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Abstract. This paper introduces the analysis of pattern properties by
means of the two-sided Reed-Muller-Fourier transform. Patterns are
modelled as matrices of pixels and an integer coding for the colors is
chosen. Work is done in the ring (Zp,⊕, ·), where p > 2 is not necessarily
a prime. It is shown that the transform preserves the (diagonal) sym-
metry of patterns, is compatible with different operations on patterns,
and allows detecting and localizing noise pixels in a pattern. Finally, it
is shown that there are patterns which are fixed points of the transform.

1 Introduction

The Reed-Muller-Fourier transform (RMF), defined in the ring (Zp,⊕, ·), p an
integer larger than 2, was introduced in [1] aiming to unify relevant character-
istics of the Reed-Muller transform (RM) and the Discrete Fourier transform
(DFT), to be applied in the non-binary integer domain allowing to obtain poly-
nomial expressions for multiple-valued functions. In the binary case, the RM
transform has a self inverse matrix representation, which is lower triangular,
and exhibits a Kronecker product structure [2–4]. When the RM transform was
extended to the non-binary domain [5], it retained the property of realizing a
bijection in the set of functions for a given valuedness and arity, but it lost the
lower triangular structure and its self inversion. The DFT, however is lower tri-
angular in all integer domains. To obtain the desired combination of properties
for the RMF transform, the Gibbs algebra defined in terms of the Gibbs multi-
plication for the Instant Fourier Transform [6] was selected and extended to the
non-binary domain in [1].

In the context of patterns, let Γ be a finite ordered set of colors with car-
dinality p, and let β : Γ → Zp be a bijection assigning an element of Zp to
each color in such a way that the ordering of the colors is preserved. Pixels are
atoms of a picture and carry a single color. (The size of a pixel is defined accord-
ing to requirements of geometric and chromatic resolution for a pattern under
consideration.) A pattern is an array of pixels. In this paper, a pattern is also
represented as a matrix with entries from Zp obtained by applying β to every
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pixel of a picture. Operations among patterns are conducted on the correspond-
ing numerical matrices in the ring (Zp,⊕, ·). Pattern attributes associated to a
matrix are understood as attributes of the pattern represented by such a matrix.

2 Formalisms

In what follows, some properties of patterns will be studied in a transform
domain. In this paper, we select the Reed-Muller-Fourier (RMF) transform
[1,2,7]. It is known that this transform matrix is lower triangular, self-inverse
and has a Kronecker product structure [8]. Moreover, this transform is based on
the Gibbs convolutional product [4]. Figure 1 shows the basic transform matrices
for p = 4, 5, and 6 as will be used in this paper.

R3(1) =

⎡
⎢⎣
3 0 0 0
3 1 0 0
3 2 3 0
3 3 1 1

⎤
⎥⎦ R4(1) =

⎡
⎢⎢⎢⎣

4 0 0 0 0
4 1 0 0 0
4 2 4 0 0
4 3 2 1 0
4 4 4 4 4

⎤
⎥⎥⎥⎦ R5(1) =

⎡
⎢⎢⎢⎢⎢⎣

5 0 0 0 0 0
5 1 0 0 0 0
5 2 5 0 0 0
5 3 3 1 0 0
5 4 0 4 5 0
5 5 2 4 1 1

⎤
⎥⎥⎥⎥⎥⎦
.

p = 4 p = 5 p = 6

Fig. 1. Basic RMF transform matrices for and p = 4, 5, and 6.

The following notation will be used in the rest of the paper: A(n) will denote
a (pn × pn) matrix (and pattern). A(n,m) will denote a (pn × pm) matrix (and
pattern). For the RMF-transform matrix, the notation Rp(n) will be used. (If a
related statement is valid for all p, the index p may be omitted.)

For a given p and n, the RMF-transform matrix is defined as the n-th Kro-
necker power of the basic RMF-transform matrix Rp(1). Therefore,

Rp(n) =
n⊗

i=1

Rp(1).

H(n) will represent a matrix with all entries equal to 1 (H for “high”) and
L(n) will denote a matrix with all entries equal to 0 (L for “low”). Finally, C(n)
will represent a matrix with all entries equal to 0, except for the element at the
left upper corner, where the entry equals 1 (leading to the name “corner”). For
the analysis of patterns, a two-sided RMF-transform will be used (see definition
below), a transformed pattern will be called “spectrum” and will be identified by
Σ. Unless otherwise specified, all operations will be done in the ring (Zp,⊕, ·).
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3 Analysis of Patterns by Using the RMF-Transform

In this section, we will present some considerations related to the application of
the RMF-transform to analysis of patterns.

Definition 1. Given a pattern A(n,m), its spectrum ΣA(n,m), is calculated as
follows

ΣA(n,m) = Rp(n) · A(n,m) · (Rp(m))T , (1)

where the superindex T denotes the transposition of a matrix.

Lemma 1. The inverse RMF transform recovers a pattern from its spectrum as
follows

A(n,m) = Rp(n) · ΣA(n,m) · (Rp(m))T , (2)

Proof: Since Rp(n) is its own inverse, the assertion follows by applying Rp(n)
and (Rp(m))T at both sides of Eq. (1).

Lemma 2. For all p the RMF spectrum of a square symmetric pattern is sym-
metric.

Proof: If A(n) is symmetric, it holds that A(n) = (A(n))T . Then,

ΣA(n) = R(n) · A(n) · (R(n))T = R(n) · (A(n))T · (R(n))T

= 〈R(n) · A(n) · (R(n))T 〉T = (ΣA(n))T .

Lemma 3. If Q(n,m) = A(n,m) ⊕ B(n,m) then ΣQ(n,m) = ΣA(n,m) ⊕
ΣB(n,m).

Proof:

ΣQ(n,m) = R(n) · Q(n,m) · (R(m))T

= R(n) · (A(n,m) ⊕ B(n,m)) · (R(m))T

= R(n) · A(n,m) · (R(m))T ⊕ R(n) · B(n,m) · (R(m))T

= ΣA(n,m) ⊕ ΣB(n,m).

See examples in Fig. 2.

Lemma 4. The spectrum of the Kronecker product [3,4] of two patterns equals
the Kronecker product of the respective spectra. If Q(n + r,m + s) = A(n,m) ⊗
B(r, s) then ΣQ(n + r,m + s) = ΣA(n,m) ⊗ ΣB(r, s).

Proof:

ΣQ(n + r,m + s) = R(n + r)Q(n + r,m + s)(R(m + s))T

= (R(n) ⊗ R(r))(A(n,m) ⊗ B(r, s))(R(m) ⊗ R(s))T .



The Reed-Muller-Fourier Transform Applied to Pattern Analysis 257

Fig. 2. Example of Lemmas 2 and 3 with p = 4 and n = 1. (a) The spectrum of a
symmetric pattern is symmetric, (b) the spectrum of the sum of two patterns equals
the sum of their spectra.

With the compatibility theorem between Kronecker and matrix products [3],

ΣQ(n + r,m + s) = (R(n)A(n,m)R(m)T ) ⊗ (R(r)B(r, s)(R(s)T )
= ΣA(n,m) ⊗ ΣB(r, s). (3)

Notice that Eq. (3) may also be written as

ΣQ(n + r,m + s) = (I(n)ΣA(n,m)I(m)) ⊗ (R(r)B(r, s)(R(s)T )
= (I(n) ⊗ R(r))(ΣA(n,m) ⊗ B(r, s))(I(m) ⊗ (R(s)T )
= (I(n) ⊗ R(r))(ΣA(n,m) ⊗ B(r, s))(I(m) ⊗ (R(s))T . (4)
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Since (I(n) ⊗ R(r)) = Diag(R(r),R(r), . . . ,R(r)) let it be called “the
n-Block RMF transform”. Then the following is obtained:

Corollary 1. The RMF spectrum of the Kronecker product of two patterns
A(n,m) and B(r, s), equals the n-Block RMF transform based spectrum of the
Kronecker product of the (simple) RMF spectrum of the first pattern and the
second pattern.

Lemma 5.
ΣC(m,n) = H(m,n).

Proof: C(0, n) = [1, 0, . . . , 0]. ΣC(0, n) = R(0)C(0, n)RT (n) = [1, 0, . . . , 0]
RT (n).

Since [1, 0, . . . , 0]RT (n) returns the first row of Rt(n), which equals H(0, n)
-(see Fig. 2)- then C(0, n) = H(0, n). Similarly, C(m, 0) = H(m, 0). Considering
that C(m,n) = C(m, 0) ⊗ C(0, n), with Lemma4 follows that:

ΣC(m,n) = ΣC(m, 0) ⊗ ΣC(0, n) = H(m, 0) ⊗ H(0, n) = H(m,n). (5)

Remark 1. Lemma 5 is a two-dimensional discrete extension of the Fourier
transform of an impulse.

Corollary 2.

ΣH(m,n) = ΣH(m, 0) ⊗ ΣH(0, n) = C(m, 0) ⊗ C(0, n) = C(m,n).

Definition 2. For a given pair (i, j), i ∈ Zpm and j ∈ Zpn , let P(m,n) denote a
“perturbation” matrix with a single 1 entry at the position (i, j), otherwise hav-
ing 0 entries. Then, P(m,n) = [0, 0, . . . , 0, 1, 0, . . . , 0] ⊗ [0, 0, . . . , 0, 1, 0, . . . , 0]T ,
where the vectors are of length pm and pn respectively, the first 1 is at the j-th
position and the second, at the i-th position.

Lemma 6. For a given pair (i, j) as in Definition 2, in the RMF spectrum
ΣP (m,n) the first i rows are 0-rows and the first j columns are 0-columns. The
entry at the position (i, j) has the absolute value 1 and the remaining entries are
mostly non-zero entries.

Proof: Let P(0, n) = [0, 0, . . . , 0, 1, 0, . . . , 0], with the 1 at the j-th position.
Then,

ΣP (0, n) = R(0) · [0, 0, . . . , 0, 1, 0, . . . , 0] · RT (n)
= [1] · [0, 0, . . . , 0, 1, 0, . . . , 0] · RT (n)
= [0, 0, . . . , 0, 1, 0, . . . , 0]RT (n).

It may be seen that the product [0, 0, . . . , 0, 1, 0, . . . , 0]· RT (n) extracts the j-th
row of RT (n). Since RT (n) is upper triangular -(recall Fig. 2)- the j-th row has
a prefix of j 0s and the first non-zero entry equals (−1)j−1 mod p.
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Similarly, P(m, 0) = [0, 0, . . . , 0, 1, 0, . . . , 0]T , with the 1 at the i-th position.
Then,

P(m, 0) = R(m) · [0, 0, . . . , 0, 1, 0, . . . , 0]T · RT (0)
= R(m) · [0, 0, . . . , 0, 1, 0, . . . , 0]T .

The product R(m)[0, 0, . . . , 0, 1, 0, . . . , 0]T extracts the i-th column of R(m).
Since R(m) is lower triangular, its i-th column has a prefix of i 0s and the first
non-zero entry equals (−1)i−1 mod p.

It may be seen that P(0, n)⊗ P(m, 0) will have the first i rows and the first
j columns with 0 entries. Moreover, at (i, j) the entry has magnitude 1 mod p.

Example 1. For p = 6, Fig. 3 shows P(1) with (i, j) = (4, 2).

Fig. 3. Example of the effect of a perturbation matrix.

It may be seen that the “left upper non-zero” pixel in the spectrum indicates
the position of the perturbing pixel. This property may be used to detect and
localize a noise pixel.

Definition 3. A mosaic is the Kronecker product of H(n,m) and a basic pattern
B(r, s).

Example 2. Let p = 4 and (for space limitations) let n = 1 for H. Then define
M(1 + r, 1 + s) = H(1) ⊗ B(r, s). From Lemma4 and Corollary 2 follows that
ΣM (1 + r, 1 + s) = ΣH(1) ⊗ ΣB(r, s) = C(1) ⊗ ΣB(r, s).
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M(1 + r, 1 + s) =

⎡
⎢⎢⎣

B(r, s) B(r, s) B(r, s) B(r, s)
B(r, s) B(r, s) B(r, s) B(r, s)
B(r, s) B(r, s) B(r, s) B(r, s)
B(r, s) B(r, s) B(r, s) B(r, s)

⎤
⎥⎥⎦ ,

ΣM (1 + r, 1 + s) =

⎡
⎢⎢⎣

ΣB(r, s) L(r, s) L(r, s) L(r, s)
L(r, s) L(r, s) L(r, s) L(r, s)
L(r, s) L(r, s) L(r, s) L(r, s)
L(r, s) L(r, s) L(r, s) L(r, s)

⎤
⎥⎥⎦ .

It becomes apparent that if a random noise pixel is added to the mosaic
during the building process, with Lemma3, the 0-region of the spectrum will be
clearly “contaminated”, thus detecting the presence of a noise pixel. Moreover
the position of the upper left corner of the non-zero contaminating region clearly
localizes the noise pixel.

Remark 2. The matrix which has a 1-entry at the right lower corner being oth-
erwise 0 is a fixpoint of the two-sided RMF transform. Notice that this may be
interpreted as a consequence of Lemma 6 and, therefore, is valid for all p. Addi-
tional examples of fixed points are shown in Fig. 4. Recall that with Lemmas 3
and 4 new (and larger) fixed points may be generated.

Fig. 4. Examples of some fixed points for p = 4 and n = 1.

4 Conclusions

For the first time the RMF transform has been applied to analyze properties
of patterns. Possibly the most relevant result refers to the possibility of both
detecting and localizing noise pixels in patterns.
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