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giorno@unisa.it

3 Dpto. de Estad́ıstica e Investigación Operativa, Universidad de Granada,
Granada, Spain

{proman,fdeasis}@ugr.es

Abstract. A stochastic diffusion model based on a generalized Gom-
pertz deterministic growth in which the carrying capacity depends on
the initial size of the population is considered. The growth parameter
of the process is then modified by introducing a time-dependent exoge-
nous term. The first passage time problem is considered and a two-step
procedure to estimate the model is proposed. Simulation study is also
provided for suitable choices of the exogenous term.

1 Introduction

The models for the description of growth phenomena, originally associated to
the evolution of animals populations, currently play an important role in several
fields like that economic, biological, medical, ecological, among others. For this
reason many efforts are oriented to the development of always more sophisticated
mathematical models for the description of a particular type of behaviour. The
most representative curves for modeling growth are of exponential-type as the
logistic and Gompertz curves because they are characterized by a finite carrying
capacity, that represents, in general terms, the limitation of the natural resources.
Specifically, the Gompertz curve is frequently used because in several contexts
it seems to fit the experimental data in enough precise way. It is described by
the equation:

x(t) = exp
{m

β
[1 − e−β(t−t0)] + lnx0 e−β(t−t0)

}
, (1)

where m and β are positive constants that represent the growth parameters of the
population. Equation (1) is able to describe growth dynamics in a lot of contexts
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so, for instance animal, vegetable, tumor growth. Equation (1) is solution of the
following ordinary differential equation:

dx

dt
= mβ − βx ln x, x(t0) = x0.

We note that in (1) the carrying capacity is K = limt→∞ x(t) = exp{m/β}.
However, in several contexts, the carrying capacity can depend from the initial
size of the population (cf. [4,6,8], for example). In order to take into account
this aspect, in [8] the authors modified Eq. (1) as follows

x(t) = x0 exp
{m

β
[e−βt0 − e−βt]

}
. (2)

Equation (2) is the solution of

dx

dt
= me−βtx, x(t0) = x0. (3)

We note explicitly that the limit for long time of (2) depends from the initial
size of the population being K = x0 exp

{
m/β e−βt0

}
.

In this paper, we consider the stochastic diffusion process associated to (2),
denoted by X(t). Then we derive the process XC(t) by modifying the growth
parameter m to introduce the effect of a therapy interpreted as a continuous time
dependent function C(t). We study both the processes by focusing on the First
Passage Time (FPT) problem. Moreover, in experimental studies the effect of a
new therapy has to be tested so the term C(t) is usually unknown. The knowledge
of such functional form is fundamental since it allows to introduce an external
control to the system and to explain how the therapy acts. Further, the study
of some problems related to the process XC(t), i.e. modeling and forecasting,
requires the knowledge of C(t). For these reasons, the functional form of C(t) has
to be estimated. In this direction we propose a two-step estimation procedure
applicable when data from a control group, modeled by means of X(t), and
from one or more treated groups, described by XC(t), are available. In the first
step the parameters of the control group, are estimated by maximum likelihood
method (see [8,9]). In the second step the function C(t) is estimated making
use of relationships between the processes X(t) and XC(t). Finally, in order to
evaluate the goodness of the proposed procedure a simulation study is presented.

The paper is organized as follows. In Sect. 2 the stochastic model XC(t) is
introduced, the transition distribution and the related moments are provided. In
Sect. 3 we study the FPT through suitable boundaries of interest in real applica-
tions. In Sect. 4 a two-step procedure is proposed to estimate the parameters of
XC(t). A simulation is also provided to validate the procedure. Some conclusions
close the paper.

2 The Stochastic Model

In the following we consider the stochastic version of the Eq. (3). Precisely, let
X(t) be a stochastic process defined in R

+ described by the following stochastic
differential equation (SDE)
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dX(t) = me−βtX(t)dt + σX(t) dW (t), X(t0) = x0 a.s. (4)

It can be obtained from (3), following a standard procedure (see, for instance
[5]). The parameters m and β are positive constants that represent the growth
rates of the population X(t), σ > 0 is the width of random fluctuations and W (t)
represents a standard Brownian motion.

In real-life situations, intrinsic growth rates of the population can be modify
by means of exogenous terms generally depending on time. Examples of such
situations could be suitable food treatments in growth of animals (see [1]) or
therapeutic treatments in tumor growth (see for instance [2,3,7]). In order to
model such situations, we modify the drift of X(t) by introducing a continuous
time dependent function C(t) to model the effect of an exogenous factor, namely
therapy, obtaining the stochastic process XC(t) described by the following SDE

dXC(t) = [m − C(t)]e−βtXC(t)dt + σXC(t)dW (t), XC(t0) = x0 a.s. (5)

The solution of (5) is a diffusion process with sample paths

XC(t) = x0 exp
{∫ t

t0

[m − C(s)] e−βs ds − σ2

2
(t − t0) + σ [W (t) − W (t0)]

}
.

(6)
Clearly, the solution of (4) can be obtained by (6) choosing C(t) = 0.
Equation (5) defines a stochastic diffusion process taking values in R

+, char-
acterized by drift and infinitesimal variance given by

AC
1 (x, t) = [m − C(t)]e−βtx, AC

2 (x) = σ2x2,

respectively. Let fC(x, t|y, τ) = ∂
∂xP [XC(t) ≤ x|XC(τ) = y] be the transition

probability density function (pdf) of XC(t). The function fC(x, t|y, τ) is solution
of the Fokker-Planck equation:

∂fC(x, t|y, τ)
∂t

= −[m−C(t)]e−βt ∂

∂x
[xfC(x, t|y, τ)]+

σ2

2
∂

∂x2
[x2fC(x, t|y, τ)] (7)

and of the Kolmogorov equation:

∂fC(x, t|y, τ)
∂τ

+ [m − C(τ)]e−βτy
∂fC(x, t|y, τ)

∂y
+

σ2y2

2
∂fC(x, t|y, τ)

∂y2
= 0. (8)

Furthermore, fC(x, t|y, τ) satisfies the initial delta condition: limt→τ fC

(x, t|y, τ) = limτ→t fC(x, t|y, τ) = δ(x − y). Note that the transformation

z = lnx + d(t), z0 = ln y + d(τ)

with

d(t) =
σ2

2
t +

m

β
e−βt +

∫ t

C(θ)e−βθdθ,
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reduces (7) and (8) to the analogous equations for a Wiener process Z(t) defined
in R with drift and infinitesimal variance B1 = 0, B2 = σ2, respectively. So one
obtains

fC(x, t|y, τ) =
1

x
√

2πσ2(t − τ)
exp

{
− [ln(x/y) + d(t) − d(τ)]2

2σ2(t − τ)

}
.

Moreover one has

E[Xk
C(t)|XC(τ) = y] = y exp

{
−k

[m

β

(
e−βt − e−βτ

)

+
∫ t

τ

C(θ)e−βθ dθ
]

+
k(k − 1)

2
σ2(t − τ)

}
.

3 First Passage Time Through a Single Boundary

Let

TC
x0,S(t) =

⎧
⎨
⎩

inf
t≥t0

{t : XC(t) > S(t)|XC(t0) = x0}, x0 < S(t0)

inf
t≥t0

{t : XC(t) < S(t)|XC(t0) = x0}, x0 > S(t0)

be the FPT of XC(t) through the boundary S(t) and let gC [S(t), t|x0, t0] be the
FPT pdf. If S(t) ∈ C2[t0,+∞) the FPT pdf gC [S(t), t|x0, t0] is solution of the
following second kind Volterra integral equation:

gC [S(t), t|x0, t0] = 2ρ
[
ψC [S(t), t|x0, t0] −

∫ t

t0

gC [S(τ), τ |x0, t0] ψC [S(t), t|S(τ), τ ]dτ
]

with

ψC [S(t), t|y, θ] =
fC [S(t), t|y, θ]

2

{
S′(t) − [m − C(t)]e−βtS(t)

−S(t)
ln[S(t)/S(θ) − ∫ t

θ
[m − C(s)]e−βs ds

t − θ

}

Note that if

S(t) = A exp
{

Bt +
∫ t

[m − C(s)] e−βs ds
}

with A > 0 and B ∈ R, then ψC [S(t), t|S(τ), τ ] = 0,∀τ ∈ [t0, t], so that the FPT
pdf can be expressed in the following closed form:

gC [S(t), t|x0, t0]=

∣∣∣ ln S(t0)
x0

∣∣∣
√

2πσ2(t−t0)3
exp

{
−

[
(σ2

2
+B)(t−t0)+ln S(t0)

x0

]2

2σ2(t−t0)

}
, S(t0) �= x0.

Moreover, by choosing in (9) C(t) = Beβt and A = px0 exp
{

m
β e−βt0

}
, one has

S(t) = pE[X(t)|X(t0) = x0] = px0 exp
{m

β
(e−βt0 − e−βt)

}
(9)
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that, for 0 < p < 1, represents a percentage of the mean of the process X(t).
In other words, for the process {XC(t); t0 ≤ t} characterized by infinitesimal
moments

AC
1 (x, t) =

[
m − Beβt

]
e−βtx, AC

2 (x) = σ2x2, (10)

the FPT pdf through boundary (9) is given by

gC [S(t), t|x0, t0] =
| ln p|√

2πσ2(t − t0)3
exp

{
− [(σ2/2 + B)(t − t0) + ln p]2

2σ2(t − t0)

}
. (11)

For the process defined in (10) with m = 0.75, β = 0.18, σ = 0.07, in Fig. 1 the
FPT pdf (11) is plotted for p = 0.7 (on the left) and p = 0.85 (on the right) for
various choices of B.

Fig. 1. FPT pdf (11) for XC(t) in (10) with m = 0.75, β = 0.18, σ = 0.07 through S(t)
in (9) for p = 0.7 (left) and p = 0.85 (right) and some values of B.

4 Inference

In this section we propose a two step estimation procedure that can be used when
data from a control group and from one or more treated groups are available. In
the first step, from the control group, modeled by means of X(t), the parameters
m,β and σ are estimated by maximum likelihood method (see [8,9]). In the
second step the function C(t) is estimated making use of some relationships
relating the process X(t) describing the control group, i.e. an untreated group,
and XC(t) modeling the treated group. The idea is to take the model X(t) as a
starting point and then to use the information provided by the treated group to
fit the function C(t). Therefore, after estimating the parameters of X(t), C(t) is
estimated by the trajectories of the treated and non treated groups by means of
suitable relations between the two models.
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In order to relate the trajectories of the processes XC(t) and X(t), we assume
that XC(t0) = X(t0) = x0, i.e. the therapy is applied from time t0, so that from
Eq. (6) one obtains:

XC(t) = exp
{

−
∫ t

t0

C(s) e−βsds

}
X(t). (12)

From (12), looking at the conditional mean functions, we find

E[XC(t)|XC(t0) = x0] = exp
{

−
∫ t

t0

C(s) e−βsds

}
E[X(t)|X(t0) = x0]

from which we have

C(t) = −eβt d

dt
ln

(
E[XC(t)|XC(t0) = x0]
E[X(t)|X(t0) = x0]

)
.

4.1 Proposed Methodology

The data required for the proposed strategy are the values of d1 sample paths
of a non-treated group (xij , i = 1, . . . , d1, j = 1, . . . , n) and d2 sample paths
of a treated group (xC

ij , i = 1, . . . , d2, j = 1, . . . , n), observed in the same time
instants t1, . . . , tn.

• From the data of the control group, estimate the parameters of process X(t).
From this first step, we obtain ML estimations m̂, β̂ and σ̂2.

• Denoting by xj and xC
j the means of xij and of xC

ij at any instant tj , respec-
tively, i.e.

xj =
1
d1

d1∑
i=1

xij , xC
j =

1
d2

d2∑
i=1

xC
ij ,

we obtain

γj = − ln

[
xC

j

xj

]
.

• Interpolate the points γj for j = 1, 2, . . . n (for example by using cubic spline
interpolation) obtaining the function γ̂(t). Finally, consider the following func-
tion as an approximation of C(t).

Ĉ(t) = −e
̂βt γ̂ ′(t).

4.2 A Simulation Study

In order to evaluate the goodness of the proposed procedure we present a sim-
ulation study. We consider some specific functions for therapies: constant, lin-
ear, logarithmic and periodic. 50 sample paths of the control group X(t) with
m = 0.1, β = 0.01, σ = 0.01 and t0 = 0 have been simulated assuming a random
initial state x0 chosen according Λ(1, 0.16).
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The paths include 300 observations of the process starting from t1 = t0 = 0
with ti − ti−1 = 2.

The first step of the procedure gives the estimation of the control group
parameters: m̂ = 0.09578, β̂ = 0.01085 and σ̂ = 0.0157. Hence, as control group
we consider the stochastic process X(t) with infinitesimal moments

A1(x, t) = 0.09578 e−0.01085 t x, A2(x) = 0.01572 x2. (13)

Then, 50 sample paths of the treated group XC(t) have been simulated
with XC(t0) = X(t0) = x0 and considering the following therapies: C(t) =
−0.005, C(t)=±0.001t, C(t)=0.005 sin(t), C(t)=0.02 ln(1 + 0.15t). The results
obtained by applying the proposed procedure are shown in Fig. 2. The dashed
curves represent the functions C(t) whereas the full curves represent the corre-
sponding estimation Ĉ(t). We note explicitly that in the considered cases the
proposed procedure is able to capture the trend of C(t). To evaluate the perfor-
mance of the proposed procedure we calculate the mean absolute error (MAE),
root mean square error (RMSE) and

d = 1 −
∑N

i=1(Ĉ(ti) − C(ti))2∑N
i=1

(|Ĉ(ti) − C(t)| + |C(ti) − C(t)|)2

where N is the number of estimated values for the considered cases and C(t) is
the mean of function C(t). The results are shown in Table 1 for the aforemen-
tioned cases. For all the choices of the function C(t) the procedure provides very
satisfactory estimates of the function C(t).

Fig. 2. For the process (13), C(t) and its estimate are shown for different cases.
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Table 1. MAE, RMSE and d for the considered therapies.

C(t) MAE RMSE d

−0.005 0.095 0.216 0.999

0.005 sin t 0.081 0.169 0.995

0.001t 0.0918 0.219 0.999

−0.001t 0.085 0.175 0.999

0.02 log(1 + 0.15t) 0.086 0.181 0.998

5 Conclusions

We have analyzed a non-homogeneous Gompertz-type stochastic diffusion pro-
cesses characterized by a carrying capacity depending on the initial state. For
such a process we have considered a perturbation of a growth parameter by
introducing the effect of a exogenous term C(t) generally depending on time
and we have studied the first passage time of the process through a time depen-
dent boundary. Moreover, a two-step procedure has been proposed in order to
estimate the model parameters and to fit the function C(t) when data from a
control group and one or more treated groups are available. Our simulation study
has shown that the proposed procedure is able to capture the trend of C(t) in a
very satisfactory way.
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