
Facilitating Evolutionary Algorithm Analysis
with Persistent Data Structures

Erik Pitzer1(B) and Michael Affenzeller1,2

1 Department Software Engineering, University of Applied Sciences Upper Austria,
Softwarepark 11, 4232 Hagenberg, Austria

{erik.pitzer,michael.affenzeller}@fh-hagenberg.at
2 Institute for Formal Models and Verification, Johannes Kepler University,

Altenbergerstr 68, 4040 Linz, Austria

Abstract. Evolutionary algorithm analysis is often impeded by the
large amounts of intermediate data that is usually discarded and has
to be painstakingly reconstructed for real-world large-scale applications.
In the recent past persistent data structures have been developed which
offer extremely compact storage with acceptable runtime penalties. In
this work two promising persistent data structures are explored in the
context of evolutionary computation with the hope to open the door to
simplified analysis of large-scale evolutionary algorithm runs.

1 Introduction

Evolutionary algorithms especially those that employ a whole population of solu-
tion candidates such as e.g. evolution strategy [12] or genetic algorithms [7] are
very popular methods for solving complex problems. However, typical optimiza-
tion scenarios often require long evolutionary processes with thousands or even
billions of evaluations. In practice, this means that many methods are developed
using rather small sample problems, i.e. to test and tune parameters or select a
suitable algorithm variant. Later, the developed technique is applied to a much
bigger problem, in the hope that these properties are – at least somewhat –
preserved and the algorithm still performs well. For the smaller scenarios, the
algorithm runs can be closely supervised and the performance can be tracked
and recorded as the amount of data is still manageable. However, as problems
approach practical sizes, analysis and continuous tracking involves prohibitively
large volumes of data. For example, an algorithm with a population of 100 solu-
tion candidates solving a problem with 100 dimensions over one million gener-
ations would require storage of 1010 elements which are at least 10 to 40 GB
depending on the data type for a single run. The idea of this work is to leverage
persistent data structures and their nature to reuse old parts when modified,
to track historical values without using too much additional space. In essence,
we get a data structure that technically only saves differences between differ-
ent versions but practically provides full copies of all versions with very little
overhead.

c© Springer International Publishing AG 2018
R. Moreno-Dı́az et al. (Eds.): EUROCAST 2017, Part I, LNCS 10671, pp. 416–423, 2018.
https://doi.org/10.1007/978-3-319-74718-7_50



Facilitating Evolutionary Algorithm Analysis 417

2 Persistent Data Structures

The first prototype of persistent data structures, the persistent linked list, can be
dated back to 1955 where it was the primary data structure of the Information
Processing Language (IPL) [10] one important predecessor of Lisp [8,9]. It can
be used to illustrate the idea of persistent data structures. As shown in Fig. 1,
in a persistent data structure, parts of “old” structures can be reused inside
new structures as the old data and the old structure cannot change. While it is
obvious that this works for immutable linked lists it is much harder to imagine
for arrays or other commonly-used data structures.

Fig. 1. Example of shared structure in singly-linked list

As computer processors have received fewer improvements in speed but more
improvements in multi core execution [13], parallel processing has become not
only more prominent but almost a necessity to fully utilize current hardware [1].
This, in turn, has revived interest in functional languages [5] that typically use
immutable data structures. In the same vein, many classically imperative data
structures have received a functional pendant [11]. To achieve similar run time
complexity, however, functional data structures need additional or different tricks
that rely mostly on their immutability and reuse of existing parts of the “old”
copy of the data structure as immutable data has to be copied in case any
modification is made. With these tricks, the data does not actually need to
be copied but can merely be referenced with great savings in both speed (the
original intention) and also space (the intention of this work). In particular, two
variants of immutable arrays with structure sharing are explored in this work.
These are Array Mapped Tries (AMTs) [2] and Relaxed Radix Balanced Trees
(RRB-Trees) [3].

AMTs are an extension of radix trees which in turn are a compact variant
of prefix trees [4]. The idea of a radix tree is to identify all elements by index.
This index is subsequently split across the levels of a tree depending on the radix
or the fixed maximum number of children of each tree as shown in Fig. 2. The
benefit of this structure in comparison to e.g. a binary search tree is that no
comparisons are necessary to find the correct element, the index of the element
is sufficient to completely navigate the tree to any leaf. When this structure is
used for hash maps, it can be beneficial to allow any 32 bit integer value; In
this case not all slots might be needed. This fact is exploited by Hash Array



418 E. Pitzer and M. Affenzeller

Mapped Tries that do not contain all pointers in all nodes, but only those that
lead further down to existing leaf nodes [2]. A clever use of the Hamming Weight
of the subindex often called population count (popcount) operation – available
on many processors as a single instruction – makes the lookup of which children
actually exist particularly cheap [6].

Fig. 2. Example of radix-4 tree

Most importantly however, this structure allows the reuse of parts of the
“array” it is representing when making copies or changes. As shown in Fig. 3
changing a single element in this immutable tree does not require copying the
whole tree. As all data is also immutable, large parts of the tree can be reused.
This is what makes this data structure so interesting for keeping a history. While
the modified data structure has the same structure as a “fresh” tree, it can reuse
most of the data from its previous version. In essence, we are saving deltas but
accessing complete data structures with minimal overhead. As described in [2]
updating or accessing an element in this radix tree with typical radix size 32 is
in the order of log32 N . Moreover as N ≤ 7 for any index in the range of a 32
bit integer, the overhead can be considered practically constant. This is a great
bonus when tracking modifications of large populations over many generations.

Fig. 3. “Modification” of immutable radix-4 tree

3 Persistent Evolutionary Operations

Every single point modification leads to a short chain of pointers to the changed
location, reusing many pointers along the way. Therefore, with constant overhead
any single point mutation can be tracked. However, in evolutionary algorithms,
frequently a whole slice of an array is updated. An easy fix for this situation



Facilitating Evolutionary Algorithm Analysis 419

would be to discard intermediate trees and only keep the “snapshots” that rep-
resent actually-visited solution candidates of the evolutionary search process.
However, in addition, many evolutionary algorithms, in particular genetic algo-
rithms, use crossover operations that take information from several individuals
and combine them. Using AMTs it would have to be decided which individual
is the one being modified with the information of other individuals incorporated
as a series of (mostly discarded) single point modifications. This is unfortunate
as the overhead of this operation would be linear with the size of the individual
arrays. Fortunately, another variation of radix trees, so called, Relaxed Radix
Balanced Trees (RRB-Trees) have been proposed in [3]. This variant allows slic-
ing trees and even joining them back together in practically constant time, sim-
ilar to what AMTs allow for single point modifications.

RRB-Trees enable this modification by slightly relaxing the radix requirement
and allowing index shifts on some of the nodes. This enables, for example, the
removal of nodes in the beginning without having to rebuild the remaining tree
as shown in Fig. 4.

Fig. 4. Removal of the first two elements in an RRB-Tree (Skipping)

The most complex operation is concatenating two trees, but again the over-
head is practically constant for a single join operation. For this operation an
error bound can be chosen, that allows more or fewer empty slots in the inter-
mediate nodes when two trees are joined. Using practically constant operations
for splitting and joining yields practically constant time (and space) for crossover
operations as they occur in genetic algorithms [7]. Every crossover operation can
now be stored as a single “delta” reusing parts from both parents and therefore
requiring only constant additional storage for each operation. It has to be noted
that the involved computational overhead is significant, however. Array copying
is highly optimized and can hardly be outdone by following pointers in a tree
even for large trees. One could imagine that copying 1000 values from one array
to another must be slower than updating a few pointers on the heap. However,
the memory locality and its caching effects give a huge advantage to arrays in
terms of speed. The real advantage of trees lies in their space savings. More-
over, in evolutionary algorithms, the internal data handling such as copying and
modifying of solution candidates is hardly an issue as it is usually completely
dwarfed in comparison to the cost of a solution candidate’s fitness evaluation.



420 E. Pitzer and M. Affenzeller

Figure 5 shows an example of a crossover operation on two RRB-Trees A
and B. For the sake of simplicity, this time, only a radix-2 tree is shown. As
can be seen, large parts of the original data can be reused. In this – admittedly
lucky – example even each leaf node can be reused as-is. In general, only two
logarithmic “paths” from the glue points to the root have to be newly generated.
All remaining data and data structure parts can always be reused.

Fig. 5. Crossover of two RRB-Trees

As an extension to this method, other crossover variants can be imple-
mented with reduced memory consumption. Obviously, two-point or multi-point
crossover will work the same and other crossover operators that reuse slices of
the original solution candidates will also benefit from this scheme, e,g, the edge
recombination crossover [15]. Only at the fusion points, new nodes might become
necessary to sufficiently satisfy the (relaxed) radix constraints of the tree nodes,
depending on the errors parameter E that specifies how many slots may remain
empty in any internal node.

Another rather easy extension is to allow (partial) reversal of the represented
arrays. This can be achieved by simply replacing a node at a higher level with
a special node that marks the reversal of all indexes as shown in Fig. 6, where
a continuous array is shown using a reverse node. This node can be used as the
intermediate node at the top of a reversed subtree, supporting operations such
as partial inversion.

4 Experimental Results

We have implemented both Array Mapped Tries (AMTs) as well as Relaxed
Radix Balanced Trees (RRB-Trees) and subjected them to different test scenar-
ios. Our implementation of AMTs has been integrated into the open-source opti-
mization platform HeuristicLab1 [14]. In HeuristicLab all optimization-relevant
1 http://dev.heuristiclab.com in the branch PersistentDataStrcutures.

http://dev.heuristiclab.com


Facilitating Evolutionary Algorithm Analysis 421

Fig. 6. Inversion-based operations in RRB-Trees

array data structures are derived from the generic class ValueTypeArray<T>
which – unsurprisingly – uses regular C# arrays internally. We have replaced
these regular arrays with our implementation ArrayMappedTrie<T>, or more
precisely with a wrapper called HistoryArray<T> that can either automatically
make snapshots after a specified number of modifications or with the help of a
so-called Analyzer inside HeuristicLab, that is typically called once per genera-
tion or iteration in different algorithms. Surprisingly, the run-time of the tested
optimization algorithms creating snapshots of all intermediate versions did not
increase in comparison to using plain C# arrays. It seems that the additional
effort required to navigate the tree when setting and getting values is offset by
the benefit that the (frequent) cloning that is done in HeuristicLab is a constant
operation now.

Table 1a shows the runtime and most importantly the space required to
record a series of one million mutations on a vector of size 1000. It has to be
noted, that the AMT implementation always uses full depth (7), while the RRB
implementation dynamically adapts depth to the actual maximum index. It can
be seen, that the trees use significantly more time than the plain array. For small
mutations it is beneficial to have little duplication and therefore use a smaller
radix (node size). On the other hand a smaller radix has more overhead, i.e.
more steps, to reach the leaves. In this scenario, radixes 4, 8 and 16 appear to
provide the best compromises between speed and size. In Table 1b the results for
crossover are shown. Obviously, using more complicated data structures causes a
significant penalty in run time when looking purely at data manipulation oper-
ations. In this case, the best tree is slower by a factor of 35, however, using less
than a third of the storage. For purely crossover-based workloads, all RRB trees
between radix 2 and 16 provide a pareto-optimal compromise between speed and
size. Interestingly, in this case the more relaxed trees i.e. error 1 and 2 do not
benefit from reduced run-time.

The real benefits of tree-based structures, appear unfortunately only for
larger data structures which are less common in practice. In theses cases, as
shown in Fig. 7 however, the tries could even outperform plain arrays on muta-
tions and can compete very well on crossovers even in terms of speed.

Finally it has to be noted that in population-based algorithms, where
“younger” solution candidates contain much of the genetic material of older
ones, obtained by recombination, the ratio of reuse could be even higher as not
only two directly related individuals share the same genetic material but many
or almost all in later generations.



422 E. Pitzer and M. Affenzeller

Table 1. One million operations (mutations and crossovers) in a vector of length
1 000: structure parameters are radix and allowed number of skipped pointers, size is
the percentage compared to an array and time is the multiple of array processing times.

no history with history
structure time size time size
AMT/32 38 129% 7.1 54%
RRB/2 72 405% 11.0 28%
RRB/4 42 204% 5.5 22%
RRB/8 33 147% 5.3 23%
RRB/16 24 123% 4.3 27%
RRB/32 25 114% 5.1 39%

(a) mutations

no history with history
structure time size time size
AMT/32/- 678 258% 62 92%
RRB/2/0 814 822% 56 28%
RRB/4/0 673 418% 46 29%
RRB/4/2 544 740% 37 34%
RRB/8/1 525 340% 36 32%
RRB/16/2 523 268% 35 36%
RRB/32/0 572 236% 38 47%

(b) crossovers

(a) mutations (b) crossovers

Fig. 7. Speed vs. size for 10 000 operations on vectors of length 10 000

5 Conclusions

The recent progress in persistent data structures are a godsend for the analysis of
evolutionary algorithms especially the recent addition of split and join operations
enable the implementation of space-efficient crossover tracking. Ideally, this kind
of information recording can be habitually enabled in the future, as it records
changes at a fraction of the cost of previous methods, while incurring acceptable
run-time penalties.

We are working to incorporate RRB-Trees into HeuristicLab and to modify
its evolutionary operators to be able to take full advantage of the history tracking
capabilities of RRB-Trees. This is only an early prototype but we are confident
that the simplified tracking will provide great benefits for the postmortem anal-
ysis of strangely behaving algorithm runs on large problem instances.

Acknowledgements. The work described in this paper was performed within
the COMET Project Heuristic Optimization in Production and Logistics (HOPL),
#843532 funded by the Austrian Research Promotion Agency (FFG).



Facilitating Evolutionary Algorithm Analysis 423

References

1. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The land-
scape of parallel computing research: a view from Berkeley. Electrical Engineer-
ing and Computer Sciences University of California at Berkeley, Technical report
UCB/EECS-2006-183, December 2006

2. Bagwell, P.: Ideal hash trees. Technical report, École Polytechnique Fédéerale de
Lausanne (2001)

3. Bagwell, P., Rompf, T.: RRB-Trees: efficient immutable vectors. Technical report,
École Polytechnique Fédéerale de Lausanne (2011)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

5. Eyler, P.: The rise of functional languages. Linux J. (2007). https://www.
linuxjournal.com/node/1000217

6. Warren Jr., H.S.: Hacker’s Delight, 2nd edn. Addison-Wesley, Reading (2013)
7. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-

gan Press, Ann Arbor (1975)
8. McCarthy, J.: Lisp prehistory - summer 1956 through summer 1958 (1958). http://

www-formal.stanford.edu/jmc/history/lisp/node2.html
9. McCarthy, J.: Recursive functions of symbolic expressions and their computation

by machine, part I. Commun. ACM 3(4), 184–195 (1960)
10. Newell, A., Shaw, J.: Programming the logic theory machine. In: Proceedings of

the Western Joint Computer Conference, pp. 230–240 (1957)
11. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press,

Cambridge (1999)
12. Rechenberg, I.: Evolutionsstrategie - Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)
13. Sutter, H.: The free lunch is over: a fundamental turn toward concurrency in soft-

ware. Dr. Dobbs J. 30(3), 202–210 (2005)
14. Wagner, S., et al.: Architecture and design of the heuristiclab optimization envi-

ronment. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced
Methods and Applications in Computational Intelligence. Topics in Intelligent
Engineering and Informatics, vol. 6, pp. 197–261. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-319-01436-4 10

15. Whitley, D., Starkweather, T., Fuquay, D.: Scheduling problems and traveling sales-
man: the genetic edge recombination operator. In: International Conference on
Genetic Algorithms, pp. 133–140 (1989)

https://www.linuxjournal.com/node/1000217
https://www.linuxjournal.com/node/1000217
http://www-formal.stanford.edu/jmc/history/lisp/node2.html
http://www-formal.stanford.edu/jmc/history/lisp/node2.html
https://doi.org/10.1007/978-3-319-01436-4_10

	Facilitating Evolutionary Algorithm Analysis with Persistent Data Structures
	1 Introduction
	2 Persistent Data Structures
	3 Persistent Evolutionary Operations
	4 Experimental Results
	5 Conclusions
	References




