, 6, 9, 12] d = [(2, 3), (4, 6), (8, 9)]

The reader may already notice that box d has been changed, whereas box c
still contains its initial value. This results in: (1) a transitory state that a user
may notice (e.g., if box d is displayed in a user interface), and (2) an inconsistent
state (8 and 9 are not the double and triple of the same number) that a user may
notice as well. We call this specific kind of issue and alignment issue because
it is due to boxes b and c becoming unaligned. Then box a notifies its second
observer, which is the source observer of the second collect (step 6, Fig. 2f),
which in turn modifies box c (step 7, Fig. 2g), resulting in:

a = [1, 2, 4] b = [2, 4, 8]
c = [3, 6, 12] d = [(2, 3), (4, 6), (8, 9)]

Finally, the right observer of zip is notified by box c (step 8, Fig. 2h), and it
updates box d (step 9, Fig. 2i), which concludes the propagation of this change
with:

a = [1, 2, 4] b = [2, 4, 8]
c = [3, 6, 12] d = [(2, 3), (4, 6), (8, 12)]

This final state is finally consistent with the expression that relates the values
of the boxes.

It should be noted that such issues as presented here only occur because the
two inputs to zip are computed from a single root box (a). If the two inputs
only depended on two distinct root boxes, the no-concurrency hypothesis would
prevent such issues from taking place.
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2.3 Summary of Propagation Issues

Previous sections have explained how observer-based propagation works, as
well as some of its issues. These are mostly about unwanted transitory states
caused by changes on source boxes of n-ary operations being processed sepa-
rately instead of together. For instance, on the previous zip example, step 4,
Fig. 2d, and step 5, Fig. 2e, do not actually need to happen before box c has
been updated. These steps could be removed, and the last two steps (step 8,
Fig. 2h, and step 9, Fig. 2i) could perform all the required changes to box d in
one go. Change propagation performed by zip should all happen together. These
transitory states have the following three consequences:

Issue-1: Extra computations are required for change propagation, which
slightly reduces performance.

Issue-2: Change amplification occurs: a single input change is mapped to
multiple target changes, which may be user-observable.

Issue-3: Transitory inconsistencies may also become user-observable, as was
noted after step 5, Fig. 2e of the previous zip example.

About Issue-3: we previously stated when describing step 1, Fig. 2a that tran-
sitory inconsistencies are necessarily to be expected. This is true for internal
inconsistencies occurring between intermediate values (such as boxes b, or c),
and input or output values (such as boxes a, or d). However, externally observ-
able inconsistencies such as when box d contains the pair (8, 9) are generally
undesirable.

2.4 Workarounds

Of the three issues presented previously, Issue-3 about externally observable
transitory inconsistencies is the only one that absolutely requires to be addressed.
Consequently, all workarounds presented in this section prevent it from happen-
ing. Furthermore, each workaround is accompanied by a statement about how
well it handles the two other issues: Issue-1 about performance, and Issue-2 about
change amplification.

1. Post-filtering consists in adding an additional select into the expression
after the n-ary operation, in order to filter out inconsistencies. For instance,
in the previous zip example, we could rewrite the expression as:

a->collect(e | e * 2)->zip(a.collect(e | e * 3))
->select(e | e.right = 3 * e.left / 2)

This would not prevent internal inconsistencies, but would prevent them from
appearing downstream of the select, and therefore from being externally
visible. Locally, this will require more computations to evaluate the select,
and its predicate. Globally, it may increase performance by reducing change
amplification, which may reduce the amount of work required of downstream
operations, if any. However, this depends on the proportion of inconsistent
changes among those resulting from amplification.



310 F. Jouault et al.

2. Making dependencies explicit to n-ary operations. For instance, on the
previous example, one can notice that every change to box a will result into
one change on box b, and one change on box c in that order (because the
observer list is ordered that way). Such a situation is common because of how
operations are assembled (i.e., only after their source boxes have been created
by upstream operations), and of how observation works. Therefore, the zip
operation offered by AOF takes an additional parameter indicating whether
its argument box has such a dependency to its source box. If that is the case,
it only reacts to changes once they reach its argument box, which happens
after its input box has already been updated. This workaround also reduces
change amplification downstream, and therefore increases performance. How-
ever, figuring out which input box will get notified first is not always trivial
without static analysis.

3. Reducing arity of n-ary operations by specializing them, ideally turning
them into unary ones. For instance, on the previous zip example, we could
define a single collectZip operation that performs the two collects, and the
zip. This approach addresses all three issues, but requires the definition of
new ad-hoc operations, and expertise from the user who needs to know when
to use them (although this could probably be automated by static analysis).

In practice, we have successfully used both post-filtering, and making depen-
dencies explicit with AOF. We have not tried arity reduction because of its
cost to the user, but also because of its maintenance cost for the new ad-hoc
operations.

3 Explicit Propagation Graph

3.1 Overview

Propagation issues presented in the previous section are caused by the use of
observation. Indeed, with such an approach every operation only knows about
what happens locally, immediately around it (i.e., to the boxes it observes), and
not globally. Therefore, a better solution than the presented workarounds would
be to improve propagation algorithms to take into account the global structure
of the propagation graph. With observation, this propagation graph is implicit,
and only results from the local connections between observables and observers.
The first step is to make this graph explicit, which will open many algorithm
improvement opportunities.

Figure 3a depicts an excerpt of an explicit propagation graph metamodel.
Note that, whereas Fig. 1a was merely a class diagram representing a corre-
sponding implementation (e.g., in Java for AOF) of observation, the diagram
of Fig. 3a represents a metamodel. A notable change from Fig. 1a is the disap-
pearance of observers. The metamodel only captures the graph structure, and
ignores technical artefacts. It is independent of the way propagation will occur.
Every operation has Boxes as sources, for which it is part of their consumers,
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and has Boxes as results, for which it is their producer. We have implemented
our explicit propagation graph metamodel using EMF.

Figure 3b shows a model conforming to the propagation graph metamodel,
and representing expression a->collect(λ). Here again, when compared to the
observation implementation from Fig. 1b, one can notice the disappearance of
observers. Only the essential graph structure remains. Apart from the lambda,
which is still opaque (i.e., not detailed in the model), the structure of this model
is similar to the structure of OCL abstract syntax.

Fig. 3. Diagrams for the explicit propagation graph

3.2 Propagation Algorithms

Making the propagation graph explicit separates it from the implementation
of propagation algorithms. Moreover, we can now also decouple operation-local
propagation algorithms from the propagation strategy, which is linked to how we
traverse the graph during propagation. Indeed, observation imposed a depth-first
traversal of the propagation graph, but we can now define any graph traversal
of our choosing.

Given an explicit propagation graph, a traversal strategy may be computed
using two main categories of approaches:

– Static approaches precompute traversal strategies ahead of propagation time.
This may happen at compile time, but it may also happen during initial
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expression evaluation. What distinguishes static approaches from dynamic
approaches is that a traversal strategy has already been selected before the
first change propagation occurs, and it remains the same for every change
propagation. Change propagation can be faster at the cost of a slower initial-
ization.

– Dynamic approaches compute a traversal strategy for each change propa-
gation. Initialization can be faster, at the cost of slower change propagation.
Such a strategy may be simpler to implement than a static strategy.

An example of a dynamic strategy consists in doing two traversals for each
change propagation. The first traversal does not propagate the change, but is
only used to discover every box that may be impacted, and to mark it. Dur-
ing the second traversal, each operation waits for all of its marked inputs to be
updated before executing its local propagation algorithm. Waiting for all inputs
to be updated is not sufficient because a given change propagation may not
impact all inputs. Therefore, without the first marking traversal, an operation
could be stuck waiting for an input that will not be updated. We have imple-
mented this simple strategy, and have confirmed that it solves the propagation
issues mentioned earlier. Actually, it should even be possible to implement such
a strategy by extending an observation-based implementation. However, this
would have required changes to the implementation of every operation. As men-
tioned above, having an explicit propagation graph decouples operation-local
propagation algorithms from the traversal strategy, which makes it possible to
consider and implement various traversal strategies without changing operation-
local algorithms.

An example of a static strategy is the following. We remarked in Sect. 2.3
that an n-ary operation should only perform propagation once all its sources
have been updated. Consequently, we need to find a traversal that satisfies this
condition. Two given operations o1 and o2 may only be related in the three
following ways because the propagation graph is acyclic:

1. o1 is upstream from o2 and must be processed before it,
2. o2 is upstream from o1 and must be processed before it, or
3. o1 and o2 can be processed in any order.

We can thus define a partial order between operations. Therefore, a valid prop-
agation graph traversal can be computed using a topological sort of the set of
operations using this partial order. Such graph traversals are breadth-first, and
not depth-first like it is with observation. We are currently implementing this
strategy, with initial experiments showing that it also solves the propagation
issues mentioned in Sect. 2.3.

3.3 Application to Motivating Example

Figure 4 shows an example of a static strategy based on a topological sort.
Because of the graph structure, there are two possible orderings: [collect(λ 1),
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Fig. 4. Breadth-first propagation with zip based on a topological sort

collect(λ 2), zip], or [collect(λ 2), collect(λ 1), zip]. We arbitrarily chose
the first one.

Change propagation starts at step 1, Fig. 4a from the same initial state,
and with the same change (i.e., removal of 3 from box a) as for the observation-
based approach in Sect. 2.2. Then the first collect processes the change (step 2,
Fig. 4b), and updates box b (step 3, Fig. 4c). We are now in the same state as step
3, Fig. 2c of the observation-based approach. The next step marks the distinction
between the two approaches. The second collect processes the change (step 4,
Fig. 4d), and updates box c (step 5, Fig. 4e). At this stage, the boxes have the
following values:

a = [1, 2, 4] b = [2, 4, 8]
c = [3, 6, 12] d = [(2, 3), (4, 6), (6, 9), (8, 12)]
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Finally, now that both its inputs are updated, zip processes the change (step
6, Fig. 4f), and updates box d (step 7, Fig. 4g). The final value is the same as
for the observation-based approach. However, with the breadth-first traversal
enabled by the explicit graph, box d has never been in any inconsistent state,
even transitorily.

3.4 Discussion

Firstly, another issue with an approach based on an implicit graph is that it
is not easy to visualize and debug it. As a matter of fact, having an explicit
graph enables the creation of many useful tools, such as visualizers (e.g., via
transformation of the graph model to a visualization model), as well as a variety
of graph analyzers (e.g., to optimize it).

Secondly, an observation-based implicit graph is necessarily extensional: sev-
eral calls to the same operation with different arguments will result in duplicate
subgraphs, one for each call. It basically inlines all calls. With an explicit graph,
it becomes possible to consider having an intensional representation where oper-
ation calls are represented explicitly, without forcing to inline them. This results
in a more compact representation of the propagation graph. Moreover, some
operations like collect, and select may be given lambdas that return muta-
ble values: the result of the lambda may change even if the argument does not
(for instance because the lambda accesses a mutable field of a model element).
In such a case, the lambda itself must also be represented as a subgraph. If
such lambda subgraphs are represented extensionally, there must be a copy of
it for every element on which it is applied. The propagation graph then grows
linearly in size with the length of the source box. Having an intensional repre-
sentation enables saving some memory, although there still needs to be a node
that represents the subgraph call.

4 Related Work

The VIATRA [6] approach offers incremental query evaluation, and model trans-
formation. VIATRA scales well, as has been shown on several benchmarks includ-
ing [7], developed by the VIATRA team, and on which active operations have
been shown to scale as well [5]. It is based on RETE [8], which works with a pat-
tern matching network/graph. It therefore has an explicit graph representation
like our proposal. However, its incrementality is based on a different algorithmic
approach: a pattern matching network, whereas our propagation graph is basi-
cally a data flow graph structured similarly to the OCL metamodel. Although
they can translate a subset of OCL to their pattern language [9], the dissimilar
structure is probably one reason why they are limited to this subset of OCL,
which is not an issue for our approach. Also, as already explained in [5], VIATRA
cannot preserve collection order, whereas active operations can.

Current work in progress on the implementation of QVT using micro-
mappings [10,11] exhibits some promising initial results. However, although it
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scales particularly well on simple benchmarks, it has not been shown to work
on closer to real-world benchmarks like [7] yet. The micro-mappings approach
also works using a graph representation of a transformation, which is a kind of
dataflow between actionable pattern matching mappings (i.e., patterns with a
matching part and a creation part). But the structure of this graph is neither
close to the OCL abstract syntax nor to the QVT abstract syntax. Furthermore,
the optimization of micro-mappings is typically done ahead of time.

The work presented in [12] has some similarities with active operations in
that it considers operation-local algorithms, and builds complex expressions by
composing these operations. However, it is implemented in Haskell, which is
a purely functional language, whereas our framework AOF is implemented in
Java, and works with EMF. The performance and scalability of such an app-
roach is unclear at this time. Their approach does not have an explicit graph
representation, and appears to follow a depth-first propagation strategy. There-
fore, we expect that it will have similar problems to the ones we encountered
with observation.

5 Conclusion

The observation-based approach used in the current implementation of active
operations for incremental evaluation has been presented and criticized. Its main
flaws have been presented, and illustrated on a simple motivating example. Meth-
ods to work around these flaws have been presented, but getting rid of them
required to rethink the approach.

A novel approach based on an explicit propagation graph has been presented,
and applied to the motivating example. This new approach cleanly decouples the
propagation graph from, on one hand, its traversal strategy, and on the other
hand, the local operation-specific propagation algorithms. Two possible traversal
strategies have been presented, one dynamic, and one static.

Given the advantages of having an explicit propagation graph, we plan to
further our implementation effort in this direction, in order to support all fea-
tures supported by the current observation-based implementation but with more
efficient foundations.
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Abstract. In this paper we describe a transformation from a subset
of OCL to ANSI C code, and we show that the generated code provides
improved efficiency compared to OCL execution using Java, C# or C++.
The transformation is itself formally specified using OCL.

1 Introduction

In this paper we describe a transformation that maps a substantial subset of
OCL 2.4 [7] to ANSI C. C has limited expressiveness compared to more modern
languages such as Java or C#, but it has the benefits of high efficiency and
small code size. The OCL to C translator is a subtransformation of a UML
to C code generator, UML2C, for the UML-RSDS MDE language [6]. UML2C
maps instance models of the UML-RSDS class diagram (Fig. 1), OCL (Fig. 3)
and activities metamodels to C language metamodels (Fig. 2 and C expression
and statement metamodels). We target the 1989 ANSI C standard [4].

The mapping of OCL expressions depends upon the prior mapping of types
and class structures, however it is relatively independent of the strategy cho-
sen for representing classes in C (eg., how inheritance and dynamic dispatch is
expressed), since all access to objects and their features is via an interface of
creators, lookup operations and getters/setters which have a standard signature
independent of their implementation details. For example, any instance-scope
attribute f of class C is accessed via operations getC f and setC f , for both
owned and inherited attributes (cf., Table 3, case F1.2.5). The application API
is defined in the header file app.h for each application. A library ocl.h of C func-
tions for OCL operators is also defined, and evaluation/execution of particular
OCL expressions is based upon app.h and ocl.h.

1.1 UML-RSDS

UML-RSDS enables applications to be defined using class diagrams, use cases,
constraints and activities (pseudocode). It is similar to fUML [8] in being a
subset of UML, however, unlike fUML, it is oriented to declarative specification,
with OCL constraints being used to define use cases and operations by pre and
post conditions, instead of activities. The UML-RSDS tools can synthesise a
c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 317–330, 2018.
https://doi.org/10.1007/978-3-319-74730-9_28
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procedural platform-independent design from such specifications, and this design
is then mapped to program code by code generators (3 generators exist for Java
versions, and there are C++ and C# generators in the latest UML-RSDS version
1.7 at nms.kcl.ac.uk/kevin.lano/uml2web).

Specifiers are recommended to optimise their application functionality at
the specification level, eg., by using let-variables to avoid duplicated expression
evaluations. These optimisations then apply regardless of the eventual target
platform. Optimisation is also performed during the design synthesis stage, eg.,
to use bounded loops instead of fixpoint iteration where possible [6].

The tools have been extensively used since 2006, particularly in the financial
domain and for defining transformations. There are a number of restrictions and
variations in the language compared to full UML and OCL (Table 1). We have
found these variations helpful in simplifying specifications and improving the
capability for verifying specifications.

Table 1. Differences between UML-RSDS and UML

Collections are assumed not to contain null elements. String-valued attributes
can be declared as identity attributes, i.e., as primary keys for a class. Classes
with a subclass must be abstract.

Minor syntactic variations are the use of =⇒ for OCL implies, →exists1 for
→one, and & for and. E.allInstances is abbreviated to E when used as the LHS
of a → operator. s→includes(x) can also be written as x : s, s→includesAll(x)
as x <: s, and s→excludes(x) as x / : s.

https://nms.kcl.ac.uk/kevin.lano/uml2web/
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1.2 Paper Structure

Section 2 describes the mapping of types and class structures to C, Sect. 3
describes the OCL expression mapping, Sect. 4 gives an evaluation, Sect. 5
describes related and future work, and Sect. 6 gives conclusions.

2 Mapping of Types and Classes

Figure 1 shows part of the UML-RSDS class diagram metamodel. This is closely
based upon UML 2.2. Instances of this metamodel are mapped to instances of
a C metamodel by UML2C. The base target language is a simplified version of
the abstract syntax of C programs (Fig. 2).

Fig. 1. UML class diagram metamodel (subset)

Table 2 shows the informal mapping of UML Types to C. The T* operator
directly interprets Collection (T), for sequences and ordered sets of string and
entity types T. Collections of collections can be mapped down to 2 levels (eg.,
Sequence (Sequence(double)) for matricies is mapped to double**). Unordered
sets and bags are implemented as binary search trees.

To achieve bidirectionality and traceability of the transformation, a new
identity attribute typeId : String was introduced into Type, and ctypeId into
CType. This enables Type and CType instances to be looked-up by key value:
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Fig. 2. C language metamodel

Table 2. Informal mappings of types to C

CType[id] is the C type instance t with t.ctypeId = id. An instance t : Type
corresponds to an instance c : CType if t.typeId = c.ctypeId.

An example transformation rule of the UML2C transformation, formalising
case F1.1.1.1 from Table 2, is:

PrimitiveType::

name = "String" =>

CPointerType->exists( p | p.ctypeId = typeId &

CPrimitiveType->exists( c | c.name = "char" & p.pointsTo = c ) )

This rule applies to objects self : PrimitiveType. Whenever the lhs of the rule is true,
the rhs is made true, i.e., the relevant C types are looked-up or created if they do not
already exist. The semantics of E→exists(e|e.eId = v & P ) in the case that eId is an
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identity attribute of E is that the E object E[v] with eId value equal to v is looked
up, if it exists, and is then modified according to P . If the object does not exist, it is
created and then modified.

Classes, features and inheritances are mapped to C as shown in Table 3.

Table 3. Informal mapping of UML class diagrams to C

For each entity type E, getters and setters for each feature of E are produced,
together with creation and deletion operations createE and killE, and lookup opera-
tions getEByPK, getEByPKs in the case that E has a principal primary key (identity
attribute). These form the object API for E. Operations for OCL collection operators
acting on collections of E instances are also generated: collectE, selectE, rejectE, inter-
sectionE, unionE, reverseE, frontE, tailE, asSetE, concatenateE, removeE, removeAllE,
subrangeE, isUniqueE, insertAtE. An operation opE is only generated for OCL oper-
ator op if there is an occurrence of →op applied to a collection of E elements in the
source UML/OCL specification model.

2.1 Mapping of Associations and Polymorphic Operations

We have found that the most complex parts of UML to code mappings are typically: (i)
managing object deletion; (ii) maintaining the consistency of opposite association ends.
Additionally for C, expressing inheritance and dynamic dispatch are further complex
aspects. Deletion and association management operations are created during design
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synthesis. If an association has both ends named, then these ends need to be maintained
in consistency. For example, a *–* association between classes A and B, with ends ar,
br will have synthesised design operations

A::

static addA_br(ax : A, bx : B)

activity:

ax.br := ax.br->including(bx) ;

bx.ar := bx.ar->including(ax)

A::

static removeA_br(ax : A, bx : B)

activity:

ax.br := ax.br->excluding(bx) ;

bx.ar := bx.ar->excluding(ax)

and similarly for other association multiplicities. Deletion operators killE for concrete
E are also inserted into the design, these manage the deletion of aggregation part
objects linked to the deleted object, and the removal of the object from all association
ends. The UML2C generator therefore generates C declarations and code for these
operations.

General schemes for representing inheritance in C include an embedded super-
class struct instance in each subclass struct, and function pointers for each supported
method, or the use of vtables for function pointers. We use a pointer member struct

E* super; referring from a subclass F to its superclass E.
Dynamic dispatch of an abstract operation op(p : P ) : Rt of class E with leaf

subclasses A, B, ... is carried out by a C operation op E with the schematic definition

Rt’ op_E(struct E* self, P’ p)

{ if (oclIncludes((void**) a_instances, (void*) self))

{ return op_A((struct A*) self, p); }

else if (oclIncludes((void**) b_instances, (void*) self))

{ return op_B((struct B*) self, p); }

else ...

}

This explicit selection of the correct implementing operation corresponds to the seman-
tic model of polymorphic operations used by the UML-RSDS verification tools1.

3 Mapping of UML-RSDS OCL Expressions to C

Figure 3 shows the UML-RSDS OCL metamodel, which is the source language for the
transformation. A similar metamodel defines the corresponding C expression language
abstract syntax. New identity attributes expId and cexpId are added to Expression
and CExpression, respectively, to support bidirectionality and traceability require-
ments. variable : String represents iterator variables x for the cases of s→forAll(x|P ),
etc. A ∗ − ∗ association context from Expression to Entity is used to record the con-
text(s) of use of the expression.

1 The operation versions should have the same signatures, overloading is not supported
for this translation.
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Fig. 3. UML-RSDS OCL metamodel

The mappings are divided into four subgroups: (i) mapping of basic expressions;
(ii) mapping of logical expressions; (iii) mapping of comparator, numeric and string
expressions; (iv) mapping of collection expressions.

The basic expressions of OCL generally map directly to corresponding C basic
expressions. Table 4 shows examples of the mapping for these.

Table 4. Mapping specifications for basic expressions
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Table 5 shows the mapping of logical expressions and operators to C.

Table 5. Mapping specifications for logical expressions

The auxiliary operations fP are constructed to only have a single parameter, this
means that mapping of forAll, select, etc. is only supported where the rhs expressions
depend on a single variable. The alternative (used in the UML-RSDS Java, C#, and
C++ translators) is to create a specialised iterator implementation for each different
use of an iterator operation.

Tables 6 and 7 show examples of the values and operators that apply to ordered
sets and sequences, and their C translations. Some UML-RSDS OCL operators (union-
All, intersectAll, symmetricDifference, subcollections) were considered a low priority,
because these are infrequently used, and were not translated.

Table 6. Translation of collection unary operators

A common form of OCL expression is the evaluation of a reduce operation (min,
max, sum, prd) applied to the result of a collect, eg.: s→collect(e)→sum() where e is
double-valued. This is mapped to:

sumdouble(collectE double(s′, fe), oclSize((void ∗ ∗) s′))
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Table 7. Translation of binary collection operators (s of entity element type E)

because it is not possible to find the length of a collection of primitive values. Likewise,
s.att.sum is mapped to sumdouble(getAllE att(s′), oclSize((void∗∗) s′)). For a literal
sequence s, oclSize(s′) can be directly determined and used.

Table 8 shows the translation of select and collect operators on sequential collec-
tions. selectMaximals and selectMinimals are not currently mapped to C.

Table 8. Mapping of selection and collection expressions

Unlike the types and class diagram mappings, a recursive functional style of speci-
fication is needed for the expressions mapping (and for activities). This is because the
subordinate parts of an expression are themselves expressions. For each category of
expression, the mapping is decomposed into cases, for example:

BasicExpression::

query mapBasicExpression(ob : Set(CExpression),

aind : Set(CExpression),

pars : Sequence(CExpression)) : CExpression

pre:

ob = CExpression[objectRef.expId] &

aind = CExpression[arrayIndex.expId] &

pars = CExpression[parameters.expId]
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post:

(umlKind = value =>

result = mapValueExpression(ob,aind,pars)) &

(umlKind = variable =>

result = mapVariableExpression(ob,aind,pars)) &

(umlKind = attribute =>

result = mapAttributeExpression(ob,aind,pars)) &

(umlKind = role =>

result = mapRoleExpression(ob,aind,pars)) &

(umlKind = operation =>

result = mapOperationExpression(ob,aind,pars)) &

(umlKind = classid =>

result = mapClassExpression(ob,aind,pars)) &

(umlKind = function =>

result = mapFunctionExpression(ob,aind,pars))

The operation precondition of mapBasicExpression asserts that the parameters corre-
spond to the sub-parts of the basic expression. This approach enables inverse mappings
to be systematically defined using the 1-1 correspondence of OCL and C expressions
by identity.

The mapping transformation consists of 92 operations and 33 transformation rules.
The expression mapping is then further used by the mappings of UML activities and
use cases to C code. The efficiency of the expression translator has been tested on a
range of UML/OCL models, and found to be of practical efficiency. For models with
100 classes, each with 100 attributes, the code generation took 1.7 s.

The semantic correctness of the mapping was checked by reasoning inductively on
expression structure that SemC(e′) is equivalent to SemOCL(e) for OCL expressions
e, if e′ = CExpression[e.expId], where SemC is a mathematical semantics for C
programs, and SemOCL is the UML-RSDS semantics for expressions, defined by a
mapping from OCL to the B AMN formalism [6]. We assume that malloc and calloc
always succeed, and that equivalent numeric types are used in the specification and
implementation.

4 Evaluation

In this section we evaluate the effectiveness of the translation approach. The Visual
Studio (2012) and lcc2 (2016) C compilers were used to evaluate the generated C code.
All tests were carried out on a standard Windows 7 laptop with Intel i3 2.53 GHz
processor using 25% of processing capacity.

In order to test the efficiency and compactness of generated code, we considered
different UML specifications with different computational characteristics. The first was
a small-scale application involving a fixed-point computation of the maximum-value
node in a graph of nodes. This application has one entity type A, with an attribute
x : int and a self-association neighbours : A → Sequence(A). There is a use case
maxnode with the postcondition

A::

n : neighbours & n.x > x@pre => x = n.x

2 www.cs.virginia.edu/∼lcc-win32.

www.cs.virginia.edu/~lcc-win32
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This updates a node to have the maximum x value of its neighbours. Because this
constraint reads and writes A :: x, a fixed-point design is generated by the UML-RSDS
tools. It is an example of object-oriented specification with intensive use of navigation
from object to object.

The generated C code of the use case and its auxiliary functions is:

void maxnode1(struct A* self, struct A* n)

{ setA_x(self, getA_x(n)); }

unsigned char maxnode1test(struct A* self, struct A* n)

{ if (getA_x(n) > getA_x(self))

{ return TRUE; }

return FALSE;

}

unsigned char maxnode1search(void)

{ int ind_boundedloopstatement_80 = 0;

int size_boundedloopstatement_80 = oclSize((void**) a_instances);

for ( ; ind_boundedloopstatement_80 < size_boundedloopstatement_80;

ind_boundedloopstatement_80++)

{ struct A* ax = (a_instances)[ind_boundedloopstatement_80];

int ind_boundedloopstatement_85 = 0;

int size_boundedloopstatement_85 = oclSize((void**) getA_neighbours(ax));

for ( ; ind_boundedloopstatement_85 < size_boundedloopstatement_85;

ind_boundedloopstatement_85++)

{ struct A* n = (getA_neighbours(ax))[ind_boundedloopstatement_85];

if (maxnode1test((struct A*) ax, n))

{ maxnode1((struct A*) ax, n);

return TRUE;

}

}

}

return FALSE;

}

void maxnode(void)

{ unsigned char maxnode1_running = TRUE;

while (maxnode1_running)

{ maxnode1_running = maxnode1search(); }

}

Table 9 compares the code size (for the complete applications, including OCL
library code) and the efficiency of the C code with the Java code produced by the
UML-RSDS Java code generator. These show that code size is halved by using C, and
that efficiency is improved.
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Table 9. Generated C code versus Java code, case 1

In a second case, the efficiency test from [5] was used. This computes prime numbers
in a given range using a double iteration. Table 10 compares the generated code in Java,
C, C# and C++ on this case. In this purely numerical example, C is significantly more
efficient than the alternative implementations for larger cases.

Table 10. Generated C code versus Java, C#, C++ code, case 2

The main causes of inefficiency in generated C code are (i) repeated linear traver-
sals of collections to calculate the sizes of collections; (ii) the cost of allocating and
reallocating large contiguous blocks of memory for array-based collections. An alterna-
tive array collection representation could use the first element of an array to store the
collection length. This also has the advantage that C and OCL indexing of collections
would coincide. However it would hinder the compatibility of the generated code with
standard C code. For sets and bags non-contiguous memory blocks can be used, and
this reduces the memory allocation costs.

We also compared the C and Java implementations using the OCL benchmarks
of [1]. Table 11 shows the execution time for adding n elements to a collection, using
→including.

Table 12 shows the execution time for testing the membership of 2000 elements in
a collection of size n, using →includes.

There are the following restrictions on the UML-RSDS input specification for
UML2C: (i) no overloading of operation names within a class; (ii) quantifiers, col-
lect, select/reject predicates can only depend on one context object; (iii) no static
attributes; (iv) collection values and types can only be nested to 2 levels (collections
of collections of non-collection types); (v) root classes must contain at least one prop-
erty, and only single inheritance is represented; (vi) there are no interfaces, association
classes or qualified associations.

Restriction (iii) will be removed in release 1.8 of UML-RSDS.
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Table 11. C and Java efficiency results for →including

Table 12. C/Java efficiency results for →includes

5 Related Work

Code generation from UML to ANSI C is an unusual topic, with only one recent
publication describing such a translator [3]. This code generator is described in a high-
level manner, and it is not clear how OCL expressions or UML activities are mapped to
C using the transformation. In contrast, we have implemented mappings for all elements
of a substantial subset of UML, including a large subset of OCL. Formal specification
approaches for MT are described in [2,9]. The constructive logic approach of [9] does
not appear to have been applied to large scale transformations. The approach of [2] is
focussed on the specification of architectural choices. Our approach enables large-scale
transformations to be specified using OCL, with their implementations being verified
as correct-by-construction.

A Java VM is the usual target for OCL execution [10]. Compared to [10] we consider
a subset of OCL which (i) omits OclAny, null and invalid values, (ii) uses classical logic,
(iii) uses computational numeric types. These modifications make the correspondence
between a (UML-RSDS) OCL specification and a Java/C#/C++/C implementation
more direct and also simplify specification verification, eg., using the B formal method
or other classical logic theorem prover.

6 Conclusions

The UML to C translator is the largest transformation which has been developed using
UML-RSDS, in terms of the number of rules (of the order of 250 OCL rules/operations
in 5 subtransformations). The translator provides efficient implementation of OCL
using a direct translation approach which supports traceability and bidirectional-
ity. The translator has been incorporated into the UML-RSDS tools version 1.7 at
nms.kcl.ac.uk/kevin.lano/uml2web. UML-RSDS specifications are type-checked and
converted to designs prior to export for code generation. The translator is itself defined
using UML class diagrams and the UML-RSDS subset of OCL, demonstrating that
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purely declarative OCL specifications can be sufficient for large and complex applica-
tions: no activities or other procedural elements were needed in the specification. We
found substantial benefits in reduced development time and improved correctness and
flexibility compared to the manually-coded translators for Java, C# and C++. The
UML2C OCL code is less than 25% of the size of the Java code of the manually-coded
C++ translator, and required half the development effort.
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Abstract. The UML model is easy to describe the object oriented pro-
gram components clearly in graphical notation. OCL allows users to
express textual constraints about the UML model. The USE tool allows
specification to be expressed in a textual format for all features of the
UML model with OCL constraints. Spec# is a formal language, which
extends C# with constructs for non-null types, preconditions, post con-
ditions, and object invariants. It allows programmers to document their
design decisions in the code. Spec# has run time verifier to verify the
specification constraints over the C# code. This paper describes the
mapping of USE specifications into Spec# which helps to improve the
quality of both UML/OCL and Spec#.

Keywords: USE · UML · OCL · Spec#

1 Background and Motivation

The Unified Modelling Language (UML) model is easy to describe the object
oriented program components clearly at the system design stage. The UML’s
class diagram depicts the details of a class of the model in an object oriented
system [9]. The relationship restrictions with other classes can be described by
associations which are called UML constraints. Association multiplicities define
the connection relation of classes to each other. Object Constraint Language
(OCL) allows users to express textual constraints about the UML model [8]. So
the UML class diagram with OCL constraints can describe all the elements of
object program constructs with their specification.

The UML-based Specification Environment (USE) tool describes the pro-
gram’s specification at the specification level. The USE tool is based on a subset
of UML and OCL. The USE tool allows specification to be expressed in a textual
format for all features of a model, e.g., classes, attributes in the UML class dia-
grams. Additional constraints are written using OCL expressions [6]. The USE
specification can easily convert to corresponding graphical representations using
textual editor: Class diagram, Object diagram. Also it performs the verification
of OCL constraint structures easily.

Spec# has run time verifier to verify the specification constraints over the C#
code. Spec#’s specifications are not just comments, but those are executable [10].
c© Springer International Publishing AG 2018
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In recent years, model based transformation is getting more popular [2] i.e.
code generation from system design. At the moment, there is no explicit tool to
generate Spec# code from UML/OCL.

In this paper, we map the UML/OCL properties of USE specification in
order to generate Spec# code. Motivation behind this mapping is to find out
what properties can add at the design phase in order to improve the quality of
UML/OCL. In the same manner, this paper helps improving Spec# to support
full UML/OCL properties. Remainder of the paper is organised as follows. Next
section maps the properties between USE specification and Spec#. Class specifi-
cation mapping is illustrated in Sect. 2.1 and constraints in Sect. 2.2. Unmapped
properties are explained in Sect. 2.3. Finally Sect. 3 explains the conclusion of
the mapping and recommended future works.

2 Mapping UML/OCL Properties Between
USE and Spec#

For code generation, we need the corresponding references to the elements of
both the source and the target languages [3]. This section presents the structural
correspondence of USE (UML/OCL) and Spec#.

2.1 Mapping Class Diagrams to Spec# Classes

This section explains the mapping of the class properties between the USE spec-
ification and Spec#.

Primitive Types: Integer, Real, Boolean and String [8] are primitive types in
USE. The USE primitive types are directly mapped on predefined Spec# types.
Thus the primitive USE types Boolean, Integer, Real and String are, respectively,
mapped into Boolean, Integer, Float and String of Spec#.

Collection Types: Collection types are used to group the elements together
in some formal manner: Set, Bag, OrderedSet and Sequence [8]. The Spec#
generic class, ‘System.Collections.Generic.List’ stores the elements in the format
of Sequence. The OCL constraints are constructed on a UML diagram using these
collection types, but, Spec# only supports the collection type List. The collection
operations for all USE types are mapped into the corresponding operations of
Spec#’s list.

Class and Enumeration: In an USE specification, class diagrams define the
static characteristics of the system by specifying all classes, attributes and meth-
ods of each class and interrelations between the objects of these classes. In Spec#,
whole program implementations mirror the role of the class diagram. The class
construct is used to define all aspects of the class model with attributes, method
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definitions, inheritance and association relations. In USE, operations of a class
are represented after attribute declaration using the keyword operations as an
example shown in Table 1. In Spec#, operations are written as standard method
definitions.

Enumeration is used to hold the predefined constants to declared variables.
The UML supports enumeration types using keyword enum [8]. The Spec# also
supports the enum keyword as shown in Table 1.

Associations and Aggregations: An association describes the static relation-
ship between the classes. In USE, associations are represented using the keyword
association followed by the association name representing the link between the
classes with role names. In Spec#, the associations are represented by con-
structing the objects of the association in the class definition. An association
with multiplicity ‘1’ is represented as a single object, and the association with
multiplicity ‘*’ is represented as a list of object declarations. References to other
objects are represented with the ownership type annotations ([Rep] & [Peer]).

Table 1. Class and enumeration representation

USE Spec#

enum Color{silver, gold}

class Customer

attributes

name : String;

title : String;

isMale : Boolean;

age : Integer;

operations

age():Integer;

birthdayHappens();

end

class CustomerCard

end

association holds between

Customer[1] role owner

CustomerCard [0..*] role cards

end

public enum Color{silver, gold};

public class Customer

{

[Rep][ElementsRep] List<CustomerCard>

cards = new List<CustomerCard>();

protected String name;

protected String title;

protected bool isMale;

protected int age;

public int age()

{

----

}

public void birthdayHappens()

{

----

}

}

public class CustomerCard

{

[Rep]protected Customer owner;

...

}
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Any object can refer to other objects. Aliasing occurs when one object is
reachable through multiple paths, i.e. more than one reference is referred by
the same object. Ownership helps to control aliasing and assists in structur-
ing object relationships in a program. By using this ownership representation,
an owner object can access the reference objects. Ownership types help the
programmer track information about object aliasing. Ownership types represen-
tation mainly specified in two types: Rep & Peer. Same ownership objects are
represented ‘peers’ or ‘siblings’ [1]. Some objects are represented as reference
of an owner object, are called ‘reference’ objects, i.e. an object can referred by
owner. Sometimes multiple references can exist to an object. A [Rep] attribute
which stands for representation [5]. [ElementsRep] specifies the ‘*’ multiplicity
as list of objects. An example is shown in Table 1.

Inheritance: Inheritance is an important concept in object-oriented design,
which allows identical functionality of a class to be inherited into another class.
New functionality can then be added to the class which inherits [7]. For example,
Burning and Earning are subclasses of the Transaction class. Subclass is that
may inherit the properties of superclass. In USE, inheritance is represented by
the ‘<’ operator.

In Spec#, inheritance is represented by the ‘:’ operator. Subclasses attributes
which need to access superclass attributes must be declared with [Additive]
keyword [5]. If an object of a subclass needs to access attributes of its superclass,
then those attributes must be annotated with the keyword [Additive]. In the
example shown in Table 2, an attribute points is overridden in the earnPoints()
method of the subclass Earning. Therefore, it needs to access the superclass
Transaction’s attribute points. Therefore it is annotated as [Additive].

Table 2. Inheritance representation

UML Spec#

class Transaction

attributes

points : Integer;

operations

earnPoints(points);

end

class Burning < Transaction

end

class Earning < Transaction

earnPoints(points);

end

public class Transaction

{

[Additive] public int points;

[Additive] public void earnPoints(int points)

{ additive expose (this){ }

}

}

public class Burning:Transaction

{

}

public class Earning:Transaction

{

[Additive] public void earnPoints(int points)

{ additive expose (this) { }

}

}
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USE supports multiple inheritance by comma as an example follows:

Earning < Transaction, Burning

Here, Earning class inherits from classes Transaction and Burning. As C#,
Spec# does not support multiple inheritance.

2.2 Mapping OCL Constraints to Spec#

Constraints are conditions or restrictions over a model or state. In USE, con-
straints are specified by Boolean expressions which must be side effect free. That
means, the constraint must be evaluated to true or false and it must not change
the state over the system. In a correct system, constraints must be evaluated to
true. In USE, constraints are defined over various elements of the class diagram.
Invariants, preconditions and postconditions are major constraints [8] which are
specified by the operators inv, pre and post. These are checked via a validation
process. These constraints are represented in Spec# as assertions. This section
explains the mapping of these properties between the USE specification and
Spec#.

Preconditions: A precondition is a condition that must be true before calling
a method in a context in order to get the expected behaviour from the method.
In Design by Contract (DBC), the method’s client must meet the precondition.
In a university, a student must be older than 23 years to enroll into a course as
a mature applicant. This is described as a constraint as follows in Table 3.

Table 3. Precondition representation

OCL Spec#

context MatureProgram

::enroll(stu : Student)

pre: stu.age >23

public class MatureProgram

{

public void enroll(Student stu)

requires stu.age >23;

{

}

}

The precondition declares that for any Student stu, who will be enrolled
into a course as a mature student, his age must be greater than 23. The keyword
requires is used to represent preconditions in Spec#.
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Postconditions: A postcondition is a condition that should be true after exe-
cuting a method in a context if the method behaves as expected when executed
with a true precondition. In DBC, a designer establishes the postcondition. For
example, as shown in Table 4, the method postcondition declares that the result
of the method enroll() must add the student stu to the MatureProgram if
he/she has already not enrolled into the program. The keyword ensures is used
to represent the postcondition in Spec#.

Table 4. Postcondition representation

OCL Spec#

context MatureProgram

::enroll(stu : Student)

post: numStudents =

numStudents@pre + 1

context MatureProgram

::allocate()

post: self.numPlaceAvail

= self.numPlaceAvail@pre - 1

public class MatureProgram

{

public void enroll(Student stu)

ensures numStudents.Count

== old(numStudents.Count) +1

{

}

public void allocate()

ensures this.numPlaceAvail

== old(this.numPlaceAvail)-1;

}

The Special Property ‘@pre’: In USE, @pre is used to hold previous value
of an element before methods execution. The keyword old performs the same
function in Spec#. An example follows in Table 4. In this, if a student enrolled
into a course, the number of available places must be reduced by one.

Keyword ‘self ’: In USE, the keyword self is used to refer the current instance
of certain object of a class. The keyword this is used for the same function in
Spec#.

Class Invariants: A class invariant is a condition that should be true during
the entire life cycle of the class instances. That means, the class invariants must
be hold for entire life of objects created. For example, a class invariant could be
that a student must be more than 18 years old to enter into 3rd level education as
shown in Table 5. The keyword invariant is used to represent the invariants in
Spec# as shown in Table 5. During inheritance in Spec#, an overriding method
may add additional postconditions with the superclass’s preconditions and post-
conditions but cannot add new preconditions in order to keep the property of
strengthening postconditions and weakening preconditions. A subclass may also
strengthen the invariant.
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Table 5. Class invariant representation

OCL Spec#

context Student

inv : age > 18

Class Student

{

.....

invariant age>18;

......

}

Table 6. Correspondence of UML/OCL properties between USE and Spec# ✓: Sup-
port but no specific keyword and ✗: No support

UML/OCL properties USE Spec#

Precondition pre requires

Postcondition post ensures

Invariant inv invariant

Attributes attributes ✓

Collection Set, Bag, Sequence List

Old @pre old

Quantifiers ✓ forAll, exists

Multiple inheritance ✓ ✗

OCL types ✓ ✗

Metatypes ✓ ✗

Initial ✗ constructor

Derived ✗ ✓

Non null ✗ ✓

Termination ✗ ✗

2.3 Unmapped Properties

Collection Types: Table 6 shows the correspondence of UML/OCL properties
between USE and Spec#. Based on this comparison, Spec# needs to define
the generic collection types such as Set, Bag, Sequence. Also it needs to define
corresponding ‘Collection’ Operations.

Special OCL Types: Spec# does not support OCL Meta types such as
OclAny, OclType, OclUndefined, OclVoid and OclInvalid.
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Special OCL Operations: Spec# does not have separate keywords for OCL
operations such as init, derive, define and body. These operations support by
method definitions in Spec#.

Ownership Types: On the other hand, Spec# provides ownership type con-
straints (Rep, Peer) in association relations and Inheritance properties from one
class to another to specify conditions using [Additive].

Non-null Reference: Spec# has special feature, Non null-reference, that erad-
icates all non null dereference errors. That is, references in Spec# can be declared
Null or Non-null. In Spec#, type T! contains only references to objects of type
T, which cannot be null.

For example, ‘string! S;’ specifies Non-null string. ‘string? S;’ specifies
the String which may be a null reference. In ‘string![]? a;’, ‘a’ is either null
or a string array and all elements in the array are non-null.

3 Conclusion

This paper has presented the mapping of USE properties with Spec# for gener-
ating the Spec# code skeletons. It gives an idea to introduce some properties in
software design and implementation towards to support the verification. Based
on our study, USE does not allow the addition of ownership type constraints
(Rep, Peer) in software design phase. We have introduced these ownership type
information to UML/OCL [4]. In this paper, we developed an approach to intro-
duce ownership type constraints to USE specifications.

3.1 Future Work

To support OCL directly, Spec# needs the collection operations. So our next
aim is to generate a library to support the generic collection data types (Set,
Bag and Sequence) and the different operations on the collection types (size,
isEmpty, notEmpty, sum, count, includes and includesAll). Also our work will
support Meta types like OclAny, OclType and OCL statements (OCLKindof,
OCLTypeof).
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Abstract. The Collection iterations and operations are perhaps the
most important part of OCL. It is therefore important for an OCL evalua-
tion tool to provide efficient support for Collections. Unfortunately, some
clauses of the OCL specification appear to inhibit efficient or determin-
istic support. We review the inhibitions and demonstrate a new deter-
ministic and lazy implementation that avoids them.

Keywords: OCL · Collection · Deterministic · Lazy · Mutable

1 Introduction

The OCL specification [11] defines an executable specification language suitable
for use with models. OCL’s power comes from its ability to evaluate characteris-
tics of multiple model elements using iterations and operations over collections.

The side-effect free functional characteristics of OCL should provide excellent
opportunities for optimized evaluation, but sadly the optimization in typical
OCL tools is poor. Collection evaluation is an area that should be particularly
good, however it is very easy for the efficiency and/or memory usage to be
outstandingly bad.

Deterministic execution is a desirable property of any language; very desirable
if you are attempting to debug an obscure failure. Unfortunately today’s OCL
tools are not deterministic and so OCL-based Model-to-Model transformations
tools also lack determinism.

In Sect. 2, we review the problems that the OCL specification appears to
pose. In Sect. 3 we revisit these problems to identify over-enthusiastic or inap-
propriate reading of the OCL specification. Then in Sect. 4 we introduce our
new Collection implementation that solves the problems. The new solution is
still work in progress and so in Sect. 5 we describe what remains to do to inte-
grate it effectively. In Sect. 6 we look at related work and conclude in Sect. 7.

2 The Problems

We briefly review some implementation challenges that the OCL specification
provides.

c© Springer International Publishing AG 2018
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Collection types: Four concrete derivations of the abstract Collection type are
specified to support the four permutations of ordered/not-ordered, unique/not-
unique content. These derived collections types are

– Bag - not-ordered, not-unique
– OrderedSet - ordered, unique
– Sequence - ordered, not-unique
– Set - not-ordered, unique

Java implementations may use a custom class, LinkedHashSet, ArrayList
and HashSet respectively to implement these four Collection kinds.

Problem: Four distinct collection types.

Immutability: OCL is a functional language free from side effects. It is there-
fore impossible to modify an OCL Collection. There are no operations such as
Set::add(element) that modify the receiver. Rather there are operations such
as Set::including(element) that return a new Set based on the receiver and
including the additional element. The obvious implementation of a cascade of
operations such as a->including(b)->including(c)->including(d) creates
a new intermediate collection between each operation.

Problem: Immutability implies inefficient collection churning.

Eagerness: OCL operations are defined as a computation of an output from
some inputs. A cascade of operations such as a->including(b)->excludes(c)
is therefore evaluated in three steps as get-a, then create a+b, and finally test
a+b for c content. There is no mechanism for early discovery of a c to bypass
redundant computations.

Problem: Specification implies eager evaluation.

Invalidity: A malfunctioning OCL evaluation does not throw an exception,
rather it returns the invalid value, which will normally be propagated through
invoking computations back to the caller. However OCL has a strict Boolean
algebra that allows the invalid value to be ‘caught’ when, for instance, ANDed
with the false value. The presence of the invalid value in a collection is prohib-
ited, or rather the whole collection that ‘contains’ the invalid value is replaced
by the invalid value. The result of a collection evaluation cannot therefore be
determined until every element is present and checked for validity.

Problem: Invalidity implies full evaluation.

Determinism: Each collection type has distinct useful capabilities and so conver-
sions between collection types are specified to facilitate their use. However, when
the asOrderedSet() and asSequence() operations are applied to not-ordered
collections, the operations must create an ordering without any clue as to what a
sensible ordering criterion might be. This is obviously impossible and so typical
Java implementations use the indeterminate order provided by a Java iteration
over an underlying Java Set.
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Problem: asOrderedSet() and asSequence() imply indeterminacy.

OCL equality: OCL is a specification language and when dealing with numbers,
OCL uses unbounded numbers. Consequently the following OCL expressions are
true:

1 = 1.0 Set{1,1.0}->size() = 1 Set{Set{1},Set{1.0}}->size() = 1

When using Java to implement OCL, the numeric equality is satisfied by the
primitive types int and double but not by the object types Integer and Double.
Since Java sets use object equality to establish uniqueness, a naive implementa-
tion may malfunction if it assumes that OCL and Java equality are the same.

Problem: OCL and Java equality semantics are different.

3 The Problems Revisited

The foregoing problems lead to poor and even inaccurate OCL implementations.
We will therefore examine them in more detail to distinguish myth and truth
before we introduce our new solution.

3.1 Immutability

While OCL may provide no operations to modify Collections, it does not prohibit
modification by underlying tooling. A modification that does not affect OCL
execution is permissible.

An evaluation of a->including(b)->including(c) may therefore re-use the
intermediate collection created by a->including(b) and modify it to create the
final result. This is safe since the intermediate result cannot be accessed in any
other way than by the subsequent ->including(c). If there are no other accesses
to a, it is permissible to modify a twice and avoid all intermediates.

3.2 Eagerness

While the specification may imply that evaluations should be performed eagerly,
this is just the way specifications are written to ease understanding. An imple-
mentation is permitted to do something different so long as the difference is
not observable. Lazy evaluation is a tactic that has been used with many lan-
guages. OCL has a strong functional discipline and so laziness has much to offer
in an OCL evaluator. Unfortunately OCL development teams have been slow to
exploit this tactic.

3.3 Invalidity

The OCL specification is far from perfect. In OCL 2.0, there were the three over-
lapping concepts of null, undefined and invalid. OCL 2.2 clarified the concepts
by eliminating undefined and so distinguished null and invalid, but invalid is
still inadequate to represent real execution phenomenon.
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There is currently no distinction between program failures such as

– divide by zero
– Sequence/OrderedSet index out of range
– null navigation

and machine failures such as

– stack overflow
– network failure

Since machine failures are not mentioned by the specification, it would seem
that they must be invalid, but only very specialized applications such as the
OCL specification of a debugger can be expected to handle machine failures.
Consequently the treatment of machine failures as invalid for the purposes of
4-valued (true, false, null, invalid) strict logic evaluation seems misguided.
Rather a further fifth failure value for machine failure should be non-strict
so that machine failures are not catchable by logic guards. The fourth strict
invalid value should apply only to program failures.

Program failures are amenable to program analysis that can prove that no
program failure will occur. When analysis is insufficiently powerful, the pro-
grammer can add a redundant guard to handle e.g. an ‘impossible’ divide-by-
zero. With 5-valued logic we can prove that the partial result of a collection
evaluation will remain valid if fully evaluated and so avoid the redundant full
calculation when the partial calculation is sufficient.

Proving that null navigations do not occur is harder but an analysis of null
safety is necessary anyway to avoid run-time surprises [5].

Once machine failures are irrelevant and the absence of program failures
has been proved, a partial collection result may be sufficient; the redundant
evaluations can be omitted.

3.4 Determinism

Determinism is a very desirable characteristic of any program evaluation, par-
ticularly a specification program. Is OCL really non-deterministic?

Collection::asSequence() is defined as returning elements in a collection
kind-specific order.

The Set::asSequence() override refines the order to unknown, which is not
the same as indeterminate.

The Collection::any() iteration specifies an indeterminate choice between
alternatives.

The foregoing appears in the normative part of the specification. Only the
non-normative annex mentions a lack of determinism for order discovery.

It is therefore unclear from the specification text whether an OCL implemen-
tation of order discovery may be non-deterministic. A clarified OCL specification
could reasonably take either alternative. If order discovery is deterministic, it is
easy for Collection::any()’s choice to be consistent with that discovery.
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In practice, typical OCL implementations use a Java Set to realize OCL
Set functionality. The iteration order over a Java Set depends on hash codes,
which depend on memory addresses, which depend on the unpredictable tim-
ing of garbage collection activities. It is therefore not possible for typical OCL
implementations to be deterministic.

It would appear that implementation pragmatics are driving the specification
or at least the user perception of the specification. But indeterminacy is so bad
that it would be good to find a way to make OCL deterministic.

3.5 Four Collection Types

The four permutations of unique and ordered provide four collection behav-
iors and four specification types, but do we really need four implementation
types? With four types we may have the wrong one and so we need conversions.
UML [10] has no collection types at all. What if an implementation realized all
four behaviors with just one implementation type? One benefit is obvious; no
redundant conversions.

4 New Collection Solution

Our new solution has only one Collection implementation type that exhibits all
four Collection behaviors, but only one at a time. To avoid confusion between
our new Collection implementation and the OCL abstract Collection or the
Java Collection classes, we will use NewCollection in this paper1.

4.1 Deterministic Collection Representation

A NewCollection<T> instance uses two Java collection instances internally.

– ArrayList<T> of ordered elements.
– HashMap<T,Integer> of unique elements and their repeat counts.

For a Sequence, the ArrayList serializes the required elements; the HashMap
is unused and may be null.

For a Set, the keys of the HashMap provide the unique elements each mapped
to a unit Integer repeat count; the ArrayList serializes the unique elements in
a deterministic order.

For an OrderedSet, the keys of the HashMap provide the unique elements each
mapped to a unit Integer repeat count; the ArrayList serializes the unique
elements in the required order.

For a Bag, the keys of the HashMap provide the unique elements each mapped
to a repeat count of that element; the ArrayList serializes the unique elements
in a deterministic order.

1 The Eclipse OCL class name is currently LazyCollectionValueImpl.
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The Java implementation of a HashSet uses a HashMap and so using a
HashMap for Set and OrderedSet incurs no additional costs. On a 64 bit machine,
each HashMap element incurs a 44 byte cost per Node and typically two 8 byte
costs for pointers. Using an ArrayList as well as a HashMap increases the cost
per entry from 60 to 68 bytes; a 13% overhead for non-Sequences.

Use of an ArrayList to sequence the unique elements allows an efficient
deterministic iterator to be provided for all kinds of Collection.

Since a Set now has a deterministic order, there is no implementation differ-
ence between a Set and an OrderedSet.

The deterministic order maintained by the ArrayList is based on insertion
order. New elements are therefore added at the end or not at all, which avoids
significant costs for ArrayList maintenance.

For a Bag, there is a choice as to whether an element iteration is over
all elements, repeating repeated elements, or just the unique elements. The
NewCollection therefore provides a regular iterator() over each element, and
an alternative API that skips repeats but allows the repeat count to be accessed
by the iterator. Bag-aware implementations of Collection operations can there-
fore offer a useful speed-up.

The NewCollection supports all Collection behaviors, but only one at a
time. Non-destructive conversion between behaviors can be performed as no-
operations. A Set converts to a Sequence by continuing to use the ArrayList
and ignoring the HashMap. However the conversion from a Sequence to a Bag or
Set requires the HashMap to be created and non-unique content of the ArrayList
to be pruned; a new NewCollection is therefore created to avoid modifying the
original NewCollection.

The NewCollection does not inherit inappropriate Java behavior. The prob-
lems with inconsistent OCL/Java equality semantics can therefore be resolved
as NewCollection delegates to the internal HashMap.

4.2 Performance Graphs

The performances reported in the following figures use log-log axes to demon-
strate the relative linear/quadratic execution time behaviors over a 6 decade
range of collection sizes. The measurements come from manually coded test
harnesses that instrument calls to the specific support routines of interest. Con-
siderable care is taken to ensure that the 64 bit default Oracle Java 8 VM has
warmed up and is garbage free. Curves are ‘plotted’ backwards i.e. largest collec-
tion size first to further reduce warm up distortions. Each plotted point comes
from a single measurement without any averaging. Consequently the occasional
‘rogue’ point is probably due to an unwanted concurrent activity and demon-
strates the probable accuracy of surrounding points even at the sub-millisecond
level. Genuine deviations from smooth monotonic behavior may arise from for-
tuitous uses of L1 and L2 caches. Garbage collection may lead to inconsistent
results for huge collection sizes.
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4.3 Deterministic Collection Cost

Figure 1 shows the time to create a Set from a Sequence of distinct integers,
contrasting the ‘old’ Eclipse OCL Set with the ‘new’ NewCollection Set. Overall
the ‘new’ design is about 2 times slower corresponding to the use of two rather
than one underlying Java collection.

Fig. 1. ‘Set’ creation performance

A corresponding contrast of iteration speed is shown in Fig. 2. The ‘new’
design is now about three times faster since the iteration just traverses adjacent
entries in the deterministic ArrayList rather than the sparse tree hierarchy of
non-deterministic HashMap nodes.

Fig. 2. ‘Set’ iteration performance

Iteration is faster than creation and so it depends how often the Set is used
as to whether ‘new’ or ‘old’ is faster overall. More than three uses and the
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‘new’ design is faster as well as deterministic. Even when used only once the
speed penalty is less than a factor of two. Determinism is therefore practical and
incurs acceptable size and speed costs.

4.4 Lazy Usage

The ‘eager’ exposition of NewCollection’s ArrayList solves the problem of
indeterminacy. The lazy use of a HashMap as well as the ArrayList supports
conversions and non-Sequence collections.

The NewCollection may also be used for lazy evaluation by providing careful
support for Java’s Iterator and Iterable interfaces.

When a NewCollection has a single consumer, its Iterator may be used
directly by invoking iterator() to acquire an output iterator that delegates
directly to the input.

When a NewCollection has multiple consumers, it must be used as an
Iterable to provide a distinct Iterator for each consumer. iterable() is
invoked to activate the caching that then uses an internal iterator to iterate over
the input at most once.

Considering: a->including(b)->including(c)
An eager implementation of Collection::including might be implemented

by the IncludingOperation.evaluate method as shown in Fig. 3.

Fig. 3. Example eager evaluation data flow

The stateless IncludingOperation::evaluate() eagerly accesses the a and
b values cached by their Variable objects and creates the intermediate ab. A
second IncludingOperation::evaluate() similarly produces the result abc.
Three collection caches are fully populated for each of a, ab and abc.

The lazy implementation shown in Fig. 4 uses an IncludingIterator object
that has a current iteration context. The iterator iterates to produce the
required output, one element at a time by fetching the inputs one element at a
time and interleaving the additional value at the correct position. No computa-
tion is performed until an attempt is made to access the abc result. Since the
result cache is missing, the abc access invokes IncludingIteration::next()
to provide each element of abc that is required. IncludingIterator::next()
provides its result from c or by invoking next() on ab, which in turn acquires
its values from a or b. No input, intermediate or output collection caches are
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required; a can read its source one element at a time, ab relays its values one at
a time, and the abc output may be accessed one element at time. This is a major
size improvement, three uncached NewCollections that relay one element at a
time, rather than three fully-cached NewCollections.

Fig. 4. Example lazy evaluation data flow

If a or c has multiple consumers, as shown in Fig. 5, the undesirable repe-
tition of the lazy including computations is avoided by activating caches where
the multi-use occurs. This is slightly awkward to implement since the first con-
sumer must invoke NewCollection.iterable() to activate the cache before
any consumer invokes NewCollection.iterator() to make use of the collec-
tion content. As part of a general purpose library used by manual programmers
this programming discipline could cause many inefficiencies. However as part
of an OCL tool, an OCL expression is easily analyzed to determine whether a
collection variable is subject to multiple access. If analysis fails, iterable() can
be invoked just in case.

Fig. 5. Example lazy cached evaluation data flow

Eager, lazy and cached evaluations share the same structure of operation and
variable interconnections. The correct behavior is determined by analysis of the
OCL expression. For a singly accessed collection, a transparent behavior is con-
figured. For multiple access, a cached behavior is configured in which the source
iteration is lazily cached for multiple use by the multiple accesses. Unfortunately,
collection operations, such as Collection::size(), are unable to return a result
until the source has been fully traversed and so an eager evaluation is sometimes
unavoidable.
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4.5 Lazy Cost

In Fig. 6 we contrast the performance of eager and lazy OCL evaluation of the
inclusion of two values into a Sequence of Integers.

Fig. 6. Double including ‘sequence’ performance

For more than 1000 elements, the top curve shows the lazy approach scal-
ing proportionately. The next curve shows the aggregate performance of eager
evaluation also scaling proportionately until garbage collection affects results
at 10,000,000 elements. The bottom two curves show the contributions to the
aggregate from the eager evaluation, and the final result traversal.

For small Sequences with fewer than 1000 elements, the higher constant
costs of the eager approach dominate and the lazy approach is perhaps five
times faster.

For larger Sequences, the lazy approach is about two times slower since an
outer element loop traverses iterations for each partial computation whereas the
eager approach has tighter inner loops for each partial computation.

For the largest 10,000,000 element result, garbage collection has started to
affect the eager evaluation with its three full size collection values for input,
intermediate and output. In contrast, the lazy approach only uses a few hundred
bytes regardless of model size and so is much less affected by huge models.

The lazy approach is clearly superior with respect to memory consumption,
and also faster for up to about 1000 elements. For larger sequences, lazy evalua-
tion may be two times slower. Since lazy evaluation offers the opportunity to skip
redundant computations, we may conclude that in the absence of application-
specific profiling measurements, lazy evaluation should be used.

4.6 Mutable Collections

As suggested above, lazy evaluation is not always better. The simple example in
Fig. 4 replaced three fully-cached by three uncached NewCollections but also
introduced two intervening IncludingIterator objects. Invocation of next()
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to return an output object traverses the lazy sources incurring four nested invo-
cations of next(). For an iteration such as

aCollection->iterate(e; acc : Set(String) |
acc->including(e.name))

the overall iterate of an N -element aCollection evaluates using a chain
of N interleaved NewCollection and IncludingIterator objects. The overall
evaluation incurs a quadratic 2 ∗ N ∗ N cost in next() calls.

Of course the traditional approach of creating a new Collection for each invo-
cation of including also incurs a quadratic cost through creating and copying
N collections of approximately N -element size.

In order to achieve a more reasonable cost we can use a non-OCL mutable
operation behind the scenes:

aCollection->iterate(e; acc : Set(String) |
acc->mutableIncluding(e.name))

This exploits the invisibility of the intermediate values of acc. The evaluation
should therefore analyze the OCL expression to detect that the single use of acc
allows the immutable including() operation to be evaluated safely and more
efficiently using the internal mutableIncluding() operation.

In Fig. 7 we contrast the performance of the accumulation that computes
S->iterate(i; acc : C(Integer) = C{} | acc->including(i))
using Set or Sequence as the C collection type and C{1..N} as the S source

value for an N collection size.

Fig. 7. ‘Sequence’ and ‘Set’ accumulation performance

The new approach uses mutable evaluation to re-use acc and so avoid churn-
ing. The old approach uses the one new Set churn per Set::including execution
as currently practiced by Eclipse OCL [7] and USE [12] (Dresden OCL [6] cre-
ates two Sets). The new approach scales linearly and so is clearly superior to
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the traditional quadratic cost. The new approach has a two-fold cost for using
Sets rather than Sequences; much less than when churning occurs.

Note that this optimization relies on a ‘compile-time’ OCL expression anal-
ysis that replaces including by mutableIncluding.

4.7 Lazy Limitations

Some operations such as aCollection->size() cannot be executed lazily since
the size cannot be known without the whole collection. But in a suitable context
such as aCollection->size() > 3, it is obvious that the full collection is not
necessary after all. Even for aCollection->size(), aCollection does not need
to be fully evaluated since we are only interested in the number of elements. If
the computation of aCollection can be aware that only its size is required, a
more efficient existence rather than value of each element might be computed.

4.8 Operation Caches

As well as using ‘lazy’ evaluation to defer computation in the hope that it may
prove redundant, performance may be improved by caching what has already
been computed in the hope that it can be re-used.

As a side-effect free language, OCL is very well suited to caching the results
of iteration or operation calls. However for simple arithmetic, short strings and
small collections, the cost of caching and re-use may easily exceed the cost of
re-computation. For larger collections, the cache size may be unattractive and
the probability of re-use too low. Such dubious benefits perhaps explain the
reticence of implementations to provide result caching.

Model to model transformations depend on re-use of created output elements
and so the Eclipse QVTd tooling [8] pragmatically provides caches for Functions
and Mappings but not Operations or Iterations.

Empirical observation suggests that for object operations and derived prop-
erties, the re-use benefits and statistics are much more favorable and so such
caching should be part of an OCL evaluator. We will shortly see another exam-
ple where operation caching can be helpful.

4.9 Smart Select

The select iteration applies a Boolean predicate to filter a source collection.
sourceCollection->select(booleanPredicate)
In practice there are two common idioms associated with select.

Conformance Selection: It is very common to use

S->select(oclIsKindOf(MyType)).oclAsType(MyType)
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This selects those elements of S that conform to MyType. This clumsy test
and cast idiom was recognized in OCL 2.4 and a selectByKind() operation
added to improve readability.

In practice each source collection is partitioned into a very small number of
types that can be identified by compile-time analysis of the OCL expressions. A
naive implementation may recategorize the type of each element in each invoca-
tion. A more efficient implementation should re-use the type categorization to
partition into all types of interest on the first invocation and cache the partitions
for re-use by subsequent invocations for any of the types of interest. This should
of course only be performed after Common Sub Expression or Loop Hoisting has
eliminated redundant invocations, and only if there is more than one residual
invocation.

Content Selection: It is also common to use

S->select(element | element.name = wantedName)

This locates a matching content of S by choosing the appropriately named
elements. This idiom treats the S as a Map with a name key, but whereas a Map
returns the value in constant time, naive implementation of select incurs linear
search cost.

For a single matching lookup, building the Map incurs a linear cost and so
there is no benefit in an optimization. However in a larger application it is likely
that the name lookup may occur a few times for the same name and many
times for different names. Providing an underlying Map may be very beneficial,
converting a quadratic performance to linear.

We will contrast the performance, with and without a Map, of the accumula-
tion that computes

let S = Sequence{1..N} in
let t = S->collect(i|Tuple{x = i}) in
S->collect(i | t->select(x = i))

Fig. 8. ‘select’ Performance
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The first two let lines build the table all of whose entries are looked up by
the final line.

The top line of Fig. 8 shows the traditional naive full search for each lookup.
The lower lines show the time to build the cache, the time to perform all lookups
and their sum. The Map is clearly helpful for anything more than one lookup. As
expected, it scales linearly rather than quadratically.

5 Context and Status

The OCL tooling must perform OCL expression analyses to use the foregoing
NewCollection capabilities effectively

– Identify mutable collections - use alternative mutable operation
– Identify single/multiple use collections - configure shared laziness
– Identify content selects - configure lookup tables

However since OCL by itself is useless, OCL tooling cannot know whether or
how to optimize. It is only when OCL is embedded in a larger application that
provides the models and the related OCL expressions that OCL becomes useful.

For the simplest OCL application in which an interactive OCL expression is
evaluated with respect to a model, the costs of the model and expression analyses
may easily outweigh the benefits. No optimization may well give the snappiest
interactive response.

For a more complex OCL application such as the OCL definition of model
constraints, operations and properties supported by OCLinEcore, Eclipse OCL
provides a code generator [3] that embeds the Java for the OCL within the Java
for the Ecore model.

The code generator performs a variety of compile-time analyses and synthe-
ses:

– Common SubExpression/Loop hoisting
– Constant Folding
– Inlining
– Dispatch tables

The code generator also prepares tables and structures that cannot be fully
analyzed until the actual run-time models are available:

– Run-Time Type Information (e.g. oclIsKindOf support)
– Run-Time Navigability Information (unnavigable opposites)
– Run-Time Instances Information (allInstances)

Adding a few additional activities is structurally easy, and only a minor compile-
time degradation. The results presented earlier use a manual emulation of what
the automated analysis and synthesis should achieve 2.
2 Unifying the four concrete eager Collection types by a single lazy replacement is an

API breakage that requires Eclipse OCL to make a major version number change.
The code for lazy evaluations is therefore only available on the ewillink/509670
branch in the Eclipse OCL GIT repository.



354 E. D. Willink

For OCL-based applications such as QVTc or QVTr [9], the Eclipse OCL
code generator has been extended and appears to provide a twenty-fold speed-
up compared to less optimized interpreted execution [4]. A smaller speed-up is to
be expected for intensive Collection computations where most of the execution
occurs in shared run-time support such as Set::intersection().

6 Related Work

Lack of determinism in Model-to-Model transformation tools has been a regular
irritation. e.g. https://bugs.eclipse.org/bugs/show bug.cgi?id=358814.

Gogolla and Hilken [1] identify the lack of determinism for OCL collection
conversions and suggested that certain combinations should be deterministic so
that the following is true:

SET->asBag()->asSequence() = SET->asSequence()

In this paper we make OCL collections fully deterministic and so all the sug-
gested combinations are deterministic. The only open question is whether the
deterministic order is unknown. If known, two different OCL implementations
should yield the same deterministic result.

Lazy OCL evaluation is used by Tisi et al. [2] to support infinite collections.
The authors consider their work as a variant semantics for OCL. Our alternative
reading of the OCL specification allows infinite collections to be supported by
regular OCL tooling provided eager operations such as Collection::size()
are avoided. The default Bag-aware iteration provided by the NewCollection is
incompatible with lazy Bags, however an alternative but less efficient approach
could remedy this limitation.

Discomfort with the prevailing state of the art highlighted by these papers
inspired the solution provided in this paper. The unified Collection implemen-
tation type is new. The deterministic Collection type is new. ‘Lazy’ OCL is not
new, but the OCL expression analysis to exploit the lazy unified Collection type
is new.

7 Conclusions

We have introduced a new underlying representation for a Collection implemen-
tation that unifies all four types and eliminates redundant conversion costs.

The new representation is deterministic allowing OCL and OCL-based model-
to-model transformation tools to be deterministic too.

We have distinguished between program and machine failures so that the
new representation can provide effective lazy evaluation capabilities.

We have used lazy evaluation to significantly reduce memory costs and to
avoid redundant computations by allowing favorable algorithms to terminate
prematurely.

We have linearized some quadratic costs by using mutable collections and a
content cache for select().

https://bugs.eclipse.org/bugs/show_bug.cgi?id=358814
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Abstract. Model Driven Engineering (MDE) is an important software
development paradigm. Within this paradigm, models and constraints
are essential components for expressing specifications of a software arte-
fact. Object Constraint Language (OCL), a specification language that
allows users to freely express constraints over different model features.
However, one major issue is that the lack of OCL benchmarks makes
difficult to evaluate existing and newly created OCL tools. In this paper,
we present our initial idea about automatic OCL benchmark generation.
The purpose of this paper is to show a developing idea rather than pre-
senting a more formal and complete approach. Our idea is to use an OCL
metamodel to sketch abstract syntax trees for OCL expressions, and solve
generated typing constraints to produce the concrete OCL expressions.
We illustrate this idea by using an example, discuss our work-in-progress
and outline challenges to be tackled in the future.

1 Introduction and Related Work

Object Constraint Language (OCL), as a specification language in Model Driven
Engineering (MDE), is formally used for writing rules that are not expressible
by using models [1]. It plays a central role in many model-based engineering
domains such as language engineering, model transformation and business pro-
cess modelling. One particular example is ATL, a model transformation language
that is built on top of OCL and it allows users to specify precise transformation
rules for a set of model features. On the other hand, users can use OCL for
different purposes including writing constraints/invariants for specific entities,
specifying pre/post conditions over operations or methods and running queries
over a set of features.

Recently, many approaches and techniques have been proposed for analysing
or verifying models annotated with OCL [2–13]. These approaches either pro-
vide comprehensive case studies or tool support [6,14–16] for analysing OCL
constraints. However, a major issue is the lack of OCL benchmark. This is dif-
ficult for users to evaluate or choose suitable OCL tools for their own projects.
This issue has recently been addressed by Gogolla and Cabot [17,18]. Forming
a collection of OCL benchmarks is necessary for OCL communities. Typically,
there are two ways of forming such collections: (1) Extensively collecting exist-
ing models that are annotated with OCL constraints from different locations
c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 356–364, 2018.
https://doi.org/10.1007/978-3-319-74730-9_31
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such as code repositories and modelling zoos [32]. (2) Automatically generating
a collection of OCL constraints with respect to user’s requirements. For example,
users may be interested in evaluating scalability of their own tools. Thus, they
need a large number of OCL expressions. Further, users may also focus on eval-
uating a particular aspect of a tool such as conflict detection. In this scenario,
it would be very useful to automatically generate a large number of conflicted
OCL expressions.

In this paper, we propose an idea of automatic OCL benchmark generation.
We consider this idea as a complement to the idea of forming a benchmark via
manually collecting existing models annotated with OCL. By exploiting this idea,
users could create customised benchmarks to accommodate their own purposes
such as generating property-specific OCL expressions.

2 The Proposed Idea

Our idea for automatic generating OCL benchmark is visualised in Fig. 1. Given
a number of OCL constraints to be generated, users first define the properties
for each OCL constraint. For example, a property call with a logic operator
over an attribute. Here, we consider these properties are described in a standard
OCL metamodel [1]. Second, we use a tree generator to generate the shape of
an abstract syntax tree (AST) for each OCL constraint. This tree generator
consults both the OCL metamodel and OCL concrete syntax to produce the
ideal size of an AST, and generates a set of typing constraints for each AST.
These constraints restrict possible types on each node in an AST. We then use
an SMT solver to solve these constraints to derive a precise type for each node.
Finally, we traverse the AST and instantiate each node with a concrete value.
To form a OCL benchmark, we repeat these steps until the number of OCL
constraints a user asked for is met.

Fig. 1. The overview of an idea for generating a OCL benchmark.

2.1 An Example

In this section, we describe a scenario to illustrate our idea of automatic OCL
benchmark generation. This scenario is based on our recent experience in eval-
uating a newly created OCL tool [19].



358 H. Wu

Figure 2 shows a UML class diagram that captures a relationship between
a doctor and accident & emergency department in a hospital. Now consider a
scenario where a user has already designed a tool for verifying OCL constraints,
and would like to evaluate the performance and scalability of this tool on the
OCL logical expressions with the model shown in Fig. 2. In this case, existing
collected OCL examples such as those are in [17,18] are no longer suitable for this
scenario since they use different models and contain less number of constraints.
Typically, measuring the performance and scalability of a tool involves running
against a large number of OCL constraints. Further, this user requires a specific
criteria that models must contain a large number of expressions using logical
operators. Therefore, it would be very useful to generate a customised OCL
benchmark for this specific scenario.

Fig. 2. A UML class diagram that represents a relationship between a doctor and
Accident & Emergency department in a hospital.

To generate OCL logical expressions for this model, we first allow users to
specify a type for each OCL constraint to be generated. To ensure the chosen
types are valid, we use the standard OCL metamodel as a reference. For example,
a user may select a property constraint for id attribute defined in the Staff class.
The property call of an OCL constraint corresponds to the PropertyCallExp
in the OCL metamodel that is shown in Fig. 3. Note that a user may select the
same constraint type for multiple model features. For the reason of simplicity, we
assume that users only choose a constraint type involving a single model feature.

Fig. 3. A part of an OCL metamodel representing the relationship between two classes:
PropertyCallExp and Property.

Once the type of an OCL constraint has been fixed, we then use a tree
generator to sketch the shape of an abstract syntax tree based on consulting
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the OCL concrete syntax. At this stage, users may specify a particular type
expression and tree size. For example, a user may select a binary expression
for a property constraint over the attribute id. The tree generator then tries
to generate a tree that has the specified size. However, the size may vary and
depends on OCL concrete syntax. For example, Fig. 4 shows an example of a
generated abstract syntax tree for a binary expression. This tree has a size of 9,
the root R produces two other binary expressions: n1 and n2.

Fig. 4. An abstract syntax tree for a binary expression.

Now, we have the shape of an AST and the goal here is to work out correct
types. More importantly, we need to ensure the type information preserved in an
AST is consistent. For example, two boolean expressions cannot be connected by
an arithmetic operator such as + and −. In order to work out type information
for each node, we generate a set of typing constraints for an AST and solve these
constraints by using an SMT solver. To illustrate these typing constraints, we
use Fig. 4 as an example.

Assume the AST in Fig. 4 represents a binary expression that captures an
OCL property constraint for the attribute id in the class Doctor from Fig. 2.
Since this tree represents a binary expression, the root R must be a binary oper-
ator such as > or and. Node n1 and n2 could be another two OCL expressions
containing two children nodes respectively. One of the possible kinds of expres-
sions is that n1 and n2 are two binary expressions as well. For the reason of
simplicity, let us assume that this is the case. If n1 is a binary expression over
id, then either n3 or n4 must be the attribute id1. Similarly, this is the same for
n5 and n6.

Thus, we now can generate the following typing constraints for the AST in
Fig. 4.

(R ∈ OPl) ∧ (n1 ∈ OPc) ∧ (n2 ∈ OPc) ∧(
T (n3) = INT

) ⊕ (
T (n3) = INT LITERAL

) ∧(
T (n4) = INT

) ⊕ (
T (n4) = INT LITERAL

) ∧(
T (n5) = INT

) ⊕ (
T (n5) = INT LITERAL

) ∧(
T (n6) = INT

) ⊕ (
T (n6) = INT LITERAL

) ∧
Here, T is a function that returns a particular OCL type. Sets OPl and OPc

represent all possible binary operators. For the sub-tree that contains nodes n3
1 In a more complex scenario, either n3 or n4 could also be an integer or an attribute.
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and n4, exactly one of the nodes has an INT type. This is because the attribute
id is an integer type. Since we consider a scenario that a constraint over a single
attribute, the other node must be an integer literal (INT LITERAL) type2.
Since each OCL constraint is a boolean expression and the tree represents a
binary expression, R must be a logical operator. This implies that nodes n1 and
n2 must be the operators that apply to two integer types and return a boolean
type. For example, comparison operators: > and <. Hence, we now can define
the following operators for OPl and OPc.

OPl = {and, or, xor, implies}
OPc = {>,>=, <,<=, <>,=}
To generate constraints for OPl and OPc, we use an integer variable to encode

each operator and constrain this integer vairable to cover all possibilities. We
then use an SMT solver to solve generated typing constraints and interpret the
successful assignment for each node in the AST [20]. For example, Fig. 5(a) shows
an example of solved type constraints for the AST in Fig. 4.

Finally, we instantiate an AST with concrete values. Currently, we use a
random value generation for each OCL literal type string, int and boolean. In
this example, we use attribute id for each INT and randomly choose two integers
for both INT LITERAL. The final resulting OCL constraint for the attribute
id in the class Doctor is shown in Fig. 5(b).

Fig. 5. (a) An example of solved typing constraints. (b) An abstract syntax tree with
concrete values.

3 Work in Progress

We have implemented this idea into a prototype tool: OCLGen. We use OCLGen
in our most recent work for generating a customised OCL benchmark to evaluate
a technique for finding achievable features and OCL constraint conflicts [19,31].
OCLGen uses the examples presented by Gogolla and Cabot as candidate models
and further generates a much larger number OCL constraints based on the calcu-
lated configuration [17]. The configuration contains a set of different parameters
including number of the quantifiers, logical operators and navigations. These

2 In a multiple attributes scenario, the node could be either an integer literal or another
integer type attribute.
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generated OCL constraints cover a variety of features such as constraints over
multiple inheritances, the nested quantified OCL expressions and random con-
straint conflicts. At the moment, OCLGen is able to handle the generation of
simple binary and quantified OCL expressions containing arithmetic, navigation
and logical operators.3

4 Challenges and Future Work

Though we have a working prototype for automatically generating OCL bench-
marks, there are quite a few much more challenging problems remain.

1. Choosing/Designing an appropriate domain-specific language for describing
benchmarks. Formally, users would be able to use a well-defined language
to describe the kinds of benchmarks to be generated. For example, allowing
users to quantify the number of operators in an OCL expression or specify
the type of constraints to be generated such as navigations. Recently, a large
number of OCL analysis and verification tools have been developed [6,16,21,
22]. However, not many of them evaluated their tools on a large number of
inconsistent OCL constraints. The challenge here is that this language not
only allows users to specify valid number of OCL constraints to be generated
but also constraints cause inconsistencies. The generated benchmarks thus
can be used for the purpose of evaluating the soundness of an OCL analysis
tool.

2. Measuring the generated computational complexity of OCL benchmarks using
a set of metrics. Users may use different or the same OCL benchmarks for
evaluating existing, or their own OCL tools for different purposes. In this
context, a set of suitable metrics for a benchmark is necessary. Those metrics
can be used as a standard way of measuring the computational complexity
of an OCL benchmark so that researchers and users in the community could
have a clear idea of what tools are capable of. Even if the evaluation is not
performed on the same benchmark [23]. For example, the metrics may include
the measurement of the number of OCL data types, the maximum/minimum
(AST) size of generated OCL expressions, the depths of quantifiers, etc. Fur-
ther, a much more challenging problem here is that to automatically generate
a benchmark meeting those metrics so that users can use it for focusing on a
particular aspect of an evaluation.

3. Generating OCL benchmarks efficiently and effectively. Typically, the genera-
tion process should be completed within a reasonable time frame. As it can be
seen from the example in Sect. 2.1, the shape of an AST and its type informa-
tion can be naturally and formally tackled by constraints. The properties of
an OCL expression such as the number of quantifiers can also be expressed as
SAT/SMT constraints. The use of constraint solvers (SAT/SMT) have been
proven to be successful in many domains [7,24–27]. However, one problem

3 The fully generated benchmark is available at https://github.com/classicwuhao/
maxuse/tree/master/maxuse examples/benchmark.

https://github.com/classicwuhao/maxuse/tree/master/maxuse_examples/benchmark
https://github.com/classicwuhao/maxuse/tree/master/maxuse_examples/benchmark
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of those solvers is that they usually do not scale very well. Based on our
recent experience, we discover that sometimes those solvers may lose accu-
racy when the problem size is too big [19]. This is probably caused by the
heuristic algorithms used within solvers. For this reason, the predication of
how those solvers’ will performance on a particular problem could be helpful
to tell users what to expect [28]. Additionally, a benchmark formed by a mix-
ture of manually created examples with generated ones could be a practical
way for determining where a numerous number of OCL constraints needed.

In this paper, we have presented our initial idea of automatically generating
OCL benchmark by producing skeletons of OCL abstract syntax trees based on
an OCL metamodel and solving generated typing constraints for each AST. The
experience of using our prototype tool OCLGen is the very first step towards
proposing a complete framework for automatic OCL benchmark generation.

In the long term, we plan to tackle the above challenges individually and
continue extending our work in OCLGen. This involves investigating the design
of a domain-specific language for generating metrics-oriented OCL benchmarks.
Though we have done preliminary work on generating graph-oriented instances,
OCL constraint generation is much more challenging since we need to take many
aspects into account such as tree shapes and typing constraints [29,30]. Further,
we will also enhance our tree generator to generate more complex structures
such as queries over a collection data type. Our ultimate goal is to solve these
challenges listed above and build a framework for automatically generating cus-
tomised OCL benchmarks that can be used for evaluating OCL analysis and
verification tools to accommodate different user requirements.
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Abstract. In this paper we present the SICOMORo-CM project. Its
main aim is to advance the state of the art in the development of reli-
able and trustworthy systems by combining formal and model-based
approaches. The project started on October 1st, 2014 and will last four
years. The project consortium is integrated by five research groups based
in Madrid (Spain) and it has been funded by the Regional Government
of Madrid and the European Social Fund of the European Commission
with a total of 635.088,65e.

1 Introduction

The main objective of SICOMORo-CM (Spanish acronym for Development of
Trustworthy Systems via Models and Advanced Tools) consists in introducing
methodologies, supported by tools, that allow the development of trustworthy
and high quality software using a rigorous process that covers all its develop-
ment phases. Therefore, SICOMORo-CM goes beyond partial steps that focus
on isolated phases with the risk of wasting the results if there is no integrated
framework for software development. SICOMORo-CM offers a joint scientific
program organized into 9 scientific-technological objectives. These objectives
include work focused on every phase of the software development cycle (mod-
elling, model verification, validation, and system verification); work in transver-
sal lines that require all phases (in particular, we highlight the design of the

Research partially supported by the Comunidad de Madrid project desarrollo de
SIstemas COnfiables mediante MOdelos y herRamientas avanzadas SICOMORo-CM
(S2013/ICE-3006). The project web site is http://sicomoro-cm.es/.

c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 367–374, 2018.
https://doi.org/10.1007/978-3-319-74730-9_32

http://sicomoro-cm.es/
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SICOMORo-CM workflow and the implementation of a virtual colaboratory as
our main expected results); and work, in cooperation with 9 partner compa-
nies, on the application of the developed methodologies and tools in industrial
environments (with emphasis in transportation, automotive and cloud systems).

SICOMORo-CM is a program of high relevance since the methodology and
tools developed in the project will allow software to be delivered in a more
effective, efficient, and reliable manner than today, accelerating the development
cycle and lowering the operational costs. This has the potential to significantly
improve the competitiveness of companies using our developed technologies. In
particular, it will be especially relevant for SICOMORo-CM industrial partners.
It is a priority of SICOMORo-CM to show the applicability of the methodologies
developed by its use, in cooperation with the industrial partners, both in the
development of software systems for major industries (e.g. transportation and
automotive industry) and in the definition of service and modelling operations,
and of cloud systems. We also expect that SICOMORo-CM will have a relevant
impact in academia since we propose an ambitious reach-out and dissemination
program of the results, that comprises publications and presentations in the
most relevant international events and the organization of summer schools and
specialized workshops.

The SICOMORo-CM program brings together leading national research
groups in the areas of formal modelling and analysis of complex software systems.
The principal investigators of the five academic groups that form SICOMORo-
CM consortium, in spite of their relative youth have a broad expertise in research,
with very relevant publications and remarkable experience in project manage-
ment, both at national and international levels. These groups work on different
but complementary research areas, providing an interdisciplinary background to
this challenging research agenda. Furthermore, the project’s interdisciplinarity
is reflected in the application fields of the partner companies, which tackle diver-
gent areas of software development, like rail signaling systems, and infrastructure
security and protection. Finally, it is worth mentioning that only a program like
SICOMORo-CM gathers under the same umbrella groups that work in comple-
mentary areas but with a common objective: creating high quality software that
can be more useful to society.

2 Consortium of the Project

SICOMORo-CM is being implemented by five research groups located in the
Madrid Region (Spain). Next, we briefly describe the main activities of each
research group participating in the consortium.

The UCM-TER Testing and Performance Evaluation research group
at Universidad Complutense Madrid (http://antares.sip.ucm.es/testing/) was
founded by Manuel Núñez, Coordinator of the SICOMORo-CM project. The
group has 17 members, with a good balance between senior researchers, fresh
doctors and doctoral students. Although an important part of the work of the
group concentrates on the Mathematical Foundations of Computer Science, the

http://antares.sip.ucm.es/testing/
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applicability of the results is also a priority, with an important focus on the
development of tools to support the theory.

The UAM-miso Modelling and Software Engineering Research Group at
the Universidad Autónoma de Madrid (http://miso.es) was founded by Juan de
Lara in 2013. Its current members include 3 professors, 4 PhD students, and
3 research associates. The main focus of the group is on the development of
methods and tools for Model-Driven Engineering (MDE) and Domain-Specific
Languages (DSLs).

The COSTA research group (http://costa.ls.fi.upm.es) is split between Uni-
versidad Complutense de Madrid (UCM-COSTA) and Universidad Politécnica
de Madrid (UPM-COSTA). UCM-COSTA has 9 members, spanning from well-
known experienced researchers to students. Elvira Albert is the co-founder and
coordinator of the group. Group members have their Master and PhD degrees
in Mathematics or Computer Science. The main focus of the group from its
beginning has been to bring to practice theoretical results in program analysis.
This has been obtained by developing a number of techniques with the goal of
applying them to large-scale problems, and implement tools working on state-
of-the-art programming languages and systems.

The UPM-COSTA research group is an emerging research group coordi-
nated by Damiano Zanardini. Currently, this group has 3 members, two of them
being staff researchers with a PhD Degree in Computer Science. Apart from the
research lines shared with the UCM part of the COSTA group, research inter-
est has been devoted to analysis of heap data structures (e.g. reachability and
cyclicity) in Java and termination analysis of multithreaded Java.

The URJC-Kybele Service Science, Management and Engineering and
Software Engineering Research Group at Universidad Rey Juan Carlos in Madrid
(http://www.kybele.es/) was founded by Esperanza Marcos in 1998. The group
has now 14 researchers (11 of them doctors) who collaborate also in Kybele
Consulting, the group’s spin-off. Modelling has been one of the main areas of
interest for Kybele from its inception, even before the advent of Model-Driven
Engineering. In fact, the most relevant projects run by the group since 1999 to
date have been related with the provision of methods, tools and techniques based
on models for different engineering purposes, like the development of information
systems or the evolution of services. Indeed, Kybele was one of the first Span-
ish groups working in the area of service science management and engineering,
which has become later the main area of interest of the group.

3 Objectives of the Project and Current Achievements

The project is structured around 9 objectives, which we briefly describe next,
summarizing the results obtained so far.

Objective 1. Executable and trustworthy models. UAM-miso.
A first objective is to be able to specify DSLs (both syntax and semantics)
in a cost-effective way, with the possibility of analysing the DSL semantics.

http://miso.es
http://costa.ls.fi.upm.es
http://www.kybele.es/
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In the project, we consider both denotational and operational semantics. The
former are specified using (model-to-model) transformations into a semantic
domain, while the latter are specified using in-place model transformations.
For this purpose, we are currently investigating processes to facilitate the cre-
ation of (graphical) DSLs. These are based on deriving the DSL concrete and
abstract syntax based on examples [20], and include techniques to evaluate
the effectiveness of the concrete syntax [15]. We have developed reusability
mechanisms for model-to-model transformations and in-place transformations
so that we can map families of DSLs (e.g., workflow languages) into semantic
domains (Petri nets) [12,29], or reuse in-place model transformations describ-
ing the execution semantics of the DSL [11]. This will allow the construction
of libraries of reusable DSL semantics.

Objective 2. Verification of models and transformations. UPM-COSTA.
In this objective, we will analyse properties of both models and transforma-
tions, including model-to-model, model-to-text and in-place transformations.
We will consider a case study in the verification of railway controllers pro-
vided by an industry partner.
Regarding model-to-model transformations, we are developing several tech-
niques, for example based on static analysis of transformation definitions
(using ATL) [10] and traceability analysis [18]. Regarding in-place model
transformations, we are developing techniques based on backwards reason-
ing [8] to verify whether different model executions can violate given proper-
ties. Regarding models, we are working on analysing constraints [16], deriving
techniques for slicing [22], and developing DSLs for an integral validation and
verification of meta-models [21].

Objective 3. Transformations as a service. UAM-miso.
Based on our previous experience [9], our goal is to create a system able to
optimize and execute transformations-as-a-service in the cloud, and its use
in advanced scenarios (e.g., distributed and streaming transformations). We
foresee integrating this system with the virtual collaborative environment
of Objective 6, and the use of the modelling and verification techniques for
cloud systems of Objective 8. We have currently developed a DSL to describe
and generate infrastructure for MDE services [5], and we are collaborating
with external groups to define transformation services for verification [26] and
distributed transformations [3].

Objective 4. Verification and validation of systems. UCM-COSTA.
While the previous objectives dealt with models, the project also considers
the verification of systems. This includes the verification of complex prop-
erties on sequential systems and concurrent programs, the development of
scalable techniques for systems validation and the validation of concurrent
programs. In particular, we are developing new techniques and tools to rea-
son automatically on the behaviour of concurrent systems and understand
all potential task interleavings that may arise along the execution. This is
essential to prove both liveness and safety properties of the concurrent sys-
tems, like absence of deadlocks and absence of data races, or the termination
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of all loops in the program. Among the contributions of the project to this
objective we can mention [1,2,30].

Objective 5. Model-Based systems validation. UCM-TER.
To complement formal verification techniques, the project considers valida-
tion based on formal testing. This includes the definition of implementation
relations, the design of algorithms for automatic generation of test cases and
the proposal of passive testing techniques.
In the medium term, we will have new implementation relations and a tool
to ensure its ease of use. At the end of the project, we expect to achieve all
objectives. In particular, we will derive a full set of implementation relations,
test case selection criteria, a formal methodology to perform passive test-
ing for synchronous and asynchronous systems and tools that support these
frameworks. We have already contributed to a state-of-the-art paper on for-
mal testing [6] and developed new techniques for passive testing of systems
with time information [23] and asynchronous communications [17].

Objective 6. Virtual Collaborative Environment. UCM-COSTA.
As the project aims at producing practical tools that can be used in combi-
nation along the development process, an objective is to develop supporting
infrastructure for the flexible combination of tools, and their cloud-based exe-
cution. For this purpose, we have describe generic interfaces for tool integra-
tion and developed a prototype [13]. In the rest of the project, this prototype
will be used to integrate the developed tools.

Objective 7. Modelling Service Operations. URJC-Kybele.
This objective has started in the second phase of the project. In order to
support the development and analysis of service-oriented applications, we are
currently developing a tool to support families of notations to model service
operations, and we will support their formal analysis.
The first release of the tool has been delivered and can be downloaded at
http://kybele.es/innovaserv/. It supports several notations for business mod-
elling like Canvas [25], e3value [14], Service Blueprint [4] and Process Chain
Network [28]. Since the tool has just been delivered only preliminary results
are available [15] but some publications have already been submitted for con-
sideration to high-impact conferences.

Objective 8. Cloud systems: model, verification and validation. UCM-
TER.
We will apply the developed tools and techniques to model and analyse cloud
systems. In particular, we have proposed specification techniques based on
multi-level modelling [27], and we are developing an environment for the
model-based analysis of cloud systems, including both expert rules and simu-
lation for performance prediction [7]. We are also developing a methodology
based on metamorphic testing for the validation of cloud systems [24].

Objective 9. Dissemination and exploitation. UCM-TER.
We are disseminating the project results primarily in academic conferences
and journals, but we aim at disseminate and evaluate results in the software
development community. For this purpose, during the second year we orga-
nized an “industry day” with the industrial partners and invited software

http://kybele.es/innovaserv/


372 E. Albert et al.

companies in the Madrid region, showcasing the different developed tools.
We have also organized seminars around the project topics.

4 SICOMORO-CM: The Road Ahead

While we have obtained promising scientific and technical results – which have
been published in international journal and conferences – there are still different
remaining challenges, which will be tackled until the end of the project.

We expect to produce a methodology for the systematic and formal devel-
opment of all phases of the software-development process. In addition to the
underlying theoretical framework, we will provide tools that allow a smooth
transition between the different phases of the development and the technolo-
gies used in them. While several individual tools have been developed, we aim
at integrating them, using the virtual collaborative environment described in
Objective 6. In particular, the environment will serve to cloudify the different
tools and deliver their functionality adopting a software-as-a-service approach.
This will serve to enable the use of MDE techniques and future integration with
other services and tools. Techniques for the efficient and distributed execution of
model transformations, as well as the development of streaming transformation
techniques will be developed as well.

Regarding Objective 7, we will work on the integration of DSLs to support
the modelling of service operations, bundled into a (collaborative and virtual)
modelling environment, supporting formal verification of properties, value anal-
ysis and processes, as well as import/export operations of service operations
models from/to other process modelling notations.

Another project goal is to develop verification and validation techniques
applicable to several domains – like cloud, services, concurrent applications – to
ensure that the verified systems satisfy some quality guarantees (e.g., deadlock-
freeness, termination of all processes, existence of upper-bounds on resource
consumption, etc.). We will continue working on techniques and tools in this
direction. In particular, we will provide an MDE framework to support the ver-
ification of both models and model transformations. The framework is being
developed as an open-source framework atop of Eclipse/EMF. An official Eclipse
project proposal will be elaborated around the framework in order to enhance
its visibility. This will contribute also to foster adoption by the industry due to
the popularity of Eclipse among professional developers.

SICOMORo-CM is aimed to attract interested companies and organizations
in order to enable technology transfer. The adoption of the techniques and tools
delivered by the project is expected to have a verifiable impact in terms of
improving the quality of the software developed and production cost-cutting.
In-depth studies with program partners on the benefits provided by the method-
ologies and tools developed in SICOMORo-CM are also planned.
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5 References to Related Projects

There are several projects, both at the national and international level, related
to SICOMORo-CM. Next, we mention two of the FP7 European projects where
members of SICOMORo-CM took part. Both projects have recently finished and
some of their results have been used as inputs for SICOMORo-CM. MONDO [19]
(http://www.mondo-project.org/) (Scalable Modelling and Model Management
on the Cloud) focused on a very relevant research line of SICOMORo-CM,
modelling, and on techniques to make modelling scalable. Instead, our focus in
SICOMORo-CM is more on developing trustworthy systems. Envisage (http://
www.envisage-project.eu/) (Engineering Virtualized Services) focused on apply-
ing formal approaches to services, having in mind that virtualized services can
be used in the cloud. Again, SICOMORo-CM shares research interest with this
project, in particular concerning services and the cloud.
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Varró, D., Sunyé, G., Tisi, M.: MONDO: scalable modelling and model manage-
ment on the cloud. In: STAF Projects Showcase, CEUR Workshop Proceedings,
vol. 1400, pp. 44–53. CEUR-WS.org (2015)
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Abstract. Deciding if an OSS project meets the required standards for
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There is too much information to process manually and it is common
that uninformed decisions have to be made with detrimental effects.
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CROSSMINER aims to remedy this by automatically extracting the
required knowledge and injecting it into the developers’ Integrated Devel-
opment Environments (IDE), at the time they need it to make design
decisions. This allows them to reduce their effort in knowledge acquisi-
tion and to increase the quality of their code. CROSSMINER uniquely
combines advanced software project analyses with online IDE monitor-
ing. Developers will be monitored to infer which information is timely,
based on readily available knowledge stored earlier by a set of advanced
offline deep analyses of related OSS projects.

1 Project Data

– Acronym: CROSSMINER (http://www.crossminer.org)
– Title: Developer-Centric Knowledge Mining from Large Open-Source Soft-

ware Repositories
– Partners: The Open Group—Project Coordinator, University of York, Uni-

versity of L’Aquila—Technical Coordinator, Edge Hill University, Centrum
Wiskunde & Informatica, Athens University of Economics and Business,
UNPARALLEL, Softeam, Frontendart, Bitergia, OW2 consortium, Eclipse
Foundation Europe GmbH

– Start date: 1 January 2017, Duration: 36 months.

2 Introduction

Open-source software (OSS) is computer software distributed with a license that
allows access to its source code, free redistribution, the creation of derived works,
and unrestricted use [5]. Unlike commercial software which is typically developed
within the context of a particular organisation with a well-established business
plan and commitment to the maintenance, documentation and support of the
software, OSS is very often developed in a public, collaborative, and loosely-
coordinated manner. This has several implications to the level of quality of OSS
software as well as to the level of support that OSS communities provide to users
of the software they produce. Consequently, developing new software systems by
reusing existing open source components raises challenges related to at least the
following activities [13]: (i) searching for candidate components, (ii) evaluating
a set of retrieved candidate components to find the most suitable one, and (iii)
adapting the selected components to fit the specific requirements.

Dependence on OSS projects can either be a blessing or a curse. The ability
to accurately assess the risks and benefits of adopting particular OSS projects
as components is essential to the software development community at large.
The EU OSSMETER FP7 [4] project developed a distributed and horizontally-
scalable platform for incremental analysis of multiple dimensions of open-source
software projects including their source code, communication channels, and bug
tracking systems. The aim of CROSSMINER is to extend the outcomes of the

http://www.crossminer.org
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OSSMETER project and to deliver an integrated open-source platform that
will support the development of complex software systems by (1) enabling mon-
itoring, in-depth analysis and evidence-based selection of open source compo-
nents, and (2) facilitating knowledge extraction from large open-source software
repositories.

The paper is structured as follows: Sect. 3 gives an overview of the CROSS-
MINER project. Section 4 outlines the planned evaluation process and concludes
the paper.

3 The CROSSMINER Approach

Figure 1 shows a high-level overview of the CROSSMINER approach. It shows
two major use cases and two minor user channels which are implemented using
two architectural stages: online and offline. We describe the two major use cases
here in some detail to clarify what CROSSMINER entails as a whole.

In step 1 the tool engineers of Use case II use a domain-specific (graphical)
editor in their IDE to compose new workflows of data sources and computa-
tions. This functionality is commonly available in big data analytics suites; here
we specialise this functionality for typical OSS project analysis tasks. Mining
and analysis tools will run incrementally in step 2 , and possibly on a remote
server, to extract relevant information from a pre-configured set of projects and
a list of projects configured by the software engineers of Use case I. The software
engineers of Use case I have a wizard to configure CROSSMINER with a rich set
of requirements (step 3 ), which includes not only registering a set of projects of
interest but also expressing preferences regarding the algorithms and processes
used to project the mined information into the IDE. This configuration is an
important step to make meaningful assessment possible later, since it makes
the context and preferences of the engineer explicit to the platform in terms
of technological, quality, configuration, and licensing aspects. Finally, step 4 is
when the acquired information is put to action, actively supporting the engi-
neers via the IDE, managers via the web site, and the open-source community
via GitHub integration. Typical examples of IDE services, which may be intro-
duced or enhanced using this architecture are: code assist, proposing relevant
code snippets, ranked by relevance and quality and informed by the earlier con-
figuration; infer/Fix project setup to retrieve a list of ranked relevant reusable
components, then set up relevant projects in the IDE and configure dependent
projects to use them; monitoring of development activities of the engineers who
will be notified of relevant facts pertaining to their current task context.

In the following the scientific and technological objectives to be achieved for
realizing the approach shown in Fig. 1 are summarized.

3.1 Development of Source Code Analysis Tools

State of the art: Source code analysis has its firm fundaments in compiler (front-
end) construction [2] and reverse engineering [20]. Based on this theory and
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Fig. 1. CROSSMINER approach at a glance

technology, to extract meaningful and accurate metrics, we developed reusable
front-ends generating informative reusable intermediate models with the OSS-
METER project (for the Java and PHP languages). Recently, examples of source
code analyses have been scaled up to acquire information over large source
code and software install bases [8,15]. However, mining information from source
code at scale, made available in an integrated platform, including the acquisi-
tion, extraction, and querying of source code from groups of arbitrarily selected
projects is just beyond the current state-of-the-art. Especially when the platform
should cater for bespoke analyses based on the intermediate models there exists
few related work in this regard [8].

Innovation: Mining source code artefacts to actively support decision making
by software engineers inside their IDE requires scaling the technology for source
code analysis to a level where we can mine in much larger corpora on the one
hand, and on the other hand can enable much more context-specific (bespoke)
analyses. At the same time the non-functional requirement of scalability must
not imply a lower expected level of accuracy of the (bespoke) analyses. To scope
this challenge in balancing trade-offs, and making it manageable for the current
project we reason back from example decisions and the information required
to make them. The main focus will be on dependency management : to help
software engineers which (parts of) open-source components to depend on and
how to manage these dependencies.

3.2 Development of Natural Language Analysis Tools

State of the art: Text mining tools to automatically extract, analyse, sum-
marise and assess information found in communication channels and bug trackers
related to OSS are valuable for supporting OSS development. Although there
is a significant amount of literature analysing code repositories and communi-
cation channels, there are only very few attempts to use these sources to help
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programmers as they program or to improve their output. For example, similar-
ity methods have been proposed to identify the most relevant Stack Overflow
discussions to the code that a developer is working on in an IDE and recom-
mend them to improve developing performance [18]. Microsoft has just released
Bing Developer Assistant for Visual Studio1, which searches GitHub repositories,
locates and presents examples of API usage relevant to the code being developed
in Visual Studio.

Innovation: In CROSSMINER we plan to provide software developers with text
analysis components integrating three innovative aspects: (i) a user-oriented
platform, allowing users to tailor analysis to their needs by synthesising compo-
nents into workflows. We will design and implement text mining components to
identify the types of bugs and discussions in communication channels associated
with an OSS project. Developers will be able to select the components of inter-
est and synthesise them into workflows. Depending on the selected components
the output will contain different information useful for the developers; (ii) we
will investigate methods for using word embeddings for representing text in the
domain of discussions about OSS; (iii) new sources, such as social media and
Stack Overflow, and the analysis of code snippets.

3.3 Development of System Configuration Analysis Tools

State of the art: The practices, principles, and tools associated with Infrastruc-
ture as Code (IaC) and the analysis of software configuration management sys-
tems are in nascent phase. Studies to explore the characteristics of configuration
code written in languages such as Puppet and Chef are scarce. Similarly, tools
to carry out analyses of system configuration code have just started to emerge.
Jiang and Adams [12] study the co-evolution of Puppet and Chef configuration
files with source, test, and build code. They analyse the software repositories
of 256 OpenStack projects and distinguish files as infrastructure, which contain
configuration code in Puppet or Chef language, production, build, and test. They
find that configuration code comes in large files, changes more frequently, and
presents tight coupling with test files. Sharma et al. [19] carry out an empirical
study of 4,621 Puppet repositories to understand the characteristics of configura-
tion code written in Puppet. Puppet Forge2 is the repository of Puppet modules
and provides an evaluation of configuration code quality through a quality score
based on three aspects: code quality score provided by Puppet-Lint3, compati-
bility with Puppet, and metadata quality. On the other hand, although empirical
studies have examined the build aspect of software configuration management
[1,3,9,16,17], the corresponding results have not yet been adopted by software
developers.

1 http://visualstudiogallery.msdn.microsoft.com/a1166718-a2d9-4a48-a5fd-504ff4ad1
b65.

2 http://forge.puppetlabs.com.
3 http://puppet-lint.com.

http://visualstudiogallery.msdn.microsoft.com/a1166718-a2d9-4a48-a5fd-504ff4ad1b65
http://visualstudiogallery.msdn.microsoft.com/a1166718-a2d9-4a48-a5fd-504ff4ad1b65
http://forge.puppetlabs.com
http://puppet-lint.com
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Innovation: CROSSMINER aims to significantly improve the state of the art in
the configuration management domain by introducing advanced analysis tech-
niques to process configuration code and other relevant artefacts. In particular,
collecting meta-data and computing various metrics is the first step towards a
comprehensive analysis. CROSSMINER aims to analyse configuration code writ-
ten in various system configuration management languages including Puppet,
Chef, and CFEngine as well as software configuration management metadata.
Such source-code analysis will provide a uniform and comprehensive set of met-
rics that could be used to reveal the characteristics of configuration management
systems. Combining metrics and metadata collected from configuration code
with the results of source-code and natural language analysis using advanced
static analysis techniques will fetch interesting insights and actionable results.
Interactive visualisation techniques will be employed to engage the users in an
effective and productive manner. Thus, suitable dashboard with DevOps-level
information will be developed to show relevant metrics and insights about the
analysed systems.

3.4 Development of Workflow-Based Knowledge Extractors

State of the art: OSS forges such as GitHub, GitLab and SourceForge and bug
tracking tools such as Bugzilla and JIRA provide REST APIs with which users
can perform queries (as well as some updates) on remote data (e.g. repository
metadata, bug reports). To protect the underlying systems from uncontrolled
data harvesting, many of these REST APIs impose key-based rate limits that
clients cannot exceed and attempts to work around them (e.g. using multiple
accounts/keys) can result to network-level blocking of the offending network
endpoints. In addition to making use of remote APIs to extract knowledge from
open-source projects, the wide adoption of distributed version control systems
(predominately Git) where the entire history of repositories can be easily cloned,
has triggered the appearance of a number of tools (e.g. Gitana [6], Gitstats4) that
can analyse locally-cloned repositories and extract and present general-purpose
metrics such as development activity over time/contributions per developer etc.
While such metrics are useful, more advanced knowledge extraction (e.g. such as
the one conducted in [14] which measures the adoption of different model-based
technologies in Github-based open-source projects) typically requires bespoke
analysis which includes the use of remote APIs, cloning and local analysis of
repositories, natural language processing, HTML scraping, regular expressions
etc.

Innovation: In CROSSMINER we envision the development of a framework that
can support the development of declarative and efficient OSS project analy-
sis workflows. Using the envisioned framework, engineers will be able to plug
together OSS data harvesting, analysis and transformation components and
define their dependencies and interactions at a high level of abstraction. The

4 http://gitstats.sourceforge.net.

http://gitstats.sourceforge.net


Developer-Centric Knowledge Mining from Large OSS Repositories 381

framework will provide built-in support for recurring concerns such as net-
work/API error recovery and data caching so that engineers can focus on the
core analysis of the workflows, thus enhancing both productivity and maintain-
ability. The framework will ship with robust built-in components for extract-
ing information from widely-used systems such as Git(Hub), GHTorrent [10],
Bugzilla, JIRA, NNTP and StackOverflow and will also provide extensibility
mechanisms through which engineers can integrate additional components. We
will also develop a set of hybrid textual/graphical editors and viewers through
which engineers will be able to define knowledge extraction workflows, and also
debug and monitor their execution at a high level of abstraction.

3.5 Development of Cross-Project Relationship Analysis Tools

State of the art: Over the last decade several platforms have been introduced
to support automated analysis of open source software. All of them provide
techniques and tools to analyse projects individually and do not mine projects
relationships that instead can give more insight about existing OSS components.
Some representative analysis platforms are OSSMETER, SQO-OSS (Alitheia
Core)5, Openhub6, Qualipso7, Flossmetrics8, and RISCOSS9. Also, many OSS
forges (e.g., SourceForge and GitHub) provide built-in measurement facilities for
the OSS projects they host.

Innovation: In CROSSMINER we envision the development of advanced tech-
niques able to investigate relationships among different open source projects
and properly organise them in a dedicated knowledge base. Beyond the typical
project dependency and conflict relationships we aim at identifying and manag-
ing additional ones e.g., license compatibility, API compatibility, etc. A general
way to represent project relationships will be devised in order to enable relevant
features including the following: (i) support for automated classification of OSS
projects and discovery of related projects based on source code, configuration
code, licensing, communication channel and bug tracking system analysis; (ii)
adoption of clustering mechanisms supporting multidimensional classification of
OSS projects; (iii) support for issuing notifications when quality indicators of
selected OSS projects fall below a user-defined level; (iv) support for suggesting
OSS projects that can be alternatively used instead of OSS components, which
have been previously selected and integrated in the software being developed.

3.6 Development of Advanced Integrated Development
Environments

State of the art: Most of the current IDEs include a wide range of features to
enhance developer productivity from various code completion and refactoring
5 http://cordis.europa.eu/project/rcn/79362 en.html.
6 http://www.openhub.net.
7 http://cordis.europa.eu/project/rcn/80465 en.html.
8 http://dl.acm.org/citation.cfm?id=1545011.1545457.
9 http://www.riscoss.eu.
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actions to style and error corrections. For Eclipse, the most notable related
plug-ins are Codetrails Connect Community Edition10 and Eclipse Code Rec-
ommenders11. These plugins learn how to use a new API from the source code
of other applications or from watching how experienced developers use it, and
share this information among team members through functions like code comple-
tion or snippet search. There are more novel approaches to extend the abilities
of modern IDEs, to enhance programmer productivity and coding quality. For
instance, in [18] authors proposed a novel approach that, given a context in
the IDE, automatically retrieves pertinent discussions from StackOverflow, and
evaluates their relevance. Another example is the Adinda approach (developed
by van Deursen et al. [7]) that re-thinks IDE features as web services to facilitate
informal inter-project communication and collaboration. Hora and Valente [11]
developed a tool that helps API comparison based on compatibility and pop-
ularity information of GitHub projects. The concept of the Change-Oriented
Programming Environment (COPE) research project12 is to monitor software
changes in real-time and provide actionable feedback to the developer through
the IDE.

Innovation: As the above examples show, there are many different ways to
give real-time suggestions to developers within their accustomed IDE. CROSS-
MINER brings a whole new dimension to the advanced IDEs because it collects,
processes and stores a huge amount of data about open source components in
a complex and cross-project data model. This enables intelligent recommenda-
tions to be provided to the developer, by going far beyond the current “code
completion-oriented” practice. Our Eclipse plug-in for CROSSMINER will be
developed primarily with the objective in mind that it improves the productivity
of developers in real-time and transparently. Furthermore, CROSSMINER will
learn from past recommendations and feedback from the developer so that even
more relevant help will be given after being in use for a certain time.

4 Evaluation and Conclusions

In this paper we provided an outline of CROSSMINER’s envisioned technical
contributions. The techniques and tools will be assessed by considering the needs
of six end-user partners (in the domains of IoT, multi-sector IT services, API co-
evolution, software analytics, software quality assurance, and OSS forges). The
full chain of retrieval, analysis and presentation of results will be implemented on
large-scale open-source forges like Eclipse and OW2 to assist users and demon-
strate the benefits of the solution. The technical outcomes of the project as well
as the evaluation results will be the subject of follow-up publications.

10 http://marketplace.eclipse.org/content/codetrails-connect-community-edition.
11 http://marketplace.eclipse.org/content/eclipse-code-recommenders.
12 http://cope.eecs.oregonstate.edu/.
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hardware products1 to the latest processes, technologies and materials. As a con-
sequence, software and hardware products have ever shorter life cycles. Existing
products are upgraded more frequently, new products with extra functionality
and features are continually developed, while the research for advancing the
state-of-the-art is never ending [5]. Illustrative examples of “high-tech” prod-
ucts from the software and hardware domains include operating systems (e.g.,
Microsoft Windows and Mac OS) and consumer-oriented electronic devices (e.g.,
mobile phones and tablets), respectively.

Despite the wide adoption of technology innovations in consumer-oriented
products, complex systems deployed in safety-critical and business-critical appli-
cation domains (e.g., defence, healthcare and avionics) are infrequently subject
to heavy changes [5]. Systems within these domains may be operational over
many decades with limited, or even no, changes during their lifetime. Even minor
design or implementation changes require to rerun all necessary verification and
assurance processes to establish that the updated system still meets its functional
and non-functional requirements, and complies with national and international
standards. This is a long and costly process that causes these systems to fall into
“technology stagnation” [19].

Due to the challenges associated with technology stagnation, complex sys-
tems within critical application domains are likely to face the problem of obsoles-
cence [18]. A product becomes obsolete when it is no longer available or produced
by its original manufacturers or suppliers [19]. Obsolescence affects both soft-
ware and hardware, and depends on the product type (software or hardware).
Bartels et al. [5] indicate that the reasons behind obsolescence can be: (1) logis-
tical, i.e., loss of ability to obtain the products necessary to develop or maintain
a system; (2) functional, i.e., updating a product due to changes in functional
and/or non-functional requirements can result in its incompatibility with other
system components; and (3) technological, i.e., end-of-support of a product due
to more technologically advanced products becoming available [5].

The consequences of obsolescence can have detrimental effects on the sustain-
ability of complex systems and should not be taken lightly. Given that safety-
critical and business-critical systems require many years of research and develop-
ment, these systems could face obsolescence problems before they become opera-
tional and always encounter obsolescence during their lifetime [18]. To illustrate
the magnitude of the problem, over 70% of the components of a surface ship
sonar system were obsolete before the system is deployed [20], while more than
$500m were spent to redesign an obsolete radar system under a US Air Force
program [5]. Also, a recent report of the UK Ministry of Defence about the
Eurofighter Typhoon project highlights that “the risk of obsolescence was exac-
erbated in the case of Typhoon, which was not operational until two decades
after the project started” [3].

National and international standards such as JSP886 Vol. 7 Part 8.13 [2]
and IEC 62402 [1] specify obsolescence management plans for reducing the risk

1 We use the term product for any hardware or software component/system developed
by a company/organisation and which is part of a larger system.
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and impact of obsolescence. For instance, proactive obsolescence management
involves taking preemptive actions before obsolescence actually occurs, e.g., by
monitoring the life cycle of selected high-risk products or by finding functionally
equivalent products from different suppliers. Reactive obsolescence management
refers to deciding an appropriate plan for minimising the cost of resolving an
obsolescence problem after it has happened, e.g., by negotiating with the supplier
to provide aftermarket support or by investigating how to redesign or modernise
the system. Strategic obsolescence management includes techniques that combine
data about the estimated lifetime of system components with business trends
and expected customer needs to calculate the sustainment costs of the system
and to derive plans for design refresh [5]. Furthermore, researchers in the area
introduced approaches for managing obsolescence and reducing the threats to the
sustainability of complex systems [18,19]. We review recent research in managing
software obsolescence in Sect. 3.

In this project, we explore reactive strategies for managing software obsoles-
cence in safety-related software for airborne systems [21]. More specifically, we
investigate the extent to which software modernisation – i.e., approaches that
involve changes to the system structure, adaptation to more advanced tech-
nologies, and functionality enhancement – can mitigate the problem of software
obsolescence and extend the life, performance and reliability of existing systems.
We adopt an experimental-based approach and use a set of demonstrators to
explore different facets of software modernisation, including reverse engineering,
program understanding, demonstration of functional equivalence of migrated
code, change in hardware platform, maintenance of performance, and preserva-
tion of Design Assurance Levels (DAL).

The remainder of the paper is structured as follows. Section 3 introduces
related work on software obsolescence including mitigation strategies for man-
aging both technical and socio-technical obsolescence. Section 4 provides an
overview of our project for supporting software modernisation and mitigating
software obsolescence, including a sketch of the demonstrators that will be used
to evaluate the research and artifacts developed during the project.

3 Software Obsolescence and Mitigation Strategies

Software obsolescence is an increasingly important problem that reduces the
ability to maintain and support complex systems, especially those deployed in
safety-critical and business-critical application domains (e.g., defence, health-
care, finance) [5]. Nevertheless, this problem is usually overlooked due to hard-
ware obsolescence. Given that in most complex systems the maintenance cost
for software and hardware is comparable, equal effort should be made to manage
software obsolescence [19].

Software becomes obsolete because (1) a vendor no longer sells (end-of-sale)
or maintains (end-of-support) a product (technological obsolescence); (ii) hard-
ware, embedding system, requirement or other software changes to the system
lead to hardware and software incompatibility (functional obsolescence); and (iii)
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the equipment used to build and test the software (e.g., hard drive, processors)
is no longer accessible or does not function properly (logistical obsolescence).
Software obsolescence might also occur due to socio-technical reasons, including
the unavailability of suitably trained personnel (e.g., lack of Ada95, Cobol or
Assembly programmers) and gradual loss of tacit knowledge about the platform
or operating environment of the software [5].

Dealing with software obsolescence using proactive or strategic management
plans includes methods that aim at reducing the risk of obsolescence. Typical
examples include using modular software architectures with low coupling, mak-
ing code more portable, and using open-source software with large user and
developer communities. Although these methods help to mitigate the footprint
of obsolete software, they are inadequate in forecasting or resolving completely
the problem. Thus, most organisations opt to handle software obsolescence in a
reactive mode.

Recent research and existing standards [1,2] propose reactive obsolescence
mitigation strategies to manage both the technical and socio-technical aspects
of software obsolescence. From a socio-technical perspective, supplier and sup-
ply chain management serves to place more risk on the supplier of COTS or
software systems (e.g., delegating responsibility to platform providers such as
Microsoft or PTC). Supplier management must go hand-in-hand with capital
upgrade plans and software strategies for the organisation, and technical strate-
gies for managing obsolescence must be “planned for” in the context of the
supplier management plan [19].

From a technical perspective, many mitigation strategies are available for
managing software obsolescence and modernising a software system [5]. Soft-
ware rehosting (i.e., wholesale migration) and systematic migration, for instance,
address the problem by migrating a software system to a new platform or devel-
opment environment all at once and in a planned way, respectively. System-
atic migration considers the software architecture and can be employed when
appropriate technology (e.g., services, precise software interfaces, well-defined
protocols) is exploited within the architecture. When rehosting or migration is
unfeasible or overly expensive, virtualisation and emulation can be used to build
virtual machines or emulators that will support the obsolete platforms (e.g.,
hardware or operating systems, libraries). Finally, redevelopment might be used
to modify the affected system components so that they function correctly with
the new hardware or software.

3.1 Obsolescence in Software Libraries and Frameworks

An increasing number of software systems is developed using publicly
available/third-party products (i.e., frameworks and libraries) [13]. Many of these
products provide robust and efficient functionalities that are available through
Application Programming Interfaces (APIs). Although the use of APIs enhances
modularity, reduces development time and increases the quality of software sys-
tems, it also reinforces the dependency of these systems on third-party soft-
ware [9].
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Since both software systems and products evolve independently, depen-
dent software systems will likely encounter obsolescence issues during their
lifetime [10]. New requirements or improved software designs lead to product
updates, and thus to API modifications, that often break compliance with depen-
dent systems. Other reasons include end-of-support of a software product and the
introduction of a competing product with improved functionality and better fea-
tures. Developers must select between the costly process of adapting a software
system to resolve these obsolescence issues versus dealing with the imminent
problems that arise from using obsolete software (e.g., bugs, security risks).

Resolving these obsolescence issues automatically is of great interest to this
project. In the following paragraphs, we provide a brief overview of related work.

API Update. This issue occurs when a system uses an outdated API (source)
and must be modified to start exercising a newer version of the same API (tar-
get). When changes between subsequent API versions are substantial (e.g., re-
design of the API’s architecture due to language or compiler updates), backward
compatibility is not guaranteed [10]. Some approaches for resolving this issue use
lexical comparison of method signatures, similarity detection between API ver-
sions, program differencing and origin analysis [7,15]. Other approaches record
API changes in the form of refactorings and then recommend these refactorings
to dependent systems to modify their code to the new API [8,11,22].

API Migration. This obsolescence issue arises when an API (source) must be
replaced by a functionally equivalent API (target). Since the source and target
APIs refer to completely different products (presumably with different architec-
tures and API designs), this is a significantly more difficult issue. The challenge,
in this case, is to transform the source code of dependent systems so that they
are compliant with the target API [4]. The prevailing approaches to resolving
this issue are shallow and deep transformation [6,16]. Shallow transformation
entails modifying directly the source code that uses the source API to use the
target API instead [4]. Deep transformation involves the generation of abstrac-
tion layers through which source code instructions that previously invoked the
source API can now delegate the work to the target API [6]. Selecting between
these approaches requires to consider development effort and maintainability as
well as functional and non-functional aspects; shallow transformation is easier
to implement but difficult to maintain, whereas deep transformation is more
expensive but also more maintainable [16].

API Mapping Inference. Identifying mapping rules between source and tar-
get APIs remains a significant research challenge both for API update and API
migration [17]. Although mapping inference between alternative APIs is tradi-
tionally a time-consuming developer-driven process [4,16], recent research pro-
poses techniques for its automation. Simple differences between source and tar-
get APIs (e.g., rename, move, delete) can be detected using API comparison
methods [8,11,22]. Another interesting technique involves mapping inference by
analysing API usage patterns from software systems that have already undergone
the adaptation [15]. Learning techniques have also been used to detect mappings
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by analysing large open source software repositories [14]. MAM [23] uses API
transformation graphs to infer API mappings between two API versions written
in different languages. For a detailed review of techniques dealing with mining
API mappings, see [17].

4 Project Overview

This project investigates how reactive strategies can mitigate software obsoles-
cence problems in safety-related software for airborne systems [21]. Although
many complex systems deployed in critical application domains have manage-
ment plans in place to mitigate the impact of hardware obsolescence, this is
hardly the case for software. For our project partner (DSTL), technological obso-
lescence problems include end-of-support of a crucial software component (which
is part of a software system) that enforces adaptation to more advanced tech-
nologies, and the need to transform parts of a software system developed in a
“legacy” programming language to a modern programming language (e.g., from
Ada to C/C++). A common, but challenging, functional obsolescence problem
of interest involves the migration of an entire software system from a legacy
hardware platform to a modern, more powerful platform.

Resolving these software obsolescence problems is typically a manual and
laborious process. In this project, we explore techniques to enable the partial
automation of reactive mitigation strategies, targeting mainly C/C++ software
systems. In particular, we propose a combination of code analysis, code-based
transformation and verification/validation techniques for the modernisation of
software systems. Figure 1 depicts an overview of the proposed approach to soft-
ware modernisation. Through analysing the source code of the software sys-
tem under consideration, we would gain insight into the architecture of the
system, including interconnections between software modules and dependencies
with external libraries and components. Furthermore, this code analysis will
provide useful information on how to best address the obsolescence issues and
re-architect the software, if needed.

Fig. 1. High-level software modernisation approach.
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Code-based transformation is based on the use of template-based program-
ming. A template describes the generic code that will be produced by a trans-
formation. Some of this generic code is static, i.e., it will be copied directly to
the output of the transformation; the rest is dynamic, in the sense that it can be
instantiated with data (in this case, from the legacy software) and then executed
to produce output code. Template-based programming thus supports modular
design and ideally easier reuse and maintenance. In this project, the overall
code-based transformation will be implemented as a chain of templates, in order
to better support future modification and maintenance and to ease verification
and validation. Sets of templates will collaborate to implement specific concerns,
e.g., message passing or space partitioning. Organising templates into sets (e.g.,
a “message passing” set) will allow for easier maintenance and verification.

Two types of transformations will be needed to support rehosting: extrac-
tion transformations (to “pull” abstract specifications from legacy code) and
text generators. The transformations will be implemented using Epsilon [12],
the rich C/C++ parsing and analysis infrastructure provided by the Eclipse
CDT project, and ANTLR/Xtext to support additional languages such as Ada
– the former for implementing the templates, the latter to extract abstract spec-
ifications from legacy code, in a form suitable for re-engineering and amenable
to application of the templates. The transformation chain will automatically
generate traceability information in a standard format (e.g., XML-based). This
will thereafter be used to help to provide evidence that would be supportive of
Software Level C. In particular, it will be used to demonstrate a partial validity
argument, i.e., that all statements and expressions in the legacy program are
transformed to statements and expressions in the retargeted program.

In addition, we aim to investigate (1) the feasibility of automatic generation
of assurance cases from both the traceability information and the reengineered
code; and (2) an outline qualification strategy for the transformation chain. The
transformation chain as a whole will be validated by executing tests on inputs
reused from the legacy system. Time permitting, the approach as a whole will be
supplemented with an overview of an analysis of configurability, i.e., what parts
of the transformation chain need to be configured in order to support additional
changes to the legacy code, or to support a different target.

Demonstrators. The research focuses on the development of prototype/proof-
of-concept demonstrators (case studies) of a software modernisation approach
using template-based programming. The intention is to build working demon-
strators iteratively and incrementally, to build up desired capability and ensure
that there is always something demonstrable to our project partner. Each demon-
strator will – at each iteration – demonstrate the application of the approach to
a subset of software features, showing that functionality can be maintained. In
this way, new features (e.g., message passing mechanisms) can be layered on top
of existing demonstrators in new iterations.

These demonstrators intend to cover most of the software obsolescence prob-
lems that are of interest to our project partner. Demonstrators that illustrate
technological obsolescence include software systems that use obsolete third-party
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libraries (e.g., old XML library versions) and must switch to a newer version of
the same library (API update) or to a completely different library (API upgrade).
Interesting demonstrators to simulate functional obsolescence involve replacing
hardware components (e.g., various types of sensors) with functionally equiva-
lent components within the same microcontroller (e.g., Arduino, Raspberry Pi)
or porting parts of this hardware infrastructure to a different microcontroller.
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6. Bartolomei, T.T., Czarnecki, K., Lämmel, R.: Swing to SWT and back: patterns

for API migration by wrapping. In: ICSM 2010, pp. 1–10 (2010)
7. Cossette, B.E., Walker, R.J.: Seeking the ground truth: a retroactive study on the

evolution and migration of software libraries. In: FSE 2012, pp. 1–11 (2012)
8. Dagenais, B., Robillard, M.P.: Recommending adaptive changes for framework

evolution. ACM Trans. Softw. Eng. Methodol. 20(4), 19:1–19:35 (2011)
9. Dig, D., Johnson, R.: The role of refactorings in API evolution. In: ICSM 2005,

pp. 389–398 (2005)
10. Dig, D., Johnson, R.: How do APIs evolve? A story of refactoring: research articles.

J. Softw. Maint. Evol. 18(2), 83–107 (2006)
11. Henkel, J., Diwan, A.: Catchup!: Capturing and replaying refactorings to support

API evolution. In: ICSE 2005, pp. 274–283 (2005)
12. Kolovos, D., Rose, L., Paige, R., Garcıa-Domınguez, A.: The epsilon book. Struc-

ture 178, 1–10 (2010)
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Abstract. The aim of this contribution is to present the project “Mobile
e-Card” which demonstrates the concept for a realization of an eHealth service
on a smartphone, based on an existing secure identity used in Austria. By
building a demonstrator on the existing ID infrastructure of the Austrian
Health ID Card it will be shown how a mobile application can be user-friendly
and safe. It also indicates how existing functionalities from the Austrian
Health ID Card could be adapted into potential functionalities for a mobile
smartphone application, to be used by involved stakeholders of the health care
system in Austria. Basic use cases of this application will be presented as “show
cases”, as well as the technical concept of this mobile application.

Keywords: Mobile application � e-Services � eHealth � mHealth
Mobile devices

1 Introduction

This contribution presents an overview and insights into the ongoing research project
“Mobile e-Card”. The focus lies on describing the project goals and involved project
partners as well as the steps undertaken to develop the features of an mHealth appli-
cation by the project team. The conceptualization and the potential for implementation
in a real-world environment in Austria will be shown through exemplary use-cases.

According to Eysenbach (2001) the basic concepts of mHealth aim to describe the
use of digital technologies and how they can enable health services. These concepts
show not only the broad application of the usage of tools and data in the health domain,
but also further aspects as the exchange of communication and information [1]. The
concept of mHealth allows focus on smartphone-based patient applications which aim
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to deliver services to patients, as well as to other stakeholders [2]. Positioning the
project “Mobile e-Card” in the research domain of mHealth means to relate it to diverse
core functionalities of mobile phones [3]. Functionalities implemented in this project
range from information exchange between involved stakeholders of the Austrian health
care system, e.g. how doctors and patients could use a dedicated smartphone app using
Near Field Communication (NFC) or Internet for data transmission. Use cases
describing these functionalities will be given in detail in Sect. 4. While building the
demonstrator, the Austrian privacy law and the new GDPR (General Data Protection
Regulation) were taken into account. The system architecture follows privacy- and
security-by-design principles and will be described briefly in Sect. 3.

2 Project Overview

2.1 Project Objectives, Methods and Expected Results

Table 1 below presents an overview of the main objectives, used methods and expected
results of the “Mobile e-Card” project, which aims to develop features of an mHealth
demonstrator.

2.2 Funding and Current Status of the Project

The project “Mobile e-Card” is funded by the Austrian security research programme
KIRAS of the Federal Ministry for Transport, Innovation and Technology (bmvit). The
“Mobile e-Card” project started on the 01.10.2015 and will continue until the end of
30.09.2017. Further information on the project is also available online under: http://bit.
ly/2pwO78E.

Table 1. Project overview

Objectives Methods Expected results

Create features of a potential
mobile mHealth application

Gathering of requirements
for potential features and
description of use cases

Demonstrator of a
mobile mHealth
application

Develop a mobile mHealth
application according to
existing legal frameworks

Research on requirements
obligated by legal
frameworks

Demonstrator of an
mHealth application in
line with legal
requirements

Evaluation of the user
experience

Usability tests and interviews
with involved stakeholders

User-friendly mobile
mHealth application for
involved stakeholders

Develop a technical security
concept ensuring protection of
personal data in regard to
privacy and security

Risk analysis, data
classification and technical
measures protecting the data
exchange

System architecture
following privacy- and
security-by-design
principles
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2.3 Consortium

The consortium consists of following project partners:

Research Industrial Systems Engineering GmbH (RISE) is leading the project con-
sortium. RISE is an internationally established and recognized IT service provider with
more than 20 years of IT experience in planning, IT architecture, IT infrastructure, IT
strategy on the one hand and software development, smart piloting, project and risk
management on the other. RISE supports the project with its knowledge and experi-
ences in the areas of government, electronic identification, banking, payment systems
and healthcare solutions. RISE has established large eHealth and ID projects around the
world, e.g., Austrian eCard infrastructure.

Danube University Krems is specialized in applied research. The Department for
E-Governance at the Danube University Krems conducts trans-disciplinary research on
the effects of technological advances with regard to strategies, structure and processes
in the digital network era. The focus of the team lies on evaluating the acceptance and
usability of the demonstrator and its compliance with existing legal requirements.

Österreichische Staatsdruckerei (OeSD) is a leading international provider of identity
management solutions. OeSD produces high-security identity documents, such as the
chip- and biometrics-based passport. The team will contribute to the project with its
knowledge in developing products and solutions in the domain of secure digital
identities targeting secure environments.

Österreichische Ärztekammer/Austrian Medical Chamber (ÖÄK) represents the com-
mon professional, social and economic interests of all physicians in Austria. The
partner supports the project in gathering the requirements from the perspective of
stakeholders of the Austrian health care system, as well as in evaluating the
demonstrator.

2.4 Tasks and Work-Packages

The whole project consists of six work-packages:

Work-package 1: Project Management ensures the successful coordination of
project partners and involved stakeholders; planning and controlling of project
stages, resources and finance; as well as project outcomes and their documentation.
Work-package 2: Requirements Engineering focuses on the one hand on gathering
requirements of stakeholders and health experts that were identified in workshops
and interviews. On the other hand, research on international and national market
and evaluations of state-of-the-art implementations were conducted regarding
security, identification and authentication.
Work-package 3: System Design uses privacy-by-design principles and data
security.
Work-package 4: Implementation of the mHealth application follows the agile
procedure of SCRUM to emphasize collaboration and flexibility to adapt to
emerging changes regarding the requirements of involved partners and
stakeholders.
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Work-package 5: Impact Analysis and Evaluation: an online poll, as well as
interviews and workshops with different stakeholder groups, were conducted. The
evaluation of user experiences and usability tests with involved stakeholders to
develop user-friendly mHealth applications is still ongoing.
Work-package 6: Dissemination aims to disseminate the project findings to a wide
audience of practitioners and scientists across Europe.

3 Privacy- and Security-by-Design Architecture

The goal was to have an equivalent of the physical health card on the patient’s
smartphone which is compatible with the current Austrian health card infrastructure
and can be used in a similar fashion but with extended functionality. The following
challenges had to be taken into account while upholding security and privacy:

• Registration/activation on the smartphone
• Accounting during a consultation
• Communication between the doctor and the patient.

Registration is either done by using the Austrian electronic signature (Handy-
Signatur/MOA ID), or by requesting a one-time verification code that is sent by e-mail.
The physical health card, and optionally the passport, is used to avoid manual input of
the required personal data (e.g. picture, name). If no passport was used, the user has to
take a photograph to complete the registration form. A picture is required as a trust
anchor in order to identify the patient in case of a consultation. After the patient gives
explicit consent and the supplied data is approved, the mobile Health ID is activated. If
the electronic signature in combination with passport was used, no manual confirma-
tion is needed. In all other cases, the authenticity of the registration data is verified by
the health care provider in an additional step. After activation, no sensitive data (e.g.
social security number) is permanently stored on the patient’s smartphone for privacy
reasons. Instead, whenever data is required, this data is retrieved from a trusted mobile
Health ID backend system (RESTful API) via a secure channel using certificate-based
authentication.

Currently, in the event of a consultation, the patient provides his physical
chip-based health card containing the patient’s secret which is used to uniquely identify
and authenticate the patient. A dedicated chip-card reader that is connected to the
private network of the health insurance provider establishes a secure connection using
the patient’s secret in order to process accounting. The idea was to have a less invasive
upgrade at minimal costs of the current landscape to support the mobile Health ID
Application as further described in Sect. 4. From the reader’s perspective, the mobile
Health ID Application acts as a traditional chip-card by leveraging HCE (Host-based
Card Emulation) while exchanging the same APDU (Application Protocol Data Unit)
messages. In this manner, the mobile Health ID Application requests all required data
from the trusted mobile Health ID backend via a secure channel facilitating the pro-
tection of sensitive data. During the consultation process, giving explicit consent to
share personal data by pressing a button in the mobile Health ID Application addi-
tionally enforces privacy.
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In order to provide additional use cases, which involve direct communication
between doctors and patients, analogously an Admin Health ID Application was
designed. This app resembles the physical Admin ID Card that is currently used by
doctors for identification to the health insurance provider. Basically, it allows the
establishment of a secure communication channel with the health insurance provider
for accounting and other services. The registration process is similar to the mobile
Health ID Application. These use cases may require additional information stored in
external systems (e.g. clinical evidence, a patient’s health record stored in the ELGA
system). Communication between both apps and external systems is also bridged via
the mobile Health ID backend in the same secure way. Figure 1 provides an overview
of the system architecture.

4 Technical Challenges

In addition to the overall design of the project “Mobile e-Card” described above, the
following technical challenges were addressed.

– What is necessary to integrate the Mobile Health ID to the current system archi-
tecture? The actual Austrian Health ID Card infrastructure in medical centres has to
be extended by a new interface, which provides the functionality to receive data
from the patient’s smartphone and to communicate with the GIN-Network. To
achieve this goal either the network based card reader has to be extended by an
NFC-interface (Near Field Communication) or new NFC card readers have to be
provided for medical centres, which communicate with the GIN-Network by LAN
or WLAN.

– How can doctors get access to their patients’ data? After activation, the mobile
Admin Health ID Application, described in Sect. 3, is able to exchange information
with the patient’s mobile Health ID Application through the mobile Health ID
backend using a secure mutual (client certificate, server certificate pinning) TLS
(Transport Layer Security) connection over the Internet.

Fig. 1. Overview “Mobile e-Card” application system architecture
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5 Project Outcomes: Selected Use Cases

Use cases were designed for physicians and for patients, and they encompass the
essential functionalities of the current Austrian Health ID Card which is a chip card.
However, the application could allow for the integration of further functionalities and
services.

5.1 Registration

Use case for patients’ Mobile Health ID Application: The application informs the user
about the items necessary for registration with the Mobile Health ID Application: the
Austrian Health ID Card, the Austrian digital signature, and ideally the passport. The
data from the Austrian Health ID will be scanned and the respective field will be filled
in automatically by taking a picture. Users can verify the correctness of the data and
adapt it if necessary. A verified picture of the patient is taken from his or her passport
using an NFC connection. To read the passport picture, the user has to insert some
basic data from the passport; Fig. 2 shows this process. In cases where the person who
registers does not have a passport, a selfie can be taken with the camera and be added to
the profile. However, this profile picture would have to be verified by an authorized
person and this process could be realized by a video call or by personal appearance in
authorized premises.

5.2 Visit to the Doctor

Use case for patients’ Mobile Health ID Application: Currently, patients give their
Austrian Health ID Card to the secretary of the doctor who inserts the card into the GIN

Fig. 2. Scan passport Fig. 3. List of notes in notepad
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box to read it and start the medical consultation and transfer the data to the involved
stakeholders such as the social insurance. With the Mobile Health ID Application,
patients can use their mobile phone to connect to the doctor’s Admin Health ID
Application via NFC or wireless LAN. As doctors are asked to check the identity of
patients on their first visit, usually using a photo identification document, the identity
can then be confirmed through the verified photo that is saved in the data of the
Austrian Health ID Card Application.

5.3 Personal Notepad

Use case for patients’ Mobile Health ID Application: The notepad of the Mobile
Health ID Application in saved in a secure environment. Patients can store information
about substances they are allergic to; they can store all medication they take, including
those medications that they buy in shops or pharmacies without the involvement of a
doctor. Figure 3 (see Sect. 5.1) shows the notepad functionality of the Mobile Health
Application.

5.4 Management of Data of Patients

Use case for doctors’ Admin Health ID Application: Doctors can manage their patients,
access their medical history, and delegate missions for other medical suppliers using
their mobile application. Doctors can also access the patient’s previous medical reports
through the ELGA system (electronic medical records). In the ELGA system, files are
saved decentralized at the institution of origin, and the Austrian Health ID Card is a key
for the doctor to access them. Access to the ELGA system is granted to the doctor when
a patient registers at his office, and this access is granted for a limited time only. It must
be noted that if patients opted out of the ELGA system, access to a patient’s history is
not possible. Figure 4 shows a list view of different patients in the doctors’ Admin
Health ID Application. Patients whose ELGA access is active at the moment can be
identified by the symbol on the right side of their list entry.

A doctor can delegate the ELGA access to other health care providers. For instance,
the doctor can take blood samples from patients and send them to a laboratory for
analysis. The results of the blood analysis can then be accessed by the doctor, again,
through the ELGA system. The Admin Health ID Application can provide medical
summary of key information of the patient as can be seen in Fig. 5. The list includes
data such as blood type, vaccinations, allergies, implants, intolerances against sub-
stances, etc. Furthermore the application allows doctors to make documents by dic-
tating texts through a speech-to-text functionality. Errors that might occur during the
dictation can, of course, be edited manually. Figure 6 shows how doctors can create
texts to be added to their patients’ files. If documents need to be signed by the doctor,
this can be done via the official digital signature of the Austrian state.
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5.5 Information About Medical Services

Use case for patients’ Mobile Health ID Application: As there is a lot of invalidated
medical information available on the Internet, the Mobile Health ID Application pro-
vides information that was verified by a respected authority that is part of the Austrian
health care system. As a result, the information from the application is trustworthy and
can contain, for example, the following items that are currently available on relevant
websites: information about the doctors (formation, training, opening hours), opening
hours of pharmacies during the night, a search functionality for doctors and medica-
tions, information about vaccines and immunization therapies, etc.

5.6 Communication

Use case for doctors’ Admin Health ID Application: Follow-up appointments for
patients can be arranged through the use of the Admin Health ID Application. Patients
will receive the notification of an appointment through their Mobile Health ID
Application and can add the appointment to their personal calendars. Cancellation of
appointments can be easily done via the application. The cancellation can be accom-
panied by information about replacements or information about alternative dates for
appointments. Moreover, doctors can send documents or specific messages to patients
that have registered with the doctor using the application. Such documents might
include information about illnesses, diseases, vaccinations, letters of referral, or elec-
tronic prescriptions if implemented.

Fig. 4. List of patients Fig. 5. General information
about a patient

Fig. 6. Text editing
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6 Innovation Potential and Expected Advances Beyond
State of the Art

The innovation potential of the “Mobile e-Card” project lies in it being a solution for a
Mobile Health ID Application based on an existing secure digital identity in Austria.
The system architecture was designed to support security and privacy aspects according
to Austrian legal requirements.

The “Mobile e-Card” offers a new and innovative application for potential mHealth
services and a digital identity built on existing solutions, and further evaluates the
implementation of functions with current technical and legal possibilities.

Acknowledgement. The project “Mobile e-Card” is funded by the Austrian security research
programme KIRAS of the Federal Ministry for Transport, Innovation and Technology (bmvit).
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Abstract. Software is critical to the majority of functionality in avionics
and aerospace systems. The amount of safety-related software in avionics
is growing rapidly (doubling in size around every four years), and the
costs of software programmes in industry are increasingly unaffordable
– safety-related code can cost upwards of USD $150 per line. At the
same time, demands from avionics customers for increased scope and new
functionality is increasing, and quality is non-negotiable: it is fixed by
standards and safety requirements. The SECT-AIR project is addressing
these cost and demand issues by focusing on automation in software
engineering, with particular emphasis on model-based development. In
this paper we provide an overview of the motivation behind the project,
which started in 2016, and some of the key tasks it will carry out to help
improve productivity, increase customer scope and maintain quality.

1 Project Identity

– Project acronym: SECT-AIR
– Project title: Software Engineering Costs and Timescales - Aerospace Ini-

tiative for Reduction
– Project partners: Rolls-Royce (Coordinator), BAE Systems, Leonardo, GE

Aviation, MBDA, Rapita Systems, Altran Praxis, Cobham, D-RisQ, Univer-
sity of York, University of Oxford, University of Southampton

– Website: http://www.ati.org.uk/atifundedprojects/113099/
– Funding: Aerospace Technology Institute/Innovate UK, total budget GBP

10.1M.
– Project start date/duration: July 1, 2016 (36 months).

2 Introduction

The majority of functionality in modern aerospace and avionics systems critically
depends on software. Unlike other software domains, where tradeoffs between
c© Springer International Publishing AG 2018
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cost and quality can be made, quality requirements for avionics software sys-
tems are non-negotiable, fixed by standards such as DO-178C. As such, cost
reductions for software have to be addressed by productivity improvements. One
way to increase productivity is to better automate different engineering tasks,
focusing on automating those tasks that are error-prone or repetitive, allowing
engineers to focus on the challenging and creative aspects. Specific challenges
that could be addressed to increase productivity and automation in avionics
software engineering include:

– exploiting advanced architectures that support open and modular systems
construction, e.g., service-oriented architectures, with the intent on reducing
the burden of certification;

– optimising the development process via enhanced automated testing tech-
niques and streamlining the handover between systems and software
engineering;

– enhancing exploitation of model-based development, automated code genera-
tion, model-to-model transformation and automated formal analysis based on
standards, so as to share development infrastructure costs and enable easier
exchange of engineering artefacts;

– improving development processes for building high-integrity devices, e.g.,
FPGAs, system-on-chip, multicore.

At the same time, these challenges need to be addressed in a way that makes
them ready to adopt by the avionics industry, taking into account the require-
ments for certification.

This paper discusses how the SECT-AIR project has contributed to tackling
these challenges. Section 3 provides an overview of the overall SECT-AIR project
execution. Section 4 outlines the different work packages with some focus on
the model-based development tasks. Section 5 outlines the ongoing evaluation
process and concludes the paper.

3 Execution

SECT-AIR is a project jointly funded by the industry partners and the Aerospace
Technology Institute (ATI) via Innovate UK, the UK’s innovation agency. As a
result, the project’s operation is overseen by both a project management team
(led by Rolls-Royce) and an Innovate UK Program Manager, who monitors
and assesses progress against key performance indicators, technical plans and
financial plans. The project’s overall execution is guided by the following key
principles:

– Developing an industry-led aerospace sector wide strategy for software
engineering;

– Exploiting technology used in other domains (e.g., high performance comput-
ing, multi- and many-core) in the aerospace domain;

– Validating research results using robust industrial aerospace case studies from
project partners;
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– Aligning industry development needs with academic research;
– Delivering mature technologies and processes at a high technical readiness

level;
– Engaging with certification authorities, so as to be sure that the technologies

and solutions produced will lead to systems that can realistically achieve
certification. To support this, SECT-AIR will engage with the Civil Aviation
Authority.

The overriding focus in all of the research activities (carried out in the work
packages, described in the next section) of SECT-AIR is on automation as a
means to improve productivity. Success measures in the case studies will be
based on increases in automation in different processes.

4 Work Packages

Figure 1 shows the work package breakdown for SECT-AIR, including their inter-
relationships. All work packages run for the full 36 months of the project, but
having varying degrees of intensity, particularly in terms of the software and
reports that are to be delivered.

Work Package (WP1) focuses on industry strategy and adoption of SECT-
AIR deliverables: it includes baselining activities to measure current state
of practice in aerospace software engineering, and will support experiments

Fig. 1. Work package structure for SECT-AIR
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designed to demonstrate potential improvements. It also aims to create a long-
term industry strategy (for 10–15 years) that will ensure significant industry and
academic alignment. It will be responsible for coordinating usable case study
material for research in other work packages.

WP2 focuses on developing a common open and modular product architec-
ture for aerospace software engineering, which will in turn enhance the product
supply chain. It will also investigate the use of partitioning in aerospace products
to reduce the amount of safety-critical functionality within embedded products.
It will deliver demonstrators of open architectures at high technical readiness
levels. The open architecture will be evaluated via demonstrator case studies
that will be identified in WP1.

WP3 investigates software development processes. It is particularly target-
ing the application and evaluation of model-based techniques for requirements
specification, to ensure composability and reuse of requirements: the view is that
across a number of aerospace projects (requiring certification) there is a signif-
icant opportunity to reuse requirements – especially if they can be captured in
a standard and tool-supported modelling language. As well, WP3 will investi-
gate traceability and will build a toolchain to support end-to-end traceability
from requirements models through to documentation and code. WP3 will in
parallel trial the application of formal specification techniques used in synergy
with model-based techniques to support richer analysis of requirements. The
techniques that are developed will be applied to case studies that focus on novel
interactive interfaces, e.g., for cockpit display systems. Such systems benefit from
the development of rapid prototypes (even for critical systems) and thus make
a challenging case study for model-based and formal methods, especially given
that minimising the cost and time to change, for example, display formats, is an
industry-wide issue in aerospace.

WP4 focuses on software development infrastructure for aerospace software
engineering. It will endeavour to set a UK strategy for software development
infrastructure improvements, and develop tool support to provide integration to
various model-based languages used by industry, e.g., SysML, UML and various
UML profiles such as MARTE. It will also aim to reduce the overhead for code-
level verification and for generating qualification and assurance data. We discuss
WP4 in more detail in the next subsection.

WP5, Enabling Technologies, aims to deliver a roadmap and demonstrator
for next-generation high-performance obsolescence protected platforms. In par-
ticular it will aim to reduce the effort and costs for producing high-integrity
firmware, such as system-on-chip and many-core processors. It will also work
with certification authorities to ensure that the best practice that is developed
will lead to systems that can achieve certification. A particular technique that
will be investigated will be modular component-based development.

4.1 Model-Based Development

WP4 broadly focuses on software development infrastructure – i.e., producing a
common platform (largely via reuse and agreement on standards) – for aerospace
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software engineering. The vision is to exploit model-based development tech-
niques as a means to increase productivity and to automate the error-prone,
repetitive and tedious tasks of engineers. There are three components to achiev-
ing this vision:

– Exploiting model-based languages, including general-purpose languages (and
tools) as well as techniques for building domain-specific languages for spe-
cific problems. There is broad agreement on the use of (profiles of) UML and
SysML throughout SECT-AIR, and the project partners have predominantly
agreed on the use of Eclipse Papyrus for many of their modelling needs within
the project. A key requirement is to support efficient and effective develop-
ment of UML profiles for individual partners, including those partners who
have limited-to-no experience of building profiles. Thus, one objective of WP4
is to investigate new and efficient ways of generating profiles for UML, max-
imising reuse (e.g., when two or more profiles share features).

– Providing support for efficient and effective model transformations. Many
partners in SECT-AIR need transformations to allow them to use new mod-
elling technology such as Eclipse Papyrus in combination with legacy mod-
elling technology, such as PTC Integrity Modeller. A particular objective of
this work package is to ensure that any enabling model transformation tech-
nology is efficient, even when applied to large and complicated models. As
such, WP4 is investigating incremental model transformations, where small
changes to the source models mean that only small parts of the transforma-
tions need to be executed again. One of the techniques that will be considered
for use is property traces, which have been used to support incremental code
generation [1].

– Generating text and documentation. A particular use case for generation of
text is producing template assurance cases from engineering artefacts (e.g.,
UML design models). Template assurance cases provide the structure and
outline of an assurance argument that – after refinement and instantiation –
will be delivered to a certifying authority along with evidence (e.g., test data,
traceability data). Such arguments are and evidence are critical in attempt-
ing to convince the certifying authority that a system is acceptably safe to
deploy in its environment. Producing assurance cases is generally carried out
manually and is an expensive process. Recertifying a system where require-
ments have changed is also a very expensive process. Hence, there is strong
benefit from using model-to-text transformation to at least partly automate
the process of producing assurance cases. SECT-AIR will investigate prelim-
inary work on using weaving models [2] to underpin the process of generat-
ing template assurance cases from engineering artefacts supplied by industry
partners.

Case studies from industry partners focusing on security and safety-critical
systems development are being identified to help demonstrate the effectiveness
of the techniques developed in this work package.
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5 Evaluation and Conclusions

In this paper, we have given an overview of the SECT-AIR project, which aims to
reduce software cost to the UK aerospace industry. The state of play is that the
cost of software for aerospace is damaging the industry, and both industry and
academia must collaborate in order to introduce controls, increase productivity
and hence lower costs. SECT-AIR has been designed to bring together key UK
capability in development of high-integrity aerospace software.

SECT-AIR has been running since June 2016 and already has delivered a
number of results, including baselining surveys and experiments to establish
cross-industry state of practice, an analysis of the use of model transformation
across the industry, and the development of driver technology to allow SECT-
AIR partners to use modern model management technology (i.e., Epsilon and
its transformation language [3]) with legacy modelling tools (e.g., PTC Integrity
Modeller). The focus over the next six months will be on leveraging these results
to support the industry partners in more efficient development of their own
profiles of UML and SysML, and on automating the generation of evidence that
would be used as part of an assurance case for a high-integrity system.
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tute and Innovate UK via the SECT-AIR grant, project number 113099.
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Abstract. The open and cooperative nature of Cyber-Physical Sys-
tems (CPS) poses a significant new challenge in assuring dependabil-
ity. The DEIS project addresses this important and unsolved challenge
by developing technologies that enable a science of dependable system
integration. Such technologies facilitate the efficient synthesis of com-
ponents and systems based on their dependability information, covering
application domains such as automotive, railways, home automation and
healthcare.

The DEIS project will bring significant impact to the CPS market
by providing new engineering methods and tools reducing development
time and cost of ownership, as well as supporting integration and inter-
operability of dependability information over the product life-cycle and
over the supply chain.

1 Project Information

– Project acronym: DEIS
– Project title: Dependability Engineering Innovation for Cyber Physical Sys-

tems (CPS)
– Project funding: Total cost e4,889,290 (funded by H2020-EU.2.1.1)
– Project partners: AVL List GmbH (project coordinator), Siemens AG,

General Motors Powertrain-Europe SRL, Ideas & Motion SRL, Portable Med-
ical Technology Ltd, Fraunhofer Gesellschaft zur Förderung der angewandten
forschung E.V, University of Hull, University of York, Politecnico of Milano,
RSRC at Dundalk Institute of Technology.

– Project start date/duration: 01 January, 2017/36 months.
– Project Website: www.deis-project.eu

2 Background

It is expected that in the future, the physical and digital worlds will merge into
a largely connected globe. This is backed by the emergence of notions such as
Cyber-Physical Systems (CPS). CPS harbour the potential for vast economic and
c© Springer International Publishing AG 2018
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societal impact in domains such as automotive, health care, home automation,
etc. At the same time, if these systems fail, they may cause harm and lead to
temporary collapse of important infrastructures, with catastrophic consequences
for industry and society. Therefore, in order to realise the full potential for
innovation of CPS, it is important to ensure the dependability of CPS.

CPS are typically loosely connected and come together as temporary configu-
rations of smaller systems which dissolve and give place to other configurations.
Therefore, the configurations CPS may assume over its lifetime are unknown
and potentially infinite. Thus, currently available approaches are not possible
to assure the dependability of CPS and it is a grand technology challenge to
address the dependability of CPS.

The DEIS project identifies this challenge and takes a first step towards
dependability assurance of CPS by focusing on system safety and security,
because assuring safety of CPS is an indispensable prerequisite in order to realise
their economic and social potential.

The key innovation in the approach of the DEIS project is the concept of Dig-
ital Dependability Identity (DDI), which was outlined by key partners of DEIS
in [1]. A Digital Dependability Identity (DDI) contains all the information that
uniquely describes the dependability characteristics of a CPS or a CPS compo-
nent. This includes two key aspects: (a) attributes that describe the system’s
or component’s dependability behaviour, such as faults and possible fault prop-
agations through the CPS architecture, which can be described using concepts
from the theory of safety contracts; and (b) requirements on how the component
interacts with other entities in a dependable way, described in terms of the level
of trust and assurance. DDI is therefore an evolution of current modular depend-
ability assurance models for systems. It is produced during design, issued when
the component is released, and then continuously maintained over the complete
lifetime of a component or system. DDIs are used for the integration of compo-
nents into systems during development as well as for the dynamic integration of
systems into systems of systems in the field.

Based on the concept of DDI, the DEIS project seeks to provide a modelling
and integration framework that lays the foundation for assuring the dependabil-
ity of CPS.

3 Identified Challenges and Project Concept

A DDI is potentially a very useful digital artefact - It is a versatile dependability
assurance case, the utility of which spans from component design to in-the-field
operation of a CPS. However, the production and use of DDIs for heterogeneous
systems poses a number of significant technological and engineering challenges
that are pertinent and important in industry and motivate the objectives of the
DEIS project.
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DEIS identifies the following challenges for DDI:

1. Universal exchange of dependability information
– Currently there is a lack of common model representations for the

exchange of dependability information. Thus, a precondition for DDI is
the existence of an open dependability metamodel.

– DDIs should be sufficiently expressive to enable the component integrator
to compile DDIs from the sub-components DDIs, for system synthesis.

– DDIs should optionally shield sensitive details through abstraction to
protect the component provider’s intellectual property.

2. Efficient dependability assurance across industries and value chains
– Component providers should be able to generate DDIs based on the

dependability information of their components/systems that is already
available in their existing tools.

– It must be possible to include the information contained in DDIs into
the dependability assurance lifecycle and tool chain of the component
integrator, to cater with the change in component/system requirements
and integration context.

– Dependability should be considered from the early stages of design, so
that a model-based approach can be adopted to enable automation, and
eventually the automatic synthesis of systems/DDIs.

3. Dependable integration of systems in the field
– In CPS, dependability cannot be fully assured prior to deployment. This

requires certain degree of automation in evaluation of DDIs. Thus, DDIs
must become executable specifications.

– DDIs must be stored in a centralised repository so that they can be
accessed in a uniform way, and changes in them are synchronised.

– Fully automated evaluation of DDIs required for highly dynamic
environments.

To address these major technology and research challenges, the DEIS project
sets out a four-stage innovation cycle, as illustrated in Fig. 1. The first stage
aims at the fundamentals of DDIs, such as the definition of a universal format
of DDIs based on an open information model for the exchange of dependability
information. The second stage is to provide semi-automated and increasingly
automated support for generating DDIs out of existing design and safety models,
as well as for integrating the DDIs of sub-components into DDIs of larger systems
by integrators. The third stage facilitates dependable integration of systems
in the field though automated evaluation of DDIs that includes the concept
of executable DDIs on-board. Finally, the fourth stage is to have continuous
validation of the project results in realistic scenarios and case studies.
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Fig. 1. DEIS project concept

4 Project Objectives

Based on the identified challenges and the project concept, the objectives of the
DEIS project are set out as the following.

Objective 1. An open dependability exchange (ODE) metamodel and
a universal format for specifying DDIs
Based on existing work, DEIS will produce an Open Dependability Exchange
(ODE) metamodel. ODE provides the means to express, connect and communi-
cate dependability information. With ODE, it would be possible to specify the
level of trust of assured dependability properties with respect to the trust of the
issuer and to the trust level of the promised services during field operation. DDIs
should also be generated based on the information defined in ODE. DDIs will
also be formalised in order to support their semi-automated evaluation.

Measurable sub-objectives of objective 1 are:

1. Definition of the Open Dependability Exchange (ODE) metamodel
2. Definition of general form of Digital Dependability Identity (DDI)
3. Tooling support for the manual modelling of DDIs
4. Tooling support to check the validity of DDIs.

Objective 2. A framework for the creation and modular synthesis of
DDIs
Once an appropriate format for the ODE and DDIs is defined, DEIS will pro-
vide support for the creation and modular synthesis of DDIs from existing
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dependability information. Such support is a prerequisite for the practical appli-
cability of the approach. Thus a framework that serves such purpose will be
developed, covering the following sub-objectives:

1. Tooling support for expressing existing dependability models in ODE-
compliant format

2. Algorithms and tooling support for synthesis of DDIs
3. Algorithms and tooling support for integration of DDIs into the dependability

assurance cases
4. Algorithms and tooling support for change-impact analysis on DDIs.

Objective 3. A framework for the in-the-field dependability assurance
in CPS
A framework which enables the dependable integration of open CPS is required.
Such framework consists a centralised DDI registry which is publicly available
on-the-cloud. By using the centralised DDI registry, system manufacturers can
check if their systems can be dependably integrated with already existing sys-
tems. Beside the centralised DDI registry, the framework should also enable
on-board evaluation. With on-board evaluation, systems carry DDIs with them
and evaluate if they can collaborate with each other in the field.

The framework covers the following sub-objectives:

1. Development of infrastructures for evaluation of integration of new systems
in the field

2. Development of algorithms for the on-board evaluation of DDIs.

Objective 4. Development of autonomous and connected CPS use
cases for different application domains, and validation of applicability
and scalability of the DDIs
The scope of the project and the technology it develops is wide reaching and
fundamental for CPS and the industries involved in the project (road transport,
railway, healthcare). As such, the project results are expected to create significant
impact. For this reason, it is a further objective of the project to validate the
results in four realistic scenarios based on representative projects.

The studies of the four scenarios covers the following sub-objectives:

1. Evaluation of effectiveness of approach
2. Evaluation of applicability across industries
3. Evaluation of runtime mechanisms
4. Evaluation of systems produced in four case studies.

5 Related Work

In order to ensure successful project results, the project will not aim at develop-
ing an entirely new solution. In fact, the project will use, wherever appropriate,
the results from other previous and current projects. In particular, projects that
are related to DEIS are:
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– VETESS: Verification and Testing to Support Functional Safety Standards
– SPES XT: Software Platform Embedded Systems
– SAFECER: Safety Certification of Software-Intensive Systems with Reusable

Components
– CESAR/CRYSTAL: Cost Effective Small AiRcraft/CRitical sYStem engi-

neering AcceLeration
– SAFE: Safe Automotive soFtware architEcture
– EMC2: Embedded Multi-Core systems for Mixed Criticality applications in

dynamic and changeable real-time environments
– SafeAdapt: Safe Adaptive Software for Fully Electric Vehicles
– OPENCOSS: Open Platform for EvolutioNary Certification Of Safety-critical

Systems
– D-MILS: Distributed MILS for dependable information and communication

infrastructures
– MAENAD: Model-based Analysis & Engineering of Novel Architectures for

Dependable electric vehicles
– ATESST2: Advancing Traffic Efficiency and Safety through Software Tech-

nology phase 2
– COMPASS: Comprehensive Modelling for Advanced Systems of Systems

The research in DEIS can also be based upon different existing approaches,
like Component Fault Trees [2] and HiP- HOPS [3] for dependability analysis,
GSN [4] for specifying safety cases, SACM [5] for specifying structured assurance
cases, or ConSerts [6] as a starting point for runtime certification. All of these
approaches were defined by partners involved in DEIS and have proven their
value in many practical applications. The fundamental competence and previous
work results provided by the partners involved in DEIS therefore build a sound
basis, which gives confidence that the project objectives are achievable within
the proposed time and budget of the project.

6 Expected Outcomes

CPS market accounted for almost e472 billion in the automotive, industrial,
medical, aerospace and defence industries in 20121. By improving the develop-
ment of dependable CPS and supporting the ad-hoc connection of dependable
systems during field operation, DEIS holds the opportunity to bring a significant
impact on the existing market and be an enabler for future solutions based on
dependable CPS.

For the automotive market, providing means for ensuring dependability of
collaboration at runtime will be the enabler to gain market shares in novel mar-
ket segments. For the railway market, in particular, European rail transport,
the harmonisation and supervision of safety certification are essential in a Sin-
gle European Railway Area and for railway suppliers to deliver cost-efficient

1 https://ec.europa.eu/digital-single-market/en/news/european-industrial-strategic-
roadmap-micro-and-nano-electronic-components-and-systems.

https://ec.europa.eu/digital-single-market/en/news/european-industrial-strategic-roadmap-micro-and-nano-electronic-components-and-systems
https://ec.europa.eu/digital-single-market/en/news/european-industrial-strategic-roadmap-micro-and-nano-electronic-components-and-systems
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and quality products. For the healthcare market, the need for improved sci-
ence system integration for dependable, autonomous and connected CPS is also
imperative.

The expected outcomes based on the objectives mentioned in Sect. 4 are:

1. Definition of the ODE metamodel and the specification of DDI.
2. A semi-automated framework for the generation and evaluation of DDIs.
3. A framework for the in-the-field dependability assurance in CPS.
4. Autonomous and connected CPS use cases, which is shown in Fig. 2.

Fig. 2. Expected impact of the use cases on their respective markets.

7 Current Status

DEIS has been running for 3 months. Currently, requirements are being elicited
among the partners of DEIS, which include:

– Requirements for the exchange of dependability-related information (ODE),
and the specification of modular DDIs;

– Requirements for the tooling support needed to check the validity of the
available dependability information and to model DDIs;

– Requirements for applying the DEIS approach within the automotive, health-
care and the railway domain and evaluating the project results compared to
the state-of-the-art and the state-of-practice.
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