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Abstract. Bio-inspired algorithms are now becoming powerful methods
for solving many real-world optimization problems. In this paper, we
propose a hybrid approach involving Grey Wolf optimizer (GWO) and
Bat swarm optimizer (BA) for global function optimization problems.
GWO is well known for its balanced exploration/exploitation behavior,
while BA is known to be more exploitative due to its low exploration
ability in some conditions. We use GWO exploration skills to explore
the search space effectively and BA local search capabilities to refine
the solution. In our hybrid algorithm, namely (GWOBA), GWO is used
to explore the problem space alone and pass the best two solutions to
BA to guide its local search, then BA digs deeper and find the best
solution. The new proposed approach has been tested using 30 standard
benchmark functions from CEC2017 benchmark suite. The performance
of the hybrid algorithm has been compared to the original GWO, BA and
the Whale optimization algorithm (WOA). We use a set of performance
indicators to evaluate the efficiency of the method. Results over various
dimensions show the superiority of the proposed algorithm.

Keywords: Optimization · Greywolf optimizer · Bat algorithm
CEC2017 · Hybridization

1 Introduction

In most real-world applications, there is always a need to minimize (cost, time
or waste) or maximize (performance, benefits or profit). Both minimization and
maximization are usually considered the main objectives of optimization prob-
lems. In many cases, traditional deterministic algorithms fail to solve optimiza-
tion problems in practice. Real problems are usually nonlinear, complex and mul-
timodal with many local optima, they might also suffer from complex constraints
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and high number of dimensions, which motivated researchers and scientists to
design non-deterministic optimization algorithms to solve such problems.

Almost all new optimization algorithms are inspired from Nature, hence they
are referred to as nature-inspired algorithms. Some algorithms were inspired
from chemical and physical systems of nature like simulated annealing [9] and
harmony search [6], others were inspired from the success of biological systems
in solving problems like genetic algorithm [7,8] and differential evolution (DE)
[12], while the most popular algorithms were inspired from swarm intelligence
like particle swarm optimization [5], ant colony optimization [3,4], cuckoo search
[16], bat algorithm [15], Greywolf optimizer [10] and firefly algorithm [14].

In this paper, we propose a new hybrid Grey Wolf/Bat optimization algo-
rithm (GWOBA). The proposed algorithm is designed to use the best of GWO
and BA strategies in order to achieve better overall exploration and exploita-
tion behavior. During the first half of iterations, GWO is used to explore the
search space effectively using its high exploration behavior. After GWO is done,
BA which has better exploitation capabilities, is initiated using the best set of
solutions found by GWO and continues searching for the rest of iterations.

The performance of GWOBA is evaluated using 30 benchmark problems of
CEC2017 [1] and is compared to GWO, BA and WOA performance. The results
are evaluated using the guidelines provided in CEC2017 and they clearly indicate
that GWOBA provides better results in most benchmark problems.

2 Preliminaries

In this section, we review the standard metaheuristics: Grey wolf optimizer
(GWO) and bat algorithm. GWO simulates the leadership hierarchy and hunt-
ing procedure of grey wolves in nature proposed by Mirjalili et al. in 2014 [10],
while Bat algorithm was proposed by Xin-She Yang in 2010 [15], inspired by the
echolocation of microbats. Both algorithms have shown superiority over many
other metaheuristics over wide range of applications.

2.1 Grey Wolf Optimizer

GWO algorithm is inspired form the hunting mechanism of grey wolves and
their social hierarchy. The closest wolves (solutions) to the prey (optimum) are
called α wolves. The β and δ wolves are the second and the third best solutions
respectively. Their location is denoted in the search space as Xα, Xβ and Xδ. The
rest of the wolves follow these three wolves as shown in the following equations:

X(t + 1) = Xp(t) − A.|C.Xp(t) − A.X(t)| (1)

where t is the current iteration, A and C are coefficient vectors, Xp is the position
vector of the prey, and X indicates the position vector of a grey wolf. The vectors
A and C are calculated as follows:

A = 2a.r1 − a, C = 2.r2 (2)
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where r1, r2 are random vectors in [0, 1] and the exploration rate (a) is linearly
decreased from 2 to 0 over the course of iterations as shown below:

a = 2 − t.
2

MaxIter
(3)

where t is the current iteration and MaxIter is the total number of iterations
allowed for the optimization. From Eqs. (2) and (3), the random vector A resides
in the interval [−a, a]. Exploration and exploitation are guaranteed by the adap-
tive values of a [10] allowing GWO to transit smoothly between exploration and
exploitation.

Supposing that the α, β and δ wolves have better knowledge about the poten-
tial location of prey, other agents are obliged to update their positions to follow
them.

Dα = |C1.Xα − X|, Dβ = |C2.Xβ − X|, Dδ = |C3.Xδ − X| (4)

where Xα,Xβ , and Xδ are the best three solutions at a given iteration.

X1 = Xα − A1.(Dα), X2 = Xβ − A2.(Dβ), X3 = Xδ − A3.(Dδ) (5)

X(t + 1) =
X1 + X2 + X3

3
(6)

2.2 Bat Algorithm

Bats use echolocation to sense distance and hunt, they emit sound pulses and
process the signal of the echo. They can adjust the wavelength, the emission
rate and the loudness of the emitted pulses. In the Bat algorithm, bats move
randomly with velocity Vi at position Xi with varying wavelength λ and loudness
A0 to search for prey. Virtual bats adjust their position according to the following
equations:

Fi = Fmin + (Fmax − Fmin)β (7)

V t
i = V t−1

i + (Xt
i − X∗)Fi (8)

Xt
i = Xt−1

i + V t
i (9)

Where β is a random vector in the range [0,1] drawn from uniform distri-
bution. X∗ is the current global best location. Fmin and Fmax represent the
minimum and maximum frequency needed depending on the problem. Vi repre-
sents the velocity vector.

Probabilistically a local search is to be performed using a random walk as in
the following equation:

Xnew = X∗ + εAt (10)
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Where At is the average loudness of all bats at this time and ε is a random
number uniformly drawn from [−1, 1].

The updating of the loudness is performed using the following equation:

At+1
i = δAt (11)

Where δ is a constant selected experimentally.
The emission rate ri controls the application of the local search and is

updated using the equation:

rt+1
i = r0i [1 − exp(−γt)] (12)

Where r0i is the initial pulse emission rate and is a constant greater than 0.

3 Proposed Hybrid Grey Wolf-Bat Optimization
Algorithm

The hybrid GWOBA algorithm is about mixing the high exploration skills of
GWO algorithm with the high exploitative properties of BA. First, GWO algo-
rithm is initialized with a random set of solutions then it iterates to find a better
set. After MaxIter/2 iterations, only the best two solutions (Xα,Xβ) are passed
to the bat algorithm (BA) as initial guess to help the algorithm to focus on them.
BA then runs for MaxIter/2 iterations and returns the best solution which is
considered the best solution of the hybrid algorithm.

In order to hybrid GWO and BA algorithms, we needed to make some modi-
fications to both algorithms. The first modification was in GWO algorithm, and
the question was: how many leading wolves do we need? By default GWO algo-
rithm makes use of three leading wolves (alpha, beta and delta) which leads the
rest of the herd to the prey location. In some problems, the three wolves are
located in three different areas within the search space, which slows down the
convergence of the algorithm. After many experiments, we decided to use the
best two solutions only (alpha and beta) to lead the rest of the solutions to the
prey location.

The reason behind this decision is that passing three good solutions to BA
might create a divergence, bats are following the best solution and then keep
following it with a very low chance to switch this best with another far one.
In a three pole function, where one pole is the optimal solution and the other
two poles are just local optimas, if GWO has three leaders, having each leader
settling down in a pole far away from each other, BA will start searching around
them and it might find a best solution around the worst leader and then it will
keep searching around the fake best with a very low chance to get out of the pole.
This is a typical scenario where GWOBA fails to jump out of a local optima.
This modification raised the ability of the algorithm to locate where to search
more precisely and helped our algorithm to have significance over the original
GWO. Equations (4, 5, 6) are modified to be:

Dα = |C1.Xα − X|, Dβ = |C2.Xβ − X| (13)
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X1 = Xα − A1.(Dα), X2 = Xβ − A2.(Dβ) (14)

X(t + 1) =
X1 + X2

2
(15)

The second modification affects Eq. (3), to enhance the exploration capabil-
ities of the wolves, we forced |A| > 1 by decreasing the exploration rate a from
two down to one, so Eq. (3) becomes:

a = 2 − t

MaxIter
(16)

where t is the iteration number and MaxIter is the total number of iterations
allowed for the optimization. The algorithm describing the hybrid GWOBA algo-
rithm is outlined in Algorithm 1.

Algorithm 1. Algorithm for GWOBA optimizer

Input : n Number of agents

MaxIter Maximum iterations

r0
i Initial pulse emission rate

Ai Loudness

Result: The optimal solution (X∗)

1 Initialize the grey wolf population Xi

(i = 1, 2, ..., n) randomly

2 Initialize a, A, and C

3 Evaluate the positions of wolves

4 Xα = The best search agent

5 Xβ = The second best search agent

6 t = 0

7 while (t < MaxIter/2) do

8 for each Xi do

9 Update Xi position Eq.(15).

10 end

11 Update a, A and C Eqs.(16,2)

12 Evaluate the positions of wolves.

13 Update Xα and Xβ

14 t = t + 1

15 end

16 Initialize the first two bats X1 = Xα,

X2 = Xβ and initialize the rest (n − 2)

bats Xi(i = 3, 4, ..., n) randomly

17 Initialize frequencies fi, pulse rates ri

and the loudness Ai

18 Find the best solution based on fitness X∗
19 while (t < MaxIter) do

20 for each Xi do

21 Generate new solution (Xnew
i ) by

adjusting frequency Eqs.(7 to 9)

22 if rand > ri then

23 Generate a local solution

(Xnew
i ) around the best

solution X∗ Eq.(10)

24 end

25 if rand < Ai and fitness (Xnew
i )

< fitness(Xi) then

26 Update the position of Xi to

Xnew
i

27 Reduce Ai Eq.(11)

28 Increase ri Eq.(12)

29 end

30 Update X∗
31 end

32 t = t + 1

33 end

34 return X∗

4 Experimental Results and Discussion

This section summarizes the results from applying the proposed GWOBA on 30
benchmark functions from the new CEC2017 test suit. The next two subsections
contain the results and the analysis for the whole set of functions. We use a set of
qualitative measures to analyze the results obtained by the methods we apply.
The first four metrics (Mean Fitness, Best Fitness, Worst Fitness and Median
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Fitness) give a measure of the mean, best, worst, and median expected perfor-
mance of the algorithms. The fifth measure (Standard Deviation) is adopted to
show the precision of each optimizer. The sixth metric (Root-Mean-Square Error
(RMSE)) shows how accurate is the optimizer. The last two metrics (T-Test [2,11]
and Wilcoxon Rank Sum Test [13]) are used to directly comparing algorithms in
pairs and show whether the difference between them is significant or not.

4.1 CEC2017 Benchmark Suite

In this suite [1], benchmark problems were developed with several novel fea-
tures such as new basic problems, composing test problems by extracting fea-
tures dimension-wise from several problems, graded level of linkages, rotated
trap problems, and so on. All test functions are minimization problems with a
shifted global optimum randomly distributed in the range [−80, 80]. The suite
consists of 30 functions divided into different categories unimodal, simple multi-
modal, hybrid and composition functions to simulate different types of real life
problems.

4.2 Results and Parameter Settings

In order to benchmark our hybrid optimizer, we compared it to its primitive
algorithms GWO, BA and to the whale optimization algorithm (WOA) as well.
All experiments were done using 20 agents and the standard parameters for all
algorithms.

1000 2000 3000 4000 5000

10
3

F5

Iteration

B
es

t s
co

re
 o

bt
ai

ne
d 

so
 fa

r

1000 2000 3000 4000 5000

10
3

F8

Iteration

B
es

t s
co

re
 o

bt
ai

ne
d 

so
 fa

r

1000 2000 3000 4000 5000

10
5

F9

Iteration

B
es

t s
co

re
 o

bt
ai

ne
d 

so
 fa

r

1000 2000 3000 4000 5000

10
4

F16

Iteration

B
es

t s
co

re
 o

bt
ai

ne
d 

so
 fa

r

 

 

WOA GWOBA BA GWO

Fig. 1. Mean convergence curves of the compared algorithms (D = 100)
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In our experiments, we used 30 minimization problems with four different
dimensions: D = 10, 30, 50, 100 from CEC2017 benchmark suite. Each optimizer
runs 51 runs per problem with maximum function evaluations (MaxFES =
1000∗D) (i.e. 10000 function evaluations for 10 dimensions’ problem). All prob-
lems have the global optimum within the search range [−100, 100]. All four
optimizers were initialized with uniform random initialization within the search
space with a random seed based on time.

In Fig. 1, the four algorithms GWOBA, WOA, GWO and BA are compared
using the same dimensions and against the same benchmark functions. We plotted
the mean convergence curve for each algorithm along 51 runs for dimension (D =
100) and functions (F5, F8, F9, F16). As can be noticed, our hybrid algorithm
mean convergence curve is diving down when it passes half the maximum number
of iterations causing the results to be far better than the other algorithms.

In Table 1, mean error and standard deviation results are tabulated for all 30
benchmark functions (F1 through F30) along 51 runs for dimension (D = 100).

Table 1. Mean error and std. for dimension (D = 100

Fun. Mean Std.

WOA GWOBA BA GWO WOA GWOBA BA GWO

F01 1.472E+10 2.580e+04 4.253E+06 5.985E+10 3.810E+09 2.226e+04 3.190E+05 1.271E+10

F02 2.03E+168 9.65e+108 5.63E+126 2.79E+138 ∞ 6.89e+109 4.02E+127 1.99E+139

F03 8.674E+05 2.022e+05 4.719E+05 2.658E+05 1.450E+05 2.315E+04 1.745E+05 2.172e+04

F04 3.217E+03 2.868E+02 2.817e+02 5.970E+03 7.679E+02 3.794e+01 4.827E+01 1.897E+03

F05 1.162E+03 5.274e+02 1.202E+03 7.140E+02 1.008E+02 4.746e+01 1.620E+02 8.744E+01

F06 9.264E+01 4.522E+01 7.934E+01 4.343e+01 9.672E+00 3.617e+00 7.638E+00 4.83E+00

F07 2.834E+03 1.331e+03 5.980E+03 1.464E+03 1.414E+02 1.342E+02 1.508E+03 1.232e+02

F08 1.298E+03 5.265e+02 1.351E+03 7.150E+02 1.193E+02 6.864e+01 1.646E+02 8.472E+01

F09 5.665E+04 1.656e+04 4.415E+04 3.606E+04 1.583E+04 2.472e+03 1.007E+04 1.362E+04

F10 2.451E+04 1.452e+04 1.689E+04 1.544E+04 2.088E+03 1.320E+03 1.150e+03 3.634E+03

F11 1.282E+05 1.333e+03 2.308E+03 6.093E+04 6.306E+04 1.716e+02 6.149E+02 1.120E+04

F12 3.119E+09 3.490e+07 5.408E+07 1.475E+10 1.020E+09 1.149e+07 2.307E+07 8.534E+09

F13 3.088E+07 5.236e+04 2.385E+05 1.641E+09 2.149E+07 2.235e+04 4.783E+04 1.881E+09

F14 7.826E+06 5.537E+05 3.948e+05 6.976E+06 3.195E+06 3.467E+05 2.031e+05 3.991E+06

F15 5.848E+06 4.197e+04 1.437E+05 2.085E+08 7.563E+06 1.763e+04 5.095E+04 3.141E+08

F16 1.158E+04 4.100e+03 6.082E+03 4.895E+03 1.617E+03 7.989E+02 1.135E+03 7.242e+02

F17 6.806E+03 3.341e+03 4.910E+03 3.828E+03 1.536E+03 5.668e+02 8.656E+02 1.092E+03

F18 7.209E+06 7.814e+05 8.246E+05 5.193E+06 4.270E+06 3.911E+05 3.515e+05 2.90E+06

F19 3.903E+07 1.939e+06 3.953E+06 2.857E+08 2.872E+07 8.898e+05 1.187E+06 4.480E+08

F20 4.466E+03 2.972E+03 4.298E+03 2.826e+03 6.726E+02 5.469e+02 8.351E+02 7.996E+02

F21 2.067E+03 7.820e+02 2.485E+03 9.254E+02 2.607E+02 6.512e+01 2.548E+02 9.667E+01

F22 2.579E+04 1.576e+04 1.926E+04 1.699E+04 2.100E+03 1.225e+03 2.282E+03 2.245E+03

F23 2.697E+03 1.185e+03 3.399E+03 1.379E+03 2.426E+02 7.677e+01 3.764E+02 1.065E+02

F24 3.716E+03 1.873e+03 4.738E+03 1.997E+03 3.616E+02 1.469e+02 6.327E+02 1.838E+02

F25 2.552E+03 8.310E+02 7.933e+02 4.631E+03 3.216E+02 4.297e+01 6.283E+01 9.867E+02

F26 3.124E+04 1.271e+04 3.488E+04 1.457E+04 3.640E+03 1.189e+03 1.150E+04 1.40E+03

F27 2.737E+03 1.350e+03 2.445E+03 1.453E+03 7.615E+02 1.496e+02 6.718E+02 1.680E+02

F28 3.464E+03 6.096e+02 6.152E+02 6.586E+03 6.093E+02 4.194e+01 4.277E+01 1.707E+03

F29 1.298E+04 5.080e+03 7.636E+03 6.019E+03 1.676E+03 5.909e+02 1.236E+03 7.203E+02

F30 6.088E+08 1.033e+07 1.582E+07 1.773E+09 2.941E+08 3.123e+06 8.107E+06 1.625E+09
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Table 2. Best and worst error for dimension (D = 100)

Fun. Best Worst

WOA GWOBA BA GWO WOA GWOBA BA GWO

F01 9.395E+09 8.900e+03 3.605E+06 2.462E+10 2.542E+10 1.567e+05 4.979E+06 8.286E+10

F02 1.94E+142 7.532E+79 2.027e+63 2.30E+108 1.01E+170 4.92e+110 2.87E+128 1.42E+140

F03 6.257E+05 1.548e+05 2.686E+05 2.144E+05 1.338E+06 2.630e+05 9.213E+05 3.172E+05

F04 1.797E+03 1.869E+02 1.847e+02 2.840E+03 4.976E+03 3.618e+02 3.761E+02 1.219E+04

F05 9.415E+02 4.172e+02 8.985E+02 5.018E+02 1.386E+03 6.222e+02 1.560E+03 1.104E+03

F06 7.553E+01 3.854E+01 6.468E+01 2.917e+01 1.183E+02 5.450E+01 9.983E+01 5.267e+01

F07 2.485E+03 1.075e+03 3.189E+03 1.238E+03 3.107E+03 1.669e+03 1.133E+04 1.836E+03

F08 1.117E+03 3.930e+02 1.027E+03 5.268E+02 1.650E+03 6.683e+02 1.720E+03 9.315E+02

F09 3.478E+04 1.193e+04 3.183E+04 1.648E+04 1.088E+05 2.552e+04 6.718E+04 5.968E+04

F10 2.018E+04 1.121E+04 1.408E+04 1.089e+04 2.887E+04 1.718e+04 1.906E+04 2.905E+04

F11 5.518E+04 9.760e+02 1.341E+03 4.094E+04 3.581E+05 1.654e+03 4.412E+03 9.464E+04

F12 1.343E+09 1.556e+07 1.663E+07 3.668E+09 6.470E+09 5.518e+07 1.415E+08 4.545E+10

F13 8.183E+06 1.999e+04 1.605E+05 1.598E+08 1.036E+08 1.346e+05 3.932E+05 1.247E+10

F14 1.855E+06 1.076E+05 1.074e+05 1.152E+06 2.031E+07 1.907E+06 9.684e+05 1.527E+07

F15 3.192E+05 1.288e+04 7.604E+04 1.118E+06 3.197E+07 8.912e+04 3.067E+05 1.504E+09

F16 8.931E+03 2.496e+03 4.360E+03 3.135E+03 1.571E+04 5.841e+03 1.071E+04 6.606E+03

F17 4.676E+03 1.919e+03 2.986E+03 2.305E+03 1.270E+04 4.687e+03 7.127E+03 6.971E+03

F18 1.953E+06 2.386e+05 3.482E+05 1.580E+06 1.860E+07 2.242E+06 1.874e+06 1.320E+07

F19 3.510E+06 3.158e+05 1.336E+06 4.731E+06 1.311E+08 4.748e+06 6.881E+06 2.099E+09

F20 2.486E+03 2.100E+03 2.804E+03 1.982e+03 5.703E+03 4.352e+03 6.136E+03 5.695E+03

F21 1.513E+03 6.848e+02 1.896E+03 7.398E+02 2.713E+03 9.481e+02 3.085E+03 1.487E+03

F22 2.074E+04 1.311e+04 1.506E+04 1.388E+04 3.072E+04 1.847e+04 2.465E+04 2.995E+04

F23 2.145E+03 9.809e+02 2.631E+03 1.247E+03 3.184E+03 1.340e+03 4.240E+03 1.739E+03

F24 3.163E+03 1.634E+03 3.099E+03 1.562e+03 4.710E+03 2.310e+03 6.192E+03 2.492E+03

F25 1.945E+03 7.366E+02 6.503e+02 2.591E+03 3.598E+03 9.115e+02 9.286E+02 7.854E+03

F26 2.367E+04 1.035E+04 3.143e+02 1.179E+04 4.015E+04 1.485e+04 5.589E+04 1.862E+04

F27 1.726E+03 9.067e+02 1.316E+03 1.075E+03 5.046E+03 1.740e+03 4.517E+03 1.895E+03

F28 2.432E+03 5.474E+02 5.450e+02 3.317E+03 5.215E+03 7.107e+02 7.438E+02 1.136E+04

F29 1.013E+04 3.995e+03 5.487E+03 4.605E+03 1.677E+04 6.311e+03 1.187E+04 7.564E+03

F30 1.689E+08 3.561e+06 5.873E+06 1.278E+08 1.838E+09 1.951e+07 5.170E+07 5.499E+09

The results show that GWOBA mean error is better than the others for 25 out
of 30 functions, even when it fails to achieve the best results, it loses with a very
low order of magnitude. Regarding the standard deviation results, GWOBA lost
the lead for 6 out of 30 functions, but without order of magnitude.

In Table 2, best and worst error values are tabulated for all 30 benchmark
functions (F1 through F30) along 51 runs for dimension (D = 100). The results
show that GWOBA found the best solution for 20 out of 30 functions. On the
other hand, GWOBA has the lowest worst solutions for 27 out of 30 functions,
which means that it might not get the best solution every time but it will not
get the worst.

Wilcoxon rank sum test and T-test results with α = 0.05 are tabulated in
Table 3, the tests are calculated on different dimensions for all four optimiz-
ers. Since we are interested in the performance of GWOBA against the other
algorithms, we report all the comparisons with GWOBA only. It is clear that
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Table 3. Wilcoxon rank sum test and T-test for all dimensions

D Wilcoxon rank sum test T-test

WOA BA GWO WOA BA GWO

10 7.70E-39 3.06E-40 4.25E-07 5.49E-09 1.09E-06 1.17E-02

30 9.81E-44 1.73E-19 3.44E-08 2.00E-13 1.02E-04 2.02E-10

50 1.96E-40 1.08E-15 3.08E-15 3.84E-17 2.75E-04 1.14E-14

100 2.35E-43 1.42E-13 9.51E-26 8.52E-18 3.81E-11 4.23E-19

GWOBA performs better than GWO, BA, and WOA as per T-test results at a
significance level α = 0.05 for all dimensions.

The last measure to test our hybrid algorithm performance is to sum all wins
for the proposed algorithm against GWO, BA, and WOA for different dimensions
and for every qualitative measure. Table 4 summarizes the overall performance
of GWOBA, showing excellent success rates in mean, std., worst and RMSE
measures. The results also show that the algorithm performance is very solid
against higher dimensions, while other algorithms fail to get competitive results
in the same conditions.

Table 4. Overall success rate of GWOBA for all set of qualitative measures

D Mean Std. Best Worst Median RMSE

10 27 23 13 22 21 26

30 22 27 18 25 20 24

50 22 24 18 21 21 22

100 25 24 20 27 25 25

Success Rate 80% 82% 58% 79% 73% 81%

The mean error and standard deviation results for all dimensions proves that
GWOBA continues its great job defeating other algorithms even for the highest
dimensions. Having both low mean error and low standard deviation for all
dimensions means that GWOBA has the best precision and accuracy compared
to the other algorithms. As a result, GWOBA showed excellent performance
against its primitive algorithms GWO and BA as well as WOA.

5 Conclusion and Future Work

In this paper, a hybrid GWO/BA algorithm is proposed. The proposed GWOBA
algorithm makes use of both GWO and BA strengths in exploration and exploita-
tion. GWOBA is compared to GWO, BA, and WOA on CEC2017 benchmark
suite. Results were assessed using a set of performance indicators. Significant
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improvement was observed in the performance of GWOBA against other meth-
ods. GWOBA proved excellent precision and accuracy in different search space
terrains with overall best mean value, standard deviation, median, best, worst,
and RMSE. The different tests show that GWOBA is very solid regarding higher
dimensions as well as lower ones. The algorithm passed two significance tests on
four different dimensions. In the near future, we will test GWOBA in other
applications to measure its performance in real life problems.
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