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1 Introduction

This paper presents the development of both the hardware and software, the inte-
gration of these two elements to build up the whole robotic system, and the control
strategies of TeamKAIST at DARPARobotics Challenge (DRC). InDRC, each team
had to solve eight tasks under restricted communication conditions, as can be seen
in Fig. 1. The solutions of each of the eight tasks are also presented with explana-
tions of the key features and methods for accomplishing the task, including vision
algorithms.

2 System of DRC-HUBO+

2.1 Robot Platform

The humanoid robot platform, DRC-HUBO+, was developed for the DRC Finals
by Rainbow Robotics and the HuboLab. It contains all the technologies developed
since the first generation of HUBO, KHR-1, was developed (Kim et al. 2002; Park
et al. 2005). It especially was designed based on what Team KAIST learned and
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Fig. 1 Tasks given at the DRC: a Drive b Egress, c Door, d Valve, e Wall, f Surprise, g Rubble,
and h Stair tasks. i Simplified logical diagram of key communication links. There is a wireless link
between robot and field; DCE exists between field and OCS

experienced at the previous competition, the DRC Trials (Lim and Oh 2015; Oh and
Oh 2015). In the following subsections, the key features of DRC-HUBO+’s hardware
are briefly described.

2.1.1 DRC-HUBO+ Robot Platform

As can be seen in Fig. 2, DRC-HUBO+ has been designed as a humanoid because the
given tasks are all concerned with human environments and, consequently, human
morphology will bring an advantage to the tasks. At the DRC Trials, it was found
that a wheel based robot had an advantage in conducting indoor tasks on flat ground.
To take advantage of this situation, DRC-HUBO+ can select two types of mobility
mode by transforming the posture of its legs (see Sect. 4.1.1). It can travel on flat
land using wheels attached to the knees; it can also walk and traverse rubble and
stairs using its two legs. As can be seen in Fig. 2b, this robot has an air-cooled
heat dissipation system of actuators at pelvis pitch, knee pitch, and ankle pitch that
can generate enough power for the robot to walk or change mobility mode. This
system can endure 1.7 times the maximum-continuous-current which is specified in
the motor pecification-sheet.

To secure enough rigidity to protect against deflection due to the robot’s weight,
theDRC-HUBO+designers used an exoskeletal structure and tried to avoid cantilever
forms. This design strategy also reduced the thickness and weight of each limb. For
the convenience ofmotion planning, this robot arm has 7 degrees of freedom (DOFs).



Robot System of DRC-HUBO+ and Control Strategy … 29

(a) Modular Design (b) Heat Dissipation Design

Fig. 2 DRC-HUBO+ robot platform. a Modular design of the robot. Each joint of the robot is
easily changeable. b Air cooling design and conduction of motor heat to the frame

This redundancy is used to determine the angle between the torso and elbow. The last
joint of the arm is wrist yaw, and can rotate infinitely due to a slip ring. The waist of
the robot can be rotated up to 720°, allowing the robot to cover the whole surrounding
area without changing its standing position. Additionally, to prepare for accidents or
modifications of the hardware, all robot joints are modularized into chunks, so that
replacement of a problematic joint will suffice to fix the robot.

Table 1 shows the basic specifications of DRC-HUBO+. With two fully charged
batteries, DRC-HUBO+ can operate normally for about 4 h. It has a force/torque
(FT) sensor at the end of each of its limbs, and one inertia measurement unit (IMU)
sensor and one fiber optic gyro (FOG) attached to the pelvis. Two optical flow sensors
are attached at the shins.

2.1.2 Vision System of DRC-HUBO+

For the vision hardware, two cameras (Point Grey Flea3-GigE with 2.2 mm lens,
1288 × 964 pixels) and one Light Detection and Ranging (LIDAR) (Hokuyo UTM-
30LX-EW, 180° scanning angle with 0.25° angular resolution) are used. The main
camera, placed below the 2D LIDAR, is used to carry out all but the driving task,
which is accomplished by the streaming camera placed on head guard (red bar). The
streaming camera is also used to monitor the surrounding environment (Fig. 3).
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Table 1 Basic specifications of DRC-HUBO+

Height (cm) 170

Weight (kg) 80

DOF Head 1

Arm 2 Arms × 8

Waist 1

Leg 2 Legs × 7

Total 32

Payload (kgf) Arm 10

Fingertip grip 3

Encompassing grip 10

(a) (b)

Fig. 3 Vision system configuration for DRC-HUBO+ and an example of its movement. DRC-
HUBO+ has two cameras and one 2D LIDAR sensor installed on its head, allowing it to obtain
color images and depth information

2.2 Software Architecture

Tobuild the robot software system, a total of seven computers are used.As can be seen
in Fig. 4, two computers are insideRobot, two are in Field, and the remaining three are
in OCS. Robot-Motion is used to control the motion of the robot by communicating
with hardware devices and executing commands fromField orOCS.Vision-Grabbing
obtains environment visual data and sends them to Vision-Field. Vision-Field has
several vision algorithmmodules for calculating 3D point clouds and can obtain high
quality depth information and pose of target objects using the point cloud within the
given Region of Interest (ROI) in a 2D image. Motion-Field is located at the center
of the communicational links; it prioritizes data, and controls the flow of data. It
also controls the operational flow of each task. The three OCS computers are able
to interact directly with the operators. OCS-Main gives instructions to Motion-Field
to control the other computers. OCS-Virtual is used to check the status of DRC-
HUBO+, including such aspects as the robot posture, sensor data, point cloud, and
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Fig. 4 System configuration of DRC-HUBO+ and its communicational links. There are Robot,
Field, and OCS domains; they use a total of seven computers

images.OCS-Monitoring is used to observe the status of the processesworking inside
Robot and Field. OCS-Monitoring can also remotely turn on and off each process
(Lim et al. 2015).

2.2.1 Real-Time Robot Controlling Framework: PODO

In this subsection a real-time robot controlling framework named PODO (which
means “grape” in Korean) is introduced. PODO is expandable to both software and
hardware. It provides users with multiple processes called ALs (which means “grape
berries” in Korean); processes are independent of each other. All users can possess
their own ALs, and these ALs’ main threads can be turned on and off by PODO
depending on whether the users have hardware access authority or not. Thus, even
if a lot of ALs are operating at the same time, the computational resources that ALs
practically use are not excessive. For this reason, PODO can accommodate a group
of ALs; this system can be said to be software expandable.

There is a special process called Daemon that directly accesses the hardware. The
hardware information is abstracted and categorized, and this information is located
between Daemon and the ALs as Shared Memory (see Fig. 5); this Inter Process
Communication (IPC) method is chosen because it is very fast and easy to use,
and there is no increasing of the complexity regardless of the number of connected
processes (Dantam and Stilman 2012). Thus, ALs can control the hardware indirectly
through the SharedMemory and through Daemon. This means that users do not have
to know the details of how to communicatewith andmanipulate the hardware devices.
The only thing that changes when the hardware is modified or expanded is the Shared
Memory: ALs and Daemon are not affected by hardware changes.
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Fig. 5 Software architecture of PODO. Software consists of five hierarchical layers: end devices,
device process (Daemon), shared memory, user processes (ALs), and external processes. The real-
time thread generated by RTOS makes it possible to control the end devices in real-time

Daemon has a real-time thread to control the hardware accurately; Xenomai
(Xenomai | Real-time framework for Linux 2015) is used to generate the real-time
thread. The frequency of the thread was set at 200 Hz for walking and controls; the
communicational and computational resources were sufficient at this frequency. To
prevent early or late updating of joint references and sensor values, PODO suggests
synchronization of threads between Daemon and ALs, as can be seen in Fig. 6.

Daemon updates the sensor data in the SharedMemory, and sends synchronization
(Sync) messages to ALs. The ALs keep watching these Sync messages and read the
sensor values when the Sync status changes. After that, the ALs update the joint
references that were calculated in the previous step. At this time, acknowledgement
(Ack) messages are also sent to Daemon via the Shared memory. The ALs can
calculate their algorithms and generate joint references with the sensor values after
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Fig. 6 Logical diagram of synchronization process between Daemon and ALs. The ALs get sensor
data when a Sync message arrives; simultaneously, they send an Ack message to Daemon with new
reference data

sending an Ack signal. Because time gaps between the obtaining of a current Sync
message and of the next Sync message are almost identical and periodic, the time
allowed to calculate a joint reference is almost the same as the control period of
Daemon.While theALs areworking, eachAL recognizes anAck signal and proceeds
to the next step. ALs send the received joint references to Daemon and then request
the sensor’s next data. Through this procedure, ALs synchronize with Daemon.

Figure 7a presents the control period of the real-time thread in Daemon; it shows
that the jitter of the thread is about 10 ms. Figure 7b indicates the time consumed
by the synchronizing process. It takes about 40 ms regardless of the number of ALs
working; this value is less than 1% of the control period. These results indicate
that the proposed architecture and synchronization algorithm ensure the real-time
capacity of the controlling hardware devices.

Similar to PODO, a Vision Process Connector (VPC) was developed for acceler-
ation of the development speed and maintenance of the program. It has a structure
similar to that of PODO, but it uses ZeroMQ (Hintjens and Pieter 2013) as a com-
municational method between the core process and the other sub-processes, which
have vision algorithms such as object extraction and recognition.
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2.2.2 Communication Strategy and Process Monitoring

The communication line between the robot and Field, Link 1, transmits at 300Mbit/s;
Transmission Control Protocol (TCP) is used because this bandwidth is sufficient
for the suggesting system. In the cases of Links 2 and 3, to prevent the influence of
degraded communication links, a stable and efficient communication strategy was
proposed.

For Link 2, there are two individual processes to help developers: one is located
in Motion-Field and the other is in OCS-Main. These two processes are in charge of
the stable transfer of the burst data. The process in Motion-Field checks the latest
data, compresses it, and keeps sending it to DCE. Then, the corresponding process in
OCS-Main receives the data from DCE when Link 2 is opened. This process gathers
incoming data until it makes a complete package. Then, it decompresses the data and
sends all acquired data to the main program of OCS-Main. The only thing developers
need to do is send the desired data to the process of Motion-Field; then, the data will
be available at the process of OCS-Main after Link 2 has been opened.

Link 3 always permits communication in both directions if the amount of trans-
ferred data does not exceed 9600 bit/s. Because the command data and status signals
of every process in DRC-HUBO+ always work without communication conditions,
these are transmitted using Link 3. To guarantee data completion, the command data
is transmitted by TCP; the status signals for monitoring and checking that are used
are the User Datagram Protocol (UDP) from Motion-Field. The main program in
Motion-Field also checks the entire amount of transferred data and manages the
transfer order according to the data priority.

By using these communication strategies, it is possible to send and receive data
through DCE at DRC. The status of all processes and hardware parts can be observed
at the operating site. Additionally, AlwaysUp (AlwaysUp | Run Any Application as
a Window Service 2015) and Supervisord (Supervisord | A Process Control System
2015), were used to manipulate the process remotely.

2.2.3 Supervised Autonomy System

Disaster tasks are actually practical issues, and the DRC tasks also need to be
approached using a realistic method rather than an experimental one. For a 100%
guaranteed perception solution, Team KAIST decided to use human recognition
ability instead of an autonomous perception algorithm (Cheng and Zelinsky 2001).

Human operators can receive information such as robot status and environment
data, command robot to operate, and intervene while the robot is operating. These
three actions are calledReception, Instruction, and Interruption (see Fig. 8). Each task
consists of task motion and moving motion, and each motion can be operated using
certain environment and target parameters at the start time. It is possible to judge the
success or failure of themotions, so the robot can retry or request further information.
During these procedures, there is no need for any additional user intervention, and
so this combination is called “Robot level autonomy.”



36 J. Lim et al.

Human 
Operator

Instruction

Interruption

Reception

OCS-Main Motion-Field

Vision-Field

Monitoring
Manager

Motion-Robot

Vision-Robot

Motion
Controller

Moving
Controller

Sensors
(FT, IMU)

Actuators

Vision
Grabber

Actuators

LIDAR,
Cameras

Task
Manager

Vision
Task

Manager

OCS Field Robot Environment
Section:

Human Supervisory Robot Level Autonomy
Method 1:

Human Supervisory Field Level Autonomy
Method 2:

Toward Task

Toward Operator

Fig. 8 Command flow of the DRC-HUBO+ system; autonomy level is also shown. There are two
combinations that can be used: the first is human supervisory and Robot level autonomy, the second
is human supervisory and Field level autonomy. There is no fully autonomous control

This robot level autonomy can be expanded to Field; this is called “Field level
autonomy.” Motion-Field receives an instruction from the operator and starts the
state machine of the appropriate task with the given values. These given values are
the task type and method, and the ROI of the target object. According to the state,
the whole robot system conducts the task gradually inside Field and Robot.

3 Control and Vision

3.1 Whole Body Inverse Kinematics

This subsection details the inverse kinematics (IK) solution for DRC-HUBO+. A
singularity can occur when the robot generates walking patterns and motions. To
overcome any difficulties encountered near kinematic singularities, the exact inverse
problem is reformulated as a damped least-squares problem that balances the error in
the solution against the size of the solution. The use of the damped least squares was
first proposed byWampler and Charles (1986). Nakamura et al. introduced the damp-
ing factor, which chatters in the vicinity of the singular points; they also proposed
the singularity-robust inverse matrix (Nakamura and Hanafusa 1986). Wampler and
Charles proposed an IK solution based on the Levenberg-Marquardt (LM) method
(Levenberg 1944; Marquardt and Donald 1963).
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The IK solution of DRC-HUBO+ is based on the LM method, and it is assumed
that there are two operational situations: ‘stance’ and ‘walking.’ Thus, the IK has
two modes: one is for the lower body while the upper body is fixed; the other is
for the upper body with fixed foot placement. The robot has a total of 33 tasks: the
center of mass (CoM) position in the horizontal plane (2), the arm angle (1 × 2)
(Shimizu et al. 2008) and hand tasks (6 × 2), leg tasks (6 × 2), pelvis height (1),
pelvis orientation (3), and waist angle (1). Consequently, the number of robot tasks
is 33 and the number of joints is also 33.

The IK for the lower body while the upper body is fixed is developed based on
the conventional LM method. In most cases, CoM positions among the robot tasks
are hard to bring to convergence when the updating rules are iterating because, in
order to reach the desired position, all robot tasks except for the CoMmust calculate
the joint displacement for every iteration, and mass distribution occurs at every
iteration. In short, there is a conflict between the tasks that must be solved to reach
CoM position and the hand position. Generally, the CoM position tasks adjust with
the pelvis placement. In this sense, the IK for the lower body has an advantage to
attain the convergence of the CoM position. Due to the fixed upper body with regards
to the pelvis position, the pelvis position, which is the most effective position to use
to reach the desired CoM, is not influenced by the upper body joints. Actually, the
number of iterations in this process is lower than those for the non-fixed upper body
IK. Therefore, there is no problem in developing the IK for the lower body.

However, the IK for a non-fixed upper body requires a large number of iterations.
This brings a large computational cost and that is a burden for the real-time system;
indeed, this is one of the most important issues for humanoid robots. The many
computations required for walking pattern generation, motion planning, sensor based
controllers, etc., need to share the computational resources. In this way, there is
insufficient computing time for the IK. Hence, the focus was on reducing the number
of iterations, and on the proposal of a new IK.

First, a lumped mass on the hand was created to equal the mass of the arm and
to remove all mass distribution of the arm. Then, the mass of the arm is only at the
hand position. The mass of the arm belongs to the total CoM, which is one of the IK
task values of the forward kinematics, which is conducted for every iteration loop
to minimize the square of the error. The position of the lumped mass on the hand
is predetermined at desired hand position, as can be seen in Fig. 9. In this way, the
displacements of the arm joints do not affect the CoM position. Consequently, this
method brings a fast convergence of the CoM position tasks. Figure 10 provides a
comparison of the number of iterations required for the conventional LM (Wampler)
method and for the proposed method. However, there will exist a slight amount of
error between the real CoM position and the modeled CoM position because it was
assumed to be a lumped mass. Hence, a cooperative balancing controller was used
to keep the stability of the humanoid during the motion (Lee and Oh 2015).

The 7-DOF arm consists of end-effector positioning (3), orienting (3), and arm
angle (1), which is defined in (Shimizu et al. 2008). Operators could undergo trial
and error due to the joint limit of the arm when they generate arm motion via tele-
operation; this trial and error delays the mission time. Hence, a simple algorithm
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was developed to generate the trajectory of the arm angle automatically according to
the end-effector trajectories. Actually, this issue is similar to the redundancy issue.
There are many redundancy resolved solutions to minimize energy and displacement
and to avoid joint limits, collisions, etc. A cost function ω is defined in the following
Eq. 1; this function is related to the joint limits and is used to select the optimal arm
angle via direct searching.

ω �
∑7

i�1

(
θ i − 1

2

(
θ i
max − θ i

min

))
(
θ i
max − θ i

min

)2
2

(1)

where θ i
max and θ i

min are the upper and the lower limit of the joint, respectively, for
each joint (i � 1 ∼ 7). This arm angle selection supports the generation of motion
for the surprise task.

3.2 Compliance Control

Each joint of theDRC-HUBO+ is controlled by an electricmotorwith a highly geared
harmonic drive. Thus, it has high friction and exerts a damping force on each joint.
Additionally, the motor controller transmits only pulse width modulation (PWM) to
the motors. Therefore, it is hard to generate joint torque equal to a given reference
torque. To achieve compliance control, a hybrid position/force controller based on
the computed torque method was devised.

3.2.1 Gain Override Technique

The motor controller has a Gain Override mode that changes the position-derivative
(PD) servo controller gain. When the robot contacts the environment, small position
errors cause high internal forces, and such situations can cause damage to the robot.
In the DRC Trials in 2013, TeamKAIST applied the Gain Overriding method to deal
with this problem (LimandOh2015).Using this technique, the robot can be protected
from fractures in a multi-contact state, and its power consumption decreases. The
amount of change of the gain is determined by experiment, so it cannot be specified
all the time.

3.2.2 Non-complementary PWM Switching Mode

To obtain flexibility in the highly geared joint system of DRC-HUBO+, a control
method called Non-Complementary Switching was adopted; this method removes
the braking effect. In the motor control technique using an H-bridge, there are four
Torque-Speed Quadrants, as can be seen in Fig. 11.
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Fig. 11 a Torque-Speed Quadrant of motor drive. (Q1–Q4) 4-Quadrant unipolar drive. When pos-
itive duty is engaged on the motor, it accelerates in a positive direction (Q1). If zero duty is engaged
while the motor is rotating in a positive direction, the motor speed is still positive but it decelerates
(Q4). When negative duty is engaged on the motor, it accelerates in a negative direction (Q3). If
zero duty is engaged while the motor is rotating in a negative direction, the motor speed is still
negative but it decelerates (Q2)

(a) (b)

Fig. 12 a 2-Quadrant unipolar drive. In this motor drive circuit, motor does not experience back
EMF during zero duty (zero voltage). When zero duty is engaged on the motor while motor is
rotating, the motor does not decelerate in any direction. bModeled friction compensation. Friction
in the joint is modeled as linear damping friction, which friction is proportional to the joint velocity

Conventional motor driving mode is Complementary PWM Switching mode,
which uses a 4-Quadrant unipolar drive (Q1, Q2, Q3, and Q4). This PWM switching
technique has the advantage of fast braking, so it is suitable for position control of
the robot manipulator. Figure 11 (Q1–Q4) shows a 4-Quadrant unipolar drive circuit
of the Complementary PWM Switching mode.

Different from the Complementary PWM Switching mode, the Non-
Complementary PWM Switching mode uses only a 2-Quadrant unipolar drive (Q1
and Q3). Figure 12a shows only the forward accelerating (Q1) and zero duty situa-
tions. Reversing the sign of the voltage will make the motor reverse accelerate (see
Fig. 11a). With the Non-complementary PWM switching mode, the motor does not
experience the braking effect. Joints are able to act like frictionless joints; friction is
only present in the reduction gear.
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3.2.3 Joint Friction Compensation

A high reduction ratio speed reducer like a harmonic drive has a high friction force
when it experiences back drive. To compensate for the force of this friction on each
joint, the motor controller provides a friction compensation open-loop controller.
The friction force can be modeled as a linear damping force that is proportional to
the joint velocity. By performing experiments, the model parameters, Is , Vs , and Vd ,
can be defined for each joint (see Fig. 12b). After these parameters are defined, each
motor controller generates additional current to compensate for the friction.

3.2.4 Gravity Compensation

To apply the computed torque method, the effect of gravity on the robot arms should
be canceled. From the DRC-HUBO+ arm kinematics and design data, such as the
mass center of each link, the necessary torque for each joint can be calculated with
the assumption that the upper body is standing upright.

3.2.5 Hybrid Position/Force Control

In theDRCFinals, DRC-HUBO+was able to control the position of themanipulators
as well as to generate force on the end effectors. These abilities allowed the robot
to stay stable in a multi-contact state. To achieve this type of precise control, hybrid
position/force control based on the computed torque method was devised.

In most cases, the arm does not need to move rapidly. This means that neither arm
joint experiences high angular acceleration or velocity. Thus, a static condition can
be assumed and, by using the Virtual Work Principle (Tsai 1999), each joint torque
that generates the end-effector force in each direction can be obtained.

F � [
fx , fy, fz

]T
(2)

τ � [τ1, τ2, · · · , τn]T (3)

τ � J T F (4)

When the robot grabs certain structures, the hand orientation is fixed, so only the
position of the hands X needs to be considered:

X � [
xp, yp, z p

]T
(5)

The block diagram in Fig. 13 shows the entire control procedure. As stated before,
only the quasi-static condition is considered; there is no dynamic model or accelera-
tion term. By solving the forward kinematics, the end-effector’s Cartesian informa-
tion is calculated, and a simple Cartesian PD controller can be designed.
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Fig. 13 Control block diagram of hybrid position/force control. From the position and velocity
feedback of the end-effector and the desired force, the force that needs to be generated on the
end-effector is calculated. DRC HUBO+ has a 7 DOF arm, and so a redundant joint should be
considered. In this case, the shoulder roll joint was selected to be the constrained joint

Ferr � Kp
(
Xref − X

)
+ Kv

(
Ẋre f − Ẋ

)
(6)

Not only Cartesian space position control, but also Cartesian force control is
needed. Thus, the desired Cartesian force Ferr is added to generate Ftotal :

Ftotal � Ferr + Fref (7)

The general dynamic equation of the manipulator can be expressed as in Eqs. 8
and 9.

τ � M (q) q̈ + h (q, q̇) + V q̇ + g (q)+τ ext (8)

τext � J T (q) Fext (9)

Here, τext is the external torque, and Fext is the external force acting on the end-
effector. From the computed torque and the total force reference, the total torque input
can be expressed as in Eq. 10. The computed torque consists of friction compensation
and gravity compensation.

τinput � V̂ q̇ + ĝ (q) + J T (q) Ftotal (10)

From Eqs. 8, 9 and 10, and by ignoring the inertial term and the Coriolis term,
error dynamics can be obtained.

Fext � Fref + Kp
(
X − Xref

)
+ Kv

(
Ẋre f − Ẋ

)
(11)

Fext − Fref � KpE + Kv Ė (12)
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Fig. 14 a Time domain response of end-effector force. When desired x direction (front direction)
force is given, measured force follows desired force. The oscillation of the measured force is due
to the swing motion of the entire robot platform when the robot pushes the rigid wall. Steady state
error was about 20 N when the desired force was 60 N. b Experimental data for various desired
levels of force and for the steady state measured force

Equation 12 is the vector equation; thus, different values of Kp and Kv can be
applied in each direction. This is the concept of hybrid control. In addition, different
force references can also be applied in each direction. For example, the end-effector
can be controlled by the position in the x, y directions and by the force in the z
direction.

fx,ext � kp,x ex + kv,x ėx (13)

fy,ext � kp,yex + kv,y ėy (14)

fz,ext � fz,re f (15)

Equations 13 and 14 are the feedback loop in the x, y direction; Eq. 15 shows that
the force produced on the end-effector follows the desired force.

This open loop force control of the robot arm was verified by simple experiment.
DRC-HUBO+ was put in front of a rigid wall and was made to push the wall with
a certain force. The pushing force can be measured via the FT sensor on the wrist.
This experiment was not performed to verify the entire hybrid position/force control
algorithm, but to verify the force tracking performance of the end-effector in quasi-
static situation.

Figure 14 shows a steady state error in the output force. The system always
possesses a certain amount of error because there is no feedback loop. Even when
there is an error in the output force, the robot arm is controllable in the Cartesian
spacewith the low gain position control, and it is also possible to attribute compliance
characteristics to the arm. To solve DARPA tasks such as the Egress task, exact and
precise force control was not required. The most important thing was to make the
highly geared arm of the DRC-HUBO+ compliant and, if possible, to track the end-
effector force.
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Fig. 15 Overview of information flow in the walking algorithm

3.3 Walking Algorithm

This subsection shows a walking pattern that generates an overall walking motion;
it also shows a stabilizer that maintains stability against disturbances. The change
of the vertical CoM in LIPM (Kajita et al. 2001) and the compliance of the robot in
the walking pattern are considered; a controller that is proper for the position based
robot is used as well. The overall walking algorithm for the DRC is shown in Fig. 15.

3.3.1 Walking Pattern

In Preview Control (Kajita et al. 2003), the height of CoM is constant, but the height
of CoM must change for the robot to climb the stairs or walk through terrain. The
Zero Moment Point (ZMP) error generated from the change of CoM height can be
compensated for by applying Preview Control again as a dynamic filter (Stasse et al.
2008). When the robot is walking in place with vertical CoM motion, which is a
sine wave, the measured ZMP with compensation and the measured ZMP with no
compensation can be represented as shown in Fig. 16. It can be seen that themeasured
ZMP with compensation is closer to the reference ZMP.
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Fig. 16 Measured ZMP with vertical CoM motion. Measured ZMP with compensation is closer
to the reference ZMP

Fig. 17 Linear inverted
pendulum with spring and
damper

The robot is modeled as linear inverted pendulum with spring and damper and the
model is represented in Fig. 17. This model is generally used for feedback controller
(Kim and Oh 2013; Cho et al. 2011), but if the step length becomes longer and the
mass of robot increases, compliance becomes a larger problem due to deflections of
the links. Thus, an inverse model method was devised to modify the CoM trajec-
tory that was generated in the Preview Control. This method applies a feedforward
controller for the walking pattern; the transfer function can be calculated as
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Fig. 18 ZMP and CoM trajectories a with and b without the inverse model method. ZMP tracks
the reference ZMP better with the inverse model method

G (s) � xre fCoM

xinv
CoM

�
k

ml2 +
c

ml2 s

s2 + c
ml2 s +

k
ml2 − g

l

(16)

where k, c,m, l, and g are the spring coefficient, damping coefficient, total mass, and
acceleration due to gravity, respectively. This inverse model method is very effective
at long step lengths, as can be seen in Fig. 18. ZMP tracks better with this method.

3.3.2 Stabilizer

A stabilizer is used to modify the pattern in real-time to maintain walking stability
against disturbances. The ZMP controller and the single support phase (SSP) upright
controller were designed for the stabilizer. The ZMP controller protects the reference
ZMP from the deviation of ZMP (Lee and Oh 2015); the SSP upright controller
controls the upper body orientation using an FOG (Kim and Oh 2010). In SSP,
controlling the angle and the angular velocity of the base frame is a more effective
method of steadying the robot than controlling the ZMP because the supporting
polygon is very narrow relative to the double support phase (DSP) and the measured
ZMP rapidly saturates to the edge of the foot when a large disturbance is applied to
robot. The performance of the SSP upright controller is represented in Fig. 19; ZMP
tracks better with the SSP upright controller.
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Fig. 19 ZMP and CoM trajectories a with and b without the SSP upright controller. ZMP tracks
the reference ZMP better with the SSP upright controller

3.4 Vision System

As described in Sect. 2.1.2 (Fig. 3a), the main camera and the LIDAR are mounted
together on the same rig, which is rotated by a single motor, which enables the sensor
system to acquire 3D point data. Through the rotation speed and scope of the motor
control, it is possible to adjust the vertical density of the 3D points by trading off the
capturing time.

The streaming camera is set up on the top-left side of the head guard. This camera,
which is different from the rotating camera, is tilted at a fixed 10°. The main purpose
of this camera is to deliver the scene of the field to the operators at 10 frames per
second (fps). This real-time image sequences are transferred only when the network
burst is activated. Using the images from the streaming camera, the predicted driving
trajectory is provided to the operators for driving guidance (see Sect. 4.5).

Images from the main camera are handled differently according to the network
mode. Under limited communication, Link 3, the captured image data was resized
to one eighth of its original image size, and JPEG image compression was used
with a percentage factor of 10% to make the captured image smaller. The highly
compressed image is not intended for use by the computer vision algorithms, but
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for the operators only. The transferring time for the compressed image in limited
communication conditions is about 4 s. This image is transmitted first while the
LIDAR is scanning, so that the operators can recognize the surrounding environments
and reduce the time needed to set the operator guided ROI. When the burst mode is
activated, the captured image data is resized to half and compressed to JPEG format
with a percentage factor of 95%.

3.4.1 Calibration

Calibration of the sensor system is essential to make the point cloud useful for
robot operations. A coordinate systemwas assigned to each sensor—three coordinate
systems for the camera, laser sensor, and motor—and the relative pose among them
was estimated (see Fig. 3). Without loss of generality, the motor’s rotating axis was
set as the x-axis of the motor coordinate system and the scanning plane of the 2D
laser sensor was set as the x-z plane of the laser coordinate system; these decisions
were made so that the laser sensor would scan from −45° to 225° (total 270°) of the
x-z plane. The intrinsic parameters of the camera are calibrated by a conventional
method (Zhang 2000). To achieve a wide field-of-view, a lens with a short focal
length is used with a fisheye distortion model (Shim et al. 2015; Lee et al. 2017); or,
other methods (Bouguet 2004; Kannala and Brandt 2006; Scaramuzza et al. 2006)
can also be used to provide precise results. Figure 3b shows the coordinate setup of
our sensor system. The vision system-centric coordinate is set to a coordinate of the
motor, Pm . Calibration between the camera andmotor is done by capturing a series of
images with various poses of a checkerboard pattern in the motor coordinate system.
For each pose of the pattern, twelve images are captured at various motor angles,
from −30° to 80°, at intervals of 10°. The motor-to-camera transformation Hmc and
all of the pattern-to-motor transformations Hn are optimized using the squared sum
of the projection errors of the checkerboard corners pi as a cost function:

(17)

fc (Hmc, H1, . . . , HN , A−30, . . . , A80)

�
∑

n

∑
θ

∑
i
‖qi − proj (HmcRθ Hn pi )‖

2

where Rθ denotes the rotation of the motor (i.e., rotation along x-axis), and proj (·)
indicates the process of the projection onto images, including both the intrinsic
parameters and the radial distortion. The angles A−30∼A80 are also included as
variables because the angle at which the motor rotates may contain a small error
(A0 � 0 is not included but considered as a reference angle). Both the rotation and
the translation of Hmc along the x-axis at zero were fixed because the pattern-to-
motor and motor-to-camera transformations may compensate for each other. In the
same pose at which the images for the camera-motor calibration are captured, the
laser sensor scans the checkerboard pattern. The laser-to-camera transformation Hlc

is estimated by minimizing the distance between the pattern and the points scanned
by the laser sensor:
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fl (Hlc) �
∑(

vT H−1
pc Hlcq

)2
(18)

where v and q denote the normal vector of the pattern and the points scanned by
the laser sensor, respectively. The pattern-to-camera transformation Hpc is computed
using the results of the camera-motor calibration.

The results of the calibration are shown in Fig. 20.

Fig. 20 Data from the camera (top) and laser (center), as well as the 3D cloud data projected onto
an image (bottom)
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3.4.2 Vision for Tasks

Most of the vision algorithms used in the challenge proceed in the following
sequence: 1. Sensor scan, 2. ROI selection, 3. Data upsampling, 4. Object pose
estimation, and 5. Robot action. First, both image and 3D point data are acquired by
the main camera and the LIDAR. Then, ROI is selected to increase both the speed
and accuracy of the algorithm. For this ROI selection, state-of-the-art detection algo-
rithms such as Attention-Net (Yoo et al. 2015) and Region-based CNN (Girshick
et al. 2014) were prepared to make a fully autonomous system; manual selection
by operators was also prepared to ensure accuracy. Even with the ROI selection,
however, object pose estimation with the raw 3D data will often fail due to sparsity
of the raw 3D data. So, in order to resolve this problem, a new data upsampling algo-
rithm was designed (Shim et al. 2015) to convert sparse data to dense data without
the shadow problems involved in LIDAR scanning. In the next section, the creation
of a predicted driving trajectory using the streaming camera for the driving task is
described; details are given for the object pose estimation method for the valve, drill
(wall), and toehold motions in the terrain (rubble) and stair tasks.

4 Tasks

Operating a robot in disaster circumstances is a practical problem rather than a
theoretical issue. It is quite different from operating a robot in a laboratory. Because
the DRC imitates a disaster situation, Team KAIST established a strategy in which
DRC-HUBO+would be able to cope with disaster environments. The following four
paragraphs present Team KAIST’s basic principles for solving the DRC tasks.

For a humanoid robot, the most critical type of damage is that which stems from
falling. Even though there has been much research into the technology of humanoid
walking, there is still a gap between theoretical research and practical implementa-
tion. Furthermore, a disaster environment does not provide even ground. So, DRC-
HUBO+ has dual mobility modes: wheel and walking modes. The walking mode
has an advantage of allowing the robot to traverse a landscape in which ground level
varies, such as an area of rubble. Besides this, when the robot needs to reach its arm
higher, the walking mode is required. The wheel mode is good for traversing normal
ground quickly and stably. The supporting polygon for the wheel mode is larger
than that used for the walking mode, so there is no possibility of the robot falling,
and this is an advantage when conducting tasks. According to the ground and the
environment, the robot can choose its mode of moving.

The whole robot system should be stable. The robot system is very complicated
and large because its every element has an objective and use. One single failure, or
the malfunction of a small portion of the robot system, can cause the whole system
to fail. So, the whole robot system was stabilized in terms of not only the hardware
and software themselves but also in terms of the integration of these two elements.
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Fig. 21 a Wheel mode pose and comparison of supporting polygons used for walking mode and
wheel mode. b Placement of optical flow sensor, ADNS-3080. Using this optical flow sensor and
an IMU sensor on the robot, mobility performance and accuracy are increased

Additionally, built-in recovery routines were developed as backup for cases in which
the system encountered unexpected situations.

The eight tasks in DRC are difficult and require a lot of effort to achieve because
each task takes up a full section of the research area and demands researchers’
profound study. So, no single researcher can develop solutions to all the given tasks
within the allotted time. Consequently, the whole system architecture was designed
so that it would be possible to solve tasks concurrently, as was shown in Sect. 2.2.
Beyond this, the robot platform is very expensive, so not every developer can have
access to his or her own robot. Further, it was necessary to be able to easily integrate
outputs from each developer. These outputs, of course, must not interfere with others’
work. Team KAIST concentrated on these software requirements and put in a lot of
effort to realize them.

The autonomous nature of a robot system is one of biggest research areas in
robotics. Because of the fast advance of perception algorithms, it is possible to build
a fully autonomous robot system. However, it would require still more research to
use such a system in a real field condition. The thing that was needed was a 100%
guaranteed perception solution; ironically, humans were able to provide the solution.
Supervised autonomy was settled on instead of a fully autonomous system.

4.1 Wheel Movement, Door, and Debris Tasks

DRC-HUBO+ has two active and two passive wheels, whose position were decided
on so as not to disturb the existing bipedal locomotion of the robot. Figure 21a shows
that the supporting polygon of thewheelmode is larger than that of thewalkingmode.
Thus, the wheel mode has an advantage in terms of stability.
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Fig. 22 Posture transformation process between ‘walking-mode’ and ‘wheel-mode’. Process con-
sists of three steps
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Fig. 23 ZMP variation during posture transformation process Step 1. ZMP is kept at around the
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4.1.1 Posture Transformation Process

The overall transformation process between walking-mode and wheel-mode is illus-
trated in Fig. 22. This process consists of three steps. Step 1motion is a transformation
motion from the walking mode pose to the wheel mode pose. During this step, the
robot sits down and brings the active wheels in contact with the ground. This process
is performed by lowering the center of mass while maintaining the dynamic stability
of the posture. A ZMP-constrained time optimization problem was formulated to
obtain the joint reference angle. Joint references and measured ZMP during this step
can be seen in Fig. 23.

Step 2 makes the foot plane vertical to the ground. By doing this, the caster wheel
can rotate freely. The final step of this process is performed by reducing the position
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control gain of the knee pitch and hip pitch joints. Details of this technique are
provided by Lim and Oh (2015). In this step, the redundant joints of the lower body
can act as a kind of passive damping suspension. More detail descriptions about this
transformation process was provided by our preview work (Bae et al. 2016).

4.1.2 Performance Enhancement Using Redundant Joints and Sensors

When the robot moves in the wheel mode, the accuracy of the wheels drops due to
slippage, so DRC-HUBO+ must compensate for slippage according to the measured
odometry. For measurement, it uses FOG and two optical flow sensors, ADNS-3080,
that is attached to the area below the knee joint, as can be seen in Fig. 21b. These
sensors are vertically positioned toward the ground and measure the linear velocity
along the calf. Compared to general encoder-based odometry, the robot’s movement
can be measured more precisely using these two types of sensor.

Each leg has a total of seven joints, including the active wheel joint; all of them
are controlled by position control with high PD gain. In the wheel mode, all the joints
except for the wheel joint can be used as passive suspension simply by adjusting the
Gain Override. This suspension assists in maintaining rigid contact with the ground.

4.1.3 Door Task

In order to open the door, the following scenario was used. First, the robot scans the
surrounding environment and detects the door and the doorknob; it obtains informa-
tion about the width of the door and the knob position by using RANSAC cylinder
model fitting. Then, it checks whether the knob is reachable or not. If the knob is not
in the arm’s workspace, the robot approaches the door and scans again. Conversely,
if the knob is in the workspace, the robot grabs the knob. After grabbing, the robot
rotates the knob about its axis. During this motion, using the FT sensor on the wrist,
the robot checks the type of the door (push or pull door) and the grabbing status. If
the grabbing process is successful and the type of the door is detected, the robot starts
to rotate the door about the door hinge. Finally, the robot can go through the door
using the pre-detected door width information. Consequently, in the wheel mode,
DRC-HUBO+ is able to finish the door task in 108 s for a pull door and in 62 s for
a push door.

4.1.4 Rubble Task

DRC-HUBO+ can produce a force of 380N to bulldoze through obstacles. Odometry
using FOG and optical flow sensors make it possible to estimate the robot states in
real-time. This real-time estimation is used to detect slip conditions; this information
is delivered to an operator, allowing the operator to interpret the situation and make
a decision.
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Fig. 24 Snapshot of debris removal motion. After plane detection (a), DRC-HUBO+ generates
arm trajectories that are collision free (b). The grabbed debris (c) is removed from the side of the
cinder blocks (d)

However, simple bulldozing is not a sufficient solution due to several problems.
There are some special cases in which the DRC-HUBO+ cannot traverse an area
of rubble without removal of the debris. Through the collision free check and the
joint limit check, a safe motion is selected by adapting the method that Lee and Oh
suggested (Lee and Oh 2015); Fig. 24 provides a snapshot of the debris removal
motion.

4.2 Terrain and Stair Tasks

The goal of the rough terrain and stair tasks is to reliably detect local planes and
utilize the planes as toeholds for humanoid robot treading. It is possible to detect
multi-toeholds and estimate their poses to minimize the necessity of input from
the operators. An initial set of segments S is generated by uniformly dividing the
ROI of image domain. Each initial segment Si has 3D points that are selected by the
projected points to the image domain and their 3D normal values, which are obtained
by RANSAC. The set of segments is expressed as follows: S � {S1, · · · , Sn}, Si �
{xt , yt , zt , N3×1}, where S is an initial set of segments, Sk denotes the k-th segment
(k � 1∼n), xt , yt , and zt denote 3D points and t is the number of points in the
segment, and N denotes 3D normal vector of the 3D points. Then, initial groups
were formed. Using the dot product, the initial segments are grouped by the similarity
of the normal vectors of the segments. If the normal vector similarity between two
segments is larger than a predefined threshold Nt , the two segments are bound to
one group. The bounded group updates its own normal vector N . The initial groups
are defined as follows: G � {g1, · · · , gm}, g j � {

Sp, N
}
, where j is index of

subgroup, Sp is a subset of initial segments, and N is the normal vector of the subset
Sp. In this grouping process, two target segments for grouping are selected based
on distance between the center points of the segments. Because the initial grouping
process is trivial, the initial groups are commonly fragmented or over-segmentation.
First, grouping process is run one more time for handling fragmented groups using
G; then, over-segmented groups are separated by constructing an undirected graph
by fully connecting the nodes using Si . Each initial segment becomes a node and
weight values of edges between two nodes are set to binary values (0 or 1). If an
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Fig. 25 Overview of the toeholds detection and their pose estimation

(a) (b) (c) (d)

Fig. 26 a, c Color image. b, d Detected toehold planes in the projected virtual image domain

edge crosses another node assigned to another group, or if normal vectors of two
nodes are smaller than the weight of the edge is set to 0. In other cases, the weight of
the edge is set to 1. New group set Ḡ is regenerated using Graph-Cut (Boykov and
Veksler 2006).

To determine toeholds planes in the group set Ḡ, the 3D points in Ḡ J are projected
to virtual 2D image domain. A virtual 2D image can be generated by using the center
of 3D points and N of the Ḡ J . Using the size and shape of the projected points
in the virtual image domain, it is possible to determine which group is similar to
the predefined plane model. Finally, for more accurate pose estimation, plane fitting
based on RANSAC is used to assign additional 3D points to the selected Ḡ J and the
updated points are also projected to the virtual image domain (Fig. 25). Figure 26
shows the selected groups in the virtual image domain. Center point and rotation
angle of toehold plane are optimized by minimizing the angle difference and the
edge distance between the four sides of the predefined toehold model and the edges
in the projected image domain. The calculated center point and rotation angle are
converted to 3D space coordinates. The whole process can be seen in Fig. 25. If the
results of the optimization are not sufficient to our threshold, Ot , our algorithm can
accept input from the operators to assign the predefined plane models by force. The
operators select three corner points of a target plane in the image domain. A center
point and the plane parameters of the three points, are calculated, and inlier points of
the calculated plane are collected using plane fitting based on RANSAC. This data
set is regarded as selected Ḡ J ; the algorithm extracts the predefined plane model in
the same way as was mentioned above. In this case, the algorithm always provides
plane information for the input. All threshold parameters are empirically determined.
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Fig. 27 Overall structure of the walking motion planner

In the terrain task, contrary to the case of walking on even ground, the robot
has to consider height variations of the terrain, long strides, collisions, and joint
limits. As can be seen in Fig. 27, a walking motion planner is developed for the
terrain and stair tasks so that the robot can traverse the terrain by considering the
constraints. First, the motion planner extracts valid planes from the LIDAR data
and generates candidate footprints on the planes. Additionally, the motion planner
generates two candidate waypoints of the CoM height of each support phase. Two
waypoints (CoM1

i,z , CoM2
i,z) of the ith support phase are sampled according to the

following rules.

CoM1
i,z � α

(
Pi,Lz + Pi,Lz

)
(19)

CoM2
i,z �

{
βPi,Rz(i f Pi,Rz < Pi,Lz)

βPi,Lz (else)
(20)

where Pi,Lz and Pi,Rz are the left and right heights of the footprints of the ith sup-
port, respectively. α and β are heuristic values learned frommany experiments; these
values change depending on the height and the orientation of a block. When the con-
figuration space is searched to satisfy a constraint like joint limit, a sampling based
motion planning algorithm is used to find a stable configuration (Hauser et al. 2008).
Themotion planner provides a candidate configuration using the above rule, which is
based on the experimental results, which are a list of approximately stable configura-
tions. Through the above footprints and waypoints of the CoM height, the candidate
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configurations are sampled. This sampling method reduces the computation time
necessary for motion planning.

Second, the motion planner determines the overall motion by connecting the
configurations between the initial configuration and the goal configuration with local
paths in the motion checker. When connecting the adjacent configuration, the motion
checker checks for collisions and joint ranges of the motion. If a collision occurs or if
a joint exceeds its allowable joint range in a certain configuration, that configuration is
modified by priority based on parameter modification. The parameters are the height
of the CoM, the toe-off motion, and the footprint; the priority of the parameters is
in the order that they are written in here. Additionally, the motion planner changes
the pelvis orientation to increase the workspace of the legs. The pelvis is rotated in
proportion to the velocity of the moving foot. These tasks of priority based parameter
modification and pelvis rotation expand the stable configuration space.

4.3 Valve Task

For the valve pose estimation, the most important task is to determine inliers among
the point clouds. First, using a modified flood fill algorithm, the segment closest
to the sensor is extracted. The shortest range among all scanned data is found and
set as the seed point of the expansion. Four-directional neighbors with range differ-
ences smaller than 3% are filled. If the segment is too small (50 range data in our
implementation), it is discarded and the next closest segment is extracted.

Our algorithm of valve pose estimation is based on the RANSAC algorithm
(Fischler and Bolles 1981). First, we determine inliers of the handle part of a valve,
which is usually shaped like a thin donut. Three points are sampled to generate a
circle in 3D space. Its normal n, center c and radius r are computed using the points
p1, p2, and p3:

n � (p2 − p1) × (p3 − p1)

‖(p2 − p1) × (p3 − p1)‖ (21)

c � [n, p2 − p1, p3 − p1]
−T

⎡

⎢⎢⎣

nT p1

(p2 − p1)
T (p1 + p2) /2

(p3 − p1)
T (p1 + p3) /2

⎤

⎥⎥⎦ (22)

r � ‖c − p1‖ (23)

It should be noted that there is no assumption that the radius r is known. The cost
function fh for determining inliers is the Euclidean distance from each point p to
the circle:

fh � (
nT (p − c)

)2
+

(√
‖p − c‖2 − (

nT (p − c)
)2 − r

)2

(24)
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Only the points with cost values smaller than a user-defined threshold (20 mm in
our implementation) are determined to be inliers of the handle part.

Second, we determine the inliers of the spoke part of a valve, which consists
of N unknown bars with fixed angular intervals of 360/N° (e.g., 90° for N � 4,
72° for N � 5). To handle the points in 2D space, they are projected onto a plane
perpendicular ton.Without loss of generality, the center of the handle canbeprojected
onto (0, 0) of the new two-dimensional coordinate system. Spoke vectors vN

k are pre-
defined, starting from [1, 0]T :

vN
k �

⎡

⎣
cos

(
2πk
N

)

sin
(
2πk
N

)

⎤

⎦ (0 ≤ k ≤ N ) (25)

A projected point p′ � [
px , py

]T
is determined as an inlier of vN

k if the cost
fs—Euclidean distance between point and spoke—is smaller than a user-defined
threshold (20 mm in our implementation):

fs � (
MR p

′)T Rq ′vN
k (26)

where MR is adopted to generate a reversed vector with different signs:

MR �
[
0 −1
1 0

]
(27)

MR p
′ �

[
0 −1
1 0

] [
px
py

]
�

[
−py
px

]
(28)

It should be noted that the spoke vectors are multiplied by a rotation matrix Rq ′

because the spoke part of the projected point cloudmay be rotated. An arbitrary point
q ′ � [

qx , qy
]T

is selected to rotate spoke vectors.

Rq ′ ≡ 1

‖q ′‖

[
qx −qy
qy qx

]
(29)

Finally, using the squared sum of the distances from the inliers to their corre-
sponding parts (handle or k-th spoke) as a cost function, all of the inliers are used to
refine the valve-to-sensor transformation [Rt]:

f (R, t, c, r ) �
∑

p∈H

((∥∥Mxy(Rp + t)
∥∥ − r

)2
+

(
vT
z (Rp + t)

)2)

+
∑N−1

k�0

∑
p∈Sk

((
MRMxy(Rp + t)

)T
vN
k

)2
(30)
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Fig. 28 Overview of the valve pose estimation

where H and Sk indicate sets of inliers that belong to the handle part and the k-th
spoke part, respectively. Mxy and vz are adopted to extract the x-y terms and the z
term of the 3 × 1 vectors:

Mxy �
[
1 0 0
0 1 0

]
, vz �

⎡

⎣
0
0
1

⎤

⎦ (31)

The whole process is shown in Fig. 28.
To deal with different heights of the valve and different floor conditions, the valve

task is prepared for in standing mode, sitting mode, and height adjusted sitting mode
(see Fig. 29). The approach position is fixed to the best pre-calculated position for
each hand and mode. After the robot approaches the proper position, the valve task
motion can be separated into two stages: reaching of the hand and rotating the valve.
When the robot hand approaches the valve, the FT sensor on wrist is used to detect
the collision between the valve and the robot hand and to check if the fingers are
properly applied to the valve. To reduce unintended force between the valve and
the robot during the rotation stage, a stretched finger motion and compliance of the
under-actuated fingers were used.

Three different valve rotating strategies were designed for different sizes and
numbers of spokes of valves. The first strategy is the center strategy, which uses the
center of the valve to rotate the valve. The second strategy is the one finger strategy,
which involves rotating the valve by putting one finger into the hole that is made by
two spokes and a ring. The last strategy is the spoke strategy, in which the robot uses a
single spoke to rotate the valve. Because it has a slip ring on its wrist, DRC-HUBO+
can rotate a valve without repositioning of its hand.

4.4 Wall Task

In the wall task, to cut a hole in the wall, the first step is to grab an appropriate
tool such as a one or two-handed drill. In our case, the one-handed drill was
selected because it provides a wider workspace for the DRC-HUBO+ than does the
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Fig. 29 Process flow of the valve task. When the valve is observed, the lower body pose is selected
based on the height of the valve. Then, the hand mode is selected based on the features of the valve

two-handed drill. To grab and turn on the one-handed drill, it is necessary to know
the pose (reference point and orientation) of the drill (see Fig. 30).

The shape of the one-handed drill was simplified into a 3D box and a cylinder,
as can be seen in Fig. 30b. The reference point, which the robot has to grab, is
determined by the center of mass of the cylinder, Xc. Two vectors vu and vh are also
decided on to determine the grabbing pose. The vector vu and vh represent the axis of
the cylinder and the major axis of the 3D box, respectively. The vector vh is defined
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Fig. 30 Concept of drill pose estimation. a Illustration of drill pose in 2D image domain, consisting
of center of mass Xc and two orientation vectors vh and vu . b Approximation of drill shape as a
3D cylinder and box. The two points pc and pb are the projected centers of the 3D cylinder and
the box, respectively. c Estimated 3D drill pose. The yellow and green arrows indicate vu and vh ,
respectively. Cross point of the two arrows is the reference point Xc

Fig. 31 Overview of the drill pose estimation

by two points pc and pb, i.e., vh � pb − pc, where pc and pb are the projected
centers of the respective 3D cylinder and the box on the floor plane, respectively.
Thus, the 3D drill pose can be estimated by calculating the reference point Xc and
the two orientation vectors vu and vh .

Figure 31 provides an overview of the proposed drill pose estimation approach.
For a given upsampled depth within the ROI, as pre-processing, the planes of the
wall and the floor are first estimated using RANSAC; then, the points on the two
planes are considered to be outliers. The two sets of red and green points (see Fig. 31)
represent the points on the floor and the wall planes, respectively. Especially, because
the drill is located on the floor plane, this plane plays an important role in the process
of drill pose detection, providing a projection domain to estimate Xc and vh as well
as a normal vector that corresponds to vu .

After removing outlier points of the two planes, classification is performed for the
remaining points, which correspond to the drill points, into two point sets according
to two height thresholds from the floor plane. The middle points set Xm and the
bottom points set Xb are determined as can be seen in the fourth column of Fig. 31;
the parameters for the drill pose are approximated using Xm and the Xb.

To estimate Xc, the middle points set Xm is projected onto the floor plane. On the
floor plane domain, a circle point, pc, is estimated by RANSAC based circle fitting.
Because the radius of the cylinder body part of the drill is already known, it is possible
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Fig. 32 Process of rotating the drill to a proper pose to lift it up. a, c, and e DRC-HUBO+ grasps
drill. b, d, and f Robot rotates the drill a certain amount and releases it. g Finally, it lifts the drill

to easily estimate the center point pc, and calculate Xc by compensating for themiddle
height threshold of vu . To estimate vh , it is necessary first to estimate the projected
centers pc and pb. The circle center pc was already calculated in the above step. To
estimate the center of box pb, the bottom points set Xb is projected onto the floor
plane. In this case, because the 3D box cannot be fully observed using actual depth
measures but can be only partially observed, two orthogonal lines are estimated using
RANSAC instead of using rectangle fitting. From the estimated orthogonal lines, the
rectangle and its center pb can be estimated. Finally, vh is estimated according to the
above definition. Figure 30c shows the drill pose as estimated using the proposed
approach.

To turn on the one handed drill, the robot has to push the button with its other
hand; this must be done hard and precisely enough. To do this, the orientation of the
drill after the grip motion must be in certain range, so that it can be reached by the
other hand.

Rotating the drill vertically after grabbing it requires two-handed motion; this
task involves some uncertainty and risk, so the drill should be rotated before the
robot grabs it and lifts it up. Using IK internal simulation, the minimum re-grabbing
motion is generated, as can be seen in Fig. 32. To avoid a singularity and to widen
the workspace, the waist joint and the redundancy of one arm are used.

After grabbing the drill, the robot uses a 2D image to check the vertical position
and angle of the grabbed drill. The drill switch position/orientation is calculated
using the pre-known model of the drill. Several trial movements are applied to turn
on the drill, and a microphone is used to detect the drill’s working status.

In the wall cutting motion, IK internal simulation is also used to determine the
feasibility of the motion and the best position in which to stand and drill. At this
time, the orientation of the drill can be fixed because the wall is flat; as such, a pre-
calculated position reachability lookup table for the workspace is used to decrease
the calculation time. Tomaintain contact with the wall while cutting, a force-tracking
PD control is used. The angle of gravity and the force torque sensor change during
any cutting motion, so gravity compensation for the hand and the drill is used to
compensate for the force of gravity as it applies differently by position.

Circle-cutting mode and the polygon-cutting mode are both prepared to deal with
these different situations. In the circle-cutting mode, the operator sets the center
position and the radius in the 2D image and uses simple 2D-3D matching to find
the center point for cutting. The RANSAC algorithm is used to find the normal of
the wall. The cutting trajectory can be modified to make sure that the circle being
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Fig. 33 Path examples of a polygon-cutting mode and b circle-cutting mode

Fig. 34 Concept of predicted driving trajectory projection for manual driving task. Leftmost image
depicts the mapping between the ground plane and the camera coordinates to project the trajectory.
The other images are examples of predictive driving trajectory projection in the DRC Finals

cut is closed. In each direction normal to the circle, a 2 cm cut to the center and in
the direction opposite to the center are performed to make sure that even if there is
slipping or some other error in the cutting motion (Fig. 33b 0 and 1), the trajectory
will be a closed one. To remove the piece that has been drilled from the wall, the
drill was moved a certain distance toward the center (Fig. 33b 4).

In polygon mode, to tell the robot where to cut, the operator clicks the proper
point in the 2D image and uses simple 2D-3D matching to find the points to cut. The
trajectory for each end is stretched 4 cm to make sure the cutting trajectory is closed.

4.5 Drive Task

Therewere two alternative solutions to the drive task. Thefirst one is amanualmethod
in which the operator looks at streaming images and provides continuous steering
and pedaling commands to the robot. Because there is no blackout in communication
at Link 2, it is possible to constantly obtain high quality streaming images. As can
be seen in Fig. 34, the future path of the wheels is visualized in the 2D streaming
images. The path is determined based on the steering angle; for precise visualization,
the streaming image camera was calibrated before driving to display the predicted
driving trajectory in the 2D image.



64 J. Lim et al.

For the virtual trajectory projection, a transform T was estimated between the
world and image coordinates, as can be seen in Fig. 34. In the case of a plane,
such as a planar road, the transform can be simplified into a 2D transform, so-called
homography matrix H (Hartley and Zisserman 2003).

Given a set of point correspondences {xi,Xi}Ni�1 between the image and the 3D
world coordinates, a homography matrix H can indicate the 2D transform that sat-
isfies

xi ∼� HXi (32)

where ∼� denotes equality up to scale, xi � [xi yi1]T in homogeneous image coordi-
nates, and Xi � [XiYi1]T is 3D correspondence points on theXYplane. By rewriting
Eq. 32 as xi × HXi � 0, it can be formulated using a linear equation, called a Direct
Linear Transform (DLT), as

Ah � 0 (33)

where

A �
⎡

⎣ Xi Yi 1

0 0 0

0 0 0
Xi Yi 1

−xi Xi −xiYi −xi
−yi Xi −yiYi −yi

⎤

⎦ (34)

The value of h is a vector representation of H . Due to noise, the equalities in
Eq. 33 may not be satisfied in practice. As such, the global homography, H , can be
estimated in a least squares manner, i.e., DLT, by

h � arg minh ‖Ah‖22 subject to ‖h‖2 � 1 (35)

The above optimizationminimizes the algebraic error, and the global homography
H can be obtained in a closed-form by finding the singular vector of A with the
smallest singular value. It should be noted that because the degree of freedom of H is
eight up to scale, at least four correspondences are required. Therefore, a rectangular
plane object of known size is used and the four corners are manually selected as point
correspondences. Using the estimated homography, H , the virtual trajectory of the
wheels is projected into the image domain, as can be seen in Fig. 34.

The second solution for the drive task is the fully autonomous method. The
RANSACmethod (Fischler andBolles 1981)was used to detect obstacles; theWagon
model was used to control the steering and the velocity of the vehicle using only the
limited number of sensors that were installed on the DRC-HUBO+ (Jeong et al.
2015).

There are pros and cons in both methods. The manual method can allow the robot
to drive fast, but this method depends on human operation. The autonomous method
is accurate and robust, but the robot must drive slowly because it is hard to exactly
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Table 2 Egress times of the seven teams who succeeded in the egress task

Team KAIST MIT Tartan IHMC RobosimianWPI-
CMU

Trooper

Time (s) 125 210 130 212 350 359 485

Fig. 35 When driving is finished, a DRC-HUBO+ changes its pose to prepare for egress. After
this, b it grabs with both hands, and hybrid position/force control is started. c, d To reduce impact
when DRC-HUBO+ lands on the ground, each arm supports about 10 kg

estimate the current velocity. Among the two options, Team KAIST used the manual
method in DRC because obstacles were sparse and most of the path was straight.

4.6 Egress Task

It took DRC-HUBO+ about 2 min to egress from the vehicle in the DRC Finals.
Team KAIST finished the egress task in the shortest time among the teams in the
DRC Finals, as Table 2 shows.

After finishing the driving task (see Sect. 4.5), DRC-HUBO+ releases its right
hand from the steering wheel and grabs the tilted roll cage. Then, hybrid posi-
tion/force control is started (see Sect. 6.2). The X, Y positions (horizontal) and
the desired Z (upward) direction force are controlled as predefined values that were
determined experimentally. To reduce impact during landing, both hands pull on the
roll cage with a force of about 100 N. If the robot detects landing, it stabilizes its
ZMP by controlling its pelvis position. Before releasing its hands, DRC-HUBO+
uses feedback control of the FT sensor on its wrist to remove the force exerted on
both hands. By applying this controller, it is guaranteed that the robot will not fall
down after releasing both hands (Fig. 35).



66 J. Lim et al.

(b) High quality
image

(a) Low quality 
image (c) Four different view of motion simulation 

Fig. 36 In the surprise task, there were two kinds of visual feedback: 2D images and 3D point
cloud data. With a joystick, user generates via-point command in 3D space. Operator controls a
ghost in 3D space and selects current posture as a via-point. By connecting via-points, it is possible
to generate sequential motion. With this tele-command interface, the robot can perform any kind
of manipulation task

4.7 Surprise Task

In a situation of low band communication, the manipulator cannot be manually con-
trolled in real-time because it is impossible to obtain continuous visual feedback.
Hence, a via-point strategy was devised to create a set of via-points for the manip-
ulator in the 3D space and send this information to the robot. As can be seen in
Fig. 36c, via-points are created by joystick control based on the 3D cloud data. The
joystick can be used to control the 7 DOF arm, the gripper movement, and the waist.
At this time, the arm angle, which is a redundant task, is automatically determined
based on the method described in Sect. 3.1.

5 Lessons

In this section, we will discuss what we learned from and feel about the DRC Finals.
First of all, we thank DARPA for giving us the opportunity to participate in this
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robotics challenge. It was possible to meet and learn from other teams and share our
experiences and thoughts. There were many good hardware platforms, vision sys-
tems, operating methods, control algorithms, etc. All of the systems we encountered
were the most progressive outputs in the present field of robotics, and it was a great
experience to see them.

We thought that this competition showed the double-sidedness of the possibility of
counteracting disaster scenarios using present robot technology. In the challenge, the
given scenario was not an impossible mission for the present technology. However,
the tasks designed in the competition are different from what robots will confront
in real situations. In real disaster conditions, all of the circumstances will be worse.
The ground condition, workable space, light condition, and communication will not
be as good as those that the DRC Finals provided. In this competition, many robotic
platforms fell down and never got back up by themselves; some of them broke.
Participants were permitted to reset their robots with a certain time penalty, but in
reality this is the same as a mission fail. Thus, we need to research stable mobility
on uneven ground or rubble areas to reach the task spot.

In the aspect of vision system, it should be considered that the entire vision
system can fail due to certain deficiencies of the sensors. For example, depth sensors,
such as the LIDAR and the stereo camera, can completely fail due to clouds of
vaporous air, severely low light conditions, or radioactivity. In these situations, every
vision system that was introduced in the DRC Trials and Finals would fail to work
properly. Thus, we should research robustness issues for depth measurement and
estimation, and vision algorithms that can be used in severe conditions to counteract
real disaster situation. Furthermore, communication, autonomy, and systemdiagnosis
and recovery are important issues for disaster robots, and there is still a need for more
research if we are to use such systems in real sites.

6 Conclusions

The performance of DRC-HUBO+ was validated at the DRC finals. The robot
successfully carried out all of its tasks in real environments without any state
initialization; we won first place with a full score. In this paper, we have presented
a survey of the humanoid robot platform, DRC-HUBO+, including the overall
hardware configuration, software architecture PODO, various control methods for
operating the robot, and the vision system. We have also provided details on our
overall strategy and on the task oriented vision algorithms that were used to solve
the given tasks. In addition, we have discussed what we learned and our views on
the limitations of current robot systems.
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