
Chapter 3
Field-Matter Coupling and Two-Level
Systems

With this chapter, we start the applications part of this book by considering the
interaction between lasers andmatter. Lasers have already been discussed in Chap. 1.
Therefore, we begin immediately with the theoretical description of the coupling of a
given classical light field realized, e.g., by a laser, to a quantum mechanical system.1

After the discussion of different gauges or frames, related by unitary transformations,
the Volkov solution for the laser-driven free particle is reviewed.

Due to their simplicity and the fact that they serve as paradigms for many phe-
nomena observed in more complex systems, some analytically solvable two-level
systems will be discussed in the remainder of this chapter. We will first look at Rabi
oscillationsmediated by a static electric field and after the introduction of the rotating
wave approximation, the laser-driven case will be reviewed.

3.1 Light-Matter Interaction

The interaction of a single quantum particle with an electromagnetic field shall be
considered in the following. Starting from the principle of minimal coupling and
using several unitary transformations, some commonly used ways of setting up a
field driven Hamiltonian will be presented.

1In the literature this is frequently called semiclassical lasermatter interaction [1].Wehave, however,
used the expression “semiclassics” already differently in Chap.2.
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88 3 Field-Matter Coupling and Two-Level Systems

3.1.1 Minimal Coupling

The most straightforward approach to the coupling of a charged particle with charge
q to an electromagnetic field is given by the principle of “minimal coupling”. In
classical mechanics this principle aims at producing Newton’s equation with the
Lorentz force by constructing a corresponding Lagrangian.

3.1. Study classical minimal coupling by answering the following questions:

(a) Under which conditions for the potentials Aand Φ does the classical Lagrangian

L(ṙ, r, t) = m

2
ṙ2 − qΦ(r, t) + q ṙ · A(r, t)

lead to Newton’s equation of motion with the Lorentz force?
(b) Give explicit expressions for the canonical momentum p = ∂L/∂ ṙ and for the

mechanical momentum pm = m ṙ .
(c) What is the explicit form of the Hamiltonian H( p, r, t) = ṙ · p − L(ṙ, r, t)?

To arrive at the quantum version of minimal coupling, we could just use the
classical result and invoke the correspondence principle. More instructive is a direct
approach to quantum minimal coupling, however, which shall be discussed in some
detail now.

Let us first consider the effect of a local unitary transformation with the scalar
field χ(r, t)

Ψ ′(r, t) = ei
q
�

χ(r,t)Ψ (r, t) (3.1)

on the time-dependent Schrödinger equation [2]. For the transformed wavefunction
the transformed equation

i�Ψ̇ ′(r, t) = Ĥ ′Ψ ′(r, t) (3.2)

holds, where the primed Hamiltonian is given by

Ĥ ′ = ei
q
�

χ(r,t) Ĥe−i q
�

χ(r,t) − qχ̇ (r, t), (3.3)

with

Ĥ = p̂2

2m
+ V (r). (3.4)

Shifting the momentum operator p̂ = �

i ∇ twice past the exponential factor of the
unitary transformation, we get the identity

ei
q
�

χ(r,t) p̂2e−i q
�

χ(r,t)Ψ ′(r, t) = ( p̂ − q∇χ)2Ψ ′(r, t), (3.5)
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and therefore

Ĥ ′ = 1

2m

(
�

i
∇ − q∇χ

)2

+ V (r) − q
∂χ

∂t
(3.6)

holds for the primed Hamiltonian.
Following Weyl [3], the time-dependent Schrödinger equation has to be invariant

under the unitary transformation (3.1) introduced above. To satisfy this requirement,
the original time-dependent Schrödinger equation has to be modified slightly, how-
ever, according to

i�Ψ̇ (r, t) =
[

1

2m

(
�

i
∇ − q A(r, t)

)2

+ V (r) + qΦ(r, t)

]
Ψ (r, t). (3.7)

This equation is now formally equivalent to the transformed time-dependent
Schrödinger equation

i�Ψ̇ ′(r, t) =
[

1

2m

(
�

i
∇ − q A′(r, t)

)2

+ V (r) + qΦ ′(r, t)

]
Ψ ′(r, t) (3.8)

if the relations

A′ = A + ∇χ, Φ ′ = Φ − χ̇ (3.9)

hold. These, however, are the gauge transformations of the potentials A(r, t) and
Φ(r, t) of classical electrodynamics. The electromagnetic fields

E = −∂A
∂t

− ∇Φ, (3.10)

B = ∇ × A (3.11)

are unchanged by such transformations.
Summarizing, minimal coupling amounts to replacing the canonical momentum

p̂ by the kinetic momentum p̂ − q A(r, t) and shifting the potential by qΦ(r, t) in
the Hamiltonian. The probability current density in the equation of continuity (2.4)
of Chap.2 has to be changed accordingly, as can be seen by solving Exercise 3.2.

3.2. Find the modified expression for the probability current density j in the case
of coupling of the motion of a charged particle to an external field. Show that the
expression you gained is gauge invariant.

Expanding the square of the kinetic momentum, cross terms of the form p̂ · A and
A · p̂ appear. In the Coulomb gauge, which, for sources at infinity, is defined by

Φ(r, t) = 0, ∇ · A(r, t) = 0 , (3.12)

http://dx.doi.org/10.1007/978-3-319-74542-8_2
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we can conclude that p̂ commuteswith A. Therefore the two cross-terms are identical
as in classical mechanics.

Furthermore, the energy obviously is not conserved any more in the presence of
a time-dependent external field. The question, which operator could be considered
as the energy operator, does not have a straightforward answer, however. Studying
Exercise 3.3 and the literature given in the solutions shedsmore light on this question.

3.3. Let Θ̂(A, Φ) be an operator that depends on the potentials of the electromag-
netic field.

(a) Show that for the operator Θ̂ to have a gauge invariant expectation value

ei
q
�

χΘ̂(A, Φ)e−i q
�

χ = Θ̂(A′, Φ ′)

has to hold.
(b) Show that Ĥ = ( p̂−q A)2

2m + V (r) + qΦ is not a gauge invariant operator and
its expectation value cannot be the energy. Discuss an alternative, that may be
considered as the energy operator.

In general, the case of a system of many charged particles which are coupled to
a laser field has to be studied. As we will see in Chap. 5, the motion of the center
of mass and the relative motion without a laser can be separated. With the laser
they do not necessarily separate any more [3]. We will deal with the coupling of an
electromagnetic field to a many particle system in more detail in Chap.5.

3.1.2 Dipole Approximation and Length Gauge

Another well-known form of light matter interaction rests on the dipole approxima-
tion, in which case the vector potential is assumed to be independent of position.2

For an atom of typical size of the order of Angstroms in a field of optical wavelength
of several hundred nanometers this is a well founded approximation, as depicted in
Fig. 3.1.

Fig. 3.1 An atom in the field of a light wavewithwavelengthmuch longer than the typical extension
of the atom

2Therefore, due to (3.11), the magnetic induction vanishes in dipole approximation.

http://dx.doi.org/10.1007/978-3-319-74542-8_5
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The effect of the vector potential in the minimal coupling Hamiltonian of (3.7)
in Coulomb gauge and in dipole approximation is a time-dependent shift of the
momentum leading to

Ĥv = [ p̂ − q A(t)]2
2m

+ V (r). (3.13)

Due to the corresponding Lagrangian (vector potential couples to velocity), the term
velocity gauge is therefore frequently used.3 Applying a gauge transformation with
the scalar field

χ(r, t) = −r · A(t) (3.14)

leads to transformed potentials of the form

A′ = 0, Φ ′ = −∂χ

∂t
= r · Ȧ = −r · E(t), (3.15)

where the last step follows from (3.10) in Coulomb gauge. The present gauge is thus
also called length gauge (electric field couples to the position). The corresponding
time-dependent Schrödinger equation then reads

i�Ψ̇l(r, t) =
[

p̂2

2m
+ V (r) − q r · E(t)

]
Ψl(r, t) (3.16)

and contains the laser-matter interaction in terms of the dipole operator q r̂ . His-
torically it has been introduced by Göppert-Mayer [5] by using the fact that the
Lagrangians in the length as well as in the velocity gauge only differ by a total
time-derivative.

3.4. Switch from the velocity to the length gauge by adding a total time derivative
to the Lagrangian.

(a) Show first that adding a total time-derivative d
dt f (r, t) to the Lagrangian does

not alter the equations of motion.
(b) In the dipole approximation and the Coulomb gauge (Φ = 0, A = A(t))

add −q d
dt (r · A) to the velocity gauge Lagrangian and simplify the resulting

expression.

We stress that in dipole approximation and under the Coulomb gauge, the vector
potential as well as the electric field are independent of the position vector and the
magnetic induction is zero. A coupling to the magnetic field by going beyond the

3Synonymously, some authors [3, 4] use the expression A · p gauge.
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dipole approximation would become necessary for a large electron quiver velocity
(see Sect. 3.1.4) on the order of the speed of light.4

Velocity and length gauge are related by a unitary transformation and therefore any
measurable quantity may not depend on the gauge used. If one uses approximations
during the solution process, however, there may be orders of magnitude and even
qualitative [7] differences between the results predicted in the different gauges. A
recent investigation of a gauge independent strong field approximation is given in
[8]. A more technical question is, in which gauge numerical calculations should
be performed. For the investigation of high-order harmonic generation using laser
irradiated hydrogen atoms, to be discussed in Sect. 4.5, it was found that for high laser
intensities, the velocity gauge seems to be favorable from a numerical perspective
[9]. This fact was corroborated in a recent publication on the ionization of hydrogen
atoms, see the supplemental material of [10]. The case of very short (down to half
cycle) pulses is discussed with respect to gauge invariance in [11].

Finally, it is worthwhile to note that, as shown in Appendix 3.A, the notion of
parity, well-known in autonomous Hamiltonian systems, can be generalized to the
case of periodically, dipolarly driven systems.

3.1.3 Kramers-Henneberger Transformation

In the case of strong fields, another unitary transformationwill turn out to be very use-
ful.We start again from theminimally coupled time-dependent Schrödinger equation
(3.7) in the Coulomb gauge and in dipole approximation, leading to

i�Ψ̇v(r, t) =
[

1

2m

(
�

i
∇ − q A(t)

)2

+ V (r)

]
Ψv(r, t)

=
[
− �

2

2m
∇2 + iq�

m
A(t) · ∇ + q2

2m
A2(t) + V (r)

]
Ψv(r, t). (3.17)

Successively performing two unitary transformations

Ψa(r, t) = Û2Û1Ψv(r, t), (3.18)

with

Û1 = exp

{
iq2

2m�

∫ t

0
dt ′A2(t ′)

}
, (3.19)

Û2 = exp

{
− q

m

∫ t

0
dt ′A(t ′) · ∇

}
(3.20)

4For a charged particle in a plane electromagnetic wave, the magnetic part of the Lorentz force is
smaller by a factor v/c than the electric one [6].

http://dx.doi.org/10.1007/978-3-319-74542-8_4
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defines a wavefunction in the Kramers-Henneberger frame [12, 13]. The use of
the subscript “a” will become apparent below. The first transformation eliminates
the squared vector potential, whereas the displacement operator (3.20) moves the
coupling into the argument of the potential, as can be seen by solving Exercise 3.5.
The time-dependent Schrödinger equation in theKramers-Henneberger frame is then
given by

i�Ψ̇a(r, t) =
[
− �

2

2m
� + V [r + α(t)]

]
Ψa(r, t) , (3.21)

where

α(t) = − q

m

∫ t

0
dt ′A(t ′). (3.22)

3.5. Show that the two unitary transformations into the Kramers-Henneberger frame
eleminate the terms proportional to A2 and A in the Hamiltonian. Due to the fact that
the first transformation is a global phase transformation, it just remains to calculate

Û2V̂ Û−1
2 ,

to prove the shift in the argument of the potential.
Hint: Use the operator relation known as Baker-Haussdorff (or Hadamard) lemma
eL̂ M̂e−L̂ = ∑∞

n=0
1
n! [L̂, M̂]n, where [L̂, M̂]n = [L̂, [L̂, M̂]n−1] and [L̂, M̂]0 = M̂.

Differentiating (3.22) twice and using (3.10) in the Coulomb gauge, we find that

mα̈(t) = qE (3.23)

holds. The Kramers-Henneberger transformation thus is characterized by a spatial
translation into an accelerated frame, corresponding to the oscillatory quiver motion
of the charged particle in the electric field. The present case is therefore also fre-
quently referred to as the “acceleration gauge”, although the use of the term gauge is
misleading, since no gauge transformations of the potentials can be given here [11].

In the high-frequency limit, the TDSE in the Kramers-Henneberger frame can
be averaged over a (short) period of the external field. This has, e.g., been done in
the calculations in [14] for the case of a periodically driven double-well potential,
to be discussed in more detail in Sect. 5.5.1. This way, analytical predictions of the
influence of high-frequency driving on the system dynamics can be given.

http://dx.doi.org/10.1007/978-3-319-74542-8_5
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3.1.4 Volkov Wavepacket and Ponderomotive Energy

Tofill the presented formalismwith life,we now turn to an important, exactly solvable
model. For the case of 1D free motion, i.e., V (x) = 0 of an electron with mass
me and charge q = −e in a cw laser field E = E0 cos(ωt), the time-dependent
Schrödinger equation in length gauge (3.16) can be solved exactly analytically under
the assumption of a Gaussian initial state.

Due to the fact that the total time-dependent potential

VL(x, t) = exE0 cos(ωt) (3.24)

is linear, the resulting Volkov wavepacket with initial phase space center (0, q0) is
given by using the GWD of Sect. 2.1.4 for α0 = γ /2 according to5

Ψ (x, t) =
(γ

π

)1/4
√

1

1 + iγ �t/me
exp

{
i

�

[
Up

2ω
sin(2ωt) − Upt + xp(t)

]}

exp

{
− γ

2(1 + iγ �t/me)
[x − q(t)]2

}
, (3.25)

where the general solutions

p(t) = p0 − eE0 sin(ωt)/ω, (3.26)

q(t) = q0 + p0t

me
+ eE0[cos(ωt) − 1]/(meω

2) (3.27)

of the classical equations of motion for position and momentum have been used with
the initial conditions p(0) = p0 = 0, q(0) = q0.

The amplitude of oscillations of position eE0/(meω
2) is the so-called quiver ampli-

tude.Wecan convince ourselves of the analytic formof theVolkov solution by solving
Exercise 3.6. As a side result it will turn out that the derivative of the kinetic energy
averaged over a period of the external field vanishes. A free particle can therefore
not accumulate energy from the field.

3.6. Using Gaussian Wavepacket Dynamics calculate the wavefunction of a free
electron in a laser field with the potential

VL(x, t) = exE0 cos(ωt)

in length gauge.

5The gauge index will be mostly suppressed in the remainder of the book, as we will explicitly state
which gauge is used.

http://dx.doi.org/10.1007/978-3-319-74542-8_2
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(a) Determine the solutions (pt , qt ) of the classical equations of motion with the
initial conditions (0, q0). Then calculate the classical kinetic energy and its
derivative and average the results over one period T = 2π/ω of the external
field. Interprete the results.

(b) Use the result for αt from the free particle case (why is this possible?).
(c) Employing integration by parts, show that

∫ t

0
dt ′L = −

∫ t

0
dt ′ p2

t ′

2me
+ qt pt

holds. Use this result to determine the phase δt = ∫ t
0 dt ′(L − αt ′) and insert

everything in the GWD expression. Why is the final result exact?

As could be seen by working through the previous exercise, there is an important
quantity hidden in the Volkov solution. This is the average of the kinetic energy over
one period, which is given by

Up := 1

T

∫ T

0
dt

p2

2me
= e2E2

0

4meω2
, (3.28)

as can be shown by using (3.26). This quantity is called ponderomotive energy (or
ponderomotive potential). 2Up is the maximal kinetic energy that an electron may
have at a certain time. It is important to keep in mind that low frequency fields lead
to high ponderomotive energies.

A generalization of the results to 3D can be performed in several ways. Alterna-
tively to replacing all occurences of position and momentum in the solution above
by the corresponding 3D vectors, we start from the TDSE in velocity gauge with the
Hamiltonian of (3.13) in the case of V (r) = 0. After a Fourier transformation of the
wavefunction to the momentum representation (see also Sect. 2.3.2) via

Ψ ( p) = 1

(2π�)3/2

∫
d3r exp

{
− i

�
p · r

}
Ψ (r), (3.29)

we get

i�Ψ̇ ( p, t) = 1

2me

[
p + eA(t)

]2
Ψ ( p, t) (3.30)

for the time-dependent Schrödinger equation. There is no operator hat on themomen-
tum any more because we have used the corresponding eigenvalue equation.

A solution to the ordinary differential equation above is given by

Ψ ( p, t) = Ψ ( p, 0) exp

{
− i

�

∫ t

0
dt ′

[
p + eA(t ′)

]2
2me

}
, (3.31)

http://dx.doi.org/10.1007/978-3-319-74542-8_2
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as can be proven by separation of variables and checked by differentiation with
respect to time. Inverse Fourier transformation back to position space now gives the
Volkov wavepacket

Ψ (r, t) = 1

(2π�)3/2

∫
d3 p exp

{
i

�
p · r

}

exp

{
− i

�

∫ t

0
dt ′

[
p + eA(t ′)

]2
2me

}
Ψ ( p, 0). (3.32)

If we use as a special case a delta function centered around p0,

Ψ ( p, 0) = δ( p − p0), (3.33)

for the initial p state, then the Volkov state

Ψv(r, t) = 1

(2π�)3/2
exp

{
i

�
p0 · r − i

�

∫ t

0
dt ′

[
p0 + eA(t ′)

]2
2me

}
(3.34)

in velocity gauge emerges.
Starting from the velocity gauge result and using the gauge transformation from

(3.14) leads to

Ψl(r, t) = 1

(2π�)3/2
exp

{
i

�
[ p0 + eA(t)] · r

− i

�

∫ t

0
dt ′

[
p0 + eA(t ′)

]2
2me

}
, (3.35)

which is the Volkov state in length gauge.
In the Kramers-Henneberger frame, starting again from (3.34), the dependence

on A(t) cancels out and we arrive at the corresponding Volkov state

Ψa(r, t) = 1

(2π�)3/2
exp

{
i

�
p0 · r − i

�

p20
2me

t

}
, (3.36)

which is just a plane wave.
A more general initial state, e.g., a Gaussian centered around p0, will lead to a

generalization of theGWDsolution to 3D. It is a nice exercise inGaussian integration
to rederive the 1D result (3.25) from (3.32).
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3.2 Analytically Solvable Two-Level Problems

Driven two-level systems are the easiest realizations of the field-matter coupling
formalism just reviewed. Several paradigms in the theory of laser induced dynamics
can be found already in the solutions of these simple systems. They shall therefore
now be studied in some detail. We will concentrate on analytically solvable cases,
which can either be solved exactly or under some approximations.

3.2.1 Dipole Matrix Element

First of all, the Hamilton matrix has to be set up. To this end, we consider two
energy levelswith the unperturbed orthogonal states |ψ1〉, |ψ2〉 and the corresponding
energies E1 = −�ε, E2 = �ε, which are the diagonal elements of the Hamilton
matrix.

To write down an expression for the off-diagonal elements of the Hamilton matrix
in the case of an external perturbation, we assume that it is due to the coupling to an
electric field of the form

E(r, t) = E0 cos(k · r − ωt). (3.37)

We now turn to the dipole approximation of Sect. 3.1.2, i.e., λ = 2π/k shall be much
larger than the size of the quantum system, as depicted in Fig. 3.1. In the argument
of the cosine, r can then be replaced by r0 which can be set to zero without loss of
generality. The electric field is then purely time-dependent

E(t) = E0 cos(ωt) (3.38)

and the coordinate independent force

F(t) = −e E(t) (3.39)

acts on the electron. The corresponding potential energy is given by

VL(r, t) = e r · E(t). (3.40)

Adding this potential energy to the Hamiltonian leads to the length gauge form of
the Hamiltonian in (3.16).

If the two levels under consideration have real eigenfunctions with different parity
(see Exercise 3.8) then

�ν12(t) ≡ E(t) ·
∫

d3r ψ1 e rψ2 = μ12 · E(t) = �ν21(t) (3.41)
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follows for the non-vanishing off-diagonal elements of the Hamilton matrix, which
are proportional to the matrix element

μ12 ≡
∫

d3r ψ1 e rψ2 (3.42)

of the (negated) dipole operator. The diagonal matrix elements due to the laser poten-
tial are zero.

3.2.2 Rabi Oscillations Induced by a Constant Perturbation

For the following, we assume that the perturbation is time-independent, i.e., we set
ω → 0 and define ν := limω→0 ν12(t). As an Ansatz for the solution of the time-
dependent Schrödinger equation (2.22), a superposition of the unperturbed eigen-
states with time-dependent coefficients

|Ψ (t)〉 = c1(t)|ψ1〉 + c2(t)|ψ2〉 (3.43)

can be chosen. For the vector cT = (c1, c2) of coefficients, the linear system of
coupled ordinary differential equations

i�ċ = Hc , (3.44)

with the two by two Hamilton matrix

H = �

(−ε ν

ν ε

)
(3.45)

emerges. This Hamiltonian can be expressed in terms of the Pauli spin matrices,
which are discussed in Appendix 3.B.

As mentioned in Sect. 2.3.1, the time-evolution can be determined by solving the
eigenvalue problem. The eigenvalues of the matrix in (3.45) are

E± = ±�

√
ε2 + ν2 (3.46)

and the corresponding eigenstates are given by

|ψ+〉 = sin(Θ)|ψ1〉 + cos(Θ)|ψ2〉, (3.47)

|ψ−〉 = cos(Θ)|ψ1〉 − sin(Θ)|ψ2〉, (3.48)

http://dx.doi.org/10.1007/978-3-319-74542-8_2
http://dx.doi.org/10.1007/978-3-319-74542-8_2
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where the definition

Θ ≡ 1

2
arctan

(ν

ε

)
(3.49)

has been used.6 In the case of degeneracy of the unperturbed states (ε = 0)Θ = π/4,
and the eigenstates are the symmetric, respectively antisymmetric combination of the
two unperturbed states.

The spectral representation of the time-evolution operator for the solution of the
Schrödinger equation is given by

Û (t, 0) =
∑
±

|ψ±〉 exp
{
− i

�
E±t

}
〈ψ±|, (3.50)

as can be seen by comparison with (2.39). In the basis of the eigenvectors (1,0) and
(0,1) of the unperturbed Hamilton matrix, the matrix

U(t, 0) =
(

sin2(Θ) sin(Θ) cos(Θ)

sin(Θ) cos(Θ) cos2(Θ)

)
exp

{
− i

�
E+t

}

+
(

cos2(Θ) − sin(Θ) cos(Θ)

− sin(Θ) cos(Θ) sin2(Θ)

)
exp

{
− i

�
E−t

}
(3.51)

for the time-evolution operator can be derived. This matrix allows us to calculate

P21(t) = |〈ψ2|Û (t, 0)|ψ1〉|2 = |U21(t, 0)|2, (3.52)

which is the probability to find the system in state |ψ2〉 at time t , if it was in state
|ψ1〉 at time zero (in terms of the coefficients this corresponds to the initial conditions
c1(0) = 1, c2(0) = 0). From the matrix representation of Û by using sinΘ cosΘ =
1
2 sin(2Θ), we get

P21(t) = ν2

ν2 + ε2
sin2(ΩRt/2), (3.53)

where

ΩR ≡ 2
√

ε2 + ν2 (3.54)

is the definition of the so-called Rabi frequency. P21(t) performs Rabi oscillations
with the amplitude

6The identities arctan(x) = arccos(1/
√
1 + x2) and arctan(x) = arcsin(x/

√
1 + x2) can be used

to resolve the cosine and sine terms in (3.47) and (3.48).

http://dx.doi.org/10.1007/978-3-319-74542-8_2
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Fig. 3.2 Rabi oscillations of
the probability to be in the
upper state, starting from the
lower state, induced by the
perturbation ν = 1. The
degenerate ε = 0 (solid
black line), as well as the
non-degenerate case ε = 0.5
(dashed blue line) are
depicted as a function of
time in units of 1/ν; all
energies in arbitrary units
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, (3.55)

which are depicted in Fig. 3.2. Only in case of degeneracy, ε = 0, do the oscillations
have an amplitude of 1. Furthermore, for non-degenerate systems the oscillations are
faster than for degenerate unperturbed levels.

Rabi oscillations are analogous to the tunneling dynamics of the probability ampli-
tude in a symmetric double well, which will be considered in Chap.5. There the
eigenstates of the unperturbed problem are the symmetric, respectively antisymmet-
ric superposition of localized states in the left and right well and thus for a localized
initial condition c1 = ±c2 = 1/

√
2 has to be chosen.

3.2.3 Time-Dependent Perturbations and Rotating Wave
Approximation

In the presence of a time-dependent perturbation V̂ (t) = �ν̂(t), and with E1,2 =
�ε1,2, the time-dependent Schrödinger equation for the coefficients is

iċ1 = c1ε1 + c2ν12(t), (3.56)

iċ2 = c2ε2 + c1ν21(t). (3.57)

In the “strong-coupling” limit, i.e., for ν21 	 ε2−ε1, these coupled differential equa-
tions can be solved perturbatively [15]. There exists, however, another approximate
approach to solve the differential equations, starting from the Ansatz

c1(t) = d1(t) exp[−iε1t], (3.58)

c2(t) = d2(t) exp[−iε2t], (3.59)

http://dx.doi.org/10.1007/978-3-319-74542-8_5
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which leads to

iḋ1 = d2ν12(t) exp[−iω21t], (3.60)

iḋ2 = d1ν21(t) exp[iω21t], (3.61)

where the abbreviation ω21 = ε2 − ε1 has been introduced. Note that the transfor-
mation from the vector c to the vector d of coefficients is equivalent to a unitary
transformation into the interaction picture.

In the case of a monochromatic (coherent) perturbation ν12(t) ∼ cos(ωt), the
system of differential equations can be solved analytically by using the so-called
rotating wave approximation, as will be shown in the following. In the case of inter-
action with incoherent radiation (a random superposition of monochromatic laser
fields) we can use perturbation theory and in this way give a microscopic derivation
of the B-coefficient of Chap.1. This last case will be dealt with in Appendix 3.C.

3.2.3.1 Rotating Wave Approximation

For the monochromatic field in (3.38), the Schrödinger equation in the interaction
picture (3.60) and (3.61) can be written as

iḋ1 = d2
μ12 · E0

2�
{exp[i(ω − ω21)t] + exp[−i(ω + ω21)t]} , (3.62)

iḋ2 = d1
μ21 · E0

2�
{exp[−i(ω − ω21)t] + exp[i(ω + ω21)t]} . (3.63)

In order to introduce the rotating wave approximation (RWA), we define the detuning
between the field and the external frequency

Δd ≡ ω − ω21. (3.64)

For Δd � ω21, the terms that oscillate at about twice the frequency of the external
field are the so-called counter-rotating terms. In the differential equations above they
can be neglected, if we assume that the coefficients d1,2 change on a much longer
time scale. To prove this proceduremathematically, one has to average the differential
equations over times much larger than 1/(ω + ω21), see Exercise 3.7.

The differential equations in RWA are now dramatically simplified and read

iḋ1 = d2
μE0
2�

exp[iΔdt], (3.65)

iḋ2 = d1
μE0
2�

exp[−iΔdt], (3.66)

where we have assumed in addition that the polarization of the field is in the direction
of the dipole matrix element, which has the absolute value μ = μ12 = μ21. The

http://dx.doi.org/10.1007/978-3-319-74542-8_1
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solution of the two coupled differential equations can be found by differentiating
(3.65)with respect to time and inserting (3.66). The secondorder differential equation
that emerges can be solved, and one gets

d1(t) = �

μE0 exp[iΔdt/2]{(Δd − ΩR)C exp[iΩRt/2]
+ (Δd + ΩR)D exp[−iΩRt/2]}, (3.67)

d2(t) = exp[−iΔdt/2]{C exp[iΩRt/2] + D exp[−iΩRt/2]} (3.68)

with the Rabi frequency in the time-dependent case

ΩR =
√

Δ2
d +

(
μE0
�

)2

. (3.69)

The parameters C and D have to be determined from the initial conditions. In the
case of non-resonance (corresponding to the non-degenerate case for constant per-
turbations) the oscillations are again faster than on resonance.

3.7. Consider a two-level system interacting with a monochromatic laser field.

(a) Average the TDSE over times long in comparison to 1/(ω + ω21) in order to
motivate neglecting the counter-rotating terms.

(b) Using the initial conditions d1(0) = 1 and d2(0) = 0, give explicit expressions
for C and D and for d1(t) and d2(t). Depict |d2(t)|2 for resonance as well as
for off-resonance.

Furthermore, the quality of the RWA depends on the soundness of the approxi-
mation of neglecting the counter-rotating terms. The validity of this assumption can
be studied explicitly for a specific example in Exercise 3.8.

3.8. An electron shall move in an inversion symmetric potential V (x) = V (−x) in
one spatial dimension.

(a) Show that the eigenfunctions of the TISE must fulfill either

ψ2n(x) = ψ2n(−x) or ψ2n+1(x) = −ψ2n+1(−x),

and that diagonal dipole matrix elements μnn = 〈ψn|ex̂ |ψn〉 therefore always
vanish.

(b) Calculate the dipole matrix element between the ground and the first excited
state of the harmonic oscillator

V (x) = 1

2
meω

2
e x2
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with a frequency in the visible range, ωe = 3.14 × 1015 s−1. Determine the
Rabi frequency in the resonance case for 3 different field strengths E0 =
1, 106, 1010 V m−1. Is the condition for the applicability of the RWA fulfilled
for all field strengths?

3.2.3.2 Area Theorem

Finally, we consider the case of resonance, Δd = 0, in which � times the external
frequency equals the level spacing. Furthermore, we assume that the external field
shall be of finite duration, i.e., it shall consist of a laser pulse with an envelope, so
that we have to replace E0 by E0 f (t) in the time-dependent Schrödinger equation.
According to (3.69), a time-dependent Rabi frequency

ΩR(t) = μE0 f (t)

�
(3.70)

emerges, with the help of which the coupled differential equations can be written as

iḋ1 = ΩR(t)

2
d2, (3.71)

iḋ2 = ΩR(t)

2
d1. (3.72)

For the initial conditions d1(0) = 1, d2(0) = 0 the solutions are given by

d1(t) = cos

(∫ t

0
dt ′ ΩR(t ′)

2

)
, (3.73)

d2(t) = −i sin

(∫ t

0
dt ′ ΩR(t ′)

2

)
, (3.74)

as can be verified by insertion. In RWA the population transfer in the resonance case
does not depend on the specific shape of the pulse, but only on the area below the
pulse. This is the so-called area theorem. A π -pulse, for which

∫ t
0 dt ′ΩR(t ′) = π ,

allows for a complete transfer of population.

3.2.4 Exactly Solvable Time-Dependent Cases

In very few special cases, also in the case of a time-dependent perturbation an exact
analytical solution of the time-dependent two-level Schrödinger equation can be
found [16]. As our starting point we use (3.44) in the case of time-dependent ε and
ν. After elimination of c1, the second order differential equation
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c̈2 − ν̇

ν
ċ2 +

(
ε2 + ν2 − iε̇ + iε

ν̇

ν

)
c2 = 0 (3.75)

for the other coefficient can be derived, see also Exercise 3.9. Reasons for the time-
dependence of the diagonal as well as for the off-diagonal elements of the Hamilto-
nian may be the coupling to a light field or nuclear motion in a molecule, which will
be considered in detail in Chap.5.

3.2.4.1 The Rosen-Zener Model

In the case of coupling to a pulsed laser field and in RWA7 we can choose

ε = Δ/2, ν(t) = ν0sech(t/Tp), (3.76)

defining the Rosen-Zener model with a pulse length parameter Tp, see Fig. 3.3. As
found by these authors, the solution of the time-dependent Schrödinger equation
for this choice can be determined exactly analytically. With the initial condition
c1(−∞) = 1 and for t → ∞ it is given by [17]

|c2(∞)|2 = sin2(πν0Tp)sech
2(πΔTp/2). (3.77)

For the resonance case,Δ = 0, this solution is proven inExercise 3.9. In the resonance
case it is also rewarding to note that in the argument of the sine, the pulse area
ν0

∫ ∞
−∞ dt sech(t/Tp) = ν0πTp appears. This is yet another manifestation of the area

theorem discussed at the end of Sect. 3.2.3.

3.9. Consider the TDSE for the two-level Rosen-Zener model.

(a) Prove the equation for c2 that can be gained by the elimination of c1.
(b) Transform the independent variable with the help of

z = 1

2
(tanh

t

Tp
+ 1).

What is the differential equation for c2(z)?
(c) Consider the special case ε = 0 and determine c2(t = ∞) for the initial

conditions c2(t = −∞) = 0 and c1(−∞) = 1.
Hint: Use the hypergeometric function (see I. S. Gradshteyn and I. M. Rhyzik,
Tables of Integrals Series and Products (Academic Press, San Diego, 1994),
Sect.9.1, or http:// dlmf.nist.gov/ 15) and
F(a, b; c; 1) = Γ (c)Γ (c−a−b)

Γ (c−a)Γ (c−b)
, Γ (1 − x)Γ (x) = π

sin(πx)
, Γ (3/2) = √

π/2

7This is an approximation and therefore the notion of exact solubility refers to the final equation
and not the initial problem.

http://dx.doi.org/10.1007/978-3-319-74542-8_5
http://dlmf.nist.gov/15
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Fig. 3.3 Laser pulse
envelope and width
parameter Tp for the
Rosen-Zener model

ν(t)

t

2 Tp

3.2.4.2 The Landau-Zener Model

Apart from the Rosen-Zener case, an exact analytic solution is available in the case
of a linear time-dependence

ε(t) = λt, ν(t) = ν0 (3.78)

of the diagonal terms. This kind of time-dependence can, e.g., be induced in a scat-
tering experiment, by nuclear motion in a molecule, or by time-dependent magnetic
fields applied to atoms. The model has been investigated by Landau [18], as well
as by Zener [19], Stückelberg [20], and Majorana [21]. An asymptotic solution of
(3.75) for the initial condition c1(−∞) = 1 is given by

|c2(∞)|2 = 1 − exp[−2πγ ], (3.79)

where γ = ν2
0/|2λ|. The expression for γ can be further specified inmolecular theory

and leads to the celebrated Landau-Zener formula [22].
We note that for an infinitely fast change of the energy, i.e., λ → ∞, it follows that

γ → 0 and no population will be transferred, i.e., |c2(∞)|2 → 0. On the contrary
in the case of λ → 0, one finds γ → ∞, yielding complete population transfer, i.e.,
|c2(∞)|2 → 1.

3.3 Notes and Further Reading

Minimal Coupling and Gauge Transformations
Unitary (gauge) transformations of the wavefunction are discussed in depth in [2, 3].
The theory of minimal coupling and the different gauges or frames for field-matter
interaction are at least partly covered in the books just mentioned as well as in many
other quantum theoretical textbooks, see, e.g. [4]. Schleich’s book [3] focuses on
the subtleties arising from the inclusion of center of mass motion and contains an
appendix, dealing with terms beyond the dipole approximation.
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The inclusion of magnetic field coupling is discussed in [23] and in [24]. In [23]
an intensity/wavelength diagram is presented that delineates regions, where a fully
relativistic treatment (including order (v/c)2 terms) is needed from those, where
(magnetic) terms of order v/c have to be taken into account and those, where the
inclusion of the electric field only is sufficient. A similar discussion can be found on
page 868 of [4]. For the example of a Ti:sapphire laser with 800nm wavelength, the
intensity above which magnetic field effects can become important is 10 16W/cm2.
An insightful discussion of the gauge invariant calculation of expectation values and
probabilities is given in [25].

Two-Level Systems
Our formulation of the interaction of two-level systems with coherent and incoherent
(see Appendix 3.C) light is based on the presentation in Haken’s book [26]. A land-
mark paper in this field is the one by Shirley [27], treating the periodically driven
two-level problem in Floquet theory. The Rosen-Zener model is a special case of the
first Demkov-Kunike model, which is discussed in the appendix of [28].

The theory of two-level systems interacting with magnetic fields has not been
dealt with here but is covered in the book on photon-atom interactions byWeissbluth
[29]. This book is also a treasure-house, if one is interested in the effect of damping
on the dynamics of a two-level system. Thewide field of dissipative quantum systems
is usually described in a density matrix formulation (see also Appendix 3.B). More
details on that exciting field can be found in the books by Weiss [30] and by Breuer
and Petruccione [31].

The laser field is considered to be a classical field throughout the rest of this book.
In quantum optics, where the light field is treated quantum mechanically, the RWA
can also be performed, and if applied to a driven two-level system, this is known as
the Jaynes-Cummings model, which is treated in detail in the book by Schleich [3].

3.A Generalized Parity Transformation

In the case of a symmetric static potential V (x) = V (−x) and in length gauge, with
a sinusoidal laser potential of the form eE0x sin(ωt), the extended Hamiltonian Ĥ in
(2.138) is invariant under the generalized parity transformation

P̂ : x → −x, t → t + T

2
. (3.80)

The Floquet functions thus transform according to

P̂ψα′(x, t) = ±ψα′(x, t) , (3.81)

i.e., they have either positive or negative generalized parity.With the help of (2.150) it
follows thatψα′(x, t), ψβ ′(x, t) have the sameor different generalized parity, depend-
ing on (α − k) − (β − l) being even or odd.

http://dx.doi.org/10.1007/978-3-319-74542-8_2
http://dx.doi.org/10.1007/978-3-319-74542-8_2
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As we will see in Chap.5, exact crossings of the quasienergies as a function of
external parameters are of utmost importance for the quantum dynamics of period-
ically driven systems. For stationary systems, the possibility of exact crossings has
been studied in the heyday of quantum theory by von Neumann and Wigner [32].
These authors found that eigenvalues of eigenfunctions with different parity may
approach each other arbitrarily closely and may thus cross exactly. This is in contrast
to eigenvalues of the same parity, which always have to be at a finite distance, a fact
which is sometimes referred to as the non-crossing rule. The corresponding behavior
in the spectrum as a function of external parameters is called allowed, respectively
avoided crossing. In the Floquet case, the Hamiltonian can also be represented by
a Hermitian matrix, see e.g. (2.183), and therefore the same reasoning applies, with
parity replaced by generalized parity.

For the investigations to be presented in Sect. 5.5.1 it is decisive if these exact
crossings are singular events in parameter space or if they can occur by variation of
just a single parameter. In [32] it has been shown that for Hermitianmatrices (of finite
dimension) with complex (real) elements, the variation of three (two) free parameters
is necessary in order for two eigenvalues to cross. Using similar arguments, it can
be shown that for a real Hermitian matrix with alternatingly empty off-diagonals
(as it is e.g., the case for the Floquet matrix of the periodically driven, quartic,
symmetric, bistable potential) the variation of a single parameter is enough to make
two quasienergies cross.

In the case of avoided crossings an interesting behavior of the corresponding
eigenfunctions can be observed. There is a continuous change in the structure in
position space if one goes through the avoided crossing [33]. Pictorially this is very
nicely represented in the example of the driven quantum well, depicted in Fig. 3.4,
taken out of [34], where for reasons of better visualization the Husimi transform of
the quasi-eigenfunctions as a function of action angle variables (J,Θ) [35] is shown.

3.B Pauli Spin Matrices and the Two-Level Density Matrix

The Pauli spin matrices

σ x =
(
0 1
1 0

)
; σ y =

(
0 −i
i 0

)
; σ z =

(
1 0
0 −1

)
, (3.82)

together with the 2×2 unit matrix, form a complete basis in the space of complex
hermitian 2×2 matrices. In their terms our Hamiltonian (3.45) reads

H = �νσ x − �εσ z . (3.83)

http://dx.doi.org/10.1007/978-3-319-74542-8_5
http://dx.doi.org/10.1007/978-3-319-74542-8_2
http://dx.doi.org/10.1007/978-3-319-74542-8_5
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Fig. 3.4 Avoided crossing of Floquet energies (here denoted byΩα) as a function of field amplitude
(upper panel) and associated change of character of the Floquet functions, corresponding to the
two levels labelled by A and B in the driven quantum well (lower panels (a–f)); from [34]



3.B Pauli Spin Matrices and the Two-Level Density Matrix 109

Furthermore, a general density operator can be written as

ρ̂ = 1

2

(
1̂ + r · σ̂

)
, (3.84)

with a vector r that is of unit length for all times in the case of pure state dynamics,
and a vector-operator σ̂ , composed of the Pauli operators. This then allows for a
geometrical interpretation of two-level dynamics by going to the Feynman-Vernon-
Hellwarth (or Bloch sphere) representation, discussed in the book by Tannor [36].

The pure state density matrix, in the case of a two-level system with energies
E1, E2, in the basis of the corresponding eigenstates is given by

ρ =
( |d1|2 d1d∗

2 exp{−i(E1 − E2)t/�}
d∗
1d2 exp{i(E1 − E2)t/�} |d2|2

)
, (3.85)

with the populations of the different energy levels on the diagonal and where the
off-diagonal elements are sometimes called coherences.

A frequently considered mixed state is the thermal density matrix at temperature
T with only diagonal elements

ρmn = e−βEn

Q
δmn, (3.86)

where β = 1/(kBT ) with Boltzmann constant kB and where Q = ∑2
n=1 e

−βEn is
the partition function. An initial pure state evolves into a thermal mixed state by
relaxation (due to coupling to an environment) which is governed by the time scale
for population decay T1 and the dephasing or coherence decay time scale T2, which
are related via

1

T2
= 1

2T1
+ 1

T ∗
2

, (3.87)

with the pure dephasing time T ∗
2 [36].

3.C Two-Level System in an Incoherent Field

As the starting point of the perturbative treatment of a two-level system in an incoher-
ent external field, we use the Schrödinger equation in the interaction representation
(3.60) and (3.61) with the initial conditions d1(0) = 1 and d2(0) = 0. For very small
perturbations, the coefficient d1 is assumed to remain at its initial value, leading to

iḋ2 = ν21(t) exp[iω21t] . (3.88)
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This equation can be integrated immediately to yield

d2(t) = −i
∫ t

0
dt ′ν21(t ′) exp[iω21t ′] , (3.89)

analogous to the first order iteration in (2.28). Thefield shall consist of a superposition
of waves with uniformly distributed, statistically independent phases φ j

E(t) = 1

2

∑
ω j >0

E j exp[iφ j − iω j t] + c.c. . (3.90)

If we insert this into the equation above, we get

d2(t) = − i

2�

∑
j

E j · μ21 exp[iφ j ]
∫ t

0
dt ′ exp[i(ω21 − ω j )t

′]

= − i

2�

∑
j

E j · μ21 exp[iφ j ]Sj , (3.91)

where the definition

Sj = [i(ω21 − ω j )]−1
{
exp[i(ω21 − ω j )t] − 1

}
(3.92)

has been introduced. The occupation probability of the second level is then given by
the double sum

|d2(t)|2 = (2�)−2
∑

j

∑
j ′

exp[i(φ j − φ j ′)]E j · μ21E j ′ · μ∗
21Sj S∗

j ′ . (3.93)

Averaging over the phases is now performed and denoted by <>, yielding

< exp[i(φ j − φk)] >= δ jk . (3.94)

One of the sums in (3.93) therefore collapses and

< |d2(t)|2 >=
∣∣∣ e · μ21

�

∣∣∣2 ∑
j

|E j |2(ω21 − ω j )
−2 sin2[(ω21 − ω j )t/2] (3.95)

follows for identical polarization, e, of the light waves.

http://dx.doi.org/10.1007/978-3-319-74542-8_2
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Now we have to sum over the distribution of frequencies. To this end we consider
the time derivative of the expression above8

d

dt
< |d2(t)|2 >=

∣∣∣∣ e · μ21√
2�

∣∣∣∣
2 ∑

j

|E j |2(ω21 − ω j )
−1 sin[(ω21 − ω j )t] . (3.96)

With the definition of an energy density per angular frequency interval ρ(ω j ) =
1
2ε0|E j |2/Δω j , assuming that the frequencies are distributed continuously, and
replacing ρ(ω j ) by its resonance value ρ(ω21), due to

∫ ∞

−∞
dω sin(ωt)/ω = π , (3.97)

we get

d

dt
< |d2(t)|2 >= π

ε0

∣∣∣ e · μ21

�

∣∣∣2 ρ(ω21) . (3.98)

The right hand side of this expression is a constant and therefore consistent with the
assumptions made in the derivation of Planck’s radiation law in Chap. 1.

Comparing the equation above with (1.2) for N1=1 and after switching from the
angular to the linear frequency case [37]

B = 2π2

ε0

∣∣∣ e · μ21

h

∣∣∣2 (3.99)

is found for Einstein’s B coefficient.
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