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Abstract. We consider the problem of synthesising parameters affect-
ing transition rates and probabilities in generalised Stochastic Petri Nets
(GSPNs). Given a time-bounded property expressed as a probabilisitic
temporal logic formula, our method allows computing the parameters
values for which the probability of satisfying the property meets a given
bound, or is optimised. We develop algorithms based on reducing the
parameter synthesis problem for GSPNs to the corresponding problem
for continuous-time Markov Chains (CTMCs), for which we can leverage
existing synthesis algorithms, while retaining the modelling capabilities
and expressive power of GSPNs. We evaluate the usefulness of our app-
roach by synthesising parameters for two case studies.

1 Introduction

Various extensions of Stochastic Petri Nets (SPNs), e.g. generalised SPNs [12]
(GSPNs), have been introduced to model complex and concurrent systems in
many areas of science. In biochemistry, quantitative models of genetic networks
can be expressed as SPNs [8]. In engineering, GSPNs are used to study various
reliability and performance aspects of manufacturing processes, computer net-
works and communication protocols [1,3]. Assuming certain restrictions on their
structure, the dynamics of SPNs as well as GSPNs can be described using finite-
state continuous-time Markov chains (CTMCs) [12]. This allows modellers and
designers to perform quantitative analysis and verification using well-established
formal techniques for CTMCs, above all probabilistic model checking [11].

Traditionally, formal analysis of SPNs and GSPNs assumes that transition
rates and probabilities are known a priori. This is often not the case and one
has to consider ranges of parameter values instead, for example, when the
parameters result from imprecise measurements, or when designers are inter-
ested in finding parameter values such that the model fulfils a given specification.
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In this paper, we tackle the parameter synthesis problem for GSPNs, described as
follows:

“Given a time-bounded temporal formula describing the required behaviour
and a parametric GSPN (pGSPN) whose transition rates and probabilities are
functions of the parameters, automatically find parameter values such that the
satisfaction probability of the formula meets a given threshold, is maximised, or
minimised”.

Importantly, this problem requires effective reasoning about uncountable sets
of GSPNs, arising from the presence of continuous parameter ranges. We show
that, under restrictions on the structure of pGSPNs (i.e. requiring a finite number
of reachable markings or avoiding Zeno behaviour) and on predicates appear-
ing in the temporal formulas, we can describe the dynamics of a pGSPN by a
finite-state parametric CTMC (pCTMC). The parameter synthesis problem for
pGSPNs can be then reduced to the equivalent problem for pCTMCs and thus,
we can employ existing synthesis algorithms that combine computation of prob-
ability bounds for pCTMCs with iterative parameter space refinement in order
to provide arbitrarily precise answers [5]. We further demonstrate that pGSPNs
provide an adequate modelling formalism for designing complex systems where
parameters of the environment (e.g., request inter-arrival times) and those inher-
ent to the system (e.g. service rates) can be meaningfully expressed as intervals.
We also show that pGSPNs can be used for the in silico analysis of stochastic
biochemical systems with uncertain kinetic parameters.

The main contribution of the paper can be summarised as follows:

– formulation of the parameter synthesis problem for GSPNs using pGSPNs;
– solution method based on translation of pGSPNs into pCTMCs; and
– evaluation on two case studies from different domains, through which we

demonstrate the usefulness and effectiveness of our method.

2 Problem Formulation

In our work we consider the problem of parameter synthesis for Generalised
Stochastic Petri Nets (GSPNs). GSPNs naturally combine stochastic (i.e. timed)
transitions and immediate (i.e. untimed and probabilisitic) transitions [4] and
thus provide an adequate formalism for modelling engineered and biological sys-
tems alike. Below we introduce the model of parametric GSPNs (pGSPNs), which
extends GSPNs with parameters that affect transitions rates and probabilities.

Definition 1 (pGSPN). Let K be a set of parameters. A pGSPN over K is a
tuple (L, T,A,Min,R,P), where:

– L is a finite set of places inducing a set of markings M , where for each
m ∈ M,m = (m1,m2, . . . ,mn) ∈ R

n, with n = |L|;
– T = Tst ∪ Tim is a finite set of transitions partitioned into stochastic tran-

sitions Tst and immediate transitions Tim;
– A ⊆ (P ×T )∪(T ×P ) is a finite set of arcs connecting transitions and places;
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– min ∈ M is the initial marking;
– R :Tst →(M →R[K]) is the parametric, marking-dependent rate matrix, where

R[K] is the set of polynomials over the reals R with variables k ∈ K;
– P :Tim →(M →R[K]) is the parametric, marking-dependent probability matrix.

The domain of each parameter k ∈ K is given by a closed real interval
describing the range of possible values, i.e., [k⊥, k�] ⊆ R. The parameter space P
induced by K is defined as the Cartesian product P =×k∈K

[k⊥, k�]. Subsets of
P are called subspaces. Given a pGSPN and a parameter space P, we denote with
NP the set {Np | p ∈ P} where Np = (L, T,A,Min,Rp,Pp) is the instantiated
GSPN obtained by replacing the parameters in R and P with their valuation
in p. The rate (probability) matrix for marking m and parameter valuation p is
denoted by Rm,p (Pm,p).

For all markings m ∈ M reachable from min, we require that: (1) For all
t ∈ Tst, it holds that either Rp,m(t) > 0 for all p ∈ P, or Rp,m(t) = 0 for all
p ∈ P. (2) For all t ∈ Tim it holds that either Pp,m(t) > 0 for all p ∈ P or
Pp,m(t) = 0 for all p ∈ P, and

∑
t∈Tim

Pp,m(t) = 1. Note that Rp,m(t) > 0
(Pp,m(t) > 0, respectively) if and only if the transition t is enabled, i.e. there
is a sufficient number of tokens in each of its input places. In other words,
parameters do not affect the enabledness of transitions. Further, we use the
notion of capacity C to indicate, for each place l ∈ L, the maximal number of
tokens C(l) in l, thus determining when a transition is enabled.

Vanishing and tangible markings. As in GSPNs, a marking m ∈ M is called
vanishing if there is an immediate transition t ∈ Tin that is enabled in m,
or tangible otherwise. In a vanishing marking m, all stochastic transitions are
blocked, and the enabled immediate transitions are fired in zero time according
the probability distribution Pp,m. To avoid Zeno behaviour, we require that there
are no cycles over vanishing markings. In a tangible marking m, the sojourn
time is exponentially distributed with average time Ep(m)−1 where Ep(m) =∑

t∈Tst
Rp,m(t) is the exit rate. The probability that a transition t ∈ Tst is fired

first is given by Rp,m(t) · Ep(m)−1.

Specification language. We consider the time-bounded fragment of Continuous
Stochastic Logic (CSL) [2] to specify behavioural properties of GSPNs, with the
following syntax. A state formula Φ is given by Φ ::= true | a | ¬Φ | Φ ∧ Φ |
P∼r[φ] | P=?[φ], where φ is a path formula, given by φ ::=X Φ | Φ UI Φ, a is an
atomic proposition defined over the markings m ∈ M,∼∈ {<,≤,≥, >} , r ∈ [0, 1]
is a probability threshold, and I ∈ R is a bounded interval. As explained in [5],
our parameter synthesis methods also support time-bounded rewards [11], which
we omit in the following for the sake of clarity.

Let φ be a CSL path formula and NP be a pGSPN over a space P. We denote
with Λφ : P → [0, 1] the satisfaction function such that Λφ(p) = P=?[φ], that is,
Λφ(p) is the probability of φ being satisfied over the GSPNs Np. Note that the
path formula φ may contain nested probabilistic operators, and therefore the
satisfaction function is, in general, not continuous.
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Synthesis problems. We consider two parameter synthesis problems: the thresh-
old synthesis problem that, given a threshold ∼r and a CSL path formula φ, asks
for the subspace where the probability of φ meets ∼r; and the max synthesis
problem that determines the subspace within which the probability of the input
formula is guaranteed to attain its maximum, together with probability bounds
that contain that maximum. Solutions to the threshold synthesis problem admit
parameter points left undecided, while, in the max synthesis problem, the actual
set of maximising parameters is contained in the synthesised subspace. Impor-
tantly, the undecided and maximising subspaces can be made arbitrarily precise
through user-defined tolerance values.

For NP , φ, an initial state s0, a threshold ∼r and a volume tolerance ε > 0,
the threshold synthesis problem is finding a partition {T ,U ,F} of P, such that:
∀p ∈ T : Λφ(p) ∼ r;∀p ∈ F : Λφ(p) �∼ r; and vol(U)/vol(P) ≤ ε, where U is an
undecided subspace and vol(A) =

∫

A
1dμ is the volume of A.

For NP , φ, s0, and a probability tolerance ε > 0, the max synthesis problem is
finding a partition {T ,F} of P and probability bounds Λ⊥

φ , Λ�
φ such that: ∀p ∈

T : Λ⊥
φ ≤ Λφ(p ≤ Λ�

φ ; ∃p ∈ T : ∀p′ ∈ F : Λφ(p) > Λφ(p′); and Λ�
φ − Λ⊥

φ ≤ ε.
The min synthesis problem is defined in a symmetric way to the max case.

3 Parameter Synthesis for Stochastic Petri Nets

First, we introduce a novel automated translation from pGSPNs into parametric
CTMCs (pCTMCs), able to preserve important quantitative temporal proper-
ties. This allows us to reduce the pGSPN synthesis problem to the equivalent
pCTMC synthesis problem. Second, we provide an overview of our recent results
on parameter synthesis for CTMCs [5].

3.1 Translation of pGSPNs into pCTMCs

CTMCs represent purely stochastic processes and thus, in contrast to GSPNs,
they do not allow any immediate transitions. The dynamics of a CTMC is given
by a transition rate matrix defined directly over its set of states S. Parametric
CTMCs [5] extend the notion of CTMCs by allowing transitions rates to depend
on model parameters. Formally, for a set of parameters K, the parametric rate
matrix is defined as M : S × S → R[K]. Similarly as in the case pGSPNs, for a
given parameter space P the pCTMC CP defines an uncountable set {Cp | p ∈ P}
where Cp = (S,Mp, s0) is the instantiated CTMC obtained by replacing the
parameters in M with their valuation in p and where s0 denotes the initial
state.

We introduce a translation method from pGSPNs to pCTMCs that builds
on the translation for non-parametric GSPNs [4] and exploits the fact that
parameters do not affect the enabledness of transitions and thus do not alter
the set of reachable markings. Therefore we can map the set of markings M
in the pGSPN NP to the set of states S in the pCTMC CP . This mapping
allows us to construct the parametric rate matrix M of the pCTMC such
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Fig. 1. Left: Merging at the level of places. Right: Merging at the level of markings.

that CP preserves the dynamic of pGSPN over tangible markings. Formally,
for p ∈ P,Mp(m,m′) =

∑
t∈T (m,m′) Rp,m(t), where T (m,m′) = {t ∈ Tst | m′

is a marking obtained by firing t in marking m}.
The crucial difficulty of this translation lies in handling the vanishing mark-

ings. Since any state in a CTMC has a non-zero waiting time, in order to map
pGSPN markings into pCTMC states we need to eliminate the vanishing mark-
ings. Specifically, for each vanishing marking, we merge the incoming and out-
going transitions and combine the corresponding parameters (if present).

Although we merge at the level of markings, we first explain the intuition
of the merging at the level of places, which is illustrated in Fig. 1 (left). The
reasoning behind this operation is that the immediate probabilistic transitions
t2 and t3 take zero time and thus they do not affect the total exit rate in
the resulting, merged transitions t4 and t5, i.e., R(t1) = R(t4) + R(t5). The
transition probabilities k2 and 1−k2 of t2 and t3, respectively, are used to deter-
mine the probability that the transition t4 and t5, respectively, is fired when the
sojourn time in the place 1 is passed.

Since the transition rates and probabilities are marking-dependent, elimina-
tion and merging is actually performed at the level of markings. Figure 1 (right)
illustrates these operations. The principle is same as in the case of merging at
the level of places, but it allows us to reflect the dependencies on the markings
and thus to preserve the dynamic of pGSPN over tangible markings. Clearly, we
cannot reason about the vanishing markings and thus trajectories in pGSPN that
differ only in vanishing markings are indistinguishable in the resulting pCTMC.
To preserve the correctness of our approach we have to restrict the set of proper-
ties. In particular, we support only properties with atomic propositions defined
over the set of tangible markings. This allow us to compute the satisfaction
function Λφ using the satisfaction function Γφ defined over the pCTMC.

3.2 Parameter Synthesis for pCTMCs

We now give an overview of the parameter synthesis method for pCTMCs [5]. The
method builds on the computation of safe bounds for the satisfaction function Γφ.
In particular, for a pCTMC CP , the procedure efficiently computes an interval
[ΓP

⊥ , ΓP
� ] that is guaranteed to contain the minimal and maximal probability

that pCTMC CP satisfies φ, i.e. ΓP
⊥ ≤ minp∈P Γφ(p) and ΓP

� ≥ maxp∈P Γφ(p).
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This safe over-approximation is computed through an algorithm that extends
the well-established time-discretisation technique of uniformization [11] for the
transient analysis of CTMCs, which is the foundation of CSL model checking.
Our technique is efficient because the computation of maximal and minimal
probabilities is based on solving a series of local and independent optimisation
problems at the level of each transition and each discrete uniformisation step.
This approach is much more feasible than solving the global optimisation prob-
lem, which reduces to the optimisation of a high-degree multivariate polynomial.

The complexity of our approach depends on the degree of the polynomials
appearing in the transition matrix M. We restrict to multi-affine polynomial
rate functions for which we have a complexity of O(2n+1 · tCSL), where n is
the number of parameters and tCSL is the complexity of the standard non-
parametric CSL model-checking algorithm, which mainly depends on the size of
the underlying model and the number of discrete time steps (the latter depends
on the maximum exit rate of the CTMC and time bound in the CSL property).
For linear rate functions, we have an improved complexity of O(n · tCSL).

Crucially, the approximation error of this technique depends linearly on the
volume of the parameter space and exponentially on the number of discrete
time steps [5], meaning that the error can be controlled by refining the param-
eter space (i.e. the error reduces with the volume of the parameter region). In
particular, the synthesis algorithms are based on the iterative refinement of the
parameter space P and the computation of safe bounds for Γφ (as per above).

Threshold synthesis. We start with U containing P (i.e. the whole parameter
space is undecided). For each R ∈ U , we compute the safe bounds ΓR

⊥ and ΓR
� .

Then, assuming a threshold ≤r, if ΓR
� ≤ r then for all p ∈ R the threshold

on the property φ is satisfied and R is added to T . Similarly, if ΓR
⊥ > r then

R is added to F . Otherwise, R is decomposed into subspaces that are added
to U . The algorithm terminates when U satisfies the required volume tolerance
ε. Termination is guaranteed by the shape of approximation error.

Max synthesis. The algorithm starts with T = P and iteratively refines T
until the probability tolerance ε on the bounds Λ⊥

φ = Γ T
⊥ and Λ�

φ = Γ T
� is

satisfied. To provide faster convergence, at each iteration it computes an under-
approximation M of the actual maximal probability, by randomly sampling a
set of probability values and setting M to the maximal sample. In this way,
each subspace whose maximal probability is below M can be safely added to F .
Otherwise, R is added to a newly constructed set T and the bounds Λ⊥

φ and
Λ�

φ are updated accordingly. Since that the satisfaction function Λφ is in general
discontinuous, the algorithm might not terminate. This is detected by extending
the termination criterion using the volume tolerance ε.

The complexity of the synthesis algorithms depends mainly on the number of
subspaces to analyse in order to achieve the desired precision, since this number
directly affects how many times the procedure computing the bounds on Γφ has
to be executed. Therefore, complex instances of the synthesis problem can be
computationally very demanding. To overcome this problem, we redesigned the
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sequential algorithms to enable state space and parameter space parallelisation,
resulting in data-parallel algorithms providing dramatic speed-up on many-core
architectures [6]. Thanks to the translation procedure previously described, we
can exploit parallelisation also for the parameter synthesis of GSPNs.

4 Experimental Results

All the experiments were performed using an extended version of the GPU-
accelerated tool PRISM-PSY [6]. They run on a Linux workstation with an AMD
PhenomTM II X4 940 Processor @ 3 GHz, 8 GB DDR2 @ 1066 MHz RAM and
an NVIDIA GeForce GTX 480 GPU with 1.5 GB of GPU memory.

Google File System. We consider a case study of the replicated file system used
in the Google search engine known as Google File System (GFS). The model,
introduced in [3] as a non-parametric GSPN, reproduces the life-cycle of a single
chunk (representing a part of the file) within the file system. The chunk exists
in several copies, located in different chunk servers. There is one master server
that is responsible for keeping the locations of the chunk copies and replicating
the chunks if a failure occurs. In [6] we introduced a parametric version of the
model, manually derived the corresponding pCTMC, and performed parameter
synthesis using the tool PRISM-PSY.

In this paper we exploit the modelling capabilities of pGSPNs and introduce
an extension of the model. In particular, we integrate into the model a message
monitoring inspired by the original paper on GFS [7]: the master server period-
ically send so-called HeartBeat messages to check for chunk inconsistency, i.e.
when a write request occur between a failure and its acknowledgement. Figure 2
(left) depicts the pGSPN describing the parametric model, where the part in the
green-bordered box corresponds to the extension.

We are interested in the probability that the first chunk inconsistency occurs
minutes 15 and 45, and how this probability depends on the rate of the HeartBeat
messages (c check) and the rate of the chunk server failure (c fail). We solve
this as a threshold synthesis problem with threshold ≥30%, path formula φ ≡
(Cinc = 0) U [15,45] (Cinc > 0), parameter intervals c check ∈ [0.01, 10] and
c fail ∈ [0.01, 0.11], and volume tolerance ε = 10%.

Results are shown in Fig. 2 (right), namely, the decomposition of the parame-
ter space into subspaces satisfying the property (green), not satisfying (red), and
uncertain (yellow). The pGSPN has around 139 K states and 740 K transitions,
and the synthesis algorithm required around 11 K time steps and produced 460
final subspaces. The data-parallel GPU computation took 25 min, corresponding
to more than 7-fold speedup with respect to the sequential algorithm.

Mitogen-Activated-Protein-Kinases cascade. In our second case study we con-
sider the Mitogen-Activated-Protein-Kinases (MAPK) cascade [10], one of the
most important signalling pathways that controls molecular growth through acti-
vation (i.e. phosphorylation) cascade of kinases. We use a SPN model introduced
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Fig. 2. Left: pGSPN for a new variant of the GFS model [3]. Red boxes with question
marks indicate parametric transitions. Right: Results of the threshold synthesis. (Color
figure online)

in [9] and study how two key reactions, namely activation by MAPKK-PP
and deactivation by Phosphatase, affect the activation of the final kinases.
We want to find rates of these reactions that maximise the probability that,
within 50 and 55 min, the number of the activated kinases is between 25%
and 50%. To this purpose, we formulate a max synthesis problem for prop-
erty φ ≡ G[50, 55] (25% ≤ γ ≤ 50%), where γ is the percentage of the activated
kinases. The interval for both reaction rates is [0.01, 0.1] and the probability
tolerance ε = 5%.

Fig. 3. Results of the max synthesis for the
MAPK cascade. (Color figure online)

Figure 3 illustrates the results
of max synthesis, namely, it shows
the decomposition of the parame-
ter space into subspaces maximis-
ing the property (green) and not
maximising (red). The bounds on
maximal probability are 57.4% and
62.4%. The pGSPN has around 100 K
states and 911 K transitions, and the
synthesis algorithm required around
121 K time steps and produced 259
final subspaces. The parallel GPU
computation took 5 h, correspond-
ing to more than 22-fold speedup
with respect to the sequential CPU
algorithm.

5 Conclusion

We have developed efficient algorithms for synthesising parameters in GSPNs,
building on the automated translation of parametric GSPNs into parametric
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CTMCs. The experiments show that our approach allows us to exploit existing
data-parallel algorithms for scalable synthesis of CTMCs, while retaining the
modelling power provided by parametric GSPNs.
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5. Češka, M., et al.: Precise parameter synthesis for stochastic biochemical systems.
Acta Informatica 54(6), 589–623 (2017)
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